
TILING OPTIMIZATIONS FOR STENCIL COMPUTATIONS

BY

XING ZHOU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor David Padua, Chair, Co-Director of Research
Research Assistant Professor Maŕıa J. Garzarán, Co-Director of Research
Professor William Gropp
Professor Wen-Mei Hwu
Doctor Robert Kuhn, Intel

Abstract

This thesis studies the techniques of tiling optimizations for stencil programs. Traditionally,

research on tiling optimizations mainly focuses on tessellating tiling, atomic tiles and regular

tile shapes. This thesis studies several novel tiling techniques which are out of the scope of

traditional research. In order to represent a general tiling scheme uniformly, a unified tiling

representation framework is introduced. With the unified tiling representation, three tiling

techniques are studied. The first tiling technique is Hierarchical Overlapped Tiling, based

on the idea of reducing communication overhead by introducing redundant computations.

Hierarchical Overlapped Tiling also applies the idea of hierarchical tiling to take advantage of

hardware hierarchy, so that the additional overhead introduced by redundant computations

can be minimized. The second tiling technique is called Conjugate-Trapezoid Tiling, which

schedules the computations and communications within a tile in an interleaving way in order

to overlap the computation time and communication latency. Conjugate-Trapezoid Tiling

forms a pipeline of computations and communications, hence the communication latency can

be hidden. Third, this thesis studies the tile shape selection problem for hierarchical tiling.

It is concluded that optimal tile shape selection for hierarchical tiling is a multidimensional,

nonlinear, bi-level programming problem. Experimental results show that the irregular tile

shapes selected by solving the optimization problem have the potential to outperform intu-

itive tiling shapes.

ii

Acknowledgements

The thesis dissertation marks the end of a long and eventful journey. I would like to ac-

knowledge all the friends and family for their support along the way. This work would not

have been possible without their support.

First, I would like to express my heartfelt gratitude to my advisors, Professor David Padua

and Professor Maŕıa Garzarán, for their patience, encouragement, and immense knowledge.

Their guidance helped me in all the time of research and writing of this thesis. This thesis

would certainly not have existed without their support. I would also like to thank committee

members Professor William Gropp, Professor Wen-Mei Hwu, and Doctor Robert Kuhn for

their insightful comments and suggestions.

I am very grateful to my fellow group members and other friends in Computer Science

Department, for the stimulating discussions, enjoyable experience of working together, and

all the fun we have had in the last four years.

I thank my parents, who gave me the best education and built my personality.

Last but not the least, I would like to thank my wife, who always stands with me during

times of stress and joy.

iii

Table of Contents

List of Figures . vii

List of Tables . x

Chapter 1 Introduction . 1
1.1 Background . 1

1.1.1 Stencil Computations . 1
1.1.2 Loop Tiling . 2
1.1.3 Hierarchical Tiling . 3

1.2 Contributions . 4
1.3 Thesis Organization . 5

Chapter 2 Prerequisites . 7
2.1 Unified Tiling Representation Framework . 7

2.1.1 Iteration Space Representation . 7
2.1.2 Tiling Representation with the Polyhedral Model 11
2.1.3 Unified Tiling Representation Framework 13
2.1.4 Dependences after Tiling . 16
2.1.5 Schedule of Tiles . 18
2.1.6 Tiling Transformation Representation 19
2.1.7 Hierarchical Tiling . 20

2.2 Implementation Using the Omega Library 20
2.2.1 Set and Mapping . 20
2.2.2 Code Generation . 21

Chapter 3 Hierarchical Overlapped Tiling 23
3.1 Introduce Redundant Computation Through Overlapped Tiling 23
3.2 Hierarchical Overlapped Tiling . 25
3.3 Analytical Modeling . 28

3.3.1 Overlapped Tiling . 29
3.3.2 Hierarchical Overlapped Tiling . 32

3.4 Unified Tiling Representation . 35
3.5 Evaluation . 39

3.5.1 Implementation . 39

iv

3.5.2 Environment Setup . 40
3.5.3 Benchmarks . 40
3.5.4 Experimental Results . 41
3.5.5 Compilation Overhead . 47

3.6 Conclusion . 48

Chapter 4 Hiding Communication Latency with Conjugate-Trapezoid
Tiling . 49

4.1 Hiding Communication Latency . 49
4.2 Conjugate-Trapezoid Tiling . 50

4.2.1 Definitions . 50
4.2.2 1-dimensional Stencil . 53
4.2.3 2-dimensional Stencil . 56
4.2.4 Higher Dimensions . 61

4.3 Performance Model . 63
4.3.1 Definitions . 64
4.3.2 Performance Model . 66
4.3.3 Optimization . 68

4.4 Unified Tiling Representation . 71
4.5 Evaluation . 74

4.5.1 Target Platform . 74
4.5.2 Implementation . 76
4.5.3 Benchmark . 76
4.5.4 Experimental Result . 77

4.6 Conclusion . 82

Chapter 5 Tile Shape Selection for Hierarchical Tiling 83
5.1 Problem Definition . 85
5.2 Constraints on Tile Shape Selection . 87
5.3 Execution Model . 90
5.4 Calculate the Longest Dependent Path . 92

5.4.1 Calculate L(Tk, 1n) . 94
5.4.2 Calculate L(El, 1n) . 96
5.4.3 Summary . 100

5.5 Automatic Tile Shape Selection . 100
5.6 Unified Tiling Representation . 102
5.7 Evaluation . 103

5.7.1 Environment Setup . 103
5.7.2 Performance . 104
5.7.3 Tile Shape . 105
5.7.4 Model Accuracy . 108

5.8 Conclusion . 109

v

Chapter 6 Related Work . 111

Chapter 7 Conclusions . 115

Bibliography . 117

vi

List of Figures

1.1 Hierarchical tiling. 4

2.1 n-depth loop nest . 8
2.2 The edge vectors (thick arrows) of iteration spaces. 9
2.3 Valid and invalid tile shapes for tessellating tiling with atomic tiles. 11
2.4 The effect of tiling transformation. 16
2.5 Overlapped Tiling. Each tile is trapezoid-shaped. The grey triangles are the

overlapped areas between tiles. 16
2.6 Split Tiling. There are two shapes of tiles: triangle and trapezoid. The

neighboring tiles of different shapes consist a ”super” tile (in the dashed box)
which is the basic repetition unit. 17

2.7 Generated loop nest code for the integer tuple set S1 22
2.8 Parallel code with OpenMP and MPI . 22

3.1 A simple tiling example for parallel loops . 24
3.2 Overlapped tiling of K loops . 26
3.3 Comparison of overlapped tiling and hierarchical overlapped tiling on a 4-

way/8-core multicore system, where each processor contains 2 cores on chip
that share the last level cache. 27

3.4 A sequence of K parallel loops . 28
3.5 Equivalent loop nest to the K consecutive parallel loops 35
3.6 Framework of the experimental system. 39
3.7 Speedup of traditional tiling, overlapped tiling and hierarchical overlapped

tiling over the original OpenCL code. 42
3.8 Evaluating the performance overlapped tiling and hierarchical overlapped

tiling by scaling fusion depth K. 43
3.9 Fusion depth K ′ for the second level of hierarchical overlapped tiling. 46
3.10 Speedup of hierarchical overlapped tiling over plain overlapped tiling with

different input sizes. The horizontal axis is the input size for each benchmark. 47
3.11 Compile time for overlapped tiling and hierarchical overlapped tiling, normal-

ized to the compile time of the original OpenCL code. 48

4.1 1-dimensional Jacobi code with MPI. 50
4.2 An ISL with a d-dimensional stencil. The total depth of the loop nest is d+ 1. 51
4.3 Dependence vectors of a 5-point stencil . 52

vii

4.4 Tiling 1-dimensional Jacobi code. Thin arrows represent the dependence vec-
tors. Thick arrows show the dependence between tiles. w and h are the
parameters decided by users to determine the size of each tile. 53

4.5 Subtiling and delay . 56
4.6 Sequential 2-dimensional Jacobi code. 56
4.7 Tiling with 2-dimensional stencils. The thick arrows in (b) represent the

dependence between tiles. 59
4.8 Subtiling with 2-dimensional stencils. 60
4.9 Schedule of subtiles for each time step.∀j, Sj and Rj are the corresponding

send and receive pair. 61
4.10 Projections of subtiles with 2-dimensional stencils. 61
4.11 Slice of a 4-dimensional hyper-parallelepiped tile. 62
4.12 Number of messages to be sent for 3-dimensional Jacobi. Each arrow stands

for a message to be sent to an neighboring tile. The arrows with the same
direction means that the destination of the messages are the same. 67

4.13 Merge communication operations. The send or receive operations with in
the same dashed box can be merged. Compared to Figure 4.9-(b), the send
or receive operations denoted by the dashed arrows are moved (delayed or
brought forward) to the operations denoted by corresponding thick arrows. . 69

4.14 Balanced multi-threading with four processors. The white bars stand for com-
putation time, and the grey bars stand for communication operation overhead. 70

4.15 Speedup with different values of h′. The baseline is the performance achieved
by tiling with no communication overlap. The figure shows the performance
with h′ up to 6 for 2-dimensional stencils and h′ up to 4 for 3-dimensional sten-
cils, because the trend shows that there would be no additional performance
gains with a larger h′. 78

4.16 Communication overhead with different h′. 80
4.17 Input size sensitivity. 82

5.1 Different tile shape choices for hierarchical tiling. Arrows are the dependences
between tiles. Dashed lines represent the tiles that can be executed in parallel
in a wavefront schedule. The numbers stand for the order of the wavefronts . 84

5.2 Constraints of tile shape imposed by dependences. 87
5.3 Inter-tile dependences (thicker arraows) generated by original dependence vec-

tor d⃗k. 89
5.4 The dependent pathes (P and P ′) within an iteration space. The length of a

dependent path is the number of iterations on the path. If any path contains
d⃗2 (P

′), it is always possible to replace d⃗2 with d⃗1 and d⃗0 on the same position,
which resulting a longer path. This means the longest path (P) must only

contain d⃗0 and d⃗1. 92
5.5 Determine the length of the longest dependent path within the iteration space

of tile Tk. Each p⃗1 stands for the coordinate of the point. 96

viii

5.6 Construct path P according to a given path P ′. The lengthes of P and P ′ are
approximately equal. 99

5.7 The dependence vectors in the iteration space of stencil computation programs.104
5.8 Hierarchical tiling performance for 2-dimensional iteration space on GPU and

cluster platforms. The horizontal axis is the size of the iteration space. The
vertical axis is the speedup over Wavefront or Diamond. 107

5.9 Hierarchical tiling performance for 3-dimensional iteration space on GPU and
cluster platforms. The horizontal axis is the size of the iteration space. The
vertical axis is the speedup over Wavefront. 108

5.10 Comparison between the real execution time and the ideal execution time for
1-D Gauss-Seidel. The left axis is for real execution time and the axis on the
right is for ideal execution time. 109

ix

List of Tables

3.1 Representation of Overlapped Tiling . 38
3.2 ISL Benchmarks . 40
3.3 Loop Fusion depth K used in experiments. 45

4.1 Representation of Conjugate-Trapezoid Tiling 75
4.2 Benchmarks . 76
4.3 Different stencils of the benchmarks . 77

5.1 The Unified Tiling Representation . 103
5.2 Common tiling schemes: Wavefront, Diamond and Skewing. 105
5.3 Tile shape selection for 1-D Gauss-Seidel and Jacobi. 106
5.4 Tile shape selection for 2-D Gauss-Seidel on GPU (1920×1920×1920). . . . 108

x

Chapter 1

Introduction

1.1 Background

1.1.1 Stencil Computations

Iterative stencil loops (ISLs) are an important kernel of many computations. For example,

for certain regular matrices, the kernel the widely used Jacobi method is a stencil loop; and

image processing filters are also implemented as stencil loops. Iterations of the outermost

loop of ISLs are called time steps, as programs with ISLs are often used to simulate the

evolution of physical systems over time. At each time step, the inner loop nest of the ISL

operates on a multidimensional array, and computes each element of an array as a function

of neighboring locations in the array. The choice of the neighboring elements follows a fixed

pattern or stencil.

To achieve high performance, the inner loop nests of ISLs are usually tiled and each tile

is assigned to a processing node for parallel execution. Data locality and communication are

the main issues when optimizing ISLs. Data locality influences the execution time within

each computing node. When running on distributed memory systems, the performance of

these ISLs may be hindered by inter-node communication. Limited by the performance of

1

the interconnection network, the cost of communication grows with the scale of the system

increases. If the ISL is parallelized for a shared memory system, the inter-tile communication

is implicit, usually controlled with synchronization operations. Even though the communi-

cation overhead of shared memory systems is usually much lower than that of distributed

memory systems, it may still cause performance degradation.

1.1.2 Loop Tiling

Loop tiling is an effective optimization to improve performance of multiply-nested loops,

which are usually the most time-consuming parts of computationally intensive programs.

Numerous techniques for the tiling of iteration spaces have been proposed. The goal of

tiling is to improve data locality [39, 42, 1, 2, 36, 14, 33, 38, 41, 45, 48], or contribute to

the scheduling of parallel computation [40, 43, 6, 18, 44, 7, 47]. The performance resulting

from the use of a tiling scheme is a function of (1) locality, (2) the amount of parallelism

exposed, and (3) the communication/synchronization overhead. The size and shape of the

tiles, and the scheduling strategy are the main factors that impact locality, parallelism,

and communication cost of the code after tiling. Research on tiling techniques usually try

to improve one or more factors that impact performance. Locality was the first focus of

research in these studies of tiling, but as the importance of parallel computing increased,

mechanisms to optimize parallelism organization and communication with tiling techniques

gained attention.

Existing tiling transformations mainly relies on tessellating tiling and scheduling oper-

ations in tiles in atomic. In tessellating tiling there is no overlap between tiles. When

scheduling operations of tiles atomically, inter-tile communication or synchronization only

happen before computation starts or after all the computation within a tile completes. The

above two restrictions simplifies the study of loop tiling techniques. Elegant representation

frameworks, such as the polyhedral model [5], have been built to facilitate research on tiling

2

schemes under these restrictions. However, by ignoring such restrictions it is possible to

taka advantage of the optimization opportunities of general tiling schemes. For example,

because of data dependences, inter-tile communication is inevitable with tessellating tiling;

and, with atomic tiles execution, schedule of tiles is restricted and often results in load im-

balances. In order to exploit the optimization opportunities of general tiling schemes, a new

representation framework is necessary.

1.1.3 Hierarchical Tiling

Most massively parallel systems today are organized hierarchically. Different levels in the

hierarchy may have different organizations and follow different memory models. Consider a

computer cluster consisting of nodes connected by a network. This forms the first level of

the hierarchy. At the next level, each node is typically an SMP machine. Modern accelerator

devices are also organized hierarchically. An NVIDIA GPGPU contains a number of Multi-

Processors (MPs). The MPs have uniform access to a global memory. Each MP consists of

several Stream-Processors (SPs), which share the MP-private shared memory.

Hierarchy-aware optimizations are usually necessary to unleash the potential of hierar-

chically organized systems. In order to make better use of hardware hierarchies, loop nests

should also be tiled hierarchically to fit the organization of the target machine. Figure 1.1

gives an example of hierarchical tiling for a cluster. In top-down order, (1) the iteration

space of the loop nest is tiled, and each tile is mapped to a node of the cluster. (2) On each

node, the iteration space is further partitioned into smaller tiles, each of which is assigned

to a processor in the node. Hierarchical tiling can also be done bottom-up by partitioning

the original iteration space into tiles that are assigned to the lowest level of hardware and

then grouping tiles into larger ones for the higher levels of hardware.

Hierarchical tiling increases the complexity of the study on tiling transformation, because

each level of tiling has its own choice tile size/shape and scheduling strategy, and the decisions

3

Iteration

Space

Node

ProcessorLevel 0 Tile

Level 1 Tile

Figure 1.1: Hierarchical tiling.

of tiling scheme at different levels interfere with each other. In order to achieve global

optimality for hierarchical tiling, different levels of tiling must be considered in an integral

model.

1.2 Contributions

This thesis makes several contributions in the area of tiling for stencil computations. First,

it introduces a unified representation framework for tiling transformations, which is able to

describe tiling techniques that cannot be represented by the traditional polyhedral model,

such as non-tessellating tiling and scheduling with non-atomic execution of tiles, can be

defined uniformly with this new representation framework.

Second, this thesis proposes two novel tiling schemes. The first is Hierarchical Overlapped

Tiling. This is an extension of the existing idea of overlapped tiling [26], which introduces

redundant computation to eliminate inter-tile communication. Overlapped tiling is a non-

tessellating tiling scheme. It is a useful transformation to reduce communication overhead,

but it may also introduce a significant amount of redundant computations. Based on this

observation, Hierarchical Overlapped Tiling is designed to solve this problem. Hierarchical

Overlapped Tiling trades off redundant computation for reduced communication overhead

in a more balanced manner, and thus has the potential to provide higher performance. An

analytic model is built to analyze the performance of both Overlapped Tiling and Hierarchical

4

Overlapped Tiling. The second tiling scheme is called Conjugate-Trapezoid Tiling. This tiling

scheme also aims at reducing the inter-tile communication. Instead of introducing redundant

computation to eliminate inter-tile communication, Conjugate-Trapezoid Tiling schedules

the computations and communications within a tile in an interleaving order to overlap the

computation and communication. Conjugate-Trapezoid Tiling pipelines computation and

communication. The operations in tiles of Conjugate-Trapezoid Tiling are not scheduled

assuming that they are atomic; instead, computation and communication within a tile are

interleaved with each other. A performance model is used to determine the optimal pipeline

parameters of Conjugate-Trapezoid Tiling. The efficiency of both tiling schemes is evaluated

using several codes which implement stencil computations.

Third, this thesis studies the tile shape selection problem for hierarchical tiling. It builds

an analytic model to analyze the execution time of the tiled loop nest as a function of the

tile shape at each level of a hierarchy. The model is not tied to any specific scheduling

scheme of tiles, but only focuses on the essence effect on parallelism exposure for all possible

tile shape choices. It is concluded that optimal tile shape selection for hierarchical tiling is

a multidimensional, nonlinear, bi-level programming problem. An experimental automatic

system is implemented, which uses a simulated annealing algorithm to find a near-optimal

tile shape choice according the analytic model. Experimental results show that the tiling

scheme with automatically chosen tile shapes has the potential to outperform intuitive tiling

shapes.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 introduces a new tiling repre-

sentation framework for general schemes and a code generator implementation based on

this framework.In Chapter 3 Hierarchical Overlapped Tiling is introduced building upon

5

the existing idea of overlapped tiling, and an analytic model is built to study the trade off

between communication and redundant computation. In Chapter 4 a novel tiling scheme

called Conjugate-Trapezoid Tiling is designed, and a performance model is used to deter-

mine the optimal pipeline parameters. Chapter 5 studies the tile shape selection problem for

hierarchical tiling. Chapter 6 discusses related work, and Chapter 7 concludes this thesis.

6

Chapter 2

Prerequisites

2.1 Unified Tiling Representation Framework

This chapter first introduces the polyhedral model [5], which has been used in the past to

represent of tiling transformations. Based on the observation that the polyhedral model

is only able to represent traditional tiling techniques, a more general tiling representation

framework is presented. This representation accommodates several non-traditional tiling

schemes including non-tessellating tiling and scheduling strategies that do not assume atomic

tile operations.

2.1.1 Iteration Space Representation

Consider the loop nest in Figure 2.1-(a). whose vector form is shown in Figure 2.1-(b).

Iteration space I is a finite set of points in the n-dimensional space Zn. The loop bounds

lb0, lb1, ...lbn−1 and ub0, ub1, ...ubn−1 are functions of the index variables of outer loops as

7

follows:

lbk = lbk(i0, i1, ..., ik−1),

ubk = ubk(i0, i1, ..., ik−1), k = 0, 1, ..n− 1.

The set of iterations in I is defined by lb0, lb1, ...lbn−1 and ub0, ub1, ...ubn−1:

I = {⃗i = (i0, i1, ..., in−1)|lbk(i0, i1, ..., ik−1) ≤ ik < ubk(i0, i1, ..., ik−1)}.

In the rest of this thesis, lbk(i0, i1, ..., ik−1) and ubk(i0, i1, ..., ik−1) are restricted to be affine

functions of i0, i1, ..., ik−1.

1 for (int i0 = lb0() ; i0 < ub0() ; ++i0)
2 for (int i1 = lb1(i0) ; i1 < ub1(i0) ; ++i1)
3 . . .
4 for (int in−1 = lbn−1(i0, i1, ..., in−2) ; in−1 < ubn−1(i0, i1, ..., in−2) ; ++in−1)
5 << loop body >>

(a) Loop nest with scalar induction variables

1 for (i⃗ = (i0, i1, ..., in−1) ∈ I)
2 << loop body >>

(b) The representation with vector induction variables

Figure 2.1: n-depth loop nest

In practice, the shape of I is usually an n-dimensional hyper-parallelepiped. Any set of

n edges of the hyper-parallelepiped which share a common vertex can be used as the basis of

the n-dimensional iteration space; the common vertex of these edges is the origin. Figure 2.2

gives two examples of the edge vectors that define 2 dimensional and 3 dimensional iteration

spaces.

Assume that e⃗k = (ek,0, ek,1, ..., ek,n−1), k = 0, 1, ..., n − 1 are the n edge vectors used as

8

i1

i0

���

���

(0,0)

i1

i2
i0

���

���

���(0,0,0)

(a) 2 dimensional space (b) 3 dimensional space

Figure 2.2: The edge vectors (thick arrows) of iteration spaces.

the basis of the hyper-parallelepiped shaped iteration space I. The basis matrix of I is:

E =



e⃗0

e⃗1

...

e⃗n−1


.

Define the function span(E) as follows:

span(E) = {⃗i : i⃗ ∈ Zn, ∃a⃗ = (a0, a1, ..., an−1),

0⃗n = (0, 0, ..., 0) ≤ a⃗ ≤ (1, 1, ..., 1) = 1⃗n, i⃗ = a⃗ · E}.

Clearly I = span(E), and the total number iterations in I is |I| = |det(E)| (because |det(E)|

is the volume of the parallelepiped).

Dependences are the partial order that must be enforced between iterations to obtain

correct results. If there are no direct or indirect dependences between two iterations, these

two iterations can be scheduled either concurrently or in any sequential order. Otherwise, the

iteration at the source of the dependence must finish before the iteration at the destination

of the dependence starts.

