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Abstract

The problem of ascribing a semantic representation to text is an important one that can help

text understanding problems like textual entailment. In this thesis, we address the problem of

assigning a shallow semantic representation to text. This problem is traditionally studied in the

context of verbs and their nominalizations. We propose to extend the task to go beyond verbs and

nominalizations to include other linguistic constructions such as commas and prepositions

We develop an ontology of predicate-argument relations that commas and prepositions express

in text. Just like the verb and nominal semantic role labeling schemes, the relations we propose are

domain independent. For these two classes of phenomena, we introduce new corpora where these

relations are annotated.

From the machine learning perspective, learning to predicting these relations is a structured

learning problem. However, we only have the small (for commas) or partially annotated (for

prepositions) data sets. To predict the new relations, we show that using linguistic knowledge and

information about output structure can bias the learning to build robust models.

Finally, we observe that the relations expressed by the various phenomena interact with each

other by constraining each others’ output. We show that we can take advantage of these inter-

dependencies by enforcing coherence between their predictions. By constraining inference using

linguistic knowledge, we can improve relation prediction performance.
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Chapter 1

Introduction

1.1 Motivation: The End

Understanding text is a complex cognitive endeavor which requires the combination of linguistic

cues with background knowledge to create a coherent, structured interpretation of the text. Yet,

people are surprisingly adept at this task. Whether computer programs can mimic this human abil-

ity is an important open question, the resolution of which can lead to natural language processing

(NLP) applications that can reason about natural text.

Recognizing textual entailment and information extraction are two such examples of natural

language understanding applications that push research boundaries. We will briefly discuss these

applications, which have seen recent research, and revisit them in the final chapter.

Recognizing Textual Entailment The task of recognizing textual entailment (TE) has been

the focus of the PASCAL challenges (Dagan et al. (2006) and many others). Given two text

fragments, called the text and the hypothesis, the goal is to identify whether the hypothesis can be

inferred from the text.

For example, the following sentences are taken from the TE corpus annotated for the first

PASCAL challenge:

(1) a. Latvia, for instance, is the lowest-ranked team in the field but defeated World Cup

semifinalist Turkey in a playoff to qualify for the final 16 of Euro 2004.

b. Turkey was defeated by Latvia.

c. Latvia was defeated by Turkey.

Here, sentence (a) entails sentence (b) and not sentence (c). It has been pointed out, e.g.

by Vanderwende and Dolan (2006), that to correctly make these decisions we need the ability to
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automatically identify predicates in the text along with their arguments. In the worst case, textual

entailment can be arbitrarily difficult because it requires complex chains of reasoning involving the

entities mentioned and background knowledge about them.

Information Extraction Information extraction (IE) is broadly defined as the task of populat-

ing a structured database with information from natural language text. We will use event extraction

as an example here, which has been the focus of the Message Understanding Conferences (Grish-

man and Sundheim (1996) summarizes the first six MUC conferences) and the Automatic Content

Extraction (ACE) program (Doddington et al., 2004).

With an information extraction system, we could convert complex text into records in a

database. For example, suppose we have the following news report:

(2) A police officer in the restive southern province of Ingushetia, neighboring Chechnya, has

been wounded by unidentified assailants, officials said Sunday. The assailants ambushed the

officer’s car and sprayed it with automatic gunfire on Saturday, said Roman Shchekotin, a

spokesman for Russia’s Interior Ministry branch in southern Russia. In Kabardino-Balkariya,

another nearby North Caucasus province, police arrested a suspected militant Saturday,

Shchekotin said.

An event extraction system that is trained to identify instances of attacks and extract meta-data

about them could identify the following information from this text.

Predicate Attack

Victim A police officer

Perpetrator unidentified assailants

MeansOfAttack automatic gunfire

Location the restive southern province of Ingushetia, neighboring Chechnya

Time Saturday

Semantics plays a crucial role in making entailment decisions and information extraction. In

this dissertation, we investigate the problem of representing sentences in a predicate-argument form

that conveys shallow semantics. To do so, we propose an extension to the NLP task of semantic

role labeling (Palmer et al., 2010) and address the problem of automatically predicting this
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structure using statistical methods.

The rest of this chapter gives an overview of this dissertation. Section 1.2 discusses the need

for a semantic representation of text. In Section 1.3, we outline the contributions of this thesis,

and in section 1.4, we state the scope of this work. Finally, section 1.5 gives a road map for the

rest of this thesis.

1.2 The Need for a Semantic Representation

Over the last couple of decades, we have seen a significant headway in statistical syntactic parsing

starting with the work of Charniak (1997) and Collins (1997). In recent years, we have also seen

syntactic parse trees used to build applications like relation extraction (for example, Culotta and

Sorenson (2004) and others) and textual entailment (for example, Bar-Haim et al. (2007b); Haghighi

et al. (2005) and others). However, syntactic parse structures do not provide the right abstraction

for such applications for two reasons:

1. Alternations of sentences, with different parse trees, can mean the same. We will refer to this

as the problem of variability.

2. Two parse trees with the same structure could have different meanings. We will call this the

problem of ambiguity.

Variability leads to two sentences conveying the same information despite having different sur-

face forms, and hence different syntactic structures. The entailment examples in (1) exhibit the

active/passive alternation. Consider the simplified version below:

(3) a. Latvia defeated Turkey.

b. Turkey was defeated by Latvia.

The parse trees for the two sentences are shown in Figure 1.1. While the two sentences con-

vey the same information, the parse trees are not similar, thus making problem of determining

entailment difficult. However, both sentences can be represented by the same predicate argument

structure, shown below1:

1In this dissertation, we adopt the following representation to show a predicate argument structure:
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Turkey
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defeated
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NNP

Latvia

S

VP

VP

PP
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Latvia

IN

by

VBN
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AUX

was

NP

NNP

Turkey

Figure 1.1: Parse trees for sentences in the entailment pair in (3). Compare to the predicate-
argument structure that abstracts away the difference between the active and passive voice.

Predicate defeat

A0 Latvia (entity victorious)

A1 Turkey (entity defeated)

Indeed, for several alternations, entailment is preserved even though the syntactic structure

changes. The sentences in (4) shows an example of the causative/inchoative alternation,

(4) a. John boiled the water.

b. The water boiled.

Here, the water is the object of the verb boil in the first sentence, while it is the subject in the

second one, as shown in Figure 1.2. However, in both cases, the water is the entity that boils.

These examples show the problem of variability and highlight the need to build a representation

that abstracts away the different syntactic representations of the text.

On the other hand, because of ambiguity, the syntactic structure of a sentence does not always

reveal its meaning. We see this in the case of syntactically identical prepositional phrases that

have different meanings, as in the examples in figure 1.3. The first prepositional phrase expresses

Predicate predicate-name

arg-label-1 Argument text (explanation)
arg-label-2 Argument text (explanation)

A predicate can have an arbitrary number of arguments, depending on the definition of the predicate.
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VP
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water

DT
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VBD
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NP

NNP
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NP

NN
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Figure 1.2: Parse trees for the sentences in example (4). We see that the phrase the water is the
object of the verb in the first example, while it is the subject in the second one.

a locative meaning, while the second indicates a time point. However, the structure of the non-

terminals does not give this information. This shows that the syntactic structure alone is insufficient

to address the ambiguity of syntactic structures and capture the meaning of text.

VP

PP

NP

the border

IN

on

VBD

camped

VP

PP

NP

Sunday

IN

on

VBD

camped

Figure 1.3: Two prepositional phrases where the syntactic structure does not reveal the meaning of
the phrase. The phrases are syntactically identical, except for the words in the sentence. However,
the syntax does not expose the difference in their meanings.

The problems of variability and ambiguity motivate the need for a shallow semantic represen-

tation that goes beyond the syntactic structure.

1.3 Contributions of This Thesis

In this thesis, we investigate the problem of ascribing a semantic representation to text that ab-

stracts away from syntactic alterations and exposes the differences between certain syntactically

identical constructions. In particular, we make the following claims in this thesis:

Semantic relations are triggered not only by verbs and nominalizations, but also by

other tokens in sentences. These relations can be analyzed systematically, in a syntax-
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driven manner, just like verbs and nominalizations. To reduce dependence on annotated

data, we can take advantage of structure, even when it is not explicitly annotated. We

can exploit the inherent constraints that stem from the fact that the input is a natural

language sentence.

The primary contributions of this thesis are summarized below:

1. We propose an extension to the NLP task of Semantic Role Labeling (SRL) (Palmer et al.,

2010). Research in this task has focused on semantic relations that are triggered by verbs

and their nominalizations in sentences. We argue that analyzing verbs and nominalizations

alone is insufficient for natural language understanding applications and extend the definition

of the task to include relations triggered by other tokens like prepositions and commas.

2. We define an inventory of relations that can be expressed by commas and prepositions and

introduce new corpora that annotates these relations.

3. Using the new and existing corpora, we build statistical models that predict the the se-

mantic relations expressed by verbs, nominalizations, prepositions and commas. In order to

effectively model these relations using the limited available data, we bias the learning and

prediction using linguistic knowledge.

(a) For preposition relations, we model the relations, their arguments and the types of the

arguments jointly by treating the arguments and types as latent variables.

(b) We introduce an algorithm that uses the annotated corpus to learn sentence transfor-

mation rules based on the parse trees. We show that this is an effective way to identify

comma relations.

(c) Finally, we point out that the different extensions to SRL are not independent. As a case

study, we show that jointly modeling preposition relations along with the arguments of

verbs can lead to an improvement in the performance of both.

1.4 Scope and Assumptions

We make two scope-limiting assumptions in this thesis.
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First, the representation constructed here does not account for phenomena like quantification,

coreference or entity resolution. The study of these higher order phenomena is indeed important

and there has been work in the literature which deals with these as separate problems. For example,

Bengtson and Roth (2008); Haghighi and Klein (2010) and others study the problem of coreference

resolution. Ratinov and Roth (2009) and Ratinov et al. (2011) address the problem of identifying

named entities and linking them to a reference collection.

Second, we do not consider cross-sentence discourse relations. This restriction allows us to use

syntactic structure of sentences as a base to build the shallow semantic representation. The Penn

Discourse TreeBank of Miltsakaki et al. (2004) and subsequent work study discourse relations that

are not necessarily constrained by sentence boundaries.

In order to assign a semantic interpretation to text, we will indeed have to address these

questions. We will return to this issue in the conclusion (Chapter 9).

From a procedural point of view, we assume that our input consists not only of raw text, but is

also syntactically processed with part-of-speech and parse annotation. The interaction between the

syntactic and semantic analysis of text has been studied via the CoNLL shared tasks of 2008 and

2009 (Surdeanu et al., 2008; Hajič et al., 2009). While the question of jointly predicting a syntactic

and semantic structure for a sentence is an interesting one, most of the participants in the shared

task (including the best performing system) used the pipeline from syntax to semantic relations.

1.5 A Road Map

This section presents a readers guide for the rest of the thesis, which can be divided into three

logical segments.

Part I: Background

The first part of this thesis surveys background work in the areas of semantic role labeling, struc-

tured learning and inference. These chapters do not provide exhaustive surveys of these research

directions and we will only go over relevant material here and include additional pointers as nec-

essary. A reader familiar with these areas can skim over this part of the thesis, noting only the

summary of notation at the end of the machine learning survey.
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• Chapter 2 discusses techniques for statistical machine learning and structure prediction. It

also introduces the notation for the learning algorithms used throughout the thesis.

• Chapter 3 briefly traces the history of thematic relations from a linguistic perspective. It also

presents an overview of statistical techniques for semantic role labeling.

Part II: Extending Semantic Role Labeling

The second part of the thesis motivates the need to extend the definition of semantic role labeling,

and presents specific extensions along with machine learning approaches to predict these structures.

• Chapter 4 shows, using examples, that for text understanding applications, analyzing only

verbs and nominalizations is insufficient and we need to consider other linguistic construc-

tions. We identify the three sub-problems that need to be solved for semantic role labeling,

irrespective of the construction that triggers the relations.

• Chapter 5 presents an approach for identifying predicate-argument structures triggered by

verbs and nominalizations. This approach extends the work of Punyakanok et al. (2008) to

identify verb and nominal triggers, their senses and arguments.

• Chapter 6 proposes a set of relations that are expressed by prepositions and presents an

approach for identifying preposition relations jointly with their arguments and the types of

the arguments.

• Chapter 7 identifies a set of relations expressed by commas along with an algorithm that

learns to predict these relations.

• Chapter 8 addresses the interactions between the preposition and verb relations and presents

an approach that can learn to predict a coherent structure for a sentence using only a limited

amount of jointly labeled data.

Part III: Conclusion

The final part of the thesis offers concluding remarks.
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• Chapter 9 summarizes the contributions of this dissertation and identifies directions for future

research that can be built on top of this work.

9



Chapter 2

Predicting Structures in NLP

This chapter presents a survey of the machine learning techniques employed in this thesis. In

Section 2.1, we will define the notion of a structure as an assignment to a set of binary variables.

Using this definition, Section 2.2 surveys inference and learning algorithms. Finally, section 2.4

summarizes the notation introduced in this chapter.

2.1 What is a Structure?

The concept of a structure is an important one in computational linguistics and machine learning.

Burton-Roberts (1997) informally defines a structure as a complex object that is divisible into

component parts, each of which can belong to different categories, have specific functions in the

complete object and are arranged in a specifiable way.

We will use a simplified version of the part-of-speech tagging task as a running example in this

section. We will use the following sentence as an illustrative example:

(5) Trouble dogs John.

Consider a simplified language with only three parts of speech: Verb, Noun and Punctuation.

Under this scheme, the output structure for the sentence (5) is Noun, Verb, Noun, Punctuation,

each label corresponding to one token in the sentence. Here, the assignment of labels for each word

corresponds to the notion of parts in the informal definition above. The sequence of the tokens in

the sentence specifies the arrangement of the parts.

2.1.1 Structures as Binary Vectors

Many NLP tasks can be phrased as structure prediction problems, where the goal is to convert

(possibly pre-processed) text into a structured form. In this thesis, our goal is to convert input text
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into a structured shallow semantic representation. We will denote pre-processed input sentences

by x. Without loss of generality, we can define the structure to be a collection of binary decisions,

each corresponding to a part of the structure. We will denote this output by y, which is comprised

of individual binary decisions {y1, y2, · · · }.1

In the running example of part-of-speech tagging, the task is typically modeled using a hidden

Markov model, where each label is associated with a preference for generating a word (called the

emission) and also the next label in the sequence (called the transition). Since, in our toy setting,

there are 3 different part-of-speech categories, we have to choose from among one of three labels

for each word. To do so, we will introduce three binary variables for each token, only one of which

can be set to 1. We will refer to these variables as yi,j,E to indicate the decision that the jth

label emits the ith word. To capture the transition decisions, we will introduce a decision for each

possible transition, giving us 9 variables for each word. We will use the notation yi,j,k,T to indicate

the decision that the ith token is labeled with the jth tag and the next word is labeled with the

kth tag. For the sentence (5), we will thus create 12 emission variables and 39 transition variables

(using the convention that the transition for the first label is from a dummy start state).

In general, the complete structure for a sentence is determined by an assignment to all the

inference variables. We will refer to variables of a structure that are set to 1 as the active elements

or active variables of the structure and the others as the inactive ones.

2.1.2 The Two Search Problems of Structured Learning

From the machine learning perspective, there are two related problems: inference and learning.

Inference is the problem of predicting the best feasible structure for a given input. The

notion of “best” is defined using a scoring function that assigns a real-valued score to each possible

structure. The structure that has the highest score is considered to be the best one. Thus, inference

is the search problem of finding the highest scoring feasible set of active variables for a given input.

Learning is the problem of finding the scoring function that can drive inference. In the general

setting for supervised learning, nature provides a collection of labeled examples – that is, examples

xi ∈ X that are paired with a structure yi ∈ Y, forming a dataset D = {(xi,yi)}. The goal of

1Throughout this thesis, we will use subscripts to denote components of vectors and superscripts to enumerate
examples of a dataset.
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learning is to find a function f : X × Y → < using this dataset, which when coupled with an

inference algorithm can label previously unseen examples as arg maxy f(x,y). Thus, learning is

also a search problem, where the search space (or the hypothesis space) is the space of functions

that assign scores to structures.

2.2 Learning and Inference with Linear Models

In Natural Language Processing, the most widely used hypothesis space is the linear model (Roth,

1998; Collins, 2002). Under this model, for an input x, a structure y is scored as follows2:

f(x,y) = wTΦ (x,y) (2.1)

Here, w ∈ <n is a dense high dimensional weight vector, while Φ (x,y) is a n dimensional feature

vector. The dimensionality of the feature space (denoted by n here) is usually very high. The

feature function, Φ, is a deterministic function that captures attributes of the input and output.

Feature functions are further described in Section 2.2.1. With a linear model, the goal of learning

is to use the labeled dataset D to train a weight vector w.

2.2.1 Feature Representation for Structures

For an input x and a structure y, features encode properties associated with the input and output

and also inter-dependencies between parts of the output.

In our running example, for the model described in Section 2.1.1, we can define a feature repre-

sentation that captures (a) token-tag dependencies for the emissions, and (b) tag-tag dependencies

for the transitions. For token-tag dependencies, we will use indicators properties of the token and

also its neighbors. For example, we could use the following set of properties:

1. The lower cased token,

2. Three character long prefixes and suffixes of the token,

3. Lower cased previous and next tokens, and

2Note that this includes log-linear models. While log-linear models are trained with a probabilistic interpretation,
at prediction time, the scoring function is the same as Equation 2.1.
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4. Indicators for whether the token is the first/last token in the sentence.

These properties, which are string valued, can be mapped to integers using a dictionary called the

lexicon. This gives us a sparse feature vector3 that corresponds to the binary decision variable

yi,j,E defined in Section 2.1.

To capture tag-tag dependencies, for a pair of consecutive tags j and k in the structure, we

can introduce a feature “j → k” corresponding to the binary decision variable yi,j,k,T . For the

example structure for sentence (5), this procedure will give us the following features: Start→Noun,

Noun→Verb, Verb→Noun and Noun→Punctuation. Each of these can be converted to a sparse

vector (in this case, with one non-zero element each) using the lexicon.

In general, for a decision variable yi of a structure y, we will define a feature generating function

φi : X → <n, which is typically a sparse vector. This function extracts features for the structure y

if the corresponding variable is active. The feature representation for the entire structure will then

be defined to be the summation of the feature vectors for each of its parts. That is, we can define

the feature generating function for the full structure as

Φ (x,y) =
∑
i

yiφi (x) (2.2)

In the rest of this thesis, we will assume the existence of a lexicon and specify features as a list

of properties of the input and output, as above. Using the definition of feature vectors allows us

to define the learning and inference procedures.

2.2.2 Inference

The objective of inference is to find the highest scoring feasible structure. Since the feature vector

for a structure decomposes over its constituent parts, as in Equation 2.2, so does its score. From

Equation (2.1), we can write inference as the following problem:

arg max
y

wTΦ (x,y) = arg max
y

∑
i

yi wTφi (x) (2.3)

3The feature vector is typically sparse in comparison to the underlying dimensionality. That is, the number of
non-zero values in the vector is much smaller than the size of the weight vector. However, there is no technical reason
for the feature vector to be sparse. In general, the feature vector can be any element of <n for a n dimensional
feature space.
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Here, all possible assignments to the inference variables y are not allowed. In our running ex-

ample, since each word can have only one part-of-speech tag, we can write the following constraint:

∀i, yi,V erb,E + yi,Noun,E + yi,Punctuation,E = 1 (2.4)

Similarly, we can also write constraints that say that if the transition from a label j to label k is

active for any word i, then the ith label should be j and the (i + 1)th one should be k and vice

versa. This constraint can also be stated using linear equations over the inference variables.

In general, we can state linear (in)equalities that allow only a certain subset of possible struc-

tures. The work of Rizzolo and Roth (2007) presents a general scheme for converting logical

statements into such linear inequalities. In this setting, inference is the combinatorial optimiza-

tion problem of finding a score-maximizing feasible solution for this 0-1 integer linear program

(ILP).

Note that though we can represent inference as an integer linear program, we do not necessarily

have to solve it as one. For some special structures (such as the hidden Markov model for the

part-of-speech tagging example), inference can be solved using specialized dynamic programming

algorithms that run in polynomial time. In general, however, the problem of solving an integer

linear program can be computationally intractable.

Many approaches for inference have been explored in the literature for cases when inference is

not provably tractable. One approach is to use an off-the-shelf integer linear program solver as

a black box to perform inference. In recent years, we have seen the use of other techniques such

as beam search (Russell and Norvig, 2003), cutting plane inference (Sontag and Jaakkola, 2007;

Riedel, 2008), dual decomposition (Rush et al., 2010; Koo et al., 2010) and Lagrangian relaxation

(Rush and Collins, 2011; Chang and Collins, 2011). We refer the reader to these papers for details

about the inference algorithms.

In this thesis, unless otherwise specified, we have used cutting plane inference that uses the

Gurobi solver as its underlying inference mechanism.4. The cutting plane method, listed as Al-

gorithm 1 assumes the existence of a base ILP solver that can solve any integer linear program

4We used the state-of-the-art Gurobi engine Gurobi Optimization, Inc. (2012) for all the experiments described
in this thesis.

14



instance. A subset of constraints are marked as the cutting plane constraints and are incrementally

added to the solver only if they are violated. First, the problem is solved without any of the cutting

plane constraints. If any cutting plane constraints are violated, these are added to the ILP and the

base solver is called again. Note that this is not an expensive step because the solver can re-use

state from its previous solution. This process is repeated till no constraint is violated, in which

case we have a solution, or until the number of iterations crosses a threshold, in which case, we can

return the best solution so far. In all the experiments described in this thesis, we allow the loop to

iterate 100 times.

Algorithm 1 The cutting plane method for solving an ILP

Input: An ILP P , a set of additional constraints C called the cutting plane constraints, total
number of iterations T

Output: The solution of P in the presence of the cutting plane constraints C
1: Initialize ILP p to be the same as P
2: for t = 1, 2, · · · , T do
3: y← solve p using the base solver
4: Let v be the set of constraints in C that are violated by y
5: if v = ∅ then
6: return y
7: else
8: Add v to the constraints of ILP p
9: end if

10: end for
11: Return y, the best solution so far.

2.2.3 Learning

The goal of learning is to use the dataset D to determine a weight vector that can score structures.

In this section, we will see two structured learning algorithms that are used in this thesis: Perceptron

and Support Vector Machine (SVM).

Structured Perceptron

The structured Perceptron (Collins, 2000), listed as Algorithm 2, is based on the Perceptron algo-

rithm of Rosenblatt (1958). This algorithm iterates over the examples in D to find a weight vector

that gives a higher score to annotated structures than others. To do so, for an example (xi,yi), it

uses the current estimate of the weight vector to find the highest scoring structure (line 6). If this
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structure is not the same as the annotated one, then it updates the weight vector in the direction

of the features for the annotated structure and away from those of the predicted one (line 9).

It can be shown that if the data is separable (that is, if there is some weight vector that can

correctly predict all the annotated examples), then this algorithm will eventually converge to a

separating hyperplane that correctly predicts the structure for all the training examples.

