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Abstract

This thesis focuses on extremal problems about coloring graphs and on finding rainbow

matchings in edge-colored graphs.

A graph G is k-critical if G is not (k − 1)-colorable, but every proper subgraph of G is

(k − 1)-colorable. Let fk(n) denote the minimum number of edges in an n-vertex k-critical

graph. We present a lower bound, fk(n) ≥ F (k, n), that is sharp whenever n = 1 (mod k−1).

It establishes the asymptotics of fk(n) for every fixed k, and confirms a conjecture by Gallai.

We also present several applications of the proof, including a polynomial-time algorithm for

(k − 1)-coloring a graph G that satisfies |E(G[W ])| < F (k, |W |) for all W ⊆ V (G), several

results about 3-coloring planar graphs, and a lower bound on the minimum number of edges

in an n-vertex k-critical hypergraph.

We also present a lower bound on the number of edges in graphs that cannot be 1-

defectively 2-colored. The bound solves an open problem in vertex Ramsey theory.

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct

colors. The color degree of a vertex v is the number of different colors on edges incident to

v. We show that if G is a n-vertex graph with minimum color degree k, then G contains a

rainbow matching of size at least k/2 always and size at least k if n ≥ 4.25k2.
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Chapter 1

Introduction

1.1 Notation and Conventions

We define [k] = {1, . . . , k}. The degree of a vertex v, denoted d(v), is the number of edges

that contain v. The maximum degree of a graph G, denoted ∆(G), is the maximum degree of

the vertices of G. For a graph or hypergraph G and a set of vertices S ⊆ V (G), the induced

graph of G on S, denoted G[S], is the subgraph such that V (G[S]) = S and E(G[S]) =

{e ∈ E(G) : e ⊆ S}. For a set of vertices S in a graph G, the graph G − S is the induced

subgraph on the vertex set V (G) \ S.

A vertex-coloring of a graph G, or graph coloring, is a function φ : V (G) → [k]. For a

vertex v ∈ V (G), the color on v is f(v). An edge-coloring is a function φ : V (G)→ [k]. Let

A ⊆ V (G) and B ⊆ V (G) such that V (G) = A ∪ B. If φA is a coloring of G[A] and φB is a

coloring of G[B] such that φA(v) = φB(v) for each v ∈ A ∩ B, then φA ∪ φB is a coloring φ

of G where φ(u) = φA(u) when u ∈ A and φ(w) = φB(w) when w ∈ B.

A proper coloring of a graph G is a graph coloring such that φ(u) 6= φ(v) if uv ∈ E(G).

If there exists a proper coloring on G with k colors, then we say that G is k-colorable. The

chromatic number of a graph G, denoted χ(G), is the smallest k such that G is k-colorable.

A graph G is k-chromatic if χ(G) = k. A graph G is k-critical if G is not (k − 1)-colorable,

but every proper subgraph of G is (k − 1)-colorable. Every k-critical graph is k-chromatic.

Every graph with chromatic number at least k contains a k-critical graph as a subgraph.

A proper k-coloring of a hypergraph G is a function f : V (G) → [k] such that for each
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e ∈ E(G), the vertices in e do not all map to the same color. The definitions of chromatic

number and k-critical generalize in the natural way.

For a coloring f of a graph G, the set of vertices {v ∈ V (G) : f(v) = i} is called the ith

color class of f . A (d1, . . . , dk)-improper coloring of a graph G, or just (d1, . . . , dk)-coloring,

is a coloring f of G using at most k colors such that for all i, the ith color class of f induces

a graph with maximum degree at most di. This is also called a (d1, . . . , dk)-relaxed coloring.

If di = d for 1 ≤ i ≤ k, then this is also known as d-defectively k-coloring. A graph

G is improperly (d1, . . . , dk)-colorable, or just (d1, . . . , dk)-colorable, if there is a (d1, . . . , dk)-

coloring of G. We define a graph G to be (d1, . . . , dk)-critical if G is not (d1, . . . , dk)-colorable,

but every proper subgraph H of G is (d1, . . . , dk)-colorable.

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct

colors. In the literature, a rainbow subgraph has also been called “totally multicolored,”

“polychromatic,” or “heterochromatic.” The color degree of a vertex v in an edge-colored

graph, dc(v), is the number of distinct colors that appear on the edges incident to v. The

minimum color degree of a graph G with edge-coloring φ, δc(G, φ), is the minimum color

degree of the vertices in G under the edge-coloring φ. A t-factor of a graph G is a subgraph

H of G such that V (G) = V (H) and dH(v) = t for all v ∈ V (H).

A graph G is connected if there exists a path with ends x and y for every pair of vertices

x and y in G. A separating set in a connected graph G is a subset of vertices S such that

G − S is disconnected. If G is a graph such that there exists a pair of vertices in G that

do not form an edge, then the connectivity of G, denoted κ(G), is the smallest size of a

separating set in G. A graph G is k-connected if the connectivity of G is at least k.

For a graph G and distinct vertices u, v ∈ V (G), the operation of merging u and v is to

create a new graph G′, where V (G′) = V (G)− u− v +w and NG′(w) = (NG(u) ∪NG(v))−

{u, v}. If G is a graph and v ∈ V (G), then the operation of splitting v into vertices u1, . . . ut

is to create a new graph G′, where merging vertices u1, . . . ut in G′ into one vertex v creates
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G. Splitting and merging are inverse operation of each other.

1.2 Sparse Critical Graphs

The problem of graph coloring has long been associated with resource assignment. In this

setting, each color is a type of resource and each vertex needs exactly one type of resource.

A simple application of proper colorings of graphs is the problem of assigning radio

frequencies to a network of radio towers. Suppose a radio broadcasting company owns a

collection of radio stations and towers on which those stations broadcast. The company

also pays a subscription fee for a set of frequencies on which their towers can broadcast. If

two towers are too close to each other, as when both are located in Miami, then to avoid

interference with each other’s transmission they must broadcast on different frequencies. If

two towers are sufficiently apart, as when one is in Atlanta and the other is in Portland, then

they are allowed to use the same frequency. The problem of assigning frequencies to each

tower can then be modeled as a proper coloring problem: each vertex represents a tower

that requires a frequency, each frequency is represented by a color, and an edge between two

vertices represents towers that are close enough to experience interference.

FM 101.5

FM 101.5

AM 890

FM 93.6

FM 94.5

Figure 1.1: An example application of properly coloring a graph.

The problem of graph coloring dates back to 1852, when mathematicians considered the

problem of coloring the counties of England on a map. Interest in the problem gained mo-
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mentum when applications to computational efficiency were discovered. One such application

involves scheduling several tasks with conflicting interest for register access. This problem

can be modeled via graph coloring. Each task is a vertex. If two tasks need a register that

cannot be shared, then the two tasks form an edge. Each color represents a dedicated time

slot when the associated tasks can run. In this model, a proper graph coloring with few

colors corresponds to a schedule in which all tasks can be completed in a short time-span.

Proper graph coloring continues to be studied today because of the complexity of the

problem. Determining whether a graph is k-colorable when k ≥ 3 was in the original list

of 21 NP-complete problems by Karp [48]. Furthermore, even reasonable approximations of

the fewest number of colors necessary is an NP-complete problem [82].

There is very little one can say about the structure of k-chromatic graphs beyond the fact

that they contain a k-critical subgraph. All k-critical graphs are (k−1)-edge connected; not

all k-chromatic graphs are. All k-critical graphs are 2-connected; not all k-chromatic graphs

are. The general structure of a k-chromatic graph is best described as a k-critical graph

plus extraneous stuff. Proofs of many statements in graph coloring begin with a redaction

to the case of k-critical graphs. Structural results about k-critical graphs are then applied.

Hence, applications to the large and prominent research area of graph coloring place a strong

motivation for characterizing critical graphs.

Chapter 2 is directed towards describing the structure of k-critical graphs. The main

theorem is a lower bound on the number of edges in a k-critical graph with n vertices.

Informally, this is a statement claiming that critical graphs are not “sparse” with edges.

The theorem confirms a conjecture by Gallai, and partially solves a conjecture by Ore.

Chapter 2 also includes an algorithm for quickly coloring sparse graphs. Section 2.2 contains

an important lemma, which is interesting on its own. For example, the lemma is used again

in Section 3.3.

The original intent of critical graphs was to use them as a tool for answering questions
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in graph coloring problems. Chapter 3 is dedicated to presenting some applications of the

results in Chapter 2. Section 3.1 presents short proofs of several results relating to 3-coloring

planar graphs, several of which are new. Section 3.2 includes a construction of graphs with

high chromatic number but low chromatic number on all small subgraphs. The results of

Chapter 2 improve the previous constructions. Section 3.3 presents a short proof of a result

on coloring graphs with low Ore-degree. Section 3.4 presents a similar result for hypergraphs.

Recall the application of graph coloring to assigning frequencies to radio towers. Recently,

Havet and Sereni [41] described a variation of this problem:

In this paper, we investigate the following problem proposed by Alcatel, a

satellite building company. A satellite sends information to receivers on earth,

each of which is listening on a frequency. Technically it is impossible to focus

the signal sent by the satellite exactly on receiver. So part of the signal is spread

in an area around it creating noise for the other receivers displayed in this area

and listening on the same frequency. A receiver is able to distinguish the signal

directed to it from the extraneous noises it picks up if the sum of the noises does

not become too big, i.e. does not exceed a certain threshold T .

In this problem, each vertex is allowed to have up to T neighbors operating with the same

color. This is a generalization of the traditional problem: if T = 0, then the problem reduces

to finding a proper coloring. The analogue of this generalized problem is improperly coloring

a graph. Using the notation of improper colorings, Alcatel is interested in a (T, . . . , T )-

coloring of their satellite receivers.

The interest in structural results about (T, . . . , T )-critical graphs comes from the same set

of applications on k-critical graphs. Esperet, Montassier, Ochem, and Pinlou [30] proved that

if there exists a (0, 1)-critical planar graph with girth at least g and maximum degree at most

d, then determining if a planar graph with girth g and maximum degree d is (0, 1)-colorable
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is NP-complete if a planar graph with girth g and maximum degree d is (0, 1)-colorable

is NP-complete. Because of the similarity in the problems of improper coloring to proper

coloring, the theorems about improper colorings we strive to produce are similar to those

theorems regarding proper coloring. The main objective of Chapter 4 is a lower bound on

the number of edges in n-vertex (1, 1)-critical graphs. This result solves an open problem in

vertex-Ramsey theory.

1.3 Rainbow Matchings

The main message of our work on critical graphs is that graphs that do not admit simple

colorings contain a large and complex subgraph. We now present the converse: large graphs

with complex colorings must contain simple substructures. The field of anti-Ramsey theory

studies, for fixed graphs G and H, the minimum number of colors on the edges of G such

that G is forced to contain a rainbow subgraph isomorphic to H. Local anti-Ramsey theory,

for fixed graphs G and H, determines the smallest minimum color degree of G such that G

is forced to contain a rainbow subgraph isomorphic to H.

Anti-Ramsey theory and local anti-Ramsey theory are essentially solved when χ(H−e) ≥

3 for all e ∈ E(H). This is because many extremal graphs in anti-Ramsey theory can be

constructed by turning an extremal graph in Turán theory into a rainbow subgraph, with

all of the non-edges collected into a single color class. However, Turán theory is still largely

open when χ(H) = 2. The active directions in these fields involve examining the answers

when H is bipartite. Chapter 5 specifically investigates local anti-Ramsey values when H is

a matching.

The choice of a matching for H lends deeper significance to the results presented here.

Ryser’s conjecture on the size of the largest transversal in a Latin Square is equivalent to

finding the largest rainbow matching in G = Kn,n with an edge-coloring where each color
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class forms a 1-factor. There exist several results in design theory about finding large rainbow

matchings in graphs where each color class forms a t-factor, for some t. As such, the results

in Chapter 5 relate to and augment existing results in design theory.

Additionally, there has been a significant amount of research in the relationship of rain-

bow subgraphs to minimum color degree in the theory of rainbow subgraphs, as studied by

computer scientists. There exists an extensive amount of literature on the computational

complexity of finding rainbow subgraphs for fixed subgraph characteristics. The majority of

the results determine that the problem is computationally difficult (many of the problems

are some variation of NP). This led to an interest in finding easily verifiable conditions that

are sufficient for the existence of a rainbow subgraph of given type. The minimum color

degree is one such easily verifiable condition. Our results solve two open problems about the

sufficiency of a large minimum color degree for a rainbow matching of given size.
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Chapter 2

Sparse Critical Graphs

Even though k-critical graphs have more structure than k-chromatic graphs, there is still

much unknown about them when k ≥ 4. The only 1-critical graph is K1, and the only

2-critical graph is K2. The set of 3-critical graphs are the cycles with odd length. See Figure

2.1 for several graphs that demonstrate the variety of 4-critical graphs.

Figure 2.1: Several 4-critical graphs.

Proofs of many statements in graph coloring begin with a redaction to the case of k-critical

graphs. Structural results about k-critical graphs are then applied. Hence, applications

to the large and prominent research area of graph coloring place a strong motivation for

characterizing critical graphs. Dirac [25] first defined critical graphs in 1951, when he used

them to describe the space of k-colorings on a graph and the affects on that space from

deleting a vertex. In 1957 Dirac [27] asked for fk(n), the fewest edges in a k-critical graph
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with n vertices. Since then, determining fk(n) has shown up on several lists of open problems

in graph theory [44, 45, 77].

It is known that k-critical graphs exist if and only if n = k or n ≥ k+ 2, and so we define

that to be the domain of fk(n). Gallai determined exact values when k+2 ≤ n ≤ 2k−2 [33]:

fk(n) = 1
2

((k − 1)n+ (n− k)(2k − n)) − 1. Until our recent results, exact values of fk(n)

were known for only a few other values of n for each k.

Bounds on fk(n) fall into two categories: Dirac-type bounds and Gallai-type bounds.

Note that by edge-connectivity (and therefore minimum degree), fk(n) ≥ k−1
2
n. This is

tight if and only if n = k. Dirac-type bounds prove that fk(n) ≥ k−1
2
n + h(k) for some

function h under some restrictions on n. Gallai-type bounds prove that fk(n) ≥ h′(k)n, for

some function h′(k) > k−1
2

under some restrictions on n.

Dirac-type bounds earned their name because Dirac was the first to explicitly work

towards this type of result. However, the earliest Dirac-type bound belongs to Brooks

[21], who proved that if G is k-critical and not Kk, then ∆(G) ≥ k, which implies that

fk(n) ≥ k−1
2
n + 1

2
when n 6= k. Brooks’ result is sharp when k = 4 and n = 7. Dirac

strengthened this result [27] by showing that fk(n) ≥ k−1
2
n+ k−3

2
when n 6= k. Dirac’s result

is sharp when n = 2k − 1. Much later, Kostochka and Stiebitz [52] would give the best

Dirac-type bound known today, which is fk(n) ≥ k−1
2
n + k − 3 when n /∈ {k, 2k − 1}. This

result is sharp when n ∈ {2k, 3k − 2}.

Gallai [33] started Gallai-type bounds by proving that fk(n) ≥ (k−1
2

+ k−3
2(k2−3)

)n when

n 6= k. Krivelevich [57] proved the stronger Gallai-type bound fk(n) ≥ (k−1
2

+ k−3
2(k2−2k−1)

)n

when n 6= k. Then Kostochka and Stiebitz [52] proved that fk(n) ≥ (k−1
2

+ k−3
k2+6k−11−6/(k−2)

)n

for k ≥ 6 when n 6= k,.

While Gallai-type bounds are stronger than Dirac-type bounds when n >> k, there

are no pairs (n, k) for which any of the above Gallai-type bounds are sharp. In fact, for

these bounds, limk→∞
(
h′(k)− k−1

2

)
= 0, while the best constructions imply that for the

9
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Figure 2.2: Comparison of Dirac-type bounds when k = 7.

best bound limk→∞
(
h′(k)− k−1

2

)
= 1

2
. In 1963, Gallai [33] was able to prove several results

in this direction, and conjectured that it is true under specific conditions. However, this

50-year-old conjecture remains open.

Conjecture 2.1 (Gallai’s Conjecture [33]) If n = 1 + t(k − 1) for t ∈ N, then

fk(n) = t

((
k

2

)
− 1

)
+ 1 =

(k + 1)(k − 2)n− k(k − 3)

2(k − 1)
.
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Figure 2.3: Comparison of Gallai-type bounds when k = 7.

The bound in Gallai’s conjecture is matched by a specific construction, proving that the

conjecture is sharp if true. In 1967, Gallai’s conjecture was generalized by Ore to a conjecture

on all n. Ore’s conjecture is based on the construction in Gallai’s conjecture, with varying

initial conditions. Similar to Gallai’s conjecture, there are known constructions for which

Ore’s conjecture is sharp.
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Conjecture 2.2 (Ore’s Conjecture [63]) If n = k or n ≥ k + 2, then

fk(n) =
(k + 1)(k − 2)

2(k − 1)
n+ ε(n, k),

where ε(n+ k − 1, k) = ε(n, k).

Note that combining results from Gallai, Dirac, and Kostochka and Stiebitz, exact values

for fk(n) are known when k + 2 ≤ n ≤ 2k, and hence exact values for ε(n, k) are known in

all cases.

For a fixed k, the function ε(n, k) is quadratic over 2k ≤ n ≤ 3k − 2. This suggests

a rather beautiful nature to the conjectured values of fk(n), especially since the values of

fk(n) have not been explicitly determined over one continuous period of ε(n, k), but rather

pieced together from several periods. Another beautiful feature of the conjectured function

for fk(n) is that for all k, fk(1) = 1. Although this is considered outside the domain of fk(n)

because we only consider simple graphs, one could consider one vertex and a loop a k-critical

graph under certain relaxations of the definition.

There have been multiple constructions of sparse k-critical graphs. Hajós’ Construc-

tion [39] is the most popular. We present a construction below, which is similar to Hajós’

Construction. It has been altered to match our needs for further results.

Construction 2.3 An Ore-composition of graphs G1 and G2, called O(G1, G2), is the graph

obtained as follows:

(i) delete some edge xy from G1;

(ii) split some vertex z of G2 into two vertices z1 and z2 of positive degree;

(iii) glue x with z1 and y with z2.

We attached Ore’s name to it because we will use Construction 2.3 to make further
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progress on proving Ore’s Conjecture. Note that Ore’s Construction [63] is different than

Ore-composition.

Ore observed that if G1 and G2 are k-critical and G2 is not k-critical after z has been split,

then O(G1, G2) also is k-critical. If |N(z1)∩V (G2)| ≤ k− 2, then G2 is not k-critical after z

has been split, and so all pairs of k-critical graphs have some valid split. Ore’s Conjecture was

specifically that if fk(|V (G1)|) = |E(G1)| and G = O(G1, Kk), then fk(|V (G)|) = |E(G)|.

By this construction with G2 = Kk,

ε(n+ k − 1, k) ≤ ε(n, k). (2.1)

Conjecture 2.2 can be re-stated as that equality always holds in (2.1).

Recently, Kostochka and Yancey [55] proved the best possible Gallai-type bound. It

proves that Conjecture 2.1 is true. It also proves a lower bound on ε(n, k), which implies

that the recursive version of Ore’s Conjecture, that (2.1) is equal in all cases, can be false

for at most a finite number of values of n for each k. It also proves that Ore’s Conjecture is

true when k = 4. It is also the first result to give exact values of fk(n) for infinitely many n

for each k. Figures 2.2 and 2.3 gives a comparison of Theorem 2.5 to Ore’s conjecture and

previous Gallai-type bounds.

Definition 2.4 Let F (k, n) = (k+1)(k−2)n−k(k−3)
2(k−1)

.

Theorem 2.5 ([55]) If k ≥ 4 and n ≥ k, n 6= k + 1, then

fk(n) ≥ dF (k, n)e .

We define k-Ore graphs, Ok, recursively: G ∈ Ok if G = Kk or if G = O(G1, G2)

and G1, G2 ∈ Ok. It is easy to see that if G ∈ Ok, then |V (G)| ≡ 1(mod k − 1) and

|E(G)| = F (k, |V (G)|). Kostochka and Yancey [55] also proved a Brooks-type extension of
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Theorem 2.5: if G is k-critical and |E(G)| = F (k, |V (G)|), then G ∈ Ok.

Theorem 2.6 ([56]) Let k ≥ 4 and let G be a k-critical graph. If G /∈ Ok, then |E(G)| ≥
(k2−k−2)|V (G)|−αk

2(k−1)
, where αk = max{2k − 6, k2 − 5k + 2}. Furthermore, if k ≥ 4 and n ≥ k,

with n 6= k + 1 and n 6≡ 1(mod k − 1), then

fk(n) ≥ F (k, n) + zk,

where z4 = 1
3
, z5 = 3

4
, and zk = 1 otherwise.

The value of zk (and equivalently αk) in Theorem 2.6 is best possible. The family of

graphs Ok is defined using the Ore-composition, and graphs that can be produced by Ore-

composition are characterized by having connectivity equal to two. On the other hand,

for k ≥ 4, there exists an infinite family of 3-connected k-critical graphs with |E(G)| =

(k2−k−2)|V (G)|−αk

2(k−1)
. The idea of this construction and the examples for k ∈ {4, 5} are due to

Toft [76].

Kostochka and Yancey [55, 56] determined several consequences of Theorems 2.5 and 2.6.

The proofs of the theorems exclusively use constructive arguments. With some additional

work, they provide the core of a polynomial-time algorithm to properly color graphs that are

sufficiently sparse. They also determine exact values of fk(n) and confirm Ore’s Conjecture

under several different sufficient conditions.

Corollary 2.7 ([55]) Let G be a graph. If k ≥ 4 and |E(W )| < F (k, |V (W )|) for every

subgraph W ⊆ G, then G can be properly (k − 1)-colored in O(k3.5n6.5 log(n)) time.

Corollary 2.8 ([56]) Conjecture 2.2 holds and the value of fk(n) is known if

• k ≤ 5,

• k = 6 and n ≡ 0(mod 5),
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• k = 6 and n ≡ 2(mod 5),

• k = 7 and n ≡ 2(mod 6), or

• n ≡ 1(mod k − 1).

In Section 2.1 we introduce notation and prove some basic results. In Section 2.2 we

give an important lemma relating to list coloring, which is interesting on its own merits.

In Section 2.3 we determine several structural properties of k-Ore graphs. The proofs of

Theorems 2.5 and 2.6 are merged into one argument, which is given in three stages: Section

2.4 demonstrates that extra-sparse subgraphs have freedom in their coloring, Section 2.5

contains a collection of inductive arguments on specific structures, and Section 2.6 concludes

by using discharging to show that any graph that satisfies the demonstrated properties

cannot be sparse. Constructions demonstrating the sharpness of these theorems are given in

Section 2.7, which includes a proof of Corollary 2.8. In Section 2.8 we outline the algorithm

described in Corollary 2.7.

2.1 Preliminaries

Definition 2.9 For R ⊆ V (G), define the k-potential of R to be

ρk,G(R) = (k − 2)(k + 1)|R| − 2(k − 1)|E(G[R])|. (2.2)

When there is no chance for confusion, we will use ρk(R). Let Pk(G) = min∅6=R⊆V (G) ρk, (R).

We will also use the related parameter P̃k(G), which is the minimum of ρk(W ) over all

W ⊂ V (G) such that 2 ≤ |W | ≤ |V (G)| − 1.

Fact 2.10 For the k-potential defined by (2.2), we have

1. ρk,Kk
(V (Kk)) = k(k − 3),
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2. ρk,K1(V (K1)) = (k − 2)(k + 1),

3. ρk,K2(V (K2)) = 2(k2 − 2k − 1),

4. ρk,Kk−1
(V (Kk−1)) = 2(k − 2)(k − 1).

We restate Theorems 2.5 and 2.6 in the following equivalent manner.

Theorem 2.11 Let αk = max{2k − 6, k2 − 5k + 2}. If k ≥ 4 and G is a k-critical graph,

then ρk(V (G)) ≤ k(k − 3). If G /∈ Ok then ρk(V (G)) ≤ αk.

Now, we prove some basic results.

Definition 2.12 For a graph G, a set R ⊂ V (G) and a proper (k − 1)-coloring φ of G[R],

the graph Y (G,R, φ) is constructed as follows. First, for 1 ≤ i ≤ k − 1, let R′i denote the

set of vertices in V (G) − R adjacent to at least one vertex v ∈ R with φ(v) = i. Second,

let X = {x1, . . . , xk−1} be a set of new vertices disjoint from V (G). Now, let Y (G,R, φ), or

just Y , be the graph with vertex set V (G) − R + X, such that Y [V (G) − R] = G − R and

N(xi) = R′i ∪ ({x1, . . . , xk−1} − xi) for 1 ≤ i ≤ k − 1.

Claim 2.13 Let χ(G) ≥ k. If R ⊂ V (G) and φ is a proper (k − 1)-coloring of G[R], then

χ(Y (G,R, φ)) ≥ k.

Proof. Let G′ = Y (G,R, φ). Let φ′ : V (G′)→ C be a proper (k− 1)-coloring. By construc-

tion of G′, the colors of all xi in φ′ are distinct. By changing the names of the colors, we

may assume that φ′(xi) = i for 1 ≤ i ≤ k − 1. By construction of G′, we have φ′(u) 6= i for

u ∈ R′i. Therefore φ|R ∪ φ′|V (G)−R is a proper (k − 1)-coloring of G, which contradicts the

assumption χ(G) ≥ k.. �
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Claim 2.14 Let R ⊂ V (G), φ be a proper (k−1)-coloring of G[R], and let G′ = Y (G,R, φ).

Let W ⊆ V (G′). If W ∩X = {xi1 , . . . , xiq} and R|W denotes the set of vertices v ∈ R∗ such

that φ(v) ∈ {i1, . . . , iq}, then

ρk,G(W−X+R) = ρk,G′(W )−ρk,G′(W∩X)+ρk,G(R)−2(k−1)|EG(W−X,R−R|W )|. (2.3)

Proof. Since ρk,G(U) is a linear combination of the numbers of vertices and edges in G[U ],

it is enough to check that every vertex and edge of G[W − X + R] has a net affect of one

appearance in the RHS of (2.3) and the every other vertex or edge has a net affect of zero

appearances.

The weight of every vertex and edge of G′[W∩X] appears once positively by ρk,G′(W ) and

once negatively by−ρk,G′(W∩X), and therefore has zero net effect. Edges in EG(W−X,RW )

are counted once positively by ρk,G′(W ), and edges in EG(W −X,R−RW ) are counted once

by −2(k − 1)|EG(W −X,R− R|W )|. Hence, edges in E(W −X,R) are counted once. The

weight of every vertex and edge of G′[W −X] is counted once, as is every vertex and edge in

G[R]. Note that G′[W −X] = G[W −X]. Because the vertices and edges in G[W −X +R]

are the union of vertices and edges of G[R], G[W − X] and E(W − X,R − RW ), we have

that the edges and vertices of G[W −X +R] are counted exactly once.

�

2.2 Orientations and List Colorings

A digraph, or directed graph, is a set of vertices V and arcs E, where each arc is an ordered

pair of vertices. The out-neighbors of a vertex u, denoted N+(u), is the set {w ∈ V (G) :

uw ∈ E(G)}. The out-degree of u, denoted d+(u), is |N+(u)|. The in-neighbors of a vertex u,
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denoted N−(u), is the set {w ∈ V (G) : wu ∈ E(G)}. The neighbors of a vertex u, denoted

N(u), is N+(u)∪N−(u). A digraph G is an orientation of a multigraph G′ if V (G) = V (G′)

and there is a bijection between the arcs uw,wu ∈ E(G) and edges uw ∈ E(G′).

Recall that a list assignment for a graph G is a mapping L of V (G) into the family of

finite subsets of N. For a given list L, a graph G is L-colorable, if there exists a coloring

f : V (G) → N such that f(v) ∈ L(v) for every v ∈ V (G) and f(v) 6= f(u) for every

uv ∈ E(G).

We consider loopless digraphs. A kernel in a digraph D is an independent set F of vertices

such that each vertex in V (D)− F has an out-neighbor in F . A digraph D is kernel-perfect

if for every A ⊆ V (D), the induced subdigraph D[A] has a kernel. It is known that kernel-

perfect orientations form a useful tool for list colorings. The following fact is well known but

we include its proof for completeness.

Lemma 2.15 (Bondy, Boppana, Siegel (see [5])) If D is a kernel-perfect digraph and

L is a list assignment such that

|L(v)| ≥ 1 + d+(v) for every v ∈ V (D), (2.4)

then D is L-colorable.

Proof. We use induction on |V (D)|. When D has only one vertex, the statement is trivial.

Suppose the statement holds for all pairs (D′, L′) satisfying (2.4) with |V (D′)| ≤ n− 1. Let

|V (D)| = n, and let (D,L) satisfy (2.4). Let v ∈ V (D), and let α be a color present in L(v).

Let Vα = {x ∈ V (D) : α ∈ L(x)}. Since D is kernel-perfect, D[Vα] has a kernel K. Color all

vertices of K with α and consider (D′, L′), where D′ = D −K and L′(y) = L(y)− α for all

y ∈ V (D′). Since the outdegree of every x ∈ Vα−K decreased by at least 1, (D′, L′) satisfies

(2.4), and so by the induction hypothesis D′ has an L′-coloring. Together with coloring of
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K by α, this yields an L-coloring of D, as claimed. �

Richardson’s Theorem [65] states that every orientation of a bipartite multigraph is

kernel-perfect. We prove a somewhat stronger result.

Lemma 2.16 Let A be an independent set in a graph G, and let B = V (G)− A. Let D be

the digraph obtained from G by replacing each edge in G[B] by two opposite arcs and by giving

an arbitrary orientation to the edges joining A and B. The digraph D is kernel-perfect.

Proof. Let D be a counterexample with the fewest vertices. If every b ∈ B has an

outneighbor in A, then A is a kernel. Otherwise, some b ∈ B has no outneighbors in A.

This yields N(b) = N−(b). We consider D′ = D − b−N−(b). By the minimality of D, the

digraph D′ has a kernel K. Now K + b is a kernel of D. �

For a graph G and disjoint vertex subsets A and B, let G(A,B) denote the bipartite

graph with partite sets A and B whose edges are all edges of G with one endpoint in A and

the other in B. The main result of this section is the following.

Lemma 2.17 Let G be a k-critical graph. Let disjoint vertex subsets A and B be such that

(a) at least one of A and B is independent;

(b) dG(a) = k − 1 for every a ∈ A;

(c) dG(b) = k for every b ∈ B.

Under these conditions, (i) δ(G(A,B)) ≤ 2 and

(ii) either some a ∈ A has at most one neighbor in B or some b ∈ B has at most three

neighbors in A.

Proof. Suppose G is a counterexample. If A ∪ B = ∅, then both statements are trivial.

Otherwise, since G is k-critical, there exists a proper (k − 1)-coloring f of G− A− B. Fix
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any such f . We will show that this proper coloring extends to all of G, by list coloring the

graph induced on A ∪B in a way that avoids conflict with f .

For every x ∈ A ∪ B, let L(x) be the set of colors in [k − 1] not used in f on neighbors

of x. Letting G′ = G[A ∪B], we have

for every a ∈ A, |L(a)| ≥ dG′(a), and for every b ∈ B, |L(b)| ≥ dG′(b)− 1. (2.5)

CASE (i): δ(G(A,B)) ≥ 3. Let G′′ be obtained from G(A,B) by splitting each b ∈ B

into ddG(A,B)(b)/3e vertices of degree at most 3. In particular, a vertex b of degree 3 in

G(A,B) is not split. The graph G′′ is bipartite with partite sets A and B′, where B′ is

obtained from B. By the hypothesis, the degree of each a ∈ A in G′′ is at least 3. By the

splitting procedure, the degree of each vertex b ∈ B′ is at most 3. It follows that if S ⊆ A,

then |NG′′(S)| ≥ |S|. By Hall’s Theorem, G′′ has a matching M covering A. We construct

a digraph D from G′ as follows:

(1) replace each edge of G[B] or in G[A] (whichever is nonempty) with two opposite arcs,

(2) orient every edge of G(A,B) corresponding to an edge in M toward A,

(3) orient all other edges of G(A,B) toward B.