Dependences can be represented by dependence vectors. A dependence vector d⃗ =

9

(d0, d1, ..., dn−1) indicates that any iteration i⃗ must finish before iteration i⃗ + d⃗. A valid

dependence vector d must satisfy the following condition:

if ∀k = 0, 1, ..., j, dk = 0, and dj+1 ̸= 0, then

dj+1 > 0 (2.1)

Assume that a loop with n levels of nesting has m dependence vectors d⃗0, d⃗1, ..., d⃗m−1,

which define the dependence matrix :

D =



d⃗0

d⃗1

...

d⃗m−1


.

Without loss of generality, this thesis assumes that m ≥ n, where m is the number of depen-

dence vectors, and n is the number of loops in the loop nest. It is also assumed that there

are n dependence vectors which are linearly independent. Otherwise, it must be possible

to make at least one loop fully permutable through a sequence of affine transformations, so

it is possible to move the permutable loop either to outmost or innermost, and then it is

only needed to focus on the other n − 1 loops and the iteration space can be studied as a

lower-dimensional one.

The dependences impose constraints on possible tiling transformations. In order to be

valid, the new loop nest after tiling must preserve the dependences of the original loop

nest. If the computation operating in a tile is ”atomic” - which means inter-tile communica-

tion (inter-tile dependence) only happens before inner-tile computation starts and/or after

inner-tile computation is finished - a valid tiling scheme requires that it must be possible

to topologically sort all the tiles. Otherwise, the neighboring tiles would have a cycle of

10

t
1

t
0

d
0 d

1

e
0

e
1

t
1

t
0

d
0
d
1

e
0

e
1

(a) Valid tile shape (b) Invalid tile shape

Figure 2.3: Valid and invalid tile shapes for tessellating tiling with atomic tiles.

dependences and it would be impossible to schedule the computations.

Figure 2.3 gives two examples of the constraints on tiling imposed by dependences for

tessellating tiling with atomic tiles. The tile shape shown in Figure 2.3-(a) is valid, because

dependence vectors only cross the hyper-plane in one direction, which means that at each of

its boundaries, the tile has either in-bound dependences or out-bound dependences. However,

the tile shape in Figure 2.3-(b) is invalid, since there are both in-bound and out-bound

dependences crossing the boundary hyper-planes of tiles. This means that a tile and one of

its neighboring tile along the horizontal direction are in a dependence cycle. On the other

hand, if not restricted to tessellating tiles or scheduling assuming atomic operations in tiles,

there would be more freedom in selecting the tiling schemes. One example is that overlapped

tiling, in which the tiles are not tessellating, is able to eliminate inter-tile dependences by

introducing redundant computation.

2.1.2 Tiling Representation with the Polyhedral Model

The polyhedral model is the traditional representation of tiling transformations used in the

past. The polyhedral model uses a set of hyperplanes that partition the iteration space to

represent the tiling transformation. These hyperplanes are defined by a matrix H, where

11

each row represents the normal vector of one of the tiling hyperplanes:

H =



h⃗0

h⃗1

...

h⃗n−1


.

h⃗k is the normal vector of not just of one, but a set of tiling hyperplanes. The direction h⃗k

determines an infinite set of parallel hyperplanes. In addition, this thesis assumes the length

of each h⃗k is the distance between tiling hyperplanes. So H can fully determine the shape of

tiles under the assumption that the hyperplane that intersects the first iteration is the first

hyperplane.

As discussed in Section 2.1.1, dependences constraint tiling transformations. A tiling

scheme is valid if there exists a valid total ordering of the tiles. If tiles are required to be

scheduled assuming atomic operations in tiles, this constraint is equivalent to saying that no

any pair of tiles are dependent on each other. The polyhedral model represents the validity

condition as follows [20]:

H ·DT ≥ 0 (2.2)

The polyhedral model provides elegant representations for traditional tiling schemes.

However, the polyhedral model has several shortcomings if it is used to study more general

tiling techniques. First, using a set of tiling hyperplanes to represent tile shapes implies

tessellating tiling, which means that there must be no overlap between tiles. The polyhe-

dral model cannot represent non-tessellating tiling. Second, Equation 2.2 assumes that the

scheduling of tiles must follow the order defined by the directions of the normal vectors of

tiling hyperplanes. This means that with the polyhedral model, the tile shape and schedul-

12

ing strategy are determined by H at the same time. So the polyhedral model lacks the

flexibility to design different schedule constraints in order to optimize parallelism exposure.

Finally, the polyhedral model is not good for studying hierarchical tiling techniques, because

the iteration space within each tile does not have a unified representation of the original

iteration space so that recursive analysis cannot be simply applied.

2.1.3 Unified Tiling Representation Framework

Based on the observation that the traditional polyhedral model is not good for studying

general tiling techniques, a unified representation framework of tiling transformations is

introduced in this section.

In this unified representation framework, a base tile T is a set of points in Zn. Without

lost of generality, this thesis assumes that the size of the base tile T is smaller than the size

of the iteration space I that the tiling is applied to: |T| < |I|. Since the iteration space,

say I, is also a set of points in Zn, tile T is also a smaller iteration space. If the tiles are

n-dimensional hyper-parallelepiped where t⃗k = (tk,0, tk,1, ..., tk,n−1), k = 0, 1, ..., n− 1 are the

n ”basis” edges of the hyper-parallelepiped tile, then the base tile T can be described by the

tiling matrix T :

T =



t⃗0

t⃗1

...

t⃗n−1


.

For each non-boundary tile, the set of the iterations with in the tile is span(T). And the

total number of iterations is |det(T)|.

Tiling is a map from Zn to Z2n: I → [I ′ : J] = {(i⃗′ : j⃗)}, in which i⃗′ = (i′0, i
′
1, ..., i

′
n−1) is

an index vector for each tile, and j⃗ = (j0, j1, ..., jn−1) is an iteration index that falls within

tile i⃗′ (notice that j⃗ is a global iteration index instead of local index within the tile). If every

13

tile has the same shape as T, given an iteration space I, tiling is done by replicating tile T

in a repeated pattern until all the points (iterations) in I are covered by the replications of

T.

Let R denote the repetition operator applied to the index vector of an iteration i⃗. In the

rest of the thesis, repetition patterns are restricted to be translation transformations in the

n-dimensional space. Let R denotes the following translation matrix:

R =



r⃗0

r⃗1

...

r⃗n−1


.

Then a repetition pattern R can be defined as follows:

R(⃗i, i⃗′) = i⃗+ i⃗′ ·



r⃗0

r⃗1

...

r⃗n−1


= i⃗+ i⃗′ ·R (2.3)

Since the matrix R represents the repetition pattern of tiling, R is called the repetition

matrix. Given a base tile T, each i⃗′ generates a repetition of the tile T though R, denoted

as T(i⃗′):

T(i⃗′) = {R(⃗i, i⃗′)|⃗i ∈ T} (2.4)

The tiling can be formally defined as follows:

I = {⃗i} → {(i⃗′ : j⃗) | ∀ i⃗′, j⃗ T(i⃗′) ∩ I ̸= ∅ ∧ j⃗ ∈ T(i⃗′) ∧ j⃗ ∈ I} (2.5)

14

The first constraint in Equation 2.5, T(i⃗′) ∩ I ̸= ∅, defines another iteration space I ′, which

is a set of i⃗′, as follows:

I ′ = {i⃗′ | T(i⃗′) ∩ I ̸= ∅} (2.6)

And the original iteration space I must be covered by the union of all repetitions of the tile:

I ⊆
∪

∀i⃗′∈I′

T(i⃗′) (2.7)

Note that the above definition of tiling does not require that the tiles partition the

iteration space. If ∃i⃗′1, i⃗′2,T(i⃗′1) ∩ T(i⃗′2) ̸= ∅, the iterations in the intersection set are

redundant computations introduced by tiling compared to the original loop nest. Tiling

with redundant computations can still be legal if the loop nest after tiling produces the same

result. Overlapped tiling [26, 30, 35, 49] is an example of tiling schemes with redundant

computations which has been studied before. Figure 2.5 gives an example of overlapped

tiling. In most tiling schemes studied in existing research are tessellating tiling, which

means the tile repetitions are disjoint:

∀i⃗′1, i⃗′2 i⃗′1 ̸= i⃗′2, T(i⃗′1) ∩ T(i⃗′2) = ∅

For tessellating tiling, for each i⃗ ∈ I, there is a unique (i⃗′ : j⃗) after tiling corresponding to

it, and vice versa. Then I ′ = {i⃗′} forms an iteration space, where each T(i⃗′) is an iteration.

Figure 2.4 shows the effect of tiling transformation.

The representation can handle the case where there are several but finite number of tile

shapes, as long as there is a single ”super” tile which groups neighboring tiles of different

shapes, and the whole iteration space is covered by repetitions of the ”super” tile. Therefore

the tiling definition above can still be used to analyze the tiling scheme with finite number

15

i
1

i
0

i'
0

i'
1

t1

t0

e0

e1

Figure 2.4: The effect of tiling transformation.

tile

Figure 2.5: Overlapped Tiling. Each tile is trapezoid-shaped. The grey triangles are the
overlapped areas between tiles.

of tile shapes, but tile T must represent the ”super” tile. Split tiling [26, 37] is an example of

tiling schemes with more than one tile shapes. As shown in Figure 2.6, there are two shapes

of tiles: triangle and trapezoid. The neighboring tiles of different shapes consist a ”super”

tile (in the dashed box) which is the basic repetition unit.

2.1.4 Dependences after Tiling

As mentioned above, I ′ = {i⃗′} is an iteration space with each iteration containing all the

iterations in T(i⃗′). The dependences in the original iteration space I impose new dependences

in I ′. Let d⃗′0, d⃗′1, ..., d⃗′m′−1 are the m′ resulting dependences vectors in I ′ and D′ is the

16

super tile

tile 1 tile 2

Figure 2.6: Split Tiling. There are two shapes of tiles: triangle and trapezoid. The neigh-
boring tiles of different shapes consist a ”super” tile (in the dashed box) which is the basic
repetition unit.

dependence matrix:

D′ =



d⃗′0

d⃗′1

...

d⃗′m−1


.

Note that the execution order of tiles is not necessarily the lexicographical order of i⃗′.

The execution order can be changed by different scheduling schemes as discussed in Section

2.1.5, a dependence vector d⃗′j (0 ≤ j < m) does not have to satisfy the condition defined in

Equation 2.1.

In order to simplify the problem, the rest of the thesis assumes that the tile chosen for

any tiling scheme is always large enough, so that for an n-dimensional iteration space, each

tile only has up to 3n − 1 neighboring tiles, and inter-tile dependences only exist between

neighboring tiles. This means that each component in any dependence vector d⃗′j, 0 ≤ j < m′,

can only be 0, 1, or −1:

d⃗′j = (d′j,0, d
′
j,1, ..., d

′
j,n−1), d′j,k = 0, 1,−1, 0 ≤ k < n

17

2.1.5 Schedule of Tiles

Tiles must be scheduled in a way that the inter-tile dependences are preserved. The schedul-

ing of tiles is a reorder of the T(i⃗′)s. The schedule can be formally defined as a mapping S

from each i⃗′ to i⃗o:

i⃗o = S(i⃗′)

After tiling, each tile T(i⃗′) will be executed in a lexicographical order of i⃗o. In order

to be a legal scheduling, i⃗o must lexicographically conform to all inter-tile dependences: if

S(i⃗′1) = i⃗o1 and S(i⃗′2) = i⃗o2, and i⃗o1 ≼ i⃗o2, there must be no direct or indirect inter-tile

dependence from the tile T(i⃗′2) to tile T(i⃗′1). Note that S is an n-to-1 mapping instead

of 1-to-1 mapping. If ∃i⃗′1, i⃗′2, i⃗′1 ̸= i⃗′2, S(i⃗′1) = S(i⃗′2), this means that there is no direct

or indirect dependence between T(i⃗′1) and T(i⃗′2), and these two tiles can be scheduled in

parallel. Define S−1 as follows:

S−1(⃗io) = {i⃗′|S(i⃗′) = i⃗o}

Then |S−1(⃗io)| is the amount of parallelism on each step exposed by the scheduling S.

If the scheduling mapping is affine, S can be described by an n× s (s ≤ n) matrix S as

follows:

i⃗o = S(i⃗′) = i⃗′ · S

S is called the scheduling matrix. Whether S or S is a valid scheduling mapping depends on

the dependence matrix D′ in the tiled iteration space I ′.

Valid Schedule

The lexicographical order of i⃗o = S(i⃗′) defines the execution order of tile i⃗′. The execution

order must not violate the dependences between tiles. Given i⃗′1 and i⃗′2 = i⃗′1 + d⃗′j, T(i⃗′1)

18

must be executed before T(i⃗′2). If S(i⃗′1) = i⃗1
o and S(i⃗′2) = i⃗2

o, there must be

i⃗2
o ≻ i⃗1

o, or i⃗2
o − i⃗1

o = S(i⃗′1 + d⃗′j)− S(i⃗′1) ≻ 0⃗

Assume S is an affine transformation, then S(i⃗′1 + d⃗′j)− S(i⃗′1) = S(d⃗′j). So the condition of

valid schedule can be defined as follows:

∀d⃗′j, S(d⃗′j) ≻ 0⃗ (2.8)

If scheduling matrix S exists, d⃗oj = S(d⃗′j) = d⃗′j · S must satisfy the condition in Equation

2.8.

In addition, because for any i⃗o, all tiles i⃗′ ∈ S−1(⃗io) can be scheduled in parallel, there

must be no dependence among them:

∀i⃗′ ∈ S−1(⃗io),

∀d⃗′j, S(i⃗′ + d⃗′j) /∈ S−1(⃗io). (2.9)

Equation 2.8 and 2.9 are the two conditions that a valid schedule S must satisfy.

2.1.6 Tiling Transformation Representation

To sum up the discussion above, given an iteration space I and its dependence matrix D, a

specific tiling transformation is determined by tile shape T (or tiling matrix T), repetition

pattern R (or repetition matrix R) and scheduling mapping S (or scheduling matrix S). The

choices of T(T), R(R) and S(S) must conform the constraints imposed by D.

19

2.1.7 Hierarchical Tiling

After tiling, either each tile T or I ′ can be considered as a new iteration space and can be

applied tiling transformation recursively. This means tiling transformations can be done

hierarchically. Each level of tiling can be defined and analyzed with corresponding T(T),

R(R) and S(S) as a single level of tiling independently.

There are two approaches to do hierarchical tiling. First, do tiling for I and then apply

tiling the each tile T; in this way the whole process would produce higher level tiles first

then produce lower level tiles. This is called the top-down approach. On the other hand,

if the iteration space I ′ is tiled after tiling the original I, the whole process would produce

lower level tiles first then higher level tiles, which is called the bottom-up approach.

2.2 Implementation Using the Omega Library

In order to automate the process of tiling, an experimental implementation using Presburger

formulas [25] has been developed. The manipulation of Presburger formulas is done by the

Omega Library [22] automatically.

2.2.1 Set and Mapping

The key concepts of tiling transformation are sets and mappings in the n-dimensional integer

space. As discussed in last section, for a given tiling transformation, the iteration space I

and tile shape T are sets of integer vectors, and the repetition pattern R and scheduling

mapping S are mappings in iteration space. In the experimental implementation, sets and

mappings in the n-dimensional integer space are represented by integer tuple sets and integer

tuple relations, respectively. These two are the objects used in the Omega Library.

In the Omega Library, an n-dimensional integer tuple x⃗ = [x0, x1, ..., xn−1] is a vector of

n integers in Zn. An integer tuple set is a set of integer tuples. Constraints in the form of

20

equations and inequalities can be used to describe sets of integer tuples. For example, the

set S0 = {[1, 1], [1, 2], ..., [1, N]} can be represented as {[i, j] : i = 1 ∧ 1 ≤ j ≤ N}.

In this thesis it is assumed that the arithmetic expressions in the equations and inequal-

ities are affine and the terms are integers. Logical operators ¬, ∧ and ∨, and the existential

and universal quantifiers ∃ and ∀ are also needed to describe the set of integer tuples. The

representations are known as Presburger formulas. In the experimental implementation,

these expressions of Presburger formulas are manipulated using the Omega Library.

Integer tuple relations with rules are described by Presburger formulas, too. For example

the relation R = {[i, j] → [x, y] : i − 1 ≤ x ≤ i ∧ j − 1 ≤ y ≤ j + 1} when applied to S0

yields the following set:

R(S0) = {[x, y] : 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ N + 1}

Note that given a relation R the size and shape of the original set S and that of R(S)

for a relation R can be different. The union ∪ of two relations R1 and R2 is defined as:

R1 ∪R2 = R, if ∀S,R1(S) ∪R2(S) = R(S)

2.2.2 Code Generation

The Omega Library provides the functionality of generating loop nest code in C for a given

integer tuple set, which can be used in the automated implementation of tiling transformation

schemes. For example, for integer tuple set S1 = {[i, j] : 0 ≤ i < 100 ∧ 0 ≤ j < 1000}, the

generated code loop nest is as follows:

The loop iterations of the generated loop nest code are exactly the integer tuples in

the given integer tuple set in lexicographic order. The loop nest generated by the Omega

Library is sequential code. In order to express parallelism, the experimental implementation

21

1 for (int i = 0 ; i < 100 ; ++i)
2 for (int j = 0 ; j < 1000 ; ++j)
3 << loop body >>

Figure 2.7: Generated loop nest code for the integer tuple set S1

provides the functionality to generate parallel loops for different programming environment.

Figure 2.8-(a) and (b) show the generated OpenMP and MPI codes if the outmost loop is

parallelized.

1 #pragma omp paral le l for
2 for (int i = 0 ; i < 100 ; ++i)
3 for (int j = 0 ; j < 1000 ; ++j)
4 << loop body >>

(a) OpenMP code

1 MPI Comm rank(MPICOMMWORLD, &rank) ;
2 int i = rank ; // f o r (i n t i = 0 ; i < 100; ++i)
3 for (int j = 0 ; j < 1000 ; ++j)
4 << loop body >>

(b) MPI code

Figure 2.8: Parallel code with OpenMP and MPI

22

Chapter 3

Hierarchical Overlapped Tiling

3.1 Introduce Redundant Computation Through Over-

lapped Tiling

Consider the code in Figure 3.1-(a) where two parallel loops are executed in a shared mem-

ory machine. Although this figure shows a natural representation of the computation, the

pair of loops may cause unnecessary cache misses, depending on how they are scheduled. If

the loops are scheduled naively, e.g., dynamic scheduling, the second loop will likely incur

frequent cache misses. To increase locality, and also coarsen the granularity of the parallel

tasks, the programmer can tile and fuse the loops, as shown in Figure 3.1-(b). The resulting

code requires an explicit barrier to guarantee correctness, because of the data dependences

between neighboring tiles of iterations (during iteration t of the outer loop, j consumes data

produced by adjacent tiles of loop i, namely tiles t− 1 and t+ 1 or just one of them at the

boundaries). Notice that locality would improve if the same task executes the corresponding

i and j tiles in the code of Figure 3.1-(b). However, good locality is only possible if array

A can be kept in cache memory when the execution moves from the first to the second

loop. If, however, the array A is larger than the total cache of the processors executing

23

the loops, the traditional loop fusion and tiling transformation applied in Figure 3.1-(b) will

not benefit from locality, because all the iterations of the i loop must complete before the j

loop executes. Besides the difficulties for achieving locality of naive tiling, the parallelization

transformation may do a suboptimal job because of the barrier introduced. On some ar-

chitectures, barriers are expensive synchronization operations, and could additionally cause

load imbalance. Furthermore, because of the barrier the transformation from Figure 3.1-(a)

to Figure 3.1-(b) is not possible in some languages, such as OpenMP and OpenCL [23],

which do not allow global barriers inside data parallel constructs.

1 paral le l for (int i = 0 : N−1)
2 A[i] = . . . ;
3 paral le l for (int j = 0 : N−1)
4 . . . = A[j −1] + A[j] + A[j +1] ;

(a) Original loops

1 paral le l for (int t = 0 : N/T)
2 for (int i = t ∗T; i < min(N, (t+1)∗T; i++)
3 A[i] = . . . ;
4 BARRIER;
5 for (int j = t ∗T; j < min(N, (t+1)∗T; j++)
6 . . . = A[j −1] + A[j] + A[j +1] ;
7 }

(b) Traditional tiling and fusion

1 paral le l for (int t = 0 : N/T) {
2 for (int i = max(0 , t ∗T−1) ;
3 i < min(N, (t+1)∗T+1) ; i++)
4 A[i] = . . . ;
5 for (int j = t ∗T; j<min(N, (t+1)∗T) ; j++)
6 . . . = A[j −1] + A[j] + A[j +1] ;
7 }

(c) Overlapped tiling

Figure 3.1: A simple tiling example for parallel loops

To remove the synchronization and enhance locality, the code can be transformed into

the form shown in Figure 3.1-(c). In this case, each iteration of the outer loop t produces

all the data it needs so that its iterations (which correspond to tiles) are independent from

24

each other. This is achieved because each iteration performs redundant computation. The

result is a code without the BARRIER and with increased locality.

In the example in Figure 3.1-(c) loop i produces A[max(0, t∗T −1) : min(N, (t+1)∗T)]

in each iteration of the outer loop, that is, T + 2 elements, 2 more than the number of

elements of A computed by loop i in Figure 3.1-(b). In total the N/T executions of loop i

in Figure 3.1-(c) produce T+2
T

∗N elements, so this loop performs T+2
T

∗N −N = 2∗N
T

more

iterations than the corresponding loop of Figure 3.1-(b). The transformation leading to a

loop of the form of Figure 3.1-(c) is called overlapped tiling.

Figure 3.2-(a) shows a code snippet which represents a typical stencil computation. Pairs

of consecutive executions of the inner loop form a pattern similar to that of the two inner

loops in Figure 3.1-(a). If applying overlapped tiling repetitively and fuse all K executions

of the inner loop, it is possible to execute the outer loop without using any barrier. The

number of consecutive loops fused is the depth of the transformation. In this example, the

fusion depth is K. The total amount of redundant computation usually grows with the value

of depth. Figure 3.2-(b) shows the area of overlap. The triangles that bracket each tile

represent the redundant computation.

3.2 Hierarchical Overlapped Tiling

The basic idea of overlapped tiling is the trade-off between redundant computation and syn-

chronization overhead. The profitability of overlapped tiling transformation over traditional

tiling transformation depends on that the amount of redundant computation introduced

should be smaller than total synchronization overhead. However, synchronization overhead

is highly related to the performance of the communication channels on the specific target

platform, e.g., global memory, bus and shared cache. This means that the efficiency of over-

lapped tiling is sensitive to the hardware layer which tiles are mapped to. While overlapped

25

1 for (int k = 0 ; k < K; k++) {
2 paral le l for (int i = 0 : N−1)
3 B[i] = A[i −1] + A[i] + A[i +1] ;
4 swap (A, B) ;
5 }

(a) Code snippet of K consecutive loops in a stencil code

…

Tile t Tile t+1

i

i-1
i+1

Loop K-2

Loop 0

Loop K-1

(b) Overlapped tiling

Figure 3.2: Overlapped tiling of K loops

tiling removes synchronization and enhances locality, it does not take into account the hi-

erarchical organization of today’s machines. Furthermore, it could suffer from substantial

amount of redundant computation. As the fusion depth increases, more synchronizations

can be removed, but there is also an increase in the total amount of redundant computation

(the triangle-shaped areas in Figure 3.2-(b)). Hence, the use of hierarchical overlapped tiling

is proposed to balance communication overhead and redundant computation.