Algorithm 2 The averaged structured Perceptron algorithm

Input: Dataset D = {xi,yi}, number of epochs T
Output: The averaged weight vector

1: Initialize w← 0,wA ← 0
2: Initialize n← 1
3: for t = 1, 2, · · · , T do
4: Shuffle the examples in the dataset D
5: for all {xi,yi} ∈ D do
6: Predict ŷ← arg maxy wTφ(xi,y)
7: if ŷ 6= yi then
8: Set u← Φ

(
xi,yi

)
− Φ

(
xi, ŷ

)
9: Update w← w + u

10: Update wA ← wA + nu
11: end if
12: Update n← n+ 1
13: end for
14: end for
15: return w0 − wA

n

One important addition to the algorithm described above is the use of averaging: The final

output of the algorithm is the average of the weight vectors over every iteration. This helps the

algorithm to generalize well even when the data set is not separable (Freund and Schapire, 1999;

Collins and Duffy, 2002).

Structural Support Vector Machines

The other learning algorithm we will use in this thesis is the structural support vector machine

(SVM). This is a generalization of the binary SVM algorithm (Cortes and Vapnik, 1995) to struc-

tured outputs (Tsochantaridis et al., 2005).

The goal of learning is to solve the following minimization problem:

min
w

1

2
wTw + C

∑
i

L(xi,yi,w) (2.5)
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where L(xi,yi,w) is the loss function for the structured prediction. The loss function is written as

L(xi,yi,w) = `(max
y

(∆(yi,y)−wTΦ
(
xi,yi

)
+ wTΦ

(
xi,y

)
(2.6)

Here, ∆ quantifies the quality of a structure y with respect to the annotated structure yi and is

typically defined to be the Hamming distance between their binary representations. The function

` : < → < can be instantiated by loss functions like the hinge-loss, with `(x) = max(0, x) or the

squared-hinge loss, with `(x) = max(0, x)2.

Different algorithms have been proposed in the literature to solve the optimization problem (for

example, Joachims et al. (2009), Shalev-Shwartz et al. (2011), Chang et al. (2010b)). In this thesis,

we use the solver based on the work of Chang et al. (2010b), which uses the squared-hinge loss

and adopts the cutting plane strategy of Joachims et al. (2009) and uses dual-coordinate descent

to solve the resulting series of optimization problems.

All these algorithms require us to define a procedure for loss-augmented inference, which

solves the following modified inference problem for a training example (xi,yi):

max
y

wTΦ
(
xi,y

)
+ ∆(y,yi) (2.7)

Since ∆ is the Hamming loss, this can be written as an ILP instance and, if necessary, can be

solved as one.

2.3 Discussion and Special Cases

For learning and inference with structured models, we need to specify the following:

1. The feature representation for a structure y for an input x, Φ (x,y)

2. An inference algorithm that finds the best structure for an input x using a weight vector w.

3. A learning algorithm.

We will now see an important special case: multiclass classification. Historically, binary and

multiclass classification were developed before the structured variants. However, mathematically,
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structured learning generalizes them.

For multiclass classification, the goal of prediction is to assign one of a fixed set of N labels.

In other words, the structure y can be written as a collection of N binary indicators exactly one

of which can be 1. Using a feature representation of the input alone Φ(x), we define Φ (x,y)

as
∑
i
yiΦ(x). This corresponds to the standard Kessler construction for multiclass classification

(Duda et al., 2001).

2.4 Summary of Notation

Symbol Definition

x Input text examples, defined in Section 2.1.1.

y Structured output, represented as a binary vector, defined in Section 2.1.1.

yi ith element of the structure y, defined in Section 2.1.1. We will use descriptive

subscripts that indicate the provenance of the sub-structure.

w High dimensional dense weight vector, defined in Section 2.2.

Φ (x,y) Feature representation for the structure y for the input x, defined in Section 2.2.

φi (x) Features for the yi, defined in Section 2.2.1.

D A dataset consisting of annotated examples (xi,yi).

∆(yi,y) The Hamming distance between structures yi and y, defined in Section 2.2.3.
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Chapter 3

Semantic Role Labeling: The
Linguistics

In the introduction, we saw the need for a shallow semantic representation of text. This chapter

is a survey of the linguistic roots of the problem of semantic role labeling. Section 3.1 traces the

history of frame semantics. Section 3.2 summarizes recent machine learning based approaches for

addressing the problem of ascribing a semantic structure to sentences.

3.1 Thematic Roles and Frames

3.1.1 Thematic Roles

The thematic structure of a verb is a representation of its semantics, consisting of predicate, corre-

sponding to event or state expressed by the verb, and its arguments, which identify its participants.

The arguments are also called the thematic roles or the semantic roles for the predicate and have

been seen as an important abstraction for both language understanding and acquisition (Chierchia

and McConnell-Ginet, 2000).

Perhaps the oldest known theory of thematic structure comes from the work of the Sanskrit

grammarian Panini in the 6th century BCE, who described a set of grammatical rules that identifies

the correspondence between semantic representations of sentences their phonetic representations.

His work describes thematic roles, called karakas, that act as an intermediary between a mor-

phosyntactic expression and its meaning.

In modern generative grammar, semantic roles were introduced by the thesis of Gruber (1965)

(and consequently taken up by Jackendoff (1976) and others) and the case grammar of Fillmore

(1968). Fillmore observed that verb-argument relations exist across languages and described the-

matic role types (which he called deep cases) as comprising “a set of universal, presumably innate,

concepts which identify certain types of judgments human beings are capable of making about
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the events that are going on around them, judgments about such matters as who did it, who it

happened to, and what got changed.”

To illustrate thematic roles in English, consider the two sentences in example (6) below.

(6) (a) John baked the cake.

(b) The cake is baking.

Both sentences express the predicate bake. In sentence (a), John serves as the Agent, which can be

defined as the animate instigator of the action and the cake is the Theme, which indicates the entity

undergoing change in the event. Sentence (b) only identifies the Theme of the same relation. Note

that the Theme of the verb bake is expressed as the object in the sentence (a) while it is the subject

of sentence (b). Early work in thematic roles focused on the problem of argument selection, that

is, identifying such mappings between syntactic positions to semantic roles.

Fillmore’s original work posited an initial list of thematic role types1. However, since the early

work on case grammar, it is understood that the set of role types is not completely known and

additional roles types will be needed. Over the years, many role types have been proposed in the

literature, leading to a proliferation of role types with fine semantic distinctions between them.

To counter this problem, Dowty (1991) suggested that the set of roles be collapsed to two cluster

concepts – proto-agent and proto-patient – which are defined as a only set of properties. Barker

and Dowty (1993) extended this argument to non-verbal thematic roles.

3.1.2 Frames

The theory of case grammar led to the development of frame semantics by Fillmore (1976).

Frames, as defined by Minsky (1975), are structures that represent a stereotyped intuition. In the

linguistic context, frames refer to cognitive structures that are evoked by words associated with it

and comprise of frame elements that correspond to the notion of semantic roles. For example, the

Commercial Transaction frame can be evoked by words like buy and sell and consists of frame

elements Buyer, Seller, Goods and Money. Thus, the sentence “John bought a car from Mary.”

could be represented as:

1Fillmore suggested the following preliminary list of cases: Agent, Instrument, Dative, Factitive, Locative and
Objective.
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Predicate Commercial Transaction

Seller John

Buyer Mary

Goods a car

3.2 Statistical Approaches

In this section, we will take a brief look at recent corpus-driven approaches that address the problem

of semantic role labeling.

3.2.1 Corpora

FrameNet (Fillmore et al., 2003; Ruppenhofer et al., 2006) is a knowledge base of semantic frames

along with annotated text. This annotation scheme follows the frame semantics specified by Fill-

more.

The study of Levin (1993) argues that the underlying semantics of a verb manifests itself via its

syntactic frame. Levin also defined classes of verbs that share syntactic frames and, consequently,

their semantic meaning. Following this work, PropBank (Kingsbury and Palmer, 2002, 2003;

Palmer et al., 2005) takes a syntax-driven approach and annotates semantic roles associated with

verbs in the Penn Treebank (Marcus et al., 1994). The PropBank annotation scheme identifies

a set core arguments (A0-A5 and AA) that are common to all verbs. The interpretation of these

labels is dependent on the verb and its frameset which corresponds to the sense of the verb.

PropBank defines the senses of the verbs and the interpretations of the core arguments in frame

files, which consist of one frameset per sense of the verb. Apart from the core arguments, there

are 13 modifier arguments which act as adjuncts and whose meaning is fixed across verbs: AM-ADV,

AM-DIR, AM-DIS, AM-EXT, AM-LOC, AM-MNR, AM-MOD, AM-NEG, AM-PRD, AM-PRP, AM-REC, AM-TMP. The

two other classes of arguments are references and continuations. A reference to a core argument

or a modifier X, denoted by R-X, indicates that the span of text is a relative pronoun that refers

to the actual argument X that is outside that clause that contains the verb. A continuation of an

argument X, denoted by C-X, indicates continuations of non-contiguous arguments.
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While FrameNet defines frame-specific argument labels, PropBank uses a small set of abstract

semantic roles that can be thought of as extensions to the proto-roles approach proposed by Dowty

(1991). The two most frequent argument A0 and A1 generally correspond to the notions of proto-

agent and proto-patient respectively, while the other core arguments A2-5 are overloaded and are

not semantically meaningful labels.

The NomBank project (Meyers et al., 2004) annotated the Treebank with similarly abstract

semantic roles associated with nominalizations of verbs.

The goal of verb and nominal semantic role labeling is to identify the predicate-argument

structure defined by verbs and nominalizations in sentences. For example, in John gave a rose to

Mary, the verb give takes three arguments: [A0 John], [A1 a rose], [A2 to Mary], denoting the giver,

the thing given and the recipient respectively. The final interpretation of the abstract roles comes

from the definition of the arguments for the specific verb.

3.2.2 Predicting Semantic Roles

Gildea and Jurafsky (2002) was one of the earliest works that addressed the problem of predicting

semantic roles. Their work used the FrameNet annotation scheme. In recent years, FrameNet

semantic role labeling has seen increased interest via the SemEval 2007 shared task (Baker et al.,

2007). The work of Das et al. (2010) represents the current state-of-the-art for this task.

The CoNLL shared tasks of 2005 and 2005 (Carreras and Màrquez, 2004, 2005) used the Prop-

Bank corpus to predict argument structures for verbs. The systems of Punyakanok et al. (2004);

Koomen et al. (2005); Punyakanok et al. (2008) and Toutanova et al. (2005, 2008) were the best

performing ones in these shared tasks and employed inference for each verb to predict a globally

coherent assignment to its arguments. We describe the system of Punyakanok et al. (2008) and

extend it in Chapter 5. Since then there have been several other works that deal with verb semantic

role labeling. Palmer et al. (2010) gives an overview of recent work in this area.

3.2.3 Other Work

VerbNet (Kipper, 2005) is a domain-independent verb lexicon that extends the work of Levin

(1993). It consists of classes of verbs that are syntactically and semantically alike along with a
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description of their thematic roles and semantic restrictions of arguments. In addition, it also

includes mappings to other resources like WordNet (Fellbaum, 1998), PropBank and FrameNet.

Kipper et al. (2004) used preposition semantic roles to significantly extend the VerbNet lexicon.

SemLink2 is an ongoing project that whose aim is to unify the various lexical resources described

here. It provides a mapping between PropBank, FrameNet, VerbNet and Wordnet.

2http://verbs.colorado.edu/semlink
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Chapter 4

Extending Semantic Role Labeling

This chapter provides the motivation for the work in this thesis and presents the need to extend

PropBank-style Semantic Role Labeling. Using several text understanding tasks, in Section 4.1

we will see why the standard task of semantic role labeling can be extended to serve as a better

foundation for building NLP-driven applications. Section 4.2 provides a generic definition of the

problem of semantic role labeling and identifies the common sub-tasks that need to be solved for

each of the components of the extended SRL problem. In section 4.3, we will look at why such an

extension can be challenging, not only because of the paucity of annotated data and also due to

the increased computational complexity of the prediction task.

4.1 Introduction: The ‘Why’

We saw in Chapter 3 that semantic role extraction has been studied in the literature in the context

of verb and nominal predicates via the PropBank and NomBank corpora. However, sentences

also express semantic relations via other linguistic constructions and in order to build NLP-driven

applications that rely on the meaning of the text, we need a structured representation of the text

that can account for such relations. To highlight this, we will look at textual entailment, event

extraction and question answering examples where verb-centric SRL is not sufficient.

4.1.1 Textual Entailment

In Section 1.1, we identified the task of recognizing textual entailment as an application where

linguistic cues and background knowledge about the world need to be brought together to make a

coherent decision.
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Sammons et al. (2009) and Chang et al. (2010a) present an inference-driven approach for textual

entailment that depends on finding an alignment between the verb SRL representations of the text

and the hypothesis. However, verb analysis alone is insufficient, as shown by Sammons et al. (2010),

which studied the impact of various linguistic phenomena using a subset of RTE-5 test examples.

For each entailment pair, this work identified linguistic phenomena whose analysis is needed to

make the entailment decision and found that implicit relations account for 23.3% of the pairs

annotated1.

The following entailment pairs are taken from the annotated RTE-5 data, which highlight the

need to analyze such implicit relations. In each pair, the text and hypothesis are represented by T

and H respectively.

(7) T A Soyuz capsule carrying a Russian cosmonaut, an American astronaut and U.S. bil-

lionaire tourist Charles Simonyi has docked at the international space station.

H Charles Simonyi is a Russian cosmonaut.

Label: Not entailed.

(8) T The Wildlife Conservation Society, which manages the city’s zoos and the New York

Aquarium in Coney Island, is among the many organizations in the city facing steep

budget cuts.

H The New York Aquarium is located in Coney Island.

Label: Entailed.

In the entailment pair (7), the hypothesis is not entailed by the text because Charles Simonyi is

not in apposition with a Russian cosmonaut and is in fact a member of a three element comma

list. This information is expressed in the text via the comma structure. In the pair (8), the phrases

the New York Aquarium and Coney Island are connected by the preposition in in the text and the

hypothesis asks whether the preposition expresses a locative relation.

While the merits of an alignment-based-entailment approach have been demonstrated in the

literature, this approach can not make valid entailment decisions for the examples above using only

1Sammons et al. (2010) define an implicit relation as one that is not expressed by verbs and nominalizations in
text and is, instead, inferred by analyzing the internal structure of noun phrases.

25



verb and nominal semantic role labeling. In order to better capture the entailment decision, we

need a representation that accounts for implicit relations like the ones described above.

4.1.2 Event Extraction

Our second motivating example is that of event extraction, which is the problem of mapping text

into an ontology of events. Suppose we have an ontology of sport-related events that includes

a Score event, whose arguments include Scorer, which identifies the agent responsible for the

event and NumberOfPoints, which is the number of points (an abstraction over points, goals

and runs) that were accumulated in that event.

Each of the following sentences contains a Score event with both arguments realized.

(9) Babe Ruth hit a home run.

(10) The home run by Babe Ruth changed the game.

(11) The visitors lost the match despite Sachin Tendulkar’s unbeaten century.

In the sentence (9), verb-centered semantic role labeling can identify the arguments of the verb hit

as

Predicate hit.01

A0 Babe Ruth (agent, hitter)

A1 a home run (thing hit)

Using this representation, the Score event and its arguments can be identified by mapping the

SRL arguments to those of the event, to give

Predicate Score

Scorer Babe Ruth

NumberOfPoints home run

However, in sentences (10) and (11), the verbs arguments do not align with the score event.

The preposition by in the former identifies the scorer and the number of points, while the possessive

form does so in the latter.
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On Feb. 20, 1962 – 50 years ago next Monday – a Marine Corps fighter pilot from
small-town America stepped forward in response to the country’s need. The astronaut
was John Glenn, whom the author Tom Wolfe has called “the last true national hero
America has ever had.” On Monday and Tuesday, he will be honored with a dinner and
a spaceflight forum at Ohio State University, home of the John Glenn School of Public
Affairs.

Questions:

a. Who called John Glenn “the last true national hero America has ever had”?

b. Where will the spaceflight forum be held?

Figure 4.1: A reading comprehension example

4.1.3 Question Answering

Our final example is the problem of question answering, which is closely related to the textual

entailment and information extraction problems. It is analogous to a reading comprehension task,

where the program is given a passage of text and is asked questions about it.

Figure 4.1 shows an example containing a paragraph of text along with two questions that can

be answered by reading it. The first question can be directly answered by analyzing the verb called

as

Predicate call.01

A0 the author Tom Wolfe (Caller)

A1 John Glenn (Item being labeled)

A2 the last true national hero America has ever had (Attribute)

We see that the answer to the question is the A0 of the verb. However, the second question

asks for the the location of the spaceflight forum. This is is only implied by the preposition at in

the phrase spaceflight forum at Ohio State University. In order to answer the question, we need to

understand that the preposition at expresses a locative meaning.

4.1.4 Discussion

Under the standard definition, thematic relations act as mediators between the syntax of text and

its meaning by specifying the manner in which arguments of a verb interact with the verb. In
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the examples seen so far, we have seen that events or states can be realized in a sentence without

the use of verbs (or their nominalizations). Indeed, quite often, we can reformulate such an event

or state using a verb, as in sentences (9) and (10). Human readers can easily see the entailment

between such reformulations, suggesting the existence of implicit predicates.

The task of semantic role labeling, as defined by PropBank and NomBank, provides a foundation

for building natural language understanding applications. Since verbs and nominalizations may not

always point us towards the right answer, there is a need to extend the semantic role labeling task

to include other relations.

4.2 A Unified Framework

Conceptually, we can unify the task of identifying semantic relations expressed by the different

lexical items in a sentence by defining three related sub-tasks:

1. Relation trigger detection identifies one or more tokens in the sentence that evoke the

relation.

2. Relation labeling assigns a name to the relation that abstracts the surface forms of the

triggers.

3. Argument labeling identifies and assigns labels to the arguments of the relation.

We group the types of relations by the part-of-speech of the words that trigger them. Thus, we

have verb relations, nominal relations, preposition relations and so on. Predicting each of these can

be seen as a sub-problem of the broader problem comprising of the three tasks enumerated above.

The main advantage of separating the SRL problem in this fashion is that it simplifies the first

step, namely trigger detection, especially for relations triggered by tokens belonging to a closed set

of word classes like prepositions.

Note that the sub-division of problems into the three components listed above is applicable not

only to the semantic role labeling task discussed in this dissertation, but also to FrameNet parsing,

as in the work of Das et al. (2010), and in general for relation and event extraction tasks. The main

difference is in the nature of the argument labels. While FrameNet annotates relations expressed by
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verbs, nouns and adjectives, the frame element names (which are the equivalent of argument labels)

are specific to each frame (which corresponds to the relation label). For example the Commercial

Transaction frame has the frame elements Buyer, Seller, Goods and Money. Such frame-

specific labels makes the learning problem more difficult. In contrast, the argument labels in a

PropBank style annotation are generic, this making learning easier. We seek this crucial property

for the expanded set of relations and their arguments.

The forthcoming chapters will look at semantic relations triggered by several linguistic phe-

nomena. In each case, we will map the three sub-problems to the sub-components of the predictor

that converts text to predicate-argument relations.

4.3 Challenges

The problem of extending semantic role labeling to include predicate-argument relations triggered

by various phenomena is a challenging one from many perspectives.

The first difficulty concerns the definition of the tasks. Predicate argument structures are well

defined for verbs and nominalizations via the PropBank and NomBank annotation schemes. There

is no analogous definition for the other phenomena. In this work, we define ontologies of comma

and preposition relations.

Second, for the verb and nominal relations, the existence of annotated corpora has led to the use

of supervised machine learning approaches for training classifiers that predict the structures. For

the newly proposed relations, there are no large hand-annotated corpora. We alleviate this problem

by (1) hand-annotating a small corpus for the newly defined comma relations, and (2) taking

advantage of the related task of preposition sense disambiguation to induce training and test data

for preposition relations. The development and annotation of these corpora are further explored

in the relevant chapters.

Third, the annotated corpora for prepositions and commas are small. Only 1000 sentences are

annotated for comma structures (compared to over 40,000 PropBank and NomBank annotations).

For the preposition relations, the data only provides annotation for the predicate labels. From

the machine learning perspective, this necessitates the development of new learning schemes where

linguistic intuition heavily biases learning. In the case of comma resolution, the learning algorithm
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only considers arguments that align with parse constituents. For preposition relations, we use

a latent variable model to identify the arguments and also show that joint inference with other

phenomena can give us better performance.

30



Chapter 5

Semantic Role Labeling of Verbs and
Nominalizations

This chapter gives an overview of the problem of predicting predicate-argument structures trig-

gered by verbs and nominalizations in text. We instantiate and extend the work of Punyakanok

et al. (2008), which only labels arguments for verb predicates. For this purpose, we will use the

PropBank (Palmer et al., 2005) and NomBank (Meyers et al., 2004) annotations for verb and nom-

inal SRL respectively. The three sub-tasks identified in Section 4.2, in the context of verbs and

nominalizations are:

1. Trigger detection: Identifying verbs and nominalizations in a sentence that trigger a

predicate-argument structure,

2. Relation labeling: Identifying the sense of the trigger word, and,

3. Argument labeling: Identifying and labeling the arguments of the relation.

In the first three sections of this chapter, we will describe the components of the prediction task.

Section 5.4 describes the full inference problem by describing the interactions between the sense

and argument labeling components. We will conclude this chapter with an empirical evaluation of

the sense and argument labelers.

5.1 Trigger Identification

Both PropBank and NomBank annotations define semantic frames for a fixed set of verbs and

nominalizations. This suggests that we can identify predicate-defining triggers as all words whose

lemma is annotated, filtered according to the part-of-speech tag: PropBank relations can only be

triggered by verbs and NomBank relations by nouns.
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In practice, this approach is not sufficient for two reasons. First, we may encounter verb or

nominal triggers that are yet to be annotated in PropBank or NomBank. Nonetheless, we may

want to identify these words as triggers, even though their semantic frame is not defined. The

following example illustrates such a case:

(12) An online rebel tweeted allegations of corruption within the ruling family.

The verb tweet (i.e “to post an update to Twitter”) is not a verb annotated by PropBank. However,

from the perspective of a higher level text understanding task, analyzing the verb is crucial. Of

course, without a frame entry defined, the labels of arguments for this predicate will not have

a rigorously defined meaning. Yet, since PropBank and NomBank argument labels are proto-

arguments as described by Dowty (1991), predicting them for unseen triggers can not only prove

to be beneficial for subsequent tasks, but also serve as a starting point for extending existing

definitions to include the new triggers.

Second, in the case of NomBank, not all words with the appropriate lemma define predicates.

Consider, for example, the following sentence, where a word with a valid lemma occurs within a

named entity:

(13) Acme Construction Corp. oversaw the renovation of the city park.

In this sentence, while the words oversaw and renovation define predicate-argument structures,

Construction does not. Identifying all words with the appropriate lemma as triggers does not

distinguish between the two cases and will include spurious predicates.

5.1.1 Verb Trigger Identification

We treat all verbs, except modals and auxiliaries1, as triggers. In addition, we also include words

that start with re- if the rest of the word is a known PropBank lemma. Note that this includes words

like tweeted which are not annotated by PropBank, if they are tagged by the part-of-speech tagger2.

1We ignore words with the part-of-speech MD and all instances of do, be or have followed by another verb, possibly
with a negation between them.