By Lemma 2.16, D is kernel-perfect. Moreover, by (2.5), for every a ∈ A, d+
D(a) =

dG′(a)− 1 ≤ |L(a)| − 1, and for every b ∈ B,

d+
D(b) ≤ dG′(b)− b

2

3
dG(A,B)(b)c ≤ (|L(b)|+ 1)− 2 = |L(b)| − 1.

Thus by Lemma 2.15, G′ has L-coloring f ′. This means that f∪F ′ is a proper (k−1)-coloring

of G, which is a contradiction. This proves (i).

CASE (ii): Each a ∈ A has at least two neighbors in B and each b ∈ B has at least four

neighbors in A. Obtain G′′ by splitting each b ∈ B into ddG(A,B)(b)/2e vertices of degree at

most 2. Similarly to Case 1, the graph G′′ is bipartite with partite sets A and B′, where B′
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is obtained from B. The degree of each a ∈ A in G′′ is at least 2, and the degree of each

vertex b ∈ B′ is at most 2. Again by Hall’s Theorem, G′′ has a matching M covering A. We

construct a digraph D from G′′ according to Rules (1)–(3) in Case 1. Again, by Lemma 2.16,

D is kernel-perfect, and by (2.5), for every a ∈ A, d+
D(a) = dG′(a)−1 ≤ |L(a)|−1. For every

b ∈ B, since dG(A,B)(b) ≥ 4, by (2.5),

d+
D(b) ≤ dG′′(b)− b

1

2
dG(A,B)(b)c ≤ (|L(b)|+ 1)− 2 = |L(b)| − 1.

This proves (ii) �

Corollary 2.18 Let G be a k-critical graph. Let disjoint vertex subsets A and B be such

that

(a) A or B is independent;

(b) dG(a) = k − 1 for every a ∈ A;

(c) dG(b) = k for every b ∈ B;

(d) |A|+ |B| ≥ 3.

Under these conditions, (i) |E(G(A,B))| ≤ 2(|A| + |B|) − 4 and (ii) |E(G(A,B))| ≤ |A| +

3|B| − 3.

Proof. First we prove (i) by induction on |A|+ |B|. If |A|+ |B| = 3, then since G(A,B)

is bipartite, it has at most 2 = 2 · 3 − 4 edges. Suppose now that |A| + |B| = m ≥ 4 and

that the corollary holds for 3 ≤ |A|+ |B| ≤ m− 1. By Lemma 2.17(i), G(A,B) has a vertex

v of degree at most 2. By the minimality of m, G(A,B)− v has at most 2(m− 1)− 4 edges.

Now |E(G(A,B))| ≤ 2 + 2(m− 1)− 4 = 2m− 4, as claimed.

The base case |A| + |B| = 3 for (ii) is slightly more complicated. If |A| = 3, then

|E(G(A,B))| = 0 = |A| + 3|B| − 3. If |B| ≥ 1, then |A| + 3|B| ≥ 5 and |E(G(A,B))| ≤

2 = 5 − 3 ≤ |A| + 3|B| − 3. The proof of the induction step is very similar to the previous
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paragraph, using Lemma 2.17(ii). �

2.3 Ore Graphs

The next fact is a restatement of the definition of k-Ore graphs.

Fact 2.19 Fix k with k ≥ 3. Every k-Ore graph G 6= Kk has a separating set {x, y} and

two vertex subsets A and B such that

(i) A ∩B = {x, y}, A ∪B = V (G), and no edge of G connects A− x− y with B − x− y,

(ii) the graph G̃(x, y) obtained from G[A] by adding edge xy is a k-Ore graph, and

(iii) the graph Ĝ(x, y) obtained from G[B] by merging x with y into a new vertex w is a

k-Ore graph.

In this case, G is an Ore-composition of G̃(x, y) and Ĝ(x, y), and we will say that G̃(x, y)

and Ĝ(x, y) are x, y-children (or simply children) of G. Moreover, G̃(x, y) will be always

the first child and Ĝ(x, y) will be the second child.

Claim 2.20 For every k-Ore graph G and every nonempty R ( V (G), we have ρk,G(R) ≥

(k + 1)(k − 2).

Proof. Let G be a smallest counterexample to the claim. If G = Kk, then the statement

immediately follows from Fact 2.10. For G 6= Kk, let a separating set {x, y} and two vertex

subsets A and B be as in Fact 2.19. Let R have the smallest size among nonempty proper

subsets of V (G) with connected G[R] and ρk,G(R) < (k+1)(k−2). If ρk,G(R′) < (k+1)(k−2)

and G[R′] is disconnected, then the vertex set of some component of G[R′] also has potential

less than (k+1)(k−2). So, such R exists. Since ρk,G(R) < (k+1)(k−2) and R is non-empty,

|R| ≥ k.
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CASE 1: {x, y} ∩ R = ∅. Since G[R] is connected, R is a non-empty proper subset

either of V (G̃(x, y)) or of V (Ĝ(x, y)). By the minimality of G, the potential of R is at least

(k + 1)(k − 2), a contradiction.

CASE 2: {x, y}∩R = {x}. The set R∩A induces a non-empty connected subgraph of G.

By the minimality of |R|, ρk,G(R∩A) ≥ (k+1)(k−2). Similarly, ρk,G(R∩B) ≥ (k+1)(k−2).

Now

ρk,G(R) = ρk,G(R ∩ A) + ρk,G(R ∩B)− ρk,G(K1) ≥ (k + 1)(k − 2),

a contradiction.

CASE 3: {x, y} ⊆ R. If A ⊂ R, then ρk,Ĝ(x,y)((R − A) + x ∗ y) = ρk,G(R). By the

minimality of G, this is at least (k + 1)(k − 2), a contradiction. Similarly, if B ⊆ R, then

ρk,G̃(x,y)(R ∩ A) = ρk,G(R), a contradiction again. So, suppose A − R 6= ∅ and B − R 6= ∅.

Now ρk,G̃(x,y)(R∩A) ≥ (k+1)(k−2). Since xy is an edge in G̃(x, y) but not in G, this yields

ρk,G(R∩A) ≥ (k+ 1)(k− 2) + 2(k− 1). Similarly, ρk,Ĝ(x,y)((R−A) + x ∗ y) ≥ (k+ 1)(k− 2)

and thus ρk,G(R ∩B) ≥ 2(k + 1)(k − 2). Now

ρk,G(R) = ρk,G(R ∩ A) + ρk,G(R ∩B)− 2ρk,G(K1) ≥ (k + 1)(k − 2) + 2(k − 1),

a contradiction. �

Lemma 2.21 Let G be a k-Ore graph. Let uv be an edge in G such that ρk,G−uv(W ) >

(k+1)(k−2) for every W ⊆ V (G−uv) with 2 ≤ |W | ≤ |V (G)|−1. For each w ∈ V (G)−u−v,

there is a proper (k − 1)-coloring φw of G− uv such that φw(w) 6= φw(u) = φw(v).

Proof. We use induction on |V (G)|. For G = Kk, the statement is evident. Otherwise,

let x, y, A,B, G̃(x, y) and Ĝ(x, y) be as in Fact 2.19. Now ρk,G(A) = k(k − 3) + 2(k − 1) =

(k + 1)(k − 2). Thus by the definition of uv, {u, v} ⊂ A.
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CASE A: w ∈ A. By the induction assumption, there exists a proper (k − 1)-coloring

φ′w of G̃(x, y) − uv such that φ′w(w) 6= φ′w(u) = φ′w(v). Since φ′w(x) 6= φ′w(y), this coloring

extends to a proper (k − 1)-coloring of G.

CASE B: w ∈ B − x − y. Let φ′ be any proper (k − 1)-coloring of G̃(x, y) − uv. Since

G̃(x, y) is k-critical, φ′(u) = φ′(v).

CASE B1: φ′(u) = φ′(x). Let G0 = G[B] + xw. Since u, v /∈ V (G0), under conditions of

the lemma, ρk,G0(W ) > (k+1)(k−2)−2(k−1) = k(k−3) for every nonempty W ⊆ V (G0).

Thus G0 has a proper (k − 1)-coloring φ′′. Since it is also a proper (k − 1)-coloring of G[B],

we have φ′′(x) 6= φ′′(y). Renaming the colors in φ′′ so that φ′′(x) = φ′(x) and φ′′(y) = φ′(y),

we obtain a proper (k − 1)-coloring φ = φ′ ∪ φ′′ with φ(u) = φ(x) 6= φ(w).

CASE B2: φ′(u) /∈ {φ′(x), φ′(y)} and k ≥ 5. Take any proper (k− 1)-coloring φ′′ of G[B]

such that φ′′(x) = φ′(x) and φ′′(y) = φ′(y). If φ′′(w) ∈ {φ′′(x), φ′′(y)}, then φ = φ′ ∪ φ′′ is

what we need. Otherwise, since k − 1 ≥ 4, we can change the names of colors in φ′′ so that

φ′′(w) 6= φ′(u) and again take φ = φ′ ∪ φ′′.

CASE B3: φ′(u) /∈ {φ′(x), φ′(y)} and k = 4. Let G0 be obtained from G[B] by adding a

new vertex z adjacent to x, y and w. If G0 has a proper 3-coloring φ′′, then z has the color

distinct from φ′′(x) and φ′′(y), and thus φ′′(w) ∈ {φ′′(x), φ′′(y)}. In this case renaming the

names of colors in φ′′ so that φ′′(x) = φ′(x) and φ′′(y) = φ′(y), yields a proper (k−1)-coloring

of G as required. Therefore, G0 contains a 4-critical subgraph G1. Since G1 is not a subgraph

of G, we have z ∈ V (G1). Since δ(G1) ≥ 3, we have {x, y, w} ⊂ V (G1). Let W = V (G1).

Since ρ4,G0(W ) ≤ 4, we have ρ4,G(W − z) ≤ 12 and {x, y, w} ⊂ W − z. Now

ρ4,G(A ∪W − z) ≤ ρ4,G(A) + ρ4,G(W − z)− 2ρ4(K1) ≤ 10 + 12− 20 = 2,

a contradiction to Claim 2.20. �

24



A set A of vertices in a k-Ore graph G is standard if

(a) ρk(A) = (k + 1)(k − 2) and

(b) G has a separating set {x, y} such that the graph G̃(x, y) (defined in Fact 2.19) has

vertex set A.

Lemma 2.22 Let G be a k-Ore graph. If W ⊂ V (H) with |W | ≥ 2, and ρk(W ) = (k +

1)(k − 2), then W is the union of standard sets and G[W ] is connected.

Proof. The second part of the statement follows directly from Claim 2.20. We prove

the first part by induction on the order of G. The graph Kk simply does not have sets W

with |W | ≥ 2 and ρk(W ) = (k + 1)(k − 2). Let G be a smallest k-Ore graph containing

W ⊂ V (G) with |W | ≥ 2 and ρk(W ) = (k+ 1)(k− 2) that is not the union of standard sets.

Suppose first that W contains a standard set A and that separating set {x, y} separates

A− x− y from V (G)− A. Let Ĝ be the second child of G at {x, y}; that is, Ĝ is obtained

from G − (A − x − y) by merging x and y into a new vertex w. Let W ′′ = W − A + w.

Now Ĝ is a k-Ore graph and W ′′ is a non-empty proper subset of V (Ĝ). Furthermore,

ρk,Ĝ(W ′′) = ρk,G(W ) − ρk,G(A) + (k + 1)(k − 2) = ρk,G(W ) = (k + 1)(k − 2). If |W ′′| = 1,

then W = A is a standard set. Otherwise, by the minimality of G, the set W ′′ is the union

of standard sets in Ĝ. This makes W the union of standard sets in G. Thus we may assume

that

W does not contain any standard set. (2.6)

Since G 6= Kk, let x, y, w,A,B, G̃(x, y) and Ĝ(x, y) be as in Fact 2.19.

CASE 1: W ∩ {x, y} = ∅. By the minimality of G, the set W is the union of standard

sets either in G̃(x, y) or in Ĝ(x, y). In either case, W is then the union of standard sets in

G, a contradiction.

CASE 2: W∩{x, y} = {x}. LetW1 = W∩A andW2 = W∩B. Note thatW ′
2 = W2−x+w

is a non-empty subset of V (Ĝ(x, y)) and that W1 is a non-empty proper subset of V (G̃(x, y)).
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So, ρk,G̃(x,y)(W1) ≥ (k + 1)(k − 2). If equality holds, then W1 either consists only of x or is

the union of standard sets (which also are standard in G). Now

ρk,Ĝ(x,y)(W
′
2) = ρk,G(W2) = ρk,G(W )− ρk,G(W1) + ρk(K1) = 2(k + 1)(k − 2)− ρk,G(W1).

By Claim 2.20, we conclude that ρk,G(W1) = (k + 1)(k − 2). By (2.6), W1 is not the union

of standard sets. So, W1 = {x}. Observe that

y has no neighbors in W , (2.7)

since otherwise ρk,Ĝ(x,y)(W
′
2) ≤ ρk,G(W2)− 2(k− 1) = k2− 3k, a contradiction to Claim 2.20.

If W ′
2 6= V (Ĝ(x, y)), then W ′

2 is the union of standard sets in Ĝ(x, y), a contradiction to

(2.6). If W ′
2 = V (Ĝ(x, y)), then y does have a neighbor in W2, a contradiction to (2.7).

CASE 3: W ∩{x, y} = {x, y}. Again, let W1 = W ∩A and W2 = W ∩B. Since {x, y} ⊂

W1, and (2.6) yields W1 6= V (G̃(x, y)), we have ρk,G̃(x,y)(W1) ≥ (k+ 1)(k− 2). Moreover, by

the minimality of G, if ρk,G̃(x,y)(W1) = (k+1)(k−2), then W1 is the union of standard sets in

G̃(x, y). Let W ′
2 = W2− x− y+w. If W ′

2 6= V (Ĝ(x, y)), then ρk,Ĝ(x,y)(W
′
2) ≥ (k+ 1)(k− 2),

so

ρk,G(W ) = ρk,G(W1) + ρk,G(W2)− 2(k + 1)(k − 2)

≥
(
ρk,G̃(x,y)(W1) + 2k − 2

)
+
(
ρk,Ĝ(x,y)(W

′
2) + (k + 1)(k − 2)

)
− 2(k + 1)(k − 2)

≥ k2 + k − 4,

a contradiction to the choice of W . So, W ′
2 = V (Ĝ(x, y)) and ρk,Ĝ(x,y)(W

′
2) = k2 − 3k. If

ρk,G̃(x,y)(W1) ≥ (k + 1)(k − 2) + 2, then again

ρk,G(W ) ≥ (ρk,G̃(x,y)(W1)+2k−2)+(ρk,Ĝ(x,y)(W
′
2)+(k+1)(k−2))−2(k+1)(k−2) ≥ k2−k,
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a contradiction. Thus ρk,G̃(x,y)(W1) = (k + 1)(k − 2), and W1 is the union of standard sets

in G̃(x, y). A standard set in G̃(x, y) not containing {x, y} is also a standard set in G. By

(2.6), W1 is standard in G̃(x, y) by itself. Now W , which equals W1 ∪W2, is standard in G,

as claimed. �

Claim 2.23 Let G be a k-Ore graph. Let u be a vertex in G such that ρk,G(W ) > (k+1)(k−2)

for every W ⊆ V (G)−u with |W | ≥ 2. There exists S ⊆ V (G)−u such that (1) G[S] ∼= Kk−1,

(2) dG(v) = k − 1 for all v ∈ S, and (3) (N(S)− S) is an independent set.

Proof. We use induction on |V (G)|. For G = Kk, the statement is evident. Otherwise, let

x, y, w,A,B, G̃(x, y) and Ĝ(x, y) be as in Fact 2.19. Now ρk,G(A) = (k+1)(k−2), and hence

{u} ⊂ A.

By assumption, if there exists W ⊆ V (Ĝ(x, y)) such that ρk,Ĝ(x,y)(W ) ≤ (k + 1)(k − 2),

then w ∈ W . By the induction hypothesis, there exists S ⊆ V (Ĝ(x, y)) − w such that (1)

Ĝ(x, y)[S] ∼= Kk−1, (2) dĜ(x,y)(v) = k − 1 for all v ∈ S, and (3) (N(S) − S) is an inde-

pendent set in Ĝ(x, y). By construction, (1) S ⊆ V (G) − u, (2) G[S] ∼= Kk−1, and (3)

(NG(S) − S) is an independent set in G. Furthermore, NG(x) ∩ NG(y) ∩ (B − x − y) = ∅,

and (NG(x) ∪ NG(y)) ∩ (B − x − y) = NĜ(x,y)(w), and EG(A − x − y,B − x − y) = ∅, so

dG(v) = k − 1 for all v ∈ S. �

2.4 Sets with Small Potential

A graph H is smaller than graph G, if either |E(G)| > |E(H)|, or |E(G)| = |E(H)| and

G has fewer pairs of vertices with the same closed neighborhood. If |V (G)| ≥ |V (H)|,

ρk,G(V (G)) ≤ ρk,H(V (H)), and equality does not hold in both cases, then H is smaller than

G.
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Let G be the smallest graph with respect to our order that contradicts Theorem 2.11.

Clearly, we may assume that G is not k-Ore. Let n = |V (G)|. This implies that

if H is smaller than G and Pk(H) > k(k − 3), then H is (k − 1)-colorable. (2.8)

Recall Definition 2.9: ρk,G(R) = (k − 2)(k + 1)|R| − 2(k − 1)|E(G[R])| for R ⊆ V (G).

For each v ∈ V (G),

ρk(V (G)−v) = ρk(V (G))−(k2−k−2)+2(k−1)d(v) >

 αk + k2 − 3k + 4 if d(v) = k − 1,

αk + k2 − k + 2 if d(v) ≥ k

(2.9)

Claim 2.24 There is no nonempty R ( V (G) with ρk(R) ≤ αk + 2k − 2.

Proof. Let R have the smallest potential among nonempty proper subsets of V (G). Let

ρk(R) = m. Since m ≤ αk + 2k − 2 < k2 − k − 2, we have |R| ≥ k. Since G is k-critical,

G[R] has a proper (k−1)-coloring φ. Let G′ = Y (G,R, φ). By Claim 2.13, χ(G′) ≥ k. Then

G′ contains a k-critical graph G′′. By the minimality of G, ρk,G′(V (G′′)) ≤ k2− 3k. Since G

is k-critical, V (G′′) ∩X 6= ∅. Let Z = V (G′′)−X + R. Since every non-empty subset of X

has potential at least k2 − k − 2, by (2.3),

ρk,G(Z) ≤ ρk,G′(V (G′′))− ρk,G′(V (G′′) ∩X) +m (2.10)

≤ k2 − 3k − (k2 − k − 2) +m = m− 2k + 2.

Since Z ⊃ R, it is nonempty. By the minimality of the potential of R, we have Z = V (G).

Now ρk(V (G)) ≤ (αk + 2k − 2)− 2k + 2 = αk, a contradiction. �

Claim 2.25 G is 3-connected.
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Proof. Suppose that G has a separating set {x, y} and two vertex subsets A and B such

that A∩B = {x, y}, A∪B = V (G), and no edge of G connects A−x−y with B−x−y. Since

G is k-critical, there are proper (k− 1)-colorings φA and φB of G[A] and G[B], respectively.

Since G has no proper (k − 1)-coloring, by symmetry, we may assume that φA(x) = φA(y)

and φB(x) 6= φB(y). Moreover, since G is k-critical, for each edge e ∈ E(G[A]), the graph

G[A] − e has a proper (k − 1)-coloring φA,e such that φA,e(x) 6= φA,e(y). Similarly, for

each edge e ∈ E(G[B]), the graph G[B] − e has a proper (k − 1)-coloring φB,e such that

φB,e(x) = φB,e(y). It follows that the graph G̃ obtained from G[A] by inserting edge xy

and the graph Ĝ obtained from G[B] by merging x and y are k-critical. Both graphs are

smaller, so by minimality, ρk,G̃(V (G̃) ≤ k2−3k and ρk,Ĝ(V (Ĝ)) ≤ k2−3k. Moreover, by the

minimality of G, if G̃ (respectively, Ĝ) is not a k-Ore graph, then the potential of its vertex

set is at most αk. Now

ρk(V (G)) ≤ (ρk(V (G̃)) + 2(k − 1)) + (ρk(V (Ĝ)) + (k + 1)(k − 2))− 2 · (k + 1)(k − 2)

≤ ρk(V (G̃)) + ρk(V (Ĝ))− k2 + 3k.

If at least one of G̃ and Ĝ is not a k-Ore graph, then the last expression is at most

(k2 − 3k) + αk − (k2 − 3k) = αk, as claimed. If both G̃ and Ĝ are k-Ore graphs, then

G also is a k-Ore graph, which is a contradiction. �

Claim 2.26 For R ( V (G) with |R| ≥ 2 and x, y ∈ R, the graph G[R] + xy is (k − 1)-

colorable.

Proof. Let R be a smallest subset of vertices such that 2 ≤ |R| < n and for some xy /∈ E(G),

the graph H, where H = G[R] + xy, is not (k − 1)-colorable. By Claim 2.24, ρk,H(R) =

−(2k − 2) + ρk,G(R) > αk. So, by the minimality of G, the graph H contains a k-Ore

subgraph H1. By the minimality of R, the set V (H1) is all of R. If H1 6= H, then H has at
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least one extra edge, so ρk,H(R) ≤ ρk,H1(R)− 2k + 2 ≤ k2 − 5k + 2. Since αk ≥ k2 − 5k + 2,

we get

ρk,G(R) = (2k − 2) + ρk,H(R) ≤ k2 − 3k ≤ αk + 2k − 2,

a contradiction to Claim 2.24. So, H is a k-Ore graph by itself. Let R∗ be the set of vertices

in R that have a neighbor outside of R. By Claim 2.25, |R∗| ≥ 3. We want to prove that

G[R] has a proper (k − 1)-coloring ψ such that R∗ is not monochromatic. (2.11)

Let {u, v, w} ⊆ R∗.

CASE 1: {x, y} ⊂ R∗. Let w ∈ R∗ − x − y. If there exists a subset R′ ( R such that

{x, y} 6⊂ R′ and ρk(R) = (k+ 1)(k− 2), then by Claim 2.22, there is a standard set A in H.

There then exists a pair of vertices {a, b} ⊂ A such that G[A] + ab is not (k − 1)-colorable,

which contradicts the minimality of R. By Lemma 2.21, there is a proper (k − 1)-coloring

φw of H − xy such that φw(w) 6= φw(x) = φw(y). For ψ = φw, (2.11) holds.

CASE 2: {x, y} 6⊂ R∗. Let H0 = G[R] + uv. If H0 has a proper (k − 1)-coloring, then

(2.11) holds. If not, then there is a k-Ore subgraph H ′0 of H0 that contains the edge uv. By

the minimality of R, H ′0 = H0. The rest follows similarly to Case 1. This proves (2.11).

Let ψ satisfy (2.11). Let G′ = Y (G,R, ψ). By Claim 2.13, G′ is not (k − 1)-colorable.

Hence it contains a k-critical subgraph G′′. Let W = V (G′′). By the minimality of G,

ρk(W ) ≤ k(k− 3). Since G is k-critical, W ∩X 6= ∅. Since every nonempty subset of X has

potential at least (k − 2)(k + 1),

ρk,G(W −X+R) ≤ ρk,G′(W )−ρk,G′(X∩W )+ρk,G(R) ≤ ρk,G(R)−2k+2 ≤ k2−3k. (2.12)

Since W − X + R ⊃ R, we have |W − X + R| ≥ 2. Since αk + (2k − 2) ≥ k2 − 3k, by

Claim 2.24, W −X + R = V (G). If |W ∩X| ≥ 2, then ρk(X ∩W ) ≥ 2(k − 1)(k − 2), and
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by (2.12),

ρk,G(W −X +R) ≤ k2 − 3k − 2(k − 1)(k − 2) + (k − 2)(k + 1) = 2k − 6 ≤ αk,

a contradiction. So |X ∩W | = 1. Because R∗ is not monochromatic and |X ∩W | = 1, there

is a vertex z ∈ R∗ −W . Now by (2.3), instead of (2.12), we have

ρk,G(W −X +R) ≤ k2 − 3k − (k + 1)(k − 2) + (k − 2)(k + 1)− 2k + 2 = k2 − 5k + 2 ≤ αk,

a contradiction. �

Claim 2.27 If X is a (k−1)-clique in G, u, v ∈ X, N(u)−X = {a}, and N(v)−X = {b},

then a = b.

Proof. Assume a 6= b. Let G′ = G− u− v+ ab if ab /∈ E(G) and G′ = G− u− v otherwise.

By Claim 2.26, G′ is (k−1)-colorable. A proper (k−1)-coloring of G′ can easily be extended

to a proper (k − 1)-coloring of G. �

Claim 2.28 G does not contain Kk − e.

Proof. If G[R] = Kk − e, then R 6= V (G), but adding the missing edge to G[R] creates a

k-chromatic graph on R, a contradiction to Claim 2.26. �

Definition 2.29 A cluster is a maximal set R ⊆ V (G) such that dG(x) = k − 1 for x ∈ R

and N [x] = N [y] for x, y ∈ R.

Claim 2.30 If X is a (k − 1)-clique, then there is a unique cluster T inside of X (possibly

T = ∅), and |T | ≤ k − 3.
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Proof. Two clusters inside of X would contradict Claim 2.27. If |T | ≥ k− 2, then by Claim

2.27, there is a vertex y ∈ V (G)−X adjacent to at least k− 2 vertices in X, a contradiction

to Claim 2.28. �

Claim 2.31 For every partition (A,B) of V (G) with 2 ≤ |A| ≤ n− 2, |EG(A,B)| ≥ k.

Proof. Let A∗ (respectively, B∗) be the set of vertices in A (respectively, B) that have neigh-

bors in B (respectively, A). Since G is 3-connected, |A∗| ≥ 3 and |B∗| ≥ 3. By Claim 2.26,

G[A] therefore has a proper (k−1)-coloring φA such that A∗ is not monochromatic, and G[B]

has a proper (k−1)-coloring φB such that B∗ is not monochromatic. Gallai and Toft (see [75,

p. 157]) independently proved that if |EG(A,B)| = k−1, then either A∗ is monochromatic in

every proper (k−1)-coloring of G[A] or B∗ is monochromatic in every proper (k−1)-coloring

of G[B]. Thus, |EG(A,B)| ≥ k. �

Lemma 2.32 Let z and s be integers such that z ≥ s ≥ 2. Let R∗ = {u1, . . . , us} be a vertex

set, and let w : R∗ → {1, 2, . . .} be a positive integral valued weight function on R∗ such

that w(u1) + . . .+ w(us) = z and w(u1) ≥ . . . ≥ w(us). For each 1 ≤ i ≤ z/2, there exists a

graph F with V (F ) = R∗ and |E(F )| ≤ i such that for each 1 ≤ j ≤ s, dF (uj) ≤ w(uj), and

for every independent set M in F with |M | ≥ 2,

∑
u∈R∗−M w(u) ≥ i. (2.13)

Moreover, if s ≥ 3 and 2i < z, then at least one of the three statements below holds:

(1) such F with property (2.13) can be chosen as a graph with i− 1 edges, or

(2) a hypergraph H with property (2.13) can be chosen with i − 1 edges of size 2 and one

edge of size 3, or

32



(3) s = i+ 1 and w(u2) = . . . = w(us) = 1.

The weight arrangement is i-special if (3) holds.

Proof. CASE 1: w(u2) + . . .+w(us) ≤ i− 1. Let E(F ) = {u1uj : 2 ≤ j ≤ s}. If M is any

independent set with |M | ≥ 2, then u1 /∈ M , and u1 witnesses that (2.13) holds. To prove

the “Moreover” part in this case, observe that F has at most i− 1 edges.

CASE 2: w(u2)+. . .+w(us) ≥ i. Choose the largest j such that w(uj+1)+. . .+w(us) ≥ i.

Let a = i−w(uj+2) + . . .+w(us). Since 2i ≤ r, we also have w(u1) + . . .+w(uj+1) ≥ i+ a.

By the choice of j and the ordering of the vertices, 0 ≤ a ≤ w(uj+1) ≤ w(u1). We draw a

edges connecting u1 with uj+1 and i− a edges connecting {uj+2, . . . , us} with {u1, . . . , uj+1}

so that for each `, the degree of u` in the resulting multigraph F is at most w(u`). Let M

be any nonempty independent set in F . By the definition of F , since M is independent,

∑
u∈R∗−M

w(u) ≥
∑

u∈R∗−M

dF (u) ≥ 1

2

∑
u∈R∗

dF (u) = i,

as claimed. Note that in this case, (2.13) holds for every independent set M , even if |M | = 1.

To prove the “Moreover” part in this case, observe that since 2i < z, for some 1 ≤ ` ≤ s

the degree in F of u` is less than w(u`). If F−u` has an edge e, then we can enlarge e to e+ul

and still keep (2.13). Otherwise, ` = 1 and u1 is adjacent to each of u2, . . . , us. If after replac-

ing multiple edges with single edges we have fewer than i edges, then we are done again. So,

the remaining case is w(u2) = . . . = w(us) = 1 and so s = i+1. Therefore we satisfy (3). �

Lemma 2.33 If R ( V (G) and 2 ≤ |R| ≤ n − 2, then ρ(R) ≥ 2(k − 1)(k − 2). Moreover,

if ρ(R) = 2(k − 1)(k − 2), then G[R] = Kk−1.

Proof. Assume that the claim does not hold. Let i be the smallest integer such that there
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exists R ( V (G) with 2 ≤ |R| ≤ n− 2, G[R] 6= Kk−1, and

αk + 2i(k − 1) < ρk(R) ≤ αk + 2(i+ 1)(k − 1). (2.14)

By Claim 2.26, i ≥ 1. Since αk+(k+1)(k−1) ≥ k2−5k+2+(k+1)(k−1) > 2(k−1)(k−2),

we have i ≤ k
2
. By the integrality of i, if k is odd, then i ≤ k−1

2
. Moreover, if k = 4, then

αk = max{2 · 4− 6, 42− 5 · 4 + 2} = 2 and so y4 + 4(4− 1) = 14 > 12 = 2(4− 1)(4− 2). Thus

i ≤ k

2
, with strict inequality if k is odd or k = 4. (2.15)

Let R be the smallest set among R ( V (G) with 2 ≤ |R| ≤ n−2, ρ(R) ≤ 2(k−1)(k−2),

and G[R] 6= Kk−1 for which (2.14) holds. Let m = ρk,G(R). Since G[R] 6= Kk−1 and for

2 ≤ s ≤ k − 2, ρk(Ks) > 2(k − 1)(k − 2), we have |R| ≥ k.

For u ∈ R, let w(u) = |N(u)∩(V (G)−R)|. LetR∗ = {u ∈ R : w(u) ≥ 1}. By Claim 2.31,∑
u∈R∗ w(u) = |EG(R, V (G) − R)| ≥ k. Let R∗ = {u1, . . . , us} and w(u1) ≥ . . . ≥ w(us).

By Claim 2.25, s ≥ 3. By Lemma 2.32, we can add to G[R∗] a set E0 of at most i edges

such that for every independent subset M of R∗ in G ∪ E0 with |M | ≥ 2, (2.13) holds. Let

H = G[R] ∪ E0 and X ′ = X ∩W .

Because |E0| ≤ i < k ≤ |EG(R, V (G)− R)|, H ≺ G. So if Pk(H) > k(k − 3), then H is

(k − 1)-colorable.

CASE 1: H has a proper (k − 1)-coloring φ. Let F = Y (G,R, φ). By Claim 2.13, F is

not (k − 1)-colorable. Thus F contains a k-critical subgraph F ′. Let W = V (F ′). Since G

is k-critical by itself, W ∩X 6= ∅. By the choice of i, since

ρk,G(W −X +R) ≤ k(k − 3)− (k − 2)(k + 1) +m ≤ m− 2(k − 1), (2.16)

|W −X+R| ≥ n−1. Moreover, if |W −X+R| = n−1, then by (2.9), k2−3k− (k−2)(k+
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1) +m ≥ αk + k2 − 3k+ 4 and so m ≥ αk + k2 − k+ 2 > 2(k− 1)(k− 2), a contradiction to

m ≤ 2(k − 1)(k − 2). So W −X +R = V (G).

