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Abstract

From social choice to statistics to coding theory, rankings are found to be a

useful vehicle for storing and presenting information in modern data systems.

Often, in order to process the information, an appropriately defined distance

on rankings is required or at least helpful. For example, in social choice, the

quality of the results of distance-based voting rules depends almost entirely on

the chosen distance function; in statistics, distances between rankings are used

to measure correlation and to model data; and in coding theory, in the context

of rank modulation, designing codes with a given minimum distance is required

for preserving data integrity.

It is however well-known that conventional distances are not adequate for

many applications. Motivated by several problems from different disciplines,

including problems in social choice and bioinformatics, we axiomatically intro-

duce two novel classes of distances on rankings to address the shortcomings of

conventional distances. In addition, we propose several algorithms for comput-

ing or approximating these distances. The algorithms are based on graph-search

techniques, Viterbi-type algorithms, and dynamic programming. Furthermore,

we present algorithms for rank aggregation using the proposed distances. One

algorithm is based on finding a minimum weight bipartite matching and another

is a PageRank-type algorithm in which the transition probabilities of a Markov

chain model yield the aggregate ranking.

In the context of coding theory, we introduce permutation codes in the Ulam

metric that were not previously reported in the literature. Compared to known

codes, the proposed codes can handle more diverse types of errors, including

arbitrary charge-drop errors as well as other errors that affect a single cell, such

as read disturb or write disturb errors. We present capacity achieving codes

that can correct a constant number of errors and asymptotically good codes

that can correct a linear number of errors in the length of the code. Our results

also include derivation of the asymptotic capacity of permutation codes in the

Ulam metric and simple decoding methods for one class of constructed codes.

As part of our exposition, we also highlight the close connections between the

new code family and permutations with short common subsequences, deletion

and insertion error-correcting codes, and substitution error-correcting codes.
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Chapter 1

Introduction

1.1 Motivation

A ranking of a set of candidates is an arrangement of the candidates according

to preference or some other criterion. Rankings are a non-traditional data for-

mat that is receiving increased attention as a method of storing and presenting

information due to the fact that comparing the degrees to which two objects

possess a certain quality is far easier than assigning a number to represent them.

Indeed, in many cases the latter is not at all possible. For example, it is more

difficult to measure how much one liked a movie than to decide which movie

one liked best when presented with two choices. Even if we assign numbers to

movies based on how much we liked them, in other words, rate the movies, the

ratings cannot be treated as measurements. The only valid operation that can

be performed on the ratings is comparison; it is wrong to assume a movie with

a rating of 4 is “liked twice as much” as a movie with a rating of 2.

In everyday lives we encounter rankings of many different types and in many

different circumstances: We may rank sport teams based on performance [1],

rank movies based on how much we like them, rank politicians based on how

much we dislike them, or even rank pets based on how cute they look [2,3]. We

use rankings to decide which school to apply to [4], which car to buy [5], or

which company to work for [6]. Not only are there popular websites dedicated

to top-ten lists [7], there are top-ten lists of top-ten lists [8].

Rankings and the related theoretical tools are also common in many aca-

demic fields. In statistics, Kendall studied measures of correlation between

rankings, with applications to psychology, education, and economics [9] and

Marden described models and techniques for analyzing data in the form of rank-

ings [10]. Rankings are used in many statistical tests, including the Kruskal-

Wallis test [11], for deciding whether several samples come from a single popu-

lation or from several different populations; and Friedman’s test for identifying

factors that cause significant variation in the variable under study. In com-

puter science, rankings are used in designing and analyzing search engine and

meta-search engine algorithms [12].

In the social sciences, including political science and economics, rankings are

used as a tool to study individual and collective decision making [13–16]. Col-
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lective decision making, often referred to as social choice, is concerned with the

study of voting rules. In one scenario, each voter expresses her preference in the

form of a ranking of candidates. A voting rule is used to determine a ranking

as a representative of the set of votes provided by the voters. This process is

called rank aggregation. Rank aggregation is also useful for condensing informa-

tion that is presented in the form of rankings. For example, consider rankings

of schools based on different criteria such as graduation rate and average class

size, or rankings of a certain product produced by different experts. It is often

useful to produce a single ranking from the given set of rankings.

Rankings are also used in artificial intelligence for the study of automated

systems with many agents [17] as well as in recommender systems in the context

of collaborative filtering [18]. In coding theory, transmitting rankings instead

of absolute values was proposed to combat noise in power-line communication

systems [19]. Furthermore, encoding data as rankings was also proposed for

storage applications, such as flash memories, in order to facilitate writing into

memory as well as reducing the effects of noise [20, 21].

In many applications of rankings, including most applications mentioned

above, a notion of distance between rankings is required or helpful. For ex-

ample, correlation between rankings can be quantified via distance measures as

studied by Kendall [9]. In collaborative filtering, if user preferences are presented

as rankings, distance measures between rankings can be used to identify users

with similar tastes. This similarity information can then be used to suggest a

product to a user based on the preferences of similar users.

One common approach to rank aggregation is distance-based rank aggrega-

tion, first proposed by Kemeny [15,16]. In this approach, one finds the ranking

that has the smallest cumulative distance to the set of votes. The distance

used in distance-based rank aggregation fully determines the outcome and thus

should be carefully chosen.

In coding theoretic applications of rankings, one needs to find a code consist-

ing of rankings such that one ranking in the code is not converted easily into

another by noise. Here, noise manifests itself by reordering entries. In order

to be able to design good error-correcting codes, the distance with respect to

which the code is designed must reflect common errors caused by noise.

The contributions of this work are threefold: First, we propose two new fam-

ilies of distances on rankings motivated by diverse applications of rank aggre-

gation, including bioinformatics. Second, we describe how these distances may

be computed or approximated and present a number of algorithms for rank

aggregation based on the proposed distances. Third, we propose several code

families, in a distance not previously used for rank coding in flash memories,

with improved error-correcting capabilities and present decoding algorithms.
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1.1.1 Rank Aggregation

Our exposition on rank aggregation is motivated by the observation that none

of the conventional distance measures are flexible enough to adequately reflect

factors that are important for measuring closeness of two rankings.

The first and the most commonly used distance for rank aggregation is the

Kendall τ distance, introduced by Kendall in 1948 [9]. Mathematically, rank-

ings can be modeled as permutations. The Kendall τ distance between two

permutations is the minimum number of swaps of adjacent elements need to

take one permutation to the other. This distance was rediscovered by Kemeny

when he proposed distance-based rank aggregation in 1959 [15, 16]. Kemeny

proposed a set of reasonable axioms for a distance function between rankings

and obtained a unique distance that satisfied those axioms – the Kendall τ

distance. Distance-based rank aggregation using the Kendall τ distance is com-

monly known as the Kemeny aggregation or Kemeny’s rule. In 1978, Young and

Levenglick [22] showed that the Kemeny aggregation is the unique aggregation

method that has three desirable properties, namely, the Condorcet property,

consistency, and neutrality [22]. As a result, the Kemeny aggregation is also

referred to as the Kemeny-Young method.

Although the Kendall τ and many other distances including Spearman’s

Footrule [23] are well-established and well-studied, they cannot take into ac-

count two important factors. First, in many applications certain positions in

rankings are more relevant than others, and thus changes to these positions

must induce a larger distance [24–29]. For example, search engine users tend to

click more frequently on the top-ranked results than lower-ranked ones [30] and

thus it is more important for search engines to get the top-ranked results right

than the low-ranked entries [26]. In such a setting, for instance, it is reasonable

to require that the distance between rankings (1,2,3,4,5,6) and (2,1,3,4,5,6)
be larger than the distance between (1,2,3,4,5,6) and (1,2,3,5,4,6).
If admission judges have to decide which few candidates to eliminate, the

bottom portions of their rankings are more relevant [31]. In predicting the

results in sport league systems with promotion and relegation, such as the Italian

and the English soccer league systems, correct prediction of a certain number

of top-ranked and a certain number of bottom-ranked teams is more important

than predicting the correct positions of mid-ranked teams.

Second, when swapping elements of a ranking, swapping elements that are

similar, such as swapping two similar movies or swapping two job candidates

with similar sets of skills, must contribute less to the distance than swapping

dissimilar elements. When rank aggregation is used in such applications, new

distance measures that can take positional relevance and similarity information

into account are needed.

In order to address these problems, we propose two novel distance measures.

The basis of our approach is Kemeny’s set of axioms for distance measures on
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permutations. By relaxing these axioms we arrive at classes of distance functions

where different swaps are assigned different weights. We refer to these distance

functions as weighted distances.

In addition to rank aggregation, weighted distances are useful for collabo-

rative filtering [18]. In that context, by assigning larger weights to swaps at

the top of preference rankings or by assigning smaller weights to swaps of sim-

ilar candidates, one can define weighted distances that can be used to identify

similar users more accurately.

Weighted distances can also be used in ordinal genomic data fusion. Since

genomic data such as gene expression levels are highly dependent on the experi-

mental conditions, quantitative fusion of data generated by different laboratories

represent difficult tasks [32]. But for identifying genes involved in a certain dis-

ease, if genes were first ranked according to different features, and only then

used in data fusion [33], a number of incompatibility issues could be avoided.

This kind of rank transform [34] may be viewed as a process analogous to di-

mensionality reduction, and in genomic data fusion, it can serve the purpose

of removing arbitrary and meaningless information in numerical data that only

carry ordinal information. Weighted distances that assign large weights to top

of the rankings may be useful in this context due to the fact that higher ranks

are more likely to be less noisy than lower ranks.

1.1.2 Rank Modulation Coding

Flash memories consist of cells that can store charge levels. Due to aging,

environmental conditions, and design, the cells are subjected to charge leakage,

leading to the phenomena of low memory endurance [35]. Due to this leakage,

the information content of the cells may be compromised beyond the possibility

of correction. Furthermore, in flash memories, while the charge of individual

cells may easily be increased, it is difficult to reduce the charge of a single

cell without affecting its neighbors [21]. As a result, to reduce the charge of a

given cell, one needs to erase a block containing several cells. The difficulty of

reducing the charge of a single cell is particularly problematic when writing to

a cell: If the charge placed on a cell is more than the intended amount, that is,

if an overshoot occurs, a block of cells needs to be erased and data needs to be

rewritten on all cells in the block.

To combat the effects of charge leakage and to avoid unnecessary block era-

sures, Jiang et al. [20, 21] proposed using rank modulation in flash memories.

The main idea is to store information as a ranking of cell charges rather than ab-

solute values. For example, to store the ranking (3,1,4,2), cell 3 is programmed

with the largest charge, cell 1 with the second largest charge, and so on. Using

rank modulation, along with a cell programming method called “push to the

top” [21], alleviates the overshoot problem mentioned above. Additionally, a

storage error occurs only if a charge of higher level leaks below the level of a
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previously less charged cell. If the leakage rate is small and almost the same

for all cells, the ranking represented by charge levels is not affected by leakage

in short periods of time. This reduces the number of errors caused by charge

leakage.

Most leakage models assume somewhat uniform relative cell charge leakage,

allowing only for the possibility of exchanging the ranks of two consecutive

symbols. In this case, the distance function for input-output sequences of flash

memories is the Kendall τ distance between permutations [20, 21, 36, 37].

However, if the number of possible charge levels is large, and a cell for a

variety of reasons has a higher leakage rate than other cells, the charge of this

cell may drop below the charge of a large number of other cells. While such

an error may be modeled as a sequence of adjacent swaps, it should be noted

that this type of error is the result of a single error event, and so it should be

modeled as a single error. For this reason, we argue that a different distance

measure should be used, namely the Ulam distance [38], which is the minimum

number of elements that need to be “moved” to change one permutation into

another. Furthermore, the Ulam distance is well suited for modeling errors that

are not caused by leakage, such as read disturb and write disturb errors [39].

In our exposition on permutation codes for flash memories, we find the asymp-

totic capacity of codes in the Ulam metric and propose several families of codes

in this metric, including codes with asymptotic rate 1 that correct a constant

number of errors, as well as asymptotically good codes. Furthermore, we present

a decoding algorithm for one class of the proposed codes.

1.2 Structure of Thesis and Summary of Results

In this section, we present the outline of the dissertation and summarize our

results.

In Chapter 2, we introduce a new type of distance on rankings called the

weighted Kendall distance, which is the minimum weight of a sequence of swaps

of adjacent elements that takes one ranking to another, where each adjacent

swap is assigned a nonnegative weight. We show that the weighted Kendall dis-

tance is the unique solution to a relaxed set of Kemeny’s axioms. We present al-

gorithms for computing or approximating the weighted Kendall distance. While

a polynomial-time algorithm for computing the weighted Kendall distance for

an arbitrary set of weights is not known, the weighted Kendall distance can

be computed efficiently when weight are decreasing, that is, when the weight

of swapping candidates at higher ranks is larger than the weights of swapping

candidates at lower ranks. Decreasing weights represent an important case as

such weights result in distances that are more sensitive to changes at the top of

rankings than changes at lower positions. We also show that the distance can

be approximated efficiently within a factor of two for any set of weights.
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Chapter 3 is devoted to the weighted transposition distance. The weighted

transposition distance, the second distance that we propose, is the minimum

weight of a sequence of swaps that take one permutation to another when each

swap is assigned a nonnegative weight. Note that swaps of non-adjacent el-

ements are also allowed. If all weights equal one, the weighted transposition

distance reduces to the Cayley distance, the minimum number of swaps needed

to convert one permutation to another. A simple result, established by Cay-

ley in 1849 [40], indicates that the Cayley distance can be computed in linear

time. Computing the weighted transposition distance is however substantially

more challenging. Although at this point it is not known if the problem is NP-

hard, we show that large families of weight functions – such as weights based

on metric-paths – have exact polynomial-time algorithms. Furthermore, we

devise algorithms for approximating the weighted transposition distance for ar-

bitrary weights, with an approximation constant that does not exceed 4. These

algorithms represent an amalgamation of well-known algorithms in coding and

computer science, such as the Viterbi algorithm, the Bellman-Ford shortest path

algorithm, and dynamic programming methods.

In Chapter 4, we discuss rank aggregation algorithms for weighted distances.

The problem of rank aggregation is known to be NP-hard for the Kendall τ

distance [12]. The same holds for weighted distances as well. We present two

approximation algorithms for rank aggregation with weighted distances based

on known approximation algorithms for rank aggregation with the Kendall τ

distance. One algorithm is based on minimum weight bipartite matching and

produces a 2-approximation, while the other is based on a Markov chain model

with candidates as states and transition probabilities that are determined by

the set of votes.

In Chapter 5, we propose using the Ulam distance on permutations to model

the effect of errors in flash memories. We study the relationships of codes in

the Ulam distance with codes in other common metrics and present the coding

capacity in different metrics. We design asymptotically good permutation codes

in the Ulam distance by interleaving codes in the Hamming metric and present

decoding algorithms for one class of constructed codes.

1.3 Notation, Definitions, and Preliminaries

In what follows, we present the definitions used in the subsequent chapters. We

also present some simple results regarding the relationships between different

distances on permutations. A summary of notation is given in the back matter

for quick reference.
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Figure 1.1: The digraph dig (π) of the permutation π = ⟨1 2 3⟩ ⟨4 5⟩.

1.3.1 Definitions Regarding Permutations

Let [n] = {1, . . . , n}. A permutation of [n] is a bijection from [n] to itself. The

set of permutations of [n] is denoted by Sn. A permutation π ∈ Sn may be

written as (π(1), . . . , π(n)). The identity permutation (1, . . . , n) is denoted by

e and the inverse of a permutation π is denoted by π−1.

The product π2π1 of two permutations π1 and π2 is the permutation obtained

by first applying π1 and then π2, i.e., (π2π1)(i) = π2(π1(i)) for i ∈ [n].
The functional digraph of a function f ∶ [n] → [n], denoted by dig (f), is a

directed graph with vertex set [n] and an edge from i to f(i) for each i ∈ [n].
We use the words vertex and element interchangeably.

For a permutation π of [n], dig (π) is a collection of disjoint cycles since

the in-degree and out-degree of each vertex is exactly one. The cycles of a

permutation are the cycles of its functional digraph. A cycle of the permutation

may be written as ⟨a1 ⋯ ak⟩, where k is the length of the cycle and there is

an edge from ai to ai+1 in the functional digraph for i ∈ [k], with the indices

evaluated modulo k.

With slight abuse of notation, a cycle σ is also used to refer to the permutation

that has σ as a cycle and has all other elements as fixed points. Thus, the

product of cycles is well-defined: the product of two cycles σ1 and σ2 is the

product of the corresponding permutations. For example, we have ⟨1 4 2⟩ ⟨2 5⟩ =⟨2 5 1 4⟩. In particular, we can write every permutation as a product of its

cycles. This represents the cycle representation of a permutation. For example,

as shown in Figure 1.1, the cycle representation of π = (2,3,1,5,4) is ⟨1 2 3⟩ ⟨4 5⟩
and thus we may write π = (2,3,1,5,4) = ⟨1 2 3⟩ ⟨4 5⟩.
A cycle of length two is a transposition. A transposition with elements a and

b is denoted by ⟨a b⟩. The set of all transpositions in Sn is denoted by Tn. An

adjacent transposition is a transposition ⟨a b⟩ such that ∣a − b∣ = 1. The set of

adjacent transpositions of Sn is denoted by An.

Note that for π ∈ Sn, π ⟨a b⟩ is obtained by swapping elements in positions

a and b in π, and ⟨a b⟩π is obtained by swapping a and b in π. For example,(3,1,4,2) ⟨2 3⟩ = (3,4,1,2) and ⟨2 3⟩ (3,1,4,2) = (2,1,4,3). For more details

and examples, see §3.2.1.
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For distinct i, j ∈ [n], a translocation φ(i, j) is a permutation obtained from

the identity by moving i to the position of j and shifting elements between i

and j, including j, by one:

φ(i, j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, . . . , i − 1, i + 1, i + 2, . . . , j, i, j + 1, . . . , n), if i < j,

(1, . . . , j − 1, i, j, j + 1, . . . , i − 1, i + 1, . . . , n), if i > j.

As an example, let σ = (1,3,5,7,2,4,6,8). We have

σφ(3,6) = (1,3,7,2,4,5,6,8),
σφ(5,2) = (1,2,3,5,7,4,6,8).

For i < j, the translocation φ(i, j) is called a right-translocation, and the

translocation φ(j, i) is called a left-translocation. Observe that the inverse of

the left-translocation φ(i, j) is the right-translocation φ(j, i), and vice versa.

The length of a translocation φ(i, j) is the number of elements between i and

j, including j, that is, ∣i − j∣.
We use the term sequence to refer to an ordered list. Our is focus is on

finite sequences. The length of a sequence s, denoted by ∣s∣, is the number

of its elements. We write a sequence by separating its elements by commas

and enclosing them inside a pair of parentheses. Furthermore, the ith element

of a sequence s is denoted by si. For example, for a sequence s, we write

s = (s1, . . . , s∣s∣). Nevertheless, for some types of sequences, we may use a

different notation that is particular for that type. For instance, as explained

above, a permutation π of [n] is typically written as π = (π(1), . . . , π(n)).
A sequence τ = (τ1, . . . , τ∣τ ∣) of permutations is a transform. The sequence τ

is a transform converting π to σ if πτ1⋯τ∣τ ∣ = σ. Note that the permutations τi

are multiplied on the right. On occasion, we may deal with transforms whose

elements are multiplied on the left. Whenever this is the case, it will be explic-

itly pointed out in the text. By a transform of π, we mean a transform that

converts π to e. A transposition transform is a transform whose elements are

transpositions. Translocation transforms and adjacent-transposition transforms

are defined similarly. If the type of the transform is clear from the context, it

will not be described in more detail.

1.3.2 Definitions Regarding Rankings

A ranking is a list of candidates arranged in order of preference (or according

to some other criterion) with the first candidate being the most preferred and

the last candidate being the least preferred.

Consider the set of all possible rankings of n candidates. Via an arbitrary,

but fixed, injective mapping from the set of candidates to {1, . . . , n}, each rank-

ing may be represented as a permutation. The mapping is often implicit and
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we usually equate rankings of n candidates with permutations in Sn. This is

equivalent to assuming that the set of candidates is the set [n].
For a ranking π ∈ Sn and a, b ∈ [n], π is said to rank a before b or higher than

b if π−1(a) < π−1(b). For brevity, we may show this relationship as a <π b. Two

rankings π and σ agree on the relative order of a pair {a, b} of elements if both

rank a before b or both rank b before a. Furthermore, the two rankings π and

σ disagree on the relative order of a pair {a, b} if one ranks a before b and the

other ranks b before a. For example, consider π = (1,2,3,4) and σ = (4,2,1,3).
We have that 4 <σ 1 and that π and σ agree on {2,3} but disagree on {1,2}.

1.3.3 Definitions Regarding Graphs

We assume that the reader is familiar with basic concepts and definitions in

graph theory. Nevertheless, for completeness, we state some simple facts and

definitions.

The vertex set of a graph G is denoted by V (G), and its edge set is denoted

by E(G). An edge with endpoints u and v is denoted by (uv). The subgraph of

G induced by the vertices in a set S ⊆ V (G) is denoted by G [S]. The degree of
a vertex v in G is denoted by degG (v) or, if there is no ambiguity, by deg (v).
Deletion of an edge t from a graph G is denoted by G−t and deletion of a vertex

v and its incident edges from G is denoted by G − v. The same notions can be

defined for multigraphs – graphs in which there may exist multiple edges with

the same endpoints.

We say that an edge t in G is a cut edge for two vertices a and b, denoted

by a,b-cut edge, if in G − t there exists no path from a to b. The well-known

Menger’s theorem [41] asserts that the minimum number of edges one needs to

delete from G to disconnect a from b is also the maximum number of pairwise

edge-disjoint paths between a and b. This theorem holds for multigraphs as well.

An embedding is a drawing of a graph in the plane such that no two edges

cross. An embedding of dig (π) can be obtained by placing vertices of disjoint

cycles on disjoint circles as seen in Figure 1.1. This embedding is also referred

to as dig (π). If the direction of the edges of dig (π) are not explicitly indicated,

we assume a clockwise direction and treat dig (π) as an undirected graph.

1.3.4 Distances on Permutations

A metric on a set S is a function d ∶ S × S → R≥0, where R≥0 denotes the set of

nonnegative reals, such that for all x, y, z ∈ S,

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and
3. d(x, y) ≤ d(x, z) + d(z, y).
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If the first condition is not satisfied but the other two are, then d is a pseudo-

metric. A distance function or simply a distance is a metric or a pseudo-metric.

Our discussion focuses on distances on Sn. Below, we review some of the most

commonly known such distances. The reader is referred to [38] and [42] for more

details.

In addition to the properties stated above, it is often required for a distance

on Sn to have some additional properties. One of the most useful is the notion

of invariance: A distance d on Sn is right-invariant if, for all π,σ,ω ∈ Sn, we

have d(π,σ) = d(πω,σω). Similarly, d is left-invariant if d(π,σ) = d(ωπ,ωσ). A
distance that is both left-invariant and right-invariant is a bi-invariant distance.

Intuitively, a right-invariant distance is invariant with respect to reordering of

elements and a left-invariant distance is invariant with respect to relabeling of

elements.

Some distances can be described in terms of transforms that convert one

permutation to another. We use the following definitions when defining such

distances as well as elsewhere throughout this work. We use T(π,σ) to denote

the set of transposition transforms that convert π to σ. That is, T(π,σ) is the
set of transforms τ = (τ1, . . . , τ∣τ ∣) such that τi ∈ Tn and πτ1⋯τ∣τ ∣ = σ. The set of

adjacent-transposition transforms that convert π to σ is denoted by A(π,σ).

1.3.4.1 Kendall τ Distance

The Kendall τ distance between two permutations π and σ is denoted by

dK(π,σ) and is defined as the minimum number of swaps of adjacent elements

required to transform π into σ. In other words,

dK(π,σ) =min{∣τ ∣ ∶ τ ∈ A(π,σ)}.
An inversion of π is a pair {a, b} such that a < b but π−1(b) < π−1(a). For

example, {2,4} is an inversion of (4,1,2,3). An odd permutation is a permu-

tation with an odd number of inversions. Similarly, an even permutation is a

permutation with an even number of inversions.

A relative inversion of π and σ is a pair {a, b} such that π−1(a) < π−1(b) but
σ−1(b) < σ−1(a). The set of all such pairs is denoted by I(π,σ):

I(π,σ) = {{a, b} ∶ π−1(a) < π−1(b), σ−1(b) < σ−1(a)}.
If π and σ are viewed as rankings, a relative inversion is pair on which π and

σ disagree. The following lemma, which is well-known, shows that the Kendall

τ distance can be interpreted as the number of disagreements between two

rankings.
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Lemma 1.1. For π,σ ∈ Sn,

dK(π,σ) = ∣I(π,σ)∣ .
Proof. Consider a sequence τ = (τ1, . . . , τk) ∈ A(π,σ), with k = dK(π,σ). Let

πj = πτ1⋯τj . Each τi decreases the number of inversions by at most one. Hence,

∣I(πj , σ)∣ ≥ ∣I(πj−1, σ)∣ − 1
and thus

0 = ∣I(πk, σ)∣ ≥ ∣I(π,σ)∣ − k.
Since k = dK(π,σ), we obtain

dK(π,σ) ≥ ∣I(π,σ)∣ .
On the other hand, it is easy to see that one can find τi, i ∈ [k], in such a way

that each τi decreases the number of inversions by one. For example, Bubble

Sort [43] is one such well-known algorithm. Hence,

dK(π,σ) = ∣I(π,σ)∣ .

It easily follows from the definition of the Kendall τ distance that it is a

left-invariant distance.

1.3.4.2 Cayley Distance

The Cayley distance between two permutations, dT (π,σ), is the number of

swaps required to convert one permutation to the other. In other words, it is

the minimum length of a transposition transform converting π to σ,

dT (π,σ) =min{∣τ ∣ ∶ τ ∈ T(π,σ)}.
Note that unlike for the case of the Kendall τ distance, here, one is allowed to

use all transpositions and not only adjacent transpositions. The Cayley distance

is also known as the transposition distance.

From the definition of the Cayley distance it follows that it is left-invariant.

However it is also right-invariant, and therefore, it is bi-invariant. The right-

invariance of the Cayley distance can be proved using the fact that for every

permutation ω and transposition ⟨a b⟩, we have ω ⟨a b⟩ = ⟨ω(a) ω(b)⟩ω.
A transposition ⟨a b⟩ applied to a permutation π ∈ Sn increases (resp. de-

creases) the number of cycles of π by one if a and b are in the same cycle (resp.

different cycles) of π. The distance dT (π, e) equals n minus the number of cycles
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of π as each transposition can increase the number of cycles by one. This result

is due to Cayley [40]. From the left-invariance of the Cayley distance, it follows

that dT (π,σ) = dT (σ−1π, e). Thus the distance dT (π,σ) equals n minus the

number of cycles of σ−1π.

Finally, we note that each transposition applied to a permutation changes the

number of inversions by an odd value. Hence, the Cayley distance of an odd

(resp. even) permutation to the identity is odd (resp. even).

1.3.4.3 Hamming Distance

The Hamming distance between permutations π and σ, denoted by dH(σ,π), is
the number of positions i at which π(i) and σ(i) differ. The Hamming distance

is also bi-invariant.

Suppose that {c1, . . . , ck} is the set of the cycles of π with length more than

1. The Hamming distance dH(π, e) equals ∑k
i=1 ∣ci∣. From §1.3.4.2, we have

dT (π,σ) =∑k
i=1 (∣ci∣ − 1). Hence,

dH(π, e) = dT (π, e) +C2(π),
where C2(π) is the number of cycles of π with length at least 2. From the

left-invariance of dH and dT , we find

dH(π,σ) = dT (π,σ) +C2(σ−1π). (1.1)

When transforming π to σ using transpositions, each transposition decreases

the Hamming distance between the two permutations by at most two. Hence,

dT (π,σ) ≥ dH(π,σ)/2. Sorting a permutation of length d requires at most d

transpositions. Thus, dT (π,σ) ≤ dH(π,σ). These inequalities result in

1

2
dH (π,σ) ≤ dT (π,σ) ≤ dH (π,σ) . (1.2)

In fact, if dH(π,σ) > 0, then dT (π,σ) ≤ dH(π,σ) − 1. The inequalities given

in (1.2) can also be obtained by showing that 0 ≤ C2(σ−1π) ≤ dT (π,σ).

1.3.4.4 Spearman’s Footrule and Rank Correlation

Spearman’s Footrule, dF , and Spearman’s rank correlation, dR, are defined as

dF (π,σ) = n

∑
i=1
∣π−1(i) − σ−1(i)∣ , (1.3)

dR(π,σ) =
¿ÁÁÀ n

∑
i=1
(π−1(i) − σ−1(i))2. (1.4)

Both distances are bi-invariant [42].
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More generally, one can define the lp distance on permutations as

( n

∑
i=1
∣π−1(i)− σ−1(i)∣p)1/p .

Diaconis and Graham [23] proved the following inequalities:

dK(π,σ) + dT (π,σ) ≤ dF (π,σ) ≤ 2dK(π,σ).
1.3.4.5 Ulam and Levenshtein Distances

The Ulam distance between two permutations π and σ of [n], denoted by

dU(π,σ), equals n−lcs(π,σ), where lcs(π,σ) is the length of the longest common

subsequence1 of π and σ.

The length of the longest common subsequence of two permutations is left-

invariant. To prove this claim, let us consider three arbitrary permutations

σ,π,ω ∈ Sn with lcs(σ,π) = k. There exists a longest common subsequence

i1, i2, . . . , ik of σ and π. The subsequence ω(i1), ω(i2), . . . , ω(im) is a subse-

quence of both ωσ and ωπ, and thus lcs(ωσ,ωπ) ≥ lcs(σ,π). On the other

hand, by considering the permutations ωσ,ωπ, and ω−1 instead of σ,π, and ω,

it can also be shown that lcs(σ,π) ≥ lcs(ωσ,ωπ). This proves that lcs(⋅, ⋅) is

left-invariant. Hence, the Ulam distance is left-invariant.

The following proposition relates the Ulam distance to translocation trans-

forms.

Proposition 1.2. For π,σ ∈ Sn, the distance dU (π,σ) equals the minimum

length of a translocation transform converting π to σ.

Proof. The minimum length of a translocation transform converting π to σ

equals the minimum length of a translocation transform converting σ−1π to e.

Additionally, dU(π,σ) = dU(σ−1π, e). Hence, it suffices to prove that dU(ω, e)
equals the minimum length of a translocation transform converting ω to e, where

ω = σ−1π.

Let lcs(ω) = lcs(ω, e). Note that lcs(ω) equals the length of a longest in-

creasing subsequence of ω. Let Sl denote the elements of one such subsequence.

Furthermore, let d denote the minimum length of a translocation transform con-

verting ω to e. It is possible to transform ω into e with n− lcs(ω) translocations
by moving the elements of the set [n]/Sl. Hence, d ≤ dU(ω, e).
Next, we show that d ≥ dU(ω, e) = n − lcs(ω). We start with ω and transform

it to e by applying a sequence of translocations of length d. Every translocation

increases the length of the longest increasing subsequence by at most one. Hence,

we need at least n − lcs(ω) translocations to transform ω into e and thus d ≥

dU(ω, e).
1Here, as anywhere else in this work, we assume that one may choose, according to some

arbitrary but fixed rule, one longest common subsequence if the longest common sequence is
not unique.
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The Ulam distance is closely related to Levenshtein’s insertion/deletion dis-

tance, denoted by ρ (u, v), and defined as the number of deletions and insertions

required to transform u into v. Levenshtein [44] showed that, for sequences of

length n, ρ (u, v) = 2 (n − lcs(u, v)) . This equality also holds for permutations

in Sn and thus

ρ (σ,π) = 2dU(σ,π).
This result may be also deduced directly, by observing that a translocation

consists of a deletion and an insertion.

We study next the relationships between the Ulam distance and the other

distances mentioned above. These relationships will be useful for our analysis in

Chapter 5 in the context of designing error-correcting codes for flash memories.

A translocation of length ℓ can be represented as ℓ adjacent transpositions.

We have ℓ ≤ n−1. Thus, dK(π,σ) ≤ (n−1)dU(π,σ). Furthermore, each adjacent

transposition is a translocation. Hence,

1

n − 1
dK(σ,π) ≤ dU(σ,π) ≤ dK(σ,π). (1.5)

Both the upper bound and the lower bound are tight: the upper bound is

achieved for π obtained from σ via a single adjacent transposition, while the

lower bound is achieved for, say, σ = e and π = (2,3, . . . , n,1). It is also straight-

forward to show that the diameter of Sn with respect to the Ulam distance

equals n − 1.

A similar pair of bounds may be shown to hold for the Ulam distance and the

Hamming distance between two permutations.

Let F (π,σ) = {i ∈ [n] ∶ π(i) = σ(i)}. The subsequence of σ consisting of

elements σ(i), i ∈ F (σ,π), is also a subsequence of π and thus dU(σ,π) = n −
lcs(σ,π) ≤ n− ∣F (σ,π)∣ = dH(σ,π). Furthermore, since for any two permutations

π,σ ∈ Sn one has dH(π,σ) ≤ n, it follows that dH(π,σ) ≤ ndU(π,σ). Thus,
1

n
dH(π,σ) ≤ dU (π,σ) ≤ dH (π,σ) . (1.6)

These inequalities are sharp. For the upper-bound, consider π = (1,2, . . . , n)
and σ = (n, . . . ,2,1), with n odd. For the lower-bound, let π = (1,2, . . . , n) and
σ = (2,3, . . . , n,1) so that dH(π,σ) = n and dU(π,σ) = 1.
Finally, we consider the relationship between the Ulam distance and the Cay-

ley distance. Note that each transposition may be viewed as two translocations,

implying that dU(π,σ) ≤ 2dT (σ,π). It is also immediate that 1
n−1dT (π,σ) ≤

dU(π,σ). Hence, we have

1

n − 1
dT (π,σ) ≤ dU(π,σ) ≤ 2dT (σ,π).
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Chapter 2

Weighted Kendall Distance

2.1 Introduction

Rank aggregation, sometimes referred to as ordinal data fusion, is a classical

problem frequently encountered in the social sciences, web search and Internet

service studies, expert opinion analysis, and economics [15, 28, 45–48].

The problem can be succinctly described as follows: a set of “voters” or

“experts” is presented with a set of candidates (objects, individuals, movies,

etc.). Each voter’s task is to produce a ranking, that is, an arrangement of

the candidates in which the candidates are ranked from the most preferred to

the least preferred. The voters’ rankings are then passed to an aggregator.

The aggregator outputs a single ranking, the aggregate ranking, to be used as a

representative of all votes.

If there are only two candidates, a natural solution exists: the candidate that

is preferred by a majority of voters is ranked first and the other candidate is

ranked second. The situation becomes significantly more complex when three

or more candidates are considered. Two of the most obvious extensions of vote

aggregation for two candidates to the case of more than two candidates are the

plurality rule and the Condorcet method (pairwise majority count). In the first

case, candidates are ranked based on the number of times they appear at the

top of the a voter’s ranking. In the second case, among two candidates a and

b, candidate a is preferred to candidate b if a is preferred to b by a majority of

voters. Unfortunately, both methods are plagued by a number of problems that

have cast doubt on the plausibility of fair vote aggregation. Examples include

the famous Condorcet paradox [49] which arises when majority preference is not

transitive (i.e., for example, a is preferred to b, b to c, and c to a).