2The verb heuristic will not include words like re-tweeted because the root word is not a known PropBank lemma.
Alternatively, we could have considered all re- words whose suffix is a verb. However, to identify that the suffix
is a verb, we have to re-annotate the perturbed sentence with a part-of-speech tagger. Since we assume that the
pre-processing is fixed, we do not re-annotate the perturbed sentence. Note that such a perturbation is a specific
instance of the approaches proposed by Kundu and Roth (2011), which can be used to identify triggers like re-tweeted
using any SRL system as a black box.

32



One important class of tokens included by the heuristic, even though it is not annotated by the

current release of PropBank is the verb to be in sentences like He is the president.

This heuristic achieves a 99.9% recall on the Penn Treebank test set with a precision of 84.8%3.

The excess predicates comprises of three classes of words: part-of-speech errors, auxiliary verbs and

legitimate verb predicates that were missed in the original data (for example, the word reinvent in

Rosie reinvented the man).

5.1.2 Nominal Trigger Identification: Heuristics and Features

For NomBank SRL, the problem of trigger identification is more difficult. Any simple part-of-speech

tag based heuristic (e.g., every noun) that can identify triggers will significantly over-generate

candidates because not every noun is relation inducing. To address this, we define a high-recall

heuristic whose output is filtered by a learned classifier.

The heuristic only considers tokens that are tagged as nouns by the part-of-speech tagger. If

any of the following perturbations of the lower cased token are present in the NomLex dictionary

(Meyers, 2007), we consider the word to be a possible trigger: 1. The token itself, or 2. its lemma,

or 3. the singular form of a plural token, or 4. the second part of a hyphenated token. Additionally,

we also include tokens with non-standard lemmas, shown in table 5.1 with the lemma in the right

column. We generated this list using the NomBank training set.

Word → Lemma Word → Lemma

bondholder → holder supressor → suppressor
earthquake → quake buyout → buy-out
spokesperson → person hookup → hook-up
reelection → election ceasefire → cease-fire
coauthor → author startup → start-up
people → person eurobond → bond

Table 5.1: List of non-standard lemmas for nominal trigger identification

To train a classifier for filtering the heuristically generated triggers, we extract the following

features for a candidate words that have been identified as possible predicates4:

1. The lower-cased word, lemma and an indicator for whether the word is capitalized.

3While computing performance, we do not account for the to be verbs predicted by the heuristic.
4For pre-processing, we use the Illinois part-of-speech tagger and chunker from Clarke et al. (2012).
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2. The part-of-speech tag of the word.

3. The sub-categorization frame of the lowest phrase that covers the word, according to the

Charniak and Johnson (2005) parser.

4. The phrase label of the chunk that contains the word along with indicators for the word being

the first or last word of the chunk conjoined with the chunk label.

5. The type of the named entity that contains the word, if one exists, using the named entity

recognizer of Ratinov and Roth (2009).

6. Word context: Lower cased words within a window of size 5 centered at the word.

7. POS context: Part-of-speech tags of words within a window of size 5 centered at the word.

In addition, we conjoin these features with all the NomLex classes in which the candidate trigger

word occurs. The NomLex dictionary classifies nominal triggers into one of 22 types5. The same

predicate lemma might belong to multiple classes. By conjoining the class of the trigger to the

features, we can capture class-specific aspects that define a trigger. Since the actual class label is

not available, we conjoin the features with all the classes to which the word may belong.

Using these features, we trained a binary classifier over the Penn Treebank training and de-

velopment sets using the SVM algorithm with five-fold cross validation to identify the parameter

C. We evaluated the performance of the trigger identifier by computing its precision, recall and

F-score over the Penn Treebank test set.

We compare against the underlying high-recall heuristic defined earlier in Table 5.2. The top row

shows the performance of the heuristic trigger extractor and the second row shows the performance

of the two-stage system where the output of the heuristic has been filtered by the learned classifier.

We see that even though recall decreases by about 8%, precision almost doubles. To our knowledge,

this represents the first system for identifying NomBank triggers.

5NomLex identifies 22 types of relation-inducing nouns. These are Ability, Able-Nom, Attribute, Crisscross,
Environment Event, Field, Group, Hallmark, Issue, Job, Nom, Nomadj, Nomadjlike, Noming, Nomlike,
Partitive, Relational, Share, Type, Version, Work-Of-Art.
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Method P R F1

Heuristic 49.30 99.67 65.97
+ filter 89.35 91.28 90.30

Table 5.2: Performance of the nominal trigger identifier.

5.2 Predicate Sense Identification

The second sub-task of semantic role labeling is that of assigning a name to the relation. In the case

of PropBank and NomBank relations, this is accomplished by predicting the sense of the trigger

word. Knowing the sense of a predicate allows us to assign semantic meanings to the abstract

labels of its argument using the corresponding roleset in the frame files. To illustrate the need for

predicate senses, consider the following examples:

(14) The Fed banked billions in 2011.

(15) Churchill banked the little Cessna sharply.

Both instances of the verb to bank take two core arguments, labeled A0 and A1. For sentence

(14), the arguments of the verb to bank are:

Predicate bank.01

A0 The fed

A1 billions

AM-TMP in 2011

The arguments of the verb in sentence (15) are

Predicate bank.02

A0 Churchill

A1 the little Cessna

AM-MNR sharply

For this verb, the first sense of the verb indicates the activity of “to put (money) in the bank”,

with A0 indicating the agent and A1 indicating the money. The second sense indicates the event

of “turning like an airplane”. In this context, A0 indicates the pilot and A1 the airplane. Note

that without knowing the sense label of the verb (01 and 02 in the examples), it is impossible to

distinguish between the two meanings of the core arguments.
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5.2.1 Modeling Predicate Senses

By convention, the senses of the words are ordered according to their frequency, with sense 01

being the most frequent. For verbs, the sense labels range from 01 to 21, and for nominalizations,

they range from 01 to 14. In both cases, the distribution of senses is highly skewed, with the most

frequent sense accounting for 82.72% of PropBank predicates and 90.43% NomBank predicates

over the entire Penn Treebank6.

We frame the sense classification problem as a multiclass classification problem. The problem

of predicting the sense of the predicate depends not only on the local context of the predicate, but

also its syntactic context. To capture this, we define the following feature set for the task:

1. The lower cased token, part-of-speech tag and lemma for all words within a window of size

seven centered at the trigger word (and ignoring the trigger itself).

2. Bigrams and trigrams centered at the previous and next word.

3. The following features for all words dominated by the trigger word and the word which

immediately dominates it (using the head percolation rules from Magerman (1995) to identify

word dependencies):

(a) The lower cased word, lemma, part-of-speech, indicators for capitalization and the con-

flated POS label7.

(b) Indicators for common suffixes that indicate de-verbal nouns, de-nominal nouns, and

de-adjectival abstract nouns.

(c) Indicators for prefixes related to number, degree or order.

(d) Indicator for existence of the word in WordNet.

(e) WordNet synsets and hypernyms for the first and all senses.

(f) WordNet part, member and substance holonyms.

(g) Brown cluster prefixes as used by Ratinov and Roth (2009).

6In the PropBank 1.0 data, 1485 predicates assigned the sense label XX. In this work, we will consider these to
belong to the most frequent sense.

7Following Tratz and Hovy (2009), we define the conflated part-of-speech tag by mapping the part-of-speech labels
to the following set: Noun, Verb, Adjective, Adverb, Punctuation, Pronoun and Other.
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(h) Indicators for existence of the word in NomLex.

(i) Indicator for whether it ends with an -ing.

(j) Named entity label and indicator for whether the word starts or ends a named entity of

a specified type.

In addition to using the features as is, we also conjoined them with the lemma of the trigger word.

The syntactic features (3a)-(3f) are from Hovy et al. (2010). See Appendix B for implementation

details. With these features , we trained the sense predictor using the SVM algorithm with five-fold

cross-validation to determine the learning parameter.

5.3 Verb and Nominal Arguments

The third aspect of the relation extraction problem is that of identifying and labeling arguments

of the predicates. As mentioned in Section 3.2.1, PropBank and NomBank follows the proto-

argument convention. Consequently, not only are the labels generic, but also small in number.

The approach described below is a generalization of the one of Punyakanok et al. (2008) to include

nominalizations.

Following the standard approach for argument labeling, we decompose the problem into three

parts: candidate generation, argument identification and argument type classification. For a given

predicate, the candidate generation stage proposes an over-complete set of argument candidates

which is filtered by a binary classifier called the argument identifier. The argument type is

predicted by a multi-class classifier called the argument labeler that assigns labels to each filtered

candidate. In addition to the labels defined in PropBank/NomBank, the argument type classifier

can also assign the special label Ø, to indicate the decision that the candidate is, in fact, not an

argument of the predicate. To fully specify these three steps, we need to define the heuristic for

candidate generation, and features for the argument identifier and labeler.

In the following discussion, we describe the argument identifier and labeler as classifiers that

pick one label for each candidate. In the actual system, we will combine the predictions across all

candidates using inference, as described in Section 5.4.
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5.3.1 Candidate Generation

The objective of argument candidate generation is to maximize recall. However, we do not consider

all possible spans in the input sentence as argument candidates in order to reduce the computational

complexity of prediction. In the literature this step is also referred to as pruning.

PropBank SRL For generating verb argument candidates, we use the now standard approach

that was first described in Xue and Palmer (2004), which starts at the predicate in the parse tree

and iterates up the tree to the root. For each node, we include its siblings as argument candidates

(except the ones that are coordinated with it). Note that this approach was originally defined for

gold parse trees. For parse trees predicted by the Charniak and Johnson (2005) parser, we observe

a recall of 86.8%.

NomBank SRL The Xue and Palmer (2004) approach does not work for nominal SRL because

arguments do not always align with parse constituents. We propose a new argument generation

heuristic for nominal predicates that includes:

1. All non-terminal nodes in the parse tree.

2. All siblings of predicate in the parse tree (since the Penn Treebank annotation does not

annotate the structure of noun phrases).

3. The predicate token itself (because unlike PropBank, the predicate itself can be an argument

in NomBank).

4. Pronouns in all noun phrases within the same clause that dominate the predicate.

5. All verbs that dominate the predicate.

6. The head of the prepositional phrase that immediately dominates the predicate, if one exists.

This argument generation heuristic gets a recall of 91.8% for arguments of nominalizations using

predicted parse trees.
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5.3.2 Argument Identification

The argument identifier filters the candidates generated by the candidate generation step. To do

so, we train a binary classifier that predicts whether a candidate for a predicate is, in fact, an

argument or not.

The features for the verb and nominal argument identifier are listed in Appendix A. We trained

the verb (nominal) argument classifier on the output of the verb (nominal) candidate generator

with the SVM algorithm using five-fold cross-validation to find the best learning parameter.

The goal of the argument identifier is only to filter candidates that are highly unlikely to be

arguments. Since it is only a filter, we desire high recall from the identifier. To find an optimum

balance of high recall and reasonable precision, we tune the threshold of the binary classifier using

held out data. For verb SRL, we use the F2 measure to select the threshold, and for nominal SRL,

we use the F3 measure8.

5.3.3 Argument Type Classification

The third phase of argument labeling is argument type classification, where the candidates are

assigned an argument label. This is modeled as a multi-class classifier that takes a argument

candidate for a specific predicate as the input. The output label can be one of the argument labels

or Ø to indicate that the candidate is not an argument.

Appendix A lists the feature representation for the argument candidates. As before, we trained

the model using the SVM algorithm with five-fold cross validation to identify the learning param-

eter.

5.4 Combining Predictions with Inference

The argument classifier assigns labels to each argument candidate independently. However, doing

so violates many natural constraints. Instead of using the prediction of the multiclass classifiers,

we combine their predictions using inference over all the candidates. We do not include the trigger

identification component in the inference.

8If the precision and recall are denoted by P and R respectively, the Fβ measure is defined as (1 + β2) P ·R
β2P+R

.
A higher value of β emphasizes recall more. We choose β = 3 for nominal SRL because the number of candidates
generated by the heuristic is very large and we wish to filter most of them out.
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Inference variables

For both nominal and verb SRL, we have two kinds of decisions that we can predict jointly:

the predicate sense and argument labels. We will introduce inference variables for each of these

decisions. For a predicate p, for each possible sense label s that it can take, we will define an

inference variable yp,s. Using the model defined in Section 5.2, this decision is associated with a

score, say Θp,s. For every argument a for this predicate, we define an inference variable yp,a,l for the

decision that it is labeled with the label l and the corresponding score from the argument classifier

(Section 5.3.3) as Θp,a,l.

Let y denote the vector comprising of all the inference variables. The objective of inference is

to find an assignment to the inference variables that maximizes the score. That is,

max
y∈{0,1}M

∑
p

∑
s

yp,sΘp,s +
∑
a,l

yp,a,lΘp,a,l

 (5.1)

Here, M denotes the total number of inference variables.

Constraints

Not all assignments to the variables y are valid and constraints allow us to restrict the assignments

to the variables. We will consider several constraints that inject structural and linguistic knowledge

into the inference. The final prediction will be the solution to the integer linear program defined

by 5.1 and the constraints.

We will now see several possible constraints, each of which can be converted into linear inequal-

ities using the procedure of Rizzolo and Roth (2007).

1. Unique label: Each argument candidate must have exactly one label.

2. No overlapping arguments: There cannot be any non-null arguments that overlap. That

is, for every token, at most one candidate that covers that token can have a non-null label.

3. No duplicate arguments: For each predicate, at most one argument candidate can be

labeled with certain arguments. Punyakanok et al. (2008) applied this constraint for core

arguments (that is A0-A5 and AA). We found that in addition to core arguments, in the verb
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training data, it also holds for the labels AM-REC, AM-NEG, AM-PRD. For nominalizations, this

constraint holds for the core arguments and also the labels Support, AM-ADV, AM-DIR, AM-DIS,

AM-EXT, AM-LOC, AM-MNR, AM-NEG, AM-PNC and AM-PRD.

4. Continuations: For every predicate, if an argument candidate a is labeled C-X for some

label X, then there must be some candidate that appears before a in the sentence with the

label X.

5. References: For every predicate, if an argument candidate is labeled R-X for some label X,

then there must be some other candidate in the sentence with the label X.

6. Sense-argument constraints: For each predicate, for each sense label, only certain core

argument labels are allowed. This information is available in the frame definitions of the

predicates. This constraint is new in this work and supersedes the legal arguments constraints

that is used in the literature.

7. Support verb constraint: For a nominal predicate, an argument can not be labeled

Support or C-Support if it does not coincide with either a nominal or verb predicate in

the sentence. This constraint connects the verb and nominal SRL and follows from the defi-

nition of the argument Support. However, in practice, as seen in Section 5.4.1, this constraint

is violated even in the training data and does not lead to an improvement in performance.

8. No cross-predicate overlap: Arguments for two different predicates cannot overlap, but

they can embed. This constraint was introduced in Surdeanu et al. (2007).

9. Cross-predicate modifiers: If an argument candidate is labeled as a modifier for one

predicate, then the semantics must be retained across other predicates. This constraint is

new to this work.

We enforce this as follows: If a candidate is labeled as a modifier m for one predicate and

is also an argument candidate for a different predicate, then for the second predicate the

candidate can assume only one of the following labels: (a) the same label m, or (b) Ø, or

(c) One of a small set of predicate-specific core arguments, obtained from the training corpus,
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or (d) C-X for some X. For nominal SRL, we found that in the training set, AM-MNR and AM-ADV

are frequently confused. So we allow these two labels to co-occur with each other as well.

As a technical point, note that the constraints define one inference problem per sentence, rather

than per predicate as in the verb SRL system of Punyakanok et al. (2008).

5.4.1 Constraint Effectiveness

One important question regarding introducing new constraints concerns their effectiveness. We can

measure performance on the standard test set with and without the constraints. The drawback

of this measurement is that if the model is good enough that the constraint is not violated in the

prediction (which might be the case for an in-domain test set), then the improvement can be very

small.

Alternatively, we can measure the intrinsic correctness of the constraint by counting the number

of violations of the constraints in the training set. If a constraint is never (or almost never) violated

in a large training set, then enforcing it at test time can only help performance. Table 5.3 shows

the percentage of arguments in the training set for which each constraint holds. Note that some

constraints are violated even though the definition of the task mandates them (for example, the

references constraint for verbs and the support verb constraint). This is because of noise in the

training set. We enforce these constraints despite their being violated to ensure that the output of

the system is semantically coherent.

Percentage of arguments
Constraint Name where the constraint holds

Verb Nominal

Unique label 100 100
No overlapping arguments 100 100
No duplicate arguments 1009 100
Continuations 100 100
References 99.9 100
Sense-argument constraints 100 100
Support verb constraint N/A 97.6
No cross-predicate overlap 99.9 99.1
Cross-predicate modifiers 99.9 99.8

Table 5.3: Constraint violation statistics for verb and nominal SRL on the Penn Treebank training
set. See text for details.
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5.5 Experiments and Results

This section reports the performance of the SRL systems described in this chapter. We trained

the verb SRL models on the Proposition Bank I annotation and the nominal SRL on NomBank

1.0. We trained the sense classifier and the argument classifier on all sections of the data. For the

argument identifier, we held out section 22 of the training set to tune the threshold. We pruned

away features that occur infrequently in the training examples – we set the pruning threshold to

six for the argument classifiers and four for the other models.

We report the average accuracy of predicate sense prediction and the average F1 for the argu-

ment labels on section 23. To isolate the effect of incorrectly identified triggers, we use the triggers

from the annotation as part of the input. This setting corresponds to the standard evaluation in

the literature, where the input is a sentence and a trigger.

5.5.1 PropBank Results

For verb SRL, the system described here is a modification of the work of Punyakanok et al. (2008).

Our baseline is to use this system along with an independent predicate sense predictor. That

is, we only use the first five constraints and legal argument constraints from Section 5.4. The full

system includes joint constraints that connect the predicate and argument along with the additional

constraints defined in the previous section.

Table 5.4 describes the performance of these two settings. Predicting the most frequent sense

gets an accuracy of only 82.72%. So even the independent sense predictor improves significantly

upon this. The additional constraints give a improvement in performance of both the argument

labeler and the predicate detector.

5.5.2 NomBank Results

In the literature, NomBank SRL has been studied by the work of Jiang and Ng (2006). Their

approach differs from the one described here in the following ways:

1. We use a broader feature set with all possible feature conjunctions.

9The No duplicate argument constraint holds for all verb arguments mentioned except AM-LOC and AM-MNR,
where it holds for 99.9% of the arguments.
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Setting Argument labels (F1) Sense (Accuracy)

Most frequent sense – 82.72

Baseline 75.87 92.91
Full system 76.14 93.25

Table 5.4: Performance of verb semantic role labeling. The baseline predicts the arguments and
predicate sense independently. The full system includes additional constraints from Section 5.4.
The improvement in sense accuracy is statistically significant at p < 0.01 using Dan Bikel’s stratified
shuffling test.

2. Jiang and Ng (2006) only enforce the non-overlapping argument constraints. We experiment

with additional constraints that depend on the semantics of the output labels.

3. We also predict the sense of the predicate, which allows us to assign meanings to the core

arguments.

Our goal is to study whether adding the additional constraints (particularly the joint argument

and sense and the Support argument constraint) helps. Table 5.5 shows the performance of these

settings. We make four observations from the results. First, we see that the most frequent sense

for nominalizations has an accuracy 90.43% and the classifier defined here gives a significant im-

provement to 96.38%. Second, the additional constraints do not give a significant improvement

for either argument or sense prediction. The performance of argument labeling improves over the

setting of Jiang and Ng (2006) but not significantly. Third, as suggested by Table 5.3, the Support

verb constraint does not help the overall performance, even though its presence produces an out-

put structure that is more consistent with the definition of the label. Finally, unlike the case of

verbs, jointly predicting predicate sense and argument labels does not give any change in the sense

accuracy.

Setting Argument labels (F1) Sense (Accuracy)

Most frequent sense – 90.43
Only non-overlapping arguments 70.42 –

Independent sense & arguments 70.65 96.38
All constraints (except Support) 70.84 96.38
+ Support constraints 70.56 96.38

Table 5.5: Performance of nominal semantic role labeling
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5.6 Discussion and Related Work

Semantic Role Labeling for verbs and nominalizations have been studied over the last decade,

largely driven by the PropBank and the NomBank annotation. The problems of trigger and sense

detection for SRL have only recently been studied in the NLP community. The CoNLL shared

task of 2008 (summarized in Surdeanu et al. (2008)) focused on the problem of identifying both

syntactic and semantic dependencies. For the latter, the task included all three components, namely

trigger detection, predicate identification and argument labeling. However, the trigger detection

component was not considered the 2009 shared task (Hajič et al., 2009).

Dang and Palmer (2005) studied the interactions between verb senses and their semantic roles

and pointed out that semantic role information can help verb sense prediction. Meza-Ruiz and

Riedel (2009) proposed a joint learning and inference solution for all three problems for verb SRL

using the CoNLL-2008 shared task data (Surdeanu et al., 2008). The approach presented here

differs from that work in three important ways:

1. We do not learn a joint model for all the tasks and only combine the sense and argument

prediction tasks via inference. Doing so significantly reduces the learning complexity.

2. We enforce the coherence between the predicate sense and argument predictions via con-

straints that are derived from the frame files that define the roles. In contrast, Meza-Ruiz

and Riedel (2009) learn weights for this interaction and do not use any background knowledge

for training or prediction.

One variant of the approach described here is to include the argument identifier in the inference

by enforcing agreement between the identifier and classifier at prediction time. Doing so has the

advantage that we do not need to tune the threshold of the identifier for recall. However, it makes

the inference problem more difficult from a computational perspective. We will use this setting

in Chapter 8, where we jointly predict preposition and verb relations, in order to ensure that no

argument candidates are pruned away.

45



Chapter 6

Preposition Relations

In this chapter, we will consider the extension of the semantic role labeling task to address the

problem of predicting semantic relations conveyed by prepositions in sentences1. In a survey of

the role of prepositions in applications, Baldwin et al. (2009) points out that in the computational

linguistics literature, there are three views to the semantics of prepositions:

1. Prepositions are “semantically vacuous and unworthy of semantic representation” (usually in

the information retrieval community), or

2. It is impossible to devise a standalone characterization of preposition semantics because it is

entirely a function of the words they select (Old, 2003) , or

3. Preposition semantics is complex, but can be captured in a standalone way (see Kipper et al.

(2004) and Litkowski and Hargraves (2005)).

In this work, we posit that while preposition semantics is complex, it needs to be studied and can

be modeled as a function of the words they select. This chapter presents a standalone approach

for modeling preposition semantics. In Chapter 8, we will see that going past the standalone

characterization and accounting for interactions between different linguistic phenomena can help.

Prepositions express many semantic relations between their governor and object and modeling

these complex relationships can lead to a robust text understanding resource (Kipper et al., 2004).

To motivate the sub-problems of this task, consider the sentence:

(16) The book of Prof. Alexander on primary school methods is a valuable teaching resource.

Here, the preposition on indicates that the book and primary school methods are connected by

the relation Topic and of indicates the Creator-Creation relation between Prof. Alexander and

1This chapter is based on Srikumar and Roth (2011) and Srikumar and Roth (2013).
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the book. Predicting these relations can help answer questions about the subject of the book and

also recognize the entailment of sentences like Prof. Alexander has written about primary school

methods.

Being highly polysemous, the same preposition can indicate different kinds of relations, depend-

ing on its governor and object. Furthermore, several prepositions can indicate the same semantic

relation. For example, consider the sentence:

(17) Poor care led to her death from pneumonia.