Suppose X ′ = {xj}. It follows that W = V (F )−X +xj. Let Rj = {u ∈ R∗ : φ(u) = cj}.

If |Rj| = 1, then F ∼= G[W − xj ∪ Rj], a contradiction to the fact that G itself is k-critical.

If |Rj| ≥ 2, then by the construction of H, at least i edges connect the vertices in R∗ − Rj

with V (G)−R. Adjusting (2.16) to account for these edges and using (2.14), we have

ρk,G(W −{xj}+R) ≤ k(k− 3)− (k− 2)(k+ 1)− 2i(k− 1) +m = m− 2(i+ 1)(k− 1) ≤ αk

which is a contradiction. So assume |X ′| ≥ 2.

Suppose F ′ is not a k-Ore graph, and so ρk,F (W ) ≤ αk. Since every 2 ≤ |X ′| ≤ k− 1 has

potential at least 2(k−1)(k−2), by (2.3), ρk,G(W −X+R) ≤ αk−2(k−1)(k−2)+m ≤ αk,

a contradiction. So assume F ′ is a k-Ore graph.

If X ′ 6= X or F ′ 6= F , then instead of (2.16), we would have

ρk,G(W −X+R) ≤ −2(k−1)+k2−3k−2(k−1)(k−2)+2(k−1)(k−2) = k2−5k+2 ≤ αk,

a contradiction. So, H = F = F ′.

Since |R| ≤ n − 2, we have F 6= Kk. Let the separating set {x, y}, vertex w, vertex

subsets A and B, and graphs F̃ (x, y) and F̂ (x, y) be as in Fact 2.19. Since F [X ′] is a clique

and EF (A − x − y,B − x − y) = ∅, either X ′ ⊆ A or X ′ ⊆ B. Since xy /∈ E(F ) we may

assume that either X ′ ⊂ A − y or X ′ ⊂ B − y. Suppose first that X ′ ⊂ A − y. The graph

F̂ − w is a subgraph of G, namely, it is G[B − x− y], and

dF̂−w(v) = dG(v) for every v ∈ B − x− y. (2.17)

If F̂ − w has a vertex subset S with |S| ≥ 2 of potential at most (k + 1)(k − 2), then by
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Lemma 2.22, S is the union of standard sets and F [S] is connected. But in each standard

set S ′, there are two vertices u and u′ such that F [S ′] + uu′ is not (k − 1)-colorable. This

contradicts Claim 2.26. Thus ρk,F̂ (S) > (k+ 1)(k− 2) for every S ⊆ V (F̂ )−w with |S| ≥ 2.

Then by Claim 2.23, there exists an S ⊆ V (F̂ ) − w = B − x − y such that F̂ [S] ∼= Kk−1,

and dF̂ (v) = k − 1 for all v ∈ S. By (2.17), this contradicts Claim 2.30.

Thus X ′ ⊂ B − y. Similarly to (2.17), the graph F̃ − x is a subgraph of G, namely, it is

G[A− x], and

dF̃−x(v) = dG(v) for every v ∈ A− x− y. (2.18)

As in the previous paragraph, ρk,F̃ (S) > (k+ 1)(k− 2) for every S ⊆ V (F̃ )−x with |S| ≥ 2.

So again by Claim 2.23, there exists an S ⊆ V (F̃ )− x = A− x such that F̃ [S] ∼= Kk−1, and

dF̃ (v) = k − 1 for all v ∈ S. But |S − y| ≥ k − 2, which together with (2.18) contradicts

Claim 2.30.

CASE 2: The set of weights {w(u1), . . . , w(us)} is i-special: s = i+ 1 and w(u2) = . . . =

w(us) = 1. This means that many (at least i+ 1) edges connect u1 with Q = V (G)−R and

each of the vertices u2, . . . , ui+1 is connected to Q by exactly one edge. For j = 2, . . . , i+ 1,

let qj be the vertex in Q such that ujqj ∈ E(G). Recall that since G is 3-connected, i ≥ 2.

Let E0 = {u1uj : 2 ≤ j ≤ i} and H0 = G[R] ∪ E0. Since |E0| = i − 1, by (2.14),

ρk,H0(R
′) > αk + 2k − 2 ≥ k2 − 3k for every R′ ⊆ R with |R′| ≥ 2. So, by induction, H0 has

a proper (k − 1)-coloring φ. If φ(ui+1) 6= φ(u1), then for every monochromatic subset M of

R∗ in G ∪ E0 with |M | ≥ 2, (2.13) holds. Then we can repeat the argument of Case 1.

Thus suppose φ(ui+1) = φ(u1). Let G0 be obtained from G[V (G)− (R− u1)] by adding

edge u1qi+1. By Claim 2.26, G0 has a proper (k− 1)-coloring φ′. Since i ≤ k
2
, we can rename

the colors in φ′ so that φ′(u1) = φ(u1) = φ(ui+1) and φ({u2, . . . , ui}) ∩ φ′({q2, . . . , qi}) = ∅.

Then φ ∪ φ′ is a proper (k − 1)-coloring of G, a contradiction.

CASE 3: The set of weights {w(u1), . . . , w(us)} is not i-special and 2i < |E(R, V (G)−R)|.
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If Statement (1) of the “Moreover” part of Lemma 2.32 holds, then we take this set E0 of

i−1 edges and let H0 = G[R] +E0. In this case by (2.14), ρk,H0(R
′) > αk + 2k−2 ≥ k2−3k

for every R′ ⊆ R with |R′| ≥ 2. So, by induction, H0 has a proper (k − 1)-coloring φ, and

we simply repeat the argument of Case 1.

Suppose now that Statement (2) holds: there is a hypergraph F with i− 1 2-edges and a

3-edge e0 = {u, v, w} such that dF (uj) ≤ w(uj) for all j = 1, . . . , s and (2.13) holds. Let H1

be obtained from G[R] by adding the set of edges E(F )−e0 and edge uv. If H1 has a proper

(k− 1)-coloring, then we repeat the proof of Case 1. So suppose not. It follows that H1 has

a k-critical subgraph H ′1. Let R′ = V (H ′1). Since ρk,H1(R
′) ≤ k2− 3k ≤ αk + 2k− 2, we have

ρk,G(R′) ≤ αk +2(i+1)(k−1). By the minimality of R, we have R′ = R. Furthermore, if H ′1

is not a k-Ore graph, then ρk,H1(R) ≤ αk and so ρk,G(R) ≤ αk + 2i(k − 1), a contradiction

to (2.14). So, H ′1 is a k-Ore graph. If H ′1 6= H1, then it has the same vertex set and at least

one fewer edge, in which case,

ρk,G(R) ≤ ρk,H′1(R)+2i(k−1) ≤ ρk,H1(R)+2(i−1)(k−1) ≤ k2−3k+2(i−1)(k−1) ≤ αk+2i(k−1),

a contradiction to (2.14). So, H1 is a k-Ore graph and ρk,G(R) = k2− 3k+ 2i(k− 1). Again

by (2.14) and the minimality of |R|, for every W ⊂ R with |W | ≥ 2, we have

ρk,H1−uv(W ) > αk + 2(i+ 1)(k − 1)− 2(i− 1)(k − 1) = αk + 4k − 4 ≥ (k + 1)(k − 2).

Thus by Lemma 2.21, H1− uv has a proper (k− 1)-coloring φ with φ(w) 6= φ(u). With this

coloring, we simply repeat the argument of Case 1.

CASE 4: The set of weights {w(u1), . . . , w(us)} is not i-special and 2i ≥ |E(R, V (G)−R)|.

By Claim 2.31, |E(R, V (G)−R)| ≥ k. So by (2.15), in order to have 2i ≥ |E(R, V (G)−R)|,

we need i = k
2

and k ≥ 6. For k ≥ 6, we know that αk = k2−5k+2. By Lemma 2.32 for i−1
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instead of i, we can add to G[R∗] a set E1 of at most i−1 edges such that for every indepen-

dent subset M of R∗ in G ∪E1 with |M | ≥ 2, (2.13) holds. Let H1 = G[R] ∪E1. By (2.14),

ρk,H1(R
′) > αk + 2k − 2 = k2 − 3k for every R′ ⊆ R with |R′| ≥ 2. So, by minimality of G,

H1 has a proper (k−1)-coloring φ. Then we try to repeat the argument of Case 1 with H1 in

place of H. It does not work only in the case of X∩W = {xj}. But in this case, since F ′ is k-

critical, dF ′(xj) ≥ k−1. This means that |EG(Rj, V (G)−R)| ≥ k−1. Also, by construction,

at least i− 1 edges connect R−Rj with V (G)−R. Since k ≥ 6 and 2i = k, it follows that

|E(R, V (G)−R)| ≥ (k−1)+ k
2
−1 ≥ k+1, a contradiction to the conditions of the case. �

2.5 Reducible Configurations

We will now quickly refresh the reader on relevant statements. A graph H is smaller than

graph G, if either |E(G)| > |E(H)|, or |E(G)| = |E(H)| and G has fewer pairs of vertices

with the same closed neighborhood. The graph G is the smallest graph with respect to our

order that contradicts Theorem 2.11.

We have proven the following statements:

Claim 2.23: If H ∈ Ok and u ∈ V (H) such that ρk,H(W ) > (k + 1)(k − 2) for every

W ⊆ V (H)− u with |W | ≥ 2, then there exists S ⊆ V (G)− u such that G[S] ∼= Kk−1 and

dG(v) = k − 1 for all v ∈ S.

Claim 2.26: For R ( V (G) with |R| ≥ 2 and x, y ∈ R, the graph G[R] + xy is (k − 1)-

colorable.

Claim 2.28: G does not contain Kk − e.

Claim 2.30: If X is a (k − 1)-clique in G, then there is a unique cluster T inside of X, and

|T | ≤ k − 3.

Lemma 2.33: If R ( V (G) and 2 ≤ |R| ≤ n− 2, then ρ(R) ≥ 2(k − 1)(k − 2) with equality
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only when G[R] = Kk−1.

Claim 2.34 If v is not in (k − 1)-clique X, then |N(v) ∩X| ≤ k−1
2

. Furthermore, if T is a

cluster in a (k − 1)-clique X, then |T | ≤ k−1
2

.

Proof. If |N(v) ∩X| ≥ dk/2e, then ρk(X + v) ≤ 2(k − 2)(k − 1)− 2. Since n ≥ k + 2, this

is a contradiction to Lemma 2.33.

Let {v} = N(T )−X. Then |N(v) ∩X| ≥ |T |. �

Claim 2.35 Let T be a cluster in G and t = |T | ≥ 2.

(a) If N(T ) ∪ T does not contain Kk−1, then dG(v) ≥ k − 1 + t for every v ∈ N(T )− T ;

(b) If N(T )∪T contains a Kk−1 with vertex set X, then dG(v) ≥ k−1+t for every v ∈ X−T .

Proof. Let v ∈ N(T )− T such that k ≤ d(v) ≤ k − 2 + t and if N(T ) ∪ T contains a Kk−1

with vertex set X, then v ∈ X. By definition, |T ∪ N(T )| = k. By this and Claim 2.28, T

is contained in at most one (k − 1)-clique, and so

N(T ) ∪ T − v does not contain Kk−1. (2.19)

By the choice of v, |N(v)−T | ≤ k− 2. Let u ∈ T and G′ = G− v+ u′, where N [u′] = N [u].

If G′ has a proper (k−1)-coloring φ′, then there is a proper (k−1)-coloring φ of G as follows:

set φ|V (G)−T−v = φ′|V (G′)−T−u′ , φ(v) ∈ C − φ′(N(v) − T ), and then color T using colors in

φ′(T ∪ u′)− φ(v). This is a contradiction, so there is no proper (k− 1)-coloring of G′. Thus

G′ contains a k-critical subgraph G′′. Let W = V (G′′). By minimality of G, it follows that

ρk,G′(W ) ≤ k(k − 3).

Since G′′ is not a subgraph of G, u′ ∈ W . By symmetry, it follows that T ⊂ W . But

then

ρk,G(W − u′) ≤ k(k − 3)− (k − 2)(k + 1) + 2(k − 1)(k − 1) = 2(k − 2)(k − 1).
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This implies that either G[W −u′] is a Kk−1 or W −u′ = V (G)− v If the former holds, then

we have a contradiction to (2.19). If the latter holds, then by (2.9) and d(v) ≥ k,

ρk(V (G)) ≤ ρk,G(W−u′)+(k+1)(k−2)−2k(k−1) ≤ 2(k−2)(k−1)−k2+k−2 = k2−5k+2 ≤ αk,

a contradiction. �

Claim 2.36 If xy ∈ E(G), N [x] 6= N [y], x is in a cluster of size s, y is in a cluster of size

t, and s ≥ t, then x is in a (k − 1)-clique. Furthermore, t = 1.

Proof. Assume that x is not in a (k − 1)-clique. Let G′ = G− y + x′, where N [x′] = N [x].

If G′ has a proper (k − 1)-coloring φ′, then we extend it to a proper (k − 1)-coloring φ of

G as follows: define φ|V (G)−x−y = φ′|V (G′)−x−x′ , then choose φ(y) ∈ C − (φ′(N(y)− x)), and

φ(x) ∈ {φ′(x), φ′(x′)} − {φ(y)}.

So, χ(G′) ≥ k and G′ contains a k-critical subgraph G′′. Let W = V (G′′). Since G′′ is not

a subgraph of G, so x′ ∈ W . Then ρk,G(W −x′) ≤ k(k−3)−(k−2)(k+1)+2(k−1)(k−1) =

2(k−2)(k−1). If |W−x′| ≤ n−2, this contradicts Lemma 2.33. Otherwise, W−x′ = V (G)−y

and G′ itself is a k-critical graph. Since G′ is smaller than G, by the minimality of G, either

ρk,G′(V (G′)) ≤ αk or G′ is a k-Ore graph. The former is a contradiction to (2.9), so suppose

G′ is a k-Ore graph.

Since n > k, we have G′ 6= Kk. Let the separating set {x, y}, vertex w, vertex subsets

A and B, and graphs G̃′(x, y) and Ĝ′(x, y) be as in Fact 2.19. If x′ /∈ A, then G̃′(x, y) is

obtained from a proper subgraph of G by adding an edge. This contradicts Claim 2.26. So,

x′ ∈ A. By symmetry, x ∈ A. By the same claim, ρk,G′(W ) > (k + 1)(k − 2) for every

W ⊆ V (G′) − x′ with |W | ≥ 2. In particular, ρk,Ĝ′(x,y)(W ) > (k + 1)(k − 2) for every

W ⊆ V (Ĝ′)−w with |W | ≥ 2. Then by Claim 2.23, there exists a S ⊆ V (Ĝ′(x, y))−w such

that Ĝ′(x, y)[S] ∼= Kk−1, and dĜ′(x,y)(v) = k − 1 for all v ∈ S. By Claim 2.30, vertex y in G
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is adjacent to at most k− 3 vertices in S. So S contains one cluster T and |T | ≥ 2. Then by

Claim 2.35(b), the degree of each vertex in S − T in G is at least k + 1. This is impossible,

since each of them has in G at most one extra neighbor (and it is y, if exists) in comparison

with Ĝ′(x, y). This proves that x is in a Kk−1.

The second part follows from the fact that each vertex of degree k − 1 contained in a

copy X of Kk−1 has exactly neighbor outside of X. �

2.6 Discharging

We will now quickly refresh the reader on relevant statements. A graph H is smaller than

graph G, if either |E(G)| > |E(H)|, or |E(G)| = |E(H)| and G has fewer pairs of vertices

with the same closed neighborhood. The graph G is the smallest graph with respect to our

order that contradicts Theorem 2.11.

We have proven the following statements:

Corollary 2.18: Let disjoint vertex subsets A and B of G be such that A or B is independent,

dG(a) = k − 1 for every a ∈ A, dG(b) = k for every b ∈ B, and |A| + |B| ≥ 3. Under these

conditions, (i) |E(G(A,B))| ≤ 2(|A|+ |B|)− 4 and (ii) |E(G(A,B))| ≤ |A|+ 3|B| − 3.

Claim 2.23: If H ∈ Ok and u ∈ V (H) such that ρk,H(W ) > (k + 1)(k − 2) for every

W ⊆ V (H)− u with |W | ≥ 2, then there exists S ⊆ V (G)− u such that G[S] ∼= Kk−1 and

dG(v) = k − 1 for all v ∈ S.

Claim 2.27: If X is a (k − 1)-clique in G, u, v ∈ X, N(u)−X = {a}, and N(v)−X = {b},

then a = b.

Claim 2.30: If X is a (k − 1)-clique in G, then there is a unique cluster T inside of X, and

|T | ≤ k − 3.

Lemma 2.33: If R ( V (G) and 2 ≤ |R| ≤ n− 2, then ρ(R) ≥ 2(k − 1)(k − 2) with equality
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only when G[R] = Kk−1.

2.6.1 Case k = 4

Claim 2.37 Each vertex with degree 3 has at most 1 neighbor with degree 3.

Proof. Let x be such that N(x) = {a, b, c} and d(a) = 3. By Claim 2.36, G[{x, b, c}] is a

K3. So by Claims 2.30 and 2.34, d(b), d(c) ≥ 4. �

We will now use discharging to show that |E(G)| ≥ 5
3
n, which will finish the proof to the

case k = 4, since y4 = 42 − 5 · 4 + 6 = 2 > 0. Each vertex begins with charge equal to its

degree. If d(v) ≥ 4, then v gives charge 1
6

to each neighbor. Note that v will be left with

charge at least 5
6
d(v) ≥ 10

3
. By Claim 2.37, each vertex of degree 3 will end with charge at

least 3 + 2
6

= 10
3

. �

2.6.2 Case k = 5

Claim 2.38 If k = 5, then each cluster has only one vertex.

Proof. Assume N [x] = N [y] and d(x) = d(y) = 4. Let N(x) = {y, a, b, c}. Since G does not

contain K5 − e, |E(G[{a, b, c}])| ≤ 1. By Claim 2.35 we can rename the vertices in {a, b, c}

so that ab /∈ E(G) and d(c) ≥ 5.

We obtain G′ from G by deleting x and y and merging a and b into a vertex u. If G′ is

4-colorable, then so is G. This is because a proper 4-coloring of G′ will have at most 2 colors

on N [x]− {x, y} and therefore could be extended greedily to x and y.

So G′ contains a k-critical subgraph G′′. Let W ′ = V (G′′); then ρ5,G′(W
′) ≤ 10. Since

G′′ is not a subgraph of G, u ∈ W ′. Let W = W ′ − u + a + b + x + y. But then

ρ5,G(W ) ≤ 10+54−40 = 24. Because ab /∈ E(G), we have that G[W ] is not a K4. By Lemma
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2.33, |W | ≥ n− 1. Therefore |W ∩{b, c}| ≥ 1, and we did not account for at least two of the

edges in E({b, c}, {x, y}), so ρ5,G(W ) ≤ 10 + 54− 56 = 8. By (2.9), this implies W = V (G).

But then we may use all four edges of E({b, c}, {x, y}), so ρ5,G(W ) ≤ 10 + 54− 72 < 0. �

Claim 2.39 If k = 5, then each K4-subgraph of G contains at most one vertex with degree

4. Furthermore, if d(x) = d(y) = 4 and xy ∈ E(G), then each of x and y is in a K4.

Proof. The first statement follows from Claims 2.30 and 2.38. The second statement follows

from Claims 2.36 and 2.38. �

Definition 2.40 We define H ⊆ V (G) to be the set of vertices of degree 5 not in a K4,

and L ⊆ V (G) to be the set of vertices of degree 4 not in a K4. Set ` = |L|, h = |H| and

e0 = |E(L,H)|.

Claim 2.41 e0 ≤ 3h+ `.

Proof. This is trivial if h + ` ≤ 2 and follows from Corollary 2.18(ii) and Claim 2.39 for

h+ ` ≥ 3. �

We will now use discharging to show that |E(G)| ≥ 9
4
n, which will finish the proof to the

case k = 5. We will do discharging in two stages. Let every vertex v ∈ V (G) have initial

charge d(v). The first half of discharging has one rule:

Rule R1: Each vertex in V (G) − H with degree at least 5 gives charge 1/6 to each

neighbor.

Claim 2.42 After the first round of discharging, each vertex in V (G) −H − L has charge

at least 4.5.
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Proof. Let v ∈ V (G) − H − L. If d(v) = 4, then v receives 1/6 from at least 3 neighbors

and gives no charge. If d(v) = 5, then v gives 1/6 to 5 neighbors, but receives 1/6 from at

least 2 neighbors. If d(v) ≥ 6, then v is left with charge at least 5d(v)/6 ≥ 4.5. �

For the second round of discharging, all charge in H ∪ L is taken up and distributed

evenly among the vertices in H ∪ L.

Claim 2.43 After the first round of discharging, the sum of the charges on the vertices in

H ∪ L is at least 4.5|H ∪ L|.

Proof. By Rule R1, vertices in L receive from outside of H ∪ L the charge at least 1
6
(4`−

|E(H,L)|). By Claim 2.41, |E(H,L)| ≤ 3h+ `. So, the total charge on H ∪ L is at least

5h+ 4`+
1

6
(4`− (3h+ `)) = 4.5(h+ `),

as claimed. �

Combining Claims 2.42 and 2.43, the average degree of the vertices in G is at least 4.5,

a contradiction.

2.6.3 Case k ≥ 6

Claim 2.44 Suppose k ≥ 6, X is a (k − 1)-clique, and v ∈ X has degree k − 1. Then X

contains at least (k − 1)/2 vertices with degree at least k + 1.

Proof. Let {u} = N(v)−X. Assume that X contains at least k/2 vertices with degree at

most k. By Claim 2.34, |N(u) ∩ X| < k/2, so there exists a w ∈ X such that xw /∈ E(G)

and d(w) ≤ k. By Claim 2.27, d(w) = k, so assume N(w)−X = {a, b}. Let G′ be obtained

from G− v by adding edges ua and ub.
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Suppose G′ has a proper (k − 1)-coloring f . If f(u) is not used on X − w − v, then we

recolor w with f(u). So, v will have at least two neighbors of color f(u), and we can extend

the proper (k − 1)-coloring to G.

Thus G′ is not (k−1)-colorable and so contains a k-critical subgraph G′′. Let W = V (G′′).

Then ρk,G′(W ) ≤ k(k−3) and so ρk,G(W ) ≤ k(k−3)+2(k−1)(2) = k2+k−4 < 2(k−2)(k−1).

If W 6= V (G′) then this is a contradiction, since in this case |W | ≤ |V (G′)| − 1 ≤ n− 2. So,

W = V (G′).

If G′′ is not a k-Ore graph, then by the minimality of G, ρk,G′′(W ) ≤ αk, and so

ρk,G(V (G)) ≤ ρk,G′(W ) + (k − 2)(k + 1)(1)− 2(k − 1)(k − 3) < αk

when k ≥ 6. Similar calculation works when G′′ 6= G′. So, our case is that G′ is a k-Ore

graph. Since G′−ua−ub is a subgraph of G, ρk,G′(U) > (k+1)(k−2) for every U ⊆ V (G′)−u

with |U | ≥ 2. Then by Claim 2.23, there exists a S ⊆ V (G′) − u such that G′[S] ∼= Kk−1,

and dG′(v) = k−1 for all v ∈ S. But for every z ∈ S−a− b, dG(z) = dG′(z). Since k−1 ≥ 5,

this contradicts Claim 2.34. �

Claim 2.45 If k = 6 and a cluster T is contained in a 5-clique X, then |T | = 1.

Proof. By Claim 2.34, assume that T = {v1, v2}. Let N(v1) − X = {y} and {u, u′, u′′} =

X − T . By Claim 2.44, d(u), d(u′), d(u′′) ≥ 7. Obtain G′ from G − T by merging u and y

into a new vertex w.

Suppose that G′ has a proper 5-coloring. We can extend this coloring to a proper coloring

on G by greedily assigning colors to T , because only 3 different colors appear on the set

{u, u′, u′′, y}. So we may assume that χ(G′) ≥ 6. Then G′ contains a 6-critical subgraph

G′′. Let W = V (G′′), and so ρ6,G′(W ) ≤ 18. Since G′′ is not a subgraph of G, w ∈ W . Let

t = |{u′, u′′} ∩W |.
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Case 1: t = 0. We have ρ6,G(W−w+y+X) ≤ 18+28(5)−10(12) = 38. By Lemma 2.33,

|W −w+ y+X| ≥ n− 1. We did not account for edges in E({u′, u′′}, V (G)−X), and each

of u′, u′′ has at least 3 neighbors outside of X. Thus ρ6,G(W −w+ y+X) ≤ 38− 10 · 4 < 0.

Case 2: t = 1. We have ρ6,G(W −w+ y+ u+C) ≤ 18 + 28(3)− 10(7) = 32. By Lemma

2.33, |W −w+ y+ u+C| ≥ n− 1, so W −w+ y+ u+C is either V (G)− u′ or V (G)− u′′.

But this contradicts (2.9).

Case 3: t = 2. We have ρ6,G(W − w + y + u + C) ≤ 18 + 28(3) − 10(9) = 12. By

Lemma 2.33 and (2.9), W − w + y + u+ C = V (G). If G′′ is not k-Ore or if G′′ 6= G′, then

ρ6,G(W − w + y + u+ C) ≤ 2, which is a contradiction.

Since G′′−w is a subgraph of G, we have ρk,G′(U) > (k+1)(k−2) for every U ⊆ V (G′)−w

with |U | ≥ 2. By Claim 2.23, there exists a S ⊆ V (G′) − w such that G′[S] ∼= Kk−1, and

dG′(v) = k − 1 for all v ∈ S. By Claim 2.34, there exists a z ∈ S such that dG(z) 6= dG′(z).

This means that zy, zu ∈ E(G), and so G′′ 6= G′ because G′ has a multi-edge, which is a

contradiction. �

Definition 2.46 We partition V (G) into four classes: L0, L1, H0, and H1. Let H0 be

the set of vertices with degree k, H1 be the set of vertices with degree at least k + 1, and

H = H0 ∪H1. Let

L = {u ∈ V (G) : d(u) = k − 1},

L0 = {u ∈ L : N(u) ⊆ H},

and

L1 = L− L0.

Set ` = |L0|, h = |H0| and e0 = |E(L0, H0)|.

Claim 2.47 e0 ≤ 2(`+ h).
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Proof. This is trivial if h+ ` ≤ 2 and follows from Corollary 2.18(i) for h+ ` ≥ 3. �

Let every vertex v ∈ V (G) have initial charge d(v). We first do a half-discharging with

two rules:

Rule R1: Each vertex in H1 keeps for itself charge k−2/(k−1) and distributes the rest

equally among its neighbors of degree k − 1.

Rule R2: If a Kk−1-subgraph C contains s (k − 1)-vertices adjacent to a (k − 1)-vertex

x outside of C and not in a Kk−1, then each of these s vertices gives charge k−3
s(k−1)

to x.

Claim 2.48 Each vertex in H1 donates at least 1
k−1

charge to each neighbor of degree k− 1.

Proof. If v ∈ H1, then v donates at least d(v)−k+2/(k−1)
d(v)

to each neighbor. Note that this

function increases as d(v) increases, so the charge is minimized when d(v) = k+ 1. But then

each vertex gets charge at least (1 + 2/(k − 1))/(k + 1) = 1/(k − 1). �

Claim 2.49 Each vertex in L1 has charge at least k − 2/(k − 1).

Proof. Let v ∈ L1 be in a cluster C of size t.

Case 1: v is in a (k− 1)-clique X and t ≥ 2. By Claim 2.45, this case only applies when

k ≥ 7.

By Claim 2.35 each vertex in X −C has degree at least k − 1 + t ≥ k + 1, and therefore

X−C ⊆ H1. Furthermore, each vertex in X−C has at least k−2− t neighbors with degree

at least k. Therefore each vertex u ∈ (X − C) donates charge at least d(u)−k+2/(k−1)
d(u)−k+2+t

to each

neighbor of degree k − 1. Note that this function increases as d(u) increases, so the charge

is minimized when d(u) = k − 1 + t. It follows that u gives to v charge at least t−1+2/(k−1)
2t+1

.

So, v has charge at least k − 1 + (k − 1 − t)( t−1+2/(k−1)
2t+1

) − k−3
t(k−1)

, which we claim is at
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least k − 2/(k − 1). Let

g1(t) = (k − 1− t)((t− 1)(k − 1) + 2)− (2t+ 1)(k − 3)(1 +
1

t
).

We claim that g1(t) ≥ 0, which is equivalent to v having charge at least k − 2/(k − 1). Let

g̃1(t) = (k − 1− t)((t− 1)(k − 1) + 2)− (2t+ 1)(k − 3)(3/2).

Note that g̃1(t) ≤ g1(t) when t ≥ 2, so we need to show that g̃1(t) ≥ 0 on the appropriate

domain. g̃1(t) is quadratic with a negative coefficient at t2, so it suffices to check its values

at the boundaries. They are

g̃1(2) = (k − 3)(k − 6.5)

and

4g̃1(
k − 1

2
) = (k − 1) ((k − 3)(k − 1) + 4)− 6k(k − 3)

= k3 − 11k2 + 29k − 7

= (k − 7)(k2 − 4k + 1).

Each of these values is non-negative when k ≥ 7.

Case 2: t ≥ 2 and v is not in a (k− 1)-clique. By Claim 2.35, each neighbor of v outside

of C has degree at least k − 1 + t ≥ k + 1 and is in H1. Therefore v has charge at least

k − 1 + (k − t)( t−1+2/(k−1)
k−1+t

). We define

g2(t) = (k − t)(t− 1 +
2

k − 1
)− k − 3

k − 1
(k − 1 + t)

= t(k − t)− 2(1− 2

k − 1
)(k − 1)

= t(k − t)− 2(k − 3).
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Note that g2(t) ≥ 0 is equivalent to v having charge at least k − 2/(k − 1). The function

g2(t) is quadratic with a negative coefficient at t2, so it suffices to check its values at the

boundaries. They are

g2(2) = 2(k − 2)− 2(k − 3) = 2

and

g2(k − 3) = (k − 3)(3)− 2(k − 3) = k − 3.

Each of these values is positive.

Case 3: t = 1. If v is not in a (k − 1)-clique X, then by Claim 2.36 the vertex adjacent

to v with degree k − 1 is in a (k − 1)-clique and cluster of size at least 2. In this case v will

receive charge (k− 3)/(k− 1) in total from that cluster. Therefore we may assume that v is

in a (k − 1)-clique X.

By Claim 2.44, there exists a Y ⊂ X such that |Y | ≥ k−1
2

and every vertex in Y has

degree at least k + 1. Furthermore, each vertex in Y has at least k − 3 neighbors with

degree at least k. Therefore each vertex u ∈ Y donates at least d(u)−k+2/(k−1)
d(u)−k+3

charge to each

neighbor of degree k − 1. Note that this function increases as d(u) increases, so the charge

is minimized when d(u) = k + 1. It follows that u gives to v charge at least 1+2/(k−1)
4

, and v

has charge at least

k − 1 +
k − 1

2

(
1 + 2/(k − 1)

4

)
= k +

k − 7

8
,

which is at least k − 2/(k − 1) when k ≥ 6. �

We then observe that after that half-discharging,

a) the charge of each vertex in H1 ∪ L1 is at least k − 2/(k − 1);

b) the charges of vertices in H0 did not decrease;

c) along every edge from H1 to L0 the charge at least 1/(k − 1) is sent.
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Thus by Claim 2.47, the total charge F of the vertices in H0 ∪ L0 is at least

kh+ (k− 1)`+
1

k − 1
(`(k − 1)− e(G0)) ≥ k(h+ `)− 1

k − 1
2(h+ `) = (h+ `)

(
k − 2

k − 1

)
,

and so by a), the total charge of all the vertices of G is at least n
(
k − 2

k−1

)
, a contradiction.

�

2.7 Sharpness

We will construct sparse 3-connected k-critical graphs. As it was pointed out in the in-

troduction, Construction 2.50 and the infinite series of 3-connected sparse 4- and 5-critical

graphs are due to Toft [76]. Because k-Ore graphs have connectivity 2, this will imply that

the bound in Theorem 2.11 on non-k-Ore graphs is tight.