To mitigate such problems, two important categories of rank aggregation

methods were studied in the past. These are score-based methods and distance-

based methods. In score-based methods, the first variant of which was proposed

by Borda [50], each candidate is assigned a score based on its position in each

of the votes (rankings). The candidates are then ranked based on their total

score. One argument in support of using Borda’s count method is that it ranks

highly those candidates supported at least to a certain extent by almost all

voters, rather than candidates who are ranked highly only by the simple majority
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of voters. In distance-based methods [15], the aggregate is deemed to be the

ranking at the smallest cumulative distance from the votes. This approach

can be thought of as finding the median of the set of voters’ rankings. Well-

known distance measures for rank aggregation include the Kendall τ , the Cayley

distance, and Spearman’s Footrule [38].

The most important aspect of distance-based rank aggregation is to choose an

appropriate distance function. To address this issue, Kemeny [15,16] presented

a set of intuitively justifiable axioms that a distance measure must satisfy to be

deemed suitable for aggregation purposes, and showed that only one distance

measure satisfies the axioms – namely, the Kendall τ distance. Recall that the

Kendall τ distance between two rankings is the smallest number of swaps of

adjacent elements that transforms one ranking into the other.

Unfortunately, the Kendall τ is not flexible enough to take into account two

important factors. First, in many applications different positions in a ranking

are of different degrees of importance. For example, the top of a ranking may be

more important than the bottom and so changes to the top of the ranking must

induce a larger distance. Second, when transposing elements of the ranking,

transposing elements that are similar must induce a smaller distance than those

that are dissimilar. Devising a distance function that can reflect the first factor

is the subject of this chapter. In Chapter 3, we propose a distance that takes

into account the second factor and discuss its applications.

In the next subsection, we discuss in more details the relative importance of

different positions in a ranking.

2.1.1 Motivation – Top vs. Bottom

Consider the ranking π of the “World’s 10 best cities to live in,” according to a

report composed by the Economist Intelligence Unit [51]:

π = (Melbourne, Vienna, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland).
Now consider two other rankings that both differ from π by one swap of

adjacent entries:

π′ = (Melbourne, Vienna, Vancouver, Calgary, Toronto,

Adelaide, Sydney, Helsinki, Perth, Auckland),
π′′ = (Vienna, Melbourne, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland).
The astute reader probably immediately noticed that the top candidate was

changed in π′′, but otherwise took some time to realize where the adjacent swap

appeared in π′. This is a consequence of the well-known fact that humans pay
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Figure 2.1: Click-through rates of webpages appearing on the first page of
Google search.

more attention to the top of the list than any other location in the ranking,

and hence notice changes in higher positions easier.1 Note that the Kendall τ

distance between π and π′ and between π and π′′ is one, but it would appear

reasonable to require that the distance between π and π′′ be larger than that

between π and π′, as the corresponding swap occurred in a more significant

(higher ranked) position in the list.

As a second example, consider the well-studied notion of Click-through rates

(CTRs) of webpages in search engine results pages (SERPs). The CTR of a

link is the number of clicks on that link divided by the number of times that it

is displayed [52]. A recent study by Optify Inc. [30] showed that the difference

between the average CTR of the first (highest-ranked) result and the average

CTR of the second (runner-up) result is very large, and much larger than the

corresponding difference between the average CTRs of the lower ranked items

(see Figure 2.1). Hence, in terms of directing search engine traffic, swapping

higher-ranked adjacent pairs of search results has a larger effect on the perfor-

mance of Internet services than swapping lower-ranked search results.

The aforementioned findings should be considered when forming an aggregate

ranking of webpages. For example, in studies of CTRs, one is often faced with

questions regarding traffic flow from search engines to webpages. One may think

of a set of keywords, each producing a different ranking of possible webpages,

with the aggregate representing the median. Based on Figure 2.1, if a webpage

is ranked in the bottom half, its exact position is not as relevant as when it is

ranked in the top half. Furthermore, a webpage appearing roughly half of the

time at the top and roughly half of the time at the bottom will generate more

incoming traffic than a webpage with persistent average ranking.

We refer to the issue of different importance of different positions in rankings

1Note that one may argue that people are equally drawn to explore the highest and lowest
ranked items in a list. For example, if about a hundred cities were ranked, it would be
reasonable to assume that readers would be more interested in knowing the ten highest ranked
and the ten lowest ranked cities, rather than the cities occupying positions 41 to 60. These
positional differences may also be addressed within the framework proposed in this chapter.
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as the “top-vs-bottom” problem. Besides the importance in emphasizing the

relevance of the top of the list, distance measures that penalize perturbations at

the top of the list more than perturbations at the bottom of the list have another

important application in practice – eliminating negative outliers. As will be

shown in subsequent sections, top-vs-bottom distance measures allow candidates

to be highly ranked in the aggregate even though they have a certain (small)

number of highly negative rankings. The policy of eliminating outliers before

rating items or individuals is a well-known one, but has not been considered in

the social choice literature in the context of distance-based rank aggregation.

To address the top-vs-bottom, we axiomatically describe a class of distance

functions by assigning different weights to different adjacent transpositions,

termed the weighted Kendall distance. Furthermore, we show that the pro-

posed distance functions can be computed in polynomial time in two important

special cases and provide a polynomial-time 2-approximation algorithm for the

general case.

The remainder of the chapter is organized as follows. Related work is reviewed

in §2.2. In §2.3, we present Kemeny’s axioms and show that for rankings with

no ties one of Kemeny’s axioms in redundant. The weighted Kendall distance,

as well as its axiomatic definitions, is introduced in §2.4. We devote §2.5 to the

computational aspects of the weighted Kendall distance. Finally, in §2.6, we

discuss how the weighted Kendall distance can be used for rank aggregation.

2.2 Related Work

The need for distance measures that do not treat different positions in rankings

similarly, as well as the inadequacy of the Kendall τ distance to be used for

solving such problems, is well known, see, for example [24–29]. In this section, we

review some of the measures of correlation/discordance between rankings that

were proposed in the literature, with the goal of addressing the aforementioned

problem.

Shieh [25] proposes a function SHw on rankings defined as

SHw(π,σ) = n−1
∑
i=1

n

∑
j=i+1

wijI(σ−1(π(j)) < σ−1(π(i)))
where wij is the weight assigned to the pair {i, j} with wij = wji and wii = 0,

and where I(Condition) equals 1 if Condition is true and equals 0 otherwise.

If the weights wij for small i and j are chosen to be larger than the weights for

large i and j, then SHw penalizes relative inversions that involve elements that

are ranked high by π more than elements that are ranked low.

An important drawback of SHw is that it is not symmetric and thus not a
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distance. For example,

SHw((a, b, c), (b, c, a)) = w12 +w13,

SHw((b, c, a), (a, b, c)) = w13 +w23.

To address this problem, we can symmetrize SHw by defining a function SHw

as

SHw(π,σ) = SHw(π,σ) + SHw(σ,π)
2

⋅

However, it is not clear what properties such a function has and if it is in fact

a metric for all nonnegative weights w.

Yilmaz et al. [26] propose a measure of discordance between rankings that

can be expressed as the expected outcome of an experiment, which is presented

below with slight modification. Given two rankings π and σ,

1. Pick an element a of π, other than its first element, randomly and uni-

formly.

2. Pick a second element b of π such that it is ranked before a by π, randomly

and uniformly.

3. Return 1 if b is ranked after a in σ. Otherwise return 0.

Let the expected outcome of the experiment be denoted by YA(π,σ). It can be

shown that [26]

YA(π,σ) = 1

n − 1

n

∑
j=2

Cj(π,σ)
j − 1

,

where Cj(π,σ) is the number of candidates with rank less than j in π that are

ranked after π(j) in σ.
We show that YA(π,σ) is, perhaps surprisingly, equal to SHw(π,σ) for an

appropriate choice of w. Observe that

YA(π,σ) = 1

n − 1

n

∑
j=2

Cj(π,σ)
j − 1

=
1

n − 1

n

∑
j=2

∣{x ∶ π−1(x) < j, σ−1(π(j)) < σ−1(x)}∣
j − 1

=
1

n − 1

n

∑
j=2

∣{i ∶ i < j, σ−1(π(j)) < σ−1(π(i))}∣
j − 1

=

n−1
∑
i=1

n

∑
j=i+1

I(σ−1(π(j)) < σ−1(π(i)))
(n − 1)(j − 1)

= SHw(π,σ)
with wij =

1
(n−1)(j−1) for i < j.

Similar to SHw(π,σ), YA(π,σ) can be symmetrized. However the properties

of the symmetrized version of YA(π,σ) are not studied in [26].
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Kumar and Vassilvitskii [28] introduced a distance on rankings based on the

Kendall τ distance as follows. For a sequence wi, i ∈ [n − 1], let

fw(i, j) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑j−1
r=i wr , if i < j,

∑i−1
r=j wr, if j < i,

0, if i = j.

(2.1)

The distance proposed in [28] can be written as

KVw,D(π,σ) =∑
i,j

fw(π−1(i), σ−1(i))∣π−1(i) − σ−1(i)∣
fw(π−1(j), σ−1(j))∣π−1(j) − σ−1(j)∣ I(π−1(i) < π−1(j), σ−1(j) < σ−1(i)).

The term fw(π−1(i),σ−1(i))
∣π−1(i)−σ−1(i)∣ can be viewed as the average weight of moving i from

its position in π to its position in σ. A similar interpretation holds for the term
fw(π−1(j),σ−1(j))
∣π−1(j)−σ−1(j)∣ . However, it is not clear why these terms should be chosen to

act multiplicatively and what the effect of such a choice is on the properties of

the proposed distance.

Sun et al. [53] propose an intuitive distance on rankings which is essentially

a weighted version of Spearman’s footrule. The distance is2

SLw(π,σ) = n

∑
r=1

fw(π−1(i), σ−1(i)),
where fw is defined in (2.1).

Several other distances and measures of correlation/discordance are also pro-

posed in the literature. For a survey, see [31]. The main difference between our

approach and the previously proposed methods and techniques for addressing

the top-vs-bottom issue is that our approach has an axiomatic underpinning;

the distance that we propose is the unique solution to a set of axioms that has

Kemeny’s axioms as its basis. Yet the definition of this distance is simple and

similar to that of the Kendall τ distance. Furthermore, we show that when used

for the purpose of rank aggregation, the proposed distance results in aggregate

rankings which take into account the top-vs-bottom issue.

2.3 Reduced Kemeny Axioms

In [15] Kemeny proposed a distance-based rank aggregation approach. Given

a distance function d over permutations and a set Σ of votes, the distance-

based aggregation problem can be stated as follows: find the ranking π∗ that

2This distance is in fact a special case of the distance that we introduce in the next chapter.
See Lemma 3.15.
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minimizes the cumulative distance from Σ, i.e.,

π∗ = argmin
π∈Sn

∑
σ∈Σ

d(π,σ). (2.2)

In other words, the goal is to find a ranking π that represents the median of the

set Σ of votes. The choice of the distance function d is an important aspect of

distance-based rank aggregation and the focus of this chapter.

Kemeny presented a set of axioms that a distance function for rank aggrega-

tion should satisfy and proved that the only distance that satisfies the axioms

is the Kendall τ .

In Kemeny’s work, rankings are allowed to have ties, while in this work, our

focus is on rankings with no ties. We show that if ties are not allowed, after

removing one of Kemeny’s axioms, the Kendall τ distance is still the unique

distance that satisfies this reduced set of axioms.

A critical concept in Kemeny’s axioms is the idea of “betweenness,” defined

below. Other definitions used in this chapter can be found in §1.3.

Definition 2.1. A ranking ω is between two rankings π and σ, denoted by

π–ω–σ, if for each pair {a, b} of candidates, ω either agrees with π or σ or both.

The rankings π1, . . . , πs are on a line, denoted by π1–π2–⋯–πs, if for every i, j,

and k for which 1 ≤ i < j < k ≤ s, we have πi–πj–πk.

The reduced set of Kemeny’s axioms are:

Axioms I

1. d is a metric.

2. d is left-invariant.

3. For any π,σ, and ω, d(π,σ) = d(π,ω)+ d(ω,σ) if and only if ω is between

π and σ.

4. The smallest positive distance is one.

Axiom 2 states that relabeling of objects should not change the distance

between permutations. In other words, d(σπ,σω) = d(π,ω), for any π,σ,ω ∈ Sn.
Axiom 3 may be viewed through a geometric lens: the triangle inequality has

to be satisfied with equality for all points that lie on a line between π and σ.

Axiom 4 is only used for normalization purposes.

Kemeny’s original exposition included a fifth axiom which we state for com-

pleteness: If two rankings π and σ agree except for a segment of k elements, the

position of the segment does not affect the distance between the rankings. Here,

a segment is a set of objects that are ranked consecutively, i.e., a substring of

the permutation. As an example, this axiom implies that

d((1,2,3, 4,5,6²), (1,2,3, 6,5,4²)) = d((1, 4,5,6²,2,3), (1, 6,5,4²,2,3)),
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where the segment is underscored by braces. This axiom clearly enforces a prop-

erty that is not desirable for distances designed to address the top-vs-bottom

issue: changing the position of the segment in two permutations does not alter

their distance. One may hence believe that removing this axiom (as was done in

Axioms I) will lead to distance measures capable of handling the top-vs-bottom

problem. But as we show below, for rankings without ties, omitting this axiom

does not change the outcome of Kemeny’s analysis; in other words, the axiom

is redundant. This is a rather surprising fact, and we conjecture that the same

is true of rankings with ties.

The main result of this section is Theorem 2.6, stating that the unique dis-

tance satisfying Axioms I is the Kendall τ distance. The theorem is proved with

the help of Lemmas 2.2, 2.3, 2.4, 2.5, as well as Lemma 1.1.

Lemma 2.2. For any distance measure d that satisfies Axioms I, and for any

sequence of permutations π1, π2, . . . , πs such that π1–π2–⋯–πs, one has

d(π1, πs) = s−1
∑
k=1

d(πk, πk+1).
Proof. The lemma follows from Axiom I.3 by induction.

Lemma 2.3. For any d that satisfies Axioms I and for i ∈ [n − 1], we have

d (⟨i i + 1⟩ , e) = d (⟨1 2⟩ , e) .
Proof. We first show that d (⟨2 3⟩ , e) = d (⟨1 2⟩ , e). Repeating the same argu-

ment used for proving this special case gives d (⟨i i + 1⟩ , e) = d (⟨i − 1 i⟩ , e) =
⋯ = d (⟨1 2⟩ , e).
To show that d (⟨2 3⟩ , e) = d (⟨1 2⟩ , e), we evaluate d(π, e) in two ways, where

we choose π = (3,2,1,4,5, . . . , n).
On the one hand, note that π–ω–η–e, where ω = π ⟨1 2⟩ = (2,3,1,4,5, . . . , n)

and η = ω ⟨2 3⟩ = (2,1,3,4,5, . . . , n). As a result,

d(π, e) = d(π,ω) + d(ω, η) + d(η, e)
= d(ω−1π, e) + d(η−1ω, e) + d(η, e)
= d(⟨1 2⟩ , e) + d(⟨2 3⟩ , e) + d(⟨1 2⟩ , e), (2.3)

where the first equality follows from Lemma 2.2, while the second is a conse-

quence of the left-invariance property of the distance measure.

On the other hand, note that π–α–β–e, where α = π ⟨2 3⟩ = (3,1,2,4,5, . . . , n)
and β = α ⟨1 2⟩ = (1,3,2,4,5, . . . , n). For this case,

d(π, e) = d(π,α) + d(α,β) + d(β, e)
= d(α−1π, e) + d(β−1α, e) + d(β, e)
= d(⟨2 3⟩ , e) + d(⟨1 2⟩ , e) + d(⟨2 3⟩ , e). (2.4)
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Equations (2.3) and (2.4) imply that d (⟨2 3⟩ , e) = d (⟨1 2⟩ , e).
Lemma 2.4. For any d that satisfies Axioms I, d(γ, e) equals the minimum

number of adjacent transpositions required to transform γ into e.

Proof. For π,σ ∈ Sn, let

L(π,σ) = {τ = (τ1, . . . , τ∣τ ∣) ∈ A(π,σ) ∶ π–πτ1–πτ1τ2–⋯–σ}
be the subset of A(π,σ) consisting of transposition transforms that convert π

to σ by passing through a line. Let s be the minimum number of adjacent

transpositions that transform γ into e. Furthermore, let (τ1, τ2, . . . , τs) ∈ A(γ, e)
and define γi = γτ1⋯τi, i = 0, . . . , s, with γ0 = γ and γs = e.

First, we show γ0–γ1–⋯–γs, that is,

(τ1, τ2, . . . , τs) ∈ L(γ, e). (2.5)

Suppose this were not the case. Then, there exist i < j < k such that γi, γj , and

γk are not on a line, and thus, there exists a pair {r, s} for which γj disagrees

with both γi and γk. Hence, there exist two transpositions, τi′ and τj′ , with

i < i′ ≤ j and j < j′ ≤ k that swap r and s. We can in this case remove τi′

and τj′ from (τ1, . . . , τs) to obtain (τ1, . . . , τi′−1, τi′+1, . . . , τj′−1, τj′+1, τs) ∈ A(γ, e)
with length s − 2. This contradicts the optimality of the choice of s. Hence,(τ1, τ2, . . . , τs) ∈ L(γ, e). Then Lemma 2.2 implies that

d(γ, e) = s

∑
i=1

d(τi, e). (2.6)

Lemma 2.3 states that all adjacent transpositions have the same distance from

the identity. Since transpositions τi,1 ≤ i ≤ s, in (2.6) are adjacent transposi-

tions, d(τi, e) = a for some a > 0 and thus d(γ, e) = sa.
In (2.6), the minimum positive distance is obtained when s = 1. That is, the

minimum positive distance from identity equals a and is obtained when γ is an

adjacent transposition. Axiom I.4 states that the minimum positive distance is

1. By left-invariance, this axiom implies that the minimum positive distance of

any permutation from the identity is 1. Hence, a = 1 and for any γ ∈ Sn,

d(γ, e) = s

∑
i=1

d(τi, e) = sa = s.

Lemma 2.5. For any d that satisfies Axioms I, and for π,σ ∈ Sn, we have

d(π,σ) =min {s ∶ (τ1, . . . , τs) ∈ A(π,σ)}.
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Proof. We have

d(π,σ) (a)= d(σ−1π, e)
(b)
= min {s ∶ (τ1, . . . , τs) ∈ A(σ−1π, e)}
(c)
= min{s ∶ (τ1, . . . , τs) ∈ A(π,σ)} ,

where (a) follows from the left-invariance of d; (b) follows from Lemma 2.4; and(c) follows from the fact that (τ1, . . . , τs) ∈ A(π,σ) if and only if (τ1, . . . , τs) ∈
A(σ−1π, e).
Theorem 2.6. The unique distance d that satisfies Axioms I is the Kendall τ

distance,

dK(π,σ) =min {s ∶ (τ1, . . . , τs) ∈ A(π,σ)} , for π,σ ∈ Sn.

Proof. We show below that dK satisfies Axiom I.3. Proving that dK satisfies

the other axioms is straightforward. Uniqueness follows from Lemma 2.5.

To show that dK satisfies Axiom I.3, we use Lemma 1.1 stating that

dK(π,σ) = ∣I(π,σ)∣ .
Fix π,σ ∈ Sn. For any ω ∈ Sn, it is clear that

I(π,σ) ⊆ I(π,ω) ∪ I(ω,σ). (2.7)

Suppose first that ω is not between π and σ. Then there exists a pair {a, b}
with a <π b and a <σ b but such that a >ω b. Since {a, b} ∉ I(π,σ) but {a, b} ∈
I(π,ω) ∪ I(ω,σ), we find that

∣I(π,σ)∣ < ∣I(π,ω) ∪ I(ω,σ)∣ ,
and thus

dK(π,σ) = ∣I(π,σ)∣
< ∣I(π,ω) ∪ I(ω,σ)∣
≤ ∣I(π,ω)∣ + ∣I(ω,σ)∣
= dK(π,ω) + dK(ω,σ).

Hence, if ω is not between π and σ, then

dK(π,σ) ≠ dK(π,ω) + dK(ω,σ).
Next, suppose ω is between π and σ. This immediately implies that I(π,ω) ⊆
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I(π,σ) and I(ω,σ) ⊆ I(π,σ). These relations, along with (2.7) imply that

I(π,ω) ∪ I(ω,σ) = I(π,σ). (2.8)

We claim that I(π,ω) ∩ I(ω,σ) = ∅. To see this, observe that if {a, b} ∈
I(π,ω) ∩ I(ω,σ), then the relative rankings of a and b are the same for π and

σ and so, {a, b} ∉ I(π,σ). The last statement contradicts (2.8) and thus

I(π,ω) ∩ I(ω,σ) = ∅. (2.9)

From (2.8) and (2.9), we may write

dK(π,σ) = ∣I(π,σ)∣
= ∣I(π,ω) ∪ I(ω,σ)∣
= ∣I(π,ω)∣ + ∣I(ω,σ)∣
= d(π,ω) + d(ω,σ),

and this completes the proof of the fact that dK satisfies Axiom I.3.

A distance d on Sn is called a graphic distance [54] if there exists a graph G

with vertex set Sn such that for π,σ ∈ Sn, d (π,σ) is equal to the length of the

shortest path between π and σ in G. Note that this definition implies that the

edge set of G is the set

{(α,β) ∶ α,β ∈ Sn,d (α,β) = 1} .
The Kendall τ distance is a graphic distance. To see the validity of this claim,

take the corresponding graph to have vertices indexed by permutations, with

an edge between each pair of permutations that differ by only one adjacent

transposition.

In the next section, we introduce the weighted Kendall distance which may

be viewed as the shortest path between permutations over a weighted graph (see

Figure 2.2 for an illustration), and show how this distance arises from modifying

Kemeny’s axioms.

2.4 The Weighted Kendall Distance

The proof of the uniqueness of the Kendall τ distance under Axioms I reveals an

important insight: the Kendall τ distance arises due to the fact that adjacent

transpositions have uniform weights, which is a consequence of the betweenness

property used in one of the axioms. To address the top-vs-bottom problem,

one must change the uniformity of weights of adjacent transpositions. As we

show below, a way to achieve this goal is to redefine the axioms in terms of the
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Figure 2.2: The graphs for the Kendall τ distance (a), and weighted Kendall
distance (b).
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betweenness property.

Axioms II

1. d is a pseudo-metric.

2. d is left-invariant.

3. For any π,σ disagreeing on more than one pair of elements, there exists

some ω, distinct from π and σ and between them, such that d(π,σ) =
d(π,ω) + d(ω,σ).

Axiom II.1 allows for the option that some transpositions do not contribute to

the distance between permutations. Intuitively, Axiom II.3 states that there

exists at least one point on some line between π and σ, for which the triangle

inequality is an equality. In other words, there exists one “shortest line” between

two permutations, and not all straight lines are required to be of the same length.

Lemma 2.7. For any distance d that satisfies Axioms II, and for distinct π

and σ, we have

d(π,σ) = min
τ∈A(π,σ)

∣τ ∣
∑
i=1

d(τi, e).
Proof. From the triangle inequality and the left-invariance property of d, we

have

d(π,σ) ≤ min
τ∈A(π,σ)

∣τ ∣
∑
i=1

d(τi, e).
To prove

d(π,σ) ≥ min
τ∈A(π,σ)

∣τ ∣
∑
i=1

d(τi, e),
we use induction on dK(π,σ), the Kendall τ distance between π and σ.

First, suppose that dK(π,σ) = 1, i.e., π and σ disagree on one pair of adjacent

elements. Then, we have σ = π ⟨a a + 1⟩ for some a ∈ [n − 1]. Thus,
d(π,σ) = d(⟨a a + 1⟩ , e) ≥ min

τ∈A(π,σ)

∣τ ∣
∑
i=1

d(τi, e),
where the equality follows from the left-invariance property of d and the in-

equality follows from the fact that (⟨a a + 1⟩) ∈ A(π,σ).
Next, suppose that dK(π,σ) > 1, i.e., π and σ disagree on more than one pair

of adjacent elements, and that for all µ, η ∈ Sn with dK(µ, η) < dK(π,σ), the
lemma holds. Then, there exists ω, distinct from π and σ and between them,

such that

d(π,σ) = d(π,ω) + d(ω,σ),
dK(π,ω) < dK(π,σ),
dK(ω,σ) < dK(π,σ).
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By the induction hypothesis, there exist (ν1, . . . , νk) ∈ A(π,ω) and (νk+1, . . . , νs) ∈
A(ω,σ), for some s and k, such that

d(π,ω) = k

∑
i=1

d(νi, e),
d(ω,σ) = s

∑
i=k+1

d(νi, e),
and thus

d(π,σ) = s

∑
i=1

d(νi, e) ≥ min
τ∈A(π,σ)

∣τ ∣
∑
i=1

d(τi, e),
where the inequality follows from the fact that (ν1, . . . , νs) ∈ A(π,σ).
Definition 2.8. A distance dϕ is a weighted Kendall distance if there exists a

weight function ϕ ∶ An→ R≥0 such that

dϕ(π,σ) = min
τ∈A(π,σ)

∣τ ∣
∑
i=1
ϕτi ,

where ϕτi is the weight assigned to transposition τi by ϕ.

The weight of a transform τ is denoted by wt (τ) and is defined as

wt(τ) = ∣τ ∣∑
i=1
ϕτi .

Hence, dϕ(π,σ) may be written as

dϕ(π,σ) = min
τ∈A(π,σ)

wt(τ).
Note that a weighted Kendall distance is completely determined by its weight

function ϕ.

Theorem 2.9. A distance d satisfies Axioms II if and only if it is a weighted

Kendall distance.

Proof. It follows immediately from Lemma 2.7 that a distance d satisfying Ax-

ioms II is a weighted Kendall distance by letting

ϕθ = d(θ, e)
for every transposition θ taken from the set of adjacent transpositions An in Sn.

The proof of the converse is omitted since it is easy to verify that a weighted

Kendall distance satisfies Axioms II.

The weighted Kendall distance provides a natural solution for the top-vs-
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bottom issue. For instance, recall the example of ranking cities to live in, with

π = (Melbourne, Vienna, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland),
π′ = (Melbourne, Vienna, Vancouver, Calgary, Toronto,

Adelaide, Sydney, Helsinki, Perth, Auckland),
π′′ = (Vienna, Melbourne, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland),
and choose the weight function ϕ⟨i i+1⟩ = 0.9i−1 for i = 1,2, . . . ,9. Then,

dϕ(π,π′) = 0.94 = 0.66 < dϕ(π,π′′) = 1,
as expected. In this case, we have chosen the weight function to be exponen-

tially decreasing – the choice of the weight function in general depends on the

application.

2.5 Computing the Weighted Kendall Distance

Computing the weighted Kendall distance between two permutations for an

arbitrary weight function is not as straightforward a task as computing the

Kendall τ distance. While an efficient algorithm for computing the weighted

Kendall distance with respect to a general weight functions is not known, for an

important class of weight functions – termed “monotonic” weight functions – the

weighted Kendall distance may be computed efficiently, as described in §2.5.1.

The case of monotonic weight functions is particularly important since these

weight functions adequately address the top-vs-bottom issue by assigning higher

weights to the top of rankings. An example of a monotonic weight function is

the exponential weight described at the end of the previous subsection. In

§2.5.2, we find the weighted Kendall distance for weight functions with only two

(identical) non-zero weights. The distance for general weight functions can be

computed via algorithms that essentially find minimum weight paths in graphs,

as described in §2.5.3. A 2-approximation algorithm for general weight functions

is given in §2.5.4.

2.5.1 Monotonic Weight Functions

A weight function ϕ ∶ An → R≥0 is decreasing if i > j implies that ϕ⟨i i+1⟩ ≤

ϕ⟨j j+1⟩. Increasing weight functions are defined similarly. A weight function is

monotonic if it is increasing or decreasing.

Suppose τ ∈ A(π,σ). The transform τ may be viewed as a sequence of moves

that take each i ∈ [n], from positions π−1(i) to position σ−1(i). Let the walk
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followed by element i while moved by the transform τ be denoted by pi,τ =(pi,τ1 , . . . , p
i,τ

∣pi,τ ∣+1), where ∣pi,τ ∣ is the length of the walk pi,τ .

For example, consider

π = (3,2,4,1),
σ = (1,2,3,4),
τ = (τ1, τ2, τ3, τ4)
= (⟨3 4⟩ , ⟨2 3⟩ , ⟨1 2⟩ , ⟨2 3⟩)

and note that σ = πτ1τ2τ3τ4. We have

p1,τ = (4,3,2,1),
p2,τ = (2,3,2),
p3,τ = (1,2,3),
p4,τ = (3,4).

We first bound the lengths of the walks pi,τ , i ∈ [n]. Let Ii(π,σ) be the set

consisting of elements j ∈ [n] such that π and σ disagree on the pair {i, j}.
In the transform τ , all elements of Ii(π,σ) must be swapped with i by some

τk, k ∈ [∣τ ∣]. Each such swap contributes length one to the total length of the

walk pi,τ and thus, ∣pi,τ ∣ ≥ ∣Ii(π,σ)∣.
As before, let dϕ denote the weighted Kendall distance with weight function

ϕ. Since for any τ ∈ A(π,σ),
∣τ ∣
∑
i=1
ϕτi =

n

∑
i=1

1

2

∣pi,τ ∣
∑
j=1

ϕ⟨pi,τ

j
p
i,τ

j+1⟩
,

we have

dϕ(π,σ) = min
τ∈A(π,σ)

n

∑
i=1

1

2

∣pi,τ ∣
∑
j=1

ϕ⟨pi,τ

j
p
i,τ

j+1⟩
.

Thus,

dϕ(π,σ) ≥ n

∑
i=1

1

2
min

pi∈Pi(π,σ)

∣pi∣
∑
j=1

ϕ⟨pi
j

pi
j+1⟩

, (2.10)

where for each i, Pi(π,σ) denotes the set of walks of length ∣Ii(π,σ)∣, starting
from π−1(i) and ending in σ−1(i). Let

pi,⋆(π,σ) = arg min
pi∈Pi(π,σ)

∣pi∣
∑
j=1

ϕ⟨pi
j

pi
j+1⟩

be the minimum weight walk from π−1(i) to σ−1(i) with length ∣Ii(π,σ)∣. If

clear from the context, we write pi,⋆(π,σ) as pi,⋆.
We show next that for decreasing weight functions, the bound given in (2.10)

is achievable and thus the value on the right side gives the weighted Kendall
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Algorithm 1 FindTauMonotone

1: Input: π,σ ∈ Sn

2: Output: τ⋆ = argminτ∈A(π,σ)wt (τ)
3: π0 ← π

4: t ← 0

5: for r = σ(1), σ(2), . . . , σ(n) do
6: while π−1t (r) > σ−1(r) do
7: τ⋆t+1 ← ⟨π−1t (r)−1 π−1t (r)⟩
8: πt+1 ← πtτ

⋆
t+1

9: t ← t + 1

distance for this class of weight functions.

Consider π,σ ∈ Sn and a decreasing weight function ϕ. For each i, it follows

that pi,⋆(π,σ) extends to positions with largest possible indices, i.e., pi,⋆ =(π−1(i),⋯, ℓi − 1, ℓi, ℓi − 1, . . . , σ−1(i)) where ℓi is the solution to the equation

ℓi − π
−1(i) + ℓi − σ−1(i) = ∣Ii(π,σ)∣

and thus ℓi = (π−1(i) + σ−1(i)+ ∣Ii(π,σ)∣) /2.
We show next that there exists a transform τ⋆ with pi,τ

⋆
= pi,⋆, and so equality

in (2.10) can be achieved. The transform is described in Algorithm 1.

The transform in question, τ⋆, converts π into σ in n rounds. In Algorithm 1,

the variable r takes values σ(1), σ(2), . . . , σ(n), in that given order. For each

value of r, τ⋆ moves r through a sequence of adjacent transpositions from its

current position in πt, π
−1
t (r), to position σ−1(r).

Fix i ∈ [n]. For values of r such that σ−1(r) < σ−1(i), i is swapped with r

via an adjacent transposition if π−1(r) > π−1(i). For r = i, i is swapped with

all elements k such that π−1(k) < π−1(i) and σ−1(i) < σ−1(k). For r such that

σ−1(r) > σ−1(i), i is not swapped with other elements. Hence, i is swapped

precisely with elements of the set Ii(π,σ) and thus, ∣pi,τ⋆(π,σ)∣ = ∣Ii(π,σ)∣.
Furthermore, it can be seen that, for each i, pi,τ

⋆(π,σ) = (π−1(i), . . . , ℓ′i−1, ℓ′i, ℓ′i−
1, . . . , σ−1(i)), for some ℓ′i. Since ∣pi,τ⋆(π,σ)∣ = ∣Ii(π,σ)∣, ℓ′i also satisfies the

equation

ℓ′i − π
−1(i) + ℓ′i − σ−1(i) = ∣Ii(π,σ)∣,

implying that ℓ′i = ℓi and thus pi,τ
⋆
= pi,⋆. Consequently, one has the following

result.

Proposition 2.10. For rankings π,σ ∈ Sn, and a decreasing weighted Kendall

weight function ϕ, we have

dϕ(π,σ) = n

∑
i=1

1

2

⎛⎝
ℓi−1
∑

j=π−1(i)
ϕ⟨j j+1⟩ +

ℓi−1
∑

j=σ−1(i)
ϕ⟨j j+1⟩

⎞⎠
where ℓi = (π−1(i) + σ−1(i) + ∣Ii(π,σ)∣) /2.
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Increasing weight functions may be analyzed similarly.

Example 2.11. Consider the rankings π = (4,3,1,2) and e = (1,2,3,4) and a

decreasing weight function ϕ. We have ∣Ii(π, e)∣ = 2 for i = 1,2 and ∣Ii(π, e)∣ = 3
for i = 3,4. Furthermore,

ℓ1 =
3 + 1 + 2

2
= 3, p1,⋆ = (3,2,1),

ℓ2 =
4 + 2 + 2

2
= 4, p2,⋆ = (4,3,2),

ℓ3 =
2 + 3 + 3

2
= 4, p3,⋆ = (2,3,4,3),

ℓ4 =
1 + 4 + 3

2
= 4, p4,⋆ = (1,2,3,4).

The minimum weight transform is

τ⋆ =
⎛⎜⎜⎝⟨3 2⟩ , ⟨2 1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

, ⟨4 3⟩ , ⟨3 2⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2

, ⟨4 3⟩²
3

⎞⎟⎟⎠ ,

where the numbers under the braces denote the value r corresponding to the

indicated transpositions. The distance between π and e is

dϕ(π, e) = ϕ⟨1 2⟩ + 2ϕ⟨2 3⟩ + 2ϕ⟨3 4⟩.