The preposition from in this sentence expresses the relation Cause(death, pneumonia). In a different

context, it can denote other relations, as in the phrases copied from the film (Source) and recognized

from the start (Temporal). On the other hand, the relation Cause can be expressed by several

prepositions; for example, the following phrases express a Cause relation: died of pneumonia and

tired after the surgery.

We characterize the semantic relations expressed by transitive prepositions and develop ac-

curate models for predicting the relations, identifying their arguments and recognizing the types

of the arguments. Building on the word sense disambiguation task for prepositions, we collapse

semantically related senses across prepositions to derive our preposition relation inventory. These

relations act as predicates in a predicate-argument representation, where the arguments are the

governor and the object of the preposition. While ascertaining the arguments is a largely syntactic

decision, we point out that syntactic parsers do not always make this prediction correctly. However,

as illustrated in the examples above, identifying the relation depends on the governor and object

of the preposition.

The three sub-tasks identified in Section 4.2, from the preposition perspective, are

1. Trigger detection: Identifying a preposition in a sentence, which can be done using the

part-of-speech tags.

2. Relation labeling: Identifying the predicate implicitly expressed by the predicate.

3. Argument labeling: Identifying the governor and the object of the preposition.

Given a sentence and a preposition, our goal is to model the predicate (i.e. the preposition

relation) and its arguments (i.e. the governor and object). Very often, the relation label is not
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influenced by the surface form of the arguments but rather by their semantic types. In sentence (2)

above, we want the predicate to be Cause when the object of the preposition is any illness. We thus

suggest modeling the argument types along with the preposition relations and arguments, using

different notions of types. These three related aspects of the relation prediction task are further

explained in Section 6.2 leading up to the problem definition.

Though we wish to predict relations, arguments and types, there is no corpus which annotates

all three. The SemEval 2007 shared task of word sense disambiguation for prepositions provides

sense annotations for prepositions. We use this data to induce training and test corpora for the

relation labels. In Section 6.3, we present two models for the prepositional relation identification

problem. The first model considers all possible argument candidates from various sources along with

all argument types to predict the preposition relation label. The second model treats the arguments

and types as latent variables during learning using a generalization of the latent structural SVM of

Yu and Joachims (2009). We show in Section 6.4 that this model not only predicts the arguments

and types, but also improves relation prediction performance.

The primary contributions of this work are:

1. We introduce a new inventory of preposition relations that covers the 34 prepositions that

formed the basis of the SemEval 2007 task of preposition sense disambiguation.

2. We model preposition relations, arguments and their types jointly and propose a learning

algorithm that learns to predict all three using training data that annotates only relation

labels.

3. We show that jointly predicting relations with word sense not only improves the relation

predictor, but also gives a significant improvement in sense prediction.

6.1 Prepositions & Predicate-Argument Semantics

Though prepositions are attached to verbs, nouns or adjectives, not all relations expressed by them

are covered by the PropBank and NomBank annotation schemes. For example, the prepositions

in sentence (16) in the previous section express relations that are not captured by verbs or nomi-

nalizations. FrameNet covers some prepositional relations, but allows only temporal, locative and
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directional senses of prepositions to evoke frames, accounting for only 3% of the targets in the

SemEval 2007 shared task of FrameNet parsing. In fact, the state-of-the-art FrameNet parser of

Das et al. (2010) does not consider any frame inducing prepositions.

Baldwin et al. (2009) highlights the importance of studying prepositions for a complete lin-

guistic analysis of sentences and surveys work in the NLP literature that addresses the syntax

and semantics of prepositions. One line of work Ye and Baldwin (2006) addressed the problem of

preposition semantic role labeling by considering prepositional phrases that act as arguments of

verbs according to the PropBank annotation. They built a system that predicts the labels of these

prepositional phrases alone. However, by definition, this covered only verb-attached prepositions.

Zapirain et al. (2012) studied the impact of automatically learned selectional preferences for pre-

dicting arguments of verbs and showed that modeling prepositional phrases separately improves

the performance of argument prediction.

Preposition semantics has also been studied via the Preposition Project of Litkowski and Har-

graves (2005) and the related SemEval 2007 shared task of word sense disambiguation of preposi-

tions (Litkowski and Hargraves, 2007). The Preposition Project identifies preposition senses based

on their definitions in the Oxford Dictionary of English. There are 332 different labels to be pre-

dicted with a wide variance in the number of senses per preposition ranging from 2 (during and

as) to 25 (on). For example, according to the preposition sense inventory, the preposition from in

sentence (2) above will be labeled with the sense from:12(9) to indicate a cause. Dahlmeier et al.

(2009) added sense annotation to seven prepositions in four sections of the Penn Treebank with

the goal of studying their interaction with verb arguments.

Using the SemEval data, Tratz and Hovy (2009) and Hovy et al. (2010) showed that the

arguments offer an important cue for identifying the sense of the preposition. However, though

these works used a dependency parser to identify arguments, in order to overcome parsing errors,

they augment the parser’s predictions using part-of-speech based heuristics.

We argue that, while disambiguating the sense of a preposition does indeed reveal nuances of its

meaning, it leads to a proliferation of labels to be predicted. Most importantly, sense labels do not

transfer to other prepositions that express the same meaning. For example, both finish lunch before

noon and finish lunch by noon express a Temporal relation. According to the preposition project,
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the sense label for the first preposition is before:1(1), and that for the second is by:17(4). This

both defeats the purpose of identifying the relations to aid natural language understanding and

makes the prediction task harder than it should be: using the standard word sense classification

approach, we need to train a separate classifier for each word because the labels are defined per-

preposition. In other words, we cannot share features across the different prepositions. This

motivates the need to combine such senses of prepositions into the same class label.

In this direction, Srikumar and Roth (2011) merged preposition senses of seven prepositions

into relation labels. Litkowski (2012) also suggests collapsing the definitions of prepositions into a

smaller set of semantic classes. To aid better generalization and to reduce the label complexity, we

follow these works to define a set of relation labels which abstract word senses across prepositions2.

6.2 Preposition-triggered Relations

This section describes the inventory of preposition relations introduced in this thesis and then

identifies the components of the preposition relation extraction problem.

6.2.1 Preposition Relation Inventory

We build our relation inventory using the sense annotation in the Preposition Project, focusing on

the 34 prepositions3 annotated for the SemEval-2007 shared task of preposition sense disambigua-

tion. As discussed in Section 6.1, we construct the inventory of preposition relations by collapsing

semantically related preposition senses across different prepositions. For each sense that is defined,

the Preposition Project also specifies related prepositions. These definitions and related preposi-

tions provide a starting point to identify senses that can be merged across prepositions. We followed

this with a manual cleanup phase. Some senses do not cleanly align with a single relation because

the definitions include idiomatic or figurative usage. For example, the sense in:7(5) of the preposi-

tion in, according to the definition, includes both spatial and figurative notions of the spatial sense

2Since the preposition sense data is annotated over FrameNet sentences, sense annotation can be used to extend
FrameNet (Litkowski, 2012). We believe that the abstract labels proposed in this thesis can further help in this effort.

3We consider the following prepositions: about, above, across, after, against, along, among, around, as, at, before,
behind, beneath, beside, between, by, down, during, for, from, in, inside, into, like, of, off, on, onto, over, round,
through, to, towards, and with. This does not include multi-word prepositions such as because of and due to. Note
that we do include phrasal verbs like suffer from if the Preposition Project assigns senses to the preposition. The
preposition from in this case is assigned the sense from:12(9).
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(that is, both in London and in a film). In such cases, we sampled 20 examples from the SemEval

2007 training set and assigned the relation label based on majority. If sufficient examples could

not be sampled, these senses were added to the label Other, which is not a semantically coherent

category and represents the ‘overflow’ case.

Overall, we have 32 relation labels4. Appendix C provides detailed definitions of each relation

and the senses that were merged to create each label. Since we define relations to be groups of

preposition sense labels, each sense can be uniquely mapped to a relation label. Hence, we can use

the annotated sense data from SemEval 2007 to obtain a corpus of relation-labeled sentences.

To validate the labeling scheme, two native speakers of English annotated 200 sentences from the

SemEval training corpus using only the definitions of the labels as the annotation guidelines.We

measured Cohen’s kappa coefficient (Cohen, 1960) between the annotators to be 0.75 and also

between each annotator and the original corpus to be 0.76 and 0.74 respectively.

6.2.2 Preposition Relation Extraction

The input to the prediction problem consists of a preposition in a sentence and the goal is to jointly

model the following: (i) The relation expressed by the preposition, and (ii) The arguments of the

relation, namely the governor and the object.

We use the sentence (17) in the introduction of this chapter as our running example in further

discussion. In our running example, the relation label is Cause. We represent the predicted relation

label by r.

Arguments The relation label crucially depends on correctly identifying the arguments of the

preposition, which are death and pneumonia in our running example. While a parser can identify

the arguments of a preposition, simply relying on the parser may impose an upper limit on relation

prediction.

We build an oracle experiment to highlight this limitation. Table 6.1 shows the recall of the

easy-first dependency parser of Goldberg and Elhadad (2010) on Section 23 of the Penn Treebank

for identifying the governor and object of prepositions.

4Note that, even though we do not consider intransitive prepositions, the definitions of some relations could be
extended to apply to prepositional particles such drive down (Direction) and run about (Manner).
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We define heuristics that generate candidate governors and objects for a preposition. For the

governor, this set includes the previous verb or noun and for the object, it includes only the next

noun. The row labeled Best(Parser, Heuristics) shows the performance of an oracle predictor which

selects the true governor/object if present among the parser’s prediction and the heuristics. We

see that, even for the in-domain case, if we are able to re-rank the candidates, we could achieve a

big improvement in argument identification.

Recall
Governor Object

Parser 88.88 92.37
Best(Parser, Heuristics) 92.50 93.06

Table 6.1: Identifying governor and object of prepositions in the Penn Treebank data. Here,
Best(Parser, Heuristics) reports the performance of an oracle that picks the true governor and
object, if present among the candidates presented by the parser and the heuristic. This presents
an in-domain upper bound for governor and object detection. See text for further details.

To overcome erroneous parser decisions, given a preposition, we entertain governor and object

candidates proposed both by the parser and the heuristics. In further discussion, we denote the

chosen governor and object by g and o respectively.

Argument types While the primary purpose of this work is to model preposition relations and

their arguments, the relation prediction is strongly dependent on the semantic type of the argu-

ments. To illustrate this, consider the following incomplete sentence: The message was delivered

at · · · . This preposition can express both a Temporal or a Location relation depending on the

object (for example, noon vs. the doorstep).

Agirre et al. (2008) show that modeling the semantic type of the arguments jointly with at-

tachment can improve PP attachment accuracy. In this work, we point out that argument types

should be modeled jointly with both aspects of the problem of preposition relation labeling.

Types are an abstraction that capture common properties of groups of entities. For example,

WordNet provides generalizations of words in the form of their hypernyms. In our running example,

we wish to generalize the relation label for death from pneumonia to include cases such as suffering

from flu. Figure 6.1 shows the hypernym hierarchy for the word pneumonia. In this case, synsets

in the hypernym hierarchy, like pathological state or physical condition, would also include ailments
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like flu.

pneumonia

=> respiratory disease

=> disease

=> illness

=> ill health

=> pathological state

=> physical condition

=> condition

=> state

=> attribute

=> abstraction

=> entity

Figure 6.1: Hypernym hierarchy for the word pneumonia

We define a semantic type to be a cluster of words. In addition to WordNet hypernyms, we

also cluster verbs, nouns and adjectives using the dependency-based word similarity of Lin (1998)

and treat cluster membership as types. These are described in detail in Section 6.4.1.

Relation prediction involves not only identifying the arguments, but also selecting the right

semantic type for them, which together, help in predicting the relation label. Given an argument

candidate and a collection of possible types (given by WordNet or the similarity based clusters),

we need to select one of the types. For example, in the WordNet case, we need to pick one of the

hypernyms in the hypernym hierarchy. Thus, for the governor and object, we have a vector of type

labels, comprising of one element for each type category. We denote this by tg (governor type) and

to (object type) respectively.

6.2.3 Problem Definition

The input to our prediction task is a preposition in a sentence. Our goal is to jointly model the

relation it expresses, the governor and the object of the relation and the types of each argument

(both WordNet hypernyms and cluster membership). We denote the input by x, which consists

not only of the preposition but also a set of candidates for the governor and the object and, for

each type category, the list of types for the governor and candidate.

The prediction, which we denote by y, consists of the relation r, which can be one of the valid

relation labels from Appendix C and the governor and object, denoted by g and o, each of which

is one of text segments proposed by the parser or the heuristics. Additionally, y also consists of
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type predictions for the governor and object, denoted by tg and to respectively, each of which is a

vector of labels, one for each type category. Table 6.2 summarizes the notation described above.

We refer to the ith element of vectors using subscripts and use the superscript ∗ to denote gold

labels. Recall that we have gold labels only for the relation labels and not for arguments and their

types.

Symbol Meaning

x Input (pre-processed sentence and
preposition)

r relation label for the preposition
g, o governor and object of the relation

tg, to vectors of type assignments for
governor and object respectively

y Full structure (r, g, o, tg, to)

Table 6.2: Summary of notation

6.3 Learning Preposition Relations

A key challenge in modeling preposition relations is that our training data only annotates the

relations labels and not the arguments and types. In this section, we introduce two approaches for

predicting preposition relations using this data.

6.3.1 Feature Representation

We use the notation Φ(x,y) to indicate the feature function for an input x and the full output y.

We build Φ using the features of the components of y:

1. Arguments: For g and o, which represent an assignment to the governor and object, we

denote the features extracted from the arguments as φA(x, g) and φA(x, o) respectively.

2. Types: Given a type assignment tgi to the ith type category of the governor, we define features

φT (x, g, tgi ). Similarly, we define features φT (x, o, toi ) for the types of the object.
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We combine the argument and type features to define the features for classifying the relation, which

we denote by φ(x, g, o, tg, to):

φ =
∑

a∈{g,o}

(
φA(x, a) +

∑
i

φT (x, a, tai )

)
(6.1)

Section 6.4 describes the actual features used in our experiments.

Observe that given the arguments and their types, the task of predicting relations is simply

a multiclass classification problem. Thus, following the standard convention for multiclass classi-

fication, the overall feature representation for the relation and argument prediction is defined by

conjoining the relation r with features for the corresponding arguments and types, φ. This gives

us the full feature representation, Φ(x,y).

6.3.2 Model 1: Predicting only Relations

The first model aims at predicting only the relation labels and not the arguments and types. This

falls into the standard multiclass classification setting, where we wish to predict one of 32 labels.

To do so, we sum over all the possible assignments to the rest of the structure and define features

for the inputs as

φ1(x) =
∑

g,o,tg ,to

φ(x, g, o, tg, to) (6.2)

Once again, for a relation label r, the overall feature representation is defined by conjoining

the relation r with the features for that relation φ1, which we write as φR(x, r). Note that this

summation is computationally inexpensive in our case because the sum decomposes according to

equation (6.1). With a learned weight vector w, the relation label is predicted as

r = arg max
r′

wTφR(x, r′) (6.3)

We use a structural SVM to train a weight vector w that predicts the relation label as above.

The training is parameterized by C, which represents the tradeoff between generalization and the

hinge loss.
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6.3.3 Model 2: Learning from Partial Annotations

In the second model, even though our annotation does not provide gold labels for arguments and

types, our goal is to predict them. At inference time, if we had a weight vector w, we could predict

the full structure using inference as follows:

y = arg max
y′

wTΦ(x,y) (6.4)

We propose an iterative learning algorithm to learn this weight vector.

In the following discussion, for a labeled example (x,y∗), we refer to the missing part of its

structure as h(y∗). That is, h(y∗) is the assignment to the arguments of the relation and their

types. We use the notation r(y) to denote the relation label specified by a structure y.

Our learning procedure is a variant of the Latent Structural SVM algorithm of Yu and Joachims

(2009). We begin by defining two additional inference procedures:

1. Latent Inference: Given a weight vector w and a partially labeled example (x,y∗), we

can ‘complete’ the rest of the structure by inferring the highest scoring assignment to the

missing parts. In the algorithm, we call this procedure LatentInf(w,x,y∗), which solves the

following maximization problem:

ŷ = arg maxy wTΦ(x,y), (6.5)

s.t r(y) = r(y∗).

2. Loss augmented inference: This is a variant of the the standard loss augmented inference

for structural SVMs, which solves the following maximization problem for a given x and fully

labeled y∗:

arg max
y

wTΦ(x,y) + ∆(y,y∗) (6.6)

Here, ∆(y,y∗) denotes the loss function. In the Latent Structural SVM formulation, the loss

is defined only over the part of the structure with the gold label. In the standard structural

SVMs, the loss is over the entire structure. In this work, we use the standard Hamming

loss over the entire structure, but scale the loss for the elements of h(y) by a parameter
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α < 1. This is a generalization of the latent structural SVM, which corresponds to the

setting α = 0. The intuition behind having a non-zero α is that in addition to penalizing

the learning algorithm if it violates the annotated part of the structure, we also incorporate

a small penalty for the rest of the structure.

Using these two inference procedures, we define the learning algorithm as Algorithm 3. The

weight vector is initialized using Model 1. The algorithm then finds the best arguments and types

for all examples in the training set (steps 3-5). Doing so gives an estimate of the arguments and

types for each example, giving us ‘fully labeled’ structured data. The algorithm then proceeds to use

this data to train a new weight vector using the standard structural SVM with the loss augmented

inference listed above (step 6). These two steps are repeated several times. Note that as with

the summation in Model 1, solving the inference problems described above is computationally

inexpensive.

Algorithm 3 Algorithm for learning Model 2

Input: Examples D = {xi, r(y
∗
i )}, where examples are labeled only with the relation labels.

1: Initialize weight vector w using Model 1
2: for t = 1, 2, · · · do
3: for (xi,y

∗
i ) ∈ D do

4: ŷi ← LatentInf(w,xi,y
∗
i ) (Eq. 6.5)

5: end for
6: w← LearnSSVM({xi, ŷi}) with the loss augmented inference of Eq. 6.6
7: end for
8: return w

Algorithm 3 is parameterized by C and α. The parameter α controls the extent to which the

hypothesized labels according to the previous iteration’s weight vector influence the learning.

6.3.4 Joint Inference between Preposition Sense and Relations

By defining preposition relations as disjoint sets of preposition senses, we effectively have a hierar-

chical relationship between senses and relations. This suggests that joint inference can be employed

between sense and relation predictions with a validity constraint connecting the two. We use the

features defined by Hovy et al. (2010), which we write as φs(x, s) for a given input x and sense label

s, and train a separate preposition sense model on the SemEval data with features φs(x, s) using

structural SVM. Thus, we have two weight vectors – the one for predicting preposition relations

57



described earlier, and the preposition sense weight vector. At prediction time, for a given input,

we find the highest scoring joint assignment to the relation, arguments and types and the sense,

subject to the constraint that the sense and the relation agree according to the definition of the

relations.

6.4 Experiments and Results

The primary research goal of our experiments is to evaluate the different models (Model 1, Model 2

and joint relation-sense inference) for predicting preposition relations. In additional analysis exper-

iments, we also show that the definition of preposition relations indeed captures cross-preposition

semantics by taking advantage of shared features and also highlight the need for going beyond the

syntactic parser.

6.4.1 Features and Types

Features Our argument features, denoted by φA in Section 6.3.1, are derived from the preposition

sense feature set of Hovy et al. (2010) and extract the following from the argument: 1. Word, part-

of-speech, lemma and capitalization indicator, 2. Conflated part-of-speech (one of Noun, Verb,

Adjective, Adverb, and Other), 3. Indicator for existence in WordNet, 4. WordNet synsets for the

first and all senses, 5. WordNet lemma, lexicographer file names and part, member and substance

holonyms, 6. Roget thesaurus divisions for the word. 7. The first and last two and three letters,

and 8. Indicators for known affixes. Our type features (φT ) are simply indicators for the type label,

conjoined with the type category.

One advantage of abstracting word senses into relations is that we can share features across

different prepositions. The base feature set (for both types and arguments) defined above does not

encode information about the preposition to be classified. We do so by conjoining the features with

the preposition. In addition, since the relation labels are shared across all prepositions, we include

the base features as a shared representation between prepositions.

We consider two variants of our feature sets. We refer to the features described above as the

basic features. In addition, we define the basic+gen features by conjoining argument and type

features of basic with the generator that proposes the argument. Recall that governor candidates
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are proposed by the dependency parser, or by the heuristics described earlier. Hence, for a governor,

the basic+gen features would conjoin the corresponding basic features with one of parser,

previous-verb, previous-noun, previous-adjective, or previous-word.

Types As described in Section 6.2, we use WordNet hypernyms as one of the type categories.

We use all hypernyms within four levels in the hypernym hierarchy for all senses.

The second type category is defined by word-similarity driven clusters. We briefly describe the

clustering process here. The thesaurus of Lin (1998) specifies similar lexical items for a given word

along with a similarity score from 0 to 1. It treats nouns, verbs and adjectives separately. We

use the score to cluster groups of similar words using a greedy set-covering approach described in

Algorithm 4.

This algorithm proceeds by randomly selecting a word which is not yet in a cluster as the

center of a new cluster and add all words whose score is greater than σ to it. We repeat this

process till all words are in some cluster. A word can appear in more than one cluster because

all words similar to the cluster center are added to the cluster. We repeat this process for σ ∈

{0.1, 0.125, 0.15, 0.175, 0.2, 0.25}. By increasing the value of σ, the clusters become more selective

and hence smaller. Table 6.3 shows example noun clusters created using σ = 0.15. For a given

word, identifiers for clusters to which the word belongs serve as type label candidates for this type

category.

Algorithm 4 Greedy set-covering based approach for clustering words

Input: A list of words w1, w2, · · · and their pairwise similarities, a real valued σ
Output: A set of clusters of the words

1: Mark all words as unvisited
2: C ← ∅
3: while some word is unvisited do
4: Pick a random unvisited word w
5: Add w to a new cluster c
6: Add all words whose similarity to w is higher than σ to c
7: C ← C ∪ {c}
8: Mark all words in c as visited
9: end while

10: return C
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Jimmy Carter; Ronald Reagan; richard nixon; George Bush; Lyndon Johnson; Richard M. Nixon;
Gerald Ford
metalwork; porcelain; handicraft; jade; bronzeware; carving; pottery; ceramic; earthenware; jewelry;
lacquerware; stoneware
degradation; erosion; pollution; logging; desertification; siltation; urbanization; felling; poaching;
soil erosion; water pollution; deforestation; depletion;
expert; Wall Street analyst; analyst; economist; telecommunications analyst; strategist; media analyst
fox news channel; NBC News; MSNBC; Fox News; CNBC; CNNfn; C-Span
Tuesdays; Wednesdays; weekday; Mondays; Fridays; Thursdays; sundays; Saturdays

Table 6.3: Examples of noun clusters generated using the set-covering approach for σ = 0.15

6.4.2 Experimental Setup and Data

All our experiments are based on the SemEval 2007 data for preposition sense disambiguation

(Litkowski and Hargraves, 2007) comprising of word sense annotation over 16176 training and 8058

examples of prepositions labeled with their senses. We pre-processed sentences with part-of-speech

tags using the Illinois POS tagger and dependency graphs using the parser of Goldberg and Elhadad

(2010). For the experiments described below, we used the relation-annotated training set to train

the models and evaluate accuracy of prediction on the test set.