Construction 2.50 (Toft [76]) Let u, v, w be distinct vertices in a k-critical graph G such

that uv ∈ E(G). Suppose also that φ(w) = φ(u) = φ(v) for all proper (k − 1)-colorings φ of

G− uv. Let S1 ∪ S2 ∪ S3 be a partition of the vertex set X of a copy of Kk−1 such that each

Si is nonempty. We construct G′ as V (G′) = V (G)∪V (X) and E(G′) = E(G)∪E(X)∪E ′,

where

E ′ = {ua : a ∈ S1} ∪ {vb : b ∈ S2} ∪ {wc : c ∈ S3}.

Claim 2.51 If G is a 3-connected k-critical graph and G′ is created using G and Construc-

tion 2.50, then G′ is a 3-connected k-critical graph.

Proof. We will use the names and definitions from Construction 2.50.

If there is a proper (k − 1)-coloring φ of G′, then all k − 1 colors must appear on X,

so φ(u) appears on a vertex in S2 or S3. Now either φ(v) 6= φ(u) or φ(w) 6= φ(u), which

contradicts the assumptions of Construction 2.50. So χ(G′) ≥ k.
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By way of contradiction, suppose there exists f ∈ E(G′) such that χ(G′ − f) ≥ k. If

f ∈ E(G), then let φ1 be a proper (k− 1)-coloring of G− f . Because e ∈ E(G)− f , we have

φ1(u) 6= φ1(v), and so φ1 extends easily to G′ − f . If f ⊂ X, then a proper (k − 1)-coloring

of G − e can be extended to G′ − f , because X can be colored with k − 2 colors, while

N(X) = {u, v, w} is colored with 1 color. If f ∈ E ′, then a proper (k − 1)-coloring of G− e

extends to G′ − f , because the unique color on {u, v, w} can be given to f ∩X. Therefore

G′ is k-critical.

Suppose there exists a set S such that |S| < 3 and nonempty A and B such that

E(A,B) = ∅ and A ∪ B ∪ S = V (G′). Because critical graphs are 2-connected, |S| = 2.

Because X is a clique, without loss of generality X ⊆ A ∪ S. By construction, there is no

set of size 2 such that X = A ∪ S, so S also separates G − e. Because κ(G) ≥ 3, e has an

endpoint in each component of G−S − e. Now the components of G′−S are connected via

paths through X. �

The assumptions in Construction 2.50 are strong. Most edges uv in k-critical graphs can

not be matched with a third vertex w, and some k-critical graphs do not have any edge-

vertex pairs (uv, w) that satisfy the assumptions. We will construct for each k an infinite

family of sparse graphs with high connectivity, Gk, that do satisfy the assumptions.

The family is generated for each k by finding a small 3-connected k-critical graph G′k

such that ρk(G
′
k) = αk. We will describe a subgraph H ′k ≤ G′k with two vertices, u and w,

such that φ′(u) = φ′(w) in every proper (k − 1)-coloring φ′ of H ′k. Construction 2.50 can

then be applied to G′k, using any edge uv that is not in H ′k and u, v, w are distinct vertices.

Because Construction 2.50 does not decrease the degree of u, this process can be iterated

indefinitely to populate Gk.

Note that Construction 2.50 adds the same number of vertices and edges as Ore’s com-

position with G2 = Kk. Therefore ρk(G) = αk for every graph G ∈ Gk. Furthermore, G is
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also k-critical and 3-connected, and therefore G is not k-Ore. This implies the sharpness of

Theorem 2.11.

All that is left is to find suitable graphs for G′k and H ′k. Figure 2.4 illustrates G′4 and G′5.

We will need a second construction for larger k.

w u

v

e

v

e

uw

H' H'4 5

Figure 2.4: Graphs G′4 and G′5, with appropriate substructures labeled for constructing G4

and G5.

Construction 2.52 Fix a t such that 1 ≤ t < k/2. Let

V (Hk,t) = {u1, u2, . . . , uk−1, v1, v2, . . . , vk−1, w}

and

E(Hk,t) = {uiuj : 1 ≤ i < j ≤ k − 1} ∪ {vivj : 1 ≤ i < j ≤ k − 1} ∪ {uivj : i, j ≤ t}

∪{wui : i > t} ∪ {wvi : i > t}.

Note that Hk,1 is a k-Ore graph, Hk,t is k-critical, κ(Hk,t) = t+1, |V (Hk,t)| = 2k−1, and

|E(Hk,t)| = k(k − 1) − 2t + t2. Moreover, ρk(Hk,2) = αk. For k ≥ 6, we choose G′k = Hk,2.

We will next find H ′k for k ≥ 6, which will complete the argument.

Claim 2.53 If H ′k = Hk,2−{u1v1, u1v2}, then φ′(u1) = φ′(w) in every proper (k−1)-coloring

φ′ of H ′k.
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Proof. Let φ′ be a proper (k − 1)-coloring of H ′k. Note that all k − 1 colors appear on

{u1, u2, . . . , uk−1} and appear again on {v1, v2, . . . , vk−1}. Thus φ′(w) appears on a vertex

a ∈ {u1, u2} and again on a vertex b ∈ {v1, v2}. So ab /∈ E(G), which implies that a = u1.

�

Next, we repeat the earlier statement of sharpness in Theorem 2.11.

Corollary 2.8 If n ≡ 1 (mod k − 1) and n ≥ k, then fk(n) = F (k, n).

If one of the following holds:

1. k = 4,

2. k = 5,

3. k = 6 and n ≡ 0(mod 5),

4. k = 6 and n ≡ 2(mod 5), or

5. k = 7 and n ≡ 2(mod 6),

then

fk(n) = dF (k, n) + zke .

Proof. By (2.1), if we construct an n0-vertex k-critical graph for which our lower bound on

fk(n0) is exact, then the bound on fk(n) is exact for every n of the form n0 + s(k − 1). So,

we only need to construct

1. a k-critical k-vertex graph with
(
k
2

)
edges,

2. a 4-critical 6-vertex graph with 10 edges,

3. a 4-critical 8-vertex graph with 13 edges,
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4. a 5-critical 7-vertex graph with 16 edges,

5. a 5-critical 8-vertex graph with 18 edges,

6. a 5-critical 10-vertex graph with 22 edges,

7. a 6-critical 10-vertex graph with 28 edges,

8. a 6-critical 12-vertex graph with 33 edges, and

9. a 7-critical 14-vertex graph with 46 edges.

Case (a) follows from Kk. The other eight cases are presented in Figure 2.5. If G is a

(k − 1)-critical graph H plus a vertex v whose neighborhood is V (H), then G is k-critical.

Cases (b), (d), (e), and (g) are created using this construction on odd cycles and k-Ore

graphs.

Let H be a k-critical graph, and let uv ∈ E(H). If H ′ = H − uv + w, where NH′(w) =

NH(u)−v, then in every proper (k−1)-coloring φ ofH ′, φ(u) = φ(v) = φ(w). Moreover, if any

edge of H ′ is deleted, then there is a proper (k−1)-coloring of H ′ where |{φ(u), φ(v), φ(w)}| ≥

2. Let S1 ∪ S2 ∪ S3 be a partition of the vertex set X of a copy of Kk−1 such that each Si is

nonempty. If G is a graph where V (G) = V (H ′) ∪ V (X) and E(G) = E(H ′) ∪ E(X) ∪ E ′,

where

E ′ = {ua : a ∈ S1} ∪ {vb : b ∈ S2} ∪ {wc : c ∈ S3},

then G is k-critical. The proof that G is k-critical follows exactly the proof of Claim 2.51.

Cases (c), (f), (h), and (i) are created using this construction with H = Kk. �
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Figure 2.5: Minimal k-critical graphs.

2.8 Algorithm

Recall that ρk,G(W ) = (k+1)(k−2)|W |−2(k−1)|E(G[W ])| and that Pk(G) is the minimum

of ρk,G(W ) over all nonempty W ⊆ V (G). We will also use the related parameter P̃k(G)

which is the minimum of ρk,G(W ) over all W ⊂ V (G) with 2 ≤ |W | ≤ |V (G)| − 1.

2.8.1 Procedure R1

The input of the procedure R1k(G) is a graph G. The output is one of the following five:

(S1) a nonempty set R ⊆ V (G) with ρk,G(R) ≤ k(k − 3), or

(S2) conclusion that k(k− 3) < P̃k(G) < (k+ 1)(k− 2) and a nonempty set R ( V (G) with

ρk,G(R) = P̃k(G), or

(S3) conclusion that P̃k(G) < 2(k − 1)(k − 2), and a set R ⊂ V (G) with 2 ≤ |R| ≤ n − 1

and ρk,G(R) = P̃k(G), or

(S4) conclusion that P̃k(G) = 2(k − 1)(k − 2), and a set R ⊂ V (G) with k ≤ |R| ≤ n − 1

and ρk,G(R) = 2(k − 1)(k − 2), or

(S5) conclusion that P̃k(G) ≥ 2(k − 1)(k − 2) and that every set R ⊆ V (G) with ρk,G(R) =

2(k − 1)(k − 2) has size k − 1 and induces Kk−1.
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First we calculate ρk(V (G)), and if it is at most k(k − 3), then we are done. Suppose

(k + 1)(k − 2)|V (G)| − 2(k − 1)|E(G)| ≥ 1 + k(k − 3). (2.20)

Consider the auxiliary network H = H(G) with vertex set V ∪ E ∪ {s, t} and the set of

arcs A = A1 ∪ A2 ∪ A3, where A1 = {sv : v ∈ V }, A2 = {et : e ∈ E}, and A3 = {ve : v ∈

V, e ∈ E, v ∈ e}. The capacity c of each sv ∈ A1 is (k+ 1)(k−2), of each et ∈ A2 is 2(k−1),

and of each ve ∈ A3 is ∞.

Since the capacity of the cut ({s}, V (H) − s) is finite, H has a maximum flow f . Let

M(f) denote the value of f , and let (S, T ) be the minimum cut in it. By definition, s ∈ S

and t ∈ T . Let SV = S ∩ V , SE = S ∩ E, TV = T ∩ V , and TE = T ∩ E.

Since c(ve) =∞ for every v ∈ e,

no edge of H connects SV to TE. (2.21)

It follows that if e = vu in G and e ∈ TE, then v, u ∈ TV . On the other hand, if e = vu in

G, v, u ∈ TV and e ∈ SE, then moving e from SE to TE would decrease the capacity of the

cut by 2(k − 1), a contradiction. So, we get

Claim 2.54 TE = E(G[TV ]).

By the claim,

M(f) = min
W⊆V

{
(k+1)(k−2)|W |+2(k−1)(|E|−|E(G[W ])|

}
= 2(k−1)|E|+min

{
Pk(G), 0

}
.

(2.22)

So, if M(f) < 2(k − 1)|E|, then Pk(G) < 0 and any minimum cut gives us a set with small

potential. Otherwise, consider for every e0 ∈ E and every vertex v0 not incident to e0, the

network He0,v0 that has the same vertices and edges and differs from H in the following:
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(i) the capacity of the edge e0t is not 2(k − 1) but 2(k − 1) + 2(k − 1)(k − 2) = 2(k − 1)2;

(ii) for every v ∈ V (G)− v0, the capacity of the edge sv is (k + 1)(k − 2)− 1
2n

;

(iii) the capacity of the edge sv0 is (k + 1)(k − 2)− 1
2n

+ 2(k − 1)(k − 2) + 1.

Then for every e0 ∈ E and v0 ∈ V (G), the capacity of the cut (V (He0,v0) − t, t) is

2(k − 1)|E| + 2(k − 1)(k − 2). Since this is finite, He0,v0 has a maximum flow fe0,v0 . As

above, let M(fe0,v0) denote the value of fe0,v0 , and let (S, T ) be the minimum cut in it. By

definition, s ∈ S and t ∈ T . Let SV = S ∩V , SE = S ∩E, TV = T ∩V , and TE = T ∩E. By

the same argument as above, (2.21) and Claim 2.54 hold. Let Mk(G) denote the minimum

value over M(fe0,v0).

By (2.20), for every e0 ∈ E and v0 ∈ V (G), the capacity of the cut (s, V (He0,v0) − s) is

at least

(
(k + 1)(k − 2)− 1

2n

)
n+ 2(k − 1)(k − 2) + 1 ≥ 2(k − 1)|E|+ 2(k − 1)(k − 2) +

1

2
.

If the potential of some nonempty W 6= V is less than (k+1)(k−2), then G[W ] contains

some edge e0 and there is v0 ∈ V −W . So, in the network He0,v0 , the capacity of the cut

({s} ∪ (V −W ) ∪ (E − E(G[W ])),W ∪ E(G[W ]) ∪ {t}) is

(
(k + 1)(k − 2)− 1

2n

)
|W |+ 2(k − 1)(|E| − |E(G[W ])|) = 2(k − 1)|E|+ ρk,G(W )− |W |

2n
.

On the other hand, for every nonempty W 6= V , every edge e0 and every v0 ∈ V , the capacity

of the cut ({s} ∪ (V −W ) ∪ (E − E(G[W ])),W ∪ E(G[W ]) ∪ {t}) is at least

(
(k + 1)(k − 2)− 1

2n

)
|W |+ 2(k − 1)(|E| − |E(G[W ])|) > 2(k − 1)|E|+ ρk,G(W )− 1

2
.

Thus ifMk(G) ≤ k(k−3)+2(k−1)|E|, then (S1) holds and if k(k−3)+2(k−1)|E| < Mk(G) <
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(k+1)(k−2)+2(k−1)|E|, then (S2) holds. Note that if a nonempty W is independent, then

E(G[W ]) = ∅, and the capacity of the cut ({s}∪(V −W )∪(E−E(G[W ])),W∪E(G[W ])∪{t})

is at least

2(k − 1)|E|+ 2(k − 1)(k − 2) + (k + 1)(k − 2).

Thus, if

(k + 1)(k − 2) + 2(k − 1)|E| ≤Mk(G) < 2(k − 1)(k − 2)− 1 + 2(k − 1)|E|,

then (S3) holds.

Similarly, if

2(k − 1)(k − 2)− 1 + 2(k − 1)|E| ≤Mk(G) < 2(k − 1)(k − 2) + 2(k − 1)|E| − k − 1

2n
,

then there exists W ⊂ V with k ≤ |W | ≤ n − 1 with potential 2(k − 1)(k − 2). Then (S4)

holds. Finally, if Mk(G) ≥ 2(k − 1)(k − 2) + 2(k − 1)|E| − k−1
2n
, then (S5) holds.

Since the complexity of the max-flow problem is at most Cn2
√
|E| and |E| ≤ kn, the

procedure takes time at most Ck1.5n4.5.

2.8.2 Outline of the algorithm

We consider the outline for k ≥ 7. For k ≤ 6, everything is quite similar and easier.

Let the input be an n-vertex e-edge graph G. The algorithm will be recursive. The output

will be either a proper coloring of G with k− 1 colors or return a nonempty R ⊆ V (G) with

ρk,G(R) ≤ k(k− 3). The algorithm runs through 7 steps, which are listed below. If a step is

triggered, then a recursive call is made on a smaller graph G′. Some steps will then require

a second recursive call on another graph G′′.

The algorithm does not make the recursive call if |E(G′)| ≤ k2/2. In this case, G′ is
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either (k − 2)-degenerate or Kk minus a matching, and so is easily (k − 1)-colorable in time

O(k|V (G′)|2). This also holds for G′′.

After all calls have been made, the algorithm will return a proper coloring or a subgraph

with low potential, skipping the other steps.

1) We check whether G is disconnected or has a cut-vertex or has a vertex of degree

at most k − 2. In the case of any ”yes”, we consider smaller graphs (and at the end will

reconstruct the coloring).

2) We run R1k(G) and consider possible outcomes. If the outcome is (S1), we are done.

3) Suppose the outcome is (S2). The algorithm makes a recursive call on G′ = G[R],

which returns a proper (k − 1)-coloring φ. Let G′′ be the graph Y (G,R, φ) described in

Definition 2.12. The proof of Claim 2.26 yields that Pk(G
′′) ≥ k(k − 3), and thus the re-

cursive call will return with a proper coloring. Let φ′ be the proper coloring returned. It is

straightforward to combine the colorings φ and φ′ into a proper (k − 1)-coloring of G.

4) Suppose the outcome is (S3) or (S4). We choose i using (2.6) and add i edges to G[R]

as in the proof of Claim 2.33. Denote the new graph G′. The algorithm makes a recursive

call on G′ = G[R], which returns a proper (k−1)-coloring φ. Let G′′ be the graph Y (G,R, φ)

described in Definition 2.12. The proof of Claim 2.33 yields that Pk(G
′′) ≥ k(k − 3), and

thus the recursive call will return with a proper coloring. Let φ′ be the coloring returned. It

is straightforward to combine the colorings φ and φ′ into a proper (k − 1)-coloring of G.

5) So, the only remaining possibility is (S5). For every (k − 1)-vertex v ∈ V (G), check

whether there is a (k−1)-clique K(v) containing v (since (S5) holds, such a clique is unique,

if exists). We certainly can do this in O(kn2) time. Let av denote the neighbor of v not in
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K(v) and Tv denote the set of (k − 1)-vertices in K(v). Then for every pair (v,K(v)) such

that d(v) = k − 1 and K(v) exists, do the following:

(5.1) If there is w ∈ Tv− v with aw 6= av, then consider the graph G′ = G− v−w+avaw.

By Claim 2.27, Pk(G
′) > k(k−3). So, the algorithm will return with a proper (k−1)-coloring

of G′, which we then extend to G.

(5.2) Suppose that |Tv| ≥ 2 and K(v)−Tv contains a vertex x of degree at most k−2+|Tv|.

Let G′ = G−x+ v′, where the closed neighborhood of v′ is the same as of v. By Claim 2.35,

Pk(G
′) > k(k − 3), so the algorithm returns a proper (k − 1)-coloring of G′, which is then

extended to G as in the proof of Claim 2.35.

(5.3) Suppose that Tv = {v} and K(v) contains at least k/2 − 1 vertices of degree k.

Since (S5) holds, there is x ∈ K(v) − v of degree at most k not adjacent to av. Let x1 and

x2 be the neighbors of x outside of Kv. Let G′ be obtained from G− v by adding edges avx1

and avx2. By the proof of Claim 2.44, Pk(G
′) > k(k − 3), so the algorithm finds a proper

(k − 1)-coloring of G′, which is then extended to G as in the proof of Claim 2.44.

6) Let Cv denote the cluster of v, i.e. the set of vertices that have the same closed neigh-

borhood as v. We certainly can find Cv for every (k − 1)-vertex v ∈ V (G) in O(kn2) time.

Then for every pair (v, Cv) such that d(v) = k − 1, do the following:

(6.1) Suppose that |Cv| ≥ 2 andN(v)−Cv contains a vertex x of degree at most k−2+|Tv|.

Then do the same as in (5.2).

(6.2) Suppose that N(v)−Cv contains a (k−1)-vertex w and that |Cw| ≤ |Cv|. If v is not

in a (k− 1)-clique, then consider G′ = G−w+ v′, where the v′ is a new vertex whose closed

neighborhood is the same as that of v. By the proof of Claim 2.36, Pk(G
′) > k(k − 3), and

so we find a proper (k−1)-coloring of G′ and then extend it to G as in the proof of Claim 2.36.
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7) Let L0, H0, and e0 be as defined in Definition 2.46. If e0 ≥ 2(|L0| + |H0|), then

iteratively remove vertices in L0 with at most two neighbors in H0 and vertices in H0 with

at most two neighbors in L0. Let H be the graph that remains, and G′ = G−V (H). Clearly

Pk(G
′) > k(k − 3), so the recursive call returns a proper coloring of G′. Give each vertex

v ∈ V (H) a list of colors L(v) = {c1, . . . , ck−1}, then remove from that list the colors on

N(v) ∩ V (G′). Orient the edges of H as in Case 1 of the proof of Lemma 2.17, then extend

the coloring of G′ to a proper coloring of G by list coloring H using the system described in

the proof to Lemma 2.15.

2.8.3 Analysis of correctness and running time

The proof of Theorem 2.5 consists in proving that at least one of the situations in steps 1

through 7 described above must happen. Moreover, the main theorem proves thatG′, G′′ ≺ G

by a partial order with finite descending chains, and therefore the algorithm will terminate.

We claim that the algorithm makes at most O(k2n2 log(n)) recursive calls, and each call

only takes O(k1.5n4.5) time, so the algorithm runs in O(k3.5n6.5 log(n)) time. Let e denote

the number of edges in G. Note that if ρk(V (G)) ≥ 0, then e ≤ nk.

If a call of the recursive algorithm terminates on Step 2, we will refer to this as ‘Type 1,’

a call terminating on Step 1, 3, 4, 5.1, 5.3, 6.1, or 7 is ‘Type 2,’ and a call terminating on

Step 5.2 or 6.2 is ‘Type 3.’ If a call is made on a Type 1, then the whole algorithm stops.

If a Type 3 happens, then the algorithm makes one recursive call with a graph with the

same number of edges and strictly more pairs of vertices with the same closed neighborhood.

The proof of Claim 2.34 shows that the number of pairs of vertices with the same closed

neighborhood is bounded by kn. We have that at least one out of every kn consecutive

recursive calls is Type 1 or 2.

Consider an instance of a Type 2 call with input graph H. If H ′ is the graph in the first
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recursive call and H ′′ is the graph in the second call (if necessary), then |E(H ′)|, |E(H ′′)| <

|E(H)| and |E(H)| ≥ |E(H ′)| + |E(H ′′)| − k2/2. Let gk(e, i) denote the number of Type

2 recursive calls made on graphs with i edges. Note that if i ≤ k2/2 then gk(e, i) = 0 and

gk(e, e) = 1. By tracing calls up through their parent calls, it follows that

e ≥ i+ (gk(e, i)− 1)
(
i− k2/2

)
when i > k2/2. Therefore

gk(e, i) <
e

(i− k2/2)
.

The total number of calls that our algorithm makes is at most

kn
e∑

i=k2/2+1

gk(e, i) < kne log(e).

Because e ≤ nk, we have that the total number of calls is O(k2n2 log(n)).

A call may run algorithm R1 once, which will take O(k1.5n4.5) time. Constructing the

appropriate graphs for recursion in Steps 3, 4, 5, and 6 will take O(kn2) time. Combining

colorings in Steps 1, 3, 4, 5, and 6 will take O(n) time. Properly coloring a degenerate graph

will take O(kn2) time, which happens at most twice. The only thing left to consider is Step

7. Iteratively removing vertices will take O(n2) time. Splitting the vertices and orienting the

edges using network flows will take O(n2.5k0.5) time. Finding a kernel will take O(n2) time,

which happens at most n times. Therefore each instance of the algorithm takes O(k1.5n4.5)

time.
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Chapter 3

Applications of Theorem 2.5

3.1 3-colorable Planar Graphs

An embedding σ of a graph G in a surface Σ is an injective mapping of V (G) to a point set

P in Σ and E(G) to non-self-intersecting curves in Σ such that

(a) for all v ∈ V and e ∈ E, σ(v) is never an interior point of σ(e),

(b) σ(v) is an endpoint of σ(e) if and only if v is a vertex of e, and

(c) for all e, h ∈ E, σ(h) and σ(e) can intersect only in vertices of P .

A graph is planar if it has an embedding in the plane. A graph with its embedding in

the [projective] plane is a [projective] plane graph. A cycle in a graph embedded in Σ is

contractible if it splits Σ into two surfaces where one of them is homeomorphic to a disk.

We restate Theorem 2.5 for 4-critical graphs:

Theorem 3.1 If G is a 4-critical n-vertex graph, then

|E(G)| ≥ 5n− 2

3
.

One of the most famous results of graph theory is that planar graphs are 4-colorable

[7, 8]. An entire area of research centers on variations of this result, one prominent direc-

tion is showing that planar graphs with additional restrictions are 3-colorable. The most

famous among those results is Grötzsch’s Theorem [36] that triangle-free planar graphs are

3-colorable. The original proof of Grötzsch’s Theorem is somewhat sophisticated. There
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were subsequent simpler proofs (see, e.g. [74] and references therein). Using Theorem 3.1,

we can give a very short proof of Grötzsch’s Theorem.

Theorem 3.2 ([36]) Every triangle-free planar graph is 3-colorable.

Proof. Let G be a plane graph with fewest elements (vertices and edges) for which the

theorem does not hold. Such a graph must be 4-critical. Let G have n vertices, m edges,

and f faces.

CASE 1: G has no 4-faces. Then 5f ≤ 2m and so f ≤ 2m/5. By this and Euler’s Formula

n−m+ f = 2, we have n− 3m/5 ≥ 2, i.e., m ≤ 5n−10
3

, a contradiction to Theorem 3.1.

CASE 2: G has a 4-face (x, y, z, u). Since G has no triangles, xz, yu /∈ E(G). If the

graph Gxz obtained from G by merging x and z has no triangles, then by the minimality of

G, it is 3-colorable, and so G also is 3-colorable. Thus G has an x, z-path < x, v, w, z > of

length 3. Since G itself has no triangles, {y, u} ∩ {v, w} = ∅, and there are no edges joining

{y, u} and {v, w}. Now G has no y, u-path of length 3, since such a path must cross the path

< x, v, w, z >. Thus the graph Gyu obtained from G by merging y and u has no triangles,

and so, by the minimality ofG, is 3-colorable. NowG also is 3-colorable, a contradiction. �

This section presents short proofs of some other theorems on proper 3-coloring of graphs

close to planar. Most of these results are strengthenings of Grötzsch’s Theorem. If G is a

triangle-free planar graph, then the following are true:

1. If H is a graph such that G = H − h for some edge h, then χ(H) ≤ 3. [3, 43]

2. If H is a graph such that G = H − v for some vertex v of degree 3, then χ(H) ≤ 3.

[43]

3. If F is a face of G of length at most 5, then each proper 3-coloring of F can be extended

to a proper 3-coloring of G. [37]
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4. Each coloring of two non-adjacent vertices can be extended to a proper 3-coloring of

G. [4]

Another way to strengthen Grötzsch’s Theorem is to allow a small number of triangles. If

G is planar and has at most three triangles, then χ(G) ≤ 3 [2, 10, 38]. The original proof of

this result by Grünbaum [38] was incorrect, and a correct proof was provided by Aksenov [2].

A simpler proof was given by Borodin [10].

Youngs [81] constructed triangle-free graphs in the projective plane that are not 3-

colorable. Thomassen [73] showed that if G is embedded in the projective plane without

contractible cycles of length at most 4 then G is 3-colorable.

Borodin, Kostochka, Lidický, and Yancey [19] constructed a collection of short proofs of

statements that either match or are stronger than each of the above statements. We will

present those claims and prove them below.

Without restriction on triangles, Steinberg conjectured [69] that every planar graph with-

out 4- and 5-cycles is 3-colorable. Erdős suggested to relax the conjecture and asked for the

smallest k such that every planar graph without cycles of length 4 to k is 3-colorable. The

best known bound for k is 7 [11].

We will also present a statement of Borodin, Kostochka, Lidický, and Yancey [19] that

is related to Steinberg’s conjecture.

3.1.1 Short proofs

The following lemma is a well-known tool to reduce the number of 4-faces.

Lemma 3.3 Let G be a plane graph and F = v0v1v2v3 be a 4-face in G such that v0v2, v1v3 6∈

E(G). Let Gi be obtained from G by identifying vi and vi+2 where i ∈ {0, 1}. If the number of

triangles increases in both G0 and G1 then there exists a triangle vivi+1z for some z ∈ V (G)
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v0 v1

v2v3

z

x y

(a)

v0 v1

v2v3

z

x = y

(b)

Figure 3.1: Triangle adjacent to a 4-face in Lemma 3.3.

and i ∈ {0, 1, 2, 3}. Moreover, G contains vertices x and y not in F such that vi+1zxvi−1

and vizyvi+2 are paths in G. Indices are modulo 4. See Figure 3.1.

Proof. This is a restatement of the procedure used in the proof of Theorem 3.2. �

Theorem 3.4 If G is a triangle-free planar graph, and H is a graph such that G = H − h

for some edge h of H, then H is 3-colorable.

Proof. Let H be a smallest counterexample and G be a triangle-free plane graph such that

G = H − h for some edge h. Let h = uv. Let H have n vertices and m edges and G have

f faces. Note that G has n vertices and m − 1 edges. By minimality, H is 4-critical, so

Theorem 3.1 implies m ≥ 5n−2
3

.

CASE 1: G has at most one 4-face. This yields 5f − 1 ≤ 2(m − 1) and hence f ≤

(2m − 1)/5. By this and Euler’s Formula n − (m − 1) + f = 2 applied to G, we have

5n− 3m+ 1 ≥ 5, i.e., m ≤ 5n−4
3

. This contradicts Theorem 3.1.

CASE 2: Every 4-face of G contains both u and v, and there are at least two such 4-faces

Fx and Fy. Let Fx = ux1vx2 and Fy = uy1vy2. If there exists z ∈ {x1, x2} ∩ {y1, y2} then z

has degree two in G which contradicts the 4-criticality of G.
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Let G′ be obtained from G by merging x1 and x2 into a new vertex x. If G′ is not

triangle-free, then there is a path P of vertices x1q1q2x2 in G, where q1, q2 6∈ Fx. Since P

must cross uy1v and uy2v, we may assume that y1 = q1 and y2 = q2. However, y1y2 6∈ E(G).

This contradicts the existence of P . Hence G′ is triangle-free. Let H ′ = G′ + h. By the

minimality of H, there is a proper 3-coloring ϕ of H ′. This contradicts that H is not

4-colorable, since ϕ can be extended to H by letting ϕ(x1) = ϕ(x2) = ϕ(x).

CASE 3: G has a 4-face F with vertices v0v1v2v3 in cyclic order, where h is neither

v0v2 nor v1v3. Since G is triangle-free, neither v0v2 nor v1v3 are edges of G. Lemma 3.3

implies that either v0 can be merged with v2 or v1 can be merged with v3 without creating a

triangle. Without loss of generality assume that G′, obtained by from G identification of v0

and v2 to a new vertex v, is triangle-free. Let H ′ = G′ + h. By the minimality of H, there

is a proper 3-coloring ϕ of H ′. The proper 3-coloring ϕ can be extended to H by letting

ϕ(v0) = ϕ(v2) = ϕ(v), which contradicts the 4-criticality of H. �

Theorem 3.5 If G is a triangle-free planar graph, and H is a graph such that G = H − v

for some vertex v of degree 4, then H is 3-colorable.

Proof. Let H be a smallest counterexample, and let G be a triangle-free plane graph such

that G = H − v for some vertex v of degree 4. Let H have n vertices and m edges, and

let G have f faces. Note that G has n − 1 vertices and m − 4 edges. By minimality, H is

4-critical, so Theorem 3.1 implies m ≥ 5n−2
3

.

CASE 1: G has no 4-faces. Here 5f ≤ 2(m− 4), and hence f ≤ 2(m− 4)/5. By this and

Euler’s Formula (n − 1) − (m − 4) + f = 2 applied to G, we have 5n − 3m − 8 ≥ −5, i.e.,

m ≤ 5n−3
3

. This contradicts Theorem 3.1.

CASE 2: G has a 4-face F with vertices v0v1v2v3 in the cyclic order. Since G is triangle-

free, neither v0v2 nor v1v3 is an edge of G, and Lemma 3.3 applies. Without loss of generality,
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assume that G0 obtained from G by merging v0 and v2 is triangle-free.

By the minimality of H, the graph obtained from H by merging v0 and v2 is 3-colorable,

since it satisfies the hypothesis. Now H is 3-colorable, a contradiction. �

Theorem 3.6 If G is a triangle-free planar graph, and F is a face of G of length at most

5, then each proper 3-coloring of F can be extended to a proper 3-coloring of G.

Proof. Let the proper 3-coloring of F be ϕ.

CASE 1: F is a 4-face where v0v1v2v3 are its vertices in cyclic order.

CASE 1.1: Suppose ϕ(v0) = ϕ(v2) and ϕ(v1) = ϕ(v3). Let G′ be obtained from G

by adding a vertex v adjacent to v0, v1, v2 and v3. Since G′ satisfies the assumptions of

Theorem 3.5, there is a proper 3-coloring % of G′. In any such proper 3-coloring, %(v0) = %(v2)

and %(v1) = %(v3). Hence by renaming the colors in % we obtain an extension of ϕ to a proper

3-coloring of G.

