
c© 2013 Joan Marie Stupik

OPTIMAL PURSUIT/EVASION SPACECRAFT TRAJECTORIES IN
THE HILL REFERENCE FRAME

BY

JOAN MARIE STUPIK

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Bruce Conway

ABSTRACT

The pursuit/evasion game for two spacecraft is significantly simplified by

being described with a linearized system of equations of motion. A pur-

suit/evasion game is also known as a “minimax” problem, because the ob-

jective of the pursuer is to minimize the time to capture, while the evader’s

goal is to maximize the time to capture. In this work, the minimax problem

is solved in the Hill-Clohessy-Wiltshire (HCW) reference frame with Earth

as the central body and each spacecraft uses continuous low-thrust propul-

sion. The thrust-pointing direction is the control for each spacecraft. Each

vehicle has a finite specific impulse and therefore the mass of each vehicle de-

creases as propellant is consumed. Optimal closed-loop controllers were also

sought, but due to the nature of the minimax problem, creating a traditional

closed-loop feedback control is difficult. A closed-loop controller has been

developed using a method called kriging. Results for both open and closed-

loop trajectories are reported for a significant range of initial conditions and

for different thrust accelerations of the two spacecraft.

ii

To Dad, Mom, Annie, Grandpa, and Grandma, for their love and continued

support.

iii

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Bruce Conway, who gave me guidance,

advice, and ideas, as well as Mauro Pontani, who made the problem tractable.

Thank you also to Pradipto Ghosh, without whom the kriging would have

remained a mystery. I also want to acknowledge Donald Ellison, best office-

mate in the world. Thank you also to all my friends who gave me emotional

support: Justine, Marianne, Bindu, and Mallory.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF SYMBOLS . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Pursuit/Evasion Game Definition and Motivation 1
1.2 One-Sided Optimization . 2
1.3 Differential Game . 3
1.4 Numerical Methods . 5
1.5 Previous