Example 2.12. The bound given in (2.10) is not tight for general weight func-

tions as seen in this example. Consider π = (4,2,3,1), σ = (1,2,3,4), and a

weight function ϕ with ϕ⟨1 2⟩ = 2, ϕ⟨2 3⟩ = 1, and ϕ⟨3 4⟩ = 2. Note that the

domain of ϕ is the set of adjacent transpositions. We have

p1,⋆ = (4,3,2,1),
p2,⋆ = (2,3,2),
p3,⋆ = (3,2,3),
p4,⋆ = (1,2,3,4).

Suppose that a transform τ ∈ A(π,σ) exists such that pi,⋆ = pi,τ , i = 1,2,3,4.

From pi,⋆, it follows that in τ , transpositions ⟨1 2⟩ and ⟨3 4⟩ each appear once

and ⟨2 3⟩ appears twice. It can be shown, by considering all possible re-orderings

of {⟨1 2⟩ , ⟨1 2⟩ , ⟨2 3⟩ , ⟨2 3⟩ , ⟨2 3⟩}, or by an application of Lemma 3.5 of the

next chapter, that τ does not transform π into σ. Hence, for this example, the

lower bound (2.10) is not achievable.

2.5.1.1 Average Distance for Decreasing Weights

The Kendall τ distance between two rankings may be viewed in the following

way: each pair of candidates for which the two rankings disagree contribute one
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unit to the distance between the rankings. Owing to Algorithm 1, the weighted

Kendall distance with a decreasing weight function can be regarded in a similar

manner: each pair of candidates for which the two rankings disagree contributes

ϕ⟨s s+1⟩, for some s, to the distance between the rankings.

Consider a pair a and b such that π−1(b) < π−1(a) and σ−1(a) < σ−1(b). In

Algorithm 1, there exists a transposition τ⋆t = ⟨s s + 1⟩ that swaps a and b where

s = π−1(b) + ∣{k ∶ σ−1(k) < σ−1(a), π−1(k) > π−1(b)}∣ ,
that is, s equals the sum of π−1(b) and the number of elements that appear

before a in σ and after b in π. It is not hard to see that s can also be written

in a way that is symmetric with respect to π and σ, as

s = π−1(b) + σ−1(a) − ∣{k ∶ π−1(k) < π−1(b), σ−1(k) < σ−1(a)}∣ − 1
= n − 1 − ∣{k ∶ π−1(k) > π−1(b), σ−1(k) > σ−1(a)}∣ .

As an example, consider ϕ⟨i i+1⟩ = n − i. Then,

dϕ(π,σ) = ∑
(b,a)∈I (π,σ)

(1 + ∣{k ∶ π−1(k) > π−1(b), σ−1(k) > σ−1(a)}∣)
= dK(π,σ) + ∑

(b,a)∈I (π,σ)
∣{k ∶ π−1(k) > π−1(b), σ−1(k) > σ−1(a)}∣

where I (π,σ) is the set of ordered pairs (b, a) such that π−1(b) < π−1(a) and
σ−1(a) < σ−1(b). Note that the weighted Kendall distance dϕ equals the Kendall

τ distance plus a sum that captures the influence of assigning higher importance

to the top positions of the rankings.

These observations allow us to easily compute the expected value of the dis-

tance between the identity permutation and a randomly and uniformly chosen

permutation π ∈ Sn. For 1 ≤ a < b ≤ n and s ∈ [n − 1], let Xs
ab be an indicator

variable that equals one if and only if π−1(a) > π−1(b) and
∣{k > a ∶ π−1(k) > π−1(b)}∣ = n − 1 − s.

The expected distance between the two permutations equals

E[dϕ(π, e)] = n−1
∑
s=1

ϕ⟨s s+1⟩
n−1
∑
a=1

n

∑
b=a+1

E [Xs
ab] . (2.11)

By the definition of Xs
ab, E [Xs

ab] equals the probability of the event that n−1−s

elements of {a+1, . . . , n}/{b} and a appear after b in π. There are (n−a−1
n−s−1) ways

to choose n− s− 1 elements from {a+ 1, . . . , n}/{b}, ( n

a−1)(a− 1)! ways to assign

positions to the elements of {1,2, . . . , a − 1}, (s − a)! ways to arrange the s − a

elements of {a+1, . . . , n}/{b} that appear before b, and (n−s)! ways to arrange
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a and the n − 1 − s elements of {a + 1, . . . , n}/{b} that appear after b. Hence,
E [Xs

ab] = 1

n!
(n − a − 1
n − s − 1

)( n

a − 1
)(a − 1)!(s − a)!(n − s)!

=
n − s(n − a + 1)(n − a) ,

for 1 ≤ a ≤ s, and E [Xs
ab] = 0 for a > s. Using this expression in (2.11), we

obtain

E[dϕ(e, π)] = n−1
∑
s=1

ϕ⟨s s+1⟩
s

∑
a=1

n − s

n − a + 1

=

n−1
∑
s=1

ϕ⟨s s+1⟩(n − s)(Hn −Hn−s),
where Hi =∑

i
l=1

1
l
. Indeed, for ϕ⟨s s+1⟩ = 1, s ∈ [n−1], we recover the well known

result that

E[dK(e, π)] = n−1
∑
s=1
(n − s)(Hn −Hn−s)

=

n−1
∑
k=1

k(Hn −Hk)
=
1

2
(n
2
).

For ϕ⟨s s+1⟩ = n − s, the average distance equals

E[dϕ(e, π)] = n−1
∑
s=1
(n − s)2(Hn −Hn−s)

=

n−1
∑
k=1

k2(Hn −Hk)
=
1

2
(n
2
) + 2

3
(n
3
).

2.5.2 Weight Functions with Two Identical Non-zero Weights

Another example of a weighted Kendall τ distance for which a closed form

solution may be found is described below.

For a pair of integers a and b, where 1 ≤ a < b < n, define the weight function

ϕ as:

ϕ⟨i i+1⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i ∈ {a, b}
0, else.

(2.12)

Such weight functions may be used in voting problems where one only pe-

nalizes moving a link from one page (say, top-ten page) to another page (say,

eleven-to-twenty page). In other words, one only penalizes moving an item from

a “high-ranked” set of positions to “average-rank” or “low-rank” positions.
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Let R1 = {1, . . . , a}, R2 = {a + 1, . . . , b}, and R3 = {b + 1, . . . , n}, and define

Nπ
ij = ∣{k ∈ Rj ∶ π

−1(k) ∈ Ri}∣, i, j ∈ {1,2,3}.
In §3.4.3, we show that

dϕ(π, e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Nπ

13 +N
π
12 +N

π
23, ifNπ

21 ≥ 1 or Nπ
23 ≥ 1,

2Nπ
13 + 1, ifNπ

21 = N
π
23 = 0.

In the next section, we present algorithms for computing and approximating

the weighted Kendall distance with general weight functions.

2.5.3 General Weight Functions

The results of §2.5.1 imply that at least for one class of weight functions that

capture the importance of the top entries in a ranking, computing the weighted

Kendall distance has time complexity O(n2). Hence, distance computation

efficiency does not represent a bottleneck for the employment of this form of the

weighted Kendall distance.

Next, we discuss two algorithms for computing the exact weighted Kendall

distance. While the exact computation has super exponential time complexity,

for a small number of candidates – say, less than 10 – the computation can

be performed in reasonable time. A small number of candidates and a large

number of voters are frequently encountered in social choice applications, but

less frequently in computer science.

As already pointed out, the Kendall τ and the weighted Kendall distance

are graphic distances. In the latter case, we define a graph G with vertex set

indexed by Sn and an edge of weight ϕ⟨i i+1⟩ between each pair of vertices π and

σ whenever there is an i such that π = σ ⟨i i + 1⟩. The numbers of vertices and

edges of G are ∣V ∣ = n! and ∣E∣ = n!(n − 1)/2, respectively. Dijkstra’s algorithm

with Fibonacci heaps [55] for finding the minimum weight path in a graph

provides the distances of all π ∈ Sn to the identity in time O(∣E∣ + ∣V ∣ log ∣V ∣) =
O(n!n logn).
The complexity of the algorithm for finding the distance between π ∈ Sn and

the identity may be actually shown to be O(n(dK(π, e))!), which is signifi-

cantly smaller than Ω(n!) for permutations at small Kendall τ distance. To

see this, consider the following observation. For π in Sn, there exists a trans-

form τ = (τ1, . . . , τm) of minimum weight that transforms π into e, such that

m = dK(π, e). In other words, each transposition of τ eliminates one inversion

when transforming π into e. Hence, πτ1 has one less inversion than π. As a

result,

dϕ(π, e) = min
i∶π(i)>π(i+1)

(ϕ⟨i i+1⟩ + dϕ(π ⟨i i + 1⟩ , e)) . (2.13)
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Suppose that computing the weighted Kendall distance between the identity and

a permutation π, with dK(π, e) = d, can be performed in time Td. From (2.13),

we have

Td = an + dTd−1, for d ≥ 2,

and T1 = an, for some constant a. By letting Ud = Td/(and!), we obtain

Ud = Ud−1+ 1
d!
, d ≥ 2, and U1 = 1. Hence, Ud = ∑

d
i=1

1
i!
. It can then be shown that

d!Ud = ⌊d!(e − 1)⌋, and thus Td = an⌊d! (e − 1)⌋ = O(nd!).
The expression (2.13) can also be used to find the distances of all π ∈ Sn from

the identity by first finding the distances of permutations π ∈ Sn with dK(π, e) =
1, then finding the distances of permutations π ∈ Sn with dK(π, e) = 2, and so

on.3 Unfortunately, the average Kendall τ distance between a randomly chosen

permutation and the identity is (n
2
)/2 (see the derivation of this known and a

related novel result regarding the weighted Kendall distance in §2.5.1.1), which

limits the applicability of this algorithm to uniformly and randomly chosen

votes.

2.5.4 Approximation for General Weight Functions

In what follows, we present a polynomial-time 2-approximation algorithm for

computing the most general form of weighted Kendall distances.

In order to approximate the weighted Kendall distance, dϕ(π,σ), we use the

function Dϕ(π,σ), defined as

Dϕ(π,σ) = n

∑
i=1
w(π−1(i) ∶ σ−1(i)),

where

w(k ∶ l) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑l−1
h=k ϕ⟨h h+1⟩, if k < l,

∑k−1
h=l ϕ⟨h h+1⟩, if k > l,

0, if k = l,

denotes the sum of the weights of adjacent transpositions

⟨k k + 1⟩ , ⟨k + 1 k + 2⟩ , . . . , ⟨l − 1 l⟩
if k < l; the sum of the weights of adjacent transpositions

⟨l l + 1⟩ , ⟨l + 1 l + 2⟩ , . . . , ⟨k − 1 k⟩
if l < k; and 0 if k = l.

The following lemma states lower and upper bounds for dϕ in terms of Dϕ.

The lemma is useful in practice, since Dϕ can be computed in time O(n2), and
3Note that such an algorithm requires that the set of permutations at a given Kendall τ

distance from the identity be known.
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provides the desired 2-approximation.

Lemma 2.13. For a weighted Kendall weight function ϕ and for permutations

π and σ,
1

2
Dϕ(π,σ) ≤ dϕ(π,σ) ≤Dϕ(π,σ).

We omit the proof of the lemma, since it follows from a more general result

stated in the next chapter, and only remark that the lower-bound presented

above lemma is weaker than the lower-bound given by (2.10).

2.6 Aggregation with Weighted Kendall Distances

In order to explain the ability of the weighted Kendall distance in addressing

the top-vs-bottom aggregation issue, in what follows, we present a number of

examples that illustrate how the choice of the weight function influences the final

form of the aggregate. We focus on decreasing weight functions and compare

our results to those obtained using the classical Kendall τ distance.

We refer to the problem given in (2.2) as the aggregation problem, and to a

solution to the aggregation problem using the Kendall τ as a Kemeny aggregate.

All the aggregation results are obtained via exhaustive search since the examples

are small and only used for illustrative purposes. Aggregation is, in general, a

hard problem and we postpone the analysis of the complexity of computing

aggregate rankings, and aggregate approximation algorithms, until Chapter 4.

Example 2.14. Consider the set of rankings listed in Σ, where each row rep-

resents a ranking (vote),

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 2 5 3

4 2 1 3 5

1 4 5 2 3

2 3 1 5 4

5 3 1 2 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The Kemeny aggregate for this set of rankings is (1,4,2,5,3). Note that despite
the fact that candidate 4 was ranked twice at the top of the list – more than

any other candidate – it is ranked only second in the aggregate. This may be

attributed to the fact that 4 was ranked last by two voters.

Consider next the weight function ϕ with ϕ⟨i i+1⟩ = (2/3)i−1, i ∈ [4]. The

optimum aggregate ranking for this weight equals (4,1,2,5,3) which puts 4

before 1, similar to what the plurality rule would do.4 The reason behind this

swap is that ϕ emphasizes strong showings of a candidate and downplays its

weak showings, since weak showings have a smaller effect on the distance as the

weight function is decreasing. In other words, higher ranks are more important

than lower ranks when determining the position of a candidate.

4In plurality votes, the candidate with the most first-place rankings is declared the winner.
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Example 2.15. Consider the set of rankings listed in Σ,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 2 3

1 4 3 2

2 3 1 4

4 2 3 1

3 2 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The Kemeny aggregate is (4,2,3,1). Note that although the majority of voters

prefer 1 to 4, 1 is ranked last and 4 is ranked first. More precisely, we observe

that according to the pairwise majority test, 1 beats 4 but loses to 2 and 3. On

the other hand, 4 is preferred to both 2 and 3 but, as mentioned before, loses to

1. Problems like this do not arise due to a weakness of Kemeny’s approach, but

due to the inherent “rational intractability” of rank aggregation. As stated by

Arrow [56], for any “reasonable” rank aggregation method, there exists a set of

votes such that the aggregated ranking prefers one candidate to another while

the majority of voters prefer the later to the former.

Let us now focus on a weighted Kendall distance with weight function ϕ⟨i i+1⟩ =(2/3)i−1, i = 1,2,3. The optimal aggregate ranking for this distance equals(1,4,2,3). Again, we see a candidate with both strong showings and weak

showings, candidate 1, beat a candidate with a rather average performance.

Note that in this solution as well, there exist candidates for which the opinion

of the majority is ignored: 1 is placed before 2 and 3, while according to the

pairwise majority opinion it loses to both.

Example 2.16. Consider the set of rankings listed in Σ,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 4 1 3 2

1 5 4 2 3

4 3 5 1 2

1 3 4 5 2

4 2 5 3 1

1 2 5 3 4

2 4 3 5 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With the weight function ϕ⟨i i+1⟩ = (2/3)i−1 for i ∈ [4], the aggregate equals(4,1,5,2,3). The winner is 4, while the plurality rule winner is 1 as it appears

three times on the top. Next, we increase the rate of decay of the weight

function and let ϕ⟨i i+1⟩ = (1/3)i−1, i ∈ [4]. The solution now is (1,4,2,5,3), and
the winner is candidate 1, the same as the plurality rule winner. Note that the

plurality winner is the aggregate based on the weighted Kendall distance with

weight function ϕ(p),

ϕ
(p)
⟨i i+1⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i = 1,

0, else.
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The Kemeny aggregate is (4,5,1,2,3).
A shortcoming of distance-based rank aggregation is that sometimes the so-

lution is not unique, and that the possible solutions differ widely. The following

example describes one such scenario.

Example 2.17. Suppose that the votes are given by Σ,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 3

1 2 3

3 2 1

2 1 3

⎞⎟⎟⎟⎟⎟⎟⎠
.

Here, the permutations (1,2,3) and (2,1,3) are the Kemeny aggregates, with

cumulative distance 4 from Σ. When the Kemeny aggregate is not unique, it

may be possible to obtain a unique solution by using a non-uniform weight

function. In this example, it can be shown that for any non-uniform weight

function ϕ with ϕ⟨1 2⟩ > ϕ⟨2 3⟩, the solution is unique, namely, (1,2,3).
A similar situation occurs if the last vote is changed to (2,3,1). In that case,

the permutations (1,2,3), (2,1,3), and (2,3,1) are the Kemeny aggregates with

cumulative distance 5 from Σ. Again, for any non-uniform weight function ϕ

with ϕ⟨1 2⟩ > ϕ⟨2 3⟩ the solution is unique and equal to (1,2,3).
To summarize, the above examples illustrate how a proper choice for the

weighted Kendall distance insures that top ranks are emphasized and how one

may over-rule a moderate number of low rankings using a specialized distance

formula. One may argue that certain generalizations of Borda’s method, involv-

ing non-uniform gaps between ranking scores, may achieve similar goals. This

is not the case, as will be illustrated in what follows.

One major difference between generalized Borda and weighted Kendall dis-

tances is in the majority criterion [57], which states that the candidate ranked

first by the majority of voters has to be ranked first in the aggregate.5 Borda’s

aggregate with an arbitrary score assignments does not have this property, while

aggregates obtained via weighted Kendall distances with decreasing weights (not

identically equal to zero) have this property.

We first show that the Borda method with a fixed, but otherwise arbitrary,

set of scores may not satisfy the majority criterion. We prove this claim for

n = 3. A similar argument can be used to establish this claim for n > 3.

Suppose, for simplicity, that the number m of voters is odd and that, for each

vote, a score si is assigned to a candidate with rank i, i = 1,2,3. Here, we assume

that s1 > s2 > s3 ≥ 0. Suppose also that (m + 1)/2 of the votes equal (a, b, c)
and that (m − 1)/2 of the votes equal (b, c, a). Let the total Borda scores for

5Note that a candidate ranked first by the majority is a Condorcet candidate. It is desirable
that an aggregation rule satisfy the majority criterion and indeed most do, including the
Condorcet method, the plurality rule, the single transferable vote method, and the Coombs
method.
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candidates a and b be denoted by S and S′, respectively. We have

S =
m + 1

2
s1 +

m − 1

2
s3,

S′ =
m + 1

2
s2 +

m − 1

2
s1,

and thus S − S′ = s1 −m ( s2−s32
) − s2+s3

2
. If m > 2s1−(s2+s3)

s2−s3 , then S − S′ < 0 and

Borda’s method ranks b higher than a. As a result, candidate a, ranked highest

by more than half of the voters, is not ranked first according to Borda’s rule.

This is not the case with weighted Kendall distances, as shown below.

Proposition 2.18. An aggregate ranking obtained using the weighted Kendall

distance with a decreasing weight function not identically equal to zero satisfies

the majority criterion.

Proof. Suppose that the weight function is ϕ, and let wi = ϕ⟨i i+1⟩. Since w

is decreasing and not identically equal to zero, we have w1 > 0. Let a1 be a

candidate that is ranked first by a majority of voters. Partition the set of votes

into two sets, C and D, where C is the set of votes that rank a1 first and D is

the set of votes that do not. Furthermore, denote the aggregate ranking by π.

Suppose that a1 is not ranked first in π and that π equals

(a2, . . . , ai, a1, ai+1, . . . , an),
for some i ≥ 2. Let π′ = (a1, a2, . . . , an). We show that

m

∑
j=1

dϕ (π,σj) > m

∑
j=1

dϕ (π′, σj)
which contradicts the optimality of π. Hence, a1 must be ranked first in π.

For σ ∈ C, we have

dϕ(π,σ) = dϕ(π,π′) + dϕ(π′, σ). (2.14)

To see the validity of this claim, note that if π is to be transformed to σ via

Algorithm 1, it is first transformed to π′ by moving a1 to the first position.

For σ ∈D, we have

dϕ(π′, σ) ≤ dϕ(π′, π) + dϕ(π,σ), (2.15)

which follows from the triangle inequality.
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To complete the proof, we write

m

∑
j=1

dϕ(π,σj) = ∑
σ∈C

dϕ(π,σ) + ∑
σ∈D

dϕ(π,σ)
≥ ∑

σ∈C
dϕ(π′, σ) + ∣C ∣dϕ(π,π′)

+ ∑
σ∈C

dϕ(π′, σ) − ∣D∣dϕ(π,π′)
=

m

∑
j=1

dϕ(π′, σ) + (∣C ∣ − ∣D∣) dϕ(π,π′)
>

m

∑
j=1

dϕ(π′, σ)
where the first inequality follows from (2.14) and (2.15), and the second inequal-

ity follows from the facts that ∣C ∣ > ∣D∣ and that dϕ(π,π′) ≥ w1 > 0.
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Chapter 3

Weighted Transposition Distance

3.1 Introduction

In some vote aggregation problems, the identity of the candidates may not

be known. On the other hand, many applications require that the identity of

the candidates be revealed. In this case, candidates are frequently evaluated

in terms of some similarity criteria – for example, area of expertise, gender,

working hour schedule etc. Hence, pairs of candidates may have different degrees

of similarity and swapping candidates that are similar should be penalized less

than swapping candidates that are not similar according to the given ranking

criteria. For example, in a faculty search ranking one may want to have at least

one but not more than two physicists ranked among the top 10 candidates, or

at least two women among the top 5 candidates.

As in Chapter 2, consider the Economist Intelligence Unit ranking of the

“World’s 10 best cities to live in”:

π = (Melbourne, Vienna, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland).
The following two rankings are obtained from π by one swap of adjacent entries:

π′ = (Melbourne, Vienna, Vancouver, Calgary, Toronto,

Adelaide, Sydney, Helsinki, Perth, Auckland),
π′′ = (Vienna, Melbourne, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland).
It may be observed that the swap in π′′ involves cities on two different continents,

which may shift the general opinion about the cities’ countries of origin. On the

other hand, the two cities swapped in π′ are both in Canada, so that the swap

is not likely to change the perception of quality of living in that country. This

points to the need for distance measures that take into account similarities and

dissimilarities among candidates.

This chapter contains material from [58], coauthored with C.-Y. Chen, O. Milenkovic,
and N. Kashyap; and from [59, 60], coauthored with O. Milenkovic.
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Similarity of items may be captured by assigning weights to swaps, and choos-

ing the transposition weights so that swapping dissimilar items induces a higher

distance compared to swapping similar items. We illustrate the concept of

distance measures taking into account similarities via rankings of cities. For

simplicity, we use shorter rankings than the ones mentioned above. Suppose

that four cities: Melbourne, Sydney, Helsinki, and Vienna are ranked based on

a certain set criteria as

π = (Helsinki, Sydney, Vienna, Melbourne), (3.1)

and according to another set of criteria as

σ = (Melbourne, Vienna, Helsinki, Sydney). (3.2)

The distance between π and σ is defined as follows. We assign weights to

swapping the cities in the rankings, e.g., suppose that the weight of swapping

cities in the same country is 1, on the same continent 2, and 3 otherwise. The

similarity distance between π and σ is the minimum weight of any sequence of

swaps of cities that convert π into σ. By inspection, or by methods discussed

in this chapter, one can see that the similarity distance between π and σ equals

6. One of the sequences of swaps of weight 6 is as follows: first swap Helsinki

and Sydney with weight 3, then swap Melbourne and Sydney with weight 1,

and finally swap Vienna and Helsinki with weight 2.

Another application of the similarity distance is in the context of assignment

aggregation, which is closely related to rank aggregation. Consider a committee

with m members that is tasked with filling n jobs with n candidates. Suppose

that each committee member provides a full assignment of candidates to jobs.

The task is to aggregate the assignments given by individual committee mem-

bers into one assignment. If a measure of similarity between the candidates is

available, one can use similarity distance to aggregate the assignment by finding

the median of the assignments provided by the committee members.

Note that in the definition of the similarity distance, the weights are based

on the identity of the candidates being swapped, while in Chapter 2, the def-

inition of the weighted Kendall distance relied on weights based on the ranks

of candidates being swapped. It is straightforward to see that all statements

made about swapping elements i and j may be converted to statements made

about swapping elements at positions i and j by using the inverse of the ranking

(permutation). To be consistent with Chapter 2, we define the weighted trans-

position distance, which is equivalent to the similarity distance when applied

to inverse of rankings, and present the results of this chapter in terms of the

weighted transposition distance. The relationship between the similarity dis-

tance and the weighted transposition distance is explained in detail in the next

section.
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The rest of this chapter is organized as follows. In §3.2, we present formal

definitions and preliminaries useful for our analysis. Algorithms for computing

the weighted transposition distance between a transposition and the identity

are given in §3.3. In §3.4, we study the weighted transposition distance between

permutations. We present approximation methods for general weight functions

as well as exact algorithms for some special weight functions. In §3.5, we present

an algorithm for finding the minimum weight transform among those with short-

est length. We also show that the minimum weight, minimum length transform

has weight that is not more than twice the weighted transposition distance.

Finally, in §3.6, we demonstrate the application of the weighted transposition

distance to rank aggregation using some examples.

3.2 Definitions and Preliminaries

To define the similarity distance formally, we write the rankings as permuta-

tions. To do so, we represent the n candidates using numbers 1 through n. For

example, rankings given in (3.1) and (3.2) can be written as permutations by

representing Melbourne by 1, Sydney by 2, Vienna by 3, and Helsinki by 4. This

is equivalent to assuming that the identity ranking is

e = (Melbourne, Sydney, Vienna, Helsinki).
We then have π = (4,2,3,1) and σ = (1,4,2,3). The similarity information is

represented via a weight function ϕ ∶ Tn → R≥0, which assigns a nonnegative

weight ϕ⟨i j⟩ to each transposition ⟨i j⟩. The weight function ϕ, representing

the geographical similarity of the cities as discussed above, equals

ϕ⟨1 2⟩ = 1, ϕ⟨1 3⟩ = 3, ϕ⟨1 4⟩ = 3

ϕ⟨2 3⟩ = 3, ϕ⟨2 4⟩ = 3, ϕ⟨3 4⟩ = 2.

For permutations µ and ω, let T′(µ,ω) be the set of sequences τ = (τ1, τ2, . . . , τ∣τ ∣)
of transpositions such that τ∣τ ∣⋯τ1µ = ω. Note that multiplication by a trans-

position on the left is equivalent to swapping the corresponding elements. For

example, ⟨2 3⟩π = (4,3,1,2). The weight of a sequence of transpositions is de-

fined as the sum of the weights of its transpositions. That is, the weight of the

sequence τ = (τ1, . . . , τ∣τ ∣) of transpositions equals
wt(τ) = ∣τ ∣∑

i=1
ϕτi ,
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where the empty sum is assigned value 0. The similarity distance between π

and σ, denoted by d
′
ϕ(π,σ), reads as

d
′
ϕ(π,σ) = min

τ∈T′(π,σ)
wt(τ).

Next, we define the weighted transposition distance between permutations π

and σ, which is equal to the similarity distance applied to π−1 and σ−1.

Definition 3.1. The weighted transposition distance between two permutations

π and σ, with respect to a weight function ϕ, is defined as the minimum weight

of a sequence τ = (τ1, . . . , τ∣τ ∣) of transpositions such that σ = πτ1⋯τ∣τ ∣. This

distance is denoted by dϕ. We refer to such a sequence of transpositions as a

(transposition) transform converting π into σ and use T(π,σ) to denote the set

of transforms that convert π into σ.

With this notation at hand, the weighted transposition distance between π

and σ may be written as

dϕ(π,σ) = min
τ∈T(π,σ)

wt(τ).
Since τ∣τ ∣⋯τ2τ1π = σ if and only if π−1τ1τ2⋯τ∣τ ∣ = σ−1, we have T′(π,σ) =

T(π−1, σ−1) and thus

d
′
ϕ(π,σ) = dϕ(π−1, σ−1).

As our discussion is not dependent on the particular choices for π and σ, in

order to find the similarity distance d
′
ϕ it suffices to find the weighted transpo-

sition distance dϕ. Throughout the rest of this chapter, we mainly focus on the

weighted transposition distance.

For every nonnegative weight function, the weighted transposition distance

dϕ is a pseudo-metric. That is, for every π,σ,ω ∈ Sn,

• dϕ(π,π) = 0,
• dϕ(π,σ) ≥ 0,
• dϕ(π,σ) = dϕ(σ,π),
• dϕ(π,σ) ≤ dϕ(σ,ω) + dϕ(ω,π).

Furthermore, dϕ is left-invariant since T(π,σ) = T(ωπ,ω,σ).
The weighted transposition distance may be viewed as a generalization of the

Kendall tau distance and the weighted Kendall distance: The definition of the

Kendall τdistance and the weighted Kendall distance is based on transform-

ing one permutation into another using adjacent transpositions. If instead all

transpositions are allowed – including non-adjacent transpositions – the result-

ing distance is the weighted transposition distance. To obtain the Kendall τ

45



distance, let

ϕθ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, θ = ⟨i i + 1⟩ , i ∈ [n − 1]
∞, else,

and to obtain the weighted Kendall distance, let

ϕθ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wi, θ = ⟨i i + 1⟩ , i ∈ [n − 1]
∞, else,

for a nonnegative function w.

For a given weight function ϕ, we let Kϕ denote a complete undirected

weighted graph with vertex set [n], where the weight of each edge (ij) equals
the weight ϕ⟨i j⟩ of the transposition ⟨i j⟩.
For a multigraph H with the same vertex set as that of Kϕ, the weight of

each edge (ij) of H is ϕ⟨i j⟩ and the weight of H is

wt(H) = ∑
(ij)∈E(H)

ϕ⟨i j⟩,

that is, the sum of the weights of its edges.

For π,σ ∈ Sn, let p
∗
ϕ(a, b) denote the minimum weight path from a to b in Kϕ

and define Dϕ(π,σ) as1
Dϕ(π,σ) = n

∑
i=1

wt (p∗ϕ(π−1(i), σ−1(i))) .
It is easy to verify that Dϕ is a pseudo-metric. Furthermore, it is left-invariant

since

Dϕ(π,σ) = n

∑
i=1

wt (p∗ϕ(π−1(i), σ−1(i)))
=

n

∑
i=1

wt (p∗ϕ(π−1(ω−1(i)), σ−1(ω−1(i))))
=Dϕ(ωπ,ωσ),

for every π,σ,ω ∈ Sn.

3.2.1 Transpositions

The predecessor of a ∈ [n] in a permutation π is π−1(a) and the successor of a

is π(a). There is an edge from the predecessor of a to a and an edge from a to

its successor in the functional digraph of π, dig (π), defined in Chapter 1.

In addition to functional digraphs, a permutation can be represented using a

binning scheme (bins and balls model). Consider a permutation π ∈ Sn, n balls

1Note that this definition is consistent with the definition of a specialization of this function,
given in Proposition 16.

46



1

23

1

2

2

3

3

1

Figure 3.1: The functional digraph and the balls and bins model for
permutation π = (2,3,1).
labeled from 1 to n, and n bins, labeled in the same way. Ball j is placed in bin

i if π(i) = j. An example is shown in Figure 3.1.

Multiplication of a permutation by a transposition on the left and on the right

results in different permutations. For a permutation π, the product π ⟨a b⟩ is
obtained by swapping elements in positions a and b in π. In the functional

digraph, this is reflected by swapping the successors of a and b. In the binning

model, the balls in the bins a and b are swapped. The product ⟨a b⟩π is,

however, obtained by swapping elements a and b in π. In the functional digraph,

multiplication on the left is reflected by swapping the predecessors of a and b

and in the binning model, by swapping the balls a and b. Figure 3.2 provides

an example of these concepts. By applying a transposition to a permutation we

mean that the permutation is multiplied by the transposition on the right unless

stated otherwise.

For a sequence of transpositions τ = (τ1, . . . , τ∣τ ∣), with τi = ⟨ai bi⟩, the multi-

graph of τ , denoted by mgr (τ), is a multigraph with vertex set [n] and edges(aibi) for each transposition τi. An example is shown in Figure 3.3. Note that

two distinct sequences of transpositions may have the same multigraph.

As a simple application of the balls and bins model, we state the following

straightforward lemma.

Lemma 3.2. For a permutation π and a transform τ ∈ T(π, e), there exists a

path from i to π(i) in mgr (τ) for each i ∈ [n].
Proof. Since τ ∈ T(π, e), we have e = πτ1⋯τ∣τ ∣. Suppose τj = ⟨xj yj⟩ and ∣τ ∣ = k.
Consider the balls and bins representation where each bin is located on the

vertex of mgr (τ) with the same label, and initially bin i is occupied by ball

π(i). Through the sequence τ1, . . . , τk of transpositions, applied one by one, π

is transformed into the identity permutation. In the identity permutation bin i

is occupied by ball i.
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(a) Multiplication by transpositions on the right.
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(b) Multiplication by transpositions on the left.

Figure 3.2: Multiplication of a permutation by a transposition on the left and
on the right result in possibly different permutations. In (a), at each step the
permutation is multiplied by a transposition on the right:(1,2,3) ⟨1 3⟩ = (3,2,1) and (3,2,1) ⟨2 3⟩ = (3,1,2). In (b), at each step the
permutation is multiplied by a transposition on the left:⟨1 3⟩ (1,2,3) = (3,2,1) and ⟨2 3⟩ (3,2,1) = (2,1,3).

1

23

4

5

Figure 3.3: The digraph dig (π) of the permutation π = ⟨1 2 3⟩ ⟨4 5⟩ and the
graph mgr (τ), for the transform τ = (⟨1 2⟩ , ⟨1 3⟩ , ⟨4 5⟩). Edges of dig (π) and
mgr (τ) are represented with dashed and solid lines, respectively.
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Figure 3.4: The transposition ⟨2 3⟩ has an equivalent effect as first applying(1, (3→ 2)) and then (2, (2→ 3)). The first row shows the functional digraph
of this operation and the second row shows its bins and balls representation.

In step j, for j ∈ [k], the transposition τj = ⟨xj yj⟩ is applied: the balls placed
in bins xj and yj , moving along the edge (xjyj), swap their locations. Note

that the balls “move” solely along the edges of mgr (τ). In this process, the ball

π(i) moves from bin i to bin π(i). Thus there exists a path from i to π(i) in
mgr (τ).
A similar argument leads to the following corollary.

Corollary 3.3. For permutations π and σ and a transform τ ∈ T(π,σ), the
following equivalent statements hold.

• There is a path from π−1(i) to σ−1(i) in mgr (τ) for each i ∈ [n].
• There is a path from i to σ−1(π(i)) in mgr (τ) for each i ∈ [n].
• There is a path from i to π−1(σ(i)) in mgr (τ) for each i ∈ [n].
We define a generalization of the notion of a transposition where a can be

moved independently of b. For example, let a, b, c, d ∈ [n], and let π(a) = c
and π(b) = d. Let π′ = π (c, (a→ b)), where (c, (a → b)) denotes what we call

a half-transposition, or h-transposition for short. This h-transposition moves c,

the ball in bin a, to bin b, without moving ball a. We now have a mapping π′

where π′(b) = {c, d} and π′(a) = {}. Note that π′ is no longer a function from[n] to [n] but rather a function from [n] to the power set of [n]. For a given

weight function ϕ, we assign weight 1
2
ϕ⟨1 2⟩ to h-transpositions (x, (a→ b)) and(x, (b→ a)), independent of the value of x.

A transposition represents the product of a pair of h-transpositions, as in

π ⟨a b⟩ = π (π(a), (a→ b)) (π(b), (b→ a)) .
Figure 3.4 illustrates this notion, using both the functional digraph and the

balls and bins representation.
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Figure 3.5: A defining path (a), which may correspond to a metric-path weight
function or an extended-path weight function, and a defining tree (b), which
may correspond to a metric-tree weight function or an extended-tree weight
function.