By symmetry, the other subcase is the following.

CASE 1.2: ϕ(v0) = ϕ(v2) and ϕ(v1) 6= ϕ(v3). Let G′ be obtained from G by adding the

edge v1v3. Since G′ satisfies the assumptions of Theorem 3.4, there is a proper 3-coloring %

of G′. In any such proper 3-coloring, %(v1) 6= %(v3), and hence %(v0) = %(v2). By renaming

the colors in % we obtain an extension of ϕ to a proper 3-coloring of G.

CASE 2: F is a 5-face where v0v1v2v3v4 are its vertices in cyclic order. Observe that up

to symmetry there is just one proper coloring of F . So without loss of generality assume

that ϕ(v0) = ϕ(v2) and ϕ(v1) = ϕ(v3).

Let G′ be obtained from G by adding a vertex v adjacent to v0, v1, v2 and v3. Since G′

satisfies the assumptions of Theorem 3.5, there is a proper 3-coloring % of G′. Note that in

any such proper 3-coloring %(v0) = %(v2) and %(v1) = %(v3). Hence by renaming the colors

in % we can extend ϕ to a proper 3-coloring of G. �
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Theorem 3.7 If G is a triangle-free planar graph, then each coloring of two non-adjacent

vertices can be extended to a proper 3-coloring of G.

Proof. Let G be a smallest counterexample, and let u, v ∈ V (G) be the two non-adjacent

vertices colored by ϕ. If ϕ(u) 6= ϕ(v), then the result follows from Theorem 3.4 by considering

graph obtained from G by adding the edge uv. Hence assume that ϕ(u) = ϕ(v).

CASE 1: G has at most two 4-faces. Let H be a graph obtained from G by identification

of u and v. Any proper 3-coloring of H yields a proper 3-coloring of G where u and v are

colored the same. By this and the minimality of G, we conclude that H is 4-critical. Let G

have m edges, n+ 1 vertices and f faces.

Since G is planar, 5f − 2 ≤ 2m. By this and Euler’s formula,

2m+ 2 + 5(n+ 1)− 5m ≥ 10,

and hence m ≤ (5n− 3)/3, a contradiction to Theorem 3.1.

CASE 2: G has at least three 4-faces. Let F be a 4-face with vertices v0v1v2v3 in cyclic

order. Since G is triangle-free, neither v0v2 nor v1v3 are edges of G. Hence Lemma 3.3

applies.

Without loss of generality, let G0 from Lemma 3.3 be triangle-free. By the minimality of

G, G0 has a proper 3-coloring ϕ where ϕ(u) = ϕ(v) unless uv ∈ E(G0). Since uv 6∈ E(G),

without loss of generality v0 = u and v2v ∈ E(G). Moreover, the same cannot happen to

G1 from Lemma 3.3, hence G1 contains a triangle. Thus G contains a path v1q1q2v3 where

q1, q2 6∈ F , and G also contains a 5-cycle C = uv1q1q2v3 (see Figure 3.2). By Theorem 3.6,

C is a 5-face. Hence u has degree 2 and is incident with only one 4-face.

Then there is a 4-face not incident to u, and we may repeat the argument. By this

symmetric argument, v also has degree 2 and is incident with exactly one 4-face and 5-face.
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u = v0

v1

v2

v3

v

q1

q2

Figure 3.2: Configuration from Theorem 3.7.

However, G has at least one more 4-face where merging of vertices does not result in the

edge uv, a contradiction to the minimality of G. �

Theorem 3.8 Let G be a graph embedded in the projective plane such that the embedding

has at most two contractible cycles of length 4 or one contractible cycle of length three such

that all other cycles of length at most 4 are non-contractible. Under these conditions, G is

3-colorable.

Proof. Let G be a minimal counterexample with m edges, n vertices and f faces. By

minimality, G is 4-critical, and G has at most two 4-faces or one 3-face. From embedding,

5f − 2 ≤ 2m. By Euler’s formula, 2m + 2 + 5n − 5m ≥ 5. Hence m ≤ (5n − 3)/3, a

contradiction to Theorem 3.1. �

Borodin used in his proof of Theorem 3.9 a technique called portionwise coloring. We

avoid it and build the proof on the previous results arising from Theorem 3.1.

Theorem 3.9 If G is a planar graph containing at most three triangles, then G is 3-

colorable.

Proof. Let G be a smallest counterexample. By minimality, G is 4-critical and every

triangle is a face. By Theorem 3.6 for every separating 4-cycle and 5-cycle C, both the

interior and exterior of C contain triangles.
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CASE 1: G has no 4-faces. Then 5f−6 ≤ 2m and by Euler’s Formula 3m+6+5n−5m ≥

10, i.e., m ≤ 5n−4
3

. This contradicts Theorem 3.1.

CASE 2: G has a 4-face F = v0v1v2v3 such that v0v2 ∈ E(G). By the minimality, v0v1v2

and v0v3v2 are both 3-faces and hence G has 4 vertices, 5 edges and it is 3-colorable.

CASE 3: For every 4-face F = v0v1v2v3, neither v0v2 nor v1v3 are edges of G. By

Lemma 3.3, there exist paths v0zyv2 and v1zxv3.

CASE 3.1: G contains a 3-prism with one of its 4-cycles being a 4-face. We may assume

that this face is our F and x = y, see Figure 3.1(b). Theorem 3.6 implies that one of zv0v3x,

zv1v2x is a 4-face. Without loss of generality, assume that zv1v2x is a 4-face. Let G0 be

obtained from G by merging v0 and v2 to a new vertex v. Since G0 is not 3-colorable, it

contains a 4-critical subgraph G′0. Note that G′0 contains triangle xvz that is not in G, but

v0v1z is not in G′0 since d(v1) = 2 in G0. By the minimality of G, there exists another

triangle T that is in G0 but not in G. By planarity, x ∈ T . Hence there is a vertex w1 6= v3

such that v0 and x are neighbors of w1.

By considering merging v1 and v3 and by symmetry, we may assume that there is a vertex

w2 6= v0 such that v3 and z are neighbors of w2. By planarity we conclude that w1 = w2.

This contradicts the fact that G has at most three triangles. Therefore G is 3-prism-free.

CASE 3.2: G contains no 3-prism with one of its 4-cycles being a 4-face. Then x 6= y, see

Figure 3.1(a). If v0x ∈ E(G), then G − v0 is triangle-free, and Theorem 3.5 gives a proper

3-coloring of G, a contradiction. Similarly, v1y 6∈ E(G).

Suppose that zv0v3x is a 4-face. Let G′ be obtained from G − v0 by adding edge xv1.

If the number of triangles in G′ is at most three, then G′ has a proper 3-coloring ϕ, by the

minimality of G. Let % be a proper 3-coloring of G such that %(v) = ϕ(v) if v ∈ V (G′) and

%(v0) = ϕ(x). Since the neighbors of v0 in G are neighbors of x in G′, % is a proper 3-coloring,

a contradiction. Therefore G′ has at least four triangles and hence G contains a vertex t 6= z

adjacent to v1 and x. Since v1y 6∈ E(G), the only possibility is t = v2. Having edge xv2
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results in a 3-prism being a subgraph of G, which is already excluded. Hence zv0v3x is not

a face, and by symmetry zv1v2y is not a face either.

Since neither zv0v3x nor zv1v2y is a face, each of them contains a triangle in its interior.

Since we know the location of all three triangles, Theorem 3.6 implies that zyv2v3x is a

5-face. It also implies that the common neighbors of z and v3 are exactly v0 and x, and the

common neighbors of z and v2 are exactly v1 and y. Without loss of generality, let zyv2v3x

be the outer face of G.

Let H1 be obtained from the 4-cycle zv0v3x and its interior by adding edge zv3. The

edge zv3 is in only two triangles, and there is only one triangle in the interior of the 4-cycle.

Hence by the minimality of G, there exists a proper 3-coloring ϕ1 of H1.

Let H2 be obtained from the 4-cycle zv1v2y and its interior by adding edge zv2. By the

same argument as for H1, there is a proper 3-coloring of ϕ2 of H2.

If we rename the colors in ϕ2 so that ϕ1(z) = ϕ2(z), ϕ1(v0) = ϕ2(v2) and ϕ1(v3) = ϕ2(v1),

then ϕ1 ∪ ϕ2 is a proper 3-coloring of G, a contradiction. �

Theorem 3.10 If G is a 4-chromatic projective planar graph where every vertex is in at

most one triangle, then G contains a cycle of length 4,5 or 6.

Proof. Let G be a 4-chromatic projective plane graph where every vertex is in at most

one triangle and let G be 4-,5- and 6-cycle free. Hence G contains a 4-critical subgraph

G′. Let G′ have m edges, n vertices and f faces. Since G′ is also 4-,5- and 6-cycle-free

and every vertex is in at most one triangle, we get f ≤ n
3

+ 2m−n
7

. By Euler’s formula,

7n+ 6m− 3n+ 21n− 21m ≥ 21. Hence m ≤ 5n/3− 21/15, a contradiction to Theorem 3.1.

�
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Figure 3.3: First three 4-critical graphs from the family described by Thomas and Walls [72].

3.1.2 Tightness

This section shows examples where Theorems 3.4, 3.5, 3.6, 3.7, 3.9, and 3.8 are tight.

Theorem 3.4 is best possible because there exists an infinite family [72] of 4-critical

graphs that become triangle-free and planar after removal of just two edges. See Figure 3.3.

Moreover, the same family shows also the tightness of Theorem 3.9, since the construction

has exactly four triangles.

Aksenov [2] showed that every plane graph with one 6-face F and all other faces be-

ing 4-faces has no proper 3-coloring in which the colors of vertices of F form the sequence

(1, 2, 3, 1, 2, 3). This implies that Theorem 3.6 is best possible. It also implies that Theo-

rems 3.5 and 3.7 are best possible. See Figure 3.4 for constructions where coloring of three

vertices or an extra vertex of degree 5 force a coloring (1, 2, 3, 1, 2, 3) of a 6-cycle.

Theorem 3.8 is best possible because there exist embeddings of K4 in the projective plane

with three 4-faces or with two 3-faces and one 6-face.

73



1

3

2

(a)

1

1

2

(b)

1
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Figure 3.4: Coloring of three vertices by colors 1, 2 and 3 in (a), (b) and (c) or an extra
vertex of degree 5 in (d) forces a coloring of the 6-cycle by a sequence (1, 2, 3, 1, 2, 3) in cyclic
order.

3.2 Local vs. Global Graph Properties

Krivelevich [57] presented several nice applications of his lower bounds on fk(n) and related

graph parameters to questions of existence of complicated graphs whose small subgraphs are

simple. We indicate here how to improve two of his bounds using Theorem 2.5.

Let f(
√
n, 3, n) denote the maximum chromatic number over n-vertex graphs in which

every
√
n-vertex subgraph has chromatic number at most 3. Krivelevich proved that for

every fixed ε > 0 and sufficiently large n,

f(
√
n, 3, n) ≥ n6/31−ε. (3.1)

He used his result that every 4-critical t-vertex graph with odd girth at least 7 has at least

31t/19 edges. If instead of this result, we use our bound on f4(n), then repeating almost

word by word Krivelevich’s proof of his Theorem 4 (choosing p = n−0.8−ε′), we get that for

every fixed ε and sufficiently large n,

f(
√
n, 3, n) ≥ n1/5−ε. (3.2)

Another result of Krivelevich is:
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Theorem 3.11 ([57]) There exists C > 0 such that for every s ≥ 5 there exists a graph Gs

with at least C
(
s

ln s

) 33
14 vertices and independence number less than s such that the indepen-

dence number of each 20-vertex subgraph at least 5.

He used the fact that for every m ≤ 20 and every m-vertex 5-critical graph H,

|E(H)| − 1

m− 2
≥ d17m/8e − 1

m− 2
≥ 33

14
.

From Theorem 2.5 we instead get

|E(H)| − 1

m− 2
≥
⌈

9m−5
4

⌉
− 1

m− 2
≥ 43

18
.

Then repeating the argument in [57] we can replace 33
14

in the statement of Theorem 3.11

with 43
18

.

3.3 Ore-degrees

The Ore-degree, Θ(G), of a graph G is the maximum of d(x) + d(y) over all edges xy of G.

Let Gt = {G : Θ(G) ≤ t}. It is easy to prove (see, e.g. [49]) that χ(G) ≤ 1 + bt/2c for every

G ∈ Gt. Clearly Θ(Kd+1) = 2d and χ(Kd+1) = d + 1. The graph O5 in Fig 3.5 is the only

9-vertex 5-critical graph with Θ at most 9. We have Θ(O5) = 9 and χ(O5) = 5.

A natural question is to describe the graphs in G2d+1 with chromatic number d + 1.

Kierstead and Kostochka [49] proved that for d ≥ 6 each such graph contains Kd+1. Then

Rabern [64] extended the result to d = 5. Each (d + 1)-chromatic graph G contains a

(d+ 1)-critical subgraph G′. Since δ(G′) ≥ d and Θ(G′) ≤ Θ(G) ≤ 2d+ 1,

∆(G′) ≤ d+ 1, and vertices of degree d+ 1 form an independent set. (3.3)
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Figure 3.5: The graph O5.

Thus the results in [49] and [64] mentioned above could be stated in the following form.

Theorem 3.12 ([49, 64]) Let d ≥ 5. Then the only (d + 1)-critical graph G′ satisfying

(3.3) is Kd+1.

The case d = 4 was settled by Kostochka, Rabern, and Stiebitz [51]:

Theorem 3.13 ([51]) Let d = 4. Then the only 5-critical graphs G′ satisfying (3.3) are K5

and O5.

Theorem 2.5 and Corollary 2.18 yield simpler proofs of Theorems 3.12 and 3.13. The key

observation is the following.

Lemma 3.14 Let d ≥ 4 and G′ be a (d + 1)-critical graph satisfying (3.3). If G′ has n

vertices of which h > 0 vertices have degree d+ 1, then

h ≥
⌈

(d− 2)n− (d+ 1)(d− 2)

d

⌉
(3.4)

and

h ≤
⌊
n− 3

d− 1

⌋
. (3.5)
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Proof. By definition, 2e(G′) = dn+ h. So, by Theorem 2.5 with k = d+ 1,

dn+ h ≥ (d+ 1− 2

d
)n− (d+ 1)(d− 2)

d
,

which yields (3.4).

Let B be the set of vertices of degree d + 1 in G′ and A = V (G′) − B. By (3.3),

e(G′(A,B)) = h(d+ 1). So, by Corollary 2.18(ii) with k = d+ 1,

h(d+ 1) ≤ 3h+ (n− h)− 3 = 2h+ n− 3,

which yields (3.5). �

Another ingredient is the following old observation by Dirac.

Lemma 3.15 (Dirac [26]) Let k ≥ 3. There are no k-critical graphs with k + 1 vertices,

and the only k-critical graph (call it Dk) with k + 2 vertices is obtained from the 5-cycle by

adding k − 3 all-adjacent vertices.

Suppose G′ with n vertices of which h vertices have degree d+ 1 is a counterexample to

Theorems 3.12 or 3.13. Since the graph Dd+1 from Lemma 3.15 has a vertex of degree d+ 2,

n ≥ d+ 4. So since d ≥ 4, by (3.4),

h ≥
⌈

(d− 2)(d+ 4)− (d+ 1)(d− 2)

d

⌉
=

⌈
3(d− 2)

d

⌉
≥ 2.

On the other hand, if n ≤ 2d, then by (3.5),

h ≤
⌊

2d− 3

d− 1

⌋
= 1.

Thus n ≥ 2d+ 1.
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Combining (3.4) and (3.5) together, we get

(d− 2)n− (d+ 1)(d− 2)

d
≤ n− 3

d− 1
.

Solving with respect to n, we obtain

n ≤
⌊

(d+ 1)(d− 1)(d− 2)− 3d

d2 − 4d+ 2

⌋
. (3.6)

For d ≥ 5, the RHS of (3.6) is less than 2d + 1, a contradiction to n ≥ 2d + 1. This proves

Theorem 3.12.

Suppose d = 4. Then (3.6) yields n ≤ 9. So, in this case, n = 9. By (3.4) and (3.5),

we get h = 2. Let B = {b1, b2} be the set of vertices of degree 5 in G′. By a theorem of

Stiebitz [70], G′ − B has at least two components. Since |B| = 2 and δ(G′) = 4, each such

component has at least 3 vertices. Since |V (G′) − B| = 7, we may assume that G′ − B

has exactly two components, C1 and C2, and that |V (C1)| = 3. Again because δ(G′) = 4,

C1 = K3 and all vertices of C1 are adjacent to both vertices in B. So, if we color both b1 and

b2 with the same color, this can extended to a proper 4-coloring of G′−V (C2). Thus to have

G′ 5-chromatic, we need χ(C2) ≥ 4 which yields C2 = K4. Since δ(G′) = 4, e(V (C2), B) = 4.

So, since each of b1 and b2 has degree 5 and 3 neighbors in C1, each of them has exactly two

neighbors in C2. This proves Theorem 3.13. �

3.4 Hypergraphs

A proper k-coloring of a hypergraph G is a function f : V (G) → [k] such that for each

e ∈ E(G), the vertices in e do not all map to the same color. The definitions of chromatic

number and k-critical generalize in the natural way.
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There are several generalizations of fk(n). One generalization is to extend the result to

hypergraphs. Critical hypergraphs create a more complex problem: even the family of 3-

critical hypergraphs is not known. We present several constructions of critical hypergraphs.

An example of a 3-critical hypergraph constructed using Constructions 3.16 and 3.17 is

shown in Figure 3.6.

Figure 3.6: An example of a 3-critical hypergraph that is not an odd cycle.

Construction 3.16 Let G1 and G2 be hypergraphs. Let e1 ∈ E(G1), v1 ∈ e1, e2 ∈ E(G2),

and v2 ∈ e2. Let G be comprised of a copy of (G1 − e1) and a copy of (G2 − e2) with v1 and

v2 merged into a vertex v∗, and then add edge e = (e1 ∪ e2)− v∗. See Figure 3.7.

Figure 3.7: Construction 3.16.

Construction 3.17 Let G′ be a hypergraph, e′ ∈ E(G′), and u ∈ e′. If there exists a vertex

v such that φ(v) = φ(u) in every proper (k− 1)-coloring φ of (G′ − e′), then let e = e′ ∪ {v}

and G = G′ − e′ + e. See Figure 3.8.
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Figure 3.8: Construction 3.17.

Construction 3.18 Let G1 and G2 be hypergraphs. Let {u1, . . . ut} = e ∈ E(G1) and

v ∈ V (G2). Let G′2 be G2 with v split into t vertices v1, . . . vt, each with non-zero degree in

G′2. Let G be obtained from (G1− e) and G′2 with ui and vi merged for 1 ≤ i ≤ t. See Figure

3.9.

If G1, G2, and G′ are k-critical hypergraphs, then Constructions 3.16 and 3.17 produce

new k-critical hypergraphs. Construction 3.18 is a generalization of Construction 2.3 in

Chapter 2. If G′2 is not k-critical, then Construction 3.18 produces a new k-critical graph.

We will present the proof of Construction 3.16. The proof of Construction 3.17 is clear, and

the proof of Construction 3.18 follows exactly the proof of Construction 2.3.

Proof of Construction 3.16 Let G, G1, G2, e1, e2, v1, and v2 be as in the statement of

the construction. First, we will show that χ(G) ≥ k. Suppose φ is a proper (k − 1)-coloring

of G. The vertices in e are not monochromatic, so there must be some vertex u ∈ e where
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Figure 3.9: Construction 3.18.

φ(u) 6= φ(v∗). Without loss of generality, we may assume that v∗ is in the copy of G1 − e1.

Note that φ induces a proper (k − 1)-coloring of G1 − e1. Because φ(u) 6= φ(v∗), we have

that φ is a proper (k − 1)-coloring of G1, which is a contradiction.

Let f ∈ E(G). We will show that G− f is (k − 1)-colorable. Without loss of generality,

assume that f ∈ E(G1). There exists a proper (k − 1)-coloring φ1 of G1 − f . Note that

there is a vertex u1 ∈ e1 such that φ1(u) 6= φ1(v1). Let φ2 be a proper (k − 1)-coloring of

G2 − e2. By symmetry, we may assume φ1(v1) = φ2(v2). Let u2 ∈ e2 − v2. By criticality of

G2, φ2(u2) = φ2(v2). Now, φ1∪φ2 is a proper (k− 1)-coloring of G− e. This is also a proper

(k − 1)-coloring of G, because φ1(u1) 6= φ1(v1) = φ2(v2) = φ2(u2). �

It is easier to properly color larger edges. We formalize this with a statement below.

Claim 3.19 Let G be a hypergraph and e ∈ E(G). If e′ ⊆ e and G′ = G − e + e′, then

χ(G′) ≥ χ(G).
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Proof. A proper coloring of G′ is also a proper coloring of G. �

A consequence of this statement is that if H is a hypergraph, and G is a graph where

each edge of H is shrunk to have size 2, then χ(G) ≥ χ(H). Therefore, it follows intuitively

that critical hypergraphs would have as many edges as critical graphs. We will prove this

rigorously and also characterize the extremal hypergraphs.

Theorem 3.20 If k ≥ 3, and G is a k-critical hypergraph, then |E(G)| ≥
⌈

(k+1)(k−2)|V (G)|−k(k−3)
2(k−1)

⌉
.

For k ≥ 4, let G be k-critical with |E(G)| = (k+1)(k−2)|V (G)|−k(k−3)
2(k−1)

. If there exists e ∈

E(G) such that |e| ≥ 3, then G can be constructed from smaller k-critical hypergraphs using

Construction 3.16, 3.17, or 3.18.

By Theorem 2.6, we know all of the extremally sparse k-critical graphs, so this statement

characterizes all of the extremally sparse k-critical hypergraphs when k ≥ 4. The bound

|E(G)| ≥ |V (G)| for 3-critical hypergraphs was already known.

Let fk,t(n) denote the fewest edges in an n-vertex, k-critical, t-uniform hypergraph. Let

α(k, t) = limn→∞ fk,t(n)/n. The best bounds known on α(k, t) for small k are by Abbott

and Hare [1]: max{1, (k − 1)/t} ≤ α(k, t) < k − 2 when t ≥ 3 and k ≥ 4. Abbott and

Hare gave slightly stronger bounds under specific conditions (such as k = t+1) to determine

that α(4, 3) ∈ [10/9, 35/19]. Theorem 3.20 improves on these bounds for small k as a simple

corollary.

Corollary 3.21 Let k ≥ 3. For all t, α(k, t) ≥ k
2
− 1

k−1
.

Moreover, α(4, 3) ≥ 5/3.

For large k, Kostochka and Stiebitz [53] proved that α(k, t) ≥ k− 3k
2
3 when t ≥ 3, which

shows that limk→∞ α(k, t)/k = 1. Corollary 3.21 is the strongest known result for k ≤ 215.

We will prove Theorem 3.20 in two stages. In the first stage we will prove the lower

bound on the number of edges in k-critical hypergraphs, which will be described by Lemma
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3.26. In the second stage we will prove that all extremally sparse k-critical hypergraphs can

be constructed via Construction 3.16, 3.17, or 3.18, which will be described by Lemma 3.29.

We generalize the definition of potential to hypergraphs in the natural way. Note that

we now consider ρ3(W ) = 4|W | − 4|E(G[W ])|. We can do this because the statement

if G is k-critical, then ρk(V (G)) ≤ k(k − 3) (3.7)

is still true when k = 3.

We also use the following generalizations:

Definition 3.22 For a hypergraph G and a set R ⊂ V (G), let

R∗ = {u ∈ R : N(u) 6⊆ R}.

Construction 3.23 For a hypergraph G, a set R ⊂ V (G), and a proper (k − 1)-coloring φ

of G[R], the hypergraph Y (G,R, φ) is constructed as follows. Let t be the number of colors

used on R∗. We may renumber the colors so that the colors used on R∗ are 1, . . . , t. Let

Y (G,R, φ) = G − R + X, where X = {x1, . . . , xt} is a set of new vertices which form a

clique. Then for each edge e ∈ E(G) such that e 6⊆ R:

(i) if e ∩R = ∅, then it stays where it was;

(ii) if {φ(v) : v ∈ R ∩ e} = {i} for some i, then we add to Y (G,R, φ) edge e−R + xi;

(iii) if |{φ(v) : v ∈ R ∩ e}| ≥ 2, then we add nothing to Y (G,R, φ).

Claim 3.24 Let H be a hypergraph such that χ(H) ≥ k. If R ⊂ V (H) and there exists a

proper (k − 1)-coloring φ of H[R], then χ(Y (H,R, φ)) ≥ k.

Proof. Let H ′ = Y (H,R, φ). Suppose H ′ has a proper (k− 1)-coloring φ′ : V (H ′)→ C. By

construction of H ′, the colors of all xi in φ′ are distinct. By changing the names of the colors,
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we may assume that φ′(xi) = ci for 1 ≤ i ≤ k − 1. By construction of H ′, φ|R ∪ φ′|V (H)−R is

a proper coloring of H, a contradiction. �

Definition 3.25 For a hypergraph H, let

ei(H) = |{e ∈ E(H) : |e| = i}|.

Let G and H be hypergraphs. Let i be the largest integer such that ei(G) 6= ei(H). If such

an i exists and ei(H) < ei(G), then H is smaller than G.

Note that if G′ is a subgraph of G, then G′ is smaller than G.

3.4.1 Sparse

Lemma 3.26 If k ≥ 3 and H be k-critical hypergraph, then ρk(V (H)) ≤ k(k − 3).

Let H be a minimal hypergraph with respect to our relation that contradicts Lemma

3.26.

Claim 3.27 There is no nonempty R ( V (H) with |R| ≥ 2 and ρk,H(R) < (k − 2)(k + 1).

Proof. Let R have the smallest potential among nonempty proper subsets of V (H). Let

ρk(R) = m. Since H is k-critical, H[R] has a proper coloring φ. Let H ′ = Y (H,R, φ). By

Claim 3.24, χ(H ′) ≥ k. Then H ′ contains a k-critical hypergraph H ′′.

We claim that H ′ is smaller than H, and therefore H ′′ is smaller than H. Edges added

using rules (i), (ii), and (iii) to H ′ are in 1-to-1 correspondence with edges in H that are at

least as large. All edges added inside of X have size 2. If H[R] contains an edge with size

at least 3, then it follows that H ′ is smaller than H. So assume every edge in H[R] has size
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2. ρk,H(R) < (k − 2)(k + 1) ≤ 2(k − 2)(k − 1), so |R| ≥ k. Because ρk,H(R) < ρk,H′(X) and

|R| > |X|, it follows that e2(H[R]) > e2(H ′[X]). Therefore H ′ is smaller than H.

By the minimality of H, ρk(V (H ′′)) ≤ k(k − 3). Since H is k-critical, V (H ′′) ∩X 6= ∅.

Let Z = V (H ′′) − X + R. So, since every nonempty subset of X has potential at least

(k − 2)(k + 1),

ρk,H(Z) ≤ ρk,H′(V (H ′′))− ρk,H′(V (H ′′) ∩X) +m

≤ k(k − 3)− (k + 1)(k − 2) +m

= m− 2k + 2.

Since Z ⊃ R, we have that Z is nonempty. By the minimality of the potential of R, it follows

that Z = V (H). Now

ρk,H(V (H)) ≤ m− 2k + 2 < (k − 2)(k + 1)− 2k + 2 = k(k − 3),

a contradiction again. �

Corollary 3.28 Pk(H) ≥ k(k − 3) + 1.

Proof. This follows from Claim 3.27, the assumption ρk,H(V (H)) ≥ k(k − 3) + 1, and the

fact ρk(K1) = (k − 2)(k + 1). �

Let e be a maximum-sized edge in H. If |e| = 2 then the claim follows from Theorem

2.5, so assume |e| ≥ 3. Let e = {v1, v2, . . . vt}.

Let e1 = {v1, v2} and e2 = {v2, . . . vt}. Let H1 = H − e + e1 and H2 = H − e + e2. By

Claim 3.19, χ(H1), χ(H2) ≥ χ(H) = k. So there exist k-critical hypergraphs H ′ and H ′′ such

that e1 ∈ H ′ ⊆ H1 and e2 ∈ H ′′ ⊆ H2. Let W ′ = V (H ′) and W ′′ = V (H ′′). By minimality
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of H,

ρk,H(W ′), ρk,H(W ′′) ≤ k(k − 3) + 2(k − 1) = (k − 2)(k + 1).

Case 1: W ′ = V (H). Here e ⊆ W ′ and ρk,H(V (H)) = ρk,H′(V (H ′)) ≤ k(k − 3), a

contradiction.

Case 2: W ′ ∩ W ′′ 6= V (H). Because v2 ∈ W ′ ∩ W ′′, we have that ρk,H(W ′ ∩ W ′′) ≥

(k − 2)(k + 1). By submodularity,

ρk,H(W ′ ∪W ′′) ≤ ρk,H(W ′) + ρk,H(W ′′)− ρk,H(W ′ ∩W ′′)

≤ (k − 2)(k + 1) + (k − 2)(k + 1)− (k − 2)(k + 1)

= (k − 2)(k + 1).

Note that e ⊆ W ′ ∪ W ′′, which was not accounted for previously. So ρk,H(W ∪ W ′′) ≤

(k − 2)(k + 1)− 2(k − 1) = k(k − 3). But this contradicts Corollary 3.28. �

3.4.2 Construction

Lemma 3.29 If H is k-critical, ρk(V (H)) = k(k − 3), k ≥ 4, and there exists an e ∈

E(H) such that |e| ≥ 3, then H can be constructed from smaller k-critical hypergraphs using

Construction 3.16, 3.17, or 3.18.

Let H be a minimal hypergraph with respect to our relation that contradicts Lemma 3.29.

Claim 3.30 There is no nonempty R ( V (H) with |R| ≥ 2 and ρk,H(R) ≤ (k − 2)(k + 1).

Proof. Let R, φ, H ′ and H ′′ be the same as in the proof of Claim 3.27. If possible, pick

φ such that there are at least two colors appearing on the vertices of R∗. By Lemma 3.26,

ρk(V (H ′′)) ≤ k(k − 3). Let Z = V (H ′′)−X +R.
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ρk,H(Z) ≤ ρk,H′(V (H ′′))− ρk,H′(V (H ′′) ∩X) + ρk,H(R)

≤ k(k − 3) + ρk,H(R)− ρk,H′(V (H ′′) ∩X)

Since H is k-critical, V (H ′′) ∩X 6= ∅. If ∅ 6= W ⊆ X, then ρk,H′(W ) ≥ (k − 2)(k + 1) >

k(k − 3). By the minimality of the potential of R, we have Z = V (H). If |V (H ′′) ∩X| 6= 1,

then ρk,H′(V (H ′′) ∩ X) > (k − 2)(k + 1) (this is where k ≥ 4 is applied). It follows that

ρk,H(V (H)) < ρk,H(R)−2(k−1), which contradicts the assumptions that ρk(V (H)) = k(k−3)

and ρk,H(R) ≤ (k − 2)(k + 1). Therefore |V (H ′′) ∩X| = 1.

Without loss of generality, assume V (H ′′) ∩X = {x1}. Let R1 = {u ∈ R∗ : φ(u) = c1}.

Case A: There exists an edge with an endpoint in R − R1 and another endpoint in

V (H) − R. This edge was not accounted for above, so ρk,H(V (H)) ≤ k(k − 3) − 2(k − 1),

which contradicts the assumptions.

Case B: There are no edges with an endpoint in R−R1 and another endpoint in V (H)−R.

Note that this implies that R1 = R∗. By our choice of φ, every proper coloring of H[R] is

monochromatic on R1. Let e′ be an edge with e′ = R1. Then H can be constructed by

Construction 3.18, where G1 = H[R] + e′ and G2 is H − (R−R1) with all vertices of R1 are

merged into one vertex. �

Let e = {v1, v2, . . . vt}, e1 = {v1, v2}, and e2 = {v2, . . . vt}. Let H1 = H − e + e1 and

H2 = H − e+ e2. By Claim 3.19, χ(H1), χ(H2) ≥ χ(H) = k. So there exist k-critical graphs

e1 ∈ H ′ ⊆ H1 and e2 ∈ H ′′ ⊆ H2. Let W ′ = V (H ′) and W ′′ = V (H ′′). By Lemma 3.26,

ρk,H(W ′), ρk,H(W ′′) ≤ k(k − 3) + 2(k − 1) = (k − 2)(k + 1).
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Case 1: W ′ = V (H) (or W ′′ = V (H), symmetrically). Here H can be constructed from

H ′ by iteratively applying Construction 3.17.