Figure 3.3 contrasts overlapped tiling with hierarchical overlapped tiling. The example

in the figure assumes 8 consecutive loops executing on a 4-way/8-core multicore system

where the two cores on each processor share the last level cache. Figure 3.3-(a) illustrates

overlapped tiling across the eight cores while Figure 3.3-(b) illustrates hierarchical overlapped

tiling. In Figure 3.3-(b), overlapped tiling is first applied across the four processors. Within

each processor, pairs of consecutive loops are fused. This forces a local barrier between each

pair of loops (loop0 and loop1, loop2 and loop3, and so on). This barrier, however, only

synchronizes the two cores on each processor and therefore its cost should be relatively low.

26

Loop
0
1
2
3
4
5
6
7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

K=8

(a) Overlapped tiling

Local

Barriers

Loop
0
1
2
3
4
5
6
7

Processor 0 Processor 1 Processor 2 Processor 3

Core 2 Core 3

Processor 1

K=8

K’=2

(b) 2-level hierarchical overlapped tiling

Figure 3.3: Comparison of overlapped tiling and hierarchical overlapped tiling on a 4-way/8-
core multicore system, where each processor contains 2 cores on chip that share the last level
cache.

Within each processor, overlapped tiling is applied to enable the parallel execution of pairs

of loops across the two cores without the need for a barrier. Compared to overlapped tiling,

the total amount of redundant computation (the shadowed triangle areas between different

processors and the smaller shadowed triangles between neighboring cores) caused by the 2

levels of tiling is much smaller. This reduction of the redundant computation is the main

source of the performance benefit of hierarchical overlapped tiling over plain overlapped

tiling.

27

3.3 Analytical Modeling

This section gives a quantitative analysis of overlapped tiling and hierarchical overlapped

tiling.

Consider K consecutive parallel loops loop0, loop1, ..., loopK−1. Assume that the k-th

loop loopk (0 ≤ k < K) has the form shown Figure 3.4.

1 paral le l for (int i⃗ = [i0, i1, ..., in−1] ∈ I0) { // loop0
2 . . .
3 }
4 paral le l for (int i⃗ = [i0, i1, ..., in−1] ∈ I1) { // loop1
5 . . .
6 }
7 . . .

8 paral le l for (int i⃗ = [i0, i1, ..., in−1] ∈ Ik) { // loopk
9 . . . = A0

k[f⃗
0
k (⃗i)] ;

10 . . . = A1
k[f⃗

1
k (⃗i)] ;

11 . . .

12 . . . = ALk−1
k [f⃗Lk−1

k (⃗i)] ;

13 B0
k [⃗g

0
k (⃗i)] = . . . ;

14 B1
k [⃗g

1
k (⃗i)] = . . . ;

15 . . .

16 BMk−1
k [⃗gMk−1

k (⃗i)] = . . . ;
17 }
18 . . .

19 paral le l for (int i⃗ = [i0, i1, ..., in−1] ∈ IK−1) {// loopK−1

20 . . .
21 }

Figure 3.4: A sequence of K parallel loops

Without loss of generality, this thesis assumes that the body of loopk reads from Lk n′-

dimensional arrays A0
k, A

1
k, ..., A

Lk−1
k and writes to M arrays B0

k, B
1
k,...,B

Mk−1
k which are also

n′-dimensional. This thesis also assumes that no A array overlaps with a B array. To simplify

discussion it is assumed that A0
k = A1

k = ... = ALk−1
k = Ak and B0

k = B1
k = ... = BMk−1

k = Bk.

There are Lk references to Ak on the RHS of the first Lk assignment statements in the body

of the loop: Ak[f⃗
0
k (⃗i)], Ak[f⃗

1
k (⃗i)], ..., Ak[f⃗

Lk−1
k (⃗i)], with f⃗ l

k : Zn → Zn′
, 0 ≤ l < Lk. There are

Mk references to elements of Bk on the LHS of the last Mk statements: Bk [⃗g
0
k (⃗i)], Bk [⃗g

m
k (⃗i)],

28

..., Bk [⃗g
Mk−1
k (⃗i)], with g⃗mk : Zn → Zn′

, 0 ≤ m < Mk.

There are 3 sets that must be computed for loopk: Ik, the iteration space; Rk, the set of

subscripts of Ak; and Wk the set of subscripts of Bk:

Rk = {r⃗} =

Lk−1∪
l=0

{[r0, r1, ..., rn′−1] : r⃗ = f⃗ l
k (⃗i) ∧ i⃗ ∈ Ik}

Wk = {w⃗} =

Mk−1∪
m=0

{[w0, w1, ..., wn′−1] : w⃗ = g⃗mk (⃗i) ∧ i⃗ ∈ Ik}

Ck is defined the consuming relation from Ik to Rk, Ck(Ik) = Rk, and Pk is for the

producing relation, as the relation from Wk to Ik, Pk(Wk) = Ik. Ck and Pk represent

the access pattern of the loop body. Ck and Pk are used to describe the different tiling

transformations. Ik, Rk, Wk, Ck and Pk are related as follows:

Rk = Ck(Ik), Ik = Pk(Wk) or Wk = P−1
k (Ik)

3.3.1 Overlapped Tiling

Performing loop fusion and tiling for a sequence of loops of the form shown in Figure 3.4

is equivalent to finding Q partitions (tiles) I0k , I
1
k , ..., I

Q−1
k of the iteration space Ik of each

loopk. Similar to the definition of Rk and Wk discussed in the last subsection, Rq
k is defined

as the set of array element indices of A for tile Iqk , and W q
k denotes the set of array elements

indices of B for tile Iqk . So,

Rq
k = Ck(I

q
k), Iqk = Pk(W

q
k) or W q

k = P−1
k (Iqk)

Traditional loop fusion and tiling, such as that used in the code of Figure 3.1-(b), produce

29

tessellating tiles. Because the tiles are a partition of the iteration space:

Iq1k ∩ Iq2k = ϕ, q1 ̸= q2

However, with overlapped tiling the sum of the size of the tiles Iqk can be larger than the

size Ik. The amount of redundant computation RCk performed by loopk is:

RCk = |I0k |+ |I1k |+ ...+ |IQ−1
k | − |Ik| ≥ 0

In traditional loop fusion and tiling, the tiles of the different loops can be unrelated

thanks to the barriers. However, in overlapped tiling the data read in an iteration tile must

be produced within the same tile to eliminate the need of synchronization. To simplify

the discussion, Assume that the data flow in the sequence of fused loops loop0, loop1, ...

loopK−1 forms a linear chain. This means that Aj
k+1 = Bj

k for all k. Under this assumption,

it is necessary that Rq
k+1 ⊆ W q

k to avoid unnecessary work. Let Rq
k+1 = W q

k . Hence the

corresponding tiles Iqk+1 and Iqk of neighboring loops are related as follows:

Rq
k+1 = Ck+1(I

q
k+1) = P−1

k (Iqk) = W q
k ⇒

Iqk = Pk(W
q
k) = Pk(R

q
k+1) = Pk(Ck+1(I

q
k+1)) (3.1)

Equation 3.1 states that the tiles of loopk are determined by the tiles of loopk+1. Equation

3.1 provides the procedure to perform overlapped tiling: given an arbitrary partition into

tiles of loop loopK−1 (the last loop in the sequence), the tiles of all previous loops loopk

(0 ≤ k < K) can be determined iteratively. Furthermore, all the corresponding tiles from

the different loops are fused to build the new loop body.

30

Consider the code in Figure 3.2-(a). After unrolling, there will be a sequence of K loops.

Since every loopk in Figure 3.3-(a) is the same,

I0 = I1 = ... = IK−1 = I = {[i] : 0 ≤ i < N}

C0 = C1 = ... = CK−1 = C = {[i → x] : i− 1 ≤ x ≤ i+ 1}

P0 = P1 = ... = PK−1 = P = {[x → i] : i = x}

Initially, assign the following tiling partition for the last loop loopK−1:

IqK−1 = {[i] : q ×N/Q ≤ i < (q + 1)×N/Q}

which evenly partitions the iteration space, IK−1, so that |IqK−1| = N/Q.

Next, the previous loops can be tiled using Equation 3.1 (to simplify the discussion, the

boundaries are ignored):

|IqK−2| = |PK−2(CK−1(I
q
K−1))| = |P (C(IqK−1))|

= |{[i] : q ×N/Q− 1 ≤ i < (q + 1)×N/Q+ 1}|

= N/Q+ 2 = |IqK−1|+ 2

|IqK−3| = |P (C(IqK−2))| = N/Q+ 4 = |IqK−2|+ 2

...

|Iq0 | = |P (C(Iq1))| = N/Q+ 2× (K − 1) = |Iq1 |+ 2 (3.2)

31

Therefore:

|Iqk | = |P (C(Iqk+1))| = N/Q+ 2× (K − 1− k)

RCk = (

Q−1∑
q=0

|Iqk |)− |Ik| = 2×Q× (K − 1− k)

The total amount of redundant computation RC is defined as the sum of the redundant

computation of each loopk:

RC =
K−1∑
k=0

RCk = Q×K × (K − 1) (3.3)

RC is a monotonic function as the number of tiles Q and the number of loops to fuse

K. According to Equation 3.3, for the example shown in Figure 3.2-(a), the trend is that

the amount of redundant computation RC increases with both Q and K. Although this

observation is derived from the specific example, it is easy to see that the trend is true in

general. Compared with traditional loop fusion and tiling, where synchronization is neces-

sary, overlapped tiling saves the overhead of K − 1 barriers. Suppose the average overhead

of each barrier is ts, and the average computation time for each iteration in the original code

is tc, the overhead difference between overlapped tiling over traditional tiling is:

∆Overhead = ts × (K − 1)− tc ×RC/Q (3.4)

3.3.2 Hierarchical Overlapped Tiling

According to the analysis above, coarse grain tiles (and thus small number of tiles) reduce

the amount of redundant computation in overlapped tiling. However, too few tiles would

reduce the amount of parallelism. Similarly, reducing the number of fused loops also reduces

the amount of redundant computation, but at the expense of the additional synchronization

32

required between loops.

Hierarchical overlapped tiling should be done according to the memory hierarchy of the

target machine. Consider a multicore system with Np processors, where each processor has

Nc cores sharing the last level cache. It is expected that the average overhead of synchronizing

the processors sharing a cache (t′s) will be significantly smaller than that of synchronizing

cores on different processors (ts) that need to communicate through main memory and/or

bus.

ts/t
′
s ≫ 1 (3.5)

Based on the above observation, it is possible to proceed as follows: first, perform coarse-

grain tiling for processors; then perform overlapped tiling within the tile that is assigned

to each processor, and generate sub-tiles for each core of the processor. During this 2-level

tiling, the parameters for overlapped tiling are determined separately for each level.

For simplicity, assume that the total number of tiles, Q, generated by the plain overlapped

tiling discussed in the previous subsection is equal to the number of cores: Q = Np × Nc.

During the first level tiling of the hierarchical overlapped tiling, only Np tiles are generated,

so the total amount of redundant computation introduced in this level is:

RC1 = RC(Np, K) = Np ×K × (K − 1)

After the first level tiling, each processor q is assigned a coarse-grain tile: Iq0 , I
q
1 , ..., I

q
K−1

(0 ≤ q < Np), where the tiles assigned to each processor is implemented as a sequence of

inner-loops. Then, overlapped tiling can be applied within each tile. However, since the

sub-tiles are to be mapped to cores of the same processor, it is expected that the overhead

of synchronization of cores within the same processor, t′s will be significantly smaller than

the synchronization between cores across processors, ts. As a result, for each tile in the

33

second level of tiling the number of fused loops (fusion depth) can be smaller. Although

this increases the amount of synchronization, it also reduces the amount of redundant com-

putation. Suppose the second level of tiling only fuses K ′ consecutive loops each time and

K ′ < K, then the amount of redundant computation for each processor in the second level

tiling would be:

RC2 = RC(Nc, K
′) = Nc ×K ′ × (K ′ − 1) (3.6)

Therefore, the total amount of redundant computation of 2-level overlapped tiling is:

RC ′ = RC1 +Np ×RC2

= Np ×K × (K − 1) +Np ×Nc ×K ′ × (K ′ − 1)

=
Q

Nc

×K × (K − 1) +Q×K ′ × (K ′ − 1)

= Q×K × (K − 1)× (
1

Nc

+
K ′ × (K ′ − 1)

K × (K − 1)
)

≈ RC × (1/Nc + (K ′/K)2)

Furthermore, additional K/K ′ local synchronization operations are introduced during

the second level of tiling. This adds an extra latency of t′s × K/K ′. Hence the overhead

difference between 2-level overlapped tiling and traditional tiling is:

∆Overhead′ = ts × (K − 1)− t′s ×K/K ′ − tc ×RC ′/Q

≈ ts × (K − 1)− t′s ×
K

K ′ −
tc
Q

×RC × (
1

Nc

+ (
K ′

K
)2)

= ts × (K − 1− t′s
ts

× K

K ′)−
tc
Q

×RC × (
1

Nc

+ (
K ′

K
)2)

As mentioned before, t′s is much smaller than ts (Equation 3.5). Thus, if K ′ is appro-

priately chosen, t′s
ts
× K

K′ can still be much smaller than 1. Then ∆Overhead′ can be made

34

larger than ∆Overhead as defined in 3.4, which shows the potential benefit of hierarchical

overlapped tiling.

3.4 Unified Tiling Representation

This section uses the unified tiling representation defined in Section 2.1 to describe the

overlapped tiling and hierarchical overlapped tiling discussed in this Chapter.

The model and analysis of overlapped tiling above in this chapter are for a sequence

of consecutive parallel loops, which is the paradigm of streaming applications. If every

parallel loop in Figure 3.4 has the same form, that is, I0=I1=...=Ik=...=IK−1 and ∀k, j,

Lk = L = Mk = M , f⃗ j
k = f⃗ j, g⃗jk = g⃗j, the consecutive parallel loops in figure 3.4 become

equivalent to the following loop nest:

1 for (int k = 0 ; k < K ; + + k) {
2 paral le l for (int i⃗ = [i0, i1, ..., in−1] ∈ I0) {
3 . . . = A0[f⃗0(⃗i)] ;

4 . . . = A1[f⃗1(⃗i)] ;
5 . . .

6 . . . = AL−1[f⃗L−1(⃗i)] ;

7 B0 [⃗g0(⃗i)] = . . . ;

8 B1 [⃗g1(⃗i)] = . . . ;
9 . . .

10 BM−1 [⃗gM−1(⃗i)] = . . . ;
11 }
12 swap (A , B) ;
13 }

Figure 3.5: Equivalent loop nest to the K consecutive parallel loops

The loop nest in Figure 3.5 forms an (n + 1)-dimensional iteration space: [0 : K − 1] ×

I0, denoted as I. The iteration space does not necessarily have the shape of an (n + 1)-

dimensional parallelepiped, e.g., if the shape of I0 is irregular, so the corresponding basis

matrix E may not exist. Because of Line 12, each iteration of the outmost k loop depends

on the previous iterations. The dependence vectors should have the form of (1, ...). So the

35

tiling problem has the iteration space I and the following dependence matrix D (each row

of D is a dependence vector):

D =



d⃗0

d⃗1

...

d⃗m−1


=



1, ...

1, ...

...

1, ...


.

Each row in D determines a instance of producing or consuming relation.

Each tile is consisted by the Iq0 , I
q
1 , ..., I

q
K−2, I

q
K−1, I

q
k = P (C(Iqk+1)), where K is the

parameter that affects performance. So tile shape T is:

T =
K−1∪
k=0

{(k : i⃗) | i⃗ ∈ Iqk}, Iqk = P (C(Iqk+1))

Because Iqk = P (C(Iqk+1)), to determine T it is only necessary to choose the tile in the

last step. So IqK−1, which is the tile in the last step, determines the size and shape of the

tiles in other steps. Usually the shape of IqK−1 is chosen to be an n-dimensional rectangle

parallelepiped. For example, let IqK−1 = span(W), in which

W =



w0, 0, 0, ..., 0

0, w1, 0, ..., 0

...

0, 0, 0, ..., wn−1


. (3.7)

Then IqK−1 becomes an n-dimensional rectangle parallelepiped with w0, w1, ...,wn−1 being

the width in each dimension. If n = 1, the shape of T becomes a trapezoid with top width

w0 and height K. For n = 2, the shape usually becomes a bounded pyramid. Since T does

not have a hyper-parallelepiped shape, it is not possible to use a tiling matrix T to describe

36

the shape of tiles.

Overlapped tiling allows overlap between tile. According Equation 2.7, the union of all

the tiles must contain the original iteration space. For a trapezoid-shaped or pyramid shaped

tile, the top part IqK−1 is the narrowest. So the choice of repetition pattern must guarantee

that there is no gap between tiles even on the narrowest part of tiles. If IqK−1 = span(W) as

defined in Equation 3.7, the repetition matrix is shown as follows:

R =



K, 0, 0, 0, ..., 0

0, w0, 0, 0, ..., 0

0, 0, w1, 0, ..., 0

...

0, 0, 0, 0, ..., wn−1


=

 K, 0

0,W

 .

In the tiled iteration space I ′, because of the redundant computation introduced, there

is no dependence between tiles in the same step (i.e., there is no ”horizontal” dependence).

Therefore, every dependence vector between tiles must have the following form:

d⃗′ = (d0, d1, ..., dn−1), d0 = 1, dk = 0,±1, k = 1, 2, ..., n− 1

The dependence matrix in I ′ must have the following form:

D′ =



d⃗′0

d⃗′1

...

d⃗′m−1


=



1, ∗

1, ∗

...

1, ∗


.

Hence a scheduling mapping, S, that maximizes parallelism can expose n degrees of paral-

lelism. That is, all the tiles within the same step can be executed in parallel. Then the

37

scheduling matrix S is

S =



1

0

...

0


,

S(i⃗′) = i⃗′ · S = (i′0, i
′
1, ..., i

′
n) · S = i′0.

The effect of overlapped tiling makes the above schedule S valid. After overlapped tiling,

the first component in each row of the dependence matrix D′ is still 1, which is the same

form as the original D. Therefore, the same degree of parallelism can be exposed for coarse

grain tiles.

To sum up, Table 3.1 shows the unified representation of overlapped tiling. Since hierar-

Input I,D =


1, ∗
1, ∗
...
1, ∗


D′ D′ =


1, ∗
1, ∗
...
1, ∗

 .

T W =


w0, 0, 0, ..., 0
0, w1, 0, ..., 0

...
0, 0, 0, ..., wn−1

, IqK−1 = span(W)

Iqk = P (C(Iqk+1)), T =
∪K−1

k=0 [k : Iqk].

R R =

(
K, 0
0,W

)
.

S S =


1
0
...
0

 .

Table 3.1: Representation of Overlapped Tiling

38

chical overlapped tiling is the recursion of overlapped tiling in the top-down approach, the

representation of tiling in each level is the same as Table 3.1, except that the input iteration

space I is the tile T of the higher level tiling.

3.5 Evaluation

3.5.1 Implementation

An experimental system is implemented to evaluate the efficiency of overlapped tiling and

hierarchical overlapped tiling. A diagram representing the experimental system is shown

in Figure 3.6. The dashed arrows represent offline data flow while solid arrows represent

runtime data flow. The system contains three major components: a delayed compilation

mechanism, an offline analyzer and the optimizer. The offline analyzer is implemented as a

pass of Cetus [21]. The optimizer is a source-to-source translator which reads the original

kernel code and generates OpenCL code, which is fed to the OpenCL runtime. Both, the

offline analyzer and the optimizer use the Omega library [22] to perform the integer tuple

space computations. In addition, the analyzer uses the Omega Library to generate loops

from the integer tuple sets.

Kernel

Code

Host

Code

Kernel

Summary

Computation

Device

Offline

Analyzer

Delayed

Compilation

Mechanism

Optimizer

Transformed

Kernel

Figure 3.6: Framework of the experimental system.

39

3.5.2 Environment Setup

The efficiency of overlapped tiling and hierarchical overlapped tiling is evaluated on an SMP

workstation with 4 Intel Xeon L7555 processors running at 1.87GHz. Each processor has

8 cores, sharing a 24MB unified L3 cache on chip. Each core contains a 256KB private L2

cache and 32KB L1 D-cache. SMT is disabled for each core, so there is one hardware thread

per core.

3.5.3 Benchmarks

Eight benchmarks are evaluated: 1D/2D/3D-Jacobi, PathFinder, Poisson, Biharmonic, HotSpot

and Cell. The first 3 benchmarks (1D/2D/3D-Jacobi) are Jacobi iterations for synthetic lin-

ear systems; PathFinder uses dynamic programming to find a minimum weighted path;

Poisson is a numerical solver of the poisson equation, calculating the Laplace operator [4]

over a 2D grid with the 5-point stencil. Biharmonic is the numerical PDE solver calculating

the Biharmonic operator [4] over a 2D grid with a 13-point stencil. HotSpot implements a

chip temperature estimation model[19]. Cell [3] is a 3D game of life. For each application,

the operation in the body of the stencil loop is implemented as an OpenCL kernel. The

inputs of the benchmarks are listed in Table 4.2.

Data Problem Points
Dimension Size of Stencil

1D-Jacobi 1 64K 3
2D-Jacobi 2 256x256 9
3D-Jacobi 3 64x64x64 27
PathFinder 1 100K 3
Poisson 2 256x256 5

Biharmonic 2 256x256 13
HotSpot 2 512x512 9
Cell 3 60x60x60 27

Table 3.2: ISL Benchmarks

40

For some stencil programs, such as Jacobi, the number of steps of the outer loop de-

pends on a convergence test. This requires a synchronization between kernel code and host

code that prevents loop fusion. To enable the overlapped and hierarchical overlapped tiling

optimizations the code is modified so that the convergence test (and as result the synchro-

nization) only occurs every 1024 iterations. The total iterations number for the benchmarks

without convergence test is 16,384.