An h-transform ν = (ν1, . . . , ν∣ν∣) converting π to σ is a sequence of h-trans-

positions such that applying ν1, . . . , ν∣ν∣ to π, in that order, transforms π into

σ. The weight of ν is defined as the sum of the weights of its constituent h-

transpositions. Since transpositions can be modeled using h-transpositions, the

minimum weight h-transform converting π to σ is at most the minimum weight

transposition transform converting π to σ.

3.2.2 Weight Functions

A weight function ϕ is a metric weight function if it satisfies the triangle in-

equality in the sense that

ϕ⟨a b⟩ ≤ ϕ⟨a c⟩ +ϕ⟨c b⟩, a, b, c ∈ [n]. (3.3)

If ϕ is a metric weight function, by repeated application of the triangle in-

equality, one has ϕ⟨a b⟩ ≤ wt(p∗ϕ(a, b)). Since the edge (ab) is a path from a to

b, we also have ϕ⟨a b⟩ ≥ wt(p∗ϕ(a, b)). Thus,
ϕ⟨a b⟩ = wt(p∗ϕ(a, b)). (3.4)

A weight function ϕ is a metric-tree weight function if there exists a weighted

tree Θ over the vertex set [n], such that for distinct a, b ∈ [n], ϕ⟨a b⟩ is the sum

of the weights of the edges on the unique path from a to b in Θ. If Θ is a path,

i.e., if Θ is a linear graph, then ϕ is called a metric-path weight function.

Furthermore, a weight function ϕ′ is an extended-tree weight function if there

exists a weighted tree Θ over the vertex set [n] such that for distinct a, b ∈ [n],
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ϕ′⟨a b⟩ equals the weight of the edge (ab) whenever a and b are neighbors in Θ,

and ϕ′⟨a b⟩ = ∞ otherwise. If Θ is a path, then ϕ′ is called an extended-path

weight function.

The tree or path corresponding to a weight function in the above definitions

is termed the defining tree or path of the weight function. An example is given

in Figure 3.5, where the numbers indexing the edges denote their weights.

Note that the weight functions used to define the weighted Kendall τ distance,

which assign finite weights to adjacent transpositions, are extended path weight

functions with the defining path (1, . . . , n).

3.3 Distance of a Transposition from Identity

Next, we find the distance between a transposition ⟨a b⟩, for a, b ∈ [n], and

the identity permutation e. Since the weighted transposition distance is left-

invariant, the results of this section applies to any two permutations π and σ

such that π = σ ⟨a b⟩ for some transposition ⟨a b⟩. We start by presenting two

simple upper-bounds on the distance. The exact distance is characterized in

Theorem 3.7.

For a weight function ϕ and a transposition ⟨a b⟩, one has

dϕ(⟨a b⟩ , e) ≤ ϕ⟨a b⟩. (3.5)

This simple upper-bound follows from the fact that ⟨a b⟩ ∈ T(⟨a b⟩ , e). The

following lemma presents a second upper-bound on the distance dϕ(⟨a b⟩ , e).
Lemma 3.4. For a weight function ϕ and a transposition ⟨a b⟩ ∈ Sn,

dϕ(⟨a b⟩ , e) ≤ 2wt(p∗ϕ(a, b)).
Proof. Consider a path p = (v0, v1, . . . , v∣p∣) in Kϕ, where v0 = a and v∣p∣ = b. We

have

⟨a b⟩ = ⟨v0 v1⟩ ⟨v1 v2⟩⋯ ⟨v∣p∣−2 v∣p∣−1⟩ ⟨v∣p∣−1 v∣p∣⟩
⟨v∣p∣−2 v∣p∣−1⟩⋯ ⟨v1 v2⟩ ⟨v0 v1⟩ .

From the left-invariance of dϕ, it follows that

dϕ(⟨a b⟩ , e) ≤ 2 ∣p∣−1∑
i=1

dϕ(⟨vi−1 vi⟩ , e) − dϕ (⟨v∣p∣−1 v∣p∣⟩ , e)
≤ 2

∣p∣−1
∑
i=1

ϕ⟨vi−1 vi⟩ −ϕ⟨v∣p∣−1 v∣p∣⟩

= 2wt(p) −ϕ⟨v∣p∣−1 v∣p∣⟩

≤ 2wt(p).
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Figure 3.6: Illustrations for the proof of Lemma 3.5: (a) A graph
corresponding to a transposition transform of ⟨a b⟩ with one cut edge only.
The cut edge is (x1y1) and it separates component A containing a and
component B containing b. (b) A graph corresponding to a transposition
transform of ⟨a b⟩ with two cut edges. The cut edges are (x1y1), which
separates component A containing a and component B containing y1, and(x2y2), which separates components B and C containing b.

Since p is an arbitrary path from a to b in Kϕ, we have

dϕ (⟨a b⟩ , e) ≤ 2wt(p∗ϕ(a, b))).

While the upper-bound of Lemma 3.4 suffices to prove many of our subsequent

results, we also point out that one can compute the exact distance as shown in

Theorem 3.7. Lemmas 3.5 and 3.6 are used in the proof of Theorem 3.7.

Lemma 3.5. For a transposition ⟨a b⟩ and a sequence τ ∈ T(⟨a b⟩ , e), the graph

mgr (τ) has at most one a,b-cut edge.

Proof. LetM =mgr (τ). By Lemma 3.2, there is a path from a to b inM. Sup-

pose that τ = (τ1, . . . , τi, . . . , τk), and that τi = ⟨x1 y1⟩. Furthermore, suppose

that (x1y1) is an a,b-cut edge as shown in Figure 3.6a. The graphM − (x1y1)
has two components with vertex sets A and B, containing a and b, respectively.

Since there exists a path from a to b, there also exists a path from a to x1 that

does not use the edge (x1y1). Thus, a and x1 are in A. Similarly, b and y1 are

in B.

For 1 ≤ j ≤ k, let πj = π0τ1⋯τj , where π0 = ⟨a b⟩. Note that π−10 (a) = b and

π−10 (b) = a. For i ∈ [n]/{a, b}, π−10 (i) = i. Recall that applying a transposi-

tion ⟨i j⟩ to a permutation swaps the successors of i and j. Since there is no

transposition in πi−1 with endpoints in both A and B, we have π−10 (a) ∈ B and
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π−10 (b) ∈ A. Since (x1y1) is the only edge connecting A and B, we must have

πi−1(x1) = b, πi−1(y1) = a,
πi(x1) = a, πi(y1) = b. (3.6)

Also, for all j ≥ i, we must have

π−1j (a) ∈A, π−1j (b) ∈B. (3.7)

Alternatively, one can prove (3.6) and (3.7) by referring to the balls and

bins model. Starting from the permutation ⟨a b⟩, in which bins a and b are

respectively occupied by balls b and a, by applying the transpositions τ1, . . . , τk,

ball a is moved to bin a and ball b is moved to bin b, while all other balls remain

in their original bins. Since (x1y1) is the only edge connecting the components A

and B, by applying τi = ⟨x1 y1⟩, the balls a and b are moved from one component

to the other. This implies (3.6). Furthermore, after applying ⟨x1 y1⟩, ball a
remains in A and ball b remains in B, implying (3.7).

Now suppose there are at least two a,b-cut edges in M. Let τi = ⟨x1 y1⟩
and τl = ⟨x2 y2⟩, with l > i. Suppose that (x1y1) and (x2y2) are two of the

a,b-cut edges as shown in Figure 3.6b. Define A, B, and C to be the vertex sets

of the components ofM−(x1y1)−(x2y2) containing a, y1, and y2, respectively.
By the same reasoning as above,

πl−1(x2) = b, πl−1(y2) = a.
However, this cannot be true, since for all j ≥ i we have π−1j (a) ∈ A and thus

π−1l−1(a) ≠ y2 ∈ C. This contradiction shows that M cannot contain more than

one a,b-cut edge.

Lemma 3.6. For a, b ∈ [n], among graphs with the same vertex set as that of

Kϕ and with at most one a,b-cut edge, there exists a graph of minimum weight

that consists of two copies of a path from a to b with one edge deleted (removed).

Proof. Let M denote the graph of minimum weight among graphs with the

same vertex set as that of Kϕ and with at most one a,b-cut edge. First, suppose

thatM has no a,b-cut edge. By deleting edges fromM, we may obtain a graph

with one a,b-cut edge and of weight smaller than or equal to the weight ofM.

Thus, we may assume thatM has exactly one a,b-cut edge.

Suppose the a,b-cut edge in M is (xy) and that a and x are in the same

component ofM− (xy). There is no a,x-cut edge inM, and thus, by Menger’s

theorem [41], there are two edge-disjoint paths from a to x. Delete the path with

larger weight and instead add a copy of the path with smaller weight. Similarly,

delete the path with larger weight from b to y and add a copy of the path with

smaller weight. The graph obtained in this way has weight smaller than or equal

to the weight of M and has one a,b-cut edge. Furthermore, it consists of two
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copies of a path from a to b with one edge deleted. Namely, it has two copies

of every edge in a path (a, . . . , x, y, . . . , b) except for (xy), of which it has only

one copy.

Theorem 3.7. For a weight function ϕ and a transposition ⟨a b⟩ ∈ Sn,

dϕ(⟨a b⟩ , e) = min
p=(v0=a,v1,...,v∣p∣=b)

(2wt(p) − max
0≤i<∣p∣

ϕ⟨vi vi+1⟩) , (3.8)

where the minimum is taken over all paths p from a to b.

Proof. Let d denote the right side of (3.8). By Lemmas 3.5 and 3.6, we have

d ≤ dϕ(⟨a b⟩ , e). To prove that d ≥ dϕ(⟨a b⟩ , e), let p = (v0, . . . , vl) be a path of

length l from v0 = a to vl = b. For any 0 ≤ i < l, we show that there is a sequence

τ ∈ T(⟨a b⟩ , e) such that

wt(τ) = 2wt(p) − ϕ⟨vi vi+1⟩.

Namely, observe that

τ =( ⟨v0 v1⟩ , ⟨v1 v2⟩ , . . . , ⟨vi−2 vi−1⟩ , ⟨vi−1 vi⟩ ,
⟨vl−1 vl⟩ , ⟨vl−2 vl−i⟩ , . . . , ⟨vi+1 vi+2⟩ , ⟨vi+2 vi+3⟩ ,
⟨vi vi+1⟩ ,
⟨vi−1 vi⟩ , ⟨vi−2 vi−1⟩ , . . . , ⟨v1 v2⟩ , ⟨v0 v1⟩ ,
⟨vi+1 vi+2⟩ , ⟨vi+2 vi+3⟩ , . . . , ⟨vl−2 vl−1⟩ , ⟨vl−1 vl⟩ ) .

(3.9)

To see that indeed τ ∈ T(⟨a b⟩ , e), observe that

⟨v0 v1⟩ ⟨v1 v2⟩⋯ ⟨vi−2 vi−1⟩ ⟨vi−1 vi⟩ = ⟨v0 v1 ⋯ vi⟩ ,
⟨vl−1 vl⟩ ⟨vl−2 vl−i⟩ . . . ⟨vi+2 vi+3⟩ ⟨vi+1 vi+2⟩ = ⟨vl vl−1 ⋯ vi+1⟩ ,

⟨vi−1 vi⟩ ⟨vi−2 vi−1⟩ . . . ⟨v1 v2⟩ ⟨v0 v1⟩ = ⟨vi vi−1 ⋯ v0⟩ ,
⟨vi+1 vi+2⟩ ⟨vi+2 vi+3⟩ . . . ⟨vl−2 vl−1⟩ ⟨vl−1 vl⟩ = ⟨vi+1 vi+2 ⋯ vl⟩ ,

(3.10)

and that

⟨a b⟩ = ⟨v0 v1 ⋯ vi⟩ ⟨vl vl−1 ⋯ vi+1⟩ ⟨vi vi+1⟩ ⟨vi vi−1 ⋯ v0⟩ ⟨vi+1 vi+2 ⋯ vl⟩ .
By the definition of dϕ, and the fact that τ ∈ T(⟨a b⟩ , e), we have

wt(τ) = 2wt(p) −ϕ⟨vi vi+1⟩ ≥ dϕ(⟨a b⟩ , e).
Since p is an arbitrary path from a to b, and since i is an arbitrary integer such

that 0 ≤ i < ∣p∣, we have d ≥ dϕ(⟨a b⟩ , e).
In the next two subsections, we present two algorithms for computing the

expression on the right side of (3.8). The first algorithm is based on writing
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transpositions in terms of products of three transpositions with smaller total

weights and the second algorithm is a modification of the well-known Bellman-

Ford procedure [43] that searches the graph Kϕ for a path that minimizes the

right side of (3.8).

3.3.1 The Triple-Optimization Algorithm

In this subsection, we present an algorithm for finding the distance between a

transposition ⟨a b⟩ ∈ Sn and the identity permutation e for an arbitrary weight

function ϕ. The unique transform in T(⟨a b⟩ , e) with length 1 is ⟨a b⟩. Since⟨a b⟩ is odd, there are no transforms in T(⟨a b⟩ , e) with length 2. For c ∈[n]/{a, b}, (⟨a c⟩ , ⟨b c⟩ , ⟨a c⟩) (3.11)

is a transform in T(⟨a b⟩ , e) of length 3.

If ϕ⟨a b⟩ > 2ϕ⟨a c⟩ + ϕ⟨b c⟩, then (⟨a c⟩ , ⟨b c⟩ , ⟨a c⟩) has a smaller weight than

ϕ⟨a b⟩. Furthermore, one can substitute ⟨a c⟩ by, say, (⟨c d⟩ , ⟨a d⟩ , ⟨c d⟩) to

obtain the transform

(⟨c d⟩ , ⟨a d⟩ , ⟨c d⟩ , ⟨b c⟩ , ⟨c d⟩ , ⟨a d⟩ , ⟨c d⟩)
with yet smaller weight if ϕ⟨a c⟩ > 2ϕ⟨c d⟩ + ϕ⟨a d⟩. The same procedure may

be repeated until it is no longer possible to reduce the weight any further.

The resulting transform is a triple-optimized transform for the transposition⟨a b⟩. The weight of such a transform is the triple-optimized weight of ⟨a b⟩,
and is denoted by ϕ∗⟨a b⟩. While there may be many distinct triple-optimized

transforms for a transposition ⟨a b⟩, as we will see, they all must have the same

weight, namely, dϕ(⟨a b⟩ , e). Note that, by definition, ϕ∗⟨a b⟩ ≤ 2ϕ
∗
⟨a x⟩ + ϕ

∗
⟨b x⟩,

for any x ≠ a, b.

We develop an algorithm – Alg. 2 – that finds triple-optimized transforms

for all transpositions. Alg. 2 performs a simple search on the ordered set of

transpositions to check if their product, of the form given in (3.11), yields a

transform of lower weight for some transposition. It then updates the weights

of transpositions and repeats. The fact that Alg. 2 produces the triple-optimized

weights ϕ∗⟨a b⟩, for ⟨a b⟩ ∈ Sn, is shown in Lemma 3.8. In Theorem 3.10, we prove

that triple-optimized transforms are optimum, that is, ϕ∗⟨a b⟩ = dϕ(⟨a b⟩ , e) for⟨a b⟩ ∈ Sn.
The input to Alg. 2 is an ordered list Ω of transpositions and their weights.

Each item of Ω corresponds to one transposition and is of the form [⟨a b⟩ ∣ϕ⟨a b⟩].
The jth item of Ω is denoted by Ω(j) and the transposition corresponding to

Ω(j) is denoted by TΩ(j). Sorting of Ω means reordering its items so that

transpositions appear in increasing order of their weights. The output of the

algorithm is a list with the same format, but with triple-optimized weights for

transpositions.
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Algorithm 2 Optimize-Transposition-weights(Ω)
1: Input: Ω (the list of transpositions and their weights)
2: Sort Ω
3: for i← 2, . . . , ∣Ω∣ do
4: ⟨a1 b1⟩← TΩ(i)
5: φ1 ← ϕ⟨a1 b1⟩
6: for j ← 1, . . . , i − 1 do

7: ⟨a2 b2⟩← TΩ(j)
8: φ2 ← ϕ⟨a2 b2⟩
9: if {a1b1} ∩ {a2b2} ≠ {} then

10: acom ← {a1, b1} ∩ {a2, b2}
11: {a3, b3}← {a1, a2, b1, b2}/{acom}
12: if φ1 + 2φ2 < ϕ⟨a3 b3⟩ then
13: ϕ⟨a3 b3⟩ ← φ1 + 2φ2
14: update ϕ⟨a3 b3⟩ in Ω

15: Sort Ω

Lemma 3.8. Alg. 2 outputs the triple-optimized weight ϕ∗ for all transpositions

in Sn.

Proof. Let Ωi be the list Ω at the beginning of iteration i, obtained immediately

before executing line 4 of Alg. 2. Also, let Ωi(j, . . . , k) denote the items j, j +

1, . . . , k of Ωi and let TΩi(j, . . . , k) denote the transpositions corresponding to

these items.

We prove by induction that TΩi(1, . . . , i) are triple-optimized, that the items

in Ωi(1, . . . , i) do not change in subsequent iterations of the algorithm, and

that Ωi(i + 1, . . . , ∣Ω∣) are triple-optimized with respect to Ωi(1, . . . , i − 1), i.e.,
any triple-optimized transform of a transposition ⟨a b⟩ ∈ TΩi(i + 1, . . . , ∣Ω∣) in
terms of TΩi(1, . . . , i − 1) has weight at least as large as the weight of ⟨a b⟩ in
Ωi(i + 1, . . . , ∣Ω∣).
The claim is obviously true for i = 2.

Assume that the claim holds for i. Note that, by the induction hypotheses,

Ωi(1, . . . , i) = Ωi+1(1, . . . , i) and TΩi(i + 1, . . . , ∣Ω∣) = TΩi+1(i + 1, . . . , ∣Ω∣). Let⟨a1 b1⟩ = TΩi(i), and consider a transposition s ∈ TΩi+1(i + 1, . . . , ∣Ω∣). By the

induction hypotheses, s is already triple-optimized with respect to Ωi+1(1, . . . , i−
1). Thus, the weight of s may be reduced using transpositions TΩi+1(1, . . . , i)
only if one can write s as ⟨a2 b2⟩ ⟨a1 b1⟩ ⟨a2 b2⟩, where ⟨a2 b2⟩ ∈ TΩi+1(1, . . . , i−
1). These are precisely the transforms considered in the ith iteration, and thus

Ωi+1(i + 1, . . . , ∣Ω∣) is triple-optimized with respect to Ωi+1(1, . . . , i).
Furthermore, TΩi+1(i+1) has the minimum weight among TΩi+1(i+1, . . . , ∣Ω∣),

and thus its weight cannot be further reduced. Hence, the weights of transposi-

tions TΩi+1(1, . . . , i+1) are triple-optimized and do not change in the subsequent

iterations of the algorithm.

Example 3.9. The left-most list in (3.12) represents the input Ω to the algo-
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rithm, with transpositions in increasing order of their weights. This is equal to

Ω2. The two lists that follow represent updates of Ω produced by Alg. 2.

In the first iteration, the algorithm considers the transposition ⟨1 3⟩, for i =
2, and the transposition ⟨3 4⟩, for j = 1. Using these transpositions we may

write ⟨3 4⟩ ⟨1 3⟩ ⟨3 4⟩ = ⟨1 4⟩. The initial weight of ⟨1 4⟩ is 12 which exceeds

2ϕ⟨3 4⟩ + ϕ⟨1 3⟩ = 8 and thus Ω3 is obtained, i.e., the second list in (3.12).

Next, for i = 3 and j = 1, the algorithm considers ⟨2 4⟩ and ⟨3 4⟩. Since⟨3 4⟩ ⟨2 4⟩ ⟨3 4⟩ = ⟨2 3⟩, we update the weight of ⟨2 3⟩ from 23 to 11 as shown

in the third list Ω4 in (3.12). Additional iterations of the algorithm introduce

no further changes in the weights.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨3 4⟩ 2⟨1 3⟩ 4⟨2 4⟩ 7⟨1 4⟩ 12⟨1 2⟩ 15⟨2 3⟩ 23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨3 4⟩ 2⟨1 3⟩ 4⟨2 4⟩ 7⟨1 4 ⟩ 8⟨1 2⟩ 15⟨2 3⟩ 23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨3 4⟩ 2⟨1 3⟩ 4⟨2 4⟩ 7⟨1 4⟩ 8⟨2 3 ⟩ 11⟨1 2⟩ 15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)

Next, we state a theorem pertaining to the optimality of Alg. 2.

Theorem 3.10. For ⟨a b⟩ ∈ Sn, we have ϕ∗⟨a b⟩ = dϕ(⟨a b⟩ , e).
Proof. Consider the transposition ⟨a b⟩, and let τ be a sequence of transpositions

that transforms ⟨a b⟩ into e with wt(τ) = dϕ(⟨a b⟩ , e). Furthermore, let M =

mgr (τ). Let M′ be a graph with minimum weight among those consisting of

two copies of a path from a to b minus one edge. By Lemmas 3.5 and 3.6, the

weight ofM′ is less than or equal to the weight ofM. We show below that the

weight obtained from Alg. 2 is, in turn, less than or equal to the weight ofM′.

By optimality ofM, this proves the theorem.

Suppose thatM′ consists of two copies of the path

(a,x1, x2, . . . , xr , x, y, y1, y2, . . . , ys, b),
for some integers r and s, minus one copy of (xy). Thus, we have

C1 ∶= 2ϕ
∗
⟨a x1⟩ +⋯+ 2ϕ

∗
⟨xr x⟩ +ϕ

∗
⟨x y⟩

≥ 2ϕ∗⟨a x1⟩ +⋯ + 2ϕ
∗
⟨xr−1 xr⟩ + ϕ

∗
⟨xr y⟩

≥ 2ϕ∗⟨a x1⟩ +⋯ + 2ϕ
∗
⟨xr−2 xr−1⟩ +ϕ

∗
⟨xr−1 y⟩

≥ ⋯

≥ ϕ∗⟨a y⟩.

(3.13)
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The weight ofM′ is C1 + 2ϕ
∗
⟨y y1⟩ + 2ϕ

∗
⟨y1 y2⟩ +⋯+ 2ϕ

∗
⟨ys b⟩, and thus we have

C1 + 2ϕ
∗
⟨y y1⟩ + 2ϕ

∗
⟨y1 y2⟩ +⋯ + 2ϕ

∗
⟨ys b⟩ ≥ ϕ

∗
⟨a y⟩ + 2ϕ

∗
⟨y y1⟩ +⋯ + 2ϕ

∗
⟨ys b⟩

≥ ϕ∗⟨a y1⟩ + 2ϕ
∗
⟨y1 y2⟩ +⋯+ 2ϕ

∗
⟨ys b⟩

≥ ϕ∗⟨a y2⟩ + 2ϕ
∗
⟨y2 y3⟩ +⋯+ 2ϕ

∗
⟨ys b⟩

≥ ⋯

≥ ϕ∗⟨a ys⟩ + 2ϕ
∗
⟨ys b⟩

≥ ϕ∗⟨a b⟩,

(3.14)

implying that ϕ∗⟨a b⟩ ≤ dϕ(⟨a b⟩ , e). Hence, ϕ∗⟨a b⟩ = dϕ(⟨a b⟩ , e).
Observe that if the weight function satisfies

ϕ⟨b c⟩ + 2ϕ⟨a c⟩ ≥ ϕ⟨a b⟩, for distinct a, b, c ∈ [n], (3.15)

then

dϕ(⟨a b⟩ , e) = ϕ∗⟨a b⟩ = ϕ⟨a b⟩. (3.16)

In particular, (3.16) holds for metric weight functions.

Computational Complexity: For each index i, the number of operations

performed is O(∣Ω∣). Thus, the complexity of the algorithm is O(∣Ω∣2). Since∣Ω∣ is at most equal to the number of transpositions, we have ∣Ω∣ = (n
2
). Hence,

the complexity of Alg. 2 equals O(n4).

3.3.2 The Bellman-Ford Algorithm

We describe an algorithm for finding the path that solves

min
p∈P (a,b)

(2wt(p) − max
(xy)∈p

ϕ⟨x y⟩) ,
for a, b ∈ [n], where P (a, b) is the set of all paths from a to b in Kϕ. Recall from

Theorem 3.7 that the weight of this path equals dϕ(⟨a b⟩ , e). The algorithm

presented here is a variant of the Bellman-Ford algorithm. The Bellman-Ford

algorithm is described in detail in [43].

Recall that for each path p = (v1, . . . , vk+1) in Kϕ, the standard weight of the

path is

wt (p) = k

∑
i=1
ϕ⟨vi vi+1⟩. (3.17)

Define the transposition path weight of p

ϕ̄ (p) ∶= 2wt (p) −max
i
ϕ⟨vi vi+1⟩ (3.18)

to be the weight of the graph consisting of two copies of p minus one copy of its

heaviest edge. For s, u ∈ [n], s ≠ u, let the path that minimizes the transposition
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path weight, among all paths from s to u, be denoted by p̂(s, u). The goal is to

find p̂(s, u), for all s, u ∈ [n], s ≠ u.
Before describing our algorithm, we briefly review the standard Single-Source

Bellman-Ford shortest path algorithm, and its relaxation technique.

Given a fixed source s, for each vertex v ≠ s, the algorithm maintains an

upper-bound on the minimum weight of a path from s to v, denoted by D(v).
“Relaxing” an edge (uv) means testing that the upper-bounds D(u) and D(v)

satisfy the conditions

D(u) ≤ D(v) +w,
D(v) ≤ D(u) +w, (3.19)

where w denotes the weight of the edge (uv). If the above conditions are not

satisfied, then one of the two upper-bounds can be improved, since one can

reach u by passing through v, and vice versa.

In our algorithm, we maintain the upper-bound for two types of weights. The

source s is an arbitrary vertex in Kϕ. We use D1(v) to denote the upper-bound

on the minimum transposition path weight of a path from s to v, and we use

D2(v) to denote the upper-bound on twice the minimum weight of a path from

s to v. From the definitions of these weights, the relaxation inequalities become

D2(u) ≤ 2w + D2(v) , (3.20)

D2(v) ≤ 2w + D2(u) ,
D1(u) ≤min{w + D2(v) ,2w + D1(v)} ,
D1(v) ≤min{w + D2(u) ,2w + D1(u)} .

The relaxation algorithm for these inequalities, Alg. 3, is straightforward to

implement.

To describe the properties of the output of our Bellman-Ford algorithm,

we briefly comment on a simple property of the algorithm, termed the path-

relaxation property.

Suppose p = (v1, . . . , vk+1) is the shortest path in terms of (3.17) (resp. (3.18))

from s = v1 to u = vk+1. After relaxing the edges (v1v2) , (v2v3) , . . . , (vkvk+1),
in that given order, the upper-bound D2(u) (resp. D1) equals twice the mini-

mum weight (resp. the minimum transposition path weight) of a path from s

to u. Note that the property still holds even if the relaxations of the edges(v1v2) , (v2v3) , . . . , (vkvk+1) are interleaved by relaxations of some other edges.

In the algorithm below, we use predi(v) to denote the predecessor of node v

used for tracking the updates of the weight Di(v), i = 1,2, and (u, i), i = 1,2, to
indicate from which of the two weights, minimized over in (3.20), u originated.

Note that this notion of predecessor is not to be confused with the predecessor

of an element in the functional digraph of a permutation.

The modified Bellman-Ford algorithm, Alg. 4, performs n−1 rounds of relax-
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Algorithm 3 Relax(u, v)
1: w ← ϕ(u, v)
2: if D2(v) > D2(u)+ 2w then

3: D2(v)← D2(u)+ 2w
4: pred2(v) ← (u,2)
5: if D2(u) > D2(v) + 2w then

6: D2(u)← D2(v) + 2w
7: pred2(u)← (v,2)
8: if D1(v) > D2(u)+w then

9: D1(v)← D2(u)+w
10: pred1(v) ← (u,2)
11: if D1(u) > D2(v) +w then

12: D1(u)← D2(v) +w
13: pred(u,1)← (v,2)
14: if D1(v) > D1(u)+ 2w then

15: D1(v)← D1(u)+ 2w
16: pred1(v) ← (u,1)
17: if D1(u) > D1(v) + 2w then

18: D1(u)← D1(v) + 2w
19: pred1(u)← (v,1)
ation on the edges of the graph Kϕ. Lemma 3.11 proves the correctness of the

algorithm.

An example of the steps of Alg. 4 is given in Figure 3.7. As a result of

the relaxation of edges (ab) and (ac), neighbors of a have finite weights, as

shown in Figure 3.7a. Edge (bd) is relaxed next, as seen in Figure 3.7b. Then,

the relaxation of edge (cd) reduces D1(d) from 12 to 10. Continuing with the

algorithm, we obtain the final result in Figure 3.7f. Note that in this example,

the result obtained after the first pass is the final result. In general, however,

the final weights may be obtained only after all n − 1 passes are performed.

Lemma 3.11. Given n, a weight function ϕ, and a source s, after the execution

of Alg. 4, one has D1(u) = dϕ(⟨s u⟩ , e) and D2(u) = 2wt (p∗ (s, u)).
Proof. Let p̂ (s, u) = (v1, v2, . . . , vk+1) be the path that minimizes ϕ̄ (p) among

all paths p from v1 = s to vk+1 = u. Since any path p has at most n vertices,

we have k ≤ n − 1. The algorithm makes n − 1 passes and in each pass re-

laxes all edges of the graph. Thus, there exists a subsequence of relaxations

that relax (v1v2) , (v2v3) , . . . , (vkvk+1), in that order. The proof for the claim

regarding D1(u) follows by invoking the path-relaxation property and the fact

that dϕ(⟨s u⟩ , e) = ϕ̄ (p̂ (s, u)). The proof for the claim regarding D2(u) is

similar.
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Algorithm 4 Single-Source Bellman-Ford(s)
1: Input: vertex s
2: Output: p̂(s, u) for 1 ≤ u ≤ n
3: for u← 1⋯n do

4: D1(u)←∞
5: D2(u)←∞
6: D1(s)← 0
7: D2(s)← 0
8: for i← 1⋯n − 1 do

9: for each edge (uv) ∈ E(Kϕ) do
10: Relax(u, v)
11: for u← 1⋯n do

12: initialize path at u
13: backtrack min weight alg to recover path to s
14: output p̂(s, u)
3.4 Distance between General Permutations

In the previous section, we presented algorithms for finding the weighted trans-

position distance between two permutations that differ by a single transposition.

In this section, we study the distance between arbitrary permutations. For gen-

eral weight functions and permutations, an algorithm for computing the distance

is not known. We present approximation methods for the general case as well

as exact solutions for special weight functions.

Lemma 3.12. For a weight function ϕ and for π,σ ∈ Sn,

dϕ(π,σ) ≤ 2Dϕ(π,σ).
If ϕ is a metric weight function, the bound may be improved to

dϕ(π,σ) ≤Dϕ(π,σ).
Proof. To prove the first claim, it suffices to show that dϕ(π, e) ≤ 2Dϕ(π, e),
since both dϕ and Dϕ are left-invariant.

Let {c1, c2, . . . , ck} be the cycle decomposition of π. We have, from the triangle

inequality and the left-invariance property of dϕ, that

dϕ(π, e) ≤ k

∑
i=1

dϕ(ci, e),
and, from the definition of Dϕ,

Dϕ(π, e) = k

∑
i=1
Dϕ(ci, e).
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(b) Relaxation of (bd)
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(c) Relaxation of (cd)
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(d) Relaxation of (be) and (cf)
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(e) Relaxation of (de) and (df)
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(f) Relaxation of (fe).

Figure 3.7: Single-Pair Bellman-Ford algorithm on a 6-vertex graph. The
weights (D1(u) ,D2(u)), are shown inside each vertex. Edges that are not
drawn have weight ∞.

Hence, we only need to prove

dϕ(c, e) ≤ 2Dϕ(c, e) (3.21)

for a single cycle c = ⟨a1 a2 ⋯ a∣c∣⟩ , where ∣c∣ is the length of c.

Since c may be written as

c = ⟨a1 a2⟩ ⟨a2 a3⟩⋯ ⟨a∣c∣−1 a∣c∣⟩ ,
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we have

dϕ(c, e) ≤ ∣c∣−1∑
i=1

ϕ⟨ai ai+1⟩

(a)
≤

∣c∣−1
∑
i=1

2wt(p∗ϕ(ai, ai+1))
≤

∣c∣
∑
i=1

2wt(p∗ϕ(ai, c(ai)))
≤ 2Dϕ(c, e)

where (a) follows from Lemma 3.4.

The proof of the second claim is similar, except that we write

dϕ(c, e) ≤ ∣c∣−1∑
i=1

ϕ⟨ai ai+1⟩

(b)
=

∣c∣−1
∑
i=1

wt(p∗ϕ(ai, ai+1))
≤

∣c∣
∑
i=1

wt(p∗ϕ(ai, c(ai)))
≤ 2Dϕ(c, e)

where (b) follows from (3.4).

The next lemma provides a lower-bound for dϕ in terms of Dϕ.

Lemma 3.13. For π,σ ∈ Sn,

dϕ(π,σ) ≥ 1

2
Dϕ(π,σ).

Proof. Since dϕ and Dϕ are both left-invariant, it suffices to show that

dϕ(π, e) ≥ 1

2
Dϕ(π, e).

Let (τ1, . . . , τl) , with τj = ⟨aj bj⟩ , be a minimum weight transform of π into

e, so that dϕ(π, e) = ∑l
i=1 ϕ⟨aj bj ⟩. Furthermore, define πj = πτ1⋯τj , 0 ≤ j ≤ l.

Then,

Dϕ (πj−1, e) −Dϕ (πj , e) ≤ 2wt (p∗ϕ (aj , bj))
≤ 2ϕ⟨aj bj⟩, (3.22)

where the first inequality follows from considering the maximum possible de-

crease of the value of Dϕ induced by one transposition, while the second in-

equality follows from the definition of p∗ϕ. By summing up the terms in (3.22)

over 0 ≤ j ≤ l, and thus obtaining a telescoping inequality of the form Dϕ(π, e) ≤
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2∑l
i=1 ϕ⟨aj bj ⟩ = 2dϕ(π, e), we arrive at the desired result.

An alternative proof of Lemma 3.13 can be given in terms of h-transpositions.

Recall from §3.2.1 that

π (π(a), (a→ b)) (π(b), (b → a)) = π ⟨a b⟩
and that the weight of each h-transposition is half the weight of the correspond-

ing transposition. Any transform can be modeled as an h-transform with the

same weight by breaking each transposition into two h-transpositions. Thus,

the minimum weight of a transform converting π to e is at least as large as the

minimum weight of an h-transform converting π to e. The minimum weight

h-transform uses the shortest path p∗ϕ (π−1(i), i) between π−1(i) and i for each
i ∈ [n]: (i, (v0 → v1)) (i, (v1 → v2))⋯ (i, (vk−1 → vk)) ,
where p∗ϕ (π−1(i), i) = (v0, v1, , . . . , vk) is the shortest path from v0 = π

−1(i) to
vk = i in Kϕ. This h-transform has weight

1

2
∑
i

wt (p∗ϕ (π−1(i), i)) = 1

2
Dϕ(π, e),

and this completes the proof.

From the previous two lemmas, we have the following theorem.