Case 2: W ′∩W ′′ 6= V (H). Because v2 ∈ W ′∩W ′′, we have ρk,H(W ′∩W ′′) ≥ (k−2)(k+1).

By submodularity,

ρk,H(W ′ ∪W ′′) ≤ ρk,H(W ′) + ρk,H(W ′′)− ρk,H(W ′ ∩W ′′)

≤ (k − 2)(k + 1) + (k − 2)(k + 1)− (k − 2)(k + 1)

= (k − 2)(k + 1).

Note that e ⊆ W ′ ∪ W ′′, which was not accounted for previously. So ρk,H(W ∪ W ′′) ≤

(k − 2)(k + 1)− 2(k − 1) = k(k − 3).

Because of Claim 3.30, W ′∪W ′′ = V (H) and all of the inequalities are equalities. Specif-

ically, this implies that ρk,H(W ′ ∩W ′′) = (k − 2)(k + 1) (and therefore |W ′ ∩W ′′| = 1), and

there are no edges with an endpoint in W ′ −W ′′ and another endpoint in W ′′ −W ′. Thus

H can be constructed from H ′, H ′′, and Construction 3.16. �
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Chapter 4

(1,1)-Critical Graphs

Recall the application of graph coloring to assigning frequencies to radio towers. If two

towers are too close to each other, such as when if both are located in Miami, then to avoid

interference with each other’s transmission they must broadcast on different frequencies.

If two towers are sufficiently apart, such as when if one is in San Diego and the other is

in Portland, then they are allowed to use the same frequency. The problem of assigning

frequencies to each tower can then be modeled as a proper coloring problem: each vertex

represents a tower that requires a frequency, each frequency is represented by a color, and an

edge joining two vertices represents towers that are close enough to experience interference.

Recently, Havet and Sereni [41] described a variation of this problem:

In this paper, we investigate the following problem proposed by Alcatel, a

satellite building company. A satellite sends information to receivers on earth,

each of which is listening on a frequency. Technically it is impossible to focus

the signal sent by the satellite exactly on receiver. So part of the signal is spread

in an area around it creating noise for the other receivers displayed in this area

and listening on the same frequency. A receiver is able to distinguish the signal

directed to it from the extraneous noises it picks up if the sum of the noises does

not become too big, i.e. does not exceed a certain threshold T .

For a coloring f of a graph G, the set of vertices {v ∈ V (G) : f(v) = i} is called the ith

color class of f . A (d1, . . . , dk)-improper coloring of a graph G, or just (d1, . . . , dk)-coloring,
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is a coloring f of G using at most k colors such that for all i, the ith color class of f induces

a graph with maximum degree at most di. In the problem described in the quotation, each

vertex is allowed to have up to T neighbors broadcasting with the same color. This is a

generalization of the traditional problem: if T = 0, then the problem reduces to finding a

proper coloring. Alcatel is interested in a (T, . . . , T )-coloring of their satellite receivers.

A graph G is improperly (d1, . . . , dk)-colorable, or just (d1, . . . , dk)-colorable, if there is

a (d1, . . . , dk)-coloring of G. We define a graph G to be (d1, . . . , dk)-critical if G is not

(d1, . . . , dk)-colorable, but every proper subgraph H of G is (d1, . . . , dk)-colorable.

The interest in improper colorings predates the application described by Havet and Sereni.

Publications on this topic extend back to the 1960’s, and many of them involve generalizing

famous results in proper colorings. For example, Lovász [62] showed that every graph G is

(d1, . . . , dk)-colorable whenever (d1 + 1) + . . .+ (dk + 1) ≥ ∆(G) + 1; this is a generalization

of Brooks’ Theorem.

The most famous result in proper coloring, and arguably in all of graph theory, is the

Four Color Theorem [7, 8], which states that every planar graph is 4-colorable. Cowen,

Cowen, and Woodall [23] proved that every planar graph is (2, 2, 2)-colorable. For each i

and j, there exist an infinite family of planar (1, i, j)-critical graphs.

Borodin and Kostochka [18] constructed (j, k)-critical graphs. Those graphs are planar,

and those graphs are outerplanar when j = 1. Without loss of generality, assume j ≤ k. Let

Gj,k be X, with V (X) = {x1, x2, x3} and X is isomorphic to K1,2, plus (1, k)-critical graphs

Ca,b for 1 ≤ a ≤ 3 and 1 ≤ b ≤ k+ 1, and each vertex in Ca,b is adjacent to xa. Note that in

each (1, j, k)-coloring of Gi,j, there is a vertex from the second and third color classes in each

Ca,b. Now each vertex of X is in the first color class, because it has at least k+1 neighbors in

the second and third color classes. We have that the first color class has maximum degree at

least 2, which is a contradiction. Therefore Gj,k is a (1, j, k)-critical planar graph. Because

Borodin and Kostochka constructed an infinite family of outerplanar (1, k)-critical graphs,
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this creates an infinite number of (1, j, k)-critical planar graphs.

The girth of a graph G, written g(G), is the length of a shortest cycle in G. If G does

not have a cycle, then we consider g(G) to be infinite. The maximum average degree of

a graph G, mad(G), is max
{

2|E(H)|
|V (H)| , H ⊆ G

}
. The maximum average degree is related

to the girth of a planar graph, as they both bound how sparse the graph is. Specifically,

mad(G) ≤ 2g(G)
g(G)−2

for a planar graph G. Grötzsch [36] proved that planar graphs with girth

at least 4 are 3-colorable. The literature on the relationship of girth in planar graphs to

improper colorability is extensive.

Borodin et al. [15] proved that every planar graph G with g(G) ≥ 5 is (2, 13)- and (3, 7)-

colorable. In a follow-up paper [16], they showed that every planar graph G with g(G) ≥ 6

is (1, 5)-colorable and with g(G) ≥ 7 is (1, 2)-colorable. Borodin et al. [14] constructed for

each ` a planar (0, `)-critical graph with girth 6 and proved that every planar graph G with

g(G) ≥ 7 is (0, 8)-colorable. They also showed that if g(G) ≥ 8, then G is (0, 4)-colorable.

Borodin and Kostochka [18] proved that if ` ≥ 2j+ 2 and mad(G) ≤ 2
(

2− `+2
(j+2)(`+1)

)
, then

G is (j, `)-colorable. This result implies that for a planar graph G

a) if g(G) ≥ 5, then G is (2, 6)-colorable,

b) if g(G) ≥ 6, then G is (1, 4)-colorable,

c) if g(G) ≥ 7, then G is (0, 4)-colorable, and

d) if g(G) ≥ 8, then G is (0, 2)-colorable.

Their result on maximum average degree is known to be sharp, but the best relationship

between girth and improper colorability for planar graphs remains open.

Glebov and Zambalaeva [35] proved that every planar graph G with girth at least 16 is

(0, 1)-colorable. This was strengthened by Borodin and Ivanova [12]: they proved that every

graph G with mad(G) < 7
3

is (0, 1)-colorable, which implies that every planar graph G with

g(G) ≥ 14 is (0, 1)-colorable. Borodin and Kostochka [17] proved that every graph G with

mad(G) < 12
5

is (0, 1)-colorable, which implies that every planar graph G with g(G) ≥ 12
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is (0, 1)-colorable. Esperet, Montassier, Ochem, and Pinlou [30] have constructed a planar

(0, 1)-critical graph with girth 9.

Our main contribution to this area is slightly stronger than a statement about the maxi-

mum average degree. We show that any graph that is not (1, 1)-colorable has a (1, 1)-critical

subgraph that is not sparse. We prove the following result:

Theorem 4.1 ([20]) If G is a (1, 1)-critical graph, then 5|E(G)| > 7|V (G)|.

Corollary 4.2 ([20]) Every planar graph G with g(G) ≥ 7 is (1, 1)-colorable.

Theorem 4.1 and Corollary 4.2 improve the previous-best conditions for (1, 1)-colorability.

The best results had been from applying a result of Havet and Sereni [42], who showed that a

graph G with mad(G) < 4k+4
k+2

is (k, k)-colorable (they were working under the more general

setting of improper choosability). Theorem 4.1 is also strong enough to improve a different

type of result from Borodin and Ivanova [13]. They showed that every graph G with g(G) ≥ 7

and mad(G) < 14
5

can be partitioned into two strong linear forests. A strong linear forest is a

graph where each component contains at most 2 edges; our result shows that each component

contains at most 1 edge.

There is a different generalization of improper colorability called vertex Ramsey. We say

that G
v→ (H1, . . . , Hk) if for every coloring φ : V (G) → [k] there exists i such that Hi is a

subgraph of the ith color class. It is clear that a graph is (d1, . . . , dk)-colorable if and only

if G 6 v→ (K1,d1+1, . . . , K1,dk+1). We are interested in the same problems in this generalized

setting: what affect does maximum degree, planarity, girth, and maximum average degree

have on the vertex Ramsey problem?

Let mcr(H1, . . . , Hk) = inf{mad(F ) : F
v→ (H1, . . . , Hk)}. Borodin and Kostochka’s

results [17, 18] directly state exact values for mcr(K1,j+1, K1,`+1) if ` ≥ 2j + 2 or j = 0.
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Kurek and Ruciński [58] proved that

k∑
i=1

max
H′i≤Hi

δ(H ′i) ≤ mcr(H1, . . . , Hk) ≤ 2
k∑
i=1

max
H′i≤Hi

δ(H ′i).

As a corollary, it follows that mcr(Ks, . . . , Ks) = k(s− 1). However, mcr(H1, . . . , Hk) is still

unknown in general.

In the same paper, Kurek and Ruciński showed that 8/3 ≤ mcr(K1,2, K1,2) ≤ 14/5.

Ruciński offered 400,000 PLZ cash prize for the exact value of mcr(K1,2, K1,2). Theorem 4.1

proves that mcr(K1,2, K1,2) = 14/5.

We will first convert the problem to an equivalent problem on graphs with “special”

vertices. In Section 4.1 we will demonstrate the sharpness of the result. In Section 4.2 we

will prove the theorem.

For a fixed graph G and partition V (G) = Vs ∪Vr, we define a good coloring to be a map

φ : V (G)→ {a, b} such that

• if v ∈ Vs, then |{u ∈ N(v) : φ(u) = φ(v)}| = 0, and

• if v ∈ Vr, then |{u ∈ N(v) : φ(u) = φ(v)}| ≤ 1.

We refer to the vertices in Vs as super vertices and the vertices in Vr as regular vertices. We

say that H is contained in G if Vs(H) ⊆ Vs(G) and H ⊆ G. A graph G is good if it has a

good coloring, and critical if it is not good but every graph contained by G is good. For a

subset of vertices S ⊆ V (G), we define the potential of S to be

ρG(S) = 7|S ∩ Vr|+ 3|S ∩ Vs| − 5|E(G[S])|.

We will prove:

Theorem 4.3 If G is critical, then ρG(V (G)) ≤ −1.
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By setting Vs = ∅, Theorem 4.3 implies Theorem 4.1. We will show that they are

equivalent. Given G, Vr, and Vs, we create a new graph π : (G, Vr, Vs) → G′ as follows: for

each vertex u ∈ Vs, add a copy of K4− e, called Fu, and merge a vertex of degree 3 in Fu to

u. Let φ be a (1, 1)-coloring of G′. Because every (1, 1)-coloring of a path on three vertices

contains both colors, each u ∈ Vs has no neighbors in V (G′)− Fu colored φ(u). Therefore φ

is a good coloring of G, and Theorem 4.1 implies Theorem 4.3.

4.1 Sharpness

G'3

Figure 4.1: An example of a sparse (1, 1)-critical graph.

To show that Theorem 4.3 is sharp, we will construct a sequence {Gi}∞i=1 of graphs such

that each Gi is critical and ρ(Gi) = −1. We define

Vr(Gi) = {x2j : 1 ≤ j < i} ∪ {u1, u2, u3},

Vs(Gi) = {x2j−1 : 1 ≤ j ≤ i},

and

E(Gi) = {xjxj+1 : 1 ≤ j ≤ 2i− 2} ∪ {u1u2, u1x1, u2u3, u2x1, u3x2i−1}.
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It is easy to calculate that ρGi
(V (Gi)) = 7(i+ 2) + 3(i)− 5(2i+ 3) = −1.

See Figure 4.2 for a picture of G3. See Figure 4.1 for the corresponding (1, 1)-critical

graph.

We will now show that Gi is critical. If φ is a good coloring of Gi, then φ(x2j−1) = φ(x2j+1)

for 1 ≤ j < i. Moreover, φ(x1) = φ(x2i−1). Because there are only two colors, it follows that

φ(u1) = φ(u2) = φ(u3). This is a contradiction, because ∆(Gi[{u1, u2, u3}]) = 2. Therefore

Gi is not good.

It is easy to see that if an edge is removed from Gi[{x1, . . . , x2i−1}] or a vertex is

changed from special to regular, then there exists a good coloring of Gi such that φ(x1) 6=

φ(x2i−1). Also, if an edge in Gi[{u1, u2, u3}] is removed, then ∆(Gi[{u1, u2, u3}]) = 1. If an

edge in E({x1, . . . , x2j−1}, {u1, u2, u3}) is removed, then there exists a good coloring where

{u1, u2, u3} is not monochromatic. Therefore Gi is critical.

G3

Figure 4.2: An example of a critical graph. The super vertices are solid black; the regular
vertices are hollow. Note that π(G3) = G′3.

4.2 Proof of Theorem 4.1

An unimportant vertex is a regular vertex with degree 2 contained in a triangle, a semi-

important vertex is a regular vertex with degree 2 not contained in a triangle; and all other

vertices are important. We denote these sets by V0, V1, and V2, respectively. We say H

precedes G if
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1. |V2(H)| < |V2(G)|,

2. |V2(H)| = |V2(G)| and |V1(H)| < |V1(G)|,

3. |V2(H)| = |V2(G)|, |V1(H)| = |V1(G)|, and |V0(H)|+ 3|Vs(H)| < |V0(G)|+ 3|Vs(H)|, or

4. |V2(H)| = |V2(G)|, |V1(H)| = |V1(G)|, |V0(H)|+ 3|Vs(H)| = |V0(G)|+ 3|Vs(H)|, and

∑
u∈V (H)

d(u)2 >
∑

w∈V (G)

d(w)2.

As shorthand, we write “H precedes G” as H ≺ G. By the definition, if H is contained in

G, then H ≺ G.

By induction, assume that G is an earliest (under ≺) critical graph with ρG(V (G)) ≥ 0.

Because G is critical, G is 2-edge-connected, and therefore δ(G) ≥ 2. It follows that V0 and

V1 partition the vertices of degree 2 and V2 is the set of vertices with degree at least 3.

Lemma 4.4 If xy ∈ E(G), then {x, y} ∩ V2 6= ∅.

Let N(x) = {y, u} and N(y) = {x, v}. By criticality, construct a good coloring φ of G−x−y.

We may then extend φ to a good coloring of G by setting φ(x) 6= φ(u) and φ(y) 6= φ(v),

which is a contradiction.

4.2.1 Sets with low potential

A set of vertices {v1, v2, v3} is called a clump if G[{v1, v2, v3}] ∼= K3, v1 ∈ Vs, v2 ∈ Vr, and

v3 ∈ V0. Note that every nonempty subgraph of a clump has potential at least 2. For a set

of vertices T ⊂ V (G), let T ∗ = {u ∈ T : N(u) 6⊆ T}.

Definition 4.5 Fix ∅ 6= T ( V (G) and a good coloring φT of G[T ]. Let Ta = {w ∈

V (G) − T : ∃u ∈ T, φT (u) = a, wu ∈ E(G)} and Tb = {x ∈ V (G) − T : ∃y ∈ T, φT (y) =
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b, xy ∈ E(G)}. Define Y (T, φT ) to be the graph constructed from G with T removed, super

vertex v1 and regular vertices v2 and v3 added, and add edges

v1v2 + v1v3 + v2v3 + {v1w : w ∈ Ta}+ {v2x : x ∈ Tb}.

Remark 4.6 By construction, Y (T, φT ) is not good (or else there would be a good coloring

of G). Moreover, Y (T, φT ) contains a critical subgraph.

Remark 4.7 If W ⊆ V (Y (T, φT )), then

ρG(W − {v1, v2, v3}+ T ) = ρY (T,φT )(W )− ρY (T,φT )(W ∩ {v1, v2, v3})

+ρG(T )− 5|E({v1, v2, v3}, V (Y (T, φT ))−W )|.

Proposition 4.8 If ∅ 6= T ( V (G), and φT is a good coloring of G[T ], then ρG(T ) ≥ 3 or

Y (T, φT ) 6≺ G.

Proof. By way of contradiction, let T be a largest proper subset of V (G) such that

ρG(T ) ≤ 2. Let G′ be a critical subgraph of Y (T, φT ). Because G′ ≺ Y (T, φT ) ≺ G,

by minimality ρG′(V (G′)) ≤ −1. Critical graphs do not have proper subgraphs that are

critical, so V (G′) ∩ {v1, v2, v3} 6= 0. Therefore ρY (T,φT )(V (G′) ∩ {v1, v2, v3}) ≥ 2. Hence

ρG(V (G′) − {v1, v2, v3} + T ) ≤ −1. Because T was maximal and ρG(V (G)) ≥ 0, this is a

contradiction. �

The above proposition states that every set with potential at most 2 must precede a

clump. We will show that this is not possible.

Lemma 4.9 If ∅ 6= T ( V (G) and ρG(T ) ≤ 2, then T is a clump.

Proof. Let T have the smallest potential among all non-empty proper subsets of V (G).
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First, we will show that T ∗ ⊆ V2. If u ∈ T ∗ − V2, then d(u) = 2 and |N(u) ∩ T | ≤ 1 by

definition of T ∗. Furthermore, ρG({u}) = 7. Hence ρG(T−u) = ρG(T )−2, which contradicts

minimality.

Suppose there exists a good coloring φT of T such that φT (u) = φT (v) for all u, v ∈ T ∗.

Let G′ = G−T +w, with w a super vertex and N(w) = N(T )−T . If G′ has a good coloring

φ′, then by symmetry we may assume φ′(w) = φT (u) for all u ∈ T ∗. This is a contradiction,

because then φ′ ∪ φT is a good coloring of G. Therefore G′ contains a critical subgraph G′′

and w ∈ G′′. Because each vertex of T ∗ is important, G′′ ≺ G′ ≺ G, and so by induction

ρG′′(V (G′′)) ≤ −1. Hence ρG(V (G′′)− w + T ) ≤ ρG(T )− 4, which contradicts minimality.

Therefore every good coloring of G[T ] has at least two colors in T ∗. Moreover, |T ∗| ≥ 2

and T has at least two important vertices.

If ρG(T ) ≤ 2, then Y (T, φT ) 6≺ G. By the definition of a clump, it follows that |V2∩T | = 2,

|V1 ∩ T | = 0, and |V0 ∩ T | + 3|Vs ∩ T | ≤ 4. Moreover, T ∗ = V2 ∩ T . If Vs ∩ T = ∅, then

there exists a good coloring of T where T ∗ is monochromatic and all other vertices of T are

colored the other color. This contradicts an above statement, so Vs ∩ T 6= ∅. It follows that

T is a clump. �

Proposition 4.10 If T is a separating set in G, then T is not a clump.

Proof. By way of contradiction, suppose V (G)−T partitions into sets U1 and U2 such that

E(U1, U2) = ∅. By criticality of G, there exist good colorings φ1 of G[U1 ∪ T ] and φ2 of

G[U2 ∪ T ]. By construction of clumps, up to symmetry of the colors, there is a unique good

coloring of T , and we may therefore assume φ1|T = φ2|T . Moreover, no vertex of T has a

neighbor with the same color outside of T in either φ1 or φ2. Therefore φ1 ∪ φ2 is a good

coloring of G, which is a contradiction. �
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A consequence of Lemma 4.9 is that every nonempty proper subset of vertices of G has

potential at least 2. Among other things, this forbids two special vertices from being adjacent.

Also, every subset of vertices of G has non-negative potential. We will now characterize each

proper subset of vertices with potential 3 as being one super vertex or at least |V (G)| − 1 in

size. This will unfold over a series of smaller statements.

Proposition 4.11 If T ⊆ V (G) such that 2 ≤ |T | ≤ |V (G)| − 2 and ρG(T ) = 3, then

(a) G[T ] is connected,

(b) no vertex outside of T has more than one neighbor in T ,

(c) T ∗ ⊆ V2,

(d) there is no good coloring of G[T ] such that T ∗ is monochromatic, and

(e) for each vertex in T ∗ there is a neighbor in (V1 ∪ V2)− T , and the neighbors are distinct.

Proof. If G[T ] is not connected, then one of the components has potential at most b3/2c = 1,

which is a contradiction. If u /∈ T and |N(u) ∩ T | ≥ 2, then ρG(T + u) ≤ 0, which is a

contradiction.

If u ∈ T ∗− V2, then then d(u) = 2 and |N(u)∩ T | ≤ 1 by definition of T ∗. Furthermore,

ρG({u}) = 7. Hence ρG(T − u) = ρG(T )− 2 = 1, which is a contradiction because T − u is

a non-empty proper subset of vertices.

Suppose there exists a good coloring φT of T such that φT (u) = φT (v) for all u, v ∈ T ∗.

Let G′ = G − T + w, with w a super vertex and N(w) = N(T ) − T . If G′ has a good

coloring φ′, then by symmetry we may assume φ′(w) = φT (u) for all u ∈ T ∗. This is a

contradiction, because now φ′ ∪ φT is a good coloring of G. Therefore G′ contains a critical

subgraph G′′, and w ∈ G′′. Because each vertex of T ∗ is important, G′′ ≺ G′ ≺ G, and so by

minimality ρV (G′′)(V (G′′)) ≤ −1. But then ρG(V (G′′)−w + T ) ≤ ρG(T )− 4 = −1, which is

a contradiction.
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Let x ∈ T ∗ and y ∈ N(x) − T . V0, V1 and V2 partition V (G). If y ∈ V0, then y forms a

triangle with x and a vertex z. By part (b), z is not in T and z is not a neighbor to any

other vertex in T . By Lemma 4.4, z ∈ V2. �

Proposition 4.12 Let T ⊆ V (G) such that 2 ≤ |T | ≤ |V (G)| − 2 and ρG(T ) = 3. Suppose

u, v ∈ T ∗ are not in the same clump. Let Z(T, u, v) = G[T ] + z, where w is a regular vertex

with N(z) = {u, v}. Under these assumptions, Z(T, u, v) has a good coloring.

Proof. By Proposition 4.11(e), there are at least two vertices in V (G)− (T ∪V0). Each ver-

tex in T is no more important in Z(T, u, v) than in G, and dG′(z) = 2, so z /∈ V2(Z(T, u, v)).

Therefore Z(T, u, v) ≺ G. By the assumption that u and v are not in the same clump

and Lemma 4.9, there is no set with potential at most 2 which contains {u, v}. Because

the addition of one regular vertex and two edges decreases the potential by 3, for every

W ⊂ Z(T, u, v), we have ρZ(T,u,v)(W ) ≥ 0. By minimality, there are no critical graphs con-

tained in Z(T, u, v), and therefore Z(T, u, v) is good. �

Proposition 4.13 If T ⊆ V (G) such that 2 ≤ |T | ≤ |V (G)| − 2 and ρG(T ) = 3, then

|T ∗| ≥ 3.

Proof. By criticality, there exists a good coloring of G[T ], which is not monochromatic.

Therefore |T ∗| ≥ 2, and by way of contradiction we may assume T ∗ = {t1, t2}. Because

clumps are not separating sets, t1 and t2 are not in the same clump. Let G′ = Z(T, t1, t2).

Let φT be a good coloring of G′. Without loss of generality, let φT (t1) = φT (u) = a and

φT (t2) = b. Let G′′ be G− (T − T ∗) with edge t1t2 added if it does not exist and t2 become

a special vertex if it is not one already. Suppose G′′ has a good coloring φ′′, and without

loss of generality, assume φ′′(t1) = a. By construction, φ′′(t1) 6= φ′′(t2), so φ′′(t2) = φT (t2).
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Moreover, t1 has no neighbors of the same color in T and t2 has no neighbors with the same

color in V (G)− T . Therefore φT ∪ φ′′ is a good coloring of G, which is a contradiction. So

G′′ 6≺ G or there exists a critical graph G◦ contained in G′′.

Suppose G′′ 6≺ G. Every vertex in T ∗ is important in G, so V2 ∩ T = T ∗, V1 ∩ T = ∅,

and |V0(T )|+ 3|Vs(T )| ≤ 3. If Vs ∩ T = ∅, then there exists a good coloring of T where T ∗ is

monochromatic and all other vertices of T are colored the other color. This contradicts an

above statement, so Vs ∩T 6= ∅. But this is impossible because no graph on two vertices has

potential 3.

Thus, we may assume that there exists a critical graph G◦ contained in G′′. By minimal-

ity, ρG′′(V (G◦)) ≤ −1. Because critical graphs do not contain critical graphs, t2 ∈ V (G◦).

Note that every graph on two vertices with potential at least 2 has potential at least 5.

Hence ρG(V (G◦)− T ∗ + T ) ≤ −1− 5 + 3 = −3, which is a contradiction. �

Proposition 4.14 Let T ⊆ V (G) such that 2 ≤ |T | ≤ |V (G)|−2 and ρG(T ) = 3. For every

good coloring φT of G[T ], each vertex in T ∗ ∩ Vr has a neighbor with each color.

Proof. By way of contradiction, let φT be a good coloring of G[T ] such that u ∈ T ∗ has no

neighbors colored a. We may assume that φT (u) = a. By the above, there exists a vertex

w ∈ N(u)− V0 − T . If w is a special vertex, then ρG(T ∪ w) = 1, which is a contradiction.

Construct G′ from Y (T, φT ) by deleting the edge from w to {v1, v2, v3} and turning w

into a special vertex.

Suppose there exists a good coloring φ′ of G′. Without loss of generality, we may assume

φ′(v1) = a and φ′(v2) = b. We claim that φT ∪ φ′ is a good coloring of G, which is a

contradiction. By construction, each edge in E(T, V (G) − T ) has different colors on its

endpoints except for possibly wu. Because w and u have no other neighbors with the same

color and both vertices are regular, φT∪φ′ is a good coloring even if φT (u) = φ′(w). Therefore
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G′ is not good and contains a critical graph G′′. By induction, G′ 6≺ G or ρG′(V (G′′)) ≤ −1.

Because |T ∗| ≥ 3, T contains at least 3 important vertices. Because w /∈ V0, either

|V2(G)| > |V2(G′)|, or |V2(G)| = |V2(G′)| and |V1(G)| > |V1(G′)|. Therefore ρG′(V (G′′)) ≤

−1.

If w ∈ V (G′′), then ρG(V (G′′) − {v1, v2, v3} + T ) ≤ −1 + 4 + 3 − 5 ≤ 1. So V (G′′) −

{v1, v2, v3}+T = V (G). Now we did not account for at least two edges in E(T, V (G)−T−w),

and so ρG(V (G′′)− {v1, v2, v3}+ T ) ≤ 1− 10, which is a contradiction.

We may assume w /∈ V (G′′). Because critical graphs do not contain other critical graphs,

V (G′′) ∩ {v1, v2, v3} 6= ∅. Therefore ρG′(V (G′′) ∩ {v1, v2, v3}) ≥ 2, and thus ρG(V (G′′) −

{v1, v2, v3} + T ) ≤ −1− 2 + 3 ≤ 0. Now V (G′′)− {v1, v2, v3} + T is either empty or V (G),

but this is a contradiction because it contains T and does not contain w. �

Proposition 4.15 Let T ⊆ V (G) such that 2 ≤ |T | ≤ |V (G)| − 2 and ρG(T ) = 3. If

u, v ∈ T ∗ are not in the same clump, then there exists a good coloring φT of G[T ] such that

φT (u) = φT (v).

Proof. If φT be a good coloring of Z(T, u, v) then φT is a good coloring of G[T ]. Further-

more, φT (u) 6= φT (z) and φT (v) 6= φT (z). Because there are only two colors, φT (u) = φT (v).

�

Lemma 4.16 There are no sets T ⊆ V (G) such that 2 ≤ |T | ≤ |V (G)| − 2 and ρG(T ) = 3.

Proof. By way of contradiction, let T be the smallest set with potential 3 and at least

two vertices. Let φ1 be a good coloring of G[T ]. Let Ua = {u ∈ T ∗ : φ1(u) = a} and

Ub = T ∗−Ua. By symmetry, we may assume |Ua| ≥ |Ub|. Because T ∗ is not monochromatic,

Ub 6= ∅. Because |T ∗| ≥ 3, we have |Ua| ≥ 2.
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Let {u1, u2} ⊆ Ua, and let v ∈ Ub. Each clump has only two important vertices, and

clumps may not overlap without their union having negative potential. By symmetry, we

may then assume that {u1, v} is not contained in a clump. There is a second good coloring φ2

of G[T ] such that φ2(v1) = φ2(u). Let W∆ = {u ∈ T ∗ : φ1(u) 6= φ2(u)} and Wθ = T ∗−W∆.

By symmetry, we may assume |W∆| ≤ |Wθ|. By construction, W∆ 6= ∅.

Case 1: W∆ ⊆ Ua (W∆ ⊆ Ub follows symmetrically).

Let G′ be constructed from Y (T, φT ) by deleting the edges E(N(W∆) − T, {v1, v2, v3}),

adding a special vertex v0, and adding edges so that N(v0) = N(W∆) − T . Suppose there

exists a good coloring φ′ of G′. Without loss of generality, we may assume φ′(v1) = a and

φ′(v2) = b. Then either φ1 ∪ φ′ or φ2 ∪ φ′ is a good coloring of G. This is a contradiction, so

G′ is not good and contains a critical graph H ′. By induction, G′ 6≺ G or ρG′(V (H ′)) ≤ −1.

Suppose ρG′(V (H ′)) ≤ −1. If v0 ∈ V (H ′), then ρG(V (H ′) − v0 + T ) ≤ −1, which is

a contradiction. We may assume v0 /∈ V (H ′). By criticality, H ′ is not contained in G, so

V (H ′) ∩ {v1, v2, v3}) 6= ∅. Therefore ρG′(V (H ′) ∩ {v1, v2, v3}) ≥ 2, and thus ρG(V (H ′) −

{v1, v2, v3} + T ) ≤ −1 − 2 + 3 ≤ 0. So V (H ′) − {v1, v2, v3} + T = V (G). Now we did not

account for at least one edge in E(W∆, V (G)−T ), and so ρG(V (H ′)−{v1, v2, v3}+T ) ≤ −5,

which is a contradiction. Therefore G′ 6≺ G.

Because G′ 6≺ G, we know that V2∩T = T ∗, |T ∗| = 3, V1∩T = ∅, and |V0∩T |+3|Vs∩T | ≤

7. By Lemma 4.4, if u ∈ V0 ∩ T , then N(u) ⊂ T ∗. By counting potential, it follows that

3 = 21− 4|Vs ∩ T | − 5|E(G[T ∗])| − 3|V0 ∩ T |. (4.1)

Every vertex on a shortest path between two vertices of T ∗ is not in V0, so G[T ∗] is

connected. This implies that |E(G[T ∗])| ≥ 2.

If |Vs ∩ T | ≥ 2, then ρG(T ) ≤ 3. Because clumps cannot be separating sets and T is a

minimal set with potential 3, T = T ∗. Hence there is a good coloring of G[T ] such that the
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regular vertex has no neighbors with the same color, which contradicts Proposition 4.14.

With all of these restrictions, the only valid solution to (4.1) is |Vs∩T | = 0, |E(G[T ∗])| =

3, and |V0 ∩ T | = 1. Hence G[T ] ∼= K4 − e, and there is a good coloring of G[T ] such that

a regular vertex in T ∗ has no neighbors with the same color. This contradicts Proposition

4.14.

Case 2: |W∆| ≥ 2. This implies that |T ∗| ≥ 4.