3.5.4 Experimental Results

Performance Overview

Figure 4.15 shows the performance speedup of traditional tiling, overlapped tiling and hier-

archical overlapped tiling relative to the original OpenCL code. Since OpenCL only supports

2 levels of work item organization, a 2-level hierarchical overlapped tiling is used for each

benchmark. For overlapped tiling and hierarchical overlapped tiling, the figure shows the

speedup for the best value of the loop fusion depth K, as shown in Table 3.3 (and discussed

in the next Section). In general, the performance of hierarchical overlapped tiling is always

better than that of plain overlapped tiling, and overlapped tiling is always better than that

of traditional tiling, with the exception of Cell and 3D-Jacobi. For Cell and 3D-Jacobi,

the performance curves of the three tiling transformations are very similar. The reason is

that their main data structure is 3-dimensional and the amount of redundant computation

grows quartically with the fusion depth K. Therefore, there are not many opportunities for

overlapped tiling and hierarchical overlapped tiling. In experiments, overlapped tiling and

the 2-level hierarchical overlapped tiling achieves an average speedup of 18% and 37% over

traditional tiling, respectively.

41

0
1
2
3
4
5
6
7
8
9
10

Traditional Tiling
Overlapped Tiling
2-level Hierarchical Overlapped Tiling

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

Figure 3.7: Speedup of traditional tiling, overlapped tiling and hierarchical overlapped tiling
over the original OpenCL code.

Parameter Sensitivity

Loop Fusion Depth for the First Level of Tiling. Figure 3.8 shows the performance of

overlapped and hierarchical overlapped tiling as the value of the loop fusion depthK changes.

For overlapped tiling, there is only one value of K; for 2-level hierarchical overlapped tiling,

K is the loop fusion depth for the first level of tiling, whileK ′ is the value of loop fusion depth

for the second level of tiling (K ′ is kept constant at 2 for the experiments in Figure 3.8). As

discussed in Subsection 3.3.1 and 3.3.2, K, determines the amount of redundant computation

introduced by overlapped and hierarchical overlapped tiling, and thus the overall speedup

over traditional tiling.

In Figure 3.8, lines a, b and c show the speedup of traditional tiling, overlapped tiling, and

2-level hierarchical overlapped tiling over the original OpenCL code, respectively. In addi-

tion, by manually modifing the overlapped tiling code to remove the redundant computation

(hence, there are race conditions and the results of the executed code are not guaranteed

to be correct), the performance is shown by Line d. OpenCL standard does not support

a global barrier across work item groups, which is required for traditional tiling (See Fig-

ure 3.1-(b)); thus, the barriers used for traditional tiling (Line a in Figure 3.8) are barriers

42

024681012

1

Line a: Traditional Tiling
Line b: Overlapped Tiling
Line c: 2-level Hierarchical Overlapped Tiling
Line d: Tile & Fuse without Overlap

0

2

4

6

8

10

12

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

Fusion Depth (K)

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128256

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

(a) 1D-Jacobi (b) 2D-Jacobi

0

1

2

3

4

1 2 4 8 16

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O

p
en

C
L
 c
o
d
e

2

3

4

5

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Fusion Depth (K)Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

(c) 3D-Jacobi (d) PathFinder

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128256

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128256

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

(e) Poisson (f) Biharmonic

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128256

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

0

1

2

3

4

1 2 4 8 16

Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O

p
en

C
L
 c
o
d
e

(g) HotSpot (h) Cell

Figure 3.8: Evaluating the performance overlapped tiling and hierarchical overlapped tiling
by scaling fusion depth K.

43

that implemented with low level primitives. However, overlapped tiling and 2-level hierar-

chical overlapped tiling only require synchronization within the work item groups, which is

supported by the OpenCL standard. The discrepancy between overlapped tiling and Line

d shows the overhead of the redundant computation introduced by overlapped tiling; the

difference between traditional tiling and Line d shows the synchronization overhead saved

by fusing the kernels. In Figure 3.8 it can be seen that Line d typically grows as the loop

fusion depth K increases. This is because the number of synchronization operations removed

grows with the depth. If do not count the cost of the redundant computation introduced,

the performance benefit is always positive (if RC = 0, ∆Overhead in Equation 3.4 always

increases when K increases). In fact, Line d defines the upper bound of performance for

overlapped and hierarchical overlapped tiling.

For the two 1D benchmarks (1D-Jacobi and PathFinder), both plain overlapped tiling

and hierarchical overlapped tiling can achieve significant speedup over traditional tiling,

because the growth rate of redundant computation for overlapped tiling is low. For the 2D

benchmarks (2D-Jacobi, Poisson, Biharmonic and HotSpot) the growth rate of the redundant

computation is higher than for the 1D benchmarks. Thus, the interval of benefit (the values

of fusion depth K for which lines b or c are above line a) of the 2D benchmarks is smaller

than that of the 1D benchmarks for both, overlapped and hierarchical overlapped tiling.

The figure also shows that the interval of benefit of hierarchical overlapped tiling is always

bigger than that of plain overlapped tiling. Within the 2D benchmarks, Biharmonic shows

the least speedup with overlapped tiling over traditional tiling. This is because the stencil

of Biharmonic depends on 13 neighboring points versus 9 for 2D-Jacobi, 5 for Poisson,

and 5 for Hotspot (see Table 4.2). As a result, the redundant computation of Biharmonic

grows faster than that of the other 2D benchmarks. However, hierarchical overlapped tiling

still achieves speedup over traditional tiling. Since the input data of Cell and 3D-Jacobi

are 3-dimensional, the amount of redundant computation increases so fast that there is no

44

opportunity for overlapped tiling.

When comparing hierarchical overlapped tiling versus overlapped tiling the plots in Fig-

ure 3.8 show that hierarchical overlapped tiling performs better as the value of loop fusion

depth K increases (the only exception occurs with the 3D benchmarks where all 3 tiling

mechanisms behave the same), because the growth rate of redundant computation is lower

for hierarchical overlapped tiling than for plain overlapped tiling. Hierarchical overlapped

tiling is less sensitive to the value of K than overlapped tiling because, as mentioned above,

the beneficial region of hierarchical tiling is larger than that of overlapped tiling.

The optimal value of fusion depth K value are determined by the value of ts/tc of the

target platform. The values of K used in experiments are shown in Table 3.3.

Hierarchical
Overlapped Tiling Overlapped Tiling

1D-Jacobi K = 32 K = 64
2D-Jacobi K = 8 K = 16
3D-Jacobi K = 2 K = 2
PathFinder K = 32 K = 64
Poisson K = 8 K = 16

Biharmonic K = 4 K = 8
HotSpot K = 4 K = 16
Cell K = 1 K = 2

Table 3.3: Loop Fusion depth K used in experiments.

Loop Fusion Depth for the Second Level of Tiling. Compared to the loop fusion

depth K for the first level tiling of hierarchical overlapped tiling, the tuning of loop fusion

depth K ′ for the second level tiling is more involved. This is partially because the perfor-

mance of the second level tiling depends on the first level of tiling. Figure 3.9 shows the

performance of hierarchical overlapped tiling for 1D-Jacobi and PathFinder with different

pairs of K and K ′. We can see that K ′ = 2 is the best choice for PathFinder; but there is

no obvious optimal value for 1D-Jacobi. Thus, manual tuning may be required to find the

optimal fusion depth K ′ for the second level of hierarchical overlapped tiling. However, the

45

performance impact of the second level tiling is significantly smaller than that of the first

level tiling. For instance, when K ′ is set to 2, the average performance loss is less than 5%

compared to the best K ′.

02
46
810
12

1

6
4

K'=1 K'=2 K'=4 K'=8 K'=16

3

4

5

6

7

8

9

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

1st level Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

2

3

4

5

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

1st level Fusion Depth (K)

S
p
ee
d
u
p
 o
v
er
 o
ri
g
in
al
 O
p
en
C
L
 c
o
d
e

(a) 1D-Jacobi (b) PathFinder

Figure 3.9: Fusion depth K ′ for the second level of hierarchical overlapped tiling.

Input Size. Figure 3.10 shows the speedup of hierarchical overlapped tiling over plain

overlapped tiling for the different benchmarks, as the input size increases. The speedups

are computed using the best value of K. The figure shows that hierarchical overlapped

tiling performs better than overlapped tiling for the 2D-benchmarks. It also shows, that the

performance difference between hierarchical overlapped tiling and plain overlapped tiling

becomes smaller as the input data size increases. This is because since the total number of

worker threads remains constant, the tile size is determined by the input data size. With

smaller tiles, the redundant computation has a higher impact; thus, overlapped tiling is

less efficient, while hierarchical overlapped has more opportunities to reduce the overheads

introduced by the redundant computation. With larger tiles, the redundant computation

has less impact, and as a result, there is less difference between overlapped and hierarchical

overlapped tiling. For the 3D benchmarks 3D-Jacobi and Cell, since the amount of redundant

computation grows so fast, the optimal K for both plain overlapped tiling and hierarchical

overlapped tiling is less than 2, so there is no obvious performance discrepancies between

46

the two schemes.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

32
K

64
K

12
8K

12
8x

12
8

25
6x

25
6

51
2x

51
2

12
8x

12
8

25
6x

25
6

51
2x

51
2

50
K

10
0K

20
0K

12
8x

12
8

25
6x

25
6

51
2x

51
2

12
8x

12
8

25
6x

25
6

51
2x

51
2

12
8x

12
8

25
6x

25
6

51
2x

51
2

12
8x

12
8

25
6x

25
6

51
2x

51
2

1D-Jacobi 2D-Jacobi 3D-Jacobi PathFinder Poisson Biharmonic HotSpot CellS
pe

ed
up

ov
er

 p
la

in
 o

ve
rl

ap
pe

d
ti

li
ng

Figure 3.10: Speedup of hierarchical overlapped tiling over plain overlapped tiling with
different input sizes. The horizontal axis is the input size for each benchmark.

3.5.5 Compilation Overhead

Since the experimental system transforms OpenCL kernel code at runtime, the overheads

introduced need to be considered. The overhead consists of two parts: The OpenCL runtime

that transforms the kernel code and the execution of the Omega Library. Caching the existing

compilation result can help reduce both parts of the runtime overhead: if the sequence of

kernels selected for optimization are the same as a previous sequence, no compilation needs

to be done. For the benchmarks used in this paper, the OpenCL runtime compilation needs

to be invoked at most twice, one for the steady state and another for the epilog. Figure

3.11 shows the compilation times of overlapped tiling and hierarchical overlapped tiling,

normalized to the compilation time of the original program. On average, overlapped tiling

requires 37% more compilation time, while hierarchical overlapped tiling costs about 60%

more.

47

0

0.5

1

1.5

2

2.5

3
Overlapped Tiling
2-level Hierarchical Overlapped Tiling

C
o
m
p
il
e
ti
m
e
o
v
er
 o
ri
g
in
al
 p
ro
g
ra
m

Figure 3.11: Compile time for overlapped tiling and hierarchical overlapped tiling, normalized
to the compile time of the original OpenCL code.

3.6 Conclusion

In this chapter, a new transformation, hierarchical overlapped tiling, is proposed. By creating

hierarchical overlapping tiles, the new transformation can reduce communication overhead

among tiles while introducing smaller amount of redundant computation compared to plain

overlapped tiling. An experimental system is implemented to apply the proposed transfor-

mations to OpenCL programs. Experimental results show that on average overlapped tiling

and hierarchical overlapped tiling achieves 18% and 37% speedup over traditional tiling,

respectively.

48

Chapter 4

Hiding Communication Latency with

Conjugate-Trapezoid Tiling

4.1 Hiding Communication Latency

The Jacobi code in Figure 4.1-(a) is an example of a 1D ISL where for simplicity the bound-

ary checking code has been ommitted. Figure 4.1-(b) shows the correponding standard tiled

code for a distributed memory system with P nodes, where boundary elements must be ex-

plicitly sent to and received from neighboring tiles (Line 6-9) before the computation at each

time step starts. Since the communication latency in a distributed memory systems is not

negligible, if assuming that the computation time of Line 12 is tcomp, and the communication

cost is tcomm, the total execution time of the code in Figure 4.1 is T × (tcomp×N/P + tcomm),

where the communication overhead is T × tcomm. Thus, depending on the value of tcomm, the

performance penalty incurred due to the communication latency can be significant.

49

1 for (int t = 0 ; t < T ; t++) {
2 for (int i = 0 ; i < N ; i++)
3 Y[i]=(X[i− 1]+X[i]+X[i+ 1]) /3 ;
4 swap (X, Y) ;
5 }

(a) Sequential 1-dimensional Jacobi code

1 rank = . . . // the rank o f the node
2 int w=N /P ;
3 int lowerbound = rank∗w ;
4 int upperbound = (rank+1)∗w ;
5 for (int t = 0 ; t < T ; t++) {
6 MPI Isend (X[lowerbound] , . . . , rank−1, t , . . .) ;
7 MPI Isend (X[upperbound−1] , . . . , rank+1, t , . . .) ;
8 MPI Recv (X[lowerbound −1] , . . . , rank−1, t , . . .) ;
9 MPI Recv (X[upperbound] , . . . , rank+1, t , . . .) ;

10

11 for (int i = lowerbound ; i < upperbound ; i++)
12 Y[i]=(X[i− 1]+X[i]+X[i+ 1]) /3 ;
13 swap (X, Y) ;
14 }

(b) Standard tiled code for P nodes with no overlapping between communication and computation.

Figure 4.1: 1-dimensional Jacobi code with MPI.

4.2 Conjugate-Trapezoid Tiling

This section discusses the design of Conjugate-Trapezoid Tiling. First, Conjugate-Trapezoid

Tiling is introduced with a 1-dimensional stencil example, and then the idea is generalized

to stencils with higher dimensional stencils.

4.2.1 Definitions

The discussion in this chapter focuses on iterative stencil loops (ISL), which are iterative

computations in which the elements of an array are updated using the values of neighboring

elements, following a fixed pattern or stencil. An example of an ISL is shown in Figure 4.2,

where in each time step element i0, i1, ..., id−1 of Y is computed in terms of a set of neighboring

elements in X. The outermost t loop determines the number of timesteps.

50

1 for (int t = 0 ; t < T ; t++) {
2 for (int i0 = 0 ; i0 < N0 ; i0++)
3 for (int i1 = 0 ; i1 < N1 ; i1++)
4 . . .
5 for (int id−1=0; id−1<Nd−1 ; id−1++) {
6 z0 = X[f⃗0(i0, i1, ..., id−1)] ;

7 z1 = X[f⃗1(i0, i1, ..., id−1)] ;
8 . . .

9 zm−1 = X[f⃗s−1(i0, i1, ..., id−1)] ;
10 Y[i0, i1, ..., id−1] = g(z0, z1, ..., zm−1) ;
11 }
12 swap (X, Y) ;
13 }

Figure 4.2: An ISL with a d-dimensional stencil. The total depth of the loop nest is d+ 1.

The ISL forms an (n + 1)-dimensional iteration space I. The shape of I is a (n + 1)-

dimensional hyper-cuboid:

I = span(E) = span(



T, 0, 0, ..., 0

0, N0, 0, ..., 0

0, 0, N1, ..., 0

...

0, 0, 0, ..., Nn−1


).

Each f⃗k is a Zd → Zd mapping. f⃗0, f⃗1, ..., f⃗m−1 defines m dependence vectors: d⃗k =

(1, dk,0, dk,1, ..., dk,n−1), k = 0, 1, ...,m − 1, where the first component of each dependence

vector is 1. 1 These dependences are collected in a matrix:

D =



d⃗0

d⃗1

...,

d⃗m−1


.

1Because the values computed in iteration t0 of the outermost loop are consumed in iteration t0 + 1.

51

Here n is the dimensionality of the array involved in the computation and m is the number

of point in the stencil.

The dependence vectors generate a cone in the (n + 1)-dimensional space, as shown in

Figure 4.3-(a) for a five-point stencil in a 3D space < t⃗, i⃗0, i⃗1 >. The projections of the cone

on < t⃗, i⃗0 > and < t⃗, i⃗1 > planes are triangles, as shown in Figure 4.3-(b). The boundaries of

the projected triangles are defined by the dependence vectors in the boundaries of the cone.

Vectors B⃗left and B⃗right represent the boundarie edges of the projection of the dependence

cone on the plane< t⃗, i⃗j > (j = 0, 1, ..., d− 1):

B⃗left(⃗t, i⃗j) = (1,min{xk,j|k = 0, 1, ...,m− 1})

B⃗right(⃗t, i⃗j) = (1,max{xk,j|k = 0, 1, ...,m− 1})

i0

t

i1

(1,0,0)

(1,1,1)(1,-1,1)

(1,1,-1)

(1,-1,-1)

i0

t

(1,-1,±1) (1,1, ±1)(1,0,0)

i1

t

(1,±1,-1) (1,±1,1)(1,0,0)

�����(��, 		
)= (1,-1) ���
��(��, 		
)= (1,1)

�����(��, 		�)= (1,-1) ���
��(��, 		�)= (1,1)

(a) Cone generated by the dependence vectors (b) Projections of the cone

Figure 4.3: Dependence vectors of a 5-point stencil

To facilitate later discussion, define Proj<t⃗,⃗ij>
(u⃗) as the projection of vector u⃗ = (u′, u0,

u1, ..., uj, ..., un−1) on plane < t⃗, i⃗j >:

Proj<t⃗,⃗ij>
(u⃗) = (u′, uj)

52

And define Proj<⃗ij0 ,⃗ij1 ,...,⃗ijk−1
>(u⃗) as the projection on the k-dimensional hyperplane <

i⃗j0 , i⃗j1 , ..., i⃗jk−1
>:

Proj<⃗ij0 ,⃗ij1 ,...,⃗ijk−1
>(u⃗) = (uj0 , uj1 , ..., ujk−1

)

4.2.2 1-dimensional Stencil

Consider the 1-dimensional (2-dimensional iteration space) Jacobi example shown in Figure

4.1 , whose dependence matrix is:

D =


d⃗0

d⃗1

d⃗2

 =


1,−1

1, 0

1, 1

 .

i

t

Node 0 Node 1 Node 2 Node 3

Node 2 Node 3 Node 0 Node 1

hw

T

N

Figure 4.4: Tiling 1-dimensional Jacobi code. Thin arrows represent the dependence vectors.
Thick arrows show the dependence between tiles. w and h are the parameters decided by
users to determine the size of each tile.

The Conjugate-Trapezoid Tiling is composed of two levels of tiling. At the outer level,

the iteration space is partitioned (tiled) into parallelogram tiles of width w and height h. For

each tile, two edges are perpendicular to the t axis, and the other two edges are parallel to

the dependence vector on the right boundary, B⃗right(⃗t, i⃗)=(1, 1). The tiling scheme is shown

53

in Figure 4.4, in which w and h are the parameters decided by users to determine the size

of each tile.

For a more precise description, we use the normal vector of each tiling hyper-plane of the

tiling scheme, and make the reciprocal of the length of the normal vector be the distance

between parallel tiling hyper-planes. Let h⃗0 be the normal vector of the edge that is parallel

to B⃗right(⃗t, i⃗), h⃗0⊥B⃗right(⃗t, i⃗), then h⃗0 is:

t i

h⃗0 =
1

w
· B⃗right(⃗t, i⃗) ·

 0 1

−1 0


=

1

w
· (−1, 1)

Note that the matrix

 0 1

−1 0

 stands for a rotation transformation of 90 degrees in

clockwise. And 1

|⃗h0|
is the distance between the tiling hyper-planes parallel to B⃗right(⃗t, i⃗).

Similarly, let h⃗1 be the normal vector of the edge that is perpendicular to t⃗. Intuitively

h⃗1 = (1/h, 0) and 1

|⃗h1|
= h. The paralleogram tiles in Figure 4.4 can be represented by

the following matrix H, where each row of H is the normal vector to the edges of the

parallelogram.

t i

H =

 h⃗0

h⃗1

 =

 − 1
w

1
w

1
h

0


This tile shape has been chosen so that each tile only depends on its right neighbor tile.

Thus, if the tiles in a row are distributed onto different nodes, a node only needs to receive

data from its right neighbor node, as shown in Figure 4.4. This strategy also achieves data

54

locality and load balance: data is reused if tiles in each (oblique) column are assigned to the

same node; work load is balanced because all the tiles have the same area (tiles in the right

and left boundaries can be mapped to the same node).

In order to execute the tiles within the same horizontal level in parallel, fine-grain inter-

tile communication for every tile step must be done, as the example code in Figure 4.1-(b).

However, with this strategy each time step a tile needs to send boundary data to its left

neigbor, and receive data from its right neighbor, as shown in Figure 4.5-(a). To eliminate

the communication overhead from the total execution time, a second level of tiling is applied.

Each parallelogram is partitioned into two trapezoid subtiles (subtile A and B in Figure 4.5-

(a)). where the edge that divides subtile A and B is parallel to the left-boundary dependence

vector B⃗left(⃗t, i⃗)=(1,−1), so that there is only dependence from subtile A to subtile B. We

call A and B conjugate trapezoid subtiles. Notice that these tiles can have exactly the

same shape (if the stencil is symmetric), by appropriately choosing where to partition the

outer tile. In the example in the Figure, this partition point is determined by w′, which is

computed as h+ w/2.

As a result of this subtiles, send operations are in subtile A, and all receive operations

are in subtile B. Subtile A can start execution right away, as it is independent of the B

subtile, while tile B is delayed by h′ time steps. Thus, each receive operation in subtile B is

delayed by h′ from its correponding send receive in subtile A. Thus, if the communication

latency is smaller than the computation time of the h′ time steps, the data sent can arrive

to its destination before the receive operation. Thus, the communication latency can be

totally hidden when using asynchronous send and receive operations. The dashed box in

Figure 4.5-(b) stands for the scope for each tile after subtile B has been delayed; and the

shaded stripe covers the amount of local computation between each pair of send and receive.

The requirement of this scheme is that the bandwidth of the system must be large enough

to allow h′ messages on the fly during the computation time of h′ time steps. The parameter

55

i

t

send

send

send

send

receive

receive

receive

receive
h

w

w'

A B

(a) Subtile the parallelogram tile into 2 conjugate trapezoid
subtiles. There is a dependence from subtile A to subtile B.

send

A

receiveB

i

t

h'

h'
receive

send
A

B

(b) Delay subtile B by h′ time steps to hide communication latency

Figure 4.5: Subtiling and delay

h′ provides extra flexibility to our tiling scheme, as h′ can be adjusted to fit target platforms

with different configurations of bandwidth and communication latency.