Theorem 3.14. For π,σ ∈ Sn and an arbitrary nonnegative weight function ϕ,

we have
1

2
Dϕ(π,σ) ≤ dϕ(π,σ) ≤ 2Dϕ(π,σ).

In addition, if ϕ is a metric weight function, then

1

2
Dϕ(π,σ) ≤ dϕ(π,σ) ≤Dϕ(π,σ).

For special classes of the weight function ϕ, the bounds in Theorem 3.14 may

be improved further, or exact solutions may be obtained, as described in the

next subsection.

3.4.1 Distance for Metric-Path and Metric-Tree Weights

This section is devoted to metric-path and metric-tree weight functions. The

exact distance for metric-path weight functions can be obtained in polynomial

time as shown in Lemma 3.15. We also show that for some permutations, the

exact distance for metric-tree weight functions can also be computed efficiently.

Since metric-path and metric-tree weight functions are metric weight func-

tions, the second part of Theorem 3.14 applies to these cases. Additionally,
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21 43 5 6 7

(a)

21 43 5 6 7

(b)

Figure 3.8: The cycle ⟨2 6 4 7 5⟩ in Figure (a) is decomposed into two cycles,⟨2 6 4⟩ and ⟨4 7 5⟩, depicted in Figure (b). Note that⟨2 6 4 7 5⟩ = ⟨2 6 4⟩ ⟨4 7 5⟩.
(3.16) implies that

dϕ(⟨a b⟩ , e) = ϕ⟨a b⟩ (3.23)

for all transpositions ⟨a b⟩ and a metric-path or a metric-tree weight function

ϕ.

Lemma 3.15. For a metric-path weight function ϕ and for π,σ ∈ Sn,

dϕ(π,σ) = 1

2
Dϕ(π,σ).

Proof. From Lemma 3.13, we have that dϕ(π,σ) ≥ 1
2
Dϕ(π,σ). It remains to

show that dϕ(π,σ) ≤ 1
2
Dϕ(π,σ). Since dϕ and Dϕ are both left-invariant, it

suffices to prove that dϕ(π, e) ≤ 1
2
Dϕ(π, e).

Let {c1, c2, . . . , ck} be the cycle decomposition of π. Similar to the proof of

Lemma 3.12, it suffices to show that

dϕ(c, e) ≤ 1

2
Dϕ(c, e) (3.24)

for any cycle c = ⟨a1 ⋯ a∣c∣⟩.
The proof is by induction. For ∣c∣ = 2, (3.24) holds since from (3.23) we have

dϕ(⟨a1 a2⟩ , e) = ϕ⟨a1 a2⟩ = wt (p∗ϕ(a1, a2)) = 1

2
Dϕ(⟨a1 a2⟩ , e).

Assume that (3.24) holds for 2 ≤ ∣c∣ < l. We show that it also holds for ∣c∣ = l. We

use Figure 3.8 as an illustration. In all figures in this section, undirected edges

describe the defining tree, while directed edges describe the cycle at hand.

Without loss of generality, assume that the defining path of ϕ, Θ, equals(1,2, . . . , n). Furthermore, assume that a1 =min{i ∶ i ∈ c}; if this is not the case,
we can rewrite c by cyclically shifting its elements. Let at =min{i ∶ i ∈ c, i ≠ a1}
be the “closest” element to a1 in Θ (that is, the closest element to a1 in c). For
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example, in Figure 3.8, one has c = ⟨2 6 4 7 5⟩, a1 = 2 and at = 4. We have

c = ⟨a1 a2 ⋯ at ⋯ al⟩
= ⟨a1 ⋯ at⟩ ⟨at ⋯ al⟩ (3.25)

and thus

dϕ(c, e) ≤ dϕ(⟨a1 ⋯ at⟩ , e) + dϕ(⟨at ⋯ al⟩ , e)
≤
1

2

t−1
∑
i=1

wt (p∗ϕ(ai, ai+1)) +wt (p∗ϕ(at, a1))
+
1

2

l−1
∑
i=t

wt (p∗ϕ(ai, ai+1)) +wt (p∗ϕ(al, at))
=
1

2

l

∑
i=1

wt (p∗ϕ(ai, c(ai)))
=
1

2
Dϕ(c, e),

where the second inequality follows from the induction hypothesis, while the

first equality follows from the fact that

wt (p∗ϕ(at, a1)) +wt (p∗ϕ(al, at)) = wt (p∗ϕ(al, a1)) .

Remark 3.16. The inductive proof of the above lemma provides us with a trans-

form converting a permutation π to e with weight 1
2
Dϕ(π, e) for a metric-path

weight function ϕ. Using (3.25) recursively, each cycle c of π can be written as

a product τ1⋯τk of transpositions. The transform (τ1, . . . , τk) converts c to e.

The concatenation of transforms of cycles of π is a transform converting π to e

and has weight 1
2
Dϕ(π, e).

The approach described in the proof of Lemma 3.15 can also be applied to the

problem of finding the weighted transposition distance when the weight function

is a metric-tree weight function and each of the cycles of the permutation consists

of elements that lie on some path in the defining tree. An example of such a

permutation and such a weight function is shown in Figure 3.9. Note that in

this example, a cycle consisting of elements 3,5,7 would not correspond to a

path.

In such a case, for each cycle c of π we can use the path in the defining tree

that contains the elements of c to show that

dϕ(c, e) = 1

2
Dϕ(c, e). (3.26)

For example the cycle ⟨1 4 6⟩ lies on the path (1,2,3,4,5,6) and the cycle ⟨5 8⟩

66



1 32 4
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Figure 3.9: If each of the cycles of a permutation lies on a path, the method of
Lemma 3.15 can be used to find the weighted transposition distance.

lies on the path (5,4,7,8). Since (3.26) holds for each cycle c of π, we have

dϕ(π, e) = 1

2
Dϕ(π, e).

A similar scenario in which essentially the same argument as that of the proof

of Lemma 3.15 can be used is as follows: the defining tree has one vertex with

degree three and no vertices with degree larger than three (i.e., a tree with a

Y shape), and for each cycle of π, there are two branches of the tree that do

not contain two consecutive elements of c. It can then be shown that each

such cycle can be decomposed into cycles that lie on paths in the defining tree,

reducing the problem to the previously described one. An example is shown in

Figure 3.10.

One may argue that the results of Lemma 3.15 and its extension to metric-

trees have limited application, as they require that both the defining tree and

the permutations used in the computation be of special form. In particular,

one may require that a given ranking π is such that there are no edges between

two different branches of Θ in the cycle graph of π. We show next that under

certain conditions the probability of such permutations goes to zero as n →∞,

by lower bounding the number Pn of permutations with the given constraint.

Let the set of vertices in the ith branch of a Y shaped defining tree Θ, i =

1,2,3, be denoted by Bi and let bi denote the number of vertices in Bi. Clearly,

b1 + b2 + b3 + 1 = n.

Assume, without loss of generality, that the numbering of the branches is such

that b1 ≥ b2 ≥ b3. As an illustration, in Figure 3.10 we have

B1 = {1,2,3}, b1 = 3,

B2 = {5,6}, b2 = 2,

B3 = {7,8}, b3 = 2.

The quantity Pn is greater than or equal to the number of permutations π

whose functional digraph does not contain an edge between B2 and B3, and
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Figure 3.10: The cycle ⟨1 6 5 2 8 3 7⟩ in Figure (a) is decomposed into two
cycles, ⟨1 6 5 2⟩ and ⟨2 8 3 7⟩, as shown in Figure (b). Note that⟨1 6 5 2 8 3 7⟩ = ⟨1 6 5 2⟩ ⟨2 8 3 7⟩.
this quantity is, in turn, greater than or equal to the number of permutations

π such that π (j) ∉ B2 ∪ B3 for j ∈ B2 ∪B3. The number of permutation with

the latter property equals ( b1+1
b2+b3)(b2 + b3)!(b1 + 1)!. Hence,
Pn ≥

((b1 + 1)!)2(b1 + 1 − b2 − b3)! ,
and thus

Pn

n!
≥
∏n−b2−b3

j=n+1−2b2−2b3 j

∏n
j=n+1−b2−b3 j

⋅

In particular, if b2 = b3 = 1, we have

Pn

n!
≥
(n − 3)(n − 2)(n − 1)n = 1 −

4

n
+O(n−2)

and more generally, if b2 + b3 = o(n), then
Pn

n!
≥
(n + o(n))b2+b3(n + o(n))b2+b3 ∼ 1,

or equivalently, Pn ∼ n!.
Hence, if b2 + b3 = o(n), the distance dϕ(π, e) of a randomly chosen permu-
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Figure 3.11: For the above metric-tree weight function and π = ⟨2 3 4⟩, the
equality of Lemma 3.15 does not hold.

tation π from the identity equals Dϕ(π, e)/2 with probability approaching 1 as

n →∞.

It is worth noting that for metric-tree weight functions, the equality of Lemma 3.15

is not, in general, satisfied. To prove this claim, consider the metric-tree weight

function ϕ of Figure 3.11, where, for a, b ∈ [4], a < b,
ϕ⟨a b⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if a = 1,

∞, if a ≠ 1.

It can be shown that for the permutation π = ⟨2 3 4⟩, dϕ(π, e) = 4, while
1
2
Dϕ(π, e) = 3.

3.4.2 Distance for Extended-Path Weight Functions

The following lemma provides a 2-approximation for transposition distances

based on extended-path weight functions. As the weighted Kendall distance is

a special case of the weighted transposition distance with extended-path weight

functions, the lemma also implies Lemma 2.13.

Lemma 3.17. For an extended-path weight function ϕ and for π,σ ∈ Sn,

1

2
Dϕ(π,σ) ≤ dϕ(π,σ) ≤Dϕ(π,σ).

Proof. The lower-bound follows from Lemma 3.13. To prove the upper-bound,

consider a metric-path weight function ϕ′, with the same defining path Θ as ϕ,

such that

ϕ′⟨a b⟩ = 2ϕ⟨a b⟩

for any pair a, b adjacent in Θ. From Lemma 3.4, it follows that for distinct

c, d ∈ [n],
dϕ(⟨c d⟩ , e) ≤ 2wt(p∗ϕ(c, d)) = wt(p∗ϕ′(c, d)) = dϕ′(⟨c d⟩ , e).
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2 ba+1a b+1 n-11
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01 1 00 0

Figure 3.12: The graph of a weight function with two non-zero weights
ϕ⟨a a+1⟩ and ϕ⟨b b+1⟩, with ϕ⟨a a+1⟩ = ϕ⟨b b+1⟩ = 1.

Hence,

dϕ(π,σ) ≤ dϕ′(π,σ) = 1

2
Dϕ′(π,σ) =Dϕ(π,σ),

which proves the claimed result.

Remark 3.18. Based on Remark 3.16, the proof of the above lemma provides us

with a transform of weight at most Dϕ(π, e) converting a permutation π to e,

for an extended-path weight function ϕ.

3.4.3 Weight Functions with Two Identical Non-zero Weights

The goal is to find the weighted Kendall distance dϕ(π, e), for π ∈ Sn, with the

weight function of (2.12),

ϕ⟨i i+1⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i ∈ {a, b}
0, else.

For this purpose, let R1 = {1, . . . , a}, R2 = {a+1, . . . , b}, and R3 = {b+1, . . . , n},
and define

Nπ
ij = ∣{k ∈ Rj ∶ π

−1(k) ∈ Ri}∣, i, j ∈ {1,2,3}.
That is, Nπ

ij is the number of elements whose ranks in π belong to the set Ri

and whose ranks in e belong to the set Rj . A sequence of transpositions that

transforms π into e moves the Nπ
ij elements of {k ∈ Rj ∶ π

−1(k) ∈ Ri} from Ri

to Rj . Furthermore, note that any transposition that swaps two elements with

ranks in the same region Ri, i ∈ [3], has weight zero, while for any transposition

τl that swaps an element ranked in R1 with an element ranked in R2 or swaps

an element ranked in R2 with an element ranked in R3, we have dϕ(τl, e) = 1.
It is straightforward to see that ∑jN

π
ij = ∑jN

π
ji. In particular, Nπ

12 +N
π
13 =

Nπ
21 +N

π
31 and Nπ

31 +N
π
32 = N

π
13 +N

π
23.

We show next that

dϕ(π, e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Nπ

13 +N
π
12 +N

π
23, ifNπ

21 ≥ 1 or Nπ
23 ≥ 1,

2Nπ
13 + 1, ifNπ

21 = N
π
23 = 0.

Note that, from Lemma 2.13, we have

dϕ(π, e) ≥ 1

2
Dϕ(π, e) = 2Nπ

13 +N
π
12 +N

π
23. (3.27)
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Suppose that Nπ
21 ≥ 1 orN

π
23 ≥ 1. We find a transposition τl, with dϕ(τl, e) = 1,

such that π′ = πτl satisfies Dϕ(π′, e) = Dϕ(π, e) − 2, and at least one of the

following conditions holds: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nπ′

21 ≥ 1,

or

Nπ′

23 ≥ 1,

or

π′ = e.

(3.28)

Applying the same argument repeatedly, and using the triangle inequality,

proves that dϕ(π, e) ≤ 1
2
Dϕ(π, e) if Nπ

21 ≥ 1 or Nπ
23 ≥ 1. This, along with (3.27),

shows that dϕ(π, e) = 1
2
Dϕ(π, e) if Nπ

21 ≥ 1 or Nπ
23 ≥ 1.

First, suppose that Nπ
21 ≥ 1 and Nπ

23 ≥ 1. It then follows that Nπ
12 ≥ 1 or

Nπ
32 ≥ 1. Without loss of generality, assume that Nπ

12 ≥ 1. Then τl can be chosen

such that Nπ′

12 = N
π
12 − 1 and Nπ′

21 = N
π
21 − 1. We have Dϕ(π′, e) = Dϕ(π, e) − 2,

and since Nπ
23 ≥ 1, condition (3.28) holds.

Next, suppose Nπ
21 ≥ 1 and Nπ

23 = 0. If N
π
13 ≥ 1, choose τl such that

Nπ′

21 = N
π
21 − 1,

Nπ′

23 = 1,

Nπ′

13 = N
π
13 − 1,

where π′ = πτl. Since Nπ′

23 = 1, condition (3.28) is satisfied. If Nπ
13 = 0, then

Nπ
31 = N

π
32 = 0, and thus Nπ

12 = N
π
21 ≥ 1. In this case, we choose τl such that

Nπ′

21 = N
π′

12 = N
π
12 − 1. As a result, we have either Nπ′

21 ≥ 1 or π′ = e. Hence,

condition (3.28) is satisfied once again. Note that in both cases, for Nπ
13 = 0 as

well as for Nπ
13 ≥ 1, we have Dϕ(π′, e) =Dϕ(π, e) − 2.

The proof for the case Nπ
23 ≥ 1 and Nπ

21 = 0 follows along similar lines.

If Nπ
21 = N

π
23 = 0, it can be verified by inspection that for every transposition τl

with dϕ(τl, e) = 1, we haveDϕ(πτl, e) ≥Dϕ(π, e). Hence, the inequality in (3.27)

cannot be satisfied with equality, which implies that dϕ(π, e) ≥ 2Nπ
13+1. Choose

a transposition τl with dϕ(τl, e) = 1 such that

Nπ′

13 = N
π
13 − 1,

Nπ′

12 = 1,

Nπ′

23 = 1,

where π′ = πτl. We have

dϕ(π, e) ≤ dϕ(τl, e) + dϕ(π′, e) = 1 + 2Nπ
13.

This, along with dϕ(π, e) ≥ 2Nπ
13 + 1, completes the proof.
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3.5 Minimum Weight, Minimum Length Transposition

Transforms

In Theorem 3.14, we established Dϕ as an approximation for dϕ for any weight

function ϕ. In this section, we introduce a second approximation, which is at

least as good as Dϕ and in some cases is strictly better.

Consider two permutations π and σ of [n] and a weight function ϕ. As men-

tioned before, no efficient algorithm is known for finding the minimum weight

transposition transform converting π to σ. But, as we show in this section, if

one limits the search space to transforms with minimum length, the minimum

weight transform can be computed efficiently. This limited search space leads to

the minimum length transform distance between π and σ, denoted by Lϕ(π,σ),
and defined as

Lϕ(π,σ) = arg min
τ∈M(π,σ)

∣τ ∣
∑
i=1
ϕ∗τi

where M(π,σ) is the set of minimum length transposition transforms (MLTs)

converting π to σ, where transpositions are multiplied on the right. Note that

in the definition above, we have used ϕ∗ and not ϕ. The reason for this is that for

every transposition ⟨a b⟩, we have ϕ∗⟨a b⟩ = dϕ(⟨a b⟩ , e) ≤ ϕ⟨a b⟩. Thus, using ϕ
∗

in the definition leads to a better approximation of the weighted transposition

distance. Throughout this section, all weights are computed using ϕ∗ rather

than ϕ.

The distance Lϕ is left-invariant. To see this, observe that M(π,σ) = M(ωπ,ω,σ)
since πτ1⋯τ∣τ ∣ = στ1⋯τ∣τ ∣ if and only if ωπτ1⋯τ∣τ ∣ = ωστ1⋯τ∣τ ∣, where ω ∈ Sn and

τi are transpositions. For this reason, it suffices to consider Lϕ(π, e) for π ∈ Sn.
In this section, by a transform of π, we mean a transform that converts π to

the identity e.

The length of the MLT converting π to e equals the Cayley distance: if π has

ℓ cycles, then the length of an MLT converting π to e is n−ℓ. Each transposition

in an MLT of π breaks a cycle of length more than 1 into two cycles of shorter

lengths. For example, consider π = (3,1,2,5,4) = ⟨1 3 2⟩ ⟨4 5⟩. The transform

τ = (⟨1 2⟩ , ⟨2 3⟩ , ⟨4 5⟩) in an MLT of length 3 of π.

Suppose π has the cycle decomposition {σ1, . . . , σℓ} and that τ (i), for i ∈ [ℓ],
is an MLT of the cycle σi. Concatenation of the MLTs of the cycles σi yields

an MLT of π. That is,

(τ (1)1 , . . . , τ
(1)
j1
, . . . , τ

(ℓ)
1 , . . . , τ

(ℓ)
jℓ
) ,

where ji is the length of τ (i), is an MLT of π. The converse is also true:

every MLT of π can be obtained by concatenating the MLTs of its cycles and

reordering the transpositions. Hence,

Lϕ(π, e) = ℓ

∑
i=1

Lϕ(σi, e).
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Therefore, to be able to compute Lϕ it is sufficient to be able to compute Lϕ(σ, e)
for all cycles σ. In this section, for clarity of presentation, and without loss of

generality, we assume σ = ⟨1 ⋯ k⟩.
Note that even for a single cycle σ, the weighted transposition distance

dϕ(σ, e), need not be equal to Lϕ(σ, e), as illustrated by the following exam-

ple [61].

Example 3.19. Consider the cycle σ = ⟨1 ⋯ 5⟩ with ϕ⟨i j⟩ = 3, for ∣i − j∣ = 1,

and ϕ⟨i j⟩ = 1 otherwise, where the indices are taken modulo the length of the

cycle, which in this case equals five.

It is easy to verify that the transform (⟨1 4⟩ , ⟨1 3⟩ , ⟨3 5⟩ , ⟨2 4⟩ , ⟨1 4⟩ , ⟨1 3⟩)
is a minimum weight transform of σ with weight six, i.e., dϕ(σ, e) = 6. However,
as can be computed with the methods described in this section, the weight

of a minimum weight MLT is eight, i.e., Lϕ(σ, e) = 8. One such MLT is⟨⟨4 5⟩ , ⟨1 3⟩ , ⟨2 3⟩ , ⟨1 4⟩⟩. We also have Dϕ(σ, e) = 10 which is larger than

Lϕ(σ, e).

3.5.1 Computing Minimum Weight MLTs

Recall that dig (σ) is drawn with its vertices on a circle. We prove in Lemma 3.20

that for an MLT τ of σ, mgr (τ) is a tree such that mgr (τ) ∪ dig (σ) is planar.
Lemma 3.21 states that for every spanning tree T such that dig (σ)∪T is planar,

there is an MLT τ such that T =mgr (τ). Hence, the search for minimum weight

MLT can be performed over the space of spanning trees T with dig (σ)∪T planar.

This leads us to Alg. 5. The correctness of Alg. 5 is proved in Lemma 3.23.

The following definitions will be used in the proof of Lemma 3.20. Let R be

the region enclosed by edges of dig (σ). Also, let T be a tree whose vertex set is

a subset of {1, . . . , k} such that dig (σ)∪T is planar. Since T is a tree with edges

contained in R, the edges of T divide R into smaller regions, with the vertices

and edges forming the boundaries included in all neighboring regions. The

vertices {1, . . . , k} can be divided into corner vertices (lying at the intersection

of at least two regions) and inner vertices (belonging only to one region). In

Figure 3.13a, dig (σ) with vertices {1,2,3,4,5,6} is partitioned by T into four

regions, R1,R2,R3 and R4. In R2, vertices 1 and 3 are corner vertices, while

vertex 2 is an inner vertex.

Lemma 3.20. For a cycle σ and a transform τ ∈ M(σ, e), the graph mgr (τ) is
a tree such that mgr (τ) ∪ dig (σ) is planar.

Proof. For each i ∈ [k], by Corollary 3.3, there is a path from i to σ(i) in

mgr (τ), so mgr (τ) is connected with k vertices. Furthermore, mgr (τ) has k−1
edges, since ∣τ ∣ = k − 1. Hence, mgr (τ) is a tree.

For i ∈ [k − 1], let τ i1 = (τ1, . . . , τi). The proof proceeds by showing that for

all 1 ≤ i ≤ k − 1, the following two claims are true:
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Figure 3.13: (a) A tree T divides R into four subregions. (b,c) A region is
divided into two regions by transposition ⟨a b⟩. See proof of Lemma 3.20.

(I) The graph dig (σ) ∪mgr(τ i1) is planar.
(II) Each cycle of στ1⋯τi corresponds to a subregion R of dig (σ) ∪mgr (τ i1).

The cycle corresponding to R contains all of its inner vertices and some

of its corner vertices but no other vertex.

Both claims (I) and (II) are obvious for i = 1. We show that if (I) and (II)

are true for i, then they are also true for i + 1.

Suppose τi+1 = ⟨a b⟩. Clearly, στ1⋯τi+1 has one more cycle than στ1⋯τi. By

the induction hypothesis, dig (σ)∪mgr (τ i1) is planar and partitioned into a set

of subregions. Note that a and b are in the same cycle of στ1⋯τi, so they are

inner or corner vertices of some subregion R∗ of dig (σ) ∪mgr (τ i1). The edge(ab) divides R∗ into two subregions, Ra and Rb (without crossing any edge in

dig (σ) ∪mgr (τ i1)). This proves (I).
Let the cycle of the permutation στ1⋯τi that corresponds to R∗ be given

by µ = ⟨a1 ⋯ al a b1 ⋯ bl′ b⟩, as seen in Figure 3.13b. Note that µ ⟨a b⟩ =⟨a a1 ⋯ al⟩ ⟨b b1 ⋯ bl′⟩ . Now the cycles ⟨a a1 ⋯ al⟩ and ⟨b b1 ⋯ bl′⟩ in στ1⋯τi+1
correspond to subregions Ra and Rb, respectively, as seen in Figure 3.13c. This

proves claim (II), since the cycle corresponding to each subregion contains all

of its inner vertices and some of its corner vertices but no other vertex.

For related ideas regarding permutation transforms and graphical structures,

the interested reader is referred to [62].

The following lemma establishes a partial converse to the previous lemma.

Lemma 3.21. For a cycle σ = ⟨1 ⋯ k⟩ and a spanning tree T over the vertices{1, . . . , k}, if dig (σ)∪T is planar, then there exists at least one MLT τ ∈ M(σ, e)
such that T =mgr (τ).
Proof. We prove the lemma by recursively constructing an MLT τ converting

σ to e such that T = mgr (τ). If k = 2, then T has exactly one edge and τ is

the transposition corresponding to that edge. For k > 2, some vertex has degree

larger than 1. Without loss of generality, assume that deg(1) > 1. Let
r =max{u ∶ (1u) ∈ T } .
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Figure 3.14: Example illustrating the proof of Lemma 3.21: r = 10, s = 8.

Since T is a tree, T − (1r) has two components. These two components have

vertex sets {1, . . . , s} and {s + 1, . . . , k}, for some s. It is easy to see that

⟨1 ⋯ k⟩ = ⟨s + 1 ⋯ k 1⟩ ⟨1 ⋯ s⟩ . (3.29)

Let

T ′ =T [{1, . . . , s}] ,
T ′′ =T [{s + 1, . . . , k,1}] .

Note that T ′ and T ′′ have fewer than k vertices. Furthermore, T ′∪dig (⟨1 ⋯ s⟩)
and T ′′ ∪ dig (⟨s + 1 ⋯ k 1⟩) are planar. Thus, by the induction hypothesis,⟨1 ⋯ s⟩ and ⟨s + 1 ⋯ k 1⟩ have MLTs τ ′ and τ ′′ converting them to the identity,

of lengths s − 1 and k − s, respectively. By (3.29), the transform

(τ ′1, . . . , τ ′s−1, τ ′′1 , . . . , τ ′′k−s)
is an MLT converting σ to the identity. Furthermore, T =mgr (τ).
Example 3.22. In Figure 3.14, we have r = 10 and s = 8. The cycle ⟨1 ⋯ 12⟩
can be written as a product of two shorter cycles using (3.29),

⟨1 ⋯ 12⟩ = ⟨9 10 11 12 1⟩ ⟨1 2 ⋯ 8⟩ .
Now, each of these cycles is written as a product of two shorter cycles in a

similar manner, for example,

⟨9 10 11 12 1⟩ = ⟨9 10⟩ ⟨10 11 12 1⟩ ,
⟨1 ⋯ 8⟩ = ⟨8 1⟩ ⟨1 ⋯ 7⟩ .
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Algorithm 5 Min-weight-MLT

1: Input: Optimized transposition weight function Φ∗ where Φ∗i,j = ϕ
∗
⟨i j⟩ (Out-

put of Alg. 2)
2: C(i, j) ←∞ for i, j ∈ [k]
3: C (i, i)← 0 for i ∈ [k]
4: C (i, i + 1)← ϕ∗⟨i i+1⟩ for i ∈ [k]
5: for l = 2⋯k − 1 do

6: for i = 1⋯k − l do
7: j ← i + l

8: for i ≤ s < r ≤ j do

9: A← C(i, s) +C(s + 1, r) +C(r, j) +ϕ∗⟨i r⟩
10: if A < C(i, j) then
11: C(i, j) ← A

Since any MLT in M(σ, e) of a cycle σ can be represented by a tree that is

planar on the circle, the search for the minimum weight element of M(σ, e) only
needs to be performed over the set of planar trees. This search can be executed

using a dynamic program, outlined in Alg. 5. The algorithm finds the minimum

weight MLT converting ⟨1 ⋯ k⟩ by first finding the minimum weight of MLTs of

shorter cycles of the form ⟨i ⋯ j⟩, where 1 ≤ i < j ≤ k. Lemma 3.23 establishes

that Alg. 5 produces a minimum weight MLT in M(σ, e).
Lemma 3.23. The output weight of Alg. 5, C (1, k), equals Lϕ(σ, e).
Proof. We look at the computations performed in the algorithm from a top-

down point of view.

Let CT (i, j) be the weight of the transform converting σi,j to e, where σi,j =⟨i ⋯ j⟩, using the edges of T [{i, . . . , j}], where T is an arbitrary planar spanning

tree over the vertices {1, . . . , k} arranged on a circle. For a fixed T , let r and s

be defined as in the proof of Lemma 3.21. We may write

⟨i ⋯ j⟩ = ⟨s + 1 ⋯ r⟩ ⟨i r⟩ ⟨r ⋯ j⟩ ⟨i ⋯ s⟩ (3.30)

where i ≤ s < r ≤ j. Thus

CT (i, j) = CT (s + 1, r) + ϕ∗⟨i r⟩ +CT (r, j) +CT (i, s) . (3.31)

Define C(i, j) = CT ∗(i, j), where
T ∗ = argmin

T
CT (i, j)

denotes a tree that minimizes the weight of the transform converting ⟨i ⋯ j⟩ to
e. Now

C(i, j) = C (s∗ + 1, r∗) + ϕ∗⟨i r∗⟩ +C (r∗, j) +C (i, s∗) , (3.32)

where s∗ and r∗ are the values that minimize the right side of (3.31) under the
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constraint 1 ≤ i ≤ s < r ≤ j. Hence, C(i, j) can be obtained recursively, with the

initialization

C (i, i + 1) = ϕ∗⟨i i+1⟩. (3.33)

The algorithm searches over s and r and computes C (1, k) using (3.32) and (3.33).

Although these formulas are written in a recursive form, Alg. 5 is described

as a dynamic program. The algorithm first computes C(i, j) for small values of

i and j; then it finds the weight for longer cycles. That is, for each 2 ≤ l ≤ k − 1,

in increasing order, C (i, i + l) is computed by choosing its optimal transform in

terms of weights of transforming smaller cycles.

Example 3.24. As an example, let us find Lϕ(σ, e) for σ = ⟨1 2 3 4⟩ using the

above algorithm. Let Φ be the matrix of transposition weights, with Φij = ϕ⟨i j⟩.

After optimizing the transposition weights in Φ via Alg. 2, we obtain Φ∗, shown

next to Φ.

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 10 3

− 0 2 3

− − 0 9

− − − 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 9 3

− 0 2 3

− − 0 7

− − − 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.34)

From Alg. 5, we obtain

C (1,3) = C (2,3) +ϕ∗⟨1 2⟩ = 7, (s, r) = (1,2) ,
C (2,4) = C (2,3) +ϕ∗⟨2 4⟩ = 5, (s, r) = (3,4) .

Now consider the cycle ⟨1 2 3 4⟩, for which i = 1 and j = 4. The algorithm

compares (4
2
) = 6 ways to represent the weight of this cycle using the weight of

shorter cycles. The minimum weight is obtained by choosing s = 2 and r = 4, so

that

C (1,4) = C (2,4) +ϕ∗⟨1 4⟩ = 8.

Writing C as a matrix, where C(i, j) = Cij , we have:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 7 8

− 0 2 5

− − 0 7

− − − 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can modify the above algorithm to also find the underlying MLT by

using (3.30) to write the transform of every cycle with respect to r and s that

minimize the weight of the transform. For example, from (3.30), by substituting

the appropriate values of r and s, we obtain

⟨1 2 3 4⟩ = ⟨2 3 4⟩ ⟨1 4⟩ = ⟨3 4⟩ ⟨2 4⟩ ⟨1 4⟩ .
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Figure 3.15: The average minimum MLT weight vs the length of the cycle.
Transposition weights are chosen independently and uniformly in [0,1].

Thus,

arg min
τ∈M(⟨1 2 3 4⟩,e)

wt(τ) = (⟨1 4⟩ , ⟨2 4⟩ , ⟨3 4⟩).

Computational Complexity: The initialization steps are performed in

O (k) time. The algorithm performs a constant number of steps for each i, j, r,

and s such that 1 ≤ i ≤ s < r ≤ j ≤ k. Hence, the computational cost of the

algorithm is O (k4).
Note that Alg. 5 operates on the optimized weight function ϕ∗, obtained as

the output of Alg. 2. Figure 3.15 illustrates the importance of first reducing

individual transposition weights using Alg. 2 before applying the dynamic pro-

gram. Since the dynamic program can only use k−1 transpositions of minimum

weight, it cannot optimize the individual weights of transpositions and strongly

relies on the reduction of Alg. 2 for producing low weight solutions. In Fig-

ure 3.15, the transposition weights were chosen independently according to a

uniform distribution over [0,1].

3.5.2 Relationship between dϕ and Lϕ

For the cycle σ = ⟨1 ⋯ k⟩, consider the MLT

τ = (⟨k k − 1⟩ , ⟨k − 1 k − 2⟩ , . . . , ⟨2 1⟩). (3.35)
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with weight ∑k−1
i=1 ϕ

∗
⟨i i+1⟩. Since ϕ

∗
⟨a b⟩ = dϕ(⟨a b⟩ , e), Lemma 3.4 implies that

wt(τ) ≤ 2 k−1
∑
i=1

wt(p∗ϕ(i, i + 1)) ≤ 2 ∑
i∈[k]

wt(p∗ϕ(i, σ(i))).
By definition of Lϕ, we have Lϕ(σ, e) ≤ wt(τ). Thus,

Lϕ(σ, e) ≤ 2 ∑
i∈[k]

wt(p∗ϕ(i, σ(i))).
Consider a permutation π ∈ Sn. The inequality (3.5.2) holds for every cycle

of π. Since the minimum weight MLT of π can be obtained by concatenating

the minimum weight MLTs of its cycles, we have

Lϕ(π, e) ≤ 2 ∑
i∈[n]

wt(p∗ϕ(i, π(i))).
Furthermore, Lemma 3.13, implies that

dϕ(π, e) ≥ 1

2
∑
i∈[n]

wt(p∗ϕ(i, π−1(i))) = 1

2
∑
i∈[n]

wt(p∗ϕ(i, π(i))).
Hence, we have the following theorem.

Theorem 3.25. For a permutation π ∈ Sn and a weight function ϕ, Lϕ(π, e) ≤
4dϕ(π, e).
While Theorem 3.25 states that Lϕ is a 4-approximation for dϕ, in practice,

it may provide a significantly better result as demonstrated by the following

example.

Example 3.26. Consider the cycle σ = ⟨1 2 3 4 5⟩ and the weight function ϕ,

with ϕ⟨2 4⟩ = ϕ⟨2 5⟩ = ϕ⟨3 5⟩ = 1, and ϕ⟨i j⟩ = 100 for all remaining transposition⟨i j⟩. From Lemma 3.13,

dϕ(σ, e) ≥ 1

2
(100 + 2 + 3 + 2 + 100) = 103.5.

For example, the second term in the sum corresponds to a path going from 2 to

5 and then from 5 to 3. The weight of this path is 2.

Since dϕ(σ, e) has to be an integer, it follows that dϕ(σ, e) ≥ 104.
The optimized weight function ϕ∗, obtained from Alg. 2, equals

ϕ∗⟨i j⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ⟨i j⟩ ∈ {⟨2 5⟩ , ⟨3 5⟩ , ⟨2 4⟩}
3, ⟨i j⟩ ∈ {⟨2 3⟩ , ⟨4 5⟩}
5, ⟨i j⟩ = ⟨3 4⟩
100, otherwise

A minimum weight MLT can be computed using the dynamic program of
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Alg. 5. One minimum weight MLT equals τL = (⟨2 5⟩ , ⟨1 2⟩ , ⟨3 5⟩ , ⟨4 5⟩), and
has weight Lϕ(σ, e) = 105.
Hence, the inequality Lϕ(σ, e) ≤ 4dϕ(σ, e) holds. Furthermore, note that σ is

an even cycle, and hence must have an even number of transpositions in any of

its transforms. This shows that Lϕ(σ, e) = dϕ(σ, e) = 105.

3.5.3 Merging cycles

In the previous subsection, we demonstrated that the minimum weight of an

MLT for a cycle represents a constant approximation for dϕ. The MLT of a

permutation is the concatenation of the MLTs of its individual cycles. Instead

of concatenating the minimum weight MLTs of the cycles of a permutation,

one may “merge” all the cycles and find the minimum weight MLT for the

resulting cycle. Such an approach may lead to a better approximation of dϕ.