Let G′′ be constructed from Y (T, φT ) by deleting the edges E(N(W∆)− T, {v1, v2, v3}),

adding a clump with vertex set {v′1, v′2, v′3}, and adding edges so that N(v′1) = N(W∆∩Ua)−T

and N(v′2) = N(W∆ ∩Ub)− T . Suppose there exists a good coloring φ′′ of G′′. Without loss

of generality, we may assume φ′′(v1) = a and φ′′(v2) = b. Now either φ1 ∪ φ′′ or φ2 ∪ φ′′ is a

good coloring of G. This is a contradiction, so G′′ is not good and contains a critical graph

H ′′. By minimality, G′′ 6≺ G or ρG′′(V (H ′′)) ≤ −1.

Suppose ρG′′(V (H ′′)) ≤ −1. H ′′ must include at least one of the vertices in the two

clumps added to G to make G′′, by symmetry assume that V (H ′′)∩{v1, v2, v3} 6= ∅. Therefore

ρV (G′′)(V (H ′′) ∩ {v1, v2, v3}) ≥ 2. Let S = V (H ′′)− {v1, v2, v3, v
′
1, v
′
2, v
′
3}+ T . Thus ρG(S) ≤

−1−2+3 ≤ 0. So S = V (G). We did not account for at least one edge in E(W∆, V (G)−T ),

and so ρG(S) ≤ −5, which is a contradiction. Therefore G′′ 6≺ G.

Because G′′ 6≺ G, we know that V2∩T = T ∗, |T ∗| = 4, V1∩T = ∅, and |V0∩T |+3|Vs∩T | ≤

8. By Lemma 4.4, if u ∈ V0 ∩ T , then N(u) ⊂ T ∗. Moreover, N(u) is an edge of G[T ∗]. By

counting potential, it follows that

3 = 21− 4|Vs ∩ T | − 5|E(G[T ∗])| − 3|V0 ∩ T |. (4.2)

Every vertex on a shortest path between two vertices of T ∗ is not in V0, so G[T ∗] is

connected. This implies that |E(G[T ∗])| ≥ 3. If |E(G[T ∗])| ≥ 5, then ρG(T ∗) ≤ 3. Similarly

to Case 1, we have T = T ∗, the only graph with four vertices and five edges is K4− e, which
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is a contradiction. So |E(G[T ∗])| ∈ {3, 4}.

With all of these restrictions, the only valid solution to (4.2) is |Vs∩T | = 1, |E(G[T ∗])| =

3, and |V0 ∩ T | = 2. Because of Proposition 4.14, every regular vertex that is a leaf in G[T ∗]

is also adjacent to a vertex in V0 ∩ T .

Case 2.A: G[T ∗] ∼= K1,3. Because K1,3 has three leaves and there are only two unim-

portant vertices in T , then the special vertex in T ∗ is one of the leaves of G[T ∗] and the

neighborhoods of the two unimportant vertices of T is the other two leaves with the center

of the star. Thus there is a good coloring of G[T ] where the center of the star is color a, and

all other vertices are color b. This contradicts Proposition 4.14.

Case 2.B: G[T ∗] ∼= P4. We may assume that this path is (t1, t2, t3, t4). By symmetry,

we may assume that the special vertex is either t1 or t2. Let x1 and x2 be the unimportant

vertices, and let y be the special vertex of T . By symmetry, we may assume N(x1) = {t3, t4}.

Now there is a good coloring φT of G[T ] where φT (t2) = φT (t4) = a, φT (t1) = φT (t3) = b,

and φT (y) = φT (x1) 6= φT (x2). In this coloring, at least one of regular vertices of T ∗ will not

have a neighbor colored with the same color. This contradicts Proposition 4.14. �

4.2.2 Reducible configurations

Lemma 4.17 Let each of u and v be either a special vertex or in a clump. If u and v are

not in the same clump, then the distance between u and v is at least 3.

Proof. Let P be a shortest path between u and v. Let S be the set of vertices composed of

the union of P , u, v, and vertices in any clump containing u or v. If P contains at most 3

vertices, then S has potential at most 3. �
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Lemma 4.18 Let v ∈ V (G) be a regular vertex with degree 3. Then every neighbor of v is

in V2.

Proof. By way of contradiction, let N(v) = {x, y, z} and v be a regular vertex.

Case A: v is in a clump. Without loss of generality, let x be outside of that clump, z be

the special vertex of the clump, and N(y) = {v, z}.

Case A.1 d(x) ≥ 3. Let G′ = G− y+ y′, where N(y′) = {x, z}. Note that v is important

in G, but v and y′ are at most semi-important in G′. Also, x is important in G. Therefore

G′ ≺ G. If there exists T ⊆ V (G′) such that ρG′(T ) ≤ −1, then y′ ∈ T . This implies that

{x, z} ⊆ T . However, ρG(T − y′ + y) = ρG′(T ), which is a contradiction. Therefore we may

find a good coloring φ′ : V (G′)→ {a, b}.

Without loss of generality, assume that φ′(z) = a. Because z is a special vertex, φ′(v) =

φ′(y′) = b. From this, we deduce that φ′(x) = a. We may generate a good coloring φ of G

by setting φ|V (G)−y = φ′|V (G′)−y′ and φ(y) = b.

Case A.2: N(x) = {v, u}. By Lemma 4.4, u is important. Because u is distance 2 to v

and v is in a clump, we have that u is a regular vertex and not in a clump. Let G′ be G

with v, x, and y deleted, and u turned into a special vertex. Because v and u are important

in G, it follows that G′ ≺ G.

If there exists T ⊂ V (G′) such that ρG′(T ) ≤ −1, then u ∈ T . It follows that ρG(T ) ≤ 3,

which is a contradiction because T ∩ {x, y, v} = ∅ and |T | ≥ 2. Therefore G′ has a good

coloring φ′. We create a good coloring φ of G by setting φ|G−x−y−v = φ′|G′ , φ(x) = φ′(z),

and φ(v) = φ(y) 6= φ′(z).

Case B: x ∈ V0 (symmetrically, y ∈ V0 or z ∈ V0). Without loss of generality, assume

N(x) = {v, y}. By Lemma 4.4, y ∈ V2. Because v is not in a clump, we have y ∈ Vr. Let G′

be G with v and x deleted and y is changed into a special vertex. By construction, G′ ≺ G.

If T ⊂ V (G′) with ρG′(T ) ≤ −1, then y ∈ T . Now, ρG(T + x + v) ≤ −1 + 4 − 1 = 2.

Since v was not in a clump, this implies that T + x+ v = V (G). We did not account for the
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edge vz, and so ρG(T + x+ v) ≤ 2− 5 < 0, a contradiction.

Let φ′ be a good coloring of G′. If w ∈ NG′(y), then φ′(w) 6= φ′(y). Let φ be a coloring

of G where φ|V (G)−x−v = φ′|V (G′), φ(x) = φ′(z), and φ(v) 6= φ′(z). Either φ(y) = φ(v) or

φ(y) = φ(x), but not both. Therefore φ is a good coloring.

For cases 1-3, assume v is not in a clump and v has no neighbors of degree 2 in a triangle.

Case 1: v is adjacent to exactly two neighbors of degree 2. Let N(x) = {v, x′} and

N(y) = {v, y′}. By Lemma 4.4, x′ and y′ are important. Without loss of generality, assume

d(x′) ≥ d(y′).

Case 1.1: x′ 6= y′. Let G′ = G−y+y◦, where N(y◦) = {v, x′}. We claim that G′ precedes

G. Because x′ and y′ are important in G, they cannot be more important in G′. Suppose

y◦ is more important than y. Then y was in a triangle, which contradicts the assumption.

Therefore G′ precedes G by the condition on the degrees.

If T is such that ρG′(T ) ≤ −1, then y◦ ∈ T and also v ∈ T . Thus ρG(T−y◦) ≤ −1+3 = 2,

which contradicts the assumption that v was not in a clump.

Therefore there exists a good coloring φ′ of G′. Without loss of generality, let φ′(x′) = a.

Let φ be a coloring of G where φ|V (G)−x−y−v = φ′|V (G′)−x−y◦−v.

• If φ′(z) = b, then color φ(x) = b, φ(v) = a, and φ(y) 6= φ(y′).

• If φ′(z) = a and φ′(v) = b, then either φ′(x) = a or φ′(y◦) = a. Furthermore, for all

u ∈ NG′(x
′)− {x, y◦}, we have φ′(u) = b. Color φ(x) = a, φ(v) = b, and φ(y) 6= φ(y′).

• If φ′(z) = φ′(v) = φ′(y′) = a, then color φ(x) = φ(y) = b and φ′(v) = a.

• If φ′(z) = φ′(v) = a and φ′(y′) = b, then color φ(x) = φ(v) = b and φ(y) = a.

The above assumptions exhaust all possibilities for φ′. Moreover, each provides a good

coloring of G.

Case 1.2: x′ = y′. Let G′ = G − y + y◦, where N(y◦) = {v, z}. Because y ∈ V1 and

y◦ ∈ V0, G′ precedes G.
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If T is such that ρG′(T ) ≤ −1, then y◦ ∈ T and also {v, z} ⊆ T . Thus ρG(T − y◦) ≤

−1 + 3 = 2, which contradicts the assumption that v was not in a clump. Therefore G′ has

a good coloring.

Let φ′ : V (G′) → {a, b} be a good coloring. Without loss of generality, let φ′(z) = a.

We have that φ′(x) = a or a ∈ {φ′(v), φ′(y◦)}. If neither of these statements are true then

φ′(v) = φ′(x) = φ′(y◦) = b, and so v is adjacent to two vertices with the same color in φ′,

which is a contradiction.

Let φ be a coloring on G where φ|V (G)−x−y−v = φ′|V (G′)−x−y◦−v and

• if φ′(x) = a, then φ(x) = a, φ(y) 6= φ(x′), and φ(v) = b, or

• otherwise if a ∈ {φ′(v), φ′(y◦)}, then φ(x) = φ(y) 6= φ′(x′) and φ(v) = φ′(x′).

Under these conditions, φ is a good coloring.

Case 2: v is adjacent to exactly one vertex of degree 2. Let N(x) = {v, x′}. Let

G′ = G− x+ x◦, where N(x◦) = {y, z}. Because x◦, v /∈ V2(G′), it follows that G′ ≺ G.

If T is such that ρG′(T ) ≤ −1 then x◦ ∈ T ans also {y, z, v} ⊆ T . Thus, ρG(T − x◦) ≤

−1+3. This contradicts the assumption that v was not in a clump. Therefore G′ has a good

coloring.

Let φ′ be a good coloring of G′. Without loss of generality, let φ′(y) = a.

If φ′(z) = a, then create a coloring φ|V (G)−x−v = φ′|V (G′)−x◦−v, φ(v) = b, and φ(x) 6=

φ′(x′). This is a good coloring of G, which is a contradiction. Thus, we may assume

φ′(z) = b. Because φ′ is a good coloring, it follows that φ′(v) 6= φ′(x◦), or else y or z will

have two neighbors with the same color. Therefore all other neighbors of y have color b and

all other neighbors of z have color a. We color G with coloring φ|V (G)−x−v = φ′|V (G′)−x◦−v,

φ(x) 6= φ′(x′), and φ(v) = φ′(x′). Note that φ(v) may be the same as φ(y) or φ(z), but it

will not be the same as both. Hence, φ is a good coloring of G.
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Case 3: v is adjacent to three vertices of degree 2. Let G′ = G− v. Let φ′ be a good col-

oring of G′. In G′, x, y, and z all have degree one. Without loss of generality, we may assume

each of them has no neighbors with the same color as themselves. Extend the coloring on

G′ to one on G by coloring v the color that appears the least in the list (φ′(x), φ′(y), φ′(z)).

Because some color appears at most once and that vertex has no other neighbors with the

same color, this is a good coloring of G. �

One consequence of this is that the important regular vertex in a clump has degree at

least 4.

Lemma 4.19 Let v be a special vertex. Then d(v) ≥ 3.

Proof. Let v be a special vertex and N(v) = {x, y}. Without loss of generality, assume

d(x) ≥ d(y).

Case 1: xy /∈ E(G) and N(x) ∩ N(y) = {v}. Let G′ = G − v − x − y + z, where z is a

regular vertex and N(z) = (N(y) ∪N(x))− v. If u ∈ V (G′)− z is important in G′, then u

is important in G. If z is important in G′, then dG(x) ≥ dd(z)/2e+ 1 ≥ 3, so x is important

in G. Therefore |V2(G′)| < |V2(G)|, and so G′ ≺ G.

If T ⊂ V (G′) such that ρG′(T ) ≤ −1, then z ∈ T . Thus, ρG(T − z+ x+ y+ v) = ρG′(T ),

a contradiction.

Therefore G′ has a good coloring, φ′. We can create a good coloring φ of G by setting

φ|G−v−x−y = φ′|G′−z, φ(x) = φ(y) = φ′(z), and φ(v) 6= φ′(z).

Case 2: xy ∈ E(G) or there exists a w such that w ∈ (N(x)∩N(y))−v. Let G′ = G−v+z,

where z is a special vertex and N(z) = (N(y)∪N(x))− v. If u ∈ V (G′)− z is important in

G′, then u is important in G. If u ∈ V (G′)− z is semi-important in G′, then u is important

or semi-important in G. Because G is connected, if y ∈ V0, then x ∈ V2. Therefore, either

|V2(G′)| < |V2(G)|, or |V2(G′)| = |V2(G)| and |V1(G′)| < |V1(G)|. In either case, G′ ≺ G.
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If T ⊂ V (G′) such that ρG′(T ) ≤ −1, then z ∈ T . Now ρG(T − z + x + y + v) ≤ −1, a

contradiction.

Therefore G′ has a good coloring, φ′. We can create a good coloring of φ by setting

φ|V (G)−v−x−y = φ′|V (G′)−z, φ(x) = φ(y) = φ′(z), and φ(v) 6= φ′(z). �

Lemma 4.20 If v ∈ V (G) such that N(v) = {u1, u2, u3, u4}, v and each ui are regular

vertices, and N(ui) = {xi, v} for all i, then xi is a super vertex or in a clump for all i.

Proof. Without loss of generality, let x, ui and xj be as above, and assume that x1 is

not a super vertex or in a clump. By Lemma 4.4, each xj is important. Let G′ = G −

{v, u1, u2, u3, u4}, and x1 is changed to a special vertex. By construction, G′ ≺ G.

Suppose that G′ has a good coloring φ′. We construct a good coloring φ of G as follows:

• Set φ|V (G)−{v,u1,u2,u3,u4} = φ′|V (G′).

• Set φ(ui) 6= φ′(xi) for i ∈ {2, 3, 4}.

• Set φ(v) equal to the color that appears the least in the list (φ(u2), φ(u3), φ(u4)).

• Set φ(u1) 6= φ(v).

Under these conditions, φ is a good coloring of G. We conclude that G′ has no good coloring,

and that there exists T ⊆ V (G′) such that ρG′(T ) ≤ −1. For this to be possible, x1 ∈ T .

Thus ρG(T ) ≤ −1 + 4 = 3. Because {v, u1, u2, u3, u4} ∩ T = ∅, this is a contradiction. �

4.2.3 Discharging

By assumption on G, we have
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∑
v∈Vr

(5d(v)− 14) +
∑
v∈Vs

(5d(v)− 6) ≤ 0. (4.3)

The initial charge of each vertex v of G is µ(v) = 5d(v)−14 if v ∈ Vr and µ(v) = 5d(v)−6

if v ∈ Vs. The final charge µ∗(v) is determined by applying the following rules:

R1. Let x be a special vertex. Every vertex adjacent to x with degree 2 gets charge 2.5

from x and charge 1.5 from its other neighbor.

R2. Let x be a regular important vertex in a clump. Every vertex adjacent to x with

degree 2 that is not in the same clump as x gets charge 2.5 from x and charge 1.5 from its

other neighbor.

R3. Every regular vertex with degree 2 not adjacent to a special vertex or a clump gets

2 from each of its neighbors.

By Lemmas 4.17, there is no conflict with Rules 1 and 2. By Lemma 4.4, there is no

conflict with Rule 3.

Lemma 4.21 For every v ∈ V (G), we have µ∗(v) ≥ 0. Moreover, if µ∗(v) = 0, then either

a) v is regular and d(v) = 2, or

b) v is regular, d(v) = 4, and exactly three neighbors of v have degree 2.

Proof. Each special vertex has degree at least 3, and therefore for all v ∈ Vs, we have

µ∗(v) ≥ 2.5d(v)− 6 > 0.

Every vertex with degree 2 receives 4 charge and has final charge 0.

If v is a regular vertex and d(v) = 3, then v is not adjacent to a vertex with degree 2 and

hence µ∗(v) = µ(v) = 1.

If v is a regular vertex with d(v) ≥ 5, then µ∗(v) ≥ 3d(v)− 14 ≥ 1.

If v is a regular vertex not in a clump with d(v) = 4, then v has at most three neighbors

with degree 2. Now µ∗(v) ≥ 3d(v) + 2 − 14 = 0, with equality if and only if v has exactly
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three neighbors with degree 2. If v is the important regular vertex in a clump and d(v) = 4,

then µ∗(v) ≥ 3d(v) + 2.5− 14 = 0.5. �

By the above lemma, in order (4.3) to hold, we need µ∗(v) = 0 for every v ∈ V (G). By

the same lemma, G has only regular vertices of degree 2 and 4, and each vertex with degree

4 has at most one neighbor of degree 4. By Lemma 4.4, each vertex with degree 2 has no

neighbors of degree 2. In such a graph G, if we color all vertices with degree 4 with color a

and all vertices with degree 2 color b, then we get a good coloring of G, a contradiction.
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Chapter 5

Rainbow Matchings

The motivation to study the existence of rainbow matchings comes from three distinct

sources: an equivalent problem in design theory, its relationship to anti-Ramsey theory,

and the overall interest in rainbow subgraphs.

One of the fundamental problems in design theory involves finding transversals in Latin

Squares. A Latin Square with length n is an n by n matrix with entries in [n] such that each

row and each column form a permutation of [n]. A transversal of a Latin Square L is a set

of coordinates (ai, bi)1≤i≤k such that 1 ≤ ai, bi ≤ n and there is no repetition of values in the

sets {ai : 1 ≤ i ≤ k}, {bi : 1 ≤ i ≤ k}, and {L(ai, bi) : 1 ≤ i ≤ k}.

Ryser [67] conjectured that if n is odd, then Latin Squares with length n contains a

transversal with size n. It is known that if n is even, then there exist Latin Squares with

length n with no transversal with size n. It is also conjectured that every Latin Square

with length n has a transversal of size n− 1. The best lower bound on the size of a largest

transversal of a Latin Square with length n remains open. After a sequence of successively

better results, the best known bound today comes from Hatami and Shor [40], which states

that in Latin Squares with length n a transversal of size n−O(log3(n)) exists.

It turns out that searching for this substructure in a matrix has an analogous problem

in graph coloring. Let L be a Latin Square with length n and transversal T = (ai, bi)1≤i≤k.

Consider an edge-coloring φ of the graph G = Kn,n with parts {x1, . . . , xn} and {y1, . . . , yn}

such that φ(xi, yj) = L(i, j). Each coordinate pair (ai, bi) ∈ T maps to an edge of G. Let M

denote the subgraph of G that is the union of the edges that are images of elements of T .
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No value is repeated in the sets {ai : 1 ≤ i ≤ k} and {bi : 1 ≤ i ≤ k}, so ∆(M) = 1. No

value is repeated in the set {L(ai, bi) : 1 ≤ i ≤ k}, so M is a rainbow subgraph of G. By

removing isolated vertices, there is a correspondence from T to M that relates transversals

in L to rainbow matchings in G. Ryser’s conjecture is thus equivalent to finding a largest

rainbow matching in an edge-colored Kn,n where each color class forms a 1-factor.

row column
1

2

3

4

1

2

4

3

1234
12 43

1
1 324
4 23

Figure 5.1: An example that demonstrates the correspondence between Latin Squares and
edge-colored graphs.

Design theorists saw this connection and used it to generalize the problem to orthogo-

nal matchings. For a graph G whose edges are partitioned into k t-factors, an orthogonal

matching is a matching with exactly one edge from each t-factor. By labeling each t-factor

as a color class, an orthogonal matching directly translates into a rainbow matching.

The largest matching in a graph with n vertices is at most n/2. This implies that Ryser’s

conjecture is infeasible in this generalized setting without additional constraints on the order

of the graph. One of the earliest results in orthogonal matchings showed that the smaller of

the two bounds is almost possible in all cases. Anstee and Caccetta [6] showed that every

k-regular graph with n vertices where each color class is a 1-factor has a rainbow matching

of size

min{n
2
− 3

2
(
n

2
)2/3, k − 3

2
k2/3}. (5.1)

This result provides the intuition that the size of the graph and the number of colors are the

main issues that may prevent large rainbow matchings from existing.
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Anstee and Caccetta were also able to provide stronger results if the color classes are

large. They proved in the same paper that if each color class is a t-factor, and t ≥ 3, then

G has a rainbow matching containing an edge from each color class. If each color class is

t-regular and there are k colors, then G has at least tk+1 vertices; so the assumption on large

color classes is stronger than an assumption on the size of the graph. Furthermore, Anstee

and Caccetta showed that if each color class is a 2-factor, then the graph has a rainbow

matching with size k − k2/3. Stong [71] improves this bound for large graphs, showing that

a rainbow matching containing an edge from each color class exists if each of the k color

classes forms a 2-factor and n ≥ 3k − 2.

Anstee and Caccetta [6] used the fact that if each color class is regular and spanning,

there are k colors, and the graph has at least 4k − 3 vertices, then a greedy algorithm will

produce a rainbow matching of size k. This statement is easy to prove (their paper only

devotes one paragraph to it), and immediately implies their result when the color classes are

t-factors for t ≥ 4. A greedy algorithm will not work if the color classes are not regular or

not spanning.

A second motivation for studying rainbow matchings is anti-Ramsey theory. For a fixed

graph H and parameter n, the anti-Ramsey number, AR(n,H), is the largest ` such that

there exists an edge-coloring of Kn using exactly ` colors which contains no rainbow H.

Solutions to the anti-Ramsey problem are known for trees [46], matchings [31], and complete

graphs [68, 22] (see [32] for a more complete survey).

Erdős, Simonovits, and Sós made a deep connection[28] between anti-Ramsey theory

and Turán theory. For a fixed graph H and parameter n, the Turán number is the largest

` such that there exists a graph with n vertices, ` edges, and does not contain H as a

subgraph. Let X(H) = min{χ(H − e) : e ∈ E(H)}. In their work, Erdős, Simonovits,

and Sós demonstrated that AR(n,H) = (1 − 1/(X(H) − 1) + o(1))n2 by comparing anti-

Ramsey numbers to Turán numbers, whose asymptotic values were well known at the time
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for graphs with chromatic number at least 3. In fact, the connection runs deeper than just

the numerical values. Many extremal graphs in anti-Ramsey theory can be constructed by

turning an extremal graph in Turán theory into a rainbow subgraph, with all of the non-

edges collected into a single color class. The open problems in Turán theory for bipartite

graphs left much interest in anti-Ramsey theory for bipartite graphs.

Several variations of anti-Ramsey theory have been introduced. Rödl and Tuza proved

there exist graphs G with arbitrarily large girth such that every proper edge coloring of G

contains a rainbow cycle [66]. Erdős and Tuza asked for which graphs H there is a d such

that there is a rainbow copy of H in any edge-coloring of Kn with exactly |E(H)| colors

such that each color class forms a spanning subgraph with minimum degree d. They found

positive results for trees, forests, C4, and K3 and found negative results for several infinite

families of graphs [29]. Another variation on anti-Ramsey theory is to determine for fixed

graphs G and H the largest ` such that there exists an edge-coloring of G using exactly `

colors which contains no rainbow H. This reduces to the traditional anti-Ramsey problem

when G = Kn. Local anti-Ramsey [9] seeks for a fixed graph H to find the maximum k such

that there is an edge coloring of Kn with minimum color degree k that contains no rainbow

copy of H.

The third motivation to study rainbow matchings is the overall interest in rainbow sub-

graphs. Computer scientists have spent an extensive amount of effort to quickly find and

prove the existence of rainbow subgraphs in vertex and edge-colored graphs. Typical results

involve determining the computational complexity of partitioning the graph into monochro-

matic or rainbow subgraphs of specified type (paths, trees, cycles, etc). Other results involve

determining the existence of large rainbow subgraphs (paths, trees, Hamiltonian cycles, etc)

given certain assumptions. Adding conditions on colors seems to complicate problems in

interesting ways. For example, finding the largest matching in a graph is a polynomial prob-

lem, while finding the largest rainbow matching is NP-complete [34]. See [47] for a survey
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of 90 such results.

Let r(G, φ) be the size of the largest rainbow matching in a graph G with edge-coloring

φ. The relationship of the size of the largest rainbow matching to the minimum color degree

was first investigated by Kano and Li [79], who showed that r(G, φ) ≥
⌈

5δc(G,φ)−3
12

⌉
. This

bound is tight for K4 with color classes that form a 1-factor. However, it is tight for only

finitely many other graphs. They conjectured that complete graphs with color classes that

form a 1-factor would be the extremal cases.

Conjecture 5.1 ([79]) If δc(G, φ) ≥ k ≥ 4, then r(G, φ) ≥
⌈
k
2

⌉
.

LeSaulnier, Stocker, Wenger, and West [59] proved that r(G, φ) ≥
⌊
k
2

⌋
. They also proved

Conjecture 5.1 in full under several additional conditions, which include if G is large relative

to k. Hence the conjecture remained open only if k is odd and for only finitely many graphs

for each k.

Wang [78] showed that r(G, φ) ≥ 3δc(G, φ)/5 when |V (G)| ≥ 1.6k, demonstrating that

Conjecture 5.1 is sharp only for graphs with few vertices relative to k. Similar to orthogonal

matchings, Wang conjectured that a rainbow matching of size δc(G, φ) should be possible

when the graph is large enough.

Question 5.2 ([78]) Is there a function f such that if |V (G)| ≥ f(δc(G, φ)) and φ is a

proper coloring, then r(G, φ) ≥ δc(G, φ)?

This would be best possible for graphs with color classes that form a 1-factor. Inde-

pendently of our work, Diemunsch et al. [24] showed that f exists, and f(k) ≤ 98k/23.

However, the value of the smallest function f such that this is true remains open. Currently,

the largest known properly edge-colored graph with no rainbow matching of size δc(G, φ)

has only 2δc(G, φ) vertices, and is constructed using a Latin Square with length n and no

transversal of size n. It is possible that completely solving the problem of the best function

f would solve Ryser’s conjecture as a special case.
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Lo and Tan [60] later proved that f(k) ≤ 4k− 3 and that f(k) = 4k− 3 when k ≤ 3. Lo

and Tan have continued to work on the problem and have a proof that f(k) ≤ 11k/3 − 2,

which is the best upper bound on f today. They currently have no plans to submit the

better bound for publication [61], because they continue to work on even stronger results. It

is worth noting that Diemunsch et al. used the assumption that φ is a proper coloring, while

Lo and Tan’s result and Lo’s unpublished result do not assume that φ is a proper coloring.

Our first contribution towards finding rainbow matchings has no condition on the size of

the graph.

Theorem 5.3 ([54]) Let φ be an edge coloring of G. If G is not K4, then G contains a

rainbow matching of size at least
⌈
δc(G,φ)

2

⌉
.

Our second contribution towards finding rainbow matchings adds an assumption on the

size of the graph.

Theorem 5.4 ([50]) Let G be an n-vertex graph and φ be an edge-coloring of G. If n >

4.25 (δc(G, φ))2, then G contains a rainbow matching with at least δc(G, φ) edges.

If G is colored with k colors and each color class is a t-factor, then δc(G, φ) ≥ k. Theorems

5.3 and 5.4 give new results on orthogonal matchings by relaxing the global assumption that

each color class is regular and spanning to a local assumption on the minimum color degree.

This relaxation eliminates the possibility of using certain methods, like the greedy algorithm

described by Anstee and Caccetta for large graphs, but our conclusions are almost as strong.

Theorems 5.3 and 5.4 give new results in local anti-Ramsey theory when H is a matching

with the generalization that possibly G 6= Kn, which is a generalization used in other areas

of anti-Ramsey theory.

Theorem 5.3 confirms Conjecture 5.1 as true. It is the best possible result without

additional assumptions on the size of the graph. Theorem 5.4 confirms that the function
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in Question 5.2 exists, and that a similar function also exists for non-proper colorings. The

bound r(G, φ) ≥ δc(G, φ) is best possible. However, the bound on n is not sharp. The

best bounds on n today are Lo and Tan’s unpublished bound that n ≥ 11k/3 − 2 suffices,

and the best lower bound uses the same construction for properly-colored graphs that shows

f(k) ≥ 2k + 1.

We will present the proof of Theorem 5.3 in Section 5.1. We will present the proof of

Theorem 5.4 in Section 5.2.

5.1 Proof of Theorem 5.3

By way of contradiction, let G with edge coloring f be a counterexample to Theorem 5.3

with the fewest edges. Let k = δc(G, f), r := r(G, f), and n := |V (G)|. By [59], we may

assume that k is odd and r = k−1
2

. Woolbright and Fu [80] proved the case when G is a

properly colored complete graph, so assume n > k + 1.

Claim 5.5 The edges of each color class of f form a forest of stars.

Proof. Let F be a color class of f . If an edge e ∈ F connects two vertices of degree at least

two in F , then the color degrees of all vertices in G and G−e are the same, and any rainbow

matching in G − e is a rainbow matching in G. This contradiction to the minimality of G

yields the claim. �

Most of the results and notation in this section come from [59].

Let M be a maximum rainbow matching in G, with edge set {ej : 1 ≤ j ≤ r}, where

ej = ujvj. Let H = G − V (M). Let Ej denote the set of edges connecting V (H) with

{uj, vj}. Let E ′ be the set of edges connecting V (H) with V (M), i.e., E ′ =
⋃r
j=1 Ej. Define

p = |V (H)| = n − 2r = n − (k − 1). Because n ≥ k + 2, it follows that p ≥ 3. Label the

vertices of H as {w1, w2, . . . , wp}.
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Figure 5.2: An example of G with notation.

Without loss of generality, we will assume that edge ei is colored i for i = 1, . . . , r. A

free color is a color not used on any of the edges of M . A free edge is an edge colored with

a free color. If a free edge is contained in H, then M is not a maximum rainbow matching,

so this is not the case.

Definition 5.6 Let π : V (M)→ [k − 1] be the ordering with

π(u1) < π(v1) < π(u2) < π(v2) < . . . < π(u k−1
2

) < π(v k−1
2

).

A free edge wx colored α is important if x ∈ V (M), w ∈ V (H), and π(x) = miny{π(y) :

wy ∈ E ′, wy is colored α}. All other free edges in E ′ are unimportant.

The motivation for this definition is that for each w ∈ V (H) and each free color α used

on an edge incident with w, there is exactly one α-colored important edge incident with w.

Lemma 5.7 ([59]) For any 1 ≤ j ≤ r, if there are three vertices in V (H) incident with

important edges in Ej, then only one such vertex can be adjacent to two important edges.

Configuration A in the set Ej is a set Aj of important edges such that (a) it contains all

p edges connecting vj with H and one edge, say ujw, incident with uj; (b) the color of ujw

(say α) is also the color of every edge in Aj apart from the edge vjw (which is different).
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In this case, α will be called the main color for Ej. Note that in our definition we are

assuming that vi is the vertex with p important edges and not ui. This assumption will be

used for the rest of the paper.

Corollary 5.8 ([59]) If p ≥ 4, then there are at most p+ 1 important edges in Ej for each

j. Furthermore, if Ej has p+ 1 important edges, then Ej contains Configuration A.

Define Configuration B to be the set of four edges Bj = {wuj, w′uj, wvj, w′vj} ⊆ Ej such

that w,w′ ∈ V (H), all four edges are important, f(wuj) = f(w′vj) and f(wvj) = f(w′uj).

In this case f(wuj) and f(wvj) will be called the major colors for Ej.

Corollary 5.9 If p = 3, then there are at most p + 1 = 4 important edges in Ej for each

j. Furthermore, if Ej has 4 important edges, then Ej contains either Configuration A or

Configuration B.