4.2.3 2-dimensional Stencil

1 for (int t = 0 ; t < T ; t++) {
2 for (int i0 = 0 ; i0 < N0 ; i0++)
3 for (int i1 = 0 ; i1 < N1 ; i1++)
4 Y[i0] [i1]=(X[i0 −1][i1+1]+X[i0] [i1+1]+X[i0+1] [i1+1]
5 +X[i0 −1][i1] +X[i0] [i1] +X[i0+1] [i1]
6 +X[i0 −1][i1−1]+X[i0] [i1−1]+X[i0+1] [i1−1]) /9 ;
7 swap (X, Y) ;
8 }

Figure 4.6: Sequential 2-dimensional Jacobi code.

Consider next the Jacobi code in Figure 4.6 as an example of an ISL with a 2-dimensional

stencil (with a 3-dimensional iteration space). The 9-point stencil is defined by the following

56

dependence matrix:

D =



d⃗0

d⃗1

...

d⃗8


=



1, 0, 0

1, 1, 0

1,−1, 0

1, 0, 1

1, 0,−1

1, 1, 1

1, 1,−1

1,−1, 1

1,−1,−1



.

The projections of the dependence vectors on the < t⃗, i⃗0 > and < t⃗, i⃗1 > planes are:

B⃗left(⃗t, i⃗0) = (1,−1) B⃗right(⃗t, i⃗0) = (1, 1)

B⃗left(⃗t, i⃗1) = (1,−1) B⃗right(⃗t, i⃗1) = (1, 1)

As in the example in Figure 4.4, the outer tile can be computed using the right projection

of the dependence vector on the planes < t⃗, i⃗0 > and < t⃗, i⃗1 >. The projections of h⃗0 and h⃗1

57

are computed as follows:

t i0

Proj<t⃗,⃗i0>
(⃗h0) =

1

w0

· B⃗right(⃗t, i⃗0) ·

 0 1

−1 0


=

1

w0

· (−1, 1)

t i1

Proj<t⃗,⃗i1>
(⃗h1) =

1

w1

· B⃗right(⃗t, i⃗1) ·

 0 1

−1 0


=

1

w1

· (−1, 1)

The rest components in h⃗0 and h⃗1 are zeros. 1

|⃗h0|
and 1

|⃗h1|
stand for the distance between

corresponding tiling hyper-planes. Similarly h⃗2 = (1/h, 0, 0). Thus, the resulting tile can be

represented by the following matrix:

t i0 i1

H =


h⃗0

h⃗1

h⃗2

 =


− 1

w0

1
w0

0

− 1
w1

0 1
w1

0 0 1
h


The resulting tiles are parallelepiped, as shown in Figure 4.7-(a). The top and bottom

faces of the parallelepiped tiles are rectangles, while the other four faces are parallelograms.

Figure 4.7-(b) shows the top-down view of tiles on the < i⃗0, i⃗1 > plane. Since the slopes of

side faces are determined by the right projections of the dependence vectors, each tile only

depends on the neighbors above (this is actually the parallelepiped behind if we consider the

58

3D space) and on the right, as shown in Figure 4.7-(b).

t

i
0

i
1

h

w
0

w
1

i
1

i
0

(a) Tile shape (b) Top-down view of tiles

Figure 4.7: Tiling with 2-dimensional stencils. The thick arrows in (b) represent the depen-
dence between tiles.

Next step is to do subtile the parallelepiped tiles, by applying the same subtiling strategy

in Figure 4.5-(a), so that the slope of the boundary planes between tiles is determined by

the left projection of the dependence vectors on the < t⃗, i⃗0 > and < t⃗, i⃗1 > planes. As a

result of this tiling strategy, four subtiles are generated: A,B0, B1 and C, as shown in Figure

4.8-(a). The dependence relations among subtiles are: A → B0, A → B1, B0 → C, B1 → C

and A → C. Subtile A and C are two pyramids of the same shape, but B0 and B1 are not

pyramids. However, if w′
0 = h+ w0/2 and w′

1 = h+ w1/2, the projections of the subtiles on

< t⃗, i⃗0 > and < t⃗, i⃗1 > planes are still conjugate trapezoids, as shown in Figure 4.8-(b).

Figure 4.9-(a) shows the slice of a tile for one time step, where all the tiles are rectangles.

Because of the dependences among subtiles, the computations in subtile Amust be done first;

then B0 and B1 (the order of B0 and B1 is not important because there are no dependences

between them); and finally, C. Based on the dependences among tiles shown in Figure 4.7-

(b), each time step a tile only needs to send the data near the left and bottom boundaries

(the shadowed area in the Figure) to the corresponding neighbor nodes. So only subtiles

A, B0 and B1 send data, while subtile C, B0 and B1 receive data. There are five separate

send operations: S0 (from A to the lower-left neighbor), S1 (from A to the left neighbor), S2

(from A to the neighbor below), S3 (from B0 to the neighbor below), and S4 (from B1 to the

59

A

B
1

C

B
0

t

i
0

i
1

w'
0

w'
1

(a) Subtiling

i
0

t
A

B
0

i
1

t
A

B
1

(b) Projections of subtiles

Figure 4.8: Subtiling with 2-dimensional stencils.

neighbor below). R0, R1, R2, R3 and R4 are the corresponding receive operations. In total,

each time step there are 14 computation and communication operations within a tile. Figure

4.9-(b) shows the order of these operations, as enforced by the dependences. Because each

tile is assigned to a single node, we can schedule the above 14 operations in any sequential

order that satisfies the dependencies in Figure 4.9-(b).

In order to hide communication latency, it is necessary to delay the computation asso-

ciated with receive operations. The start of the computation of subtile B0 and B1 can be

delayed by h′ time steps from subtile A, so that the latency of transmitting the data from

S1 and S2 to R1 and R2, respectively, is hidden. However, in subtile C, the R3 and R4 need

to receive the data from S3 and S4 in tiles, B0 and B1, respectively. Hence execution of C

should be delayed by h′ time steps from subtile B0 and B1, or 2× h′ time steps from subtile

A. The projections of the subtiles after these delays are shown in Figure 4.10. The dashed

trapezoids are the projections of the subtiles behind the others.

60

i
1

i
0

A

B
1

B
0

C

S
0

S
1

S
2

S
4

S
3

R
2

R
1

R
0

R
3

R
4

(a) Slice of a tile when t = t0.

A

B
0

B
1

CS0(t0)

S1 (t0)

S2(t0)

R1(t0-h')
S4(t0-h')

R2(t0-h') S3(t0-h')

R4(t0-2×h')

R0(t0-2×h')

R3(t0-2×h')

stage 2 (delay h') stage 3 (delay 2×h')stage 1

(b) Dependence among the operations within each time step.

Figure 4.9: Schedule of subtiles for each time step.∀j, Sj and Rj are the corresponding send
and receive pair.

t

i
0

A

B
0

C

B
1

h'

2×h' t

i
1

A

B
1

C

B
0

h'

2×h'

Figure 4.10: Projections of subtiles with 2-dimensional stencils.

4.2.4 Higher Dimensions

For ISLs with higher dimensional stencils, Conjugate-Trapezoid Tiling is more complicated.

For example, the 3-dimensional Jacobi code is a 27-point stencil, where the iteration space

is 4-dimensional and requires a 3 × 3 cube of elements to compute each output element.

61

Although we cannot draw the shape of 4-dimensional tiles, the approach discussed in Section

4.2.3 for a 3-dimensional iteration space can be used to apply tiling to the 4-dimensional

iteration space. The 4-dimensional cone that contains all the dependence vectors is projected

on to < t⃗, i⃗0 >, < t⃗, i⃗1 > and < t⃗, i⃗2 > planes. Based on the projection of the dependence

cone, we apply the same tiling strategy as in Figure 4.4 to produce parallelogram tiles on

each 2-dimensional plane. The resulting tile is a 4-dimensional hyper-parallelepiped. Subtiles

are computed as shown Figure 4.5-(a) on the projection of the hyper-parallelepiped tile on

each plane, so that the projections of subtiles on each plane are conjugate trapezoids. The

total number of subtiles within a tile is 23 = 8. For a given time step, the slice of a hyper-

parallelepiped tile is a cuboid, as shown in Figure 4.11, where subtile A send the boundary

data to 7 neighbor nodes, and subtile D receive data from other 7 neighbor nodes. Thus,

for each time step, the computation of subtile B0, B1 and B2 depends on subtiles A, and

subtiles C0, C1 and C2 depend on subtiles B0, B1 and B2, and subtile D depend subtiles C0,

C1 and C2. Hence, when delaying subtiles to hide communication latency, the subtiles are

divided into four stages. The first stage includes subtile A, as well as the send and receive

operations associated to A; the second stage, includes subtiles B0, B1 and B2, which are

delayed by h′ time steps from subtile A; the third stage, includes subtiles C0, C1 and C2,

that are delayed by 2× h′ time steps; and the fourth stage includes the subtile D, which is

delayed 3× h′ time steps.

A

B
2

B
0

B
1

C
1

C
0

C
2

D

i
2

i
0

i
1

Figure 4.11: Slice of a 4-dimensional hyper-parallelepiped tile.

Based on the above discussion, the algorithm of Conjugate-Trapezoid Tiling for ISLs with

62

n-dimensional stencil ((n + 1)-dimensional iteration space) can be summarized as shown in

Algorithm 1.

Algorithm 1 Conjugate-Trapezoid Tiling for ISL with d-dimensional stencil ((d + 1)-
dimensional iteration space)

1: Compute B⃗left(⃗t, i⃗j) and B⃗right(⃗t, i⃗j) of the cone of dependence vectors for each plane

< t⃗, i⃗j > (j=0,1,...,d− 1).

2: Compute H = (⃗hT
0 , h⃗

T
1 , ..., h⃗

T
d−1, h⃗

T
d)

T . Each row of H is the normal vector of a tiling

hyperplane. The last row h⃗d = (1/h, 0, 0, ..., 0). Other rows h⃗j (j = 0, 1, ..., d − 1) are
computed as follows:

Proj<t⃗,⃗ij>
(⃗hj) =

1

wj

· B⃗right(⃗t, i⃗j) ·
(

0 1
−1 0

)
The rest of the components in h⃗j are filled with zeros.

3: Tile the iteration space with the tiling hyperplanes defined by H. The height of each tile
is h, and the width of each tile on i⃗j dimension is wj. Distribute tiles on nodes organized

in a d-dimensional mesh < i⃗0, i⃗1, ..., i⃗d−1 >.
4: Divide the projection of the tile on each < t⃗, i⃗j > plane into two conjugate trapezoid

subtiles. The boundary of between subtiles is parallel to B⃗left(⃗t, i⃗j). This results in 2d

subtiles in each (d+ 1)-dimensional tile in total.
5: Partition the 2d subtiles into d + 1 stages according to the dependence among subtiles.

Schedule the subtiles in order of stage. Delay the k-th stage by k × h′ time steps
(k = 0, 1, .., d).

6: In each subtile, receive necessary boundary data from neighbor nodes before computa-
tion, and send boundary data to neighbor nodes after computation.

4.3 Performance Model

This section introduces a performance model of Conjugate-Trapezoid Tiling which is used

to the explain the experimental results.

63

4.3.1 Definitions

At each time step, the total number of stencil points computed by each node is:

Ncomp =
d−1∏
j=0

wj

Ncomp stands for the volume of the d-dimensional tile slice at each time step. The order of

Ncomp is d. If the average computation time for each stencil point is tpoint, the computation

time at each time step would be:

tcomp = tpoint ·Ncomp = tpoint ·
d−1∏
j=0

wj

Only the data points at the boundaries of the tile need to be communicated (to be sent or

received) with neighboring nodes. For 1-dimensional Jacobi, the total number of data points

to be sent at each time step is 2. For 2-dimensional Jacobi, the grey area in Figure 4.9-(a)

shows the data points to be sent. I assume that the messages sent to different destination

nodes do not cause congestion with each other, so I only need to consider the largest message,

which would cause the longest latency. The maximum number of data points to be sent at

each time step is 2 · max{w0, w1}. In general, for a n-dimensional stencil, the maximum

number of data points to be sent at each time step is:

Vsend = c ·max{
n−2∏
k=0

wjk |∀⃗j = (j0, j1, ..., jn−2)}

in which c is a constant determined by the stencil. For the Jacobi stencils of any dimension,

c = 2, which means Jacobi stencil only requires each points to exchange data with its direct

neighbor points. Intuitively, Vsend is proportional to the size of one ”surface” of the n-

dimensional tile slice at each time step, so the order of Vsend is n− 1. Because of symmetry,

64

for any non-boundary node, the volume of data to be sent is equal to the volume of data to

be received, so let Vsend = Vrecv = V .

For each send -receive pair, let tlatency denote the latency. In practice tlatency consists of two

partss: the fixed startup overhead tstartup and the transmission latency which is determined

by the size of the data to be transmitted:

tlatency = tstartup + ttrans · V

For small messages, the total latency is dominated by the startup overhead, so tlatency ≈

tstartup. However, if the message is large, the total latency is proportional to the data size

being transmitted:

tlatency ≈ ttrans · V ∼ V

For each send or receive operation, even with asynchronous mode, there is some CPU

time that cannot be overlapped with computations. Let tsend and trecv denote the overhead of

asynchronous send and receive operations, respectively. Similarly, because of symmetry, for

any non-boundary node the total number of send operations must be the same to the total

number receive operations at each time step. Let Nsend = Nrecv = Nmsg. Nmsg is determined

by the number of neighbor points that needs to do data exchange, which is a constant for

a given stencil. Because the total number of neighbor points for a n-dimensional stencil is

3n − 1, the upper bound of Nmsg is (3
n− 1)/2. For the Jacobi stencil, the values of Nmsg are

1, 3, 7 in the 1, 2, 3-dimensional cases, respectively.

65

4.3.2 Performance Model

If communication and computation are not overlapped, the total execution time at each time

step is:

texec = tcomp + (tsend + trecv) ·Nmsg + tlatency

= tpoint ·Ncomp + (tsend + trecv) ·Nmsg

+tstartup + ttrans · V

Consider the Conjugate-Trapezoid Tiling proposed in this paper. Let the total number

of points computed at each time step be N ′
comp. At each time step in the steady state,

N ′
comp ≈ Ncomp. Because of subtiling, the size of the message sent by each subtile is smaller,

so the maximum number of data points to be sent V ′ is smaller than V : V ′ ≤ V . The cost

is that the total number of send or receive operations, N ′
msg, becomes larger: N ′

msg ≥ Nmsg.

For the Jacobi stencil, with subtiling the values of N ′
msg are 1, 5, 19 in the 1, 2, 3-dimensional

cases respectively. The number of messages to be sent for 2-dimensional Jacobi. is shown

in Figure 4.9-(a). Figure 4.12 shows the number of messages to be sent for 3-dimensional

Jacobi. For standard tiling, 7 messages need to be send to different neighboring tile (1

message for the data on the vertex, 3 messages for 3 edges and another 3 for the 3 faces), as

shown in Figure 4.12-(a). After Conjugate-Trapezoid Tiling, some messages are divided into

2 (the original edge messages) or 4 messages (the original face messages) due to subtiling, as

shown in Figure 4.12-(b). However, those message that are divided from the same original

message are still to be sent to the same destination tile. The total number of messages

becomes 19. The increase of the number of the messages may cause performance problems,

which will be addressed in Section 4.3.3.

Because subtiles are delayed in Conjugate-Trapezoid Tiling, there are at least h′ time

steps between each send and receive pair. Let t′exec denote the total execution time at each

66

(a) Nmsg = 7. (b) N ′
msg = 19.

Figure 4.12: Number of messages to be sent for 3-dimensional Jacobi. Each arrow stands
for a message to be sent to an neighboring tile. The arrows with the same direction means
that the destination of the messages are the same.

time step with Conjugate-Trapezoid Tiling, and t′latency = tstartup+ ttrans ·V ′ is the latency of

the largest message. Then if t′latency is smaller than the total execution time of h′ time steps,

h′ × t′exec ≥ t′latency = tstartup + ttrans · V ′

the communication latency can be fully overlapped:

t′exec = t′comp + (tsend + trecv) ·N ′
msg

= tpoint ·N ′
comp + (tsend + trecv) ·N ′

msg (4.1)

According to above, the minimum number of delayed time step h′ to fully hide communication

latency is determined by:

h′ ≥
t′latency
t′exec

=
tstartup + ttrans · V ′

tpoint ·N ′
comp + (tsend + trecv) ·N ′

msg

(4.2)

67

The performance benefit achieved by Conjugate-Trapezoid Tiling is:

∆ = texec − t′exec

= tpoint · (Ncomp −N ′
comp)

+(tsend + trecv) · (Nmsg −N ′
msg) + tlatency

≈ tlatency − (tsend + trecv) · (N ′
msg −Nmsg) (4.3)

4.3.3 Optimization

Communication-Coalesce Optimization

With Conjugate-Trapezoid Tiling, the number of send and receive operations at each time

step, N ′
msg, is greater than Nmsg, which can cause performance degradation according to

Equation 4.3. N ′
msg ≥ Nmsg is because the data to be exchanged with the same neighbor

node are divided into two or more messages by the delayed subtiles. For example, in Figure

4.9, the destination of message S1 and S4 is the same node. However, after schedule of

subtiles, within the same time step t0, S1 is provided by subtile A with the data stands

for the original time step of t0, but S4 is provided by subtile B0 with the data stands for

the original time step of t0 − h′. This leads to S1 and S4 becoming two separate sending

operations, and so as S2 and S3. If postpone S1 until the computation in subtileB0 completes,

the send operations of S1 and S4 can be merged into one because the destination node is the

same. S2 and S3 can also be merged by postponing S2 until subtile B1 is complete. Similarly,

for receive operations if bring R4 forward before subtile B0 starts, R1 and R4 can be merged

because they have the same source node, and so as R2 and R3.

Figure 4.13 shows how communication operations are merged. Compared to Figure

4.9-(b), S1 and S2 are postponed while R3 and R4 are moved into an earlier stage. This

optimization of merging communication operations is always possible, because send opera-

68

A

B
0

B
1

CS0(t0)

S1 (t0)

S2(t0)

R1(t0-h')
S4(t0-h')

R2(t0-h') S3(t0-h')

R4(t0-2×h')

R0(t0-2×h')

R3(t0-2×h')

stage 2 (delay h') stage 3 (delay 2×h')stage 1

S1 (t0)

S2(t0)

R4(t0-2×h')

R3(t0-2×h')

Figure 4.13: Merge communication operations. The send or receive operations with in the
same dashed box can be merged. Compared to Figure 4.9-(b), the send or receive operations
denoted by the dashed arrows are moved (delayed or brought forward) to the operations
denoted by corresponding thick arrows.

tions only need to be postponed, and receive operations only need to be moved to an earlier

stage. This optimization still preserve the correctness of communication. Although S1 and

R4 are the corresponding send and receive operations, and S1 and R4 are moved into the

same stage as shown in Figure 4.13, there are still h′ time steps of execution between the

corresponding send and receive operations in the pipeline (when S1 sends out the data for

time step t0, R4 is receiving the data for time step t0 − h′). Hence this optimization does

not affect the threshold of h′ calculated in Equation 4.2.

Because the send or receive operations with the same destination or source node are

merged into one operation, this optimization results in that N ′
msg = Nmsg and V ′ ≈ V on

the steady state of the pipeline.

69

Balanced Multi-Threading

If nodes have more than one processors, the computation can be evenly distributed to every

processor because the stencil points at each time step are fully parallelizable. However, the

overhead of asynchronous send or receive operations can not be reduced through paralleliza-

tion. This optimization is to balance the overall load of computation and communication

operations. As shown in Figure 4.14, the white bars stand for computation time, and the grey

bars stand for communication operation overhead. When nodes work in sequential mode,

the total execution time of each time step is t′exec = t′comp+(tsend+ trecv) ·N ′
msg. If nodes work

in parallel mode, assume each node has 4 processors, the computations can be divided into

partitions and distributed on to each processor. However, the overhead of communication

operation cannot be divided. As a result, instead of evenly dividing the computations in

into 4 partitions, the partition(s) which produces data for sending or depends on the data

to be received are designed to contain less computations. So the overall load distribution is

balanced.

time

Sequential

Mode

Parallel

Mode

Processor 0

Processor 1

Processor 2

Processor 3

t'exec

t'comp tsend ·N’op

t'exec /4

trecv ·N’op

Figure 4.14: Balanced multi-threading with four processors. The white bars stand for com-
putation time, and the grey bars stand for communication operation overhead.

In general, if each node has P processors, and max{tsend, trecv} ≤ t′exec/P , ideally the

execution time in parallel mode can be t′exec/P if work load among threads are well balanced.

70

This is equivalent to that the amortized overhead of each communication operation is also

reduced by parallelization, even though that the communication operation it self is not

parallelized.

4.4 Unified Tiling Representation

This section uses the unified tiling representation framework defined in Section 2.1 to describe

the Conjugate-Trapezoid Tiling discussed in this Chapter.

The application of Conjugate-Trapezoid Tiling focuses on regular ISLs with the format

shown in Figure 4.2. For ISLs with n-dimensional stencils, the iteration space I is an (n+1)-

dimensional hyper-cuboid, so the basis matrix of I is a diagonal matrix:

I = span(E) = span(



T, 0, 0, ..., 0

0, N0, 0, ..., 0

0, 0, N1, ..., 0

...

0, 0, 0, ..., Nn−1


).

The first dimension of I is the time dimension, consisting of the time steps of the ISL. The

rest of the n dimensions are the space dimensions.

The stencil of an ISL may contain m points, which means that the computation of each

data points depends on m neighboring data points from the previous time step. This results

in m dependence vectors d⃗0, d⃗1, ..., d⃗m−1 in the iteration space I. Because each time step

only needs the results from the previous time step, the first component of each dependence

71

vector must be 1. So the dependence matrix D must have the following form:

D =



d⃗0

d⃗1

...

d⃗m−1


=



1, ∗

1, ∗

...

1, ∗


.

Because the tile shape T is an (n+1)-dimensional parallelepiped, there must exist a tiling

matrix T :

T =



t⃗0

t⃗1

...

t⃗n


,

such that T = span(T). Since the projection of T on < i⃗0, i⃗1, ..., i⃗n−1 > is an n-dimensional

hyper-rectangle, 1 to n rows of T must be:

t⃗1 = (w0, 0, 0, ..., 0),

t⃗2 = (0, w1, 0, ..., 0),

...

t⃗n = (0, 0, 0, ..., wn−1).

For the first row of T , t⃗0 is determined by the height of the parallelepiped tile h and the

dependence vectors. More specifically, the projections on t⃗0 on each < t⃗0, i⃗j > is parallel to

B⃗right(⃗t, i⃗j):

Proj<t⃗,⃗ij>
(⃗t0) = cj · B⃗right(⃗t, i⃗j).