For example, it may happen that the weight of transpositions within each cycle

are much higher than the weights of transpositions between elements in different

cycles. It is therefore useful to analyze how merging of cycles may affect the

overall weight of a minimum weight MLT.

We propose a simple merging method that consists of two steps:

1. For a permutation π with k cycles, find a sequence of transpositions

τ ′ = (τ ′1, . . . , τ ′k−1)
so that σ′ = πτ ′1⋯τ

′
k−1 is a single cycle. Ideally, one should choose τ ′ such

that it has minimum possible weight, although this is not required in the

proofs to follow.

2. Find the minimum weight MLT τ of σ′. The transform

τ ′′ = (τ ′1, . . . , τ ′k−1, τ1, . . . , τn−1)
is a transform converting π to e and its weight is an upper-bound on

dϕ(π, e).
Each τ ′i is a transposition merging two cycles. The weight of τ ′ equals

∑k−1
i=1 ϕ

∗
⟨ai bi⟩, where τ

′
i = ⟨ai bi⟩. The weight of the transform τ ′′ equals

wt(τ ′′) = k−1
∑
i=1

ϕ∗⟨ai bi⟩ + Lϕ(σ′, e). (3.36)

Furthermore, we have

Lϕ(σ′, e) ≤ 4dϕ(σ′, e) ≤ 4(k−1∑
i=1

ϕ∗⟨ai bi⟩ + dϕ(π, e)) , (3.37)
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where the second inequality follows from the fact that σ′ = πτ ′1⋯τ
′
k−1. Hence,

from (3.36) and (3.37), we find

wt(τ ′′) ≤ k−1
∑
i=1

ϕ∗⟨ai bi⟩ + 4(k−1∑
i=1

ϕ∗⟨ai bi⟩ + dϕ(π, e))
≤ 5kϕ∗max + 4dϕ(π, e),

(3.38)

where ϕ∗max is the highest weight in ϕ∗. The approximation ratio α, defined as

wt(τ ′′)/dϕ(π, e), is bounded as

α ≤ 4 +
5k

n − k

ϕ∗max

ϕ∗min

= 4 +
5k/n
1 − k/n ϕ

∗
max

ϕ∗min

, (3.39)

which follows from the fact dϕ(π, e) ≥ (n − k)ϕ∗min, where ϕ
∗
min is the smallest

weight in ϕ∗, assumed to be nonzero.

Although α, according to the expression above, is bounded by a value strictly

larger than four, this does not necessarily imply that merging cycles is sub-

optimal compared to running the minimum weight MLT algorithm on individual

cycles. Furthermore, if the minimum weight transform for single cycles can be

computed correctly, instead of τ one can use a transform with weight dϕ(σ′, e).
Then,

wt(τ ′′) = k−1
∑
i=1

ϕ∗⟨ai bi⟩ + dϕ(σ′, e).
≤ 2

k−1
∑
i=1

ϕ∗⟨ai bi⟩ + dϕ(π, e)
≤ 2kϕ∗max + dϕ(π, e).

The approximation ratio in this case is bounded as

α ≤ 1 +
2k

n − k

ϕ∗max

ϕ∗min

= 1 +
2k/n

1 − k/n ϕ
∗
max

ϕ∗min

⋅

Lemma 3.27. Let π be a randomly chosen permutation from Sn. Given that

the minimum weight transform for single cycles can be computed correctly, and

provided that ϕ∗max/ϕ∗min = o (n/ logn), α converges to one in probability as

n →∞.

Proof. Let Xn be the random variable denoting the number of cycles in a ran-

dom permutation πn ∈ Sn. It is well known that EXn = ∑
n
j=1

1
j
=H (n) and that

EXn (Xn − 1) = (EXn)2 −∑n
j=1

1
j2

[63]. Here, H (n) denotes the nth Harmonic

number. Thus

EX2
n = O ((lnn)2) , (3.40)

which shows that (Xn/n)(ϕ∗max/ϕ∗min)→ 0 in quadratic mean as n →∞. Hence
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(Xn/n)(ϕ∗max/ϕ∗min) → 0 in probability. By Slutsky’s theorem [64], α → 1 in

probability as n→∞.

In the following example, all operations are performed modulo 10, with zero

replaced by 10.

Example 3.28. Consider the permutation π = σ1σ2, where σ1 = ⟨1 7 3 9 5⟩ and
σ2 = ⟨2 8 4 10 6⟩, and the weight function ϕ,

ϕ(i, j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, d(i, j) = 1
∞, otherwise

where d(i, j) =min {∣i − j∣ ,10 − ∣i − j∣}.
Note that wt (p∗ϕ(i, j)) = d(i, j),Wemake the following observations regarding

the transforms of π.

1. Minimum weight transform: Since we currently do not know of an ef-

ficient enough algorithm for finding the minimum weight transform of a

permutation, we were not able to find the minimum weight transform of π.

Nevertheless, using Theorem 3.14, one can obtain the following bounds:

dϕ(π, e) ≥ 1

2

10

∑
i=1

wt (p∗ (i, π(i))) = 2 ⋅ 5 ⋅ 4

2
= 20, (3.41)

dϕ(π, e) ≤ 4 ⋅ 20 = 80. (3.42)

2. Minimum weight MLT: We have ϕ∗⟨i j⟩ = 2d(i, j)−1. The minimum weight

MLTs for the cycles σ1 and σ2 are

τ (1) = (⟨9 5⟩ , ⟨1 3⟩ , ⟨3 7⟩ , ⟨1 9⟩) ,
τ (2) = (⟨6 10⟩ , ⟨2 4⟩ , ⟨4 8⟩ , ⟨2 10⟩) ,

respectively, each of weight 20. A minimum weight MLT of π is the

concatenation of the minimum weight MLTs of σ1 and σ2with overall

weight equal to 40.

3. Merging cycles: We let τ ′ = ⟨5 6⟩ to merge the cycles and obtain σ′ =

π ⟨5 6⟩ = ⟨1 7 3 9 5 2 8 4 10 6⟩. The minimum weight of an MLT of σ′

can be shown to be 37. Since the weight of the transposition ⟨5 6⟩ must

also be accounted for, the total weight is 38. Observe that this weight is

smaller than that of part 2, and hence merging cycles may provide better

solutions than indicated by (3.39) or obtained by concatenating minimum

weight MLTs.

Putting the parts together, we have

20 ≤ dϕ(π, e) ≤ 38.
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Figure 3.16: The minimum weight MLT (a), and the minimum weight
transform (b), for π = ⟨1 2 3 4 5⟩. Edge labels denote the order in which
transpositions are applied.

3.5.4 Metric-path and Extended-path Weight Functions

By inspecting the proof of Lemma 3.15, one can see that the transform described

in Remark 3.16, for a permutation π with respect to a metric-path weight func-

tion ϕ, is an MLT. Thus its weight, which equals dϕ(π, e), is an upper-bound on

Lϕ(π, e). It follows, for every permutation π and a metric-path weight function

ϕ, that Lϕ(π, e) = dϕ(π, e) and that every minimum weight MLT of π is also a

minimum weight transform converting π to e.

A similar argument, using Lemma 3.17 and Remark 3.18, implies that Lϕ(π, e) ≤
2dϕ(π, e) for every permutation π and an extended-path weight function ϕ.

Example 3.29. Consider the cycle π = ⟨1 2 3 4 5⟩ and the extended-path

weight function with Θs = (2,4,1,3,5) where the weight of each edge of Θs

is 1.

By inspection, one can see that (⟨1 4⟩ , ⟨1 3⟩ , ⟨3 5⟩ , ⟨2 4⟩ , ⟨1 4⟩ , ⟨1 3⟩) is a

minimum weight transform converting π to e with weight dϕ(π, e) = 6. A min-

imum weight MLT of π is (⟨1 4⟩ , ⟨2 4⟩ , ⟨3 4⟩ , ⟨1 5⟩), with weight Lϕ(π, e) = 8.
We observe that the inequality Lϕ(π, e) ≤ 2dϕ(π, e) is satisfied. The transforms

are shown in Figure 3.16

3.6 Examples of Aggregation with Similarity Distance

In this section, we present examples of rank aggregation using the similarity

distance, which is equivalent to the weighted transposition distance applied to

inverse rankings. In particular, we aim to show that the weighted transposition

distance may provide more diverse aggregates when the votes themselves are

diverse, as compared to the Kendall τ distance.

Finding the aggregate, discussed in more detail in the next chapter, is a

computationally difficult problem. Since our goal is to demonstrate the effect of
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the similarity distance on aggregation, computations in the following examples

are performed via exhaustive search techniques. Thus all solutions are exact.

Example 3.30. Consider the votes listed in Σ below:

Σ =

⎛⎜⎜⎜⎝
1 2 3 4

3 2 1 4

4 1 3 2

⎞⎟⎟⎟⎠
.

Suppose that even numbers and odd numbers represent different types of can-

didates in a way that the following weight function is appropriate:

ϕ⟨i j⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i, j are both odd or both even,

2, else.

Note that the votes are “diverse” in the sense that they alternate between odd

and even numbers. On the other hand, the Kemeny aggregate is (1,3,2,4),
which puts all odd numbers ahead of all even numbers. Aggregation using the

similarity distance described above yields (1,2,3,4), a solution which may be

considered “diverse” since the even and odd numbers alternate in the solution.

The reason behind this result is that the Kemeny optimal solution is oblivious

to the identity of the candidates and their (dis)similarities, while aggregation

based on similarity distances take such information into account.

This example, as well as the following one, can also be viewed in the context

of assignment aggregation. Suppose there are 4 jobs and 4 candidates and a

committee with three members in tasked with assigning candidates to jobs.

Each committee member presents its assignment in the form of a permutation;

job 1 is assigned to the first candidate in the permutation, job 2 to the second

candidate, and so on. For the votes Σ and the weight function ϕ, given above,

the assignment aggregate using the similarity distance is (1,2,3,4). The weight
function ϕ is appropriate here if, for example, candidates 1 and 3 have the same

expertise and so do candidates 2 and 4.

Example 3.31. Consider the votes listed in Σ below:

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 2 3 4 5 6

3 6 5 2 1 4

3 6 5 2 1 4

5 4 1 6 3 2.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Suppose that the weight function is the same as the one used in the previous

example. In this case, neither the Kemeny aggregates nor the weighted trans-

position distance aggregates are unique. More precisely, Kendall τ gives four
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solutions: ⎛⎜⎜⎜⎜⎜⎜⎝

3 5 1 6 2 4

3 5 1 2 4 6

1 3 5 2 4 6.

1 3 5 6 2 4.

⎞⎟⎟⎟⎟⎟⎟⎠
,

while there exist nine optimal aggregates under the weighted transposition dis-

tance of the previous example, of total distance 10:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 6 3 4 1 2

5 4 3 2 1 6

5 2 3 6 1 4

3 4 1 2 5 6

3 6 1 4 5 2

3 2 1 6 5 4

1 4 5 2 3 6

1 2 5 6 3 4

1 6 5 4 3 2.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that none of the Kemeny optimal aggregates have good diversity prop-

erties: the top half of the rankings consists exclusively of odd numbers. On

the other hand, the optimal weighted transposition rankings all contain exactly

one even element among the top-three candidates. Such diversity properties are

hard to prove theoretically.
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Chapter 4

Aggregation Algorithms

4.1 Introduction

In this chapter, we study rank aggregation algorithms that can be used on

weighted distances. Recall that rank aggregation refers to finding a ranking that

is a “representative” of a set of votes. The representative ranking is termed the

aggregate ranking. Throughout this chapter, we use m to denote the number of

votes and use Σ = {σ1, . . . , σm} to denote the multiset of the votes. Our focus

is on distance-based rank aggregation where the aggregate is given by

argmin
π
∑
σ∈Σ

d (π,σ) , (4.1)

for a given distance function d.

It is known that computing the solution to (4.1) for the Kendall τ distance,

i.e., computing the Kemeny aggregate, is NP-hard [46]. Since the Kendall τ

distance is a special case of the weighted Kendall distance and the weighted

transposition distance, finding the aggregate ranking for those distances is also

NP-hard. In particular, exhaustive search approaches – akin to the one we used

in Examples 2.14-2.17 – are not computationally feasible for large problems.

However, assuming that π∗ is the solution to (4.1), the ranking σ ∈ Σ closest

to π∗ provides a 2-approximation for the aggregate ranking. This easily fol-

lows from the fact that the Kendall τ distance satisfies the triangle inequality.

As a result, one only has to evaluate the pairwise distances of the votes in Σ,

which can be done in polynomial time, in order to identify a 2-approximation

aggregate for the problem. Assuming that the weighted distance under consid-

eration can be computed efficiently (for example, in the case of the weighted

Kendall distance with a monotonic weight function), the aggregate ranking for

the weighted distance can also be computed in polynomial time as the weighted

distance is also a metric and thus satisfies the triangle inequality.

In this chapter, we present two algorithms for finding the aggregate when the

relative significance of different positions in rankings is indicated via a weight

function. The first algorithm is the combination of an approximation algorithm

This chapter contains material from the work [65], coauthored with B. Touri and O.
Milenkovic.
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based on bipartite matching and a local search method. The second algorithm

relies on the stationary probabilities of a Markov chain obtained from the votes,

similar to the PageRank algorithm.

4.2 Rank Aggregation Using Bipartite Matching

For any distance function that may be written as

d(π,σ) = n

∑
k=1

f(π−1(k), σ−1(k)), (4.2)

where f denotes an arbitrary nonnegative function, one can find an exact so-

lution to (4.1) using a minimum weight bipartite matching algorithm. Con-

sider a weighted complete bipartite graph with vertex sets X and Y , where

X = {1, . . . , n} corresponds to the n ranks to be filled in, and Y = {1, . . . , n}
corresponds to the n candidates. We say that a perfect bipartite matching M

corresponds to a permutation π whenever (ij) ∈M if and only if π(i) = j for all
i ∈ X and j ∈ Y . If we assign candidates j to rank i, then the contribution to the

objective function of (4.1) is ∑m
l=1 f(i, σ−1l (j)). Hence, if the weight assigned to

each edge (ij), for i ∈ X and j ∈ Y , equals

m

∑
l=1
f(i, σ−1l (j)),

then the minimum weight perfect matching corresponds to a solution of (4.1).

The following distance functions are of the form given in (4.2):

• Spearman’s footrule distance with f(x, y) = ∣x − y∣.
• Spearman’s rank correlation with f(x, y) = (x − y)2.
• The Hamming distance with f(x, y) = 0 if x = y, and f(x, y) = 1 if x ≠ y.

• The Dϕ distance with f(x, y) = wt(p∗ϕ(x, y)).
• The Weighted transposition distance for a metric-path weight function ϕ,

since it is a special case of Dϕ.

The matching algorithm approach was first proposed in [46] as a 2-approx-

imation for classical Kendall τ aggregation. We extend this approach to ag-

gregation based on the weighted Kendall distance. The idea is to approximate

the weighted Kendall distance for a weight function ϕ ∶ An → R≥0 using Dϕ as

demonstrated by the following proposition.

Proposition 4.1. Let

π∗ = argmin
π

m

∑
l=1

dϕ(π,σi)
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be the aggregate with respect to the weighted Kendall distance dϕ for a weight

function ϕ ∶ An→ R≥0, and suppose

π′ = argmin
π

m

∑
l=1
Dϕ(π,σi).

The permutation π′ is a 2-approximation for π∗ in the sense that

m

∑
l=1

dϕ(π′, σi) ≤ 2 m

∑
l=1

dϕ(π∗, σi).
Proof. From Lemma 2.13, for a weight function ϕ ∶ An → R≥0 and for permuta-

tions π and σ,
1

2
Dϕ(π,σ) ≤ dϕ(π,σ) ≤Dϕ(π,σ).

Thus we have
m

∑
l=1

dϕ(π′, σi) ≤ m

∑
l=1
Dϕ(π′, σi).

and
1

2

m

∑
l=1
Dϕ(π∗, σi) ≤ m

∑
l=1

dϕ(π∗, σi).
From the optimality of π′ with respect to Dϕ, we find

m

∑
l=1
Dϕ(π′, σi) ≤ m

∑
l=1
Dϕ(π∗, σi).

Hence
m

∑
l=1

dϕ(π′, σi) ≤ 2 m

∑
l=1

dϕ(π∗, σi).

In fact, the above proposition applies to the larger class of weighted transpo-

sition distances with extended-path weights. It can similarly be shown that for

a weighted transposition distance with general weights, π′ is a 4-approximation.

Finally, for a weighted transposition distance with a metric weight function, π′

represents a 2-approximation.

A simple approach for improving the performance of the matching based

algorithm is to couple it with a local descent method. Assume that an estimate

of the aggregate at step ℓ equals π(ℓ). Then

π(ℓ+1) = π(ℓ) arg min
τ∈An

m

∑
i=1

d(π(ℓ) τ, σi).
The search terminates when the cumulative distance of the aggregate from the

set of votes Σ cannot be decreased further. We choose the starting point π(0)

to be the ranking π′ of Prop. 4.1 obtained by the minimum weight bipartite

matching algorithm. This method will henceforth be referred to as Bipartite

Matching with Local Search (BMLS).
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An important question at this point is how does the approximate nature of

the BMLS aggregation process changes the aggregate, especially with respect

to the top-vs-bottom or similarity property? This question is hard, and we

currently have no mathematical results pertaining to this problem. Instead, we

describe a number of simulation results that may guide the future analysis of

this issue.

In order to see the effect of the BMLS on vote aggregation, we revisit Ex-

amples 2.14-2.17. In all except for one case the solution provided by BMLS is

the same as the exact solution, both for the Kendall τ and weighted Kendall

distances.

The exception is Example 2.15. In this case, for the weight function ϕ⟨i i+1⟩ =(2/3)i−1, i ∈ [3], the exact solution equals (1,4,2,3) but the solution obtained

via BMLS equals (4,2,3,1). Note that these two solutions differ significantly

in terms of their placement of candidate 1, ranked first in the exact ranking

and last in the approximate ranking. The distances between the two solutions,

dϕ((1,4,2,3), (4,2,3,1)), equals 2.11 and is rather large. Nevertheless, the cu-

mulative distances to the votes are very close in value:

∑
i

dϕ((1,4,2,3), σi) = 9,
∑
i

dϕ((4,2,3,1), σi) = 9.11.
Hence, as with any other distance based approach, the approximation result may

sometimes diverge significantly from the optimum solution while the closeness

of the approximate solution to the set of votes is nearly the same as that of the

optimum solution.

4.3 Vote Aggregation Using PageRank

An algorithm for data fusion, based on the PageRank [66] and HITS [67] al-

gorithms for ranking web pages, was proposed in [46]. PageRank is one of the

most important algorithms developed for search engines used by Google, with

the aim of scoring webpages based on their relevance. Each webpage is both a

voter and a candidate. A link from one webpage to another indicates an ap-

proval vote of the former for the latter. The rank of each webpage not only

depends on the number of the webpages that contain a link to it but also on

their rank: A vote from a highly ranked webpage is more influential than a vote

from a lowly ranked page. A simplified version of PageRank can be modeled as

a “random surfer.” The random surfer performs a random walk on the graph

of webpages where links are modeled as directed edges. Note that this process

represents a Markov chain in which transition probabilities are indicated by the

hyperlinks. Ranking of the webpages is obtained by computing the stationary

probabilities of the position of the random surfer. Thus webpages with many
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links to them are ranked high as well as webpages that have links from webpages

that are ranked high.

This idea can be easily adapted to the rank aggregation problem in several

different settings. In such an adaptation, the states of a Markov chain corre-

spond to the candidates and the transition probabilities are functions of the

votes. Dwork et al. [12, 46] proposed four different ways for computing the

transition probabilities from the votes. Below, we describe the method that is

most suitable for our problem and provide a generalization of the algorithm for

weighted distance aggregation.

Consider a Markov chain with states indexed by the candidates. Let P denote

the transition probability matrix of the Markov chain, with Pij denoting the

probability of going from state (candidate) i to state j. In [46], the transition

probabilities are evaluated as

Pij =
1

m
∑
σ∈Σ

Pij(σ),
where

Pij(σ) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
n
, if σ−1(j) < σ−1(i),

1 −
σ−1(i)−1

n
, if i = j,

0, if σ−1(j) > σ−1(i).
Our Markov chain model for weighted Kendall distance is similar, with a

modification that includes incorporating transposition weights into the transi-

tion probabilities. To accomplish this task, we proceed as follows.

Let wk = ϕ⟨k k+1⟩, and let iσ = σ
−1(i) for candidate i ∈ [n]. We set

βij(σ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
l∶jσ≤l<iσ

∑iσ−1
h=l wh

iσ−l , if jσ < iσ,

∑
k∶kσ>iσ

βki(σ), if jσ = iσ,

0, if jσ > iσ.

(4.3)

The transition probabilities equal

Pij =
1

m

m

∑
k=1

Pij(σk),
with

Pij(σ) = βij(σ)
∑k βik(σ) .

Intuitively, the transition probabilities described above may be interpreted as

follows. The transition probabilities are obtained by averaging the transition

probabilities corresponding to individual votes σ ∈ Σ. Suppose that a vote σ is

of the form (. . . , k, j, i, . . . ). Note that jσ = iσ−1 and kσ = iσ−2. The probability

of going from candidate i to candidate j is proportional to wjσ = ϕ⟨jσ iσ⟩. This
implies that if wjσ > 0, one moves from candidate i to candidate j with positive
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22/45

Figure 4.1: The Markov chain for Example 4.2.

probability. Furthermore, larger values for wjσ result in higher probabilities for

moving from i to j.

In the case of candidate k, it seems reasonable to let the probability of tran-

sitioning from candidate i to candidate k be proportional to
wjσ+wkσ

2
. However,

since k is ranked before j by σ, it is natural to require that the probability

of moving to candidate k from candidate i be at least as high as the prob-

ability of moving to candidate j from candidate i. This reasoning leads to

βik =max{wjσ ,
wjσ+wkσ

2
} and motivates using the maximum in (4.3). The same

reasoning applies to other candidates that are ranked before candidate i. Fi-

nally, the probability of staying with candidate i is proportional to the sum of

the β’s from candidates placed after candidate i.

Example 4.2. Let the votes in Σ consist of σ1 = (a, b, c), σ2 = (a, b, c), and
σ3 = (b, c, a), and let w = (w1,w2) = (2,1).
Consider the vote σ1 = (a, b, c). We have βba (σ1) = w1

1
= 2. Note that if w1 is

large, then βba is large as well.

In addition, βcb (σ1) = w2

1
= 1 and

βca =max{w1 +w2

2
, βcb} = 3

2
.

The purpose of the max function is to ensure that βca ≥ βcb, which is a natural

requirement given that a is ranked before b according to σ1.

Finally, βaa (σ1) = βca (σ1) + βba (σ1) = 2 + 3
2
= 7

2
and βbb (σ1) = βcb (σ1) = 1.

Note that according to the transition probability model, one also has βaa ≥ βbb.

This may again be justified by the fact that σ1 places a higher than b.
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Since σ1 = σ2, we have

P (σ1) = P (σ2) =
⎛⎜⎜⎜⎝

1 0 0
2
3

1
3

0
3
5

2
5

0

⎞⎟⎟⎟⎠
.

Similar computations yield

βcb (σ3) = 2, βac (σ3) = 1, βab (σ3) = 3

2

βaa (σ3) = 0, βbb (σ3) = 2 + 3
2
= 7

2
, βcc (σ3) = 1,

and thus

P (σ3) =
⎛⎜⎜⎜⎝

0 3
5

2
5

0 1 0

0 2
3

1
3

⎞⎟⎟⎟⎠
.

From the P (σ1) , P (σ2) , and P (σ3), we obtain

P =
P (σ1) +P (σ2) +P (σ3)

3
=

⎛⎜⎜⎜⎝
2
3

1
5

2
15

4
9

5
9

0
2
5

22
45

1
9

⎞⎟⎟⎟⎠
.

The Markov chain corresponding to P is given in Figure 4.1. The stationary dis-

tribution of this Markov chain is (0.56657,0.34844,0.084986)which corresponds

to the ranking (a, b, c).
Example 4.3. The performance of the Markov chain approach described above

cannot be easily evaluated analytically, as is the case with any related aggrega-

tion algorithm proposed so far.

We hence test the performance of the scheme on examples for which the

optimal solutions are easy to evaluate numerically. For this purpose, we consider

a simple test example, with m = 11. The set of votes (rankings) is listed below

ΣT
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 2 2 3 3 4 4 5 5

2 2 2 3 3 2 2 2 2 2 2

3 3 3 4 4 4 4 5 5 3 3

4 4 4 5 5 5 5 3 3 4 4

5 5 5 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that due to the transpose operator, each column corresponds to a vote,

e.g., σ1 = (1,2,3,4,5).
Let us focus on candidates 1 and 2. Using the plurality rule, one would arrive

at the conclusion that candidate 1 should be the winner, given that 1 appears

most often at the top of the list. Under a number of other aggregation rules,

including Kemeny’s rule and Borda’s method [68], candidate 2 would be the

winner.
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Our immediate goal is to see how different weighted distance based rank

aggregation algorithms would position candidates 1 and 2. The numerical results

regarding this example are presented in Table 4.1. In the table, OPT refers to

an optimal solution found by exhaustive search, and MC refers to the Markov

chain method.

If the weight function is w = (w1, . . . ,w4) = (1,0,0,0), where wi = ϕ⟨i i+1⟩,
the aggregate clearly corresponds to the plurality winner; the winner is the

candidate with most voters ranking her as the top candidate. A quick check

of Table 4.1 reveals that all three methods identify the winner correctly. Note

that the ranks of candidates other than candidate 1 obtained by the different

methods are different; however, this does not affect the distance between the

aggregate ranking and the votes.

The next weight function that we consider is the uniform weight function,

w = (1,1,1,1). This weight function corresponds to the conventional Kendall

τ distance. As shown in Table 4.1, all three methods produce (2,3,4,5,1); the
aggregates returned by BMLS and MC are optimum.

The weight function w = (1,1,0,0) corresponds to ranking of the top 2 candi-

dates. OPT and BMLS return 2 and 3 as the top two candidates, both preferring

2 to 3. The MC method, however, returns 2 and 1 as the top two candidates,

with a preference for 2 over 1, and a suboptimal cumulative distance. It should

be noted that this may be attributed to the fact the MC method is not designed

to only minimize the average distance: another important factor in determin-

ing the winners via the MC method is that winning against strong candidates

“makes one strong.” In this example, candidate 1 beats the strongest candi-

date, candidate 2, three times, while candidate 3 beats candidate 2 only twice

and this seems to be the reason for the MC algorithm to prefer candidate 1

to candidate 3. Nevertheless, the stationary probabilities of candidates 1 and

3 obtained by the MC method are very close to each other, as the vector of

stationary probabilities is (0.137,0.555,0.132,0.0883,0.0877).
The weight function w = (0,1,0,0) corresponds to identifying the top 2 candi-

dates – it is not important which candidate is the first and which is the second.

The OPT and BMLS identify {2,3} as the top two candidates.

The MC method returns the stationary probabilities (0,1,0,0,0)which means

that candidate 2 is an absorbing state in the Markov chain. This occurs because

candidate 2 is ranked first or second by all voters. The existence of absorbing

states is a drawback of the Markov chain methods. One solution is to remove

2 from the votes and re-apply MC. The MC method in this case results in the

stationary distribution (p (1) , p (3) , p (4) , p (5)) = (0.273,0.364,0.182,0.182),
which gives us the ranking (3,1,4,5). Together with the fact that candidate 2

is the strongest candidate, we obtain the ranking (2,3,1,4,5).
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Table 4.1: The aggregate rankings and the average distance of the aggregate ranking from the votes for different weight functions w.

Method
Aggregate ranking and average distance

w = (1,0,0,0) w = (1,1,1,1) w = (1,1,0,0) w = (0,1,0,0)
OPT (1,4,3,2,5), 0.7273 (2,3,4,5,1) , 2.3636 (2,3,4,5,1), 1.455 (3,2,5,4,1), 0.636
BMLS (1,2,3,4,5), 0.7273 (2,3,4,5,1) , 2.3636 (2,3,1,5,4), 1.455 (2,3,1,5,4), 0.636
MC (1,2,5,4,3), 0.7273 (2,3,4,5,1) , 2.3636 (2,1,3,4,5), 1.546 (2,3,1,4,5), 0.636
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Chapter 5

Codes in Ulam Metric for Error-Correction in

Flash Memories

5.1 Introduction

Permutation codes and permutation arrays are collections of suitably chosen

codewords from the symmetric group, used in applications as varied as sin-

gle user communication over Gaussian channels [69, 70], reduction of impulsive

noise over power-lines [71, 72], and coding for storage [73]. Many instances

of permutation-based codes were studied in the coding theory literature, with

special emphasis on permutation codes in the Hamming metric (permutation

arrays) and in the Kendall τ distance. The distances used for code construction

in storage devices have mostly focused around two types of combinatorial mea-

sures, counting functions of adjacent transpositions and measures obtained via

embeddings into the Hamming space [71, 73]. This is due to the fact that such

distance measures capture the displacement of symbols in retrieved messages

that arise in modern nonvolatile storage systems.

One of the most prominent emerging applications of permutation codes in

storage is rank modulation. Rank modulation is an encoding scheme for flash

memories that may improve the lifespan, storage efficiency and reliability of

future generations of these storage devices [73, 76–78]. The idea behind the

modulation scheme is that information should be stored in the form of rankings

of the cell charges, rather than in terms of the absolute values of the charges.

This simple conceptual coding framework may eliminate the problem of cell

block erasures as well as potential cell over-injection issues [76, 79]. In their

original formulation, rank-modulation codes represent a family of codes capable

of handling errors of the form of adjacent transpositions. Such transposition

errors represent the most likely errors in a system where the cells are expected

to have nearly-uniform leakage rates. But leakage rates depend on the charge

of the cells, the position of the cells and on a number of external factors, the

influence of which may not be adequately captured by adjacent transposition

errors. For example, if a cell for a variety of reasons has a higher leakage rate

than other cells, given sufficient time, the charge of this cell may drop below

the charge of a large number of other cells. Furthermore, if the number of

This chapter contains material from publications [74] and [75], coauthored with V. Skachek
and O. Milenkovic.
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possible charge levels is large,1 and thus the difference between charge levels is

small, a moderate charge drop may result in a significant drop in the cell’s rank.

One may argue that these processes may be modeled as a sequence of adjacent

transposition errors. However, as this type of error is the result of a single error

event, for the purpose of error correction it should be modeled as a single error.

This is reminiscent of the scenario where one models a sequence of individual

symbol errors as a single burst error [81].

In what follows, we present a novel approach to rank modulation coding

which allows for correcting a more varied class of errors when compared to

classical schemes. The focal point of the study is the notion of a translocation

error, a concept that generalizes the notion of an adjacent transposition in a

permutation. Roughly speaking, a translocation2 moves the ranking of one

particular element in the permutation below the ranking of a certain number

of closest-ranked elements. As such, translocations are suitable for modeling

errors that arise in flash memory systems, where high leakage levels for subsets

of cells are expected or possible. Examples of such error events include errors

due to radiation and breakdown of tunneling oxide, the latter being a prominent

event in conventional poly-Si floating gate memories [83, 84].

A translocation may be viewed as an extension of an adjacent transposition.

In addition, translocations correspond to pairs of deletions and insertions of

elements in the permutation. As a consequence, the study of translocations is

closely related to the longest common subsequence problem [85] and permuta-

tion coding under the Levenshtein metric [44].

Rank modulation is by now well understood from the perspective of code

construction. The capacity of rank modulation codes was derived in [36,73,86],

while some practical code constructions were proposed in [73, 76], and further

generalized in [37], [80] and [86]. Here, we complement the described work

in terms of deriving upper and lower bounds on the capacity of translocation

rank codes, and in terms of presenting constructive, asymptotically good cod-

ing schemes. Our constructions are based on a novel application of permutation

interleaving, and are of independent interest in combinatorics and algebra. For

the use of specialized forms of permutation interleaving in other areas of coding

theory, the interested reader is referred to [77, 87]. Furthermore, we propose

decoding algorithms for translocation codes based on decoders for codes in the

Hamming metric [88, 89]. Finally, we also highlight the close relationships be-

tween permutation codes in a number of metrics.

This chapter is organized as follows. In §5.2 we provide the motivation for

studying translocations as well as basic definitions used in our analysis. The

1There are two important motivations for increasing the number of charge levels. First,
larger number of charge levels may enable storing more data, and second, when there are a
large number of charge levels available, encoding methods such as push-to-the-top [80] can be
used to decrease the number of times that the memory needs to be erased.

2Note that our definition of the term translocation differs from the definition commonly
used in biology. See, e.g., [82].
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Figure 5.1: Rank modulation codes and adjacent transposition errors.

properties of permutations under translocations are studied in the same section

while bounds on the size of the codes are presented in §5.3. Code constructions

are presented in §5.4 and §5.5, while concluding remarks are given in §5.6.

5.2 Preliminaries

As mentioned above, our interest in translocations in permutations is motivated

by rank modulation coding. In classical multi-level flash memories, each cell

used for storing information is subjected to errors. As a result, classical error

control schemes of non-zero rate cannot be efficiently used in such systems.

One solution to the problem is to encode information in terms of rankings [9],

rather than absolute values of the information sequences. Consequently, data

is represented by permutations and errors manifest themselves via reordering

of the ranked elements. The simplest model assumes that only elements in

adjacent ranks may be exchanged. An examples is depicted in Figure 5.1.

This model has the drawback that it does not account for more general

changes in ranks. With respect to this observation, consider the charge-drop

model in Figure 5.2. Here, cell number 3, ranked second, experienced a leakage

rate sufficiently high to move the cell’s rank to the eighth position. In this frame-

work, one translocation φ(i, j), namely φ(2,8), of length ∣i− j∣ = 6, corresponds
to 6 adjacent transpositions. Nevertheless, as already argued, a translocation

should be counted as a single error, and not as a sequence of adjacent trans-

position errors. We also remark that translocation errors of arbitrary length

accurately model any error that affects a single cell, and are hence suitable for

modeling arbitrary charge drops of cells independently of drops of other cells,

as well as read disturb and write disturb errors [39]. This makes them a good

candidate for studying new error-control schemes in flash memories.

The distance arising from translocation errors, as proved in Prop. 1.2, is the

Ulam distance. That is, the minimum number of translocation errors required

to take a permutation π to another permutation σ equals the Ulam distance

between the two permutations, or equivalently n − lcs(π,σ). The inequalities

given in (1.5) imply that the Ulam distance is not within a constant factor

from the Kendall τ distance, so that code constructions and bounds specifically
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Figure 5.2: Rank modulation codes and translocation errors caused by “large”
drops of charge levels.

derived for the latter distance measure are not tight and sufficiently efficient

with respect to the Ulam distance.

Although the Ulam distance has received some attention in the computer

science community, to the best of the authors’ knowledge, codes in the Ulam

distance were not reported in the literature, with the exception of [85] by Beame

et al. and the notable single-error correction method by Levenshtein [44].