We chose the structural SVM parameter C using five-fold cross-validation on a 1000 random

examples chosen from the training set. For Model 2, we picked α using a validation set consisting

of a separate set of 1000 training examples. We ran the Algorithm 3 for 20 rounds.

Predicting the most frequent relation for a preposition gives an accuracy of 21.18%. Even

though the performance of most-frequent relation label is poor, it does not represent the problem’s

difficulty and is not a good baseline. To compare, for preposition senses, using features from the

neighboring words, Ye and Baldwin (2007) obtained an accuracy of 69.3% , and with features

designed for the preposition sense task, Hovy et al. (2010) get up to 84.8% accuracy for the task.

Our re-implementation of the latter system using a different set of pre-processing tools gets an

accuracy of 83.53%.

For preposition relations, our baseline system for relation labeling uses the basic feature set,

but without any type information. This produces an accuracy of 88.01% with Model 1 and 88.64%

with Model 2. We report statistical significance of results using our implementation of Dan Bikel’s

stratified-shuffling based statistical significance tester5.

5http://www.cis.upenn.edu/∼dbikel/software.html
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6.4.3 Main Results: Relation Prediction

Our main result, presented in Table 6.4, compares the baseline model (without types) against other

systems, using both models described in Section 6.3. First, we see that adding type information

(basic) improves performance over the baseline. Expanding the feature space (basic+gen) gives

further improvements. Finally, jointly predicting the relations with preposition sense gives another

improvement.

Setting
Accuracy

Model 1 Model 2

Baseline 88.01 88.64

basic 88.77 89.14
basic+gen 89.90∗ 89.43∗

Joint basic+gen & sense 89.99∗ 90.26∗†

Table 6.4: Accuracy of relation labeling. Results in bold are statistically significant (p < 0.01)
improvements over the baseline. Superscripts ∗ and † indicate significant improvements (p < 0.01)
over basic and basic+gen respectively. For Model 2, the improvement of basic over the baseline
is significant with p < 0.05.

With Model 2, jointly predicting the sense and relations improves not only the performance

of relation identification, but via joint inference between relations and senses also leads to a large

improvement in sense prediction accuracy. Table 6.5 shows the accuracy for sense prediction. We

see that while Model 1 does not lead to a significant improvement in the accuracy, Model 2 gives

an absolute improvement of over 1%.

Setting Sense accuracy

Baseline 83.53

Joint + Model 1 83.78
Joint + Model 2 84.78

Table 6.5: Sense prediction performance. Joint inference with Model 1, while improving relation
performance, does not help sense accuracy. However, with Model 2, the improvement over the
baseline sense classifier is statistically significant at p < 0.01.

6.4.4 Ablation Experiments

Feature Sharing across Prepositions In our first analysis experiment, we seek to highlight the

utility of sharing features between different prepositions. To do so, we compare the performance of
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a system trained without shared features against the baseline system, which uses shared features.

To discount the influence of other factors, we use Model 1 in the basic setting without any types.

Table 6.6 reports the accuracy of relation extraction for these two feature sets. We observed a

similar improvement in performance even when type features are added or the setting is changed

to basic+gen or with Model 2.

Setting Accuracy

Independent 87.17
+ Shared 88.01

Table 6.6: Comparing the effect of feature sharing across prepositions. We see that having a shared
representation that goes across prepositions improves accuracy of relation prediction (p < 0.01).

Different Argument Candidate Generators Our second ablation study looks at the effect of

the various argument candidate generators. Recall that in addition to the dependency governor and

object, our models also use the previous word, the previous noun, adjective and verb as governor

candidates and the next noun as object candidate. We refer to the candidates generated by the

parser as Parser only and the others as Heuristics only. Table 6.7 compares the performance of

these two argument candidate generators against the full set using Model 1 in both the basic and

basic+gen settings.

We see that the heuristics give a better accuracy than the parser based system. This is because

the heuristics often contain the governor/object predicted by the dependency. This is not always the

case, though, because using all generators gives a slightly better performing system (not statistically

significant). In the overall system, we retain the dependency parser as one of the generators in

order to capture long-range governor/object candidates that may not be in the set selected by the

heuristics.

Feature sets
Generator basic basic+gen

Parser only 87.12 87.12
Heuristics only 87.63 88.84

All 88.01 89.12

Table 6.7: The performance of different argument candidate generators. We see that considering a
larger set of candidate generators gives a big accuracy improvement.
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6.5 Discussion

There are two key differences between Model 1 and 2. First, the former predicts only the relation

label, while the latter predicts the entire structure. Table 6.8 shows example predictions of Model

2 for relation label and WordNet argument types. These examples show how the argument types

can be thought of as an explanation or a certificate for the choice of relation label.

Input Relation Hypernyms
governor object

died of pneumonia Cause experience disease
suffered from flu Cause experience disease

recovered from flu StartState change disease

Table 6.8: Example predictions according to Model 2. The hypernyms column shows an example
from the synset chosen for the WordNet types.

The main difference between the two models is in the treatment of the unlabeled (or latent)

parts of the structure (namely, the arguments and the types) during training and inference. During

training, for each example, Model 1 aggregates features from all governors and objects even if they

are possibly irrelevant, which may lead to a much bigger model in terms of the number of active

weights. On the other hand, for Model 2, algorithm 3 uses the single highest scoring prediction

of the latent variables, according to the current parameters, to refine the parameters. Indeed, in

our experiments, we observed that the number of non-zero weights in the weight vector of Model

2 is much smaller than that of Model 1. For instance, in the basic setting, the weight vector for

Model 1 had 2.57 million elements while that for Model 2 had only 1.0 million weights. Similarly,

for the basic+gen setting, Model had 1 5.41 million non-zero elements in the weight vector while

Model 2 had only 2.21 million non-zero elements.

The learning algorithm itself is a generalization of the latent structural SVM of Yu and Joachims

(2009). By setting α to zero, we get the latent structure SVM. However, we found via cross-

validation that this is not the best setting of the parameter. A theoretical understanding of the

sparsity of weights learned by the algorithm and a study of its convergence properties is an avenue

of future research.
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6.6 Conclusion

In this chapter, we addressed the problem of modeling semantic relations expressed by prepositions.

We approached this task by defining a set of relations that prepositions express by combining prepo-

sition senses across prepositions. Doing so allowed us to leverage existing annotated preposition

sense data to induce a corpus for preposition labels. We modeled preposition relations in terms of

their arguments, namely the governor and object of the preposition and the semantic types of the

arguments. Using a generalization of the latent structural SVM, we trained a relation, argument

and type predictor using only annotated relation labels. This allowed us to get an accuracy of

89.43% on relation prediction. By employing joint inference with a preposition sense predictor, we

further improved the relation accuracy to 90.23%.
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Chapter 7

Comma Resolution

In this chapter, we address the question of understanding the role of the commas in a sentence1.

Consider the following sentences, which illustrate the importance of understanding commas for text

comprehension:

(18) Authorities have arrested John Smith, a retired police officer.

(19) Authorities have arrested John Smith, his friend and his brother.

(20) Authorities have arrested John Smith, a retired police officer announced this morning.

Sentence (18) states that John Smith is a retired police officer. The comma and surrounding

sentence structure represent the Is-A relation. In sentence (19), the commas signify a list; so the

sentence states that three people – (i) John Smith, (ii) his friend, and (iii) his brother – were

arrested. In sentence (20), a retired police officer announced that John Smith has been arrested.

Here, the comma structure indicates the clause boundary.

In all three sentences, the comma and the surrounding sentence structure signify relations

essential to comprehending the meaning of the sentence, in a way that is not easily captured using

lexical information.

We define the problem of comma resolution to be that of solving the three sub-tasks for

relation extraction in the context of commas. Trigger identification for commas is the problem of

finding groups of commas in the text that, together, express a relation. Comma resolution consists

of (1) disambiguating the comma type and (2) determining the relations entailed from the sentence

given the commas’ interpretation. Specifically, for (1) we assign each comma to one of five possible

types, and for (2) we generate a set of natural language sentences that express the relations, if any,

signified by each comma structure. The algorithm uses information extracted from parse trees.

1This chapter is based on Srikumar et al. (2008)

65



To evaluate the algorithm, we have developed annotation guidelines, and manually annotated

sentences from the WSJ PennTreebank corpus. We present a range of experiments showing the

good performance of the system, using gold-standard and parser-generated parse trees.

In Section 7.1 we motivate comma resolution through Textual Entailment examples. Section 7.2

describes related work. Sections 7.3 and 7.4 present our corpus annotation and learning algorithm.

Results are given in Section 7.5.

7.1 Motivating Comma Resolution

Comma resolution involves not only comma disambiguation but also inference of the arguments

(and argument boundaries) of the relationship represented by the comma structure, and the rela-

tionships holding between these arguments and the sentence as a whole. Consider the following

three sentences:

(21) T Parviz Davudi was representing Iran at a meeting of the Shanghai Co-operation Organi-

zation (SCO), the fledgling association that binds two former Soviet republics of central

Asia, Russia and China to fight terrorism.

H1 SCO is the fledgling association that binds several countries.

H2 Russia and China are two former Soviet republics of central Asia .

To see that T entails H1, one must understand that the first comma in sentence T is an

apposition structure, and does not indicate the beginning of a list. The second comma marks a

boundary between entities in a list. To make the correct inference one must determine that the

second comma is a list separator, not an apposition marker. Misclassifying the second comma in

T as an apposition leads to the conclusion that T entails H2.

Note that even to an educated native speaker of English, sentence T may be initially confusing;

during the first reading, one might interpret the first comma as indicating a list, and that the

Shanghai Co-operation Organization and the fledgling association that binds... are two separate

entities that are meeting, rather than two representations of the same entity.

From these examples, we can conclude that comma resolution is essential for comprehending

natural language text. Further, comma structures might be highly ambiguous, nested and over-
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lapping, and consequently their interpretation is a difficult task. The argument boundaries of the

corresponding extracted relations are also not easy to detect.

7.2 Related Work

Since we focus on extracting the relations represented by commas, there are two main strands of

research with similar goals: 1) systems that directly analyze commas, whether labeling them with

syntactic information or correcting inappropriate use in text; and 2) systems that extract relations

from text, typically by trying to identify paraphrases.

The significance of interpreting the role of commas in sentences has already been identified by

Doran (1998); van Delden and Gomez (2002); Bayraktar et al. (1998); White and Rajkumar (2008)

and others. A review of this line of research is given in Say and Akman (1997).

Doran (1998) points out that punctuations help us understand text and studies the role of

punctuation in grammar by incorporating punctuation marks into the framework of Lexicalized

Tree Adjoining Grammar (Joshi and Schabes, 1997). White and Rajkumar (2008) incorporates a

precise analysis of punctuations into the CCGbank corpus (Hockenmaier and Steedman, 2007).

Bayraktar et al. (1998) analyzed the Wall Street Journal portion of the Penn Treebank corpus

and created a very detailed list of syntactic patterns that correspond to different roles of commas.

However, they do not study the extraction of entailed relations as a function of the comma’s

interpretation. Furthermore, the syntactic patterns they identify are unlexicalized and would not

support the level of semantic relations that we show here. Finally, theirs is a manual process

dependent only on syntactic patterns. While our comma resolution system uses syntactic parse

information as its primary source of information, the approach we have developed is both data-

driven and not limited to using only syntactic information.

The most directly comparable prior work is that of van Delden and Gomez (2002), who use

finite state automata and a greedy algorithm to learn comma syntactic roles. However, their ap-

proach differs from ours in a number of critical ways. First, their comma annotation scheme does

not identify arguments of predicates, and therefore cannot be used to extract complete relations.

Second, for each comma type they identify, a new Finite State Automaton must be hand-encoded;

the learning component of their work simply constrains which FSAs that accept a given, comma
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containing, text span may co-occur. Third, their corpus is preprocessed by hand to identify spe-

cialized phrase types needed by their FSAs; once our system has been trained, it can be applied

directly to raw text. Fourth, they exclude from their analysis and evaluation any comma they

deem to have been incorrectly used in the source text. We include all commas that are present in

the text in our annotation and evaluation.

There is a large body of NLP literature on punctuation. Most of it, however, is concerned with

aiding syntactic analysis of sentences and developing comma checkers, much based on Nunberg

(1990). Pattern-based relation extraction methods (Davidov and Rappoport, 2008; Davidov et al.,

2007; Banko et al., 2007; Pasca et al., 2006; Sekine, 2006) could in theory be used to extract relations

represented by commas. However, the types of patterns used in web-scale lexical approaches

currently constrain discovered patterns to relatively short spans of text, so will most likely fail on

structures whose arguments cover large spans (for example, appositional clauses containing relative

clauses). Relation extraction approaches such as Roth and Yih (2004, 2007); Hirano et al. (2007);

Culotta and Sorenson (2004); Zelenko et al. (2003) focus on relations between named entities; such

approaches miss the more general apposition and list relations we recognize in this work, as the

arguments in these relations are not confined to Named Entities. Paraphrase acquisition work

such as Lin and Pantel (2001), Pantel and Pennacchiotti (2006) and Szpektor et al. (2004) is not

constrained to named entities, and by using dependency trees, avoids the locality problems of lexical

methods. However, these approaches have so far achieved limited accuracy, and are therefore hard

to use to augment existing NLP systems.

7.3 Corpus Annotation

For our corpus, we selected 1,000 sentences containing at least one comma from the Penn Treebank

WSJ section 00, and manually annotated them with comma information2. This annotated corpus

served as both training and test datasets (using cross-validation).

By studying a number of sentences from WSJ (not among the 1,000 selected), we identified

four significant types of relations expressed through commas: Substitute, Attribute, Location,

and List. Each of these types can in principle be expressed using more than a single comma. We

2The guidelines and annotations are available at http://cogcomp.cs.illinois.edu/page/resources/data.
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define a comma structure to be a set of one or more commas that all relate to the same relation

in the sentence. Identifying the comma structure represents the trigger identification stage. We

write the predicate and the arguments of the comma structure as a collection of entailed sentences.

Substitute indicates an Is-A relation. An example is John Smith, a Renaissance artist, was

famous. By removing the relation expressed by the commas, we can derive three sentences: John

Smith is a Renaissance artist, John Smith was famous, and a Renaissance artist was famous.

Note that in theory, the third relation will not be valid: one example is The brothers, all honest

men, testified at the trial, which does not entail all honest men testified at the trial. However, we

encountered no examples of this kind in the corpus, and leave this refinement to future work.

Attribute indicates a relation where one argument describes an attribute of the other. For

example, from John, who loved chocolate, ate with gusto, we can derive John loved chocolate and

John ate with gusto.

Location indicates a located-in relation. For example, from Chicago, Illinois saw some heavy

snow today we can derive Chicago is located in Illinois and Chicago saw some heavy snow today.

List indicates that some predicate or property is applied to multiple entities. In our annotation,

the list does not generate explicit relations; instead, the boundaries of the units comprising the list

are marked so that they can be treated as a single unit, and are considered to be related by the

single relation Group. For example, the derivation of John, James and Kelly all left last week is

written as [John, James, and Kelly] [all left last week].

Any commas not fitting one of the descriptions above are designated as Other. This does not

indicate that the comma signifies no relations, only that it does not signify a relation of interest in

this work. Analysis of 120 Other commas show that approximately half signify clause boundaries,

which may occur when sentence constituents are reordered for emphasis, but may also encode

implicit temporal, conditional, and other relation types (for example, Opening the drawer, he

found the gun.). The remainder comprises mainly coordination structures (for example, Although

he won, he was sad) and discourse markers indicating inter-sentence relations (such as However,

he soon cheered up.). Such relations are beyond the scope of this work.

Four annotators annotated the same 10% of the WSJ sentences in order to evaluate inter-

annotator agreement. The remaining sentences were divided among the four annotators. The
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resulting corpus was checked by two judges and the annotation corrected where appropriate; if the

two judges disagreed, a third judge was consulted and consensus reached. Our annotators were

asked to identify comma structures, and for each structure to write its relation type, its arguments,

and all possible simplified version(s) of the original sentence in which the relation implied by the

comma has been removed. Arguments must be contiguous units of the sentence and will be referred

to as chunks hereafter. Agreement statistics and the number of commas and relations of each type

are shown in Table 7.1. The accuracy closely approximates the Cohen’s Kappa score (Cohen, 1960)

in this case, since the baseline probability of chance agreement is close to zero.

Rel. Type Avg. Agreement # of Commas # of Rel.s

Substitute 0.808 243 729
Attribute 0.687 193 386
Location 0.929 71 140
List 0.803 230 230
Other 0.949 909 0
Combined 0.869 1646 1485

Table 7.1: Average inter-annotator agreement for comma relations.

7.4 A Sentence Transformation Rule Learner

In this section, we describe an algorithm that learns Sentence Transformation Rules (STRs) for

comma resolution. We will first define the hypothesis space (i.e., STRs) and two operations –

substitution and introduction. Finally, we describe the learning algorithm.

In Section 7.1, we discussed the example which presents an ambiguity between a list and an

apposition structure in the fragment two former Soviet republics, Russia and China. In addition,

simple surface examination of the sentence could also identify the noun phrases Shanghai Co-

operation Organization (SCO), the fledgling association that binds two former Soviet Republics,

Russia and China as the four members of a list. To resolve such ambiguities, we need a nested

representation of the sentence. This motivates the use of syntactic parse trees to represent sentences

for comma resolution. (Note, however, that semantic and pragmatic ambiguities might still remain.)
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NPp

,NP2,NP1

LHS

1. NP1 Is-A NP2 (introduction)

2. NP1 (substitution)

3. NP2 (substitution)

RHS

Figure 7.1: Example of a Sentence Transformation Rule. If the LHS matches a part of a given
parse tree, then the RHS will generate three relations.

7.4.1 Sentence Transformation Rules

A Sentence Transformation Rule (STR) takes a parse tree as input and generates new sen-

tences. We formalize an STR as the pair l → r, whose left hand side l is a tree fragment that

can consist of non-terminals, part-of-speech tags and lexical items. The right hand side, r, is a

set of templates, each denoted by ri, that generate the output sentences. Each ri can consist of

the non-terminals of l and, possibly new tokens that are not present in the input sentence. In the

forthcoming discussion, we will refer to the output sentences as relations.

Figure 7.1 shows an example of an STR. The left hand side consists of three noun phrases,

labeled as NP1, NP2 and NPp and the RHS consists of three templates. Each output relation is

marked either as an introduction or a substitution. This dictates how the output is generated

according the template.

The process of applying an STR l→ r to a parse tree of a sentence begins with finding a match

for l in the parse tree. If matched, the non-terminals of each template ri are instantiated with

the terminals that they cover in T . This is followed by generation of the output relations for each

template, based on whether it is marked as an introduction or a substitution.

If a relation is marked as an introductory one, then the output is obtained by replacing the non-

terminals in ri with the terminals they cover in the input sentence. In other words, introduction

creates a new output sentence. Figure 7.2 shows the application of the STR from Figure 7.1 to a

sentence. The first output relation, NP1 Is-A NP2, is marked as an introduction. For the input

tree, the first noun phrase corresponds to the phrase John Smith and the second one corresponds

to a renaissance artist. Binding these instantiations to the output, we get John Smith Is-A a
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renaissance artist.

If a relation is marked as a substitution, then the output is obtained by replacing the terminals

covered by the node that matches with the root of the pattern with the output. In the example

STR, the second and third relations are marked as substitutions. When applied to the tree in

Figure 7.2, the phrase John Smith, corresponding to NP1, replaces the phrase John Smith, a

renaissance artist, that corresponds to the root of the pattern NPp to obtain the second output

relation, namely John Smith was famous. Effectively, substitution simplifies the input sentence by

replacing a non-terminal with one of its descendants. The notions of introduction and substitution

were motivated by ideas introduced in Bar-Haim et al. (2007a).

S

VP

was famous

NPp

,NP2

a renaissance artist

,NP1

John Smith

1. [John Smith]/NP1 Is-A [a renaissance artist]/NP2

2. [John Smith] /NP1 [was famous]

3. [a renaissance artist]/NP2 [was famous]

Figure 7.2: Example of application of the STR in Figure 7.1. In the first relation, an introduction,
we use the relation Is-A, without dealing with tense. NP1 and NP2 are both substitutions, each
replacing NPp to generate the last two relations.

7.4.2 Algorithm Overview

In our corpus annotation, the relations and their argument boundaries (chunks) are explicitly

marked. For each training example, our learning algorithm first finds the smallest valid STR – the

STR with the smallest LHS in terms of depth. Then it refines the LHS by specializing it using

statistics taken from the entire data set.
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7.4.3 Generating the Smallest Valid STR

To transform an example into the smallest valid STR, we use the parse tree3 of the sentence. For

a given relation, for each argument in the annotation, we find the lowest node in the parse tree

that covers it and no other arguments (even partially). It may, however, cover words that do not

belong to any argument. We refer to such a node as a chunk root. We then find the lowest

node that covers all the chunk roots, referring to it as the pattern root. The initial LHS consists

of the parse sub-tree rooted at the pattern root whose leaf nodes are all either chunk roots or

other nodes from the parse tree that do not belong to any chunk. All the nodes are labeled with

the corresponding labels in the augmented parse tree. For example, if we consider the parse tree

and relations shown in Figure 7.2, then doing the above procedure gives us the initial LHS as

S (NPp(NP1,NP2, ) VP). The three relations gives us the RHS with three elements ‘NP1 Is-A

NP2’, ‘NP1 VP ’ and ‘NP2 VP ’, all three being introduction.

This initial LHS need not be the smallest one that explains the example. So, we proceed by

pruning the initial LHS to give a new STR that explains the example using both introduction and

substitution. In our example, the initial LHS has a sub-tree, NPp(NP1,NP2, ) that can cover all

the relations with the RHS consisting of ‘NP1 Is-A NP2’, NP1 and NP2. The first RHS is an

introduction, while the second and the third are both substitutions. Since no sub-tree of this LHS

can generate all three relations even with substitution, this is the required STR. This final pruning

step ensures that we have the smallest valid STR at this stage.

7.4.4 Statistical Refinement

The STR generated using the procedure outlined above explains the relations generated by a single

example. In addition to covering the relations generated by the example, we wish to ensure that

it does not cover erroneous relations by matching any of the other comma types in the annotated

data.

For this purpose, we specialize the LHS so that it covers as few examples from the other comma

types as possible, while covering as many examples from the current comma type as possible. The

complete algorithm to learn a set of STRs is listed as Algorithm 5.

3We augment parse tree nodes with named entity information. This is explained in Section 7.5.
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Algorithm 5 ASTRL: A Sentence Transformation Rule Learner.

1: for all t: Comma type do
2: Initialize STRList [t] = ∅
3: p = Set of annotated examples of type t
4: n = Annotated examples of all other types
5: for all x ∈ p do
6: r = Smallest Valid STR that covers x
7: Get fringe of r.LHS using the parse tree
8: S = Score(r,p,n)
9: Sprev = −∞

10: while S 6= Sprev do
11: if adding some fringe node to r.LHS causes a significant change in score then
12: Set r = New rule that includes that fringe node
13: Sprev = S
14: S = Score(r,p,n)
15: Recompute new fringe nodes
16: end if
17: end while
18: Add r to STRList [t]
19: Remove all examples from p that are covered by r
20: end for
21: end for

Given the most general STR, we generate a sequence of additional, more detailed, candidate

rules. Each of these is obtained from the original rule by adding a single node to the tree pattern

in the rule’s LHS , and updating the rule’s RHS accordingly. We then score each of the candidates

(including the original rule). If there is a clear winner, we continue with it using the same procedure

(i.e., specialize it). If there isn’t a clear winner, we stop and use the current winner. After finishing

with a rule (line 18), we remove from the set of positive examples of its comma type all examples

that are covered by it (line 19).