72

And because the height of the parallelepiped tile is h, the first component of Proj<t⃗,⃗ij>
(⃗t0)

must be h:

Proj<t⃗,⃗ij>
(⃗t0) = (h, xj) = cj · B⃗right(⃗t, i⃗j)

According to above equations:

xj =
B⃗right(⃗t, i⃗j) · (0, 1)T

B⃗right(⃗t, i⃗j) · (1, 0)T
· h, j = 0, 1, ..., n− 1

t⃗0 = (h, x0, x1, ..., xj, ..., xn−1).

Since Conjugate-Trapezoid Tiling is tessellating tiling, the repetition matrix R = T .

After tiling, there still exists ”horizontal” dependences (dependence vectors that are perpen-

dicular to the dimension of t⃗). The dependence matrix between tiles are as follows:

D′ =



1, ∗

1, ∗

...

1, ∗

0, ∗

0, ∗

...

0, ∗



.

The rows in D′ with the first component 0 are the dependence vectors perpendicular to

the t⃗ dimension. Because of these ”horizontal” dependences, not enough parallelism can be

exposed among tiles if each tile are executed atomically (as shown in Figure 4.4). However,

after subtiling and delaying dependent subtiles, tiles within the same level can be executed

73

in parallel. As a result, the following schedule of tiles become valid:

S =



1

0

...

0


,

S(i⃗′) = i⃗′ · S = (i′0, i
′
1, ..., i

′
n) · S = i′0.

Similar to overlapped tiling, the purpose of the technique of subtiling and delaying dependent

subtiles is to make the above schedule S valid and expose enough parallelism for coarse grain

tiles.

To sum up, Table 4.1 shows the unified representation of Conjugate-Trapezoid Tiling.

4.5 Evaluation

In this section, Conjugate-Trapezoid Tiling is evaluated on a distributed memory machine

and the experimental results are presented.

4.5.1 Target Platform

The measurement of the performance is done with a distributed memory cluster of 32 nodes.

Each node has an Intel Xeon quad-core X3430 CPU at 2.4GHz. The nodes are interconnected

with a gigabit Ethernet. The MPI environment is MPICH2. The compiler is GCC 4.7.2,

with the option -O3.

74

Input I,D =


1, ∗
1, ∗
...
1, ∗



D′ D′ =



1, ∗
1, ∗
...
1, ∗
0, ∗
0, ∗
...
0, ∗


, after subtiling: D′ =


1, ∗
1, ∗
...
1, ∗

 .

T T =


t⃗0
t⃗1
...

t⃗n

 =


h, x0, x1, ..., xj, ..., xn−1

w0, 0, 0, ..., 0
0, w1, 0, ..., 0

...
0, 0, 0, ..., wn−1


xj =

B⃗right(t⃗,⃗ij)·(0,1)T

B⃗right(t⃗,⃗ij)·(1,0)T
· h, j = 0, 1, ..., n− 1

R R = T.

S S =


1
0
...
0

 .

Table 4.1: Representation of Conjugate-Trapezoid Tiling

75

Stencil Input Points
Dimension Size of Stencil

1-D Jacobi 1 512K 3
2-D Jacobi 2 1024 x 512 9
3-D Jacobi 3 64 x 64 x 64 27
PathFinder 1 512K 3
Poisson 2 1024 x 512 5

Biharmonic 2 1024 x 512 13
HotSpot 2 1024 x 512 9
Cell 3 64 x 64 x 64 27

Table 4.2: Benchmarks

4.5.2 Implementation

The Conjugate-Trapezoid tiling discussed in this chapter is implemented in the Cetus com-

piler [21], which is a source-to-source C compiler. The inputs to the compiler are the se-

quential C codes of the ISLs. The dependence analysis result of Cetus provides the stencils

definitions of the ISLs, which is the input to the tiling algorithm. The implementation use

the Omega library [22] to perform tiling operations on the iteration space polyhedron. The

code generation of Cetus is modified to generate parallel code with MPI APIs. In order to

implement the optimization discussed in Section 4.3.3, the computation within each node is

parallelized with Pthreads instead of OpenMP.

4.5.3 Benchmark

The same 8 ISL programs are evaluated as benchmarks as in Chapter 3: 1,2,3-dimensional

Jacobi, PathFinder, Poisson, Biharmonic, HotSpot and Cell. These benchmarks contains 5

different stencils, from 1-dimensional to 3 dimensional. The input size for each benchmarks

is listed in Table 4.2. Table 4.3 shows different stencils and the corresponding dependence

vectors.

76

Stencil Dependence Vectors Benchmark

1-D Jacobi,
(1,−1), (1, 0), (1, 1) PathFinder

(1, 0, 0),
(1,±1,±1), 2-D Jacobi,
(1, 0,±1), HotSpot
(1,±1, 0)

(1, 0, 0),
(1, 0,±1), Poisson
(1,±1, 0)
(1, 0, 0),

(1,±1,±1),
(1, 0,±1), (1,±1, 0), Biharmonic
(1, 0,±2), (1,±2, 0)

∀x = −1, 0, 1, ∀y = −1, 0, 1, 3-D Jacobi,
∀z = −1, 0, 1, (1, x, y, z) CELL

Table 4.3: Different stencils of the benchmarks

4.5.4 Experimental Result

Performance Overview

Figure 4.15-(a) shows the speedup achieved by Conjugate-Trapezoid Tiling with different

values of h′. The baseline is the performance achieved by tiling with no communication

overlap. On average, Conjugate-Trapezoid Tiling achieves 1.9X speedup when h′ = 4.

Among all the benchmarks, the common trend is that, as the value of h′ becomes larger

than 4, higher performance is achieved. If communication latency is longer than the com-

putation time within a tile, increasing h′ will delay the dependent subtiles, which are the

receivers of messages, so that larger portion of communication latency can be hidden. This

trend exactly shows the motivation of Conjugate-Trapezoid Tiling. However, It can also be

seen that after exceeding a certain threshold, there is very little or no performance gain by

keeping increase h′. This is because if h′ is already large enough to hide the entire latency,

77

0

0.5

1

1.5

2

2.5

3
No Overlap

h'=1
h'=2
h'=3
h'=4
h'=5
h'=6
h'=7
h'=8

S
p
eed

u
p
 O

v
er N

o
 O

v
erlap

1-D

Stencils

2-D

Stencils

3-D

Stencils

(a) Speedup with the Communication-Coalesce optimization.

0

0.5

1

1.5

2

2.5

3
No Overlap

h'=1

h'=2

h'=3

h'=4

h'=5

h'=6

S
p
eed
u
p
 O
v
er N

o
 O
v
erlap

S
p
eed
u
p
 O
v
er N

o
 O
v
erlap

(b) Speedup without the Communication-Coalesce optimization.

Figure 4.15: Speedup with different values of h′. The baseline is the performance achieved
by tiling with no communication overlap. The figure shows the performance with h′ up to 6
for 2-dimensional stencils and h′ up to 4 for 3-dimensional stencils, because the trend shows
that there would be no additional performance gains with a larger h′.

78

there will be no extra benefit with an even larger h′. Equation 4.2 in Section 4.3.2 discussed

the threshold of h′. In Figure 4.15, for the benchmarks with 1-dimensional stencils (1-D Ja-

cobi and PathFinder), the threshold is 6 or 7, while for the benchmarks with 2-dimensional

stencils (1-D Jacobi, Poisson, Biharmonic and HotSpot) the threshold is 3 or 4. What is

more, for 3-D Jacobi and Cell, which are the benchmarks with 3-dimensional stencils, peak

performance is achieved when h′ = 1. This can be explained by Equation 4.2 as follows. The

input sizes for each benchmarks shown in Table 4.2 are chosen to make the number of stencil

points allocated to each node be the same across all benchmarks. So Ncomp is the same each

benchmarks, and so is N ′
comp because Ncomp ≈ N ′

comp. However the amount of computation

of higher dimensional stencils is usually larger than that of lower dimensional stencils, such

as 1-D Jacobi (3 points) versus 2-D Jacobi (9 points). For higher dimensional stencils the

amount of computation of each stencil point is larger, and more time consuming, too. This

means that tpoint is larger for higher dimensional stencils, which contributes one factor that

leads to a smaller threshold of h′ according to Equation 4.2. The other factor is that for

higher dimensional stencils each tile has more neighboring tiles, so Nmsg and N ′
msg are also

larger. The above two factors makes a larger denominator in Equation 4.2, and a smaller

threshold of h′ as a result.

Communication-Coalesce Optimization

Figure 4.15-(b) shows the speedup achieved without the Communication-Coalesce optimiza-

tion introduced in Section 4.3.3. Since for 1-dimensional stencils Nmsg = N ′
msg = 1, there

is no difference with or without the Communication-Coalesce optimization. So 1-D Jacobi

and PathFinder are not included in Figure 4.15-(b). Compared to Figure 4.15-(a), it can be

seen that 2-dimensional stencils benchmarks (2-D Jacobi, Poisson, Biharmonic and HotSpot)

achieve a lower speedup without the Communication-Coalesce optimization. Another obser-

vation is that the peak performance is reached with a smaller h′: without the optimization

79

0

20000

40000

60000

80000

100000

1-D Jacobi 2-D Jacobi 3-D Jacobi CELL

No Overlap

h'=1
h'=2
h'=3
h'=4
h'=5
h'=6
h'=7
h'=8

Cycles
110000 180000

Figure 4.16: Communication overhead with different h′.

the peak performance is reached around h′ = 3 while in Figure 4.15-(a) the peak performance

is reached around h′ = 4 for most 2-dimensional stencils benchmarks. Because without the

optimization, the additional overhead introduced by (N ′
msg − Nmsg) more send and receive

operations, the execution time at each time step becomes longer. So fewer time steps are

needed to overlap with communication latency. This problem is more serious for bench-

marks with 3-dimensional stencils, since for those benchmarks, without the optimization

N ′
msg = 19, which is much larger compared to Nmsg = 7. As shown in Figure 4.15-(b), 3-D

Jacobi and CELL can only achieve very small speedup with any h′. The overhead of addi-

tional communication operations almost kill the performance benefit gained by overlapping

communication and computation.

Communication overhead

Figure 4.16 shows the communication overhead with different h′. The overhead is measured

by the average number of cycles taken by each blocking receive call MPI_Recv. So this over-

head shown in Figure 4.16 stands for the trecv plus the part of tlatency that is not overlapped

with computation. The bar of ”No Overlap” corresponds to trecv + tlatency, which is the

upper bound of the overhead shown in the figure. It can be seen that from 1-D Jacobi to 3-D

Jacobi, as the dimension of the stencil increases, the value of trecv + tlatency also increases.

This is because according to the performance model defined in Section 4.3.2, if assuming

80

that trecv and tstartup are constant, the other part of tlatency is proportional to the number of

data points to be communicated (V , which is the volume of the data to be sent or received),

and the order of V is d− 1. This means that because higher dimensional stencils have

larger communication volume, the communication overhead, if not hidden by overlapping

with computations, is higher. In Figure 4.16 the ”No Overlap” bar of CELL is lower than

3-D Jacobi. CELL and 3-D Jacobi share the same stencil, which means the number of data

points to be communicated is the same. However, each data point of CELL only takes one

byte storage, while each data point of 3-D Jacobi is a floating point value. So the actual

communication volume V of CELL is smaller than that of 3-D Jacobi.

As the value of h′ increases, the communication overhead decreases for every benchmark

shown in Figure 4.16, because more portion of communication overhead is hidden by over-

lapping it with computations. This can explain the trend of performance shown in Figure

4.15. When h′ exceeds some threshold, communication overhead does not reduce any more

because tlatency is fully hidden and the lower bound trecv is reached. As in Figure 4.15,

benchmarks with higher dimensional stencils reach the lower bound sooner with a smaller h′

compared to benchmarks with lower dimensional stencils.

Input Size Sensitivity

Figure 4.17 shows the speedup with different input size for 1-D and 2-D Jacobi. For both

benchmarks, h′ reaches the threshold with a smaller value with larger input size. This is

because larger input size results in larger Nmsg and N ′
msg. This makes the denominator in

Equation 4.2 larger and thus a smaller threshold of h′. It also shows than for both benchmarks

as the input size getting larger, the peak speedup achieved by Conjugate-Trapezoid Tiling

is lower. This is because a larger input size leads to larger tile size if the total number of

computation nodes remains the same. When the large tile size is large enough the program

becomes CPU-bound instead of communication-bound. The optimization opportunity for

81

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

256K

512K

1024K

2048K

S
p
eed
u
p
 O
v
er N

o
 O
v
erlap

h' 0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

768×384

1024×512

1440×720

2048×1024

S
p
eed
u
p
 O
v
er N

o
 O
v
erlap

h'

(a) 1-D Jacobi (b) 2-D Jacobi

Figure 4.17: Input size sensitivity.

hiding communication latency for a cpu-bound program is small.

4.6 Conclusion

This chapter discusses the design and implementation of a new tiling scheme called Conjugate-

Trapezoid Tiling for ISLs. The proposed tiling scheme divides each tile into subtiles, and

schedules subtiles within each tile to overlap computation and communication. This chap-

ter describes the tiling algorithm in polyhedron model, and compare Conjugate-Trapezoid

Tiling and standard tiling analytically. The proposed tiling scheme is implemented in Cetus

compiler to automatically generated code for d-dimensional stencils. Experimental results on

a cluster show that Conjugate-Trapezoid Tiling is able to effectively reduce the overhead of

communication latency, and achieves significant speedup over traditional tiling strategy.gy.

82

Chapter 5

Tile Shape Selection for Hierarchical

Tiling

In this chapter, the tile shape selection for hierarchical tiling is studied. In hierarchical tiling,

tile shapes at different levels interact with each other and together determine execution time.

This means that, in order to minimize execution time, simply selecting tile shape for each

level separately will not necessarily lead to the optimal choice; optimal tile shape selection

can only be achieved by tackling hierarchical tiling in a global manner. Figure 5.1 shows

an example of different tile shape choices. Arrows represent the dependences between tiles.

Dashed lines show the tiles that can be executed in parallel in a wavefront schedule. The

numbers stand for the order of the execution the wavefronts. Suppose the iteration space of

the loop nest has two dependences: d⃗0 = (1, 0) and d⃗1 = (0, 1). There are different possible

tile shapes for each level of tiling. The most common choice is the square. In Figure 5.1-

(a), both levels use square tiles. The tiles along the same diagonal line can be executed in

parallel. Assume that the computation time of each level 0 tile is one unit time, the total

execution time of schedule of in Figure 5.1-(a) is 7×7 = 49 units of time. There are, however,

better tile shapes. If the level 1 tile shape is changed to a parallelogram as shown Figure

83

1 2 3 4

7

6

5

1 2 3 4

5

6

7

1

2
3

4

1 2 3 4 5 6 7 8

9

10

11

4
5
6

7

3
2

1

1 2 3 4 5 6 7 8

9

10

11

Level 0

Tile Shape

Level 1

Tile Shape
Iteration Space Execution time

7×7=49

4×11=44

7×11=77

(a)

(b)

(c)

Figure 5.1: Different tile shape choices for hierarchical tiling. Arrows are the dependences
between tiles. Dashed lines represent the tiles that can be executed in parallel in a wavefront
schedule. The numbers stand for the order of the wavefronts

5.1-(b), the total number of time unit of execution time becomes 4×11 = 44 < 49. However,

parallelogram shaped tile is not always the best choice. If we also choose parallelogram tile

for the level 0 tiling, as shown in Figure 5.1-(c), the total execution time would increase to

7 × 11 = 77 units of time (here it is assumed that the parallelogram tile at level 0 takes

the same time to execute as the square tile.). A quantitative model can be used to find the

optimal tile shape choice combination for each level of tiling to achieve minimal execution

time.

84

5.1 Problem Definition

Given the iteration space I with the shape of n-dimensional hyper-parallelepiped, assume

e⃗k = (ek,0, ek,1, ..., ek,n−1), k = 0, 1, ..., n−1 are the n edge vectors of the hyper-parallelepiped,

then the following matrix E is the basis matrix of I:

E =



e⃗0

e⃗1

...

e⃗n−1


.

And I = span(E).

Assume there are m dependences in I. The m dependence vectors d⃗0, d⃗1, ..., d⃗m−1, forms

an m× n dependence matrix D as follows:

D =



d⃗0

d⃗1

...

d⃗m−1


.

Without loss of generality, I assume that m ≥ n and there are n dependence vectors that

are linearly independent 1.

Then select a tile shape T with n-dimensional hyper-parallelepiped shape, and t⃗k =

(tk,0, tk,1, ..., tk,n−1), k = 0, 1, ..., n− 1 are the n edges of the hyper-parallelepiped tile, so the

1Otherwise, it must be possible to make at least one loop full permutable through a sequence of affine
transformations, and then it can be simplified into a lower dimensional iteration space.

85

following matrix T is the tiling matrix (the basis matrix of space T):

T =



t⃗0

t⃗1

...

t⃗n−1


.

As discussed in previous chapters, if using tile shape T(T) to tile the iteration space

I, the tiled space I ′ is another n-dimensional iteration space. It is possible to apply tiling

transformation for I ′ again. To describe an l-level hierarchical tiling, define a sequence of

iteration spaces I0, I1,..., Il:

I0 = I, I1 = I ′

and ∀k = 1, 2, ..., l, Ik is the tiled space of Ik−1. This follows the bottom-up approach of

hierarchical tiling. Since each Ik must have the shape of n-dimensional parallelepiped, define

Ek is the basis matrix for Ik:

∀k = 0, 1, ..., l, Ik = span(Ek).

At each level of tiling, the tile shape is Tk. In order to simplify the problem, tile shapes

are restricted to n-dimensional parallelepiped, too. Let Tk be the tiling matrix at each level,

∀k = 0, 1, ..., l − 1, Tk = span(Tk).

The tiles at different levels are scheduled independently. And each tile is executed atomically,

which means there is no communication with other tiles at the same level before computation

within it is completed.

With the definitions above, the problem is how to select tile shapes T0, T1, ..., Tl−1 for

86

t
1

t
0

d
0

d
1

d
2

Figure 5.2: Constraints of tile shape imposed by dependences.

each level of tiling, so that with any valid scheduling of tiles on each level, the total execution

time of the final loop nest is minimized.

5.2 Constraints on Tile Shape Selection

In the discussion of this chapter, tile shapes are restricted with hyper-parallelepiped. And

the tiles on each tiling level are scheduled atomically. Besides, tiles are tessellating, which

means there is no overlapped between tiles introduced to eliminate dependences. With the

assumptions above, Figure 5.2 describes the constraints of tile shape selection imposed by

dependences in general. In order to produce a valid tile shape, the infinite cone spanned

by extending the tile edges t⃗0, t⃗1, ..., t⃗n−1 must contain every dependence vector. For the

example in Figure 5.2, t⃗0 and t⃗1 must not be in the shaded area. To describe the above

observation formally, each dependence vector d⃗k must be covered by the cone spanned by

the extension cords of t⃗0, t⃗1, ..., t⃗n−1,

∀d⃗k, ∃a⃗ = (a0, a1, ..., an−1) ≥ 0⃗n = (0, 0, ..., 0) (5.1)

d⃗k = a0 · t⃗0 + a1 · t⃗1 + ...+ an−1 · t⃗n−1 = a⃗ · T

Assume that every tile is always large enough so that inter-tile dependences only exist

between adjacent tiles (including diagonal adjacent). This requirement can be expressed as

87

follows:

∀d⃗k, ∃a⃗ = (a0, a1, ..., an−1) ≤ 1⃗n = (1, 1, ..., 1) (5.2)

d⃗k = a0 · t⃗0 + a1 · t⃗1 + ...+ an−1 · t⃗n−1 = a⃗ · T

The above two requirements can be merged into the following:

∀d⃗k, ∃a⃗, 0⃗ ≤ a⃗ ≤ 1⃗, d⃗k = a⃗ · T (5.3)

which is the constraint imposed by dependences when choosing the tile shape.

When the original iteration space I is tiled by matrix T and produces the tiled space I ′,

The relation among I, I ′ and T is studied as follows. First, assume the tiling transformation is

an affine transformation, the shape of I ′ should still be an n-dimensional hyper-parallelepiped

under any affine transformation. Suppose E ′ is the basis matrix of I ′ and I ′ = span(E ′),

which is the space of tiles. There must be some n× n matrix A such that:

E ′ = E · A

Next, consider the effect of tiling transformation represented by A. As shown in Figure 2.4,

after tiling, under the new coordinates system shown as axis labels i′0 and i′1, vector t⃗0 and

t⃗1 become (1, 0) and (0, 1), respectively. More generally, we have the following equation (1n

denotes the n× n identity matrix):

T · A =



t⃗0

t⃗1

...

t⃗n−1


· A =



1, 0, ..., 0

0, 1, ..., 0

...

0, 0, ..., 1


= 1n

88

e0

e1

dk=(2,2)
(1,0)

(0,1)

t1=(0,8)

t0=(4,0)

Figure 5.3: Inter-tile dependences (thicker arraows) generated by original dependence vector

d⃗k.

It can be concluded that A = T−1. So the relation among I, I ′ and T is: E ′ = E · T−1. So

T−1 represents the affine transformation of the tiling transformation with tile shape T .

When the original iteration space I is tiled by matrix T , each dependence vector d⃗k is

also transformed to d⃗′k by the affine transformation represented by T−1. T must satisfy the

constraints of Equation (5.3),

d⃗′k = d⃗k · T−1 = a⃗ · T · T−1 = a⃗, 0⃗n ≤ a⃗ ≤ 1⃗n (5.4)

As shown in Figure 5.3, a dependence vector (2, 2) would result in three dependence

vectors after tiling: (1, 0), (0, 1), and (1, 1). In general, a single dependence vector d⃗k in

original iteration space I generates one or more dependences between tiles in the tiled itera-

tion space I ′. The rule is that, for d⃗′k = a⃗ = (a0, a1, ..., an−1), if aj > 0, there is a dependence

(0, ..., 1, ..., 0) imposed on the j-th dimension in I ′. In addition, if there are n dependence

vectors d⃗k0 , d⃗k1 , ..., d⃗kn−1 which are linearly independent, the inter-tile dependences in I ′

generated by those n dependence vectors must include n orthonormal unit vectors.

Considering the above observation in the context of hierarchical tiling defined in last

section, if at the k-th level of tiling, the dependence matrix in iteration space Ik is Dk, Dk

89

must have the following form:

D0 = D,

Dk =



d⃗k,0

d⃗k,1

...

d⃗k,m−1


=



1, 0, ..., 0

0, 1, ..., 0

...

0, 0, ..., 1

...