There exist many embedding methods for permutations, allowing one set

of permutations with desirable properties according to a given distance to be

mapped into another set of permutations with good properties in another metric

space. In subsequent sections, we exhibit a method for interleaving permutations

with good Hamming distance so as to obtain permutations with large minimum

Ulam distance.

The Ulam distance and other notions introduced in this section easily ex-

tend to permutations over a set P ⊆ [n]. Throughout this chapter, we use the

following notation and terminology in addition to the notation introduced in

§1.3. For a permutation σ ∈ Sn and a subset P of [n], the projection σP of

σ onto P is obtained from σ by only keeping elements of P and removing all

other elements. For example, for σ = (5,4,3,2,1) and P = {2,4,5}, we have

σP = (5,4,2). Note that σP has length ∣P ∣. Furthermore, let S(P ) stand for the

set of all permutations of elements of P . The identity element of S(P ) is eP ,
obtained from (1,2, . . . , n) by removing elements that are not in P . For distinct

i, j ∈ P , a translocation φ(i, j) over P is obtained from eP by moving i to the

position of j, and shifting elements between i and j, including j, by one. Right-

and left-translocations over P are defined similarly.

Example 5.1. Let P = {2,3,5,8} and consider π = (5,8,3,2) ∈ S(P ). The

translocation φ(8,2) over P equals (8,2,3,5) and we have πφ(8,2) = (2,5,8,3).
Notice that in this case, as for the case of standard permutations, the parameters

in φ(⋅, ⋅) refer to the elements in the corresponding identity permutation, rather

than positions.

Note that a translocation may correspond to either a left- or a right-translo-

cation. As seen from the example in Figure 5.2, right-translocations correspond

to general cell leakage models. On the other hand, left-translocations assume
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that the charge of a cell is increased above the level of other cells. We therefore

also introduce the notion of the right-translocation distance in §5.2.1. As will

be seen from our subsequent discussion, the Ulam distance is much easier to

analyze than the right-translocation distance, and represents a natural lower

bound for this distance.

5.2.1 Right-translocation Distance

Consider π,σ ∈ Sn and denote by Rt(π,σ) the minimum number of right-translo-

cations required to convert π to σ. For two permutations π1, π2 ∈ Sn, the right-

translocation distance d⃗U(π1, π2) is defined as

d⃗U(π1, π2) = 2min
σ

max{Rt(π1, σ),Rt(π2, σ)} .
We demonstrate next that d⃗U is in fact a metric by proving that it satisfies

the triangle inequality; the other metric properties may be readily verified.

Consider three permutations, π1, π2, and π3, and let

σ12 = argmin
σ

max{Rt (π1, σ) ,Rt (π2, σ)}
σ23 = argmin

σ
max{Rt (π2, σ) ,Rt (π3, σ)} .

Suppose that αi,1 ≤ i ≤ mα = Rt (π1, σ12), are right-translocations and assume

that βi,1 ≤ i ≤mβ = Rt (π2, σ12), are left-translocations such that

π1α1α2⋯αmα
= σ12,

σ12β1β2⋯βmβ
= π2. (5.1)

Similarly, suppose that γi,1 ≤ i ≤mγ = Rt (π2, σ23), are right-translocations and
that δi,1 ≤ i ≤mδ = Rt (π3, σ23), are left-translocations such that

π2γ1γ2⋯γmγ
= σ23,

σ23δ1δ2⋯δmδ
= π3. (5.2)

Note that the existence of the sets of translocations {αi} ,{βi} ,{γi} ,{δi} follows
from the definition of Rt.

From (5.1) and (5.2), we have

π1α1⋯αmα
β1⋯βmβ

γ1⋯γmγ
δ1⋯δmδ

= π3. (5.3)

Right-translocations and left-translocations have the following simple property.

Suppose β is a left-translocation and γ is a right-translocation. We can then

find a right-translocation γ′ and a left-translocation β′ such that βγ = γ′β′,

where either γ′ or β′ are allowed to be the identity permutation. Hence, (5.3)
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may be rewritten as

π1α1⋯αmα
γ′1⋯γ

′
mγ
β′1⋯β

′
mβ
δ1⋯δmδ

= π3. (5.4)

Next, let σ13 = π1α1⋯αmα
γ′1⋯γ

′
mγ

. Note that σ13 is not required to be the

minimizer of max{Rt (π1, σ) ,Rt (π3, σ)}.
From (5.4) and the fact that αi and γ

′
i are right-translocations and β

′
i and δi

are left-translocations, it follows that

Rt (π1, σ13) ≤mα +mγ = Rt (π1, σ12) +Rt (π2, σ23) ,
Rt (π3, σ13) ≤mβ +mδ = Rt (π2, σ12) +Rt (π3, σ23) ,

and thus

d⃗U(π1, π3) ≤ 2max{Rt(π1, σ13),Rt(π3, σ13)}
≤ 2max{Rt (π1, σ12) +Rt (π2, σ23) ,

Rt (π2, σ12) +Rt (π3, σ23)}
≤ 2max{Rt(π1, σ12),Rt(π2, σ12)}+

2max{Rt(π2, σ23),Rt(π3, σ23)}
= d⃗U(π1, π2) + d⃗U(π2, π3).

Hence, d⃗U satisfies the triangle inequality.

The definition of d⃗U implies that for two permutations π1, π2 ∈ Sn, one has

d⃗U(π1, π2) ≤ 2t if and only if there exists a permutation σ ∈ Sn such that

Rt(π1, σ) ≤ t and Rt(π2, σ) ≤ t. Hence, a code C is t-right-translocation cor-

recting if and only if d⃗U(π1, π2) > 2t for all π1, π2 ∈ C, π1 ≠ π2. This means

that under the given distance constraint, it is not possible to confuse the actual

codeword π1 with another (wrong) codeword π2.

Observe that the following bound holds:

dU (π1, π2) ≤ d⃗U(π1, π2) .
It is straightforward to characterize the minimum number of right-translocations

needed to transform one permutation to another, as we show below.

Definition 5.2. Let π,σ ∈ Sn. We denote the set of π−1-increasing and σ−1-

decreasing elements as

J (π,σ) ∶= {i ∈ [n] ∶ ∃j, π−1(i) < π−1(j)
and σ−1(i) > σ−1(j)} .
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Note that ∣J ∣ is left-invariant since, for π,σ,ω ∈ Sn,

∣J(ωπ,ωσ)∣ = ∣{i ∈ [n] ∶ ∃j, π−1ω−1(i) < π−1ω−1(j)
and σ−1ω−1(i) > σ−1ω−1(j)}∣

= ∣{i′ ∈ [n] ∶ ∃j′, π−1(i′) < π−1(j′)
and σ−1(i′) > σ−1(j′)}∣

= ∣J(π,σ)∣,
where for the first equality we have used the fact that (ωπ)−1 = π−1ω−1 and(ωσ)−1 = σ−1ω−1, and the second equality can be obtained by letting i′ = ω−1(i)
and j′ = ω−1(j). Furthermore, it is not difficult to show that Rt is left-invariant.

Lemma 5.3. Let π,σ ∈ Sn. Then

Rt (π,σ) = ∣J (π,σ)∣ .
Proof. It suffices to show that

Rt(π, e) = ∣J(π, e)∣ ,
where ∣J(π, e)∣ = ∣{i ∈ [n] ∶ ∃j < i, π−1 (i) < π−1(j)}∣ .
Let π1 be obtained from π by applying a right-translocation that moves some

element k to the right. Every element of J(π, e)/{k} is also in J(π1, e) as

each element of J(π, e)/{k} is involved in at least one inversion, which is not

affected by moving k. Hence, ∣J(π1, e)∣ ≥ ∣J(π, e)∣ − 1 with equality if J(π1, e) =
J(π, e)/{k}. Repeating the same argument yields Rt(π, e) ≥ ∣J(π, e)∣−∣J (e, e)∣ =∣J(π, e)∣.
Conversely, to transform π into e, it suffices to apply to each i ∈ J the shortest

right-translocation that moves this element to the smallest position i′, such that

to the left of position i′ are all elements smaller than i. Hence, Rt(π, e) ≤∣J(π, e)∣ .
For permutations π,σ ∈ Sn, the difference between Rt(π,σ) and dU(π,σ)

may be as large as n − 2. This may be seen by letting π = (2,3, . . . , n,1) and
σ = e, and observing that Rt(π,σ) = n − 1 and dU(π,σ) = 1. Furthermore,

it can be shown that this is the largest possible gap. To prove this fact, first

note that Rt(π,σ) = 0 if and only if dU(π,σ) = 0 and thus to obtain a positive

gap, one must have dU(π,σ) ≥ 1. We also have dU(π,σ) ≤ Rt(π,σ) ≤ n − 1.
Hence, 1 ≤ dU(π,σ) ≤ Rt(π,σ) ≤ n − 1, which implies that the gap is at most

n − 1 − 1 = n − 2.
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5.3 Bounds on the Size of Codes

5.3.1 Codes in the Ulam Distance

Henceforth, a permutation code, or simply a code, of length n and minimum

distance d in a metric d refers to a subset C of Sn such that for all distinct

π,σ ∈ C, we have d(π,σ) ≥ d.
Let A○(n, d) be the maximum size of a permutation code of length n and

minimum Ulam distance d.

Proposition 5.4. For all integers n and d with n ≥ d ≥ 1, we have

A○(n, d) ≥ (n − d + 1)!( n

d−1) ⋅

Proof. Let B○(r) be the number of permutations at Ulam distance at most r

from a given permutation. From left-invariance, we have

B○(r) = ∣{σ ∶ dU(σ, e) ≤ r}∣ .
The permutations that are within Ulam distance r from e are precisely the

permutations σ with lcs (e, σ) ≥ n − r. There are (n
r
) ways to choose the first

n−r elements of the longest common subsequence of e and σ and at most n!
(n−r)!

ways to arrange the remaining elements of σ. Hence,

B○(r) ≤ (n
r
) n!(n − r)! ⋅

From the Gilbert-Varshamov bound, we have A○(n, d) ≥ n!
B○(d−1) and thus

A○(n, d) ≥ n!( n

d−1) n!
(n−d+1)!

,

which completes the proof.

Proposition 5.5. For all n, d ∈ Z with n ≥ d ≥ 1,

A○(n, d) ≤ (n − d + 1)! .
Proof. We provide two proofs for this bound. The first proof is based on a

projection argument first described in [36], while the second proof is based on

a standard counting argument.

1. Let C be a code of length n, size M , and minimum distance d. Let k

be the smallest integer such that σ{1,...,k+1} ≠ π{1,...,k+1} for all distinct

σ,π ∈ C. Hence, M ≤ (k + 1)!. By definition, there exist σ1, σ2 ∈ C such

that σ{1,...,k} = π{1,...,k}. So, lcs (σ1, σ2) ≥ k and thus d ≤ dU (σ1, σ2) ≤ n−k.
Hence, M ≤ (n − d + 1)!.
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2. Again, let C be a code of length n, sizeM , and minimum distance d. Since

the minimum distance is d, all M( n

n−d+1) subsequences of length n − d + 1
of the codewords of C are unique. There are n!

(d−1)! possible subsequences

of length n − d + 1. Hence,

M( n

n − d + 1
) ≤ n!(d − 1)!

which implies that M ≤ (n − d + 1)!.

From the two previous propositions, we obtain

(n − d + 1)!( n

d−1) ≤ A○(n, d) ≤ (n − d + 1)! (5.5)

In what follows, all limits are evaluated for n→∞, unless stated otherwise.

Lemma 5.6. The following results hold:

1.

lim
ln(n − d(n))!

lnn!
= 1 − lim

d(n)
n

,

2.

lim
ln n!

d(n)!
lnn!

= 1 − lim
d(n)
n

,

3.

lim
ln ( n

d(n))
lnn!

= 0.

Proof. All claims follow easily from the asymptotic formula ln(n!) = n lnn +
O(n).
Let C○(d) denote the capacity of translocation codes of minimum Ulam dis-

tance d, i.e., C○(d) = limn→∞
lnA○(n,d)

lnn!
. A capacity achieving code refers to a code

with maximum rate and a given minimum distance, in a given metric space.

Theorem 5.7. The capacity of translocation codes of minimum distance d =

d(n) equals C○(d) = 1 − δ, where δ = lim d(n)
n

.

Proof. From (5.5), we have

ln (n − d + 1)! − ln ( n

d−1)
lnn!

≤
lnA○(n, d)

lnn!

≤
ln (n − d + 1)!

lnn!
(5.6)

Taking the limit of (5.6) and using Lemma 5.6 proves the theorem.
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At this point, it is worth observing that the problem of bounding the longest

common subsequence in permutations has been recently studied in a combi-

natorial framework [85]. There, the question of interest was to determine the

minimum length of the longest common subsequence between any two distinct

permutations from a set of k permutations of length n. When translated into

the terminology of translocation codes, the problem reduces to finding dk (n),
the largest possible minimum Ulam distance of a set of k permutations of Sn.

The bounds derived in [85] are constructive, but they hold only in the zero-

capacity domain of the code parameters. A more detailed description of one of

the constructions of [85] is presented in §5.5.5. The bounds of [85] imply that

dk (n) ≥ n − 32 (nk)1/3 for 3 ≤ k ≤
√
n. Hence, for n − 32

√
n ≤ d ≤ n − 32 (3n)1/3,

A○(n, d) ≥ 1

n
(n − d

32
)3 .

Furthermore, for k ≥ 4, dk (n) ≥ n − ⌈n1/(k−1)⌉k/2−1. For k ≥ 2 (1 + log2 n), this
bound is of no practical use.

For 1 + log2 n ≤ k < 2 (1 + log2 n), one has dk (n) ≥ n − 2k/2−1, which implies

that

A○(n, d) ≥ 2 (1 + log2 (n − d))
for d ≤ n−

√
n/2. Similar bounds can be obtained for A○(n, d) by assuming that

m − 1 < n
1

k−1 ≤m for some integer m ≤ ⌈n1/3⌉. Note that although these results

hold for the zero-capacity regime, they still may be useful for finite codelength

analysis.

Remark: Similar bounds may be derived for the asymmetric regime of

translocation error-correcting codes. For this purpose, let

B′(r) = ∣{σ ∶ Rt(e, σ) ≤ r}∣ ,
B⃗(r) = ∣{σ ∶ d⃗U(e, σ) ≤ r}∣ .

Then
n!

B○(2t) ≤
n!

B⃗(2t) ≤ A⃗ (n,2t + 1) ≤ n!

B′(t) ,
where A⃗(n, d) denotes the maximum size of a permutation code with minimum

right-translocation distance d.

5.3.2 Codes in Other Metrics

Translocation errors, and consequently, translocation error correcting codes, are

difficult to analyze directly. On the other hand, as described in §1.3.4.5, the

Ulam distance is related to various other metrics well-studied in the coding the-

ory and mathematics literature. Since the constructions in subsequent sections

rely on codes in other metrics on permutations, we provide a brief overview of
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the state of the art results pertaining to the Hamming, Cayley, and Kendall τ

metrics. We also supplement the known findings with a number of new results

for the metrics under consideration.

5.3.2.1 Hamming Metric

Codes in the Hamming metric have a long history, dating back to the work [69].

The Hamming metric is a suitable distance measure for use in power line com-

munication systems [19].

Let AH(n, d) denote the largest number of permutations of length n and

minimum Hamming distance d. Frankl and Deza [90, Theorem 4] and Deza [91]

showed that
n!

BH (d − 1) ≤ AH(n, d) ≤ n!(d − 1)! ,
where BH (r) is the volume of the sphere of radius r in the space of permutations

with Hamming metric. Improvements of these results for some special cases were

also obtained via linear programing methods; see for example [92].

Let Di denote the number of derangements of i objects, i.e., the number of

permutations of [i] at Hamming distance i from the identity permutation. It

can be shown that BH (r) = 1 +∑r
i=2 (ni)Di. Hence,

BH (d − 1) = 1 + d−1
∑
i=2
(n
i
)Di ≤

d−1
∑
i=1

n!(n − i)!
≤ (d − 1) n!(n − d + 1)!

where the first inequality follows from the fact that Di ≤ i!. Note that although

a more precise asymptotic characterization for the number of derangements is

known, namely

lim
ℓ→∞

Dℓ

ℓ!
=
1

e
,

the simple bound Di ≤ i! is sufficiently tight for the capacity computation.

The above results lead to

(n − d + 1)!
d − 1

≤ AH(n, d) ≤ n!(d − 1)! ⋅
Let CH(d) denote the capacity of permutation codes with minimum Hamming

distance d, i.e., CH(d) = lim lnAH(n,d)
lnn!

. Lemma 5.6 implies the following theorem.

Theorem 5.8. CH = 1 − lim
d(n)
n

.
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5.3.2.2 Cayley Metric

Let AT (n, d) denote the maximum size of a code with minimum Cayley distance

dT at least d. From (1.2), we have

AH (n,2d) ≤ AT (n, d) ≤ AH (n, d) .
Using the bounds above, we have the following theorem regarding the capacity

CT (d) of permutation codes of minimum distance d in the Cayley metric.

Theorem 5.9. The capacity of permutation codes of distance d in the Cayley

metric is bounded as

1 − 2 lim
d(n)
n
≤ CT (d) ≤ 1 − lim d(n)

n
.

5.3.2.3 Kendall τ Metric

Let AK(n, d) denote the largest cardinality of a permutation code of length n

with minimum Kendall τ distance d, and let CK(d) = lim lnAK(n,d)
lnn!

. Barg and

Mazumdar [36, Theorem 3.1] showed that

CK(d) = 1 − ǫ, for d = Θ (n1+ǫ) .
Note that for the Kendall τ , the maximum distance between two permutations

may be as large as Θ(n2). On the other hand, the diameter of Sn with respect

to the Ulam distance is Θ(n).

5.3.2.4 Levenshtein Metric

The bounds on the size of deletion/insertion correcting codes in the more general

case of codes with distinct symbols were first derived by Levenshtein in his

landmark paper [44]. The lower bound relies on the use of Steiner triple systems

and designs [44]. More precisely, let D(n, q) be the largest cardinality of a set of

n-subsets of the set {0,1, . . . , q − 1} with the property that every (n − 1)-subset
of {0,1, . . . , q − 1} is a subset of at most one of the n-subsets. Then the following

result holds for the cardinality AL(n, q) of the largest single-deletion correcting

codes consisting of codewords in {0,1, . . . , q − 1}n with distinct symbols [44]:

(n − 1)!D(n, q) ≤ AL(n, q) ≤ q!

n (q − n + 1)! .

5.4 Single-Error Correcting Codes

This section contains constructions for single-translocation error detecting and

single-translocation error correcting codes. For the latter case, we exhibit two
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constructions, one for translocations and another for right-translocations.

5.4.1 Detecting a Single Translocation Error

We start by describing a code that can detect a single translocation error. From

the discussion in §5.2, recall that the Ulam distance is half of the Levenshtein

distance and thus any single-deletion correcting code may be used for detecting a

single translocation error. An elegant construction for single-deletion correcting

permutation codes was described by Levenshtein in [44]. The resulting code has

cardinality (n − 1)! and is optimal since, from Proposition 5.5, we have

A○ (n,2) ≤ (n − 2 + 1)! = (n − 1)!.
Hence, A○ (n,2) = (n − 1)!.
Levenshtein’s construction is of the following form.

Let

Wn
2 = {u ∈ {0,1}n ∶ (n + 1) ∣ n

∑
i=1
iu (i)}

where a ∣ b denotes that a is a divisor of b. For σ ∈ Sn, let

Z (σ) = (z(1), . . . , z (n − 1))
be a vector with

z (i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if σ (i) ≤ σ (i + 1) ,
1, if σ (i) > σ (i + 1) , i ∈ [n − 1] .

The code

C = {σ ∈ Sn ∶ Z (σ) ∈Wn−1
2 } (5.7)

of size (n − 1)! is capable of correcting a single deletion. Hence, this code can

detect a single translocation error.

Let S
(t)
n be the set of sequences σ of length n − t that can be obtained from

some permutation in Sn by t deletions. In other words, S
(t)
n is the set of words

of length n − t from the alphabet [n] without repetitions. A code Cp ⊆ Sn is a

perfect code capable of correcting t deletions if, for every σ ∈ S
(t)
n , there exists a

unique π ∈ Cp such that σ can be obtained from π by t deletions. It was shown

in [44] that C in (5.7) is a perfect code capable of correcting a single deletion.

The minimum Levenshtein distance of Cp is 2(t + 1) and thus the minimum

Ulam distance of Cp is t + 1. Since the size of S
(t)
n equals ( n

n−t) (n − t)! and (nt)
elements of S

(t)
n can be obtained by t deletions from each σ ∈ Cp, we have that∣Cp∣ = (n − t)!. Recall from Prop. 5.5 that the size of a code with minimum Ulam

distance t+1 is ≤ (n−t)!. Thus a perfect code capable of correcting t deletions, if

it exists, is a rate-optimal code in the Ulam metric. Although conditions for the
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existence of such codes were investigated in [44], both necessary and sufficient

conditions are known only for a small number of special cases.

In the next two subsections, we describe codes capable of correcting a single

right-translocation error and codes capable of correcting a single translocation

error. In the constructions, we make use of a single-transposition error detecting

code, described below.

A single-transposition error detecting code

Applying a transposition to a permutation changes the parity of the permu-

tation. Also, for n ≥ 2, half of the permutations in Sn are even and half of

them are odd.3 Hence, the code C containing all even permutations of Sn is a

single-transposition error detecting code of length n and cardinality n!/2.

5.4.2 Correcting a Single Right-translocation Error

Next, we present a construction for codes that correct a single right-translo-

cation error. For this purpose, we first define the operation of permutation

interleaving and the operation of code interleaving.

Definition 5.10. For vectors σi, i ∈ [k], of lengths mi with m1 ≥m2 ≥ ⋯ ≥mk ≥

m1 − 1, the interleaved vector σ = σ1 ○ σ2 ○ ⋯ ○ σk is obtained by alternatively

placing the elements of σ1, σ2, . . . , σk in order. That is,

σ(j) = σi(⌈j/k⌉), 1 ≤ j ≤
k

∑
i=1
mi (5.8)

where i ≡ j (mod k). For a class of k codes Ci, i ∈ [k], let
C1 ○ ⋯ ○Ck = {σ1 ○ ⋯ ○ σk ∶ σi ∈ Ci, i ∈ [k]}. (5.9)

For example, for vectors σ and π of length m, we have

σ ○ π = (σ(1), π(1), σ(2), π(2), . . . , σ(m), π(m)) (5.10)

and for vectors σ and π of lengths m and m − 1 respectively, we have

σ ○ π = (σ(1), π(1), σ(2), π(2), . . . , σ(m)). (5.11)

The following proposition introduces codes that can correct a single right-

translocation error. The decoding algorithm is contained in the proof of the

proposition.

3More precisely, the symmetric group can be partitioned into the alternating group and its
coset.
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=

Figure 5.3: The effect of the right-translocation error φ(2,7) on the codeword
π = (5,6,9,8,7,2,1,4,3). The result is the word ω = (5,9,8,7,2,1,6,4,3).

Proposition 5.11. Let Pi, i= 1,2, be the set of odd and even numbers in [n],
respectively, and let Ci be the set of even permutations of Pi for i = 1,2. The

interleaved code C = C1 ○C2 corrects a single right-translocation error.

Proof. Given the permutation ω ∉ C, we want to find the unique π ∈ C such

that ω = πφ(i, j), i < j. An example is shown in Figure 5.3, with

ω = (5,9,8,7,2,1,6,4,3)
and π unknown to the decoder.

The kth element of ω is out of place if k /≡ ω(k) (mod 2). It is easy to see that

i = kmin ∶=min {k ∶ k /≡ ω(k) (mod 2)} ,
i.e., i equals the smallest integer k such that the kth element of ω is out of

place. In the example shown in Figure 5.3, i = 2. Finding j is slightly more

complicated since we must consider two different cases depending on the parity

of the length j − i of the right-translocation.

Let kmax ∶= max{k ∶ k /≡ ω(k) (mod 2)} . If j − i is odd, then j = kmax. Oth-

erwise, j = kmax + 1. That is, the right-translocation error is either φ(i, kmax)
or φ(i, kmax + 1). Thus, the codeword π either equals π′ = ωφ(kmax, i) or equals
π′′ = ωφ(kmax + 1, i). In the example of Figure 5.3, we have

π′ = (5,6,9,8,7,2,1,4,3),
π′′ = (5,4,9,8,7,2,1,6,3).

To find which of the two cases is correct, we proceed as follows.

Since ω = π′′φ(i, kmax + 1) and π′ = ωφ(kmax, i), we have

π′ = π′′φ(i, kmax + 1)φ(kmax, i)
= π′′ ⟨i kmax + 1⟩ .

Recall that if j − i is odd, then j = kmax, and if j − i is even, then j = kmax + 1.

Hence, i ≡ kmax + 1 (mod 2). In both π′ and π′′, the parity of the elements is
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the same as the parity of their positions. Thus, the transposition ⟨i kmax + 1⟩
affects only elements of the same parity as i. Hence, if i is odd, then π′P2

= π′′P2
=

ωP2
= πP2

and if i is even, then π′P1
= π′′P1

= ωP1
= πP1

.

Without loss of generality, assume that i is even. Then π′P1
= π′′P1

= ωP1
= πP1

and the subwords π′P2
and π′′P2

differ in one transposition. Since C2 has minimum

Cayley distance two, only one of π′P2
and π′′P2

belongs to C2, and so π can be

uniquely determined as being either equal to π′ or π′′.

The cardinality of the interleaved code C = C1 ○C2 equals 1
4
⌈n
2
⌉! ⌊n

2
⌋!, and its

rate asymptotically equals

ln (1/4)+ 2 ln ⌊n
2
⌋!

lnn!
∼ n lnn +O (n)
n lnn +O (n) ∼ 1.

5.4.3 Correcting a Single Translocation Error

The construction of the previous subsection can be extended to generate codes

capable of correcting a single translocation error as stated in the following propo-

sition. Although the proposition is stated for n being a multiple of three, it can

be easily extended to other cases.

Proposition 5.12. Suppose n is a multiple of three. Let Pi, i=1,2,3, be the set

of numbers in [n] that are equal to i modulo three, and let Ci be the set of even

permutations of Pi for i = 1,2,3. The interleaved code C = C1 ○C2 ○C3 corrects

a single translocation error.

Proof. Suppose that π is the stored permutation, ω is the retrieved permutation,

and that the error is the translocation φ(i, j). If ∣i − j∣ = 1, then φ(i, j) can be

easily identified. Suppose that ∣i − j∣ > 1. The translocation φ(i, j) moves ∣i − j∣
elements of π one position to the left, provided that i < j, or one position to the

right, provided that j < i. In either case, one element moves in the “opposite

direction” from the other elements. Hence, for ∣i − j∣ > 1 the direction of the

translocation (left or right) can be identified.

Once the direction of the translocation is known, i can be found as follows:

if the error is a right-translocation, then

i =min{k ∶ ω(k) /≡ k (mod 3)},
and if the error is a left-translocation, then

i =max{k ∶ ω(k) /≡ k (mod 3)}.
For simplicity, suppose the error is a right-translocation. The proof for left-

translocations is similar. Let kmax ∶= max{k ∶ k /≡ ω(k) (mod 3)} . We have the
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following three cases. If j − i ≡ 0 (mod 3), then j = kmax + 1 and

ω(kmax) ≡ ω(kmax + 1) (mod 3) .
If j − i ≡ 1 (mod 3), then j = kmax and

ω(kmax) /≡ ω(kmax + 1) (mod 3) .
Finally, if j − i ≡ 2 (mod 3), then j = kmax and

ω(kmax) ≡ ω(kmax + 1) (mod 3) .
So, if ω(kmax) /≡ ω(kmax + 1) (mod 3), then j = kmax and π is uniquely deter-

mined as ωφ(kmax, i). Otherwise, the error is either φ(i, kmax) or φ(i, kmax +1).
Let π′ = ωφ(kmax, i) and π′ = ωφ(kmax + 1, i). Then, π′ = π′′ ⟨i kmax + 1⟩ and
similar to the proof of Prop. 5.11, it can be shown that π′ and π′′ are not both

in C. Hence, π can be determined as either being equal to π′ or π′′.

Example 5.13. Consider the single-translocation correcting code for n = 12.

For this case, we have P1 = {1,4,7,10}, P2 = {2,5,8,11}, and P3 = {3,6,9,12}.
Suppose that the stored codeword is π, the error is φ(i, j), and the retrieved

word is

ω = (1,6,10,8,3,7,5,11,12,4,2,9).
Given ω, the decoder first identifies the elements that are out of order, i.e.,

elements that are not equivalent to their positions modulo three – in this case,{6,10,8,3,7,5}. Since more than two elements are out of order, we have ∣i−j∣ > 1.
Furthermore, since more than two elements have moved one position to the

left, φ is a right-translocation. Observe that kmax = 7 and that ω(kmax) ≡
ω(kmax + 1) (mod 3). Hence, we let

π′ = ωφ(7,2) = (1,5,10,8,7,11,4,2)
π′′ = ωφ(8,2) = (1,11,10,8,7,5,4,2).

We then have π′P2
= (5,8,11,2) and π′′P2

= (11,8,5,2). Since only π′′P2
is an even

permutation, the error is φ(2,8) and thus π = (1,11,6,10,8,3,7,5,12,4,2,9).
The cardinality of the code equals (1

2
(n
3
)!)3 , while its rate equals

3 ln (1/2)+ 3 ln (n
3
)!

lnn!
∼ n lnn +O (n)
n lnn +O (n) ∼ 1.

5.5 t-translocation Error Correcting Codes

We describe next some general constructions for t-translocation error-correcting

codes, starting with an extension of the interleaving methods from §5.4.
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5.5.1 Interleaving Codes in Hamming Metric

We construct a family of codes with Ulam distance 2t+1, length n = s (2t + 1) for
some integer s ≥ 4t+1, and cardinalityM = (AH(s,4t + 1))2t+1, where AH(s, d),
as before, denotes the maximum size of a permutation code with length s and

minimum Hamming distance d. The construction relies on the use of 2t + 1

permutation codes, each with minimum Hamming distance at least 4t+1. First,

we present the proposed construction and then prove that the minimum Ulam

distance of the code is at least 2t + 1.

For a given n and t, where n ≡ 0 (mod 2t + 1), partition the set [n] into 2t+ 1

classes Pi, each of size s, with

Pi = {j ∈ [n] ∶ j ≡ i (mod 2t + 1)} , i ∈ [2t + 1]. (5.12)

For example, for t = 2 and n = 45, one has

P1 = {1,6, . . . ,41} ,
P2 = {2,7, . . . ,42} ,
P3 = {3,8, . . . ,43} ,

and so on.

For i ∈ [2t+1], let Ci be a permutation code over Pi with minimum Hamming

distance at least 4t + 1.4 The code C is obtained by interleaving the codes Ci,

i.e., C = C1 ○ ⋯ ○ C2t+1, and is referred to as an interleaved code with 2t + 1

classes. In the interleaved code, the s elements of Pi occupy positions that are

equivalent to i modulo 2t + 1.

The following theorem provides a lower-bound for the minimum Ulam dis-

tance of C. The proof of the theorem is presented after stating the required

definitions, and three technical lemmas.

Theorem 5.14. Assume we are given three positive integers s, t, n = s(2t+ 1),
and a partition of [n] of the form given in (5.12). If, for i ∈ [2t + 1], Ci is a

permutation code over Pi with minimum Hamming distance at least 4t+ 1, then

C = C1 ○⋯○C2t+1 is a permutation code over [n] with minimum Ulam distance

greater than or equal to 2t + 1.

Corollary 5.15. For the code C of Theorem 5.14 and distinct σ,π ∈ C, the

length of the longest common subsequence of π and σ is less than n − 2t.

For convenience, we introduce an alternative notation for translocations. Let

the mapping ψ ∶ Sn → Sn be defined as follows. For a permutation σ ∈ Sn, an

integer ℓ, and a ∈ [n], let ψ(a, ℓ)σ denote the permutation obtained from σ by

moving the element a exactly ∣ℓ∣ positions to the right if ℓ ≥ 0 and to the left if

4It is clear that instead of using permutation codes for interleaving, one can also use codes
with distinct symbols such as those described in [93].
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ℓ ≤ 0. In other words, for any permutation σ ∈ Sn and a ∈ [n],
ψ(a, ℓ)σ = σφ(σ−1(a), σ−1(a) + ℓ).

For example, we have ψ(4,3)(3,4,2,5,1) = (3,2,5,1,4) = (3,4,2,5,1)φ(2,5).
Note that the mapping ψ is written multiplicatively. Furthermore, with slight

abuse of terminology, ψ(a, ℓ) may also be called a translocation.

Consider σ,π ∈ Sn with distance dU(σ,π) = m. A ψ-transform converting σ

to π is a sequence ψ1, ψ2, . . . , ψm of translocations such that π = ψm⋯ψ2ψ1σ.

Let b1 < b2 < ⋯ < bm be the elements of [n] that are not in the longest

common subsequence of σ and π. Each bk is called a displaced element. The set{b1, . . . , bm} is called the set of displaced elements and is denoted by D(σ,π).
The canonical transform converting σ to π is a ψ-transform ψ1, ψ2, . . . , ψm

with ψk = ψ(bk, ℓk) for appropriate choices of ℓk, k ∈ [m]. In other words, the

canonical transform operates only on displaced elements and corresponds to the

shortest sequence of translocations that convert σ to π.

As an example, consider

σ = (1,2,3,4,5,6,7, . . . ,15),
π = (1,3,4,5,6,2,7, . . . ,15).

Here, n = 15, t = 1, and s = 3. The canonical transform is ψ(2,4) and we have

π = ψ(2,4)σ = (1,3,4,5,6,2,7, . . . ,15). (5.13)

In this example, D(σ,π) = {2}.
Let πl = ψl⋯ψ2ψ1σ for 1 ≤ l ≤m. An element a is moved over an element b if

a is on one side of b in πj−1 and on the other side of b in πj for some j ∈ [m]. In
the above example with ψ(2,4), 2 is moved over 4 but it is not moved over 7.

An element k ∈ [2t + 1] is called a σ,π−pivot, or simply a pivot, if no element

of Pk is displaced, i.e., Pk∩D(σ,π) = ∅. In the example corresponding to (5.13),

the pivots are 1 and 3.

For I ⊆ [2t + 1], define PI as ∪i∈IPi. Also, recall that for ω ∈ Sn and a set

P , ωP denotes the projection of ω onto P . For example, for t = 1, n = 15,

ω = (1,2,3, . . . ,15), and I = {1,3}, we have ωPI
= (1,3,4,6,7,9,10,12,13,15).

We say that ωPI
has correct order if for every i, j ∈ I, i < j, elements of Pi and Pj

appear alternatively in ωPi∪Pj
, starting with an element of Pi. In the example

above, ωPI
has correct order.