Proof. If each of w1, w2, w3 is incident with an important edge, then the proof of Corol-

lary 5.8 goes through and implies that Ej contains Configuration A. If only two of them, say

w1 and w2, are incident with important edges, then, in order to have four such edges, the set

of important edges in Ej must be {w1uj, w2uj, w1vj, w2vj}. Since M is a maximum rainbow

matching, f(w1uj) = f(w2vj) and f(w1vj) = f(w2uj). �

While Configuration A can occur in graphs of any order, Configuration B only occurs

when p = 3. Let JA denote the set of indices j such that Ej contains Configuration A. Let JB

denote the set of indices j such that Ej contains Configuration B. By definition, JA∩JB = ∅.

Define a = |JA| and b = |JB|. The values of a and b will depend on G, f , and the choice of

M .

A color α is basic for Ej if either j ∈ JA and α is the main color for Ej or j ∈ JB and α

is a major color for Ej.
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Claim 5.10 The basic colors for distinct Ej are distinct.

Proof. The edges of a basic color for Ej are incident with at least p − 1 vertices in H.

So if some color α was basic for Ej and Ej′ , then some w ∈ V (H) would be incident with

two edges of color α, and so one of them would be unimportant, a contradiction. �

...
...

e1
e2

ej

er

M H

ju jv

w

Figure 5.3: Configuration A.
...

...

e1
e2

er

M H

ej
ju jv

w

w'

Figure 5.4: Configuration B.

Definition 5.11 Let dI(ej) denote the number of important edges that are incident with uj

or vj. Let dI(wj) be the number of important edges incident with wj.

There are only r = k−1
2

non-free colors, and each vertex is incident with at least k distinct

colors, therefore

122



each vertex in H is incident with at least k+1
2

important edges. (5.2)

The number of important edges coming out of V (M) equals the number of important

edges coming out of H, which gives the inequality

k−1
2∑
j=1

dI(ej) =

p∑
i=1

dI(wi) ≥ p
k + 1

2
= pr + p. (5.3)

Since dI(ej) ≤ p+ 1 for each j, in order to satisfy (5.3),

there are at least p distinct values of j such that dI(ej) = p+ 1, i.e. a+ b ≥ p ≥ 3. (5.4)

Lemma 5.12 Let i be such that all of the free edges in Ei are important. Let π be the

ordering of V (M) described in the Definition 5.6. If j < i is fixed, then in the ordering π′

of V (M), where

π′(u1) < π′(v1) < π′(u2) < π′(v2) < . . . < π′(uj−1) < π′(vj−1) < π′(ui) < π′(vi) <

< π′(uj) < π′(vj) < . . . < π′(ui−1) < π′(vi−1) < π′(ui+1) < π′(vi+1) < . . . π′(u k−1
2

) < π′(v k−1
2

),

the set of edges that are important is the same for π and π′.

Proof The only change from π to π′ is that ui and vi come earlier. Thus, we will consider

the effect of moving one pair of vertices to another spot in the ordering. Note that the number

of important edges is not affected by the order of the vertices, only the selection of the set of

important edges. Thus, for every edge that is changed from important to unimportant, there

must be an edge that changes from unimportant to important. Therefore, since the relative

order among all other vertices does not change, it suffices to show that if the status of the
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edges incident with ui and vi does not change, which will imply that the set of important

edges in the whole graph does not change.

Let e be an edge incident with ui ∈ V (M) and w ∈ V (H) (the case when e is incident

with vi is symmetric). Since e is already important by the hypothesis, it cannot change into

an important edge. By the definition of an important edge, e can turn from important to

unimportant if and only if ui is the earliest edge with its color incident with w and then

moved after another edge with the same color. And since ui is being moved earlier by hy-

pothesis, it cannot change into an unimportant edge. �

Because M is a maximum rainbow matching, if Ej contains Configuration A or B, then

Ej contains exactly p + 1 free edges. That is, if j ∈ JA ∪ JB, then every free edge of Ej is

important.

Definition 5.13 A special vertex v is a vertex with d(v) = n− 1 and dcG(v) = k such that

one color appears on n− k = p− 1 distinct edges incident with v (each other color appears

exactly once). For a special vertex v, the color that appears n − k times is called the main

color of v.

If a color is on n− k different edges incident with v, then v is special. This proves that

if j ∈ JA then vj is a special vertex.

We call an edge xy a main edge if x is special and xy is colored with the main color of

x. Let M have the most main edges among all rainbow matchings in G with r edges. This

implies that

if i ∈ JA then ui is special and i is the main color of ui. (5.5)

This is because vi is special and its main color is free, and therefore not i. Since ei could

be replaced by one of the main edges of vi, the choice of M shows that ei is already a main

edge. This shows that ei is a main edge of ui.
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5.1.1 Case a > 0

We will use a fixed index i ∈ JA. By Lemma 5.12 and the remark immediately after, we may

assume i = 1. Consider edges u1uj for j ∈ JA ∪ JB. These edges exist for j 6= 1 because u1

is a special vertex.

Case 1: f(u1uj) is the main color of v1, or the main color of vj (if j ∈ JA). Without

loss of generality, we will assume that u1uj is the main color of v1. By the definition of

Configuration A, the main color of v1 is free and it is on an edge that is incident with u1 and

a vertex in H. Thus there are two different edges incident with u1 with the main color of v1,

but only the main color may be repeated at special vertex u1. This creates a contradiction.

Case 2: f(u1uj) is 1, j, or free; and neither the main color of vj nor a major color for

Ej. In this case, a larger rainbow matching can be obtained by replacing e1 and ej with

three edges: u1uj, a main edge of v1 (we have p − 1 choices for such an edge), and either a

main edge of vj (if i ∈ JA) or a major edge of Ej (if j ∈ JB).

Case 3: j ∈ JB and f(u1uj) is a major color of Ej. If f(u1vj) is not a major color of Ej,

then we may swap uj and vj ( because Configuration B is symmetrical) and get Case 2. So

suppose each of f(u1uj) and f(u1vj) is a major color of Ej. Then each of uj and vj has a

free color repeated on edges incident with it. Configuration B only occurs only when p = 3,

so a vertex is special when a color is repeated n − k = p − 1 = 2 times. Therefore both uj

and vj are special with free main colors. This implies that ej is not a main edge. But this is

a contradiction because M could have contained more main edges by replacing edge ej with

a main edge of vj.

Case 4: f(u1uj) = h, where 2 ≤ h ≤ r, and j ∈ JA. Consider an important edge e ∈ Eh.

It cannot be colored with the main color of v1 or vj, or else some vertex in H will be incident

with two important edges with the same color, which is a contradiction. We will attempt to

replace eh, e1, and ej with edges e, v1ws, u1uj, and vjwt for some s 6= t that give the main
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colors of v1 and vj. The only way for this to not be possible is if p = 3, and the two main

edges of v1 and vj form a C4 that is incident with e. But in this case, the important edge

that is incident with v1 and is not a main edge of v1 is incident with the important edge of

vj that is not a main edge, and they must have different colors. Then we can replace eh, e1,

and ej with edges e, v1ws, u1uj, and vjwt for some s 6= t that give the main color of v1 or vj,

and a free color that is not the main color of either v1 or vj and not the color of e. Therefore

Eh has no important edges.

Case 5: f(u1uj) = h, where 2 ≤ h ≤ r, and j ∈ JB. Since p = 3, V (H) = {w1, w2, w3}.

Without loss of generality, assume that the major edges of Ej are incident with w1 and w2.

Consider an important edge e ∈ Eh. It cannot have the main color of v1, or have a major

color of Ej and be incident with w1 or w2. Suppose first that the edges with the main color

of v1 incident with v1 go to w1 and w2. If f(e) is a major color of Ej and is incident with

w3, (without loss of generality, assume that f(e) = f(vjw1)), then replace e1, ej, and eh with

u1uj, e, vjw2, and v1w1. This will also work if e has any other free color and is incident with

w3. If e is incident with w1 and f(e) 6= v1w3, then replace e1, ej, and eh with u1uj, e, v1w3,

and vjw2. This works symmetrically if e is incident with w2. This leaves only the case when

f(e) = f(v1w3) and e is incident with w1 or w2. By the minimality of G, only two such edges

may exist.

Suppose now that the edges with the main color of v1 go to w1 and w3 (w2 and w3 is a

symmetric situation). If e is incident with w1, then replace e1, ej, and eh with u1uj, e, v1w3,

and vjw2. If e is incident with w2, then replace e1, ej, and eh with u1uj, e, v1w3, and vjw1.

This leaves only the case when e is incident with w3. Since G is a simple graph, only two

such edges may exist.

Cases 1, 2, and 3 all led to contradictions. The vertex u1 is special with main color 1.

Therefore, there must be a − 1 instances of Case 4 and b instances of Case 5. This creates

a − 1 values of i where Ei has no important edges and b other values of i where Ei has at
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most 2 important edges. By definition, for all i /∈ JA∪JB, the set Ei has at most p important

edges.

r∑
i=1

dI(ei) =
∑

i∈JA∪JB

dI(ei) +
∑

i/∈JA∪JB

dI(ei)

≤ (p+ 1)(a+ b) +
(

(a+ b− 1)2 + p(r − (a+ b)− (a+ b− 1))
)

= pr + (a+ b)− (p− 2)(a+ b− 1).

Recall that by (5.4), a+ b ≥ 3. Thus, since p ≥ 3 and a ≥ 1,

r∑
i=1

dI(ei) < pr + p, (5.6)

a contradiction to (5.3).

5.1.2 Case a = 0

If a = 0, then b ≥ 3 by (5.4). This also implies that p = 3 and V (H) = {w1, w2, w3}.

We will partition JB into three sets: J1
B will be the set of indices i such that the free

edges of Ei are incident with w1 and w2; J2
B will be the set of indices i such that the free

edges of Ei are incident with w1 and w3; and J3
B will be the set of indices i such that the

free edges of Ei are incident with w2 and w3. We define b1 = |J1
B|, b2 = |J2

B|, and b3 = |J3
B|,

so that b1 + b2 + b3 = b.

We will analyze separately the cases when at least two of the values b1, b2, and b3 are

positive and when at least two of the values are zero. The vertices w1, w2, and w3 can be

reordered, so that b1 is the smallest positive value of the three. Then 0 < b1 ≤ b2 + b3 if two

of the values are positive, and b3 = b2 = 0 and b1 = b if two of the values are zero.

In both cases, b1 > 0. We will use a fixed index i ∈ J1
B. By Lemma 5.12 and the remark
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immediately after, we may assume i = 1. We will show that

there are b− 1 values for j such that Ej has 2 or fewer important edges. (5.7)

If (5.7) holds, then it generates a contradiction to (5.3) exactly as in (5.6).

Subcase A: a = 0 and 1 ≤ b1 ≤ b2 + b3. Since k = n − 2, dc(u1) ≥ n − 2. Thus

the number of distinct colors on the edges connecting u1 with
⋃
i∈J2

B∪J
3
B
{ui, vi} is at least

2(b3 + b2)− 1 ≥ b− 1.

Case A.i: i ∈ J3
B, and the edge u1ui exists. This is symmetric to the case when i ∈ J2

B.

If f(u1ui) = f(v1w1) (Case f(u1ui) = f(viw3) is symmetric), then we replace edges e1

and ei in M with edges v1w2, viw3, and u1ui. If f(u1ui) is equal to a free color other than

f(v1w1) or f(viw3), then replace edges e1 and ei in M with edges v1w1, viw3, and u1ui.

It follows that f(u1ui) is not free. We will consider what important edges may be in Eh

for f(u1ui) = h. Suppose e ∈ Eh is an important edge. First, assume that e is incident with

w2. Since w2 is incident with at most one important edge of each color, f(e) 6= f(u1w2) and

f(e) 6= f(uiw2). So, since f(u1w2) = f(v1w1) and f(uiw2) = f(viw3), we can replace edges

e1, ei, and eh in M with edges u1ui, e, v1w1 and viw3. Thus e is not incident with w2. Second,

assume that e is incident with w3. Since w3 is incident with at most one important edge of

color f(e), we have f(e) 6= f(uiw3) = f(viw2). If also f(e) 6= f(v1w1), then we replace in M

edges e1, ei, and eh with u1ui, e, v1w1 and viw2. Finally, assume that f(e) = f(v1w1). Again,

since w3 is incident with at most one important edge of color f(v1w1), only one edge incident

with w3 in Eh can be important. So, altogether Eh has at most two important edges.

Case A.ii: i ∈ J2
B ∪ J3

B, and the edge u1vi exists. By the symmetry of Configuration B,

the proof is exactly the same as in case A.

This implies that there are b−1 values for j such that Ej has 2 or fewer important edges.

Thus (5.7) holds.
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Subcase B: a = 0 and b3 = b2 = 0.

Let i ∈ J1
B = JB. Suppose that edge w3vi exists. Since Ei has Configuration B, edge

w3vi cannot be free. Let f(w3vi) = h. Suppose e is a free edge in Eh. Assume first that

e is incident with w1. Since w1 is incident with at most one important edge of color f(e),

f(e) 6= f(viw1) = f(uiw2). So we can replace edges ei and eh in M with edges viw3, uiw2,

and e, a contradiction. Hence e is not incident with w1 and similarly is not incident with

w2. Thus all important edges in Eh are incident with w3. It follows that Eh has at most two

such edges.

Similarly to the start of subcase A, since dc(w3) ≥ k = n − 2, at least b1 − 1 = b − 1

distinct colors were used on the edges in the set {w3vi : i ∈ J1
B}. This implies that there

are b− 1 values for j such that Ej has 2 or fewer important edges. So (5.7) holds again.

5.2 Proof of Theorem 5.4

Let (G, φ) be a counterexample to our theorem with the fewest edges in G. For brevity,

let k := δc(G, φ). Since (G, φ) is a counterexample, n := |V (G)| > 4.25k2. The theorem is

trivial for k = 1, and it is easy to see that if δc(G) = 2 and (G, φ) does not have a rainbow

matching of size 2, then |V (G)| ≤ 4. Therefore k ≥ 3.

Claim 5.14 Each color class in (G, φ) forms a star forest.

Proof. Suppose that the edges of color α do not form a star forest. Then there exists an

edge uv of color α such that an edge ux and an edge vy also are colored with α (possibly,

x = y). Then the graph G′ = G − uv has fewer edges than G, but δc(G′, φ) = k. By the

minimality of G, r(G′, φ) ≥ k. But then r(G, φ) ≥ k, a contradiction. �

We will denote the set of maximal monochromatic stars of size at least 2 by S. Let

E0 ⊆ E(G) be the set of edges not incident to another edge of the same color, i.e. the
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maximal monochromatic stars of size 1.

Claim 5.15 For every edge v1v2 ∈ E(G), there is an i ∈ {1, 2}, such that dc(vi) = k and

v1v2 is the only edge of its color at vi.

Proof. Otherwise, we can delete the edge and consider the smaller graph. �

Claim 5.16 All leaves v ∈ V (G) of stars in S have dc(v) = k.

Proof. This follows immediately from Claim 5.15. �

For the sake of exposition, we will now direct all edges of our graph G. With an abuse of

notation, we will still call the resulting directed graph G. In every star in S, we will direct

the edges away from the center. All edges in E0 will be directed in a way such that the

sequence of color outdegrees in G, dc+0 ≥ dc+1 ≥ . . . ≥ dc+n is lexicographically maximized.

Note that by Claim 5.14,

the set of edges towards v forms a rainbow star, and so d−(v) ≤ dc(v). (5.8)

Let C be the set of vertices with non-zero outdegree and L := V \C. Let S∗ ⊆ S be the

set of maximal monochromatic stars with at least two vertices in L, and let E∗0 ⊆ E0 ∪ S

be the set of maximal monochromatic stars with exactly one vertex in L. For a color α, let

EH [α] be the set of edges colored α in a graph H. If there is no confusion, we will denote it

by E[α].

Claim 5.17 For every v ∈ V (G) with dc(v) ≥ k + 1, d−(v) = 0. In particular, d−(v) ≤ k

for every v ∈ V (G). Moreover, for all w ∈ L, d(w) = k.
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Proof. Suppose that dc(v) ≥ k + 1, and let wiv be the edges directed towards v. By

Claim 5.15 and (5.8), dc(wi) = k and wiv ∈ E0 for all i. Then dc+(wi) ≤ dc(wi) = k.

Reversing all edges wiv would increase the color outdegree of v with a final value larger

than k while decreasing the color outdegree of each wi, which was at most k. Hence the

sequence of color outdegrees would lexicographically increase, a contradiction to the choice

of the orientation of G.

By the definition of L, if w ∈ L, then d+(w) = 0. So in this case by the previous para-

graph, k ≤ dc(w) ≤ d−(w) ≤ k, which proves the second statement. �

Claim 5.18 No color class in (G, φ) has more than 2k − 2 components.

Proof Otherwise, remove the edges of a color class α with at least 2k − 1 components, and

use induction to find a rainbow matching with k − 1 edges in the remaining graph. This

matching can be incident to at most 2k − 2 of the components of α, so there is at least one

component of α not incident to the matching, and we can pick any edge in this component

to extend the matching to a rainbow matching on k edges. �

We consider three cases. If n > 4.25k2, then at least one of the three cases will apply.

The first two cases will use greedy algorithms.

Case A: |S∗|+ 1
2
|E∗0 | ≥ 2.5k2. For every S ∈ S∗, assign a weight of w1(e) = 1/|S ∩L| to

each of the edges of S incident to L. Assign a weight of w1(e) = 1/2 to every edge e ∈ E∗0 .

Edges in G[C] receive zero weight. Let G0 ⊂ G be the subgraph of edges with positive

weight. For every set of edges E ′ ⊆ E(G), let w1(E ′) be the sum of the weights of the

edges in E ′. For every vertex, let w1(v) =
∑

a∈N+(v) w1(va) +
∑

b∈N−(v) w1(bv). Note that

G0 is bipartite with partite sets C and L and that w1(e) ≤ 1/2 for every edge e ∈ E(G).
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Furthermore,

1

2

∑
v∈V (G)

w1(v) =
∑

e∈E(G)

w1(e) = |S∗|+ 1

2
|E∗0 | ≥ 2.5k2.

Claim 5.19 For every v ∈ V (G), w1(v) ≤ 2(k − 1).

Proof. Suppose (G, φ) has a vertex v with w1(v) > 2(k − 1). Let G′ = G − v. Then

δc(G′, φ) ≥ k − 1 and |V (G′)| = n − 1 > 4.25(k − 1)2. By the minimality of (G, φ), the

colored graph (G′, φ) has a rainbow matching M of size k − 1. At most k − 1 of the stars

v is incident to have colors appearing in M ; each of them contributes a weight of at most

1 to w1(v). As w1(v) > 2(k − 1), there are at least 2k − 1 edges incident to v with colors

not appearing in M . At least one of these edges is not incident to M . Thus (G, φ) has a

rainbow matching of size k, a contradiction. �

We propose an algorithm that will find a rainbow matching of size at least k. For

i = 1, 2, . . ., at Step i:

0. If Gi−1 has no edges or i− 1 = k, then stop.

1. If a vertex v of maximum weight has w1(v) > 2(k− i) in Gi−1, then set Gi = Gi−1 − v

and go to Step i+ 1.

2. If the largest color class E[α] of Gi−1 has at least 2(k − i) + 1 components, then set

Gi = Gi−1 − E[α] and go to Step i+ 1.

3. If w1(v) ≤ 2(k − i) for all v ∈ V (Gi−1) and every color class has at most 2(k − i)

components, then set Gi = Gi−1 − x− y − E[φ(xy)] for some edge xy ∈ E(Gi−1).

We will refer to these as options (1), (2), and (3) for Step i. We call the difference in the total

weight of the remaining edges between Gi−1 and Gi the weight of Step i or W1(i). When
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both options (1) and (2) are possible, we will pick option (1). Option (3) is only used when

neither of options (1) and (2) are possible.

Let Gr be the last graph created by the algorithm, i.e., r = k or Gr has no edges. We

will first show by reversed induction on i that

Gi has a rainbow matching of size at least r − i. (5.9)

This trivially holds for i = r. Suppose (5.9) holds for some i, and Mi is a rainbow matching

of size r − i in Gi. If we used Option (1) in Step i, then there is some edge e ∈ E(Gi−1)

incident with v that is not incident with Mi and whose color does not appear on the edges

of Mi, similarly to the proof of Claim 5.19. If we used Option (2) in Step i, then there is

some component of EGi−1
[α] that is not incident with Mi, and we let e be an edge of that

component. If we used Option (3) in Step i, then let e = xy. In each scenario, Mi + e is a

rainbow matching of size r − i + 1 in Gi−1. This proves the induction step and thus (5.9).

So, if r = k, then we are done.

Assume r < k. Then the algorithm stopped because E(Gr+1) = ∅. This means that

r∑
i=1

W1(i) =
∑

e∈E(G)

w1(e) ≥ 2.5k2. (5.10)

We will show that this is not the case. Suppose that at Step i, we perform Option (3). By the

bipartite nature of G0, we may assume that y ∈ L. By Claim 5.17, w1(y) − w1(xy) ≤ k−1
2

.

Because Options (1) and (2) were not performed at Step i, w1(x) + w1(EGi−1
[φ(xy)]) ≤

4(k − i). Therefore the weight of Step i is at most k−1
2

+ 4(k − i) < 4.5k − 4i.

By Claims 5.18 and 5.19, Option (3) is performed at Step 1. If W1(i) < 4.5k − 4i for all

i, then
∑r

i=1W1(i) <
∑r

i=1 4.5k − 4i = 4.5kr − 2r(r + 1) ≤ 2.5k(k − 1), a contradiction to

(5.10). Let i be the first time that W1(i) ≥ 4.5k − 4i, and j < i be the last time Option (3)
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is performed prior to i. By the choice of i, W1(a) < 4.5k − 4a when a ≤ j. Because Option

(1) and (2) were not chosen at Step j, W1(i′) ≤ 2(k− j) for each Step i′ such that i′ > j and

Option (1) or (2) is used. Note that by choice of i and j, this bound applies for all steps

between j + 1 and i. Furthermore, by the choice of i, 2(k − j) > 4.5k − 4i′ − 1 for i′ > i. It

follows that W1(b) ≤ 2(k − j) for each b > j, and so

r∑
a=1

W1(a) ≤
j∑

a=1

(4.5k − 4a) + 2(k − j)(r − j) ≤ 4.5kj − 2j(j + 1) + 2(k − j)(k − 1− j)

= k(0.5j + 2k − 2) < 2.5k2,

a contradiction to (5.10).

Case B: |C| ≥ 1.75k2. We will use a different weighting: for every vertex v ∈ C

and outgoing edge vw, if vw ∈ E0, we let w2(vw) = 1/dc+(v), where dc+(v) is the color

outdegree of v, and if vw is in a star S ∈ S, then we let w2(vw) = 1/(dc+(v)‖S‖). For a

vertex v ∈ V (G), let w+(v) and w−(v) denote the accumulated weights of the outgoing and

incoming edges, respectively, and w2(v) = w+(v) +w−(v). By definition, w+(v) = 1 for each

v ∈ C. Then

∑
e∈E(G)

w2(e) =
∑

v∈V (G)

w−(v) =
∑

v∈V (G)

w+(v) = |C| ≥ 1.75k2.

Claim 5.20 Let uv be a directed edge in G and e an edge incident to u that is not uv. Then

w2(e) ≤ 1/2.

Proof. The result is easy if e is in a monochromatic star with size at least 2, so assume

e ∈ E0. If e is directed away from u, then dc+(u) ≥ 2 and the claim follows. Suppose now

that e is directed towards u, say e = wu, and w2(e) = 1. Then dc+(w) = 1, and reversing

e we obtain the orientation of G where the color outdegree of w decreases from 1 to 0, and

the color outdegree of u increases from dc+(u) ≥ 1 to dc+(u) + 1. The new orientation has a
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lexicographically larger outdegree sequence, which is a contradiction. �

Claim 5.21 For every color α, we have w2(E[α]) ≤ 1.5(k − 1).

Proof. Otherwise, remove the edges of a color class E[α] with w2(E[α]) > 1.5(k − 1), and

use induction to find a rainbow matching with k − 1 edges in the remaining graph. For

every directed edge vw ∈ M , v can be incident to a component of E[α] of weight at most

1/2, and w can be incident to a component of E[α] of weight at most 1, so there is at least

one component of E[α] not incident to the vertices of M , and we can pick any edge in this

component to extend M to a rainbow matching of k edges. �

We will use the following greedy algorithm: start from G, and at Step i, choose a color α

with the minimum value w2(E[α]) > 0, and pick any edge ei ∈ E[α] of that color, and put it

in the matching M , and then delete all edges of G that are either incident to ei or have the

same color as ei. Without loss of generality, we may assume that edge ei has color i. If we

can repeat the process k times, we have found our desired rainbow matching, so assume that

we run out of edges after r < k steps, and call the matching we receive M . Let h ≤ k − 1

be the first step after which only edges with colors present in M remain in Gh. Let β be a

color not used in M such that the last edges in E[β] were deleted at Step h. Such β exists,

since G has at least k colors on its edges.

By Claim 5.20, one step can reduce the weight w2(E[β]) by at most 1.5. It follows that

w2(E[β]) at Step i ≤ h is at most 1.5(h − i + 1). As we always pick the color with the

smallest weight, the color i ≤ h also had weight at most 1.5(h − i + 1) when we deleted

it in Step i. Every color i > h which appears in M has weight at most 1.5(k − 1) by

Claim 5.21. Thus, the total weight of colors in M at the moment of their deletion is at most

1.5
∑h

i=1 i+ 1.5(k − 1)(k − 1− h).
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Claim 5.22 For each vertex v, w2(v) ≤ (k + 1)/2.

Proof. Suppose there are two edges, e1 and e2, incident with v such that w2(e1) = w2(e2) =

1. By Claim 5.20, both edges are directed towards v and are in E0. Consider the orientation

of G where the directions of e1 and e2 have been reversed. Then the outdegree of v has been

increased by 2, while the outdegree of two other vertices changed from 1 to 0. This creates

a lexicographically larger outdegree sequence, a contradiction.

By Claim 5.17, if dc(v) ≥ k + 1, then w2(v) = 1. If dc(v) = k, then by the above

w2(v) ≤ 1 + (k − 1)/2. �

If an edge e has a color β not in M or has color i ≤ h but was deleted at Step j with

j < i, then e is incident to the edges {e1, . . . eh}. By Claim 5.22, the total weight of such

edges is at most 2h(k + 1)/2.

However, this is a contradiction because it implies

|C| ≤ h(k + 1) +
3

2

h∑
i=1

i+
3

2
(k− 1)(k− 1− h) =

3k2

2
− 3k +

3

2
+

3h2

4
− hk

2
+

13h

4
< 1.75k2.

Case C: |L| > |S∗| + 0.5|E∗0 |. We will introduce yet another weighting, now of vertices

in L. For every star S ∈ S∗, add a weight of 1/|L ∩ V (S)| to every vertex in L ∩ V (S). For

every edge e ∈ E∗0 , add a weight of 1/2 to the vertex in L∩ e. For every v ∈ L, let w3(v) be

the resulting weight of v.

Since
∑

v∈Lw3(v) = |S∗| + 0.5|E∗0 | < |L|, there is a vertex v ∈ L with w3(v) < 1.

Let S1, S2, . . . Sk be the k maximal monochromatic stars incident to v ordered so that |L ∩

V (Si)| ≤ |L ∩ V (Sj)| for 1 ≤ i < j ≤ k (where S1 ∈ E0 is allowed). Since v /∈ C, all

these stars have different centers and different colors. Now we greedily construct a rainbow

matching M of size k, using one edge from each Si as follows. Start from including into M

the edge in S1 containing v. Assume that for ` ≥ 2, we have picked a matching M containing
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one edge from each Si for 1 ≤ i ≤ `− 1. Since w3(v) < 1, we know that |L ∩ V (S`)| > ` for

` ≥ 2. As every edge in M contains at most one vertex in L, we can extend the matching

with an edge from the center of S` to an unused vertex in L ∩ V (S`).

To finish the proof, let us check that at least one of the above cases holds. If Cases 1

and 2 do not hold, then |C| < 1.75k2 and |S∗| + 0.5|E∗0 | < 2.5k2. Then, since n > 4.25k2,

|L| > 4.25k2 − 1.75k2 = 2.5k2, and we have Case 3. �
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Chapter 6

Concluding Remarks and Open
Problems

6.1 Critical Graphs

Exact values of fk(n) still remains open for most pairs (n, k). It would be an impressive

result to completely solve Conjecture 2.2. The techniques in this paper, specifically the

potential function, make heavy use of the linearity of the bound. It is non-trivial to attempt

to account for the non-linear nature of ε(n, k).

As there exist problems on coloring graphs with specific structure, there are analogues of

fk(n) for the family of graphs that are k-critical with some additional constraints. Specifi-

cally, there is an interest in describing the fewest edges in a k-critical n-vertex, Ks-free graph.

This is a natural direction given the breadth of graph coloring problems for Ks-free graphs

(such as Grötzsch’s Theorem that every triangle-free planar graph is 3-colorable). Other

constraints commonly considered involve girth, planarity, and forbidding cycles of specific

length.

As with the result on (1, 1)-critical graphs, there is also significant motivation to find

similar results on alternate versions of graph coloring. The most common alternate version

of graph coloring asked about by colleagues is list-coloring. Unfortunately, it appears that

the arguments used in this paper do not apply to list-coloring. The opening lemma, where

non-sparse subgraphs are replaced with specific constructions, requires a finite fixed set of

colors used on the overall graph. The technique clearly does apply to improper colorings of

graphs. However, attempts to identify the fewest number of edges in (2, 2)-critical graphs
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have stalled over specific, difficult-to-solve gaps. Future work would focus on improper

coloring graphs with many colors, to make full use of Corollary 2.18 and possible variations

of it.

A common generalization of any problem in graph theory is to restate the problem for

hypergraphs. Theorem 3.20 gives a rather conclusive answer for hypergraphs, but there

are other questions to answer. Specifically, it is an easy inductive argument to prove that

k-critical hypergraphs constructed from Constructions 3.16, 3.17, and 3.18 contain at least

three edges e1, e2, e3 such that |ei| = 2. Most results on k-critical hypergraphs are inter-

ested in r-uniform hypergraphs. From this discussion, it follows that Theorem 3.20 is not

sharp for r-uniform hypergraphs when r ≥ 3. Investigating stronger bounds with the added

assumption on uniform edges is a promising direction for future research.

A second question left open by Theorem 3.20 is an exact characterization of extremal

3-critical hypergraphs. To demonstrate the sharpness of our characterization of extremal

k-critical hypergraphs when k ≥ 4, we provide two constructions of 3-critical hypergraphs

H such that |E(H)| = |V (H)|.

Construction 6.1 Let T be a tree with set of leaves L such that for all u, v ∈ T , dist(u, v)

is even. Let e be a hyper edge such that e = L. Then T + e is a 3-critical hypergraph.

Construction 6.2 Let G1 and G2 be hypergraphs. Let xy, yz ∈ E(G1), ab, e ∈ E(G2),

b ∈ e, and a /∈ e. Let G be comprised of a disjoint copy of (G1 − xy− yz) and (G2 − e) with

y glued to b, z glued to a, and then add edge e′ = e ∪ {x}.

The graph depicted in Figure 6.1 (a K1,3, plus an edge around the leaves) can be con-

structed using Construction 6.1 or 6.2, but it cannot be constructed from Constructions

3.16, 3.17, and 3.18. This shows that the limitation of Theorem 3.20 to describe all extremal

k-critical hypergraphs only when k ≥ 4 is not just in the proof. Instead, there is something

more complicated going on.
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Figure 6.1: An example of a 3-critical hypergraph that cannot be described using Construc-
tion 3.16, 3.17, or 3.18.

6.2 Rainbow Matchings

An exact answer for f(k) is the most interesting question today in rainbow matching. Al-

though results by the author do not assume proper coloring, the relationship to Ryser’s

conjecture on Latin Squares makes this assumption a reasonable one.

Other questions in rainbow subgraphs remain open. For example, the length of the longest

path given a condition on the minimum color degree has had a sequence of successively

stronger results. Given the amount of work done, it would appear that new results would

be both interesting to a significantly sized audience and hard to obtain.
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