=

 1n

∗

 ,

∀d⃗k,j, k ≥ 1, 0 ≤ j < m, 0⃗ ≤ d⃗k,j ≤ 1⃗. (5.5)

5.3 Execution Model

Assume that the sequential execution time only depends on amount of computation, and

that the execution time of each iteration is always the same. So, if the computations of

iteration space I = span(E) is not parallelized, the total execution time is proportional to

the number of iterations within it:

Times(I) = |I| = |det(E)|. (5.6)

The execution time of a parallelized iteration space depends on the schedule of iterations

within the iteration space. In order not to be tied to any specific scheduling scheme, the

concept of ideal execution time is used in analysis. Ideal execution time is the minimal

execution time of an iteration space I that can be achieved by any valid schedule of iterations.

If each iteration in I is viewed as an activity and D represents the dependences between

activities, the ideal execution time is determined by the critical path in I. It is assumed

that there is infinite hardware parallelism available at each level. In practice, the above

assumption means that the amount of hardware parallelism should be always larger than the

90

maximum number of iterations that can be executed in parallel. Under these assumptions,

the critical path in I is the longest path of dependences between iterations.

Let L(E,D) denote the length of the longest path of dependent iterations in the iteration

space I with basis matrix E and dependence matrix D, the ideal execution time of I can be

calculated as follows:

Time(I) = L(E,D) (5.7)

Section 5.4 discusses how to calculate L(E,D). In general, L(E,D) depends on every

d⃗k in D. However, if the dependence vectors are not linearly independent, we can ignore

some rows in D when calculating L(E,D). For example, the iteration space shown in Figure

5.4 has three dependence vectors d⃗0, d⃗1 and d⃗2, with d⃗2 = d⃗0 + d⃗1. P and P ′ are two

dependence paths within the iteration space. If there is any dependence path containing a

pair of neighboring iterations with the dependence of d⃗2, such as P ′, it is always possible

to replace d⃗2 on the path with a combination of d⃗0 and d⃗1, as shown in Figure 5.4. This

will resulting a longer dependence path. As a result, it can be concluded that the longest

dependence path must only contain d⃗0 and d⃗1 (P), and other dependence vectors can be

ignored 2 when calculating L(E,D).

In particular, if there are n dependence vectors which are orthonormal unit vectors, it

is safe to ignore other rows in D and only consider those n dependence vectors, because

any other single dependence vector can be replaced by the combination of one or more

orthonormal unit vectors, which will result in a longer dependence path. Based on above

observation,

L(E,

 1n

∗

) = L(E, 1n) (5.8)

2Assume that the iteration space is much larger compared to each dependence vector.

91

���
���

���

���

���

���

���

���

�
�′

Figure 5.4: The dependent pathes (P and P ′) within an iteration space. The length of a

dependent path is the number of iterations on the path. If any path contains d⃗2 (P ′), it is

always possible to replace d⃗2 with d⃗1 and d⃗0 on the same position, which resulting a longer
path. This means the longest path (P) must only contain d⃗0 and d⃗1.

According to Equation 5.5, under the context of hierarchical tiling the dependence matrix

each at each level Dk =

 1n

∗

, ∀k ≥ 1. As a result, Equation (5.8) can be used to simplify

further analysis.

5.4 Calculate the Longest Dependent Path

When applying tiling transformations recursively to a given iteration space I, hierarchical

tiling contains a tiling transformation at each level. Following a bottom-up approach for

hierarchical tiling, first tiling matrix T0 is used to tile the original iteration space I0 = I,

producing a new iteration space I1. More generally, on the k-th level of tiling, tiling matrix

Tk is applied to tile the iteration space Ik and generated the new iteration space Ik+1. Assume

Ek is the basis matrix of Ik,

Ik = span(Ek), Ek+1 = Ek · T−1
k = E0 ·

k∏
j=0

T−1
j

The iterations in the bottom level tiles (the finest grain) are executed in sequential mode,

92

so the per-tile execution time can be calculated by Equation 5.6:

Time(T0) = Times(T0) = |det(T0)|

For upper level tiles (Tk, 1 ≤ k < l), each tile at the level immediately below is considered as

a single iteration.Let Dk denote the dependences at the k-th level with D0 = D, the per-tile

execution time is calculated using Equation 5.7:

Time(Tk) = L(Tk, Dk) = Time(Tk−1) · L(Tk, Dk)

Then the total execution time after tiling is:

Time(I) = Time(El) = Time(Tl−1) · L(El, Dl)

= Time(Tl−2) · L(Tl−1, Dl−1) · L(El, Dl)

= |det(T0)| · (
l−1∏
k=1

L(Tk, Dk)) · L(El, Dl)

= |det(T0)| · (
l−1∏
k=1

L(Tk, Dk)) · L(E0 ·
l−1∏
k=0

T−1
k , Dl)

According to Equation 5.5 and 5.8, the above equation can be simplified to the following

form:

Time(I) = |det(T0)| · (
l−1∏
k=1

L(Tk, 1n)) · L(El, 1n) (5.9)

So, the problem of optimal tile shape selection for hierarchical tiling is equivalent to selecting

a sequence of tiling matrices T0, T1, ..., Tl−1 to minimize the above equation. Equation 5.9

does not include D; however, according to the discussion in Section 5.2 the shape of T0 must

conform the constraints (Equation 5.1 and 5.2) imposed by each dependence vector in D.

93

5.4.1 Calculate L(Tk, 1n)

The meaning of L(Tk, 1n) is the length of the longest dependent path with dependence matrix

1n in tile Tk. The iteration space in tile Tk can be normalized to an n-dimensional hyper

cube by applying the affine transformation 3 represented by T−1
k . Thus,

L(Tk, 1n) = L(Tk · T−1
k , 1n · T−1

k) = L(1n, T
−1
k).

Consider a row in 1n, d⃗j. Since Dk =

 1n

∗

, d⃗j is also a row in Dk. Because Tk

represents the tile shape at the k-th level of tiling, Tk must conform to the constraints

imposed by each dependence vector in Dk. According to Equation 5.1 and 5.2:

∃a⃗j, 0⃗n ≤ a⃗j ≤ 1⃗n, d⃗j = a⃗j · Tk

Then, let D′ denotes the dependences within the tile (normalized tile so that the tile is

defined by tessellating edge vectors):

D′ =



d⃗′0

d⃗′1

...

d⃗′n−1


= 1n · T−1

k =



d⃗0

d⃗1

...

d⃗n−1


· T−1

k =



a⃗0

a⃗1

...

a⃗n−1


∀d⃗j, 0⃗n ≤ d⃗′j = a⃗j ≤ 1⃗n

For the 2-dimensional cases, the intuitive explanation of the above observation is that the

direction of each d⃗j must be in the upward, right or upper right direction, as shown in Figure

3In order to keep the problem in the integer domain, the affine transformation can be revised to T−1
k ·

|det(Tk)|, and the discussion in this section would be still valid.

94

5.5 (a) and (b). Since the normalized iteration space is a hyper-cube, the longest path must

start from the bottom left corner, which is the base point (0, 0, ..., 0).

The problem of computing L(Tk, 1n) is that finding the longest path P , which is a se-

quence of points p⃗0, p⃗1, ..., p⃗L−1 (Figure 5.5-(c), each p⃗1 stands for the coordinate of the

point) such that:

p⃗0 = 0⃗ = (0, 0, ..., 0),

∀j = 0, 1, ..., L− 1,

0⃗ = (0, 0, ..., 0) ≤ p⃗j ≤ (1, 1, ..., 1) = 1⃗,

∃d⃗′rj , p⃗j+1 = p⃗j + d⃗′rj (5.10)

L is the length of the dependent path found. Then L(Tk, 1n) = max{L}. We have that the

last point p⃗L−1 is defined as:

p⃗L−1 = p⃗L−2 + d⃗′rL−2
=

L−2∑
j=0

d⃗′rj 0 ≤ kj < n

= c0 · d⃗′0 + c1 · d⃗′1 + ...+ cn−1 · d⃗′n−1

= c⃗ ·D′ c⃗ = (c0, c1, ..., cn−1) ≥ 0⃗, c⃗ ∈ Zn

= c⃗ · T−1
k

Because 0⃗n ≤ d⃗′j ≤ 1⃗n, the condition 0⃗ ≤ p⃗j ≤ 1⃗ is satisfied if 0⃗ ≤ p⃗L−1 ≤ 1⃗. And

because
∑n−1

j=0 cj is the total number of steps of the path, so max{L} can be solved through

the following linear programming problem LP (T−1
k , 0⃗, 1⃗):

0⃗ ≤ c⃗ · T−1
k ≤ 1⃗, c⃗ ≥ 0⃗, max{

n−1∑
j=0

cj}. (5.11)

Therefore, we conclude that L(Tk, 1n) = LP (T−1
k , 0⃗, 1⃗).

95

���,�

���,�

���

���

∙ 	�

�

�′�

�′�

(1,0)

(0,1)

(1,0)

(0,1)���

���
���

���

���

(a) Original tile (b) Normalized tile (c) Dependent pathes

Figure 5.5: Determine the length of the longest dependent path within the iteration space
of tile Tk. Each p⃗1 stands for the coordinate of the point.

5.4.2 Calculate L(El, 1n)

The meaning of L(El, 1n) is the length of the longest dependent path in iteration space of

the highest level tiling. Similarly, it is possible to apply the affine transformation represented

by E−1
l to normalize the iteration space:

L(El, 1n) = L(El · E−1
l , 1n · E−1

l) = L(1n, E
−1
l).

Let D′ denote the transformed dependence matrix:

D′ =



d⃗′0

d⃗′1

...

d⃗′m−1


= 1n · E−1

l = E−1
l

However, unlike the case when calculating L(Tk, 1n), there is no guarantee that ∀d⃗′j, 0⃗ ≤

d⃗j ≤ 1⃗. More intuitively, each dependence vector d⃗′j can point to any direction. So L(El, 1n)

cannot be directly solved by the linear programming problem introduced in Equation (5.11).

Since dependence vectors d⃗′j can point to any direction, the longest dependent path does

not necessarily start from base point (0, 0, ..., 0) of the hyper-cube iteration space. Thus the

96

dependent path P in the iteration space El is defined the same as in Equation 5.10 except

that p⃗0 does not necessarily equal to 0⃗. To simplify the analysis, we define a related problem

that is graphically depicted in Figure 5.6: find the longest path P ′, which is a sequence of

points p⃗′0, p⃗
′
1, ..., p⃗

′
L′−1 such that:

p⃗′0 = (0, 0, ..., 0) = 0⃗,

−⃗1 = (−1,−1, ...,−1) ≤ p⃗′L′−1 ≤ (1, 1, ..., 1) = 1⃗,

∀j = 0, 1, ..., L− 2, ∃d⃗′rj , p⃗′j+1 = p⃗′j + d⃗′rj (5.12)

L′ is the length of path P ′. P ′ starts from that base point, and only requires that the

coordinate of the end point p⃗′L′−1 is within in the hype-cube surrounding the base point.

p⃗′L′−1 can be calculated as follows:

p⃗′L′−1 = p⃗′L′−2 + d⃗′rL′−2
=

L−2∑
j=0

d⃗′rj 0 ≤ kj < n

= c0 · d⃗′0 + c1 · d⃗′1 + ...+ cn−1 · d⃗′n−1

= c⃗ ·D′ c⃗ = (c0, c1, ..., cn−1) ≥ 0⃗, c⃗ ∈ Zn

= c⃗ · E−1
l

Somax{L′} can be solved through the following linear programming problem LP (E−1
l , −⃗1, 1⃗):

−⃗1 ≤ c⃗ · E−1
l ≤ 1⃗, c⃗ ≥ 0⃗, max{

n−1∑
j=0

cj}. (5.13)

Next step is to prove thatmax{L′} is approximately equal tomax{L} so that LP (E−1
l , −⃗1, 1⃗)

is a good approximation of L(El, 1n). First, given any path P , it is always possible to con-

struct a path P ′ by letting p⃗′j = p⃗j − p⃗0. So max{L} ≤ max{L′} is easily proven.

On the other hand, given a path P ′, the start point is p⃗′0 = 0⃗, and the end point is

97

p⃗′L′−1 = (p′0, p
′
1, ..., p

′
n−1). In order to move path P ′ into the hyper-cubic space span(1n),

Construct s⃗ = (s0, s1, ..., sn−1) as follows:

∀j = 0, 1, ..., n− 1 sj =

{
1, pj < 0,

0, else.

By shifting the offset of s⃗, p⃗′0 and p⃗′L′−1 are moved into the hyper-cubic space span(1n):

p⃗′s = p⃗′0 + s⃗, 0⃗ ≤ p⃗′s ≤ 1⃗, p⃗′s ∈ span(1n)

p⃗′e = p⃗′L′−1 + s⃗, 0⃗ ≤ p⃗′e ≤ 1⃗, p⃗′e ∈ span(1n)

p⃗′e = p⃗′s + c⃗ ·D′ (5.15)

Assume that the iteration space is much larger compared to the length of each dependence

vector: ∀d⃗′j, |d⃗′j| << 1. Then it is always possible to find two point p⃗s and p⃗e in a small

surrounding space around p⃗′s and p⃗′e respectively, such that:

|p⃗s − p⃗′s| < ε, p⃗s ∈ span(1n),

|p⃗e − p⃗′e| < ε, p⃗e ∈ span(1n),

p⃗e − p⃗s = b · c⃗′ ·D′, b ∈ Z, c⃗′ ∈ Zn. (5.16)

Then construct new path P within the hyper-cubic space span(1n) as follows:

C =
n∑

j=0

c′j, L = b · C

p⃗0 = p⃗s,

p⃗j·C+k = j · c⃗′ ·D′ + d⃗′jk , 0 ≤ j < b, c′jk ̸= 0

p⃗L−1 = p⃗e.

98

�′�

�′�

(0,1)(0,-1)

(-1,0)

(1,0)

�′ �

��

�′�

�′	
��

�′�

�′

��� = ���

��	�� = ��
�

�

Figure 5.6: Construct path P according to a given path P ′. The lengthes of P and P ′ are
approximately equal.

The length of path P is L = b · C. Considering Equation 5.15 and 5.16, there is:

L > L′ − ⌈ ε

min{|d⃗′j|}
⌉ = L′ − ε′,

max{L} > max{L′} − ε′.

The idea of above analysis is, we try to break path P ′ into small repeated pieces, and

arrange the same number of repeated pieces in a line to construct P . Since the start and

end points of P and P ′ are very close, the length of these two pathes should also be close.

Figure 5.6 shows the intuition of above analysis.

Since max{L} ≤ max{L′} is already proved, it can be concluded that max{L} ≈

max{L′}, with the error no larger than ε′. As a result, the solution of the linear programming

problem LP (E−1
l , −⃗1, 1⃗) can be used to estimate L(El, 1n):

L(El, 1n) = L(E0 ·
l−1∏
k=0

T−1
k , 1n) ≈ LP (E−1

l , −⃗1, 1⃗)

99

5.4.3 Summary

According to the discussion in last two sections, the problem of computing execution time

of hierarchical tiled loop nests can be transformed into the following form:

Time(I) = |det(T0)| · (
l−1∏
k=1

L(Tk, 1n)) · L(E−1
l , 1n)

≈ |det(T0)| · (
l−1∏
k=1

LP (T−1
k , 0⃗, 1⃗)) · LP (E−1

l , −⃗1, 1⃗)

= f(E, T0, T1, ..., Tl−1)

Given the basis matrix E of the original iteration space I, the optimal tile shape for hierar-

chical tiling is the sequence of tiling matrices T0, T1, ..., Tl−1 that minimize f(E, T0, T1, ..., Tl−1).

If I is n-dimensional, each tiling matrix Tk contains n2 elements. In total function f has

n2 · l variables. Besides, f is a non-linear function. Finally, because f contains terms of the

solutions to linear programming problems, the problem of optimal tile shape selection is a

multidimensional, nonlinear, bi-level programming problem.

5.5 Automatic Tile Shape Selection

According to the discussion in last section, optimal tile shape selection for hierarchical tiling

is a multidimensional, nonlinear, bi-level programming problem, which is not easy to solve

analytically. As a result, simulated annealing is adopted to select tile shape automatically

according the analytical model introduced in last section. The sketch of simulated annealing

algorithm to select tile shape is shown in Algorithm 2.

Line 8 in Algorithm 2 valid(NewS) checks whether the randomly generated NewS is a

valid tiling solution, otherwise NewS will be generated again. This includes checking each

Tk in NewS satisfy the constraints imposed by dependences (Equation 5.1 and 5.2). This

100

Algorithm 2 Sketch of simulated annealing algorithm to select tile shape for hierarchical
tiling

1: Solution = Solution0 =< T̊0, T̊1, ..., ˚Tn−1 >;
2: Time = f(E, Solution0) = f(E, T̊0, T̊1, ..., ˚Tn−1);
3: Solutionbest = Solution;
4: Timebest = Time;
5: Step = 0;
6: while Step < Stepmax do
7: NewS = < T0, T1 , ..., Tn−1 > =Solution+ random(∆);
8: if valid(NewS) then
9: NewT = f(E,NewS);
10: Temp = temperature(Step, Stepmax);
11: if accept(NewT, T ime, Temp, random()) then
12: Solution = NewS;
13: Time = NewT ;
14: end if
15: if Time < Timebest then
16: Solutionbest = Solution;
17: Timebest = Time;
18: end if
19: Step = Step+ 1;
20: end if
21: end while

101

also includes checking that the maximum number of parallelizable tiles does not exceed the

hardware parallelism at each level. In addition, it is necessary to keep each tile large enough

to aromatize the overhead of tiling. So we add an additional requirement in valid(NewS)

such that the iterations within each tile Tk much be more than a certain threshold Thk at

each level of tiling:

∀Tk, |det(Tk)| ≥ Thk

Note that upper bound is not set for the size of each tile Tk. This is because the simulated

annealing algorithm is self-adaptive and is able to converge to tiles with suitable size. The

solution with very large tiles will lead to high execution time and hence the probability to be

accepted in Line 11 of Algorithm 2 is low. For initial solution Solution0=< T̊0, T̊1,..., ˚Tn−1 >,

just choose the smallest possible tile that is valid for each level of tiling: |det(T̊k)| = Thk.

5.6 Unified Tiling Representation

The tiling schemes studied in this chapter are tessellating, atomic tiling, and the shape of

iteration space and tile shapes are restricted to be n-dimensional hyper-parallelepipeds. As

a result, there exists an basis matrix E such that I = span(E), and tiling matrix T such

that T = span(T). For tessellating tiling where the tile shapes are n-dimensional hyper-

parallelepipeds, the repetition matrix R = T . This chapter studies performance of the best

possible schedule of tiles in stead of any particular scheduling scheme. Table 5.1 shows the

unified representation of a single level of tiling. Because hierarchical tiling is done in the

bottom-up approach in this chapter, the input for the kth level of tiling is: Ik = Ik−1 · T−1
k ,

Dk = D′
k−1.

102

Input I = span(E), D

D′ D′ =


1, 0, 0, ..., 0
0, 1, 0, ..., 0
0, 0, 1, ..., 0

...
0, 0, 0, ..., 1

∗


T the selected tile shape T
R R = T.
S Best possible S that minimizes the ideal execution time

Table 5.1: The Unified Tiling Representation

5.7 Evaluation

5.7.1 Environment Setup

Two platforms with hierarchical parallelism are step up for evaluation. One is the GPU

platform consisting of an NVIDIA GeForce GTX 480 graphic card with 15 MPs and 480

SPs in total. The other platform is a 32-node cluster; each node has 4 Quad-Core AMD

Opteron processors, or 16 cores. Because both platforms only have a 2-levels hierarchy, only

2-level hierarchical tiling is evaluated. For the GPU, the hardware parallelism at level 1 is

15, which is the number of MPs. However, although the number of SPs within each MP

is 32, we consider the hardware parallelism at level 0 as 512 for the experiments. This is

because NVIDIA GPUs require a certain number of concurrent hardware threads for each

MP to achieve high throughput. For the cluster, the hardware parallelisms at two levels are

16 and 32, which are the number of cores per node and the total number of nodes.

Two stencil computation programs are used as benchmarks: Gauss-Seidel and Jacobi. 1-

D stencils use 1-dimensional input array, and result in 2-dimensional iteration spaces, while

2-D stencils result in 3-dimensional iteration spaces. The iteration space of 1-D Gauss-Seidel

contains two dependence vectors: (1, 0) and (0, 1), and the iteration space of 1-D Jacobi

contains three dependence vectors: (1,−1), (1, 0) and (1, 1). There are three dependence

103

(1,0)

(0,1)

(1,0)
(1,1)(1,-1) (1,0,0) (0,1,0)

(0,0,1)

(a) 1-D Gauss-Seidel (b) 1-D Jacobi (c) 2-D Gauss-Seidel

Figure 5.7: The dependence vectors in the iteration space of stencil computation programs.

vectors for 2-D Gauss-Seidel: (1, 0, 0), (0, 1, 0) and (0, 0, 1). Figure 5.7 shows the dependence

vectors in the iteration space of stencil computation programs.

An automatic system which uses simulated annealing is implemented to select tile shape

for hierarchical tiling. The lp solve[8] is used to solve the linear programming problems in the

model. The Omega Library[22] is used to do the tiling transformation and code generation.

On the GPU platform, we generate OpenCL[23] code. On the cluster platform we generate

hybrid MPI-OpenMP code: the higher level tiles are parallelized using MPI across nodes,

and the lower level tiles are parallelized with OpenMP across processor cores within each

node.

5.7.2 Performance

The performance of three common tiling schemes is compared with that of the code generated

by our system: Wavefront, Diamond and Skewing, as shown in Table 5.2. The optimal sizes

for the tiles of these three tiling schemes are chosen under the condition that the amount

parallelism exposed does not exceed the hardware parallelism at the corresponding level.

Figure 5.8 shows the speedup of the difference hierarchical tiling schemes for 2-dimensional

the iteration spaces for both GPU and cluster platforms, and Figure 5.9 shows the perfor-

mance data for 3-dimensional iteration spaces. The horizontal axis is the size of iteration

space. The vertical axis is the speedup over Wavefront or Diamond. On average, the tiling

104

Wavefront Diamond Skewing

Tile Shape

Tiling Matrix

(
x, 0
0, x

) (
x,−x
x, x

) (
x, 0
−x, x

)
Table 5.2: Common tiling schemes: Wavefront, Diamond and Skewing.

scheme with automatically selected tile shape can achieve over 90% speedup over Wave-

front for Gauss-Seidel stencil, and 20%-30% speedup over Diamond for Jacobi stencil. The

speedup achieved is consistent over different iteration space sizes. This means our automatic

system can always find better tile shapes compared to common tiling schemes.