Consider ω ∈ Sn and suppose that ωPi
= (a1, a2, . . . , as). The elements of the

set Pi = {a1, . . . , as} may be viewed as separating subsequences of ω consisting

of elements not in Pi. That is, we may write

ω = r0a1r1a2⋯asrs
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where the rl’s are non-intersecting subsequences of [n]/Pi. For each l,0 ≤ l ≤ s,

the subsequence rl is called the l-th segment of ω with respect to Pi and is

denoted by Rl (ω,Pi). Such a segmentation is shown next for the permutation

ω = (c3, b4, a1, b2, b3, a2, a3, c1, a4, b1, c2, c4).
Each segment is marked with a bracket:

ω = (c3, b4´¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¶, a1, b2, b3´¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¶, a2,´¶a3, c1´¶, a4, b1, c2, c4´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶).
To better visualize the subsequences in question, we may replace each element

of Pi by ⋆ and write ω as

ω = (c3, b4 ⋆ b2, b3 ⋆ ⋆ c1 ⋆ b1, c2, c4).
We have, for example, R0 (ω,Pi) = (c3, b4) and R2 (ω,Pi) = ().
Definition 5.16. Consider i, j ∈ [2t + 1], Pi = {a1, . . . , as}, and ω ∈ Sn. Sup-

pose, without loss of generality, that ωPi
= (a1, a2, . . . , as). The sequence ω(j∣i)

is defined as follows.

• If i = j, then ω(j∣i) = ω(i∣i) equals ωPi
.

• If j > i, then, for 1 ≤ l ≤ s, let ω(j∣i)(l) = Rl (ωPi∪Pj
, Pi) whenever

Rl (ω(j∣i), Pi) has length one, and let ω(j∣i)(l) = ǫ otherwise. Here, ǫ is

a special notational symbol.

• If j < i, then, for 1 ≤ l ≤ s, let ω(j∣i)(l) = Rl−1 (ωPi∪Pj
, Pi) whenever

Rl−1 (ω(j∣i), Pi) has length one, and let ω(j∣i)(l) = ǫ otherwise.
As an example, if Pi = {a1, a2, a3, a4, a5}, Pj = {b1, b2, b3, b4, b5}, j < i, and

ωPi∪Pj
= (b1, a1, a2, b2, b3, a3, b4, a4, b5, a5), the segments of ωPi∪Pj

with respect

to Pi are (b1), (), (b2, b3), (b4), and (b5), in that given order, and we have

ω(j∣i) = (b1, ǫ, ǫ, b4, b5).
Lemma 5.17. Consider the interleaved code C of Theorem 5.14 and let σ ∈ C.

Furthermore, let ω ∈ Sn be such that dU(σ,ω) ≤ t. There exists at least one

subset I ⊆ [2t + 1] of size at least t + 1 such that ωPI
has correct order.

Proof. There are at most t displaced elements, and thus, at most t classes con-

taining a displaced element. Hence, there exist at least 2t + 1 − t = t + 1 classes

without any displaced elements and, consequently, at least t+1 σ,ω−pivots. Let

I be the set consisting of these pivots. It is clear that ωPI
obtained in this way

has correct order which proves the claimed result.

Lemma 5.18. For all positive integers s and t and all permutations σ,ω ∈ Sn,

with n = (2t + 1)s, if i∗ is a σ,ω−pivot, then for j ∈ [2t + 1],
dH(σ(j∣i∗), ω(j∣i∗)) ≤ 2dU(σ,ω).
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Proof. Assume dU(σ,ω) =m and let ψm⋯ψ2ψ1 be the canonical transform from

σ to ω, so that ω = ψm⋯ψ2ψ1σ. We prove the lemma by induction onm. Clearly,

if m = 0, then

dH(σ(j∣i∗), ω(j∣i∗)) = 0.
Let π = ψm−1⋯ψ2ψ1σ. As the induction hypothesis, assume that

dH(σ(j∣i∗), π(j∣i∗)) ≤ 2(m − 1).
By the triangle inequality, it suffices to show that

dH(π(j∣i∗), ω(j∣i∗)) ≤ 2. (5.14)

Suppose ψm = ψ(b, ℓ) so that ω = ψm π. Since i∗ is a pivot, we have b ∉ Pi∗ . We

consider two cases: b ∉ Pj and b ∈ Pj . First, suppose b ∉ Pj . Since b ∉ Pi∗ ∪Pj ,

we have πPi∗∪Pj
= ωPi∗∪Pj

and thus dH(π(j∣i∗), ω(j∣i∗)) = 0.
On the other hand, suppose b ∈ Pj . Then, b appears in Rk (πPi∗∪Pj

, Pi∗) of
πPi∗∪Pj

and in Rl (ωPi∗∪Pj
, Pi∗) of ωPi∗∪Pj

, for some k, l. The only segments

affected by the translocation ψm are Rk (πPi∗∪Pj
, Pi∗) and Rl (ωPi∗∪Pj

, Pi∗),
and thus, for p ∈ [2t + 1]/{l, k}, we have Rp (πPi∗∪Pj

, Pi∗) = Rp (ωPi∗∪Pj
, Pi∗).

Hence, for p ∈ [2t + 1]/{l, k}, we find π(j∣i∗)(p) = ω(j∣i∗)(p), implying that

dH(π(j∣i∗), ω(j∣i∗)) ≤ 2.
Lemma 5.19. Consider the interleaved code C of Theorem 5.14. Let σ ∈ C and

ω ∈ Sn such that dU(σ,ω) ≤ t. If I ⊆ [2t + 1] is of size at least t + 1 and ωPI
has

correct order, then

1. for each i ∈ I, dH (σPi
, ωPi
) ≤ 2t and,

2. for i ∈ I and j ∉ I, dH (σPj
, ω(j∣i)) ≤ 2t.

Proof. Since there are at most t classes containing displaced elements and I has

size at least t + 1, there exists a pivot i∗ ∈ I. Then, by Lemma 5.18,

dH(σ(i∣i∗), ω(i∣i∗)) ≤ 2t.
Since σ is a codeword in C, by construction, we have σ(i∣i∗) = σPi

. Furthermore,

since ωPI
has correct order, we have ω(i∣i∗) = ωPi

. Hence,

dH (σPi
, ωPi
) ≤ 2t.

To prove the second part, we proceed as follows. Assume ψm⋯ψ2ψ1, with

m = dU(σ,ω), is the canonical transform from σ to ω so that ω = ψm⋯ψ2ψ1σ.

We first show that ψm⋯ψ2ψ1 may be decomposed into four parts as follows:

ω = (ψ(j)
t(j)
⋯ψ

(j)
1 (ψ(i)t(i)

⋯ψ
(i)
1 (τtτ⋯τ1 (ψ′t′⋯ψ′1σ)))) ,
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with t′ + t(i) + t(j) =m such that

ψ′k = ψ (a′k, ℓ′k) , a′k ∉ Pi ∪Pj , k ∈ [t′] , (5.15)

τk = ⟨ak bk⟩ , ak, bk ∈ Pi, k ∈ [tτ ] ,
ψ
(i)
k = ψ(a(i)k , ℓ

(i)
k ), a

(i)
k ∈ Pi, k ∈ [t(i)] ,

ψ
(j)
k = ψ(a(j)k , ℓ

(j)
k ), a

(j)
k ∈ Pj , k ∈ [t(j)] ,

and such that no ψ
(i)
k moves a

(i)
k over an element of Pi∗ .

It can be easily verified that any two translocations ψ(a, ℓ1) and ψ(b, ℓ2)
“commute.” That is, for any permutation π, we can find translocations ψ(a, ℓ3)
and ψ(b, ℓ4) such that ψ(a, ℓ1)ψ(b, ℓ2)π = ψ(b, ℓ4)ψ(a, ℓ3)π. Thus, we have the

transform

ω = (ψ(j)
t(j)
⋯ψ

(j)
1 (ψ′′t(i)⋯ψ′′1 (ψ′t′⋯ψ′1σ)))

with t′ + t(i) + t(j) =m such that

ψ′k = ψ (a′k, ℓ′k) , a′k ∉ Pi ∪Pj , k ∈ [t′] ,
ψ′′k = ψ(a′′k , ℓ′′k), a′′k ∈ Pi, k ∈ [t(i)] ,

ψ
(j)
k = ψ(a(j)k , ℓ

(j)
k ), a

(j)
k ∈ Pj , k ∈ [t(j)] .

Furthermore, it is easy to see that we may write ψ′′
t(i)
⋯ψ′′1 as ψ

(i)
t(i)
⋯ψ

(i)
1 τtτ⋯τ1

with

τk = ⟨ak bk⟩ , ak, bk ∈ Pi, k ∈ [tτ ] ,
such that no ψ

(i)
k moves a

(i)
k over an element of Pi∗ . Hence, for any permutation

ω one can write a transform of the form (5.15).

Let ω′ = τtτ⋯τ1ψ
′
t′⋯ψ

′
1σ, and ω

(i) = ψ(i)
t(i)
⋯ψ

(i)
1 ω′, so that ω = ψ

(j)
t(j)
⋯ψ

(j)
1 ω(i).

By the triangle inequality

dH (σPj
, ω(j∣i)) ≤ dH (σPj

, ω′(j∣i))
+ dH (ω′(j∣i), ω(i)(j∣i))
+ dH (ω(i)(j∣i), ω(j∣i)) .

It is clear that dH (σPj
, ω′(j∣i)) = 0. Next, consider ω′(j∣i) and ω

(i)
(j∣i). Note that

ω′P{j,i,i∗} has correct order. Since no translocation ψ
(i)
k moves a

(i)
k over an ele-

ment of Pi∗ , each ψ
(i)
k moves a

(i)
k over at most one element of Pj . Thus, each ψ

(i)
k

can modify at most two segments and we have dH (ω′(j∣i), ω(i)(j∣i)) ≤ 2t(i). Fur-

thermore, each ψ
(j)
k modifies at most two segments and thus dH (ψ(i)(j∣i),w(j∣i)) ≤

2t(j). Hence,
dH (σPj

,w(j∣i)) ≤ 0 + 2t(i) + 2t(j) ≤ 2m.
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Proof. (Theorem 5.14) Suppose the minimum Ulam distance of C is less than

2t + 1. Then, for two distinct codewords π,σ ∈ C, there exists an ω ∈ Sn such

that dU(π,ω) ≤ t and dU(σ,ω) ≤ t.
Since σ ≠ π, there exists k ∈ [2t + 1] such that πPk

≠ σPk
, which implies that

dH(πPk
, σPk
) ≥ 4t+1. Since dU(σ,ω) ≤ t, by Lemma 5.17, there exists I ⊆ [2t+1]

of size at least t + 1 such that ωPI
has correct order.

If k ∈ I, by Lemma 5.19, dH(σPk
, ωPk

) ≤ 2t and dH(πPk
, ωPk

) ≤ 2t, which

together imply dH(σPk
, πPk
) ≤ 4t.

On the other hand, if k ∉ I, by Lemma 5.19, for any i ∈ I, dH(σPk
,w(k∣i)) ≤ 2t

and dH(πPk
,w(k∣i)) ≤ 2t, which again imply dH(σPk

, πPk
) ≤ 4t.

Hence, by contradiction, the minimum distance of C is at least 2t + 1.

The rate of translocation correcting codes based on interleaving may be es-

timated as follows. The cardinality of the interleaved code of length n and

minimum distance d = d(n) is at least (AH (⌊nd ⌋ ,2d − 1))d for odd d, and

(AH (⌊ n
d+1⌋ ,2d + 1))d+1 for even d. The construction is applicable only if d(n) ≤√

n/2 − 1, in which case the asymptotic rate of the interleaved code equals

lim
ln ∣C ∣
lnn!

= lim
d(n) lnAH ( n

d(n) ,2d(n))
lnn!

= lim
lnAH ( n

d(n) ,2d(n))
ln (n/d(n))! d(n) ln (n/d(n))!

lnn!

= (1 − 2 lim d2(n)
n
) lim n lnn − n lnd(n) +O (n)

n lnn +O (n) ,

where we have used Theorem 5.8 to obtain the last equality. For example, if

d(n) = nβ , β < 1/2, then
1 − 2 lim

d2(n)
n
= 1

and one obtains a translocation error-correcting code of rate

lim
ln ∣C ∣
lnn!

= lim
n lnn − βn lnn +O (n)

n lnn +O (n) = 1 − β.

In the next section we describe a modification of the interleaving procedure,

which, when applied recursively, improves upon the code rate 1 − β.

5.5.2 Interleaving Codes in the Hamming and Ulam Metrics

The interleaving approach described in the previous subsection may be extended

in a straightforward manner: Rather than interleaving permutation codes with

good Hamming distance, as in §5.5.1, one may construct a code in the Ulam

metric by interleaving a code with good Ulam distance and a code with good
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Hamming distance. Furthermore, this approach may be implemented in a re-

cursive manner. In what follows, we explain one such approach and show how

it leads to improved code rates as compared to simple interleaving.

We find the following results useful for our recursive construction method.

Lemma 5.20. Let σ,π ∈ Sn be two permutations, such that dU(σ,π) = 1. Then,
there exist at most three locations i, i ∈ [n − 1], such that for some j = j(i) ∈[n − 1]:
● σ(i) = π(j);
● σ(i + 1) ≠ π(j + 1).

Proof. Suppose π = σφ(i1, i2). The proof follows from the simple fact that

when applying a translocation φ(i1, i2) to σ, the locations j described above are

among ⎧⎪⎪⎨⎪⎪⎩
i1, i2 − 1, and i2, if i1 > i2,

i1 − 1, i2 − 1, and i2, if i1 < i2.

Corollary 5.21. Let σ,π ∈ Sn be two permutations, and assume that there exist

a ≥ 0 different locations i, i ∈ [n−1], such that σ(i) = π(j), but σ(i+1) ≠ π(j+1)
for some j ∈ [n − 1]. Then, dU(σ,π) ≥ ⌈a/3⌉.
For an integer p ≥ 1, let µ = (1,2, . . . , p) and let σ1, σ2 ∈ S({p + 1, . . . ,2p − 1}).

Note that

µ ○ σ1 = (1, σ1(1),2, σ1(2), . . . , p − 1, σ1(p − 1), p)
µ ○ σ2 = (1, σ2(1),2, σ2(2), . . . , p − 1, σ2(p − 1), p). (5.16)

Theorem 5.22. For µ,σ1, and σ2 described above, if dH(σ1, σ2) ≥ d, then
dU(µ ○ σ1, µ ○ σ2) ≥ ⌈2d/3⌉ .

Proof. Let π1 = µ○σ1 and π2 = µ○σ2. Below, we show that the number of indices

ℓ in π1, with respect to π2, that satisfy the conditions described in Lemma 5.20 is

at least 2d. Then, the claim of the theorem follows when we apply Corollary 5.21

with a = 2d.

Assume that σ1(ℓ) ≠ σ2(ℓ) for some ℓ ∈ [p − 1]. For each such ℓ, the two

indices 2ℓ − 1 and 2ℓ can both serve as index i in Lemma 5.20:

1. We have π1(2ℓ − 1) = π2(2ℓ − 1) = ℓ, yet
σ1(ℓ) = π1(2ℓ) ≠ π2(2ℓ) = σ2(ℓ).

2. Let j ∈ [p] be such that π1(2ℓ) = π2(2j). It is easy to see that j ≠ ℓ. Then,

ℓ + 1 = π1(2ℓ + 1) ≠ π2(2j + 1) = j + 1 .
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Let µ○C = {µ ○ σ ∶ σ ∈ C}. The following corollary follows from Theorem 5.22.

Corollary 5.23. For integers n and p with n = 2p − 1, let µ = (1,2, . . . , p) and
suppose C ⊆ S({p + 1, . . . , n}) is a code with minimum Hamming distance at

least 3d
2
. Then µ○C is a code in Sn with minimum Ulam distance at least d and

with size ∣C ∣.
Hence, for odd n, we can construct a translocation code with length n, mini-

mum distance at least d, and size AH ( (n−1)2
, ⌈3d

2
⌉) . This can be easily general-

ized for all n to get codes of size

AH (⌈n
2
⌉ − 1, ⌈3d

2
⌉) .

By assuming that the permutation code in the Hamming metric is capacity

achieving, the asymptotic rate of the constructed code becomes

lim
lnAH (⌈n2 ⌉ − 1, ⌈3d(n)2

⌉)
lnn!

= lim
lnAH (⌈n2 ⌉ − 1, ⌈3d(n)2

⌉)
ln ⌈n

2
⌉! ⋅

ln ⌈n
2
⌉!

lnn!

=
1

2
−
3

2
lim

d(n)
n
=
1

2
−
3

2
δ,

where δ = lim d(n)
n

. Therefore, this code construction incurs a rate loss of 1/2(1+
δ) when compared to the capacity bound, which in this case equals 1 − δ.

The final result that we prove in order to describe a recursive interleaving

procedure is related to the longest common subsequence of two sequences and

the minimum Ulam distance of interleaved sequences.

Lemma 5.24. For σ,π ∈ Sn and P ⊆ [n], we have

dU(σ,π) ≥ dU (σP , πP ) + dU (σQ, πQ) ,
where Q = [n]/P .
Proof. Without loss of generality, assume that σ is the identity permutation. It

is clear that l(π) ≤ l(πP ) + l(πQ). Hence,
dU(σ,π) = n − l(π)

≥ n − l(πP ) − l(πQ)
= ∣P ∣ − l(πP ) + ∣Q∣ − l(πQ)
= dU (σP , πP ) + dU (σQ, πQ) .
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Lemma 5.25. For sets P and Q of sizes p and p−1, respectively, let C′1 ⊆ S(P )
be a code with minimum Ulam distance d and let C1 ⊂ S(Q) be a code with

minimum Hamming distance 3d/2. The code C′1 ○ C1 = {σ ○ π ∶ σ ∈ C′1, π ∈ C1}
has minimum Ulam distance d.

Proof. For σ1, σ2 ∈ C
′
1 and π1, π2 ∈ C1 with (σ1, π1) ≠ (σ2, π2), we show that

dU (σ1 ○ π1, σ2 ○ π2) ≥ d.
The case σ1 = σ2 follows from a simple use of Theorem 5.22.

Assume next that σ1 ≠ σ2. Then by Lemma 5.24, dU (σ1 ○ π1, σ2 ○ π2) ≥
dU (σ1, σ2) ≥ d and this completes the proof.

We now turn out attention to a recursive code construction based on the

findings outlined above.

Let α = 3
2
. For a given n, set P = {1, . . . , ⌈n

2
⌉} and setQ = {⌈n

2
⌉ + 1, . . . ,2 ⌈n

2
⌉ − 1}.

Suppose C′1 ⊆ S(P ) is a code with minimum Ulam distance d and C1 ⊆ S(Q) a
code with minimum Hamming distance αd. Assuming that permutation codes

with this given minimum Hamming distance exist, we only need to provide a

construction for C′1. An obvious choice for C′1 is a code with only one codeword.

Then, C = C′1 ○C1 is a code with minimum Ulam distance d and cardinality

AH (⌈n
2
⌉ − 1, αδ) .

The gap to capacity may be significantly reduced by observing that C′1 does

not have to be a code of cardinality one, and that C′1 may be constructed from

shorter codes.

To this end, let C′1 = C
′
2 ○C2 where C′2 is a code of length ⌈n

4
⌉ with minimum

Ulam distance d, while C2 is a code of length ⌈n
4
⌉ − 1 and minimum Hamming

distance αd.

By repeating the same procedure k times we obtain a code of the form

(((C′k ○Ck) ○Ck−1) ○ ⋯) ○C1, (5.17)

where each Ci, i ≤ k, is a code with minimum Hamming distance αd and length⌈ n
2i
⌉−1, and C′k is a code with minimum Ulam distance d and length ⌈ n

2i
⌉. Since

each Ci is a permutation code in the Hamming metric with minimum distance

αd, we must have ⌈ n
2i
⌉ − 1 ≥ αd. To ensure that this condition is satisfied,

in (5.17), we let k be the largest value of i satisfying n
2i
−1 ≥ αd. It is easy to see

that k = ⌊log n
αd+1⌋. Furthermore, we choose C′k to consist of a single codeword.

120



The asymptotic rate of the recursively constructed codes equals

lim
1

lnn!

k

∑
i=1

lnAH (⌈ n
2i
⌉ − 1, αd(n))

= lim
k

∑
i=1

lnAH (⌈ n2i ⌉ − 1, αd(n))
ln (⌈ n

2i
⌉ − 1)!

ln (⌈ n
2i
⌉ − 1)!

lnn!

= lim
k

∑
i=1
(1 − αd(n)2i

n
)2−i

= lim(1 − 2−k − αd(n)k
n

)
= 1 − 2−⌊log

1

αδ
⌋
− αδ ⌊log 1

αδ
⌋ ,

where the last step follows from limk = ⌊log 1
αδ
⌋. Note that this rate is roughly

equal to 1 − αδ (1 + log 1
αδ
).

5.5.3 Permutation Codes in the Hamming Metric

In the previous subsection, we demonstrated a number of constructions for

translocation error-correcting codes based on permutation codes in the Ham-

ming metric and codes over distinct symbols. There exists a number of con-

structions for sets of permutations with good Hamming distance, and codes

with codewords containing distinct symbols. For example, in [94–97] construc-

tions of permutations in Sn using classical binary codes were presented, while

other constructions rely on direct combinatorial arguments [98,99]. An example

of code construction for codewords over distinct symbols was presented in [93].

There, specialized subcodes of Reed-Solomon codes were identified such that

their codewords consist of distinct symbols.

In the former case, if C is a binary [n,αn,βn] code, the construction ap-

plied to C yields a subset of Sn of cardinality 2αn, with minimum Hamming

distance βn. This construction and constructions related to it may be used for

permutation code design, resulting in sets of permutations in Sn of cardinality

exp{Θ(n)} and minimum Hamming distance Θ(n). These permutations may

consequently be used to construct permutation codes in S2n with exp{Θ(n)}
codewords and minimum Ulam distance Θ(n).
Next, we describe a simple method for constructing sets of vectors of length

m > 0 over [n] such that all entries of the vector are different, and such that

the minimum Hamming distance between the vectors is large. In other words,

we propose a novel construction for partial permutation codes under the Ham-

ming metric, suitable for use in the recursive code construction described in the

previous subsection.

The idea behind the proof is based on mapping suitably modified binary

codewords in the Hamming space into partial permutations. For this purpose,
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let C be a binary [N,K,D] code, and for simplicity of exposition, assume that

n is a power of two. Let c ∈ C. We construct a vector x = χ(c) ∈ ([n])m, where

χ is a mapping described below, as follows:

1. Divide c into m binary blocks c1,c2,⋯,cm of lengths log2 n− log2m each.

Again, for simplicity, we assume that m is a power of two.

2. For each block ci, i ∈ [m], construct a vector xi of length log2 n according

to the rule: the first log2 n − log2m bits in xi equal ci, while the last

log2m bits in xi represent the binary encoding of the index i. Note that

the integer values represented by the binary vectors x1,x2,⋯,xm are all

different.

3. Form an integer valued vector x = χ(c) of length m over [n], such that its

i-th entry has the binary encoding specified by xi. Observe that all the

integer entries of such a vector are different.

Now, take two vectors a,c ∈ C, such that their Hamming distance satisfies

dH(a,c) ≥ D. Let x = χ(a) and y = χ(c) be the corresponding vectors of

length m over [n] constructed as above. Then, there exist at least D
log

2
n−log

2
m

blocks of length log2 n that are pairwise different. Therefore, the corresponding
D

log
2
n−log

2
m

entries in x and y are pairwise different as well.

Consider the set of vectors

S′ = {χ(c) ∶ c ∈ C} .
It is straightforward to see that the set S′ has the following properties:

1. For any x ∈ S′, all entries in x are different.

2. For any x,y ∈ S′, x ≠ y, the Hamming distance satisfies dH(x,y) ≥
D

log
2
n−log

2
m
.

The set S′ can be used similarly as the set Sn in the basic construction to

obtain codes over Sn+m with Ulam distance

O( D

log2 n − log2m
) .

Note that in this case, only m numbers in the range {n + 1, n + 2,⋯, n +m} are
inserted between the numbers in [n], while the Hamming distance of the vectors

is preserved.

Lemma 5.26. The parameters N , n and m are connected by the following

equation:

N =m log2 n −m log2m =m log2
n

m
.

From this lemma, if we take m = 1
2
n, then N = 1

2
n. By taking a code C with

parameters [1
2
n,αn,βn], where α > 0 and β > 0 are constants, we obtain a set
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S′ of size 2αn and Hamming distance Θ(n). The corresponding code is able to

correct Θ(n) translocation errors, and it has 2αn codewords.

5.5.4 Decoding of Interleaved Codes

An efficient decoder implementation for the general family of interleaved codes

is currently not known. For the case of recursive codes, decoding may be ac-

complished with low complexity provided that the Hamming distance of the

component permutation codes is increased from 3d
2

to 2d.

For simplicity of exposition, we assume n = 2n′ + 1. The case of even n may

be handled in the same manner, provided that one fixes the last symbol of all

codewords.

Let σ = (1, σ̂(1),2, σ̂ (2) , . . . , σ̂ (n′) , n′ + 1) ∈ C be the stored codeword and

let π ∈ Sn be the retrieved word.

For i ∈ [n′], denote by sπi the substring of π that starts with element i and

ends with element i + 1. If i + 1 appears before i in π, then sπi is considered

empty. For i ∈ [n′], let π̂ (i) = u if sπi contains a unique element of [n]/[n′], say
u. Otherwise, let π̂ (i) = ǫ.
Lemma 5.27. The permutation π̂ differs from σ̂ in at most 2dU(σ,π) positions.
Proof. Let t = dU(σ,π). There exists a sequence φ1, φ2, . . . , φt of translocations

such that π = σφ1φ2⋯φt. For i ∈ {0, . . . , t}, let πi = σφ1φ2⋯φi and let Li be

given as

Li = {j∣∃k ≤ i ∶ π̂k (j) ≠ σ̂k (j)} .
The set Li may be viewed as the set of elements displaced by one of the translo-

cations φ1, φ2, . . . , φi. Note that, for each i, Li ⊆ Li+1.

To prove the lemma, it suffices to show that ∣Lt∣ ≤ 2t, since {j∣π̂ (j) ≠ σ̂ (j)} ⊆
Lt.

Let L0 = ∅. We show that ∣Li∣ ≤ ∣Li−1∣ + 2 for i ∈ [t].
The translocation φi either moves an element of [n′] or an element of [n]/[n′].

First, suppose that it moves an element j of [n′]. Then φi can affect only the

substrings sπi−1
j−1 and sπi−1

j of πi−1. In the second case, assume that φi moves an

element of [n]/[n′]. It can then be easily verified that at most two substrings

of πi−1 may be affected by the given translocation. Hence, ∣Li∣ ≤ ∣Li−1∣ + 2.
Assume now that C ⊆ Sn is an interleaved code of the form

C = C′1 ○C1,

where C′1 = {(1,2, . . . , n′ + 1)} , and where C1 is a permutation code over the set

P = {n′ + 2, . . . ,2n′ + 1} with minimum Hamming distance 4t + 1.

Let σ ∈ C be the stored code word and π ∈ Sn be the retrieved word. Assume

that dU(σ,π) ≤ t. The first step of the decoding algorithm is to extract π̂ from
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Figure 5.4: Rate vs. distance for several code constructions with n = 150. The
numbers in the legend refer to the section where the corresponding code is
described. It is assumed that AH(n, d) = n!

(d−1)! .

the permutation π. By Lemma 5.27, we have dH (σ̂, π̂) ≤ 2t. Since C1 has

minimum Hamming distance 4t+ 1, σ̂ can be uniquely recovered from π̂. Thus,

decoding is accomplished through Hamming distance decoding of permutation

codes, for which a number of interesting algorithms are known in literature [88,

89, 100]. Note that this simple decoding method may be used on a recursive

construction of depth larger than one, following the same rules as described

before.

The asymptotic rate of the code C is 1
2
−2δ, where δ = lim d

n
= lim 2t+1

n
. For the

recursive construction described in (5.17), the asymptotic rate of the efficiently

decodable codes outlined above equals 1 − 2−⌊log
1

αδ
⌋
− αδ ⌊log 1

αδ
⌋, with α = 2.

Remark: Permutation codes in Sn, correcting adjacent transposition errors,

were thoroughly studied in [36]. We note that these codes can also be used

to correct translocation errors. Indeed, every translocation can be viewed as a

sequence of at most n − 1 adjacent transpositions. Therefore, any code in Sn

that corrects f(n) adjacent transpositions (for some function f(n)) can also

correct O(f(n)/n) translocations.
It was shown in Theorem 3.1 of [36] that the upper bound on the rate of

the code correcting O(n2) adjacent transpositions is zero. Such a code can also

be used to correct O(n) translocation errors. In comparison, the interleaved

constructions described above can also correct O(n) translocation errors, yet

their rate is strictly larger than zero.

The non-asymptotic and asymptotic rates of the discussed code families are

compared in Figures 5.4 and 5.5.

Note that the gap from capacity of the constructions presented in this chapter
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Figure 5.5: Asymptotic rate vs. distance for several code constructions. The
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.

is still fairly large, despite the fact that the codes are asymptotically good. This

result may be attributed to the fact that the interleaving construction restricts

the locations of subsets of elements in a severe manner. It is worthwhile to study

Alternative interleaving methods that may lead to codes with higher rates.

In what follows, we describe a method of Beame et al. [85] that provides

translocation codes with minimum distance proportional to n−o(n). This covers
the zero-capacity domain of our analysis.

5.5.5 Zero-rate Codes

We present two constructions based on the longest common subsequence analy-

sis. The first construction is based on Hadamard matrices was and given in [85],

while the second construction is probabilistic.

Assume that a Hadamard matrix of order k exists. To explain the construc-

tion, we consider permutations over the set {0,1, . . . , n − 1}. Furthermore, the

positions in each permutation are also numbered from 0 to n − 1.

Let s = ⌈n1/(k−1)⌉. For a ∈ {0,1, . . . , n − 1}, we denote the representation of a

in base s by a1a2⋯ak−1, where a1 is the most significant digit.

Let H be a Hadamard matrix of order k with rows and columns indexed by

elements in the set {0,1, . . . , k − 1}. Without loss of generality, assume the first

row and column of H are all-ones vectors. The set {πi}ki=1 of permutations

is constructed by defining the mth element of πi, for m = 0,1, . . . , sk−1 − 1, as

follows. Let m =m1⋯mk−1, and let the mth element of πi equal

πi (m) = a1a2⋯ak−1,
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Figure 5.6: Permutation codewords based on Hadamard matrices [85].

where, for j ∈ {0,1, . . . , k − 1},
aj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mj , if Hij = 1,

s − 1 −mj , if Hij = −1.

The length of the longest common subsequence of any two permutations of {πi}
is at most sk/2−1. The permutations obtained in this way have length sk−1.

Consequently, the minimum distance of the code is at least sk−1 − sk/2−1. Note
that if sk−1 > n, we can arbitrarily delete elements from each permutation to

obtain a set of permutations each of length n.

As an example, consider n = 27 and k = 4. We have

H =

⎛⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎠
and s = 3. Four codewords of the code based on this Hadamard matrix are

plotted in Figure 5.6.

Another construction based on [85] holds for 3 ≤ k ≤
√
n, leading to k per-

mutations with minimum Ulam distance at least n− 32 (kn)1/3. The number of

codewords obtained from this construction is exponentially smaller than what

may be obtained via random methods, as we demonstrate next.

126



Let Un denote the Ulam distance between a uniformly and at random chosen

permutation of length n and the identity, e = (1,2, . . . , n). From a result shown

by Kim [101] (see also [102–104]), for 0 < θ ≤ n1/3/20, one has

P (Un ≤ n − 2
√
n − θn1/6)

≤ exp(−θ3/2 (4
3
−

θ

27n1/3 −
5 logn

θ1/2n1/3 )) .
By letting θ = an1/3 with a ≤ 1/20, for sufficiently large n, we find

P (Un ≤ n − (2 + a)√n) ≤ exp (−a3/2√n) .
Suppose a code C is constructed by randomly choosing M = eαn permutations

in Sn, with replacement. By left-invariance, the bound above also holds for the

Ulam distance between two given codewords of C. Using the union bound and

the fact that there are less than M2 pairs of codewords, the probability that

there exist two permutations with distance ≤ n − (2 + a)√n is bounded from

above by

M2P (Un ≤ n − (2 + a)√n) ≤ exp (−a3/2√n + 2αn) .
To ensure that the minimum distance of the code is at least n − (2 + a)√n
with high probability, we must choose αn such that a3/2

√
n > 2αn. Hence, we

let αn =
1
2

√
a3n − ǫ, for some ǫ > 0. For this choice, with high probability, the

random code C of size Θ (e√a3n/2) has minimum distance at least n−(2+a)√n.
In particular, for a = 1/20, there exists a code of size Θ (e√n/5/80) with minimum

distance at least n − 2.05
√
n.

As already pointed out, the size of a randomly constructed code obtained

this way is exponential in
√
n, while the size of the code from the explicit

construction in [85],

(2 + a
32
)3√n,

is only linear in
√
n.

5.6 Summary

We introduced the notion of translocation errors in rank modulation systems.

Translocation errors may be viewed as generalization of adjacent swap errors

frequently encountered in flash memories. We demonstrated that the metric

used to capture the effects of translocation errors is the Ulam distance between

two permutations, a linear function of the longest common subsequence of the

permutations. We also derived asymptotically tight upper and lower bounds

on the code capacity. Furthermore, we presented a number of constructions for
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translocation error-correcting codes based on interleaving permutation codes in

the Hamming metric and deletion-correcting codes in the Levenshtein metric.

Finally, we exhibited a low-complexity decoding method for a class of relaxed

interleaved codes of non-zero asymptotic rate.
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Chapter 6

Conclusion and Future Work

Distance functions on rankings (permutations) play an important role in math-

ematics, the social sciences, bioinformatics, and coding theory. Our work estab-

lished a new framework in which to study very general forms of such distance

measures, and we also described a number of modern applications of the metrics

in the context of rank aggregation and rank coding for flash memories.

Using an axiomatic approach, we introduced two novel classes of distances

on rankings, and proposed algorithms for computing or approximating these

distances. In addition, we described efficient aggregation algorithms for these

distances. For flash memories, we introduced codes in a distance metric suitable

for capturing deletion and insertion errors, and consequently, arbitrary charge

drops. The proposed error-correcting schemes include capacity achieving codes

that can correct a constant number of errors, asymptotically good codes, as well

as simple decoding algorithms.

There remain many problems to be addressed in the future. While we have

found algorithms for computing the distances for some of the most important

cases, general algorithms are not yet known. At the moment, we are in the

process of extending our results for metric trees [105]. Additionally, since rank

aggregation with many distances is an NP-hard problem, further research is

required for obtaining good approximation algorithms. Approaches based on

linear programming relaxations appear to be particularly promising, and our

recently submitted work is available at [106]. We are also considering iterative

vote aggregation models in which voters may change their votes after observing

the votes of their peers. See [107]. Since our focus was on theoretical analysis of

the problem, it remains to demonstrate the use of our methods in practice. Cur-

rently, we are in the process of applying weighted distances to ordinal genomic

data fusion [108].

The codes that we proposed for flash memories are based on interleaving

shorter codes. Interleaving limits the positions that subsets of elements can

occupy in the code. Further research is needed to find out if this limitation

can be relaxed while maintaining good minimum distance. Other interesting

topics related to rank codes are the study of limited-magnitude errors as well

as adapting rank codes for distributed storage systems. These are some of the

subjects that we intend to study in the future.
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