To generate the additional candidate rules that we add, we define the fringe of a rule as the

siblings and children of the nodes in its LHS in the original parse tree. Each fringe node defines

an additional candidate rule, whose LHS is obtained by adding the fringe node to the rule’s LHS

tree. We refer to the set of these candidate rules, plus the original one, as the rule’s fringe rules.

We define the score of an STR as

Score(Rule,p,n) =
Rp

|p|
− Rn

|n|
(7.1)
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where p and n are the set of positive and negative examples for this comma type, and Rp and Rn

are the number of positive and negative examples that are covered by the STR. For each example,

all examples annotated with the same comma type are positive while all examples of all other

comma types are negative. The score is used to select the winner among the fringe rules. The

stopping criterion in line 11 checks whether any fringe rule has a significantly better score than the

rule it was derived from, and exits the specialization loop if there is none.

Since we start with the smallest STR, we only need to add nodes to it to refine it and never have

to delete any nodes from the tree. Also note that the algorithm is essentially a greedy algorithm

that performs a single pass over the examples; other, more complex, search strategies could also

be used.

7.5 Evaluation

7.5.1 Experimental Setup

To evaluate ASTRL, we used the WSJ derived corpus. We experimented with three scenarios; in

two of them we trained using the gold standard trees and then tested on gold standard parse trees

(Gold-Gold), and text annotated using a state-of-the-art statistical parser of Charniak and Johnson

(2005) (Gold-Charniak), respectively. In the third, we trained and tested on the Charniak Parser

(Charniak-Charniak).

In gold standard parse trees the syntactic categories are annotated with functional tags. Since

current statistical parsers do not annotate sentences with such tags, we augment the syntactic trees

with the output of the Illinois Named Entity tagger. We evaluate our system from different points

of view, as described below. For all the evaluation methods, we performed five-fold cross validation

and report the average precision, recall and F-scores.

7.5.2 Relation Extraction Performance

First, we present the evaluation of the performance of ASTRL for generating the arguments without

considering of the type of relation. This metric, called the Relation metric in further discussion,

is the most relevant one from the point of view of the textual entailment task. After learning
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the STRs for the different comma types using the gold standard parses, we generated entailed

sentences by applying the STRs on the test set. Table 7.2 shows the precision, recall and F-score

of the entailed sentences, without accounting for the comma type of the STR that was used to

generate them. Since a list does not generate any relations in our annotation scheme, we use the

commas to identify the list elements. Treating each list in a sentence as a single relation, we score

the list with the fraction of its correctly identified elements.

In addition to the Gold-Gold and Gold-Charniak settings described above, for this metric, we

also present the results of the Charniak-Charniak setting, where both the train and test sets were

annotated with the output of the Charniak parser. The improvement in recall in this setting

over the Gold-Charniak case indicates that the parser makes systematic errors with respect to the

phenomena considered.

Setting P R F

Gold-Gold 86.1 75.4 80.2
Gold-Charniak 77.3 60.1 68.1

Charniak-Charniak 77.2 64.8 70.4

Table 7.2: Performance of ASTRL (precision, recall and F-score) for generating entailed sentences.
The comma types were used only to learn the rules.

7.5.3 Comma Resolution Performance

Type Gold-Gold Setting Gold-Charniak Setting
Relation-Type metric

Smallest Valid STRs ASTRL Smallest Valid STRs ASTRL
P R F P R F P R F P R F

Total 66.2 76.1 70.7 81.8 73.9 77.6 61.0 58.4 59.5 72.2 59.5 65.1

Relations Metric, Per Comma Type
Attribute 40.4 68.2 50.4 70.6 59.4 64.1 35.5 39.7 36.2 56.6 37.7 44.9
Substitute 80.0 84.3 81.9 87.9 84.8 86.1 75.8 72.9 74.3 78.0 76.1 76.9
List 70.9 58.1 63.5 76.2 57.8 65.5 58.7 53.4 55.6 65.2 53.3 58.5
Location 93.8 86.4 89.1 93.8 86.4 89.1 70.3 37.2 47.2 70.3 37.2 47.2

Table 7.3: Performance of STRs learned by ASTRL and the smallest valid STRs in identifying
comma types and generating entailed sentences.

We now present a detailed analysis of the performance of the algorithm for the full task of

comma resolution. Since this is the first work that deals with the task, we could not compare

our results to previous work. Also, there is no clear baseline to use. We tried a variant of the

most frequent baseline common in other disambiguation tasks, in which we labeled all commas
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as Other (the most frequent type) except when there are list indicators like and, or and but in

adjacent chunks (which are obtained using a shallow parser), in which case the commas are labeled

List. This gives an average precision 0.85 and an average recall of 0.36 for identifying the comma

type. However, this baseline does not help in identifying the other relations.

We use the following approach to evaluate the comma type resolution and relation extraction

performance – a relation extracted by the system is considered correct only if both the type of

the comma structure and the set of entailed sentences are correctly identified. We call this metric

the Relation-Type metric. Another way of measuring the performance of comma resolution is to

measure the correctness of the entailed sentences per comma type. In both cases, lists are scored

as in the Relation metric. The performance of our system with respect to these two metrics are

presented in Table 7.3. In this table, we also compare the performance of the STRs learned by

ASTRL with the smallest valid STRs without further specialization (i.e., using just the procedure

outlined in Section 7.4.3).

There is an important difference between the Relation metric (Table 7.2) and the Relation-type

metric (top part of Table 7.3) that depends on the semantic interpretation of the comma types.

For example, consider the sentence John Smith, 59, went home. If the system labels the commas

in this as both Attribute and Substitute, then, both will generate the output “John Smith is

59.” According to the Relation metric, there is no difference between them. However, there is a

semantic difference between the two sentences – the Attribute relation says that being 59 is an

attribute of John Smith while the Substitute relation says that John Smith is the number 59.

This difference is accounted for by the Relation-Type metric.

From this standpoint, we can see that the specialization step performed in the full ASTRL

algorithm greatly helps in disambiguating between the Attribute and Substitute types and con-

sequently, the Relation-Type metric shows an error reduction of 23.5% and 13.8% in the Gold-Gold

and Gold-Charniak settings respectively. In the Gold-Gold scenario the performance of ASTRL is

much better than in the Gold-Charniak scenario. This reflects the non-perfect performance of the

parser in annotating these sentences (parser F-score of 90%).

Another key evaluation question is the performance of the method in identification of the

Other category. A comma is judged to be as Other if no STR in the system applies to it. The
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performance of ASTRL in this aspect is presented in Table 7.4. The categorization of this category

is important if we wish to further classify the Other commas into finer categories.

Setting P R F

Gold-Gold 78.9 92.8 85.2
Gold-Charniak 72.5 92.2 81.2

Table 7.4: ASTRL performance (precision, recall and F-score) for Other identification.

7.6 Conclusion

In this chapter, we defined the task of comma resolution and designed a comma annotation scheme,

where each comma structure is assigned to one of four types. We described a learning algorithm that

learns Sentence Transformation Rules to perform this task. Though the size of the annotated corpus

is small, we are able to learn to predict the comma relations by biasing the learning procedure to

consider the smallest explanations possible that can effectively account for each annotated example.

This work, in addition to having immediate significance for natural language processing systems

that use semantic content, has potential applications in improving a range of automated analysis

by decomposing complex sentences into a set of simpler sentences that capture the same meaning.
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Chapter 8

Jointly Predicting Verb and
Preposition Relations

So far, we have seen that semantic relations can be triggered by verbs, nominalizations, commas and

prepositions. For each type of relation, we developed independent systems that identify and predict

relations. In this chapter1, we argue that the different phenomena interact with each other by

constraining the possible interpretations that they can take, suggesting that there can be a benefit

in predicting them together. However, modeling the different phenomena jointly is challenging

because large jointly labeled corpora do not exist. This motivates the need for novel learning and

inference schemes that address the data problem and can still benefit from the interactions among

the phenomena.

We propose a joint inference scheme that combines existing structure predictors for multiple

linguistic phenomena. We do so using hard constraints that involve only the labels of the phe-

nomena. The strength of this model is that is easily extensible, since adding new phenomena does

not require fully retraining the joint model from scratch. Furthermore, our approach minimizes

the need for extensive jointly labeled corpora and, instead, uses existing predictors as black boxes.

Using a small portion of the Penn Treebank that is annotated with preposition relations, we report

the results of a case study where we jointly predict verb and preposition relations, improving both.

The rest of this chapter is organized as follows: We motivate the need for joint inference in

Section 8.1 and define the global model in Section 8.2. Section 8.3 provides details on the coherence

constraints we use and demonstrates the effectiveness of the joint model through experiments.

Section 8.4 discusses our approach in comparison to existing work.

1This chapter is based on Srikumar and Roth (2011).
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8.1 The Need for Joint Inference

Relations expressed by different linguistic phenomena often overlap. For example, consider the

following sentence:

(22) Construction of the library began in 1968.

The relation expressed by the nominalization construction recognizes the library as the argument

of the predicate construct. We can arrive at the same conclusion using the preposition of, which

triggers the relation ObjectOfVerb. We see from the definition of this relation (from Appendix C)

that “the object of the preposition is an object of the verb or the nominalization that is the governor

of the preposition.” A similar redundancy can be observed with analyses of the verb began and the

preposition in. The above example motivates the following intuition: The correct interpretation of

a sentence is the one that gives a consistent analysis across all the linguistic phenomena expressed

in it.

An inference mechanism that simultaneously predicts the structure for different phenomena

should account for consistency between the phenomena. A model designed to address this has the

following desiderata:

1. It should account for the dependencies between phenomena.

2. It should be extensible to allow easy addition of new linguistic phenomena.

3. It should be able to leverage existing state-of-the-art models with minimal use of jointly

labeled data, which is expensive to obtain.

The systems that we have seen thus far are trained on each task independently and do not

account for the interplay between them. One approach for accounting for the dependencies is to

define pipelines, where the predictions for one of the tasks acts as the input for another. However, a

pipeline does not capture the two-way dependency between the tasks. Training a fully joint model

from scratch is unrealistic from a data perspective because it requires text that is annotated for all

the tasks, thus making joint training implausible. Another alternative is to use the latent learning

algorithm described in Chapter 6 by treating the interactions as latent variables. However, this

significantly increases the complexity of learning.
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8.2 A Joint Model for Verbs and Prepositions

We seek to jointly model verb SRL and preposition relations, using the independently trained

systems as black boxes. Our starting point is the verb SRL system from Chapter 5 that is trained

on the PropBank corpus. We only consider the argument labeling aspect of the verb SRL problem

here, but the approach presented here can be extended to include verb sense disambiguation as

well. For prepositions, we train a preposition relation predictor using the Model 1 from 6 with the

basic+gen setting.

We will use a preposition relation corpus derived from the preposition sense annotation of

Dahlmeier et al. (2009) on sections 2-4 and 23 of the Wall Street Journal portion of the Penn

TreeBank2.

Our approach extends the strategy of training individual models and combining them at infer-

ence time, proposed by Roth and Yih (2004). Our joint model is a Constrained Conditional Model

(Chang et al., 2012), which allows us to build upon existing learned models using declarative

constraints.

The starting point is the observation that inference problems can be represented as instances of

integer linear programs (ILPs). We saw in Chapter 5 that inference for SRL is instantiated as an

ILP problem. The problem of predicting preposition relation labels using Model 1 (from Chapter

6) is a multiclass classification problem that is easily transformed into an ILP instance. Let yp,r,R

denote the decision variable that encodes the prediction that the preposition p is assigned a relation

r and let Θp,r,R denote its score. Let yR denote all the relation variables for a sentence. Then

preposition relation prediction is equivalent to the following maximization problem:

max
yR

∑
p,r

Θp,r,R · yp,r,R (8.1)

subj. to
∑
r
yp,r,R = 1, ∀p (8.2)

yp,r,R ∈ {0, 1}, ∀p, r. (8.3)

In general, let p denote a linguistic structure prediction task of interest and let P denote all such

2This dataset does not annotate all prepositions and restricts itself mainly to prepositions that start a Propbank
argument. The data annotates seven prepositions (at, for, in, of, on, to and with) and is available at http://nlp.
comp.nus.edu.sg/corpora. These seven prepositions produce 22 relation labels.
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tasks. Let Zp denote the set of labels that the parts of the structure associated with phenomenon p

can take. For example, for the SRL argument classification component, the parts of the structure

are all the candidates that need to be labeled for a given sentence and the set Zp is the set of all

argument labels. For each phenomenon p ∈ P, we use yp to denote its set of inference variables for

a given sentence. Each inference variable yu,z,p ∈ yp corresponds to the prediction that the part u

has the label z ∈ Zp in the final structure. This variable is associated with a score Θu,z,p that is

obtained from a learned score predictor. Let Cp denote the structural constraints that are “local”

to the phenomenon. Thus, for verb SRL, these would be the constraints defined in the previous

section, and for preposition relation, the only local constraint would be the constraint (8.2) defined

above.

With this notation, the independent inference problem for the phenomenon p is the following

integer program:

max
yp

∑
z∈Zp

∑
u
yu,z,p ·Θu,z,p, (8.4)

subj. to Cp(yp), (8.5)

yu,z,p ∈ {0, 1}, ∀z, u. (8.6)

8.2.1 Joint Inference

We consider the problem of jointly predicting several phenomena incorporating linguistic knowledge

that enforces consistency between the output labels. Suppose p1 and p2 are two phenomena. If zp1

is a label associated with the former and z1,p2 , z2,p2 , · · · are labels associated with the latter, we

consider constraints of the form

zp1 → z1,p2 ∨ z2,p2 ∨ · · · (8.7)

We expand this language of constraints by allowing the specification of pre-conditions for a con-

straint to apply. This allows us to enforce constraints of the form “If an argument that starts

with the preposition ‘at’ is labeled AM-TMP, then the preposition can be labeled either Numeric or

Temporal.” This constraint is universally quantified for all arguments that satisfy the precondition

of starting with the preposition at.
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Given a first-order constraint in this form and an input sentence, suppose the inference variable

yp1 is a grounding of zp1 and y1,p2 , y2,p2 , · · · are groundings of the right hand labels such that the

preconditions are satisfied, then the constraint can be phrased as the following linear inequality.

− yp1 +
∑
i

yi,p2 ≥ 0. (8.8)

In the context of the preposition relations and verb SRL, we consider constraints between labels

for a preposition and SRL argument candidates that begin with that preposition. This restriction

forms the pre-condition for all the joint constraints considered in this chapter. Since the joint

constraints involve only the labels, they can be derived either manually from the definition of the

tasks or using statistical relation learning techniques. In addition to mining constraints of the form

(8.7), we also use manually specified joint constraints. The constraints used in our experiments are

described further in Section 8.3.

In general, let J denote a set of pairwise joint constraints. The joint inference problem can be

phrased as that of maximizing the score of the assignment subject to the structural constraints of

each phenomenon (Cp) and the joint linguistic constraints (J). However, since, the individual tasks

were not trained on the same datasets, the scoring functions need not be in the same numeric scale.

In our model, each label z for a phenomenon p is associated with a scoring function Θu,z,p for a

part y. To scale the scoring functions, we associate each label with a parameter λz,p. This gives us

the following integer linear program for joint inference:

max
y

∑
p∈P

∑
z∈Zp

λz,p

(∑
u
yu,z,p ·Θu,z,p

)
, (8.9)

subj. to Cp(yp), ∀p ∈ P, (8.10)

J(y), (8.11)

yu,z,p ∈ {0, 1}, ∀z, u, p. (8.12)

Here, y is the vector of inference variables which is obtained by stacking all the inference

variables of each phenomena.

For our experiments, we use a cutting plane solver to solve the integer linear program. (See

Chapter 2 for a description of this method.) This allows us to solve the inference problem without

83



explicitly having to instantiate all the joint constraints.

8.2.2 Learning to Rescale the Individual Systems

Given the individual models and the constraints, we only need to learn the scaling parameters λz,p.

Note that the number of scaling parameters is the total number of labels. When we jointly predict

verb SRL and preposition relations, we have 22 preposition relations (for the seven prepositions

annotated in the Treebank data), one SRL identifier label and 54 SRL argument classifier labels.

Thus we learn only 77 parameters for our joint model. This means that we only need a very small

dataset that is jointly annotated with all the phenomena.

We use the structured Perceptron algorithm of Collins (2002) to learn the scaling weights. Note

that for learning the scaling weights, we need each label to be associated with a real-valued feature.

Given an assignment of the inference variables y, the value of the feature corresponding to the

label z of task p is given by the sum of scores of all parts in the structure for p that have been

assigned this label, i.e.
∑
up

yu,z,p · Θu,z,p. This feature is computed for the gold and the predicted

structures and is used for updating the weights.

8.3 Experiments and Results

In this section, we describe our experimental setup and evaluate the performance of our approach.

The research question addressed by the experiments is the following: Given independently trained

systems for verb SRL and preposition relations, can their performance be improved using joint

inference between the two tasks? To address this, we report the results of the following two exper-

iments:

1. First, we compare the joint system against the baseline systems and with pipelines in both

directions. In this setting, both base systems are trained on the Penn Treebank data.

2. Second, we show that using joint inference can provide a strong performance gain even when

the underlying systems are trained on different domains.

In all experiments, we report the F1 measure for the verb SRL performance using the CoNLL

2005 evaluation metric and the accuracy for the preposition relation labeling task.
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8.3.1 Data and Constraints

For both the verb SRL and preposition relations, we used the first 500 sentences of section 2 of the

Penn Treebank corpus to train our scaling parameters. For the first set of experiments, we trained

our underlying systems on the rest of the available Penn Treebank training data for each task. For

the adaptation experiment, we train the relation classifier on the SemEval data (restricted to the

same Treebank prepositions). In both cases, we report performance on section 23 of the Treebank.

We mined consistency constraints from the sections 2, 3 and 4 of the Treebank data. As

mentioned in Section 8.2.1, we considered joint constraints relating preposition relation to verb

argument candidates that start with the preposition. We identified the following types of con-

straints: (1) For each preposition, the set of invalid verb arguments and preposition relations. (2)

For each preposition relation, the set of allowed verb argument labels if the role occurred more than

ten times in the data, and (3) For each verb argument, the set of allowed preposition relations,

similarly with a support of ten. Note that, while the constraints were obtained from jointly labeled

data, the constraints could be written down because they encode linguistic intuitions about the

labels.

srl-arg(A2) → prep-relation(Attribute)

∨ prep-relation(Cause)

∨ prep-relation(Instrument)

∨ prep-relation(ObjectOfVerb)

∨ prep-relation(PartWhole)

∨ prep-relation(Participant/Accompanier)

∨ prep-relation(ProfessionalAspect).

Figure 8.1: Example of a constraint that captures the interaction between verb arguments and
preposition relations.

Figure 8.1 shows a constraint extracted from the data, which applies to the preposition with.

This constraint says that if any candidate that starts with with is labeled as an A2, then the

preposition can be labeled only with one of the relations on the right hand side.

Some of the mined constraints have negated variables to enforce that a preposition relation or a

verb argument label should not be allowed. These can be similarly converted to linear inequalities.
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See Rizzolo and Roth (2007) for a further discussion about converting logical expressions into linear

constraints.

In addition to these constraints that were mined from data, we also enforce the following hand-

written constraints: (1) If the relation label of a verb attached preposition is labeled Temporal,

then there should be a verb predicate for which this prepositional phrase is labeled AM-TMP.

(2) For verb attached prepositions, if the preposition is labeled with one of Activity, EndCon-

dition, Instrument or ProfessionalAspect, there should be at least one predicate for which

the corresponding prepositional phrase is not labeled Ø.

The conversion of the first constraint to a linear inequality is similar to the earlier cases. For

each of the relations in the second constraint, let r denote a relation variable that assigns the label

to some preposition. Suppose there are n SRL candidates across all verb predicates that begin

with that preposition, and let s1, s2, · · · , sn denote the SRL variables that assign these candidates

to the label Ø. Then the second constraint corresponds to the following inequality:

r +
n∑

i=1

si ≤ n. (8.13)

8.3.2 Results of Joint Learning

First, we compare our approach to the performance of the baseline independent systems and to

pipelines in both directions in Table 8.1. For one pipeline, we added the prediction of the baseline

preposition relation system as an additional feature to both the identifier and the argument classifier

for argument candidates that start with a preposition. Similarly, for the second pipeline, we added

the SRL predictions as features for prepositions that were the first word of an SRL argument. In

all cases, we performed five-fold cross validation to train the classifiers.

As discussed in section 5.6, for verb SRL, we treated the identifier and classifier as two separate

phenomena and trained re-rescaling weights for them separately. By doing so, we do not prune

away any argument candidates that might eventually be labeled as an argument because of the

joint inference.

The results show that both pipelines improve performance. This justifies the need for a joint

system because the pipeline can improve only one of the tasks. The last line of the table shows
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Setting SRL Preposition Role
(F1) (Accuracy)

Baseline SRL 76.22 –
Baseline Prep. – 67.82

Prep. → SRL 76.84 –
SRL → Prep. – 68.55

Joint inference 77.07 68.39

Table 8.1: Performance of the joint system, compared to the individual systems and the pipelines.
All performance measures are reported on Section 23 of the Penn Treebank. The verb SRL systems
were trained on sections 2-21, while the preposition relation classifiers were trained on sections 2-4.
For the joint inference system, the scaling parameters were trained on the first 500 sentences of
section 2, which were held out. All the improvements in this table are statistically significant at
the 0.05 level.

that the joint inference system improves upon both the baselines. We achieve this improvement

without retraining the underlying models, as done in the case of the pipelines.

On analyzing the output of the systems, we found that the SRL precision improved by 2.75%

but the recall decreased by 0.98%, contributing to the overall F1 improvement. The decrease in

recall is due to the joint hard constraints that prohibit certain assignments to the variables which

would have otherwise been possible. Note that, for a given sentence, even if the joint constraints

affect only a few argument candidates directly, they can alter the labels of the other candidates via

the “local” SRL constraints.

Consider the following example of the system output which highlights the effect of the con-

straints.

(23) Weatherford said market conditions led to the cancellation of the planned exchange.

The independent preposition relation system incorrectly identifies the to as a Location. The

semantic role labeling component identifies the phrase to the cancellation of the planned exchange as

the A2 of the verb led. One of the constraints, mined from the data, prohibits the label Location

for the preposition to if the argument it starts is labeled A2. This forces the system to change

the preposition label to the correct one, namely EndCondition. Both the independent and the

joint systems also label the preposition of as ObjectOfVerb, which indicates that the phrase the

planned exchange is the object of the deverbal noun cancellation.
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8.3.3 Effect of Constraints on Adaptation

Our second experiment compares the performance of the preposition relation classifier that has

been trained on the SemEval dataset with and without joint constraints. Table 8.2 shows these

results.