For 1-D Jacobi stencil shown in Figure 5.8-(c) and (d), it can be seen that on the GPU

platform Skewing shows a 10% speedup over Diamond, but no speedup is observed on the

cluster platform. It is shown that the ideal execution times of Diamond and Skewing are

the same for the Jacobi stencil. However, the amount of parallelism within each higher level

tile varies less with Skewing than Diamond. This reason is that, as mentioned before, the

execution model of NVIDIA GPU requires a certain number of concurrent hardware threads

to achieve high throughput, Skewing shows better performance than Diamond on GPU.

5.7.3 Tile Shape

Table 5.3 shows the tile shape selection for 1-D Gauss-Seidel and Jacobi on GPU platform of

each tiling scheme corresponding to Figure 5.8. Table 5.4 shows the tile shape selection for

2-D Gauss-Seidel on GPU. T0 and T1 are the tiling matrix at each level, and T0 ·T1 represents

the tile shape in the original iteration space. In Table 5.3, under each matrix the shape of

the tile is shown graphically. It can be seen that the common tiling schemes of Wavefront,

Diamond and Skewing are combinations of regular tile shapes, including squares, diamonds

105

Wavefront Skewing Auto-Selected

T0

(
32, 0
0, 32

) (
32, 0
0, 32

) (
2,−30
0, 12

)

T1

(
256, 0
0, 256

) (
256, 0

−256, 256

) (
256,−250

0, 56

)

T1 · T0

(
8192, 0
0, 8192

) (
8192, 0

−8192, 8192

) (
512,−10680

0, 672

)

(a) 1-D Gauss-Seidel on GPU (128K×128K)

Diamond Skewing Auto-Selected

T0

(
18,−18
18, 18

) (
18,−18
18, 18

) (
−2,−18

8, 8

)

T1

(
256, 0
0, 256

) (
256, 0

−256, 256

) (
64, 0

−512, 512

)

T1 · T0

(
4608,−4608
4608, 4608

) (
4608,−4608

0, 9216

) (
−128,−1152
5120, 13312

)

(b) 1-D Jacobi on GPU (128K×128K)

Table 5.3: Tile shape selection for 1-D Gauss-Seidel and Jacobi.

106

0

0.5

1

1.5

2

2.5
Wavefront Skewing Auto-Selected

S
p
eed
u
p

S
p
eed
u
p

0

0.5

1

1.5

2

2.5
Wavefront Skewing Auto-Selected

S
p
eed
u
p

(a) 1-D Gauss-Seidel on GPU (b) 1-D Gauss-Seidel on cluster

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Diamond Skewing Auto-Selected

S
p
eed
u
p

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

Diamond Skewing Auto-Selected

S
p
eed
u
p

(c) 1-D Jacobi on GPU (d) 1-D Jacobi on cluster

Figure 5.8: Hierarchical tiling performance for 2-dimensional iteration space on GPU and
cluster platforms. The horizontal axis is the size of the iteration space. The vertical axis is
the speedup over Wavefront or Diamond.

and regular parallelograms. However, the automatically selected tile shapes are irregular

parallelograms. Since it is nonintuitive to figure out the performance impact of a particular

tiling scheme with irregular tile shapes (especially for higher dimensional iteration spaces),

it is necessary to build an analytic model to evaluate tile shape selection quantitatively, and

select tile shape automatically.

107

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Wavefront Auto-Selected

S
p
eed
u
p

0

0.5

1

1.5

2

2.5
Wavefront Auto-Selected

S
p
eed
u
p

(a) 2-D Gauss-Seidel on GPU (b) 2-D Gauss-Seidel on cluster

Figure 5.9: Hierarchical tiling performance for 3-dimensional iteration space on GPU and
cluster platforms. The horizontal axis is the size of the iteration space. The vertical axis is
the speedup over Wavefront.

Wavefront Auto-Selected

T0

 16, 0, 0
0, 16, 0
0, 0, 16

  16,−48, 0
0, 16, 0

0,−48, 16


T1

 16, 0, 0
0, 16, 0
0, 0, 16

  8,−8, 0
0, 8, 0

0,−16, 16


T1 · T0

 256, 0, 0
0, 256, 0
0, 0, 256

  128,−512, 0
0, 128, 0

0,−1024, 256


Table 5.4: Tile shape selection for 2-D Gauss-Seidel on GPU (1920×1920×1920).

5.7.4 Model Accuracy

Figure 5.10 compares the real execution time and the ideal execution time. The data is for

128K × 128K 1-D Gauss-Seidel running on GPU, with tile shape choices listed below:

T0 =

 32, 0

0, 32

 , T1 =

 256, 0

x, 256

 .

The value of x in T0 is scaled from 0 to −320. The shape of resulting T0 changes from a

square to a parallelogram. It is shown that the trends of the real execution time and the

108

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

0 -32 -64 -96 -128 -160 -192 -224 -256 -288 -320

Real Execution Time (Milliseconds)

Ideal Execution Time (Time Units)

M
illis
e
c
o
n
d
s

T
im
e
 U
n
its

Figure 5.10: Comparison between the real execution time and the ideal execution time for
1-D Gauss-Seidel. The left axis is for real execution time and the axis on the right is for
ideal execution time.

ideal execution time are exactly the same when tile shape varies. The result shows that

ideal execution time commutated by the model in this paper can be used to direct tile shape

selection.

5.8 Conclusion

In this chapter an analytical model is built to analyze the relation between the tile shape at

each level of hierarchical tiling and the ideal execution time of the tiled loop nest. It is shown

that the problem of optimal tile shape selection for hierarchical tiling is a multidimensional,

nonlinear, bi-level programming problem. An automatic system which uses simulated an-

nealing together with our analytical model is implemented to automatically select tile shape

for hierarchical tiling. The tile shape selected by the automatic system can be quite different

from the intuitive regular shapes. The experimental results show that irregular tile shapes

may have the potential to achieve higher performance over regular tiling schemes.

Currently the model focuses on the interaction between tile shape and parallelism ex-

posure, and uses ideal execution time as the optimizing goal. The model could be more

accurate by considering other factors affecting locality and communication. Besides, given

109

the complexity of the multi-dimensional nonlinear optimization problem in our model, at

present simulated annealing is sued to find the near-optimal solution instead of the guaran-

teed optimal one. In future, it is possible to use the state-of-the-art optimization problem

solving algorithms or libraries to solve the tile shape selection problem directly.

110

Chapter 6

Related Work

Loop tiling is a traditional but effective optimization for programs whose execution time is

dominated by loops, such as programs with stencil computations. Numerous optimizations

based on the tiling of iteration spaces have been proposed for improving data locality [39, 42,

1, 2, 36, 14, 33, 38, 41, 45, 48], or exploiting parallelism [40, 43, 6, 18, 44, 7, 47]. Most of these

works use polyhedral model as the representation of the tiling transformation. Bondhugula et

al. design and implement Pluto [11], which can automatically transform loops for parallelism

and locality based on the polyhedral model. Their transformation integrates traditional

tiling techniques. However, existing research on tiling mainly focuses on tessellating tiling

and scheduling tiles atomically. There have been ideas of taking advantage of the hierarchy

of the hardware [29, 27, 32, 24, 10, 16, 9]. Hierarchical tiling as an effective optimization

to exploit hardware hierarchy, has been proposed for better usage of memory hierarchy and

enhancing parallel schedule [12, 17, 13].

For existing work on non-tessellating tiling, the closest work to the Overlapped Tiling

discussed in this thesis is that of Krishnamoorthy et al.[26]. Their approach allows over-

lap between neighboring tiles to achieve balanced schedule of parallel tiles. Other works

such as Ripeanu et al. [35] and Meng et al. [30] describe performance models to predict the

111

optimal amount of redundant computation for stencil computations in a grid environment

with message passing or for GPUs, respectively. However, in those paper only single level of

overlapped tiling is considered, so that as more communication/synchronization overhead is

eliminated, the overhead introduced by redundant computations also increases in a higher

order, which would kill the performance benefit of overlapped tiling. The most important

difference between this thesis and existing work is the Hierarchical Overlapped Tiling trans-

formation. Based on the observation that the overhead of redundant computation is the

main drawback of the overlapped tiling approach, Hierarchical Overlapped Tiling applies

overlapped tiling hierarchically. In this way, Hierarchical Overlapped Tiling is able to take

advantage of the hierarchy of the hardware and provide more room of balance between the

additional overhead introduced by redundant computation and the communication/synchro-

nization overhead eliminated.

The purpose of tiling with non-atomic tiles is usually to achieve balanced schedule when

parallelizing tiles. When parallelizing ISLs, a typical strategy is to do loop skewing and

wavefronting. However, wavefronting strategy would lead to an imbalanced schedule [26]. In

order to achieve balanced schedule when tiling ISLs, Krishnamoorthy et al. [26] propose split

tiling. The idea of split tiling is similar to Conjugate-Trapezoid Tiling: each tile is divided

into sub-regions, and the sub-region without dependence is processed first, followed by the

sub-regions with dependences. Since inter-tile communication needs to be done between

the computation of sub-regions within a tile, split tiling is a tiling scheme with non-atomic

tiles. On the other hand, split tiling can be also viewed as a tiling scheme with more

than one tile shapes as discussed in Section 2.1.3, and the set of neighboring tiles with

different shapes forms a hyper-parallelepiped-shaped super tile. Tang et al. [37] implement

the Pochoir compiler, which automates a trapezoidal decomposition for stencil code. Their

decomposition algorithm is very similar to split tiling. So it can be viewed as another example

of tiling with non-atomic tiles. However, their work is based on shared memory machines,

112

and the inter-tile communication overhead is not studied.

For split tiling and the Pochoir compiler, inter-tile communication is still aggregated at

the beginning or end of the execution of tiles or subtiles/sub-regions; inter-tile communica-

tion is not interleaved with computations. So although the tiles/super-tiles are non-atomic,

subtiles and sub-regions are still execution atomically. Because communication latency can-

not be overlapped with computation time, the overall performance could still suffer from

the overhead caused by communication latency. This might be tolerable for shared memory

machines, but could cause performance problems for distributed machines, which is expected

to have higher inter-node communication latency. Demmel et al. [15] proposed techniques

to reduce communications for sparse matrix computations under distributed memory en-

vironment. Their technique allows communication during the execution within a tile, and

schedule computation and communications to reduce the penalty of latency. However, their

results show that speedups are only achieved for machines with very high communication la-

tency; no speedup is achieved by their parallel algorithm on machines with fast network. On

contrast, the Conjugate-Trapezoid Tiling introduced in this thesis can change the number

delayed steps h′ to fit target platforms with different communication latency.

It is well known that tile shape, as well as tile size, can have a significant impact on

locality, inter-tile communication and parallelism [31, 46, 28]. However, most of the existing

research on tiling mainly focus on choosing tile size assuming those of regular shapes (such as

rectangles, or regular parallelograms) that can be produced with the help of simple auxiliary

transformations such as loop skewing. This is because the performance impact of irregular

tiles shapes is usually nonintuitive and it is not easy to develop a strategy to find a good tile

shape among irregular shapes. Besides, it is also difficult to write code with irregular tiles

manually. Xue [46] presents an approach to find the parallelogram or hyper-parallelepiped

tile shape that is able to minimize the amount of communication between tiles. This work

does not consider the impact of tile shape on parallel scheduling. Högstedt et al. [18] intro-

113

duce a model to select the tile shape that minimizes the execution time. Since their work

only consider a single level of tiling, their model shows that the complexity to determine of

execution time when the tiles are parallelograms is equivalent to the complexity of linear

programming problem. None of these works discussed above studies the tile shape selection

problem in the context of hierarchical tiling. Renganarayana and Rajopadhye [34] have the

closest work of using the model of linear programming problem to optimize tiling schemes.

Their work presents a model to estimate the overall execution time of loop nests. Their

framework determines the optimal tile sizes for hierarchical tiling by solving a convex opti-

mization problem. However, their work only considers hyper-rectangle tiles, as well as the

shape of the iteration space. Although it is more difficult to analyze the performance impact

of hierarchical tiling with the general tile shapes, experimental results given in this thesis

show that irregular tile shapes have the potential to achieve higher performance over regular

shapes.

114

Chapter 7

Conclusions

This thesis studies the application of tiling techniques for stencil compucations. previous

studies of tiling optimizations mainly focused on a single level tiling, tessellating tiling, reg-

ular shape tile, and executing tiles atomically. This thesis discusses several novel tiling tech-

niques, including hierarchical tiling, non-tessellating tiling, executing tiles non-atomically,

irregular tile shapes, and combinations of these techniques.

Contributions of this thesis include:

• The introduction of a unified tiling representation framework to represent general tiling

schemes, including non-tessellating tiling and executing tiles non-atomically. An au-

tomatic code generator is developed to facilitate this tiling representation framework,

which was used for the evaluation of the proposed tiling schemes.

• Overlapped Tiling and Hierarchical Overlapped Tiling are introduced in this thesis.

They belong to the category of non-tessellating tiling. Both of these tiling schemes

aim at eliminating communication/synchronization overhead by introducing redundant

computation. The second scheme also takes advantage of hardware hierarchy to reduce

the amount of redundant computation.

115

• The introduction of the design and evaluation of Conjugate-Trapezoid Tiling. Conjugate-

Trapezoid Tiling pipelines intra-tile computation and inter-tile communication, so that

the communication latency can be hidden by overlapping with computation time.

• A novel approach to the tile shape selection problem for hierarchical tiling. It is

concluded that optimal tile shape selection for hierarchical tiling is a multidimensional,

nonlinear, bi-level programming problem. Experimental results show that the irregular

tile shapes have the potential to outperform intuitive tiling shapes.

116

Bibliography

[1] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the performance enhancement of

paging systems through program analysis and transformations. IEEE Transactions on

Computers, 30(5):341–356, May 1981.

[2] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop nests. In Proceed-

ings of the 2000 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing

’00, Washington, DC, USA, 2000. IEEE Computer Society.

[3] M. Alpert. Not just Fun and Games. Scientific American, 4, 1999.

[4] W. F. Ames. Numerical Methods for Partial Differential Equations. Academic, San

Diego, CA, sencond edition, 1977.

[5] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings of the

third ACM SIGPLAN symposium on Principles and practice of parallel programming,

PPOPP ’91, pages 39–50, New York, NY, USA, 1991. ACM.

[6] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal semi-oblique tiling.

In Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and

architectures, SPAA ’01, pages 153–162, New York, NY, USA, 2001. ACM.

[7] R. Andonov and S. Rajopadhye. Optimal orthogonal tiling of 2-D iterations. Journal

of Parallel and Distributed Computing, 45(2):159 – 165, 1997.

117

[8] M. Berkelaar, K. Eikland, and P. Notebaert. Lpsolve.

http://lpsolve.sourceforge.net/5.5/.

[9] G. Bikshandi. Parallel Programming with Hierarchically Tiled Arrays. PhD thesis,

UIUC, 2007.

[10] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J. Garzarán,

D. Padua, and C. von Praun. Programming for parallelism and locality with hier-

archically tiled arrays. In Proceedings of the eleventh ACM SIGPLAN symposium on

Principles and practice of parallel programming, PPoPP ’06, pages 48–57, New York,

NY, USA, 2006. ACM.

[11] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-

matic polyhedral parallelizer and locality optimizer. In Proceedings of the 2008 ACM

SIGPLAN conference on Programming language design and implementation, PLDI ’08,

pages 101–113, New York, NY, USA, 2008. ACM.

[12] L. Carter, J. Ferrante, and S. F. Hummel. Hierarchical tiling for improved superscalar

performance. In Proceedings of the 9th International Symposium on Parallel Processing,

IPPS ’95, pages 239–245, Washington, DC, USA, 1995. IEEE Computer Society.

[13] L. Carter, J. Ferrante, S. F. Hummel, B. Alpern, and K.-S. Gatlin. Hierarchical tiling:

A methodology for high performance. Technical report, 1996.

[14] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data

layout. In Proceedings of the ACM SIGPLAN 1995 conference on Programming language

design and implementation, PLDI ’95, pages 279–290, New York, NY, USA, 1995. ACM.

[15] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in

sparse matrix computations. In Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on, pages 1–12, April.

118

[16] B. B. Fraguela, J. Guo, G. Bikshandi, M. J. Garzarán, G. Almási, J. Moreira, and

D. Padua. The hierarchically tiled arrays programming approach. In Proceedings of the

7th workshop on Workshop on languages, compilers, and run-time support for scalable

systems, LCR ’04, pages 1–12, New York, NY, USA, 2004. ACM.

[17] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris,

J. Ramanujam, and P. Sadayappan. Parametric multi-level tiling of imperfectly nested

loops. In Proceedings of the 23rd international conference on Supercomputing, ICS ’09,

pages 147–157, New York, NY, USA, 2009. ACM.

[18] K. Högstedt, L. Carter, and J. Ferrante. Selecting tile shape for minimal execution

time. In Proceedings of the eleventh annual ACM symposium on Parallel algorithms

and architectures, SPAA ’99, pages 201–211, New York, NY, USA, 1999. ACM.

[19] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Velusam.

Compact thermal modeling for temperature-aware design. In Proceedings of the 41st

annual Design Automation Conference, DAC ’04, pages 878–883, New York, NY, USA,

2004. ACM.

[20] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’88,

pages 319–329, New York, NY, USA, 1988. ACM.

[21] T. A. Johnson, S.-I. Lee, L. Fei, A. Basumallik, G. Upadhyaya, R. Eigenmann, and S. P.

Midkiff. Experiences in using cetus for source-to-source transformations. In Proceedings

of the 17th international conference on Languages and Compilers for High Performance

Computing, LCPC’04, pages 1–14, Berlin, Heidelberg, 2005. Springer-Verlag.

[22] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The

Omega Library interface guide. Technical report, 1995.

119

[23] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8 Decem-

ber 2008.

[24] I. Kodukula, K. Pingali, R. Cox, and D. Maydan. An experimental evaluation of tiling

and shackling for memory hierarchy management. In Proceedings of the 13th interna-

tional conference on Supercomputing, ICS ’99, pages 482–491, New York, NY, USA,

1999. ACM.

[25] G. Kreisel and J.-L. Krivine. Elements of mathematical logic. North-Holland Pub. Co.,

1967.

[26] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and

P. Sadayappan. Effective automatic parallelization of stencil computations. In Pro-

ceedings of the 2007 ACM SIGPLAN conference on Programming language design and

implementation, PLDI ’07, pages 235–244, New York, NY, USA, 2007. ACM.

[27] A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C. Bastoul, and

R. Lethin. A mapping path for multi-gpgpu accelerated computers from a portable

high level programming abstraction. In Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing Units, GPGPU ’10, pages 51–61, New

York, NY, USA, 2010. ACM.

[28] A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to maxi-

mize parallelism and minimize communication. In Proceedings of the 13th international

conference on Supercomputing, ICS ’99, pages 228–237, New York, NY, USA, 1999.

ACM.

120

[29] J. Liu, Y. Zhang, W. Ding, and M. Kandemir. On-chip cache hierarchy-aware tile

scheduling for multicore machines. In Proceedings of the 9th Annual IEEE/ACM Inter-

national Symposium on Code Generation and Optimization, CGO ’11, pages 161–170,

Washington, DC, USA, 2011. IEEE Computer Society.

[30] J. Meng and K. Skadron. Performance modeling and automatic ghost zone optimization

for iterative stencil loops on GPUs. In Proceedings of the 23rd international conference

on Supercomputing, ICS ’09, pages 256–265, New York, NY, USA, 2009. ACM.

[31] H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal tile size adjustment in compiling

general DOACROSS loop nests. In Proceedings of the 9th international conference on

Supercomputing, ICS ’95, pages 270–279, New York, NY, USA, 1995. ACM.

[32] N. Park, B. Hong, and V. Prasanna. Tiling, block data layout, and memory hierarchy

performance. IEEE Transactions on Parallel and Distributed Systems, 14(7):640–654,

July.

[33] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for non-

shared memory machines. In Proceedings of the 1991 ACM/IEEE conference on Super-

computing, Supercomputing ’91, pages 111–120, New York, NY, USA, 1991. ACM.

[34] L. Renganarayana and S. Rajopadhye. A geometric programming framework for optimal

multi-level tiling. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing,

SC ’04, pages 18–, Washington, DC, USA, 2004. IEEE Computer Society.

[35] M. Ripeanu, A. Iamnitchi, and I. T. Foster. Cactus application: Performance predictions

in grid environments. In Proceedings of the 7th International Euro-Par Conference

Manchester on Parallel Processing, Euro-Par ’01, pages 807–816, London, UK, UK,

2001. Springer-Verlag.

121

[36] Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In Pro-

ceedings of the ACM SIGPLAN 1999 conference on Programming language design and

implementation, PLDI ’99, pages 215–228, New York, NY, USA, 1999. ACM.

[37] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The

pochoir stencil compiler. In Proceedings of the 23rd ACM symposium on Parallelism

in algorithms and architectures, SPAA ’11, pages 117–128, New York, NY, USA, 2011.

ACM.

[38] M. Wolf, D. Maydan, and D.-K. Chen. Combining loop transformations considering

caches and scheduling. International Journal of Parallel Programming, 26:479–503,

1998.

[39] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of the

ACM SIGPLAN 1991 conference on Programming language design and implementation,

PLDI ’91, pages 30–44, New York, NY, USA, 1991. ACM.

[40] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize

parallelism. IEEE Transactions on Parallel and Distributed Systems, 2:452–471, October

1991.

[41] W. Wolf and M. Kandemir. Memory system optimization of embedded software. Pro-

ceedings of the IEEE, 91(1):165–182, Jan.

[42] M. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third

SIAM Conference on Parallel Processing for Scientific Computing, pages 357–361,

Philadelphia, PA, USA, 1989. Society for Industrial and Applied Mathematics.

[43] M. Wolfe. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE conference

on Supercomputing, Supercomputing ’89, pages 655–664, New York, NY, USA, 1989.

ACM.

122

[44] D. Wonnacott. Time skewing for parallel computers. In Proceedings of the 12th In-

ternational Workshop on Languages and Compilers for Parallel Computing, LCPC ’99,

pages 477–480, London, UK, UK, 2000. Springer-Verlag.

[45] D. Wonnacott. Achieving scalable locality with time skewing. International Journal of

Parallel Programming, 30:181–221, 2002.

[46] J. Xue. Communication-minimal tiling of uniform dependence loops. In Languages

and Compilers for Parallel Computing, volume 1239, pages 330–349. Springer Berlin /

Heidelberg, 1997.

[47] J. Xue. Loop tiling for parallelism. Kluwer Academic Publishers, Norwell, MA, USA,

2000.

[48] J. Xue and C.-H. Huang. Reuse-driven tiling for improving data locality. International

Journal of Parallel Programming, 26:671–696, 1998.

[49] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and D. Padua. Hierar-

chical overlapped tiling. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO ’12, pages 207–218, New York, NY, USA, 2012.

ACM.

123