We see that the SemEval-trained preposition relation classifier (baseline in the table) gets an

accuracy of 53.29% when tested on the Treebank dataset. This drop in performance is because

of a change in vocabulary between the two domains. Using this classifier jointly with the verb

SRL classifier via joint constraints gets an improvement of almost 3 percent in accuracy. The

primary reason for this improvement, even without re-training the classifier, is that the constraints

are defined using only the labels of the systems. This avoids the standard adaptation problems of

differing vocabularies and unseen features.

Setting Preposition Role
(Accuracy)

Baseline 53.29

Joint inference 56.22

Table 8.2: Performance of the SemEval-trained preposition relation classifier, when tested on the
Treebank dataset with and without joint inference with the verb SRL system. The improvement,
in this case is statistically significant at the 0.01 level using the sign test.

8.4 Discussion

Roth and Yih (2004) formulated the problem of extracting entities and relations as an integer

linear program, allowing them to use global structural constraints at inference time even though

the component classifiers were trained independently. In this chapter, we use this idea to combine

classifiers that were trained for two different tasks on different datasets using constraints to encode

linguistic knowledge.

In the recent years, we have seen several joint models that combine two or more NLP tasks .

Andrew et al. (2004) studied verb subcategorization and sense disambiguation of verbs by treating

it as a problem of learning with partially labeled structures and proposed to use EM to train the

joint model. Finkel and Manning (2009) modeled the task of named entity recognition together

with parsing. Dahlmeier et al. (2009) addressed the problem of jointly learning verb SRL and
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preposition sense using the Penn Treebank annotation that was introduced in that work. The

key difference between these and the model presented here lies in the simplicity of our model and

its easy extensibility because it leverages existing trained systems. Moreover, our model has the

advantage that the complexity of the joint parameters is small, hence does not require a large

jointly labeled dataset to train the re-scaling parameters.

Our approach is conceptually similar to that of Rush et al. (2010), which combined separately

trained models by enforcing agreement using global inference and solving its linear programming

relaxation. They applied this idea to jointly predict dependency and phrase structure parse trees

and on the task of predicting full parses together with part-of-speech tags. The main difference in

our approach is that we treat the re-scaling problem as a separate learning problem in itself and

train a joint model specifically for re-scaling the output of the trained systems.

The SRL combination system of Surdeanu et al. (2007) studied the combination of three different

SRL systems using constraints and also by training secondary scoring functions over the individual

systems. Their approach is similar to the one presented in this chapter in that, unlike standard

reranking, as in Collins (2000), we entertain all possible solutions during inference, while reranking

approaches train a discriminative scorer for the top-K solutions of an underlying system. Unlike

the SRL combination system, however, our approach spans multiple phenomena. Moreover, in

contrast to their re-scoring approaches, we do not define joint features drawn from the predictions

of the underlying components to define our global model.

8.5 Conclusion

In this chapter, we argued that the different relation-inducing linguistic phenomena interact with

each other by constraining the possible structures for each other. We demonstrated the validity of

this argument using a case study that shows that jointly predicting the various linguistic phenomena

can help improve the quality of prediction. The approach suggested here does not require extensive

re-training or annotation and can be easily extended to include additional linguistic constructions.
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Chapter 9

Conclusions and Future Directions

Much of the world’s knowledge is in the form of text and the problem of building an automated

system that understands and processes text has been an important open problem in Computer

Science. Making progress towards solving this problem can not only help in providing easier access

to information, but can also lead to a more natural interaction with computers. A structured

predicate-argument representation of text provides a foundation to build such text understand-

ing applications. In the literature, this problem has been studied as the NLP task of semantic

role labeling. However, traditionally, only predicate-argument relations expressed by verbs and

nominalizations have been considered.

In this thesis, we pointed out that semantic relations in sentences can be triggered not only

by verbs and nominalizations, but also by other linguistic phenomena, such as prepositions and

commas. As a human reader, we understand these structures easily, but automated systems for In-

formation Retrieval, Question Answering, and Textual Entailment are likely to encounter problems

with these structures which can be structurally similar, but express different meanings.

For a complete semantic understanding of the sentence, we need to analyze this broader set

of semantic role relations. In order to systematically analyze this larger class of relations, we

identified three sub-problems that are common to all types of relations: trigger detection, predicate

identification and argument labeling.

We defined an ontology of relations expressed by prepositions and commas. The definitions of

these corpora may themselves be the starting point for a broader annotation scheme for relations.

For these two phenomena, we proposed data-driven approaches for predicting them. In both cases,

we took advantage of the structure of the output to bias the learning algorithms. For the commas,

the strong learning bias in the form of restrictions in the hypothesis space helped us to learn a

predictor from the small set of annotated examples. For the preposition relations, knowledge of
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the output structure gives us better performing and sparser models despite partial annotation.

In the final part of the thesis, we pointed out that though we can think of the different phe-

nomena as being independent, since these phenomena are, in fact, expressing information about

the same sentence, there is an implicit requirement of consistency across their predictions. We

show that taking advantage of this intuition and enforcing coherence across its parts can help the

performance of the predictors.

9.1 Future Research Directions

The work described in this thesis opens up several interesting avenues for future research.

9.1.1 Applications of Extended Semantic Role Labeling

In Chapter 1 of this thesis, we saw two examples of text understanding problems, namely textual

entailment and event extraction, and motivated the need for a semantic representation of text by

observing the problems of variability and ambiguity. We showed that these problems manifest

themselves not just in the case of verbs and nominalizations but also other phenomena. Can these

extensions help in addressing the text understanding problems? We believe that the answer is

likely affirmative.

For the textual entailment problem, Braz et al. (2005) shows that entailment can be helped

by verb semantic role labeling. In Chang et al. (2010a), we used an SRL driven representation to

model the TE problem and achieved promising results. In the latter case, for relations that are not

captured by verbs, we backed off to the syntactic representation of the sentences. However, as the

analysis of Sammons et al. (2010) showed, a significant fraction of the textual entailment decisions

are dependent on uncovering the meaning of precisely such implicit relations, which are discussed

in this thesis.

For the event extraction problem, a preliminary analysis shows that many event arguments

align with arguments of the various linguistic phenomena discussed in this thesis. Indeed, by

taking advantage of the representation proposed in this thesis, the learning problem for event

extraction can be made easier because it can reduce the complexity of learning the predictors.

Another related line of work is that of directly converting text into a logical representation,
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typically lambda calculus (see, for example, Chen and Mooney (2008), Zettlemoyer and Collins

(2009), Goldwasser and Roth (2011) and related work). Such work is typically restricted to a

closed domain. In contrast, the representation considered in this thesis is domain independent and

can, hence, serve as a starting point for these problems.

These applications of the extended SRL proposed in this thesis are indeed exciting directions.

However, as noted in Section 1.4, we only predict a shallow semantic representation of sentences.

This raises the question about what it means to assign a semantic representation to text.

9.1.2 The Question of Semantics

Assigning a semantic interpretation to text is a complex endeavor that requires not only an un-

derstanding of the thematic structure of sentences, but also knowledge about discourse, modality,

quantification and entity and coreference resolution. Fillmore (1968) hypothesized that the se-

mantics of a sentence consists of two parts: a tenseless proposition that relates verbs and their

arguments, and a modality constituent that introduces negation, tense, mood and aspect.

In this thesis, we focus on only building the tenseless proposition (albeit not just from verbs).

In recent years, we have seen statistical approaches for solving the other aspects of the problem of

understanding – coreference resolution (e.g., Bengtson and Roth (2008) and Haghighi and Klein

(2010)), entity resolution to a knowledge base (e.g., Ratinov et al. (2011)) and discourse (e.g., work

based on the Penn Discourse Treebank (Miltsakaki et al., 2004)). These approaches can serve as

foil to each other to build higher level text understanding components.

An interesting question about these aspects of the problem of semantics addresses the inter-

actions between these higher level components. In this thesis, we saw that within the realm of

shallow semantics interactions can help improve predictions. Can we do the same for the higher

level tasks? This question motivates several machine learning challenges.

9.1.3 Structured Learning and Prediction

As the complexity of the predicted structures increases, we face two challenges from the perspective

of structured learning and prediction. First, it is impossible to annotate all possible structures of

interest. Second, the computational complexity of inference becomes an important question.
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From the learning perspective, we need to bias the learner so that we can train robust models

despite limited data. We have seen some examples of such biases in this thesis – restricting the

hypothesis space, restricting the space of structures and enforcing coherence. One area of future

research is to investigate other such cues that can help learning structured predictors efficiently,

especially in the presence of partial, or even missing annotation (as in Chang et al. (2010b) and

Yu and Joachims (2009)).

The computational complexity of inference increases as we make the output structure larger. In

this thesis, we used the cutting plane inference algorithm for joint inference. One important area

of future work is to investigate efficient inference algorithms. Recent work has pointed in several

interesting directions such as amortizing inference costs over the lifetime of the predictor (Srikumar

et al., 2012) and decomposing inference over its parts. Advances in the areas of structured learning

and inference will be applicable, not only to NLP tasks, but to a broad spectrum of structure

prediction problems where annotated data is hard to obtain.
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Appendix A

Identifier and Classifier Features for
Verb and Nominal SRL

This section lists the feature set used for training the argument identifiers and argument classifiers

for verb and nominal predicates. The input to the feature extractors is a span of text.

For extracting features, we pre-processed the sentences with part-of-speech tags and chunks

from the Illinois NLP system (Clarke et al., 2012), parse trees from the Charniak and Johnson

(2005) parser and named entities from the tagger of Ratinov and Roth (2009). We identified head

words using the head percolation table of Magerman (1995) and Collins (1999).

Verb SRL

The Verb SRL features are based on those defined in Punyakanok et al. (2008). We only list the

extra features here and refer the reader to the original paper for details.

Argument Identifier

1. All the features from Punyakanok et al. (2008).

2. Named entity embedding: tells if a constituent is, embeds, exclusively overlaps or is

embedded in a named entity with its type. This is comparable to the Chunk feature in

Punyakanok et al. (2008), using named entities.

3. The projected path feature defined in Section 4.1 of Toutanova et al. (2008).

4. The phrase label, head word and part-of-speech tag of the left and right siblings of the

candidate in the parse tree. These features are from Pradhan et al. (2004).

5. If the parent is a prepositional phrase, its head word and the head word and part-of-speech tag

of its right most noun phrase child. These features are also from Pradhan et al. (2004).
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In addition, we also included feature conjunctions of all the predicate-specific features from

Punyakanok et al. (2008) with the path features, the linear position (both from Punyakanok et al.

(2008)) and the prepositional phrase specific features described above.

Argument Classifier

For the verb argument classifier, we included possible conjunctions of the identifier features (instead

of specific conjunctions as described above).

Nominal SRL

Nominal Argument Identifier

1. Head word features: From the head word of the input constituent, we extract the lower-

cased word, its part-of-speech tag, an indicator for whether it is a number, an indicator for

whether it ends with -ing, an indicator for whether it is a known nominalization and indicators

for whether it is a day of the week a month or a valid date.

2. The linear position of the argument, in comparison to the predicate (one of before, after or

contained).

3. Parse phrase: The label of the lowest parse tree node that contains the argument.

4. Chunk path, chunk embedding and parse path, as described in Punyakanok et al. (2008).

5. Named entity embedding, described above

6. All lower cased words and their part-of-speech tags withing a window of size 5, centered at

the head word, conjoined with their location relative to the head.

7. The subcategorization frame as extracted for verbs.

8. Predicate features: From the predicate, the lower-cased word, its part-of-speech tag,

lemma, indicator for capitalization, all NomLex classes to which it belongs

In addition, we also included conjoined the predicate and the subcategorization features with

the parse path, the linear position and the parse phrase.
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Nominal Argument Classifier

For the nominal argument classifier, we added all the features (except the specific conjunctions)

described for the argument identifier. We modified the head word features to include indicators for

the most frequent WordNet synset and all its hypernyms. In addition, we also added all possible

feature conjunctions, as in the verb case.
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Appendix B

Feature Extraction Details

This chapter provides details about about features used in this thesis. All the features were imple-

mented using the Edison API1 using the NLP Curator (Clarke et al., 2012) to provide annotations.

List-based Features

These features, used for sense disambiguation of verbs, nominalizations and prepositions (Chapters

5, 6), are identifiers for whether an input constituent starts or ends with a known prefix or suffix.

• Deverbal suffixes: The input word ends with one of -ate, -en, -fy, -ise, -ize.

• Denominal noun producing suffixes: The input word ends with one of -ade, -age, -ana,

-arian, -ary, -dom, -eer, -er, -ery, -ese, ess, -ette, -ette, -ful, -hood, -ian, -ing, -ing, -ism,

-ism, -ist, -ist, ite, -itis, -let, -ling, -nik, -oid, -scape, -ship, -ster.

• De-adjectival suffixes: The input word ends with one of ability, -ancy, -hood, -ity, ness,

-ship.

• Prefixes indicating number, degree or order: The word starts with one of poly, ultra,

post, multi, pre, fore, ante, pro, meta, out

Conflated Part-of-speech Tags

Based on Tratz and Hovy (2009); Hovy et al. (2010), we collapsed the part-of-speech tagset into one

of Noun, Verb, Adjective, Adverb, Punctuation, Pronoun and Other. These features provide an

abstraction over the finer distinctions provided by the full set of Penn Treebank part-of-speech tags

for training the preposition relation predictor (Chapter 6). An alternative is to use the universal

part-of-speech tagset proposed by Petrov et al. (2011).

1We used the version 0.2.9 available at http://cogcomp.cs.illinois.edu/software/edison.
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Negation and Modality Indicator

This feature is useful for verb SRL. For identifying negations, we check if the shallow parse chunk

containing the verb predicate also contains one of not or n’t. To identify if the verb predicate has

is associated with a modal verb, we check if the chunk contains the part-of-speech tag MD.
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Appendix C

Preposition Relation Definitions

This chapter lists a taxonomy of relations expressed by prepositions. These relations are defined

by collapsing related preposition senses from the inventory defined by the Preposition Project

Litkowski and Hargraves (2005)1. The sense inventory, which is based on the definitions of prepo-

sitions in the Oxford Dictionary of English, treats each dictionary definition of the preposition as

a separate sense and has been used by the 2007 shared task of preposition sense disambiguation

Litkowski and Hargraves (2007).

By grouping semantically related senses across prepositions into relations, we define 32 relation

labels covering the 34 prepositions2 considered by the Preposition Project. One of the labels is

a catch-all category, Other, which consists of many infrequent senses of prepositions and is not

expected to be a semantically coherent class. Section C.1 defines all the relations and provides

examples of prepositional phrases that exhibit them. Section C.2 lists the number of training and

test examples obtained by converting the SemEval 2007 preposition sense data using the mapping

defined in Section C.1.

C.1 Preposition Relations

For each relation that is defined in this section, we list the set of prepositions and their senses that

are included as part of this relation. The sense identifiers refer to those used by the the SemEval

2007 shared task. Senses that are infrequent according to the training data for the shared task

(that is, seen fewer than five times) are marked with an asterisk.

1The preposition sense inventory can be accessed online at http://www.clres.com/cgi-bin/onlineTPP/find prep.
cgi.

2We cover the transitive usages of the following prepositions: about, above, across, after, against, along, among,
around, as, at, before, behind, beneath, beside, between, by, down, during, for, from, in, inside, into, like, of, off, on,
onto, over, round, through, to, towards, with.
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Preposition Senses Examples
at 8(4a) good at boxing
in 11(8) prudent in planning
into 9(9)∗ he is into jet-skiing
on 19(9)∗ out on errands
through 8(2a)∗ struggle through it
to 10(4a) prelude to disaster

Table C.1: The list of preposition senses that define the relation Activity

Preposition Senses Examples
by 1(1)∗ 2(1a) 3(1b) understood by the customers

the address by the officer
from 12(9)-1 allegations from the FDA

Table C.2: The list of preposition senses that define the relation Agent

C.1.1 Activity

Definition: Describes the relationship between some entity and an activity, an ordeal or a process

that can be a verbal noun or a gerund. Note that the object of the preposition is the activity here.

(See Table C.1 for the mapping from preposition senses to Activity.)

Comments: If there is a change of state and the object of the preposition is the final state, the

preposition indicates the relation EndState.

C.1.2 Agent

Definition: The object of the preposition is the agent of the action indicated by the attachment

point. This primarily covers the use of the preposition by in a passive construction. (See Table C.2

for the mapping from preposition senses to Agent.)

Comments: This relation does not include prepositional phrases like sonnet by Shakespeare be-

cause Shakespeare is the agent of a verb such as write or compose, and not the word sonnet. This

type of creator-creation relation will be labeled as Source.
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Preposition Senses Examples
as 1(1) interpreted their action as betrayal
at 7(4)∗ sell at a loss
by 15(3c) 6(2a)∗ 7(2b)∗ breakdown by age

what is meant by “fair”?
call by last name

from 9(6) paint made from resin
in 1(1)-1 10(7a)∗ 6(4a) 9(7)-1 blinked in astonishment

dressed in a sweater
Mozart’s Piano Concerto in E flat

of 17(8) 6(3)-1 house built of bricks
smile of delight

with 2(2) 3(2a) man with glasses
blouse with white collar

Table C.3: The list of preposition senses that define the relation Attribute

Preposition Senses Examples
after 4(1c)∗ clean up after him
behind 5(3)∗ throw weight behind candidate
for 1(1) 3(3) fought for Napoleon

vote for independence
present for you

to 8(3)-1 be charming to them

Table C.4: The list of preposition senses that define the relation Beneficiary

C.1.3 Attribute

Definition: The object of the preposition indicates some attribute of either the governor or the

subject/object of the governor in case of verb-attached prepositions. (See Table C.3 for the mapping

from preposition senses to Attribute.)

Comments:

1. Prepositions where the governor indicates an attribute are classified as Possessor.

2. If the object of the preposition does not indicate an attribute, this relation does not apply.

C.1.4 Beneficiary

Definition: The object of the preposition is a beneficiary of the action indicated by the prepo-

sition’s governor. (See Table C.4 for the mapping from preposition senses to Beneficiary.)
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Preposition Senses Examples
after 1(1)-1 tired after work
at 11(6)-1 disapproval at the behavior
for 6(5) admire for bravery
from 12(9) suffering from asthma
of 16(7b) died of cancer
with 10(7a)∗ 11(7b) 12(7c) in bed with flu

shaking with anger
wisdom comes with age

Table C.5: The list of preposition senses that define the relation Cause

Preposition Senses Examples
among 3(3) 4(4)∗ drop in tooth decay among children

divide his kingdom among them
between 4(4) 6(4b) 8(5)∗ 9(5a)∗ links between science and industry

the difference between income and expenditure
choose between two options

Table C.6: The list of preposition senses that define the relation Co-Participants

Comments: This relation includes examples like the power behind the throne, where the phrase

indicates that the object of the preposition gains some advantage.

C.1.5 Cause

Definition: The object indicates a cause for the governor. (See Table C.5 for the mapping from

preposition senses to Cause.)

C.1.6 Co-Participants

Definition: The preposition indicates a choice, sharing or differentiation and involves multiple

participants, represented by the object. (See Table C.6 for the mapping from preposition senses to

Co-Participants.)

Comments: This is different from Participant/Accompanier where the governor and the object

indicate the two entities that are associated. Here, the object specifies all the participants.
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Preposition Senses Examples
for 7(6)∗ leaving for London tomorrow
in 2(1a) put coal in the bath
inside 2(1a) tucked the books inside his coat
into 1(1) 2(2) 3(3) Sara got into her car

crashed into a parked car
the road led into the village

to 1(1) walking to the shops

Table C.7: The list of preposition senses that define the relation Destination

C.1.7 Destination

Definition: The object of the preposition is the destination of the motion indicated by the

governor. (See Table C.7 for the mapping from preposition senses to Destination.)

Comments:

1. One boundary case which is not a Destination is that of a motion that indicates that two

things are attached or lined. Such cases indicate the relation Participant/Accompanier. For

example, fasten the insulator to the frame might indicate motion of the insulator to the frame,

but Participant/Accompanier is a better choice because it indicates that the two objects are

linked to each other.

2. If there is not physical motion, but merely a change of state, the relation EndState is pre-

ferred.

C.1.8 Direction

Definition: The prepositional phrase (that is, the preposition along with the object) indicates

a direction that modifies the action which is expressed by the governor. (See Table C.8 for the

mapping from preposition senses to Direction.)

Comments:

1. This relation sometimes shares meaning with the relation Location.

2. This relation does not include metaphorical meaning and almost always has a spatial sense
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Preposition Senses Examples
after 5(2) 6(2a)∗ shut the door after her
along 1(1) driving along the road
behind 4(2a) crept up behind him
by 19(5a)∗ drive by the house
down 1(1) 2(1a) 3(1b) tears streaming down her face

wander down the road
off 1(1) roll off the bed
towards 1(1) drive towards the house
with 15(9)∗ swim with the current

Table C.8: The list of preposition senses that define the relation Direction

Preposition Senses Examples
into 6(6) 7(7) protest turned into a violent confrontation

forced the club into a special meeting
to 3(1b)∗ 5(2)∗ 6(2a) profits dropped to $75 million

she was moved to tears
smashed to smithereens

towards 2(1a)∗ return towards traditional Keynesianism

Table C.9: The list of preposition senses that define the relation EndState

C.1.9 EndState

Definition: The object of the preposition indicates the resultant state of an entity that is under-

going change. The governor of the preposition is usually a verb or noun denoting transformation.

(See Table C.9 for the mapping from preposition senses to EndState.)

Comments:

1. This relation requires some change of state, where the object of the preposition indicates the

final state at the end of the transformation.

2. This relation includes cases like level fell to 3 feet, where the object of the preposition is a

numeric quantity. See note for Numeric.

C.1.10 Experiencer

Definition: The object of the preposition denotes the entity that is target or subject of the action,

thought or feeling that is usually indicated by the governor. (See Table C.10 for the mapping from

preposition senses to Experiencer.)
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Preposition Senses Examples
on 11(5) 11(5)-1 focus attention on her

he blamed it on her
towards 4(2) 4(2)-1 felt angry towards him

Table C.10: The list of preposition senses that define the relation Experiencer

Preposition Senses Examples
at 11(6)∗ hold at knifepoint
by 5(2) provide capital by borrowing
on 3(1b) banged his head on the beam
over 15(6)∗ 15(6)-1∗ voice over the loudspeaker
through 13(5a) heard through the grapevine
with 4(3) 5(3a) cut the fish with a knife

fill the bowl with water

Table C.11: The list of preposition senses that define the relation Instrument

Comments: There are some examples where the relation might overlap with Topic. The sense

on:11(5) includes both phrases like focus attention on the her, which conform to the definition

of Experiencer, and also deliberate on the matter, which are better suited to be labeled Topic.

However, in this annotation, the sense is labeled as Experiencer.

C.1.11 Instrument

Definition: The object of the preposition indicates the means or the instrument for performing

an action that is typically the governor. (See Table C.11 for the mapping from preposition senses

to Instrument.)

Comments:

1. This relation includes both the means of performing actions and instruments. Though there

are subtle differences between them, they are collapsed into one category to avoid sparse

labels.

2. The sense at:11(6) refers to idiomatic uses, where the object of the preposition can be words

knifepoint or gunpoint. These are marked as Instrument because they indicate that the

action was performed with a knife or a gun.
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Preposition Senses Examples
about 3(2) 3(2)-1 4(3)∗ look about the room
above 1(1)∗ 2(1a) 3(1b)∗ 4(2) the cable runs above the duct

the hills above the capital
bruises above both eyes

across 1(1) 2(2) travel across Europe
along 3(2) parked along the grass
among 1(1) hidden among the roots
around 1(1) 3(2) 4(3) 4(3)-1 5(4) large depots around the country
at 1(1) live at Conway house
before 2(2) 3(2a) she stood before her
behind 1(1) 3(2) kept behind the screens
beneath 1(1) 2(1a) 3(2) labyrinths beneath Moscow
beside 1(1) sat beside her
between 1(1) border between the countries
by 18(5) discovered by the roadside
down 4(1c)∗ going down the pub
from 8(5) see them from here
in 1(1) 7(5) living in London
inside 1(1) 3(1b) waiting inside the house
into 4(4) wind blowing into your face
of 8(4)∗ north of Watford
off 2(2)∗ 3(2a) street off Whitehall
on 2(1a)∗ 7(2) camp on the island
onto 1(1) copy onto a disk
over 1(1)∗ 11(4) 12(4a)∗ 13(4b) 2(1a) 3(1b) 4(2) flames over the city
round 1(1) 3(2) 4(2a) 5(3) 6(3a) 8(4) went round the house
through 1(1) 12(5)-1∗ 2(1a) 3(1b) 4(1c) 5(1d) 6(1e)∗ stepped through the doorway
to 2(1a)

Table C.12: The list of preposition senses that define the relation Location

C.1.12 Location

Definition: The prepositional phrase indicates a locative meaning. This relation includes both

physical and figurative aspects of location. That is, both left it in the cupboard and left it in her

will are treated as Locations. (See note below.) (See Table C.12 for the mapping from preposition

senses to Location.)

Comments: Categorizing preposition senses as Locations is not always easy. Some senses may

indicate multiple relations based on the specific sentence and the sense could have ideally been

split into two different labels. For example, at:1(1) includes both destinations (e.g. they stopped

at a small trattoria) and locations (e.g. they live at Conway House). In such ambiguous cases, the

sense has been categorized as Location. The preposition in, in the sense in:7(5) includes figurative
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Preposition Senses Examples
along 4(3)∗ frame the definition along those lines
in 5(4) 6(4a)-1 blinked in astonishment

disappear in a flash
like 1(1) 2(1a) 3(1b) 4(1c)∗ 5(1d) 6(2)∗ plummet like a dive-bomber
through 12(5) obtained through fraudulent means
with 7(5) shout with pleasure

Table C.13: The list of preposition senses that define the relation Manner

meanings like read it in a book and has been included here because this is the closest meaning. The

same holds for inside:3(1b), which includes phrases like anger simmered inside me. An alternative

relation could be PartWhole. Some examples that are not a Location relation are:

1. when there is a comparison to a norm or a number (eg. the food was above average), which

is an Other relation;

2. when there is a notion of something being attached to or coming into physical contact with

something else, where Participant/Accompanier is a better fit;

3. when one argument of the preposition is indicated to be a member of the other, where

PartWhole is a better fit;

4. when one object is physically supported by a surface or another object, where PhysicalSupport

is a better choice.

C.1.13 Manner

Definition: The prepositional phrase indicates the manner in which an action is performed. The

action is typically the governor of the preposition. (See Table C.13 for the mapping from preposition

senses to Manner.)

Comments: There may be some overlap of meaning between Manner, Attribute and Cause,

stemming from the preposition sense in:5(4). For example, consider the following phrases that are

included in this sense: pursed her lips in a silent whistle, shrugged in embarrassment and seething

in outrage.
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Preposition Senses Examples
in 9(7) say it in French
on 12(6) 13(6a) put your idea down on paper

saw the new series on TV

Table C.14: The list of preposition senses that define the relation MediumOfCommunication

Preposition Senses Examples
at 5(3) 6(3a)∗ driving at 50mph
between 3(3)
by 12(3) 13(3a)∗ 16(3d)∗ missed the shot by miles
for 10(8a) 13(11) 14(12)∗ crawled for 300 yards
into 8(8)∗

of 4(2) 5(2a)∗ a boy of 15
on 23(13)∗

to 11(4b)∗ 12(4c)∗

Table C.15: The list of preposition senses that define the relation Numeric

C.1.14 MediumOfCommunication

Definition: The prepositional phrase indicates the medium or language of some form of com-

munication or idea. The object is, in a general sense, a ‘mode of communication’. This includes

languages (eg. say it in French), media like TV or the Internet (eg. saw it on a website), or specific

instances of these (eg. saw it on the Sopranos). (See Table C.14 for the mapping from preposition

senses to MediumOfCommunication.)

Comments: In boundary cases between MediumOfCommunication and Attribute (as in Shake-

speare’s plays in comic book form), the former is a better choice if it is a specific case of Attribute.

The same argument holds for the boundary cases with Manner.

C.1.15 Numeric

Definition: The object of the preposition indicates a numeric quantity (age, price, percentage,

etc). (See Table C.15 for the mapping from preposition senses to Numeric.)

Comments:

1. Several senses included in this relation do not have any examples in the training set.
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Preposition Senses Examples
after 7(3) inquired after him

chase after something
at 10(5a) 9(5) sipped at his coffee
for 2(2) 2(2)-1 considerations for the future
from 11(8) saved from death
of 11(6) 12(6a) 13(6b) 14(7) 15(7a) the wedding of his daughter

it was kind of you
she tells of her marriage

on 9(3a)
over 6(2b) presided over the meeting
round 7(3b)∗

through 10(3) 10(3)-1∗ scan through document
to 14(6) a threat to world peace
towards 5(3)∗ a grant towards the cost
with 15(9)-1 4(3)-1 9(7), cross with her.

Table C.16: The list of preposition senses that define the relation ObjectOfVerb

2. The prepositions in phrases such as drop from $105 million to $75 million are not labeled as

Numeric. Instead, the from is labeled as StartState and the to is labeled as EndState.

C.1.16 ObjectOfVerb

Definition: The object of the preposition is an object of the verb or the nominalization that

is the governor of the preposition. This includes cases like construction of the library, where the

object of the preposition is an object of the underlying verb. (See Table C.16 for the mapping from

preposition senses to ObjectOfVerb.)

Comments:

1. Many of the other relations can be considered to be an object of the verb in question. However,

if the sense of a preposition was better suited to a different relation, that relation has been

chosen. With this caveat, we expect the object of the preposition to be a core argument for

the governor according to the PropBank or the NomBank schemes.

2. This relation includes the senses for:2(2), of:13(6b), to:14(6) and with:9(7) which are very

vaguely defined in the Preposition Project. This contributes to some noise in the data.

3. It is possible that some of the senses from the Other category could be grouped into this
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Preposition Senses Examples
against 1(1) 2(1a) 3(1b) 6(2b) fight against crime

gave evidence against him
the match against Somerset

turned up his collar against the wind
between 5(4a) 7(4c) the wars between Russia and Poland
from 14(11) fees are distinct from expenses
with 6(4) fought with another man

Table C.17: The list of preposition senses that define the relation Opponent/Contrast

relation, if there is more evidence in the data.

Some examples which are not ObjectOfVerb are: 1. when there is a notion of connection or physical

contact between entities, Participant/Accompanier is a better fit, and 2. when the object of the

preposition is the target of an action or is affected by it, Recipient or Beneficiary is preferred

over this label.

C.1.17 Opponent/Contrast

Definition: This relation indicates a collision, conflict or contrast and the object of the prepo-

sition refers to one or more entities involved. (See Table C.17 for the mapping from preposition

senses to Opponent/Contrast.)

Comments: The main distinguishing criterion is that there are one or more antagonists in a

conflict or in opposition. This includes cases like pulled up the collar against the wind. Some near

misses include:

1. when there is no explicit conflict, the relation Co-Participants is a better fit, and,

2. when there is a hint of a conflict, without mention of the entities involved (like turn away

from appeasement and stagger from crisis to crisis), the relation Source would be a better

fit.

C.1.18 Other

Definition: This is the catch-all category, which includes infrequent senses of prepositions that

do not fit any other category. A preposition being labeled as Other does not mean that there is no
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Preposition Senses Examples
above 5(2a)∗ 6(2b)∗ 7(2c)∗ 8(2d) 9(3) at a level above the people

married above her
heard above the din

after 10(5a)∗ 8(4)∗ 9(5)∗ a drawing after Millet’s The Reapers
health comes after housing

named her Pauline after her mother
against 4(2) 5(2a)∗ 7(2c)∗ 8(3)∗ 9(3a)∗ gritted his teeth against the pain

odds were 5-1 against them
money loaned against the property

benefits weighed against the costs
along 2(1a)∗ picked up tips along the way
as 2(2)∗ been ill as a child
before 4(3)∗ placed duty before everything
behind 2(1a)∗ 6(3a)∗ 8(5)∗ 9(6)∗ years behind them
beneath 4(2a)∗ 5(2b)∗ 6(2c)∗ he was rather beneath the princess

tragic life beneath the gloss
beside 2(1a)∗ 3(2)∗ felt clumsy beside her
by 21(7)∗ 22(8)∗ right by me

swear by God
for 11(9) 8(7) 9(8) ‘F’ is for fascinating

swap for that
tall for her age

married for over a year
inside 4(1c)∗

like 7(3)∗ works like Animal Farm
on 20(10)∗ 21(11)∗ 22(12)∗ 9(3a)-1∗ he is on morphine

drinks are on me
over 10(3)∗ 5(2a)∗ 7(2c)∗ 8(2d)∗ 9(2e)∗ married for over a year

the director is over him
to 15(7)∗ 16(8)∗ 7(2b)∗ he smiled to her astonishment
with 8(6)∗ leave it with me

Table C.18: The list of preposition senses that define the relation Other

relation expressed by it. Neither does it indicate that there is no shared meaning across prepositions

that can be abstracted. In most cases, there is such little support from the training set for this

label that either adding it to an existing relation or creating a new one cannot be justified. (See

Table C.18 for the mapping from preposition senses to Other.)

Comments: Even though this label includes many senses, as we see in C.33, this relation is has

a very small representation in the data. Being a very infrequent category, this label would apply

only when none of the other relations hold.
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Preposition Senses Examples
among 2(2) see a friend among them
in 12(9)∗

of 1(1)∗ 2(1a) 3(1b) 3(1b)-1 sleeve of the coat
a slice of the cake
group of monks

cup of soup

Table C.19: The list of preposition senses that define the relation PartWhole

C.1.19 PartWhole

Definition: This relation indicates that one argument is a part or member of another. It includes

two distinct cases: (1) the governor of the preposition (or the subject of the governor, if the governor

is a verb) is a part of the object, and (2) the governor is a number, a partitive noun or a container

and the object is a group or substance that is modified by the governor. (See Table C.19 for the

mapping from preposition senses to PartWhole.)

Comments:

1. The two cases were clubbed together because both indicate a notion of an object or substance

being divided into parts or groups. This is distinct from the Possessor relation, where neither

argument is divided to define the other.

2. This label indicates all quantifiers and partitive nouns that are connected to entities via the

preposition. For example, hundreds of people, a piece of cake, many of the protesters.

3. This label also includes cases where the object of the preposition is a set of entities (or a

container) and the governor is an element of that set (or the contents of the container), as in

the example, snakes are among the most feared animals.

C.1.20 Participant/Accompanier

Definition: The object of the preposition indicates an entity which accompanies another entity

or participates in a relation with another entity, which is typically indicated by either the governor

of the preposition or the subject of the governor. (See Table C.20 for the mapping from preposition

senses to Participant/Accompanier.)
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Preposition Senses Examples
by 11(2f)∗

onto 3(3) stick the drawings onto a large map
to 13(5) 9(4) he is married to Emma

a map pinned to the wall
with 1(1) his marriage with Emma

Table C.20: The list of preposition senses that define the relation Participant/Accompanier

Preposition Senses Examples
against 10(4) stood with her back against the wall
on 1(1) 4(1c) 5(1d) a water jug on the table

Table C.21: The list of preposition senses that define the relation PhysicalSupport

Comments:

1. In this relation, the object indicates only one of the participating entities. In contrast, in the

Co-Participants relation, the object defines all the participating entities, typically in the

form of a plural or a conjunction.

2. The sense by:11(2f) is included here based on the notes on the treatment of the preposition

in the Preposition Project. However, there are no examples to support this inclusion, and

this may be moved to the relation Other.

3. All cases where something is joined to something else should be treated as instances of

the relation Participant/Accompanier. There might be some confusion between this label

and ObjectOfVerb, Destination or Location. Whenever there is the notion of connection

between entities, this label is a better choice.

C.1.21 PhysicalSupport

Definition: The object of the preposition is physically in contact with and supports the governor

(if it is an entity) or the subject of the governor (if it is a verb or a nominalization). (See Table

C.21 for the mapping from preposition senses to PhysicalSupport.)

Comments: This may often overlap with Location. It is the preferred label if there is the

notion of one object being in physical contact with and supported by an surface or another object.
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Preposition Senses Examples
about 5(3a)∗ a look about her
by 10(2e)∗ 9(2d)∗ a black filly by Guldfuerst

his son by his third wife
of 6(3) son of a friend

a photograph of a bride
on 6(1e)∗ a few pounds on her.

Table C.22: The list of preposition senses that define the relation Possessor

Examples include knelt on the cold stone floor and placed the jug on the table.

C.1.22 Possessor

Definition: The governor of the preposition is something belonging to the object or an inherent

quality of the object . This relation includes familial relations. (See Table C.22 for the mapping

from preposition senses to Possessor.)

Comments:

1. Note that the Possessor relation is largely represented in the training set via the preposition

of in the sense of:6(3).

2. This relation is different from the Attribute relation, where the governor specifies the at-

tribute or quality of the object.

C.1.23 ProfessionalAspect

Definition: This relation signifies a professional relationship between the governor (or the subject

of the governor, if the governor is a verb) and the object of preposition, which is an employer, a

profession, an institution or a business establishment. (See Table C.23 for the mapping from

preposition senses to ProfessionalAspect.)

Comments: This is an infrequent relation that could have been merged into the Other category,

but has been separated because it forms a distinct cluster.
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Preposition Senses Examples
at 4(2b)∗ began performing at the university
for 4(3a) tutor for the University
in 8(6) works in publishing
on 10(4)∗ serve on committees
with 13(8) 14(8a)∗ she is with Inland Revenue

bank with TSB

Table C.23: The list of preposition senses that define the relation ProfessionalAspect

Preposition Senses Examples
for 5(4) networks for the exchange of information

tools for making the picture frame.

Table C.24: The list of preposition senses that define the relation Purpose

C.1.24 Purpose

Definition: The object of the preposition specifies the purpose (i.e., a result that is desired,

intention or reason for existence) of the governor. (See Table C.24 for the mapping from preposition

senses to Purpose.)

C.1.25 Recipient

Definition: The object of the preposition identifies the person or thing receiving something. (See

Table C.25 for the mapping from preposition senses to Recipient.)

Comments: The difference between a Recipient and the Beneficiary is that in the latter case,

the recipient gets some advantage from the action or event.

C.1.26 Separation

Definition: The relation indicates separation or removal. The object of the preposition is the

entity that is removed. (See Table C.26 for the mapping from preposition senses to Separation.)

Preposition Senses Examples
to 8(3) unkind to her

donated to the hospital

Table C.25: The list of preposition senses that define the relation Recipient
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Preposition Senses Examples
from 10(7) the party was ousted from power
off 4(3) 5(3a)∗ 6(3b)∗ 7(4)∗ tear the door off its hinges

burden off my shoulders
I stay off alcohol

with 16(10) part with possessions

Table C.26: The list of preposition senses that define the relation Separation

Preposition Senses Examples
by 4(1c) book by Hemmingway
from 1(1) 13(10) 2(1a) 4(3) I am from Hackeney

information from books
of 7(3a) paintings of Rembrandt

Table C.27: The list of preposition senses that define the relation Source

C.1.27 Source

Definition: The object of the preposition indicates the provenance of the governor or the subject

of the governor. This includes cases where the object is the place of origin, the source of information

or the creator of an artifact. (See Table C.27 for the mapping from preposition senses to Source.)

Comments:

1. While it might be possible to split this into multiple sub-relations (location, source of infor-

mation and creator-creation), all but the first will end up being infrequent.

2. Some figurative uses are included into this category, such as turning them away from appease-

ment and stagger from crisis to crisis.

C.1.28 Species

Definition: This expresses the relationship between a general category or type and the thing

being specified which belongs to the category. The governor is a noun indicating the general

category and the object is an instance of that category. (See Table C.28 for the mapping from

preposition senses to Species.)
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Preposition Senses Examples
of 10(5a) 9(5) the city of Prague

this type of book

Table C.28: The list of preposition senses that define the relation Species

Preposition Senses Examples
from 10(7)-1 6(4) 7(4a)∗ recovered from the disease

a growth from $2.2 billion to $2.4 billion

Table C.29: The list of preposition senses that define the relation StartState

C.1.29 StartState

Definition: The object of the preposition indicates the state or condition that an entity has left.

(See Table C.29 for the mapping from preposition senses to StartState.)

Comments:

1. This relation requires some entity to change state, with the object of the preposition indicating

the initial state before the transformation.

2. This relation also includes cases where the preposition indicates the first element in a numeric

or conceptual range.

Some examples that are not StartState are: 1. the ball fell from his hands, which is a Source

relation because the object indicates the original physical location of the ball, 2. came back from a

holiday, which is also a Source relation, and 3. a steady increase from June, which is a Temporal

relation because the object of the preposition is a temporal expression.

C.1.30 Temporal

Definition: The object of the preposition specifies the time of when an event occurs, either as an

explicit temporal expression or by indicating another event as a reference. In some prepositional

phrases, the governor may indicate a temporal expression. These do not express a Temporal

relation. (See Table C.30 for the mapping from preposition senses to Temporal.)

117



Preposition Senses Examples
across 1(1)-1∗

after 1(1) 2(1a)∗ 3(1b)∗ shortly after Christmas
at 2(2) 3(2a)∗ sleep at nine o’clock

cooler at night
before 1(1) rest before dinner
behind 7(4)∗

between 2(2)∗

by 14(3b)∗ 17(4)∗ 20(6)∗

down 5(2)∗

during 1(1) 2(1a) open during the party
for 12(10) jailed for 12 years
from 3(2) 5(3a) run from ten to two
in 3(2) 4(3)∗ met in 1985
inside 5(2)∗

into 1(1)-1∗

of 18(9)∗

on 17(8) 18(8a)∗ reported on September 26
over 14(5)∗

through 11(4)∗ 7(2)∗ 9(2b)
to 4(1c)∗ run from ten to two
towards 3(1b)∗

Table C.30: The list of preposition senses that define the relation Temporal

Preposition Senses Examples
about 1(1) 2(1a)∗ thinking about you
around 2(1a)
into 5(5)∗ insight into what was involved
on 8(3) book on careers
over 16(7) debate over unemployment
round 2(1a)∗

Table C.31: The list of preposition senses that define the relation Topic

C.1.31 Topic

Definition: The object of the preposition denotes the subject or topic under consideration. In

many cases, the preposition can be replaced by the phrase on the subject of. The governor of

the preposition can be a verb or nominalization that implies an action or analysis or a noun that

indicates an information store. (See Table C.31 for the mapping from preposition senses to Topic.)
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Preposition Senses Examples
by 8(2c) traveling by bus
on 14(7) 15(7a) 16(7b)∗ he is on his way

sleep on the plane
got on the train

onto 2(2)∗

through 5(1d)-1 go through the tube

Table C.32: The list of preposition senses that define the relation Via

C.1.32 Via

Definition: This is an infrequent relation where the object of the preposition indicates a mode

of transportation or a path for travel. The governor can be action indicating movement or travel

or a noun denoting passengers. (See Table C.32 for the mapping from preposition senses to Via.)

Comments: This relation applies only when there is evidence of a physical travel or a mode of

conveyance.

C.2 Statistics

Table C.33 shows the number of training and test examples for each relation, obtained by applying

the mapping defined in Section C.1 to the training and test data of the SemEval-2007 shared task.

Note that even though the label Other is associated with the highest number of senses, it has a

comparatively small number of examples associated with it. The relations that have fewer examples

than Other have considerably fewer senses that define it, indicating that they are more coherent

classes.

Table C.34 shows the confusion matrix between one of our annotators and the SemEval-based

annotation. (Section 6.2 gives more details about the annotation.) It is instructive to compare this

confusion matrix with the one for learned models. Table C.35 shows the confusion matrix for the

relation labels predicted by Model 2 from Chapter 6. By comparing these matrices, we see that

the pattern of errors of the annotators and the learned system is not the same. For example, we

see that the label ObjectOfVerb is confused with Direction by the annotators but never by the

model. Similarly, while Source is confused with StartState by the annotators, it is a very rare
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error for the system. We also see pairs of labels that confuse the system, but not the annotators,

such as Destination and Location.

Relation Train Test

Activity 63 39
Agent 367 159
Attribute 510 266
Beneficiary 205 105
Cause 591 289
Co-Particiants 112 58
Destination 1054 526
Direction 909 441
EndState 188 104
Experiencer 116 54
Instrument 565 290
Location 3096 1531
Manner 457 245
MediumOfCommunication 57 30
Numeric 113 48
ObjectOfVerb 1801 882
Opponent/Contrast 233 131
Other 72 42
PartWhole 958 471
Participant/Accompanier 292 142
PhysicalSupport 399 202
Possessor 508 269
ProfessionalAspect 45 22
Purpose 261 113
Recipient 378 190
Separation 345 172
Source 740 357
Species 394 198
StartState 69 37
Temporal 331 157
Topic 886 462
Via 61 26

Total 16176 8058

Table C.33: Number of training and test examples for preposition relations, obtained by applying
the mapping defined in this thesis to the SemEval-2007 training and test data.
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Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Agent . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Attribute . . 6 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .
Beneficiary . . . 2 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .

Cause . . . . 4 . . . . . . . 1 . . 2 . . . 1 . . . . . . . . . . . .
Co-Participants . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . .

Destination . . . . . . 14 . . . . . . . . . . . . . . . . . . . . . . . . .
Direction . . . . . . . 12 . . . . . . . . . . . . . . . . . . . . . . . .
EndState . . . . . . 1 . 2 . . . . . . . . . . . . . . . . . . . . . . .

Experiencer . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . .
Instrument . . . . . . . . . . 5 . . . . . . . . 2 . . . . . . . . . . . .
Location . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . .
Manner . . . . . . . . . . . . 6 . . . . . . . . . . . . . . . . . . .

MediumOfCommunication . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .
Numeric . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . .

ObjectOfVerb . . . . . . . 5 . . . . . . . 18 . . . . . . . . . . . . . . . .
Opponent/Contrast . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . .

Other . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
PartWhole . . . . . . . . . . . 1 . . . . . . 11 . . . . . . . . . . . . .

Participant/Accompanier . . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . .
PhysicalSupport . . . . . . . . . . . . . . . . . . . . 6 . . . . . . . . . . .

Possessor . . . . . . . . . . . . . . . . . . 5 . . . . . . . . 2 . . . .
ProfessionalAspect . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . .

Purpose . . . 3 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .
Recipient . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . .

Separation . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . .
Source . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 5 . . .

Species . . 3 . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . .
StartState . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .
Temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 . .

Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 .
Via . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table C.34: Confusion matrix for annotated preposition relations. This represents the data from
one of our annotators. The rows denote the labels from the SemEval-based relation data and the
columns are the annotated labels. Dots denote that pairs of labels that were never confused.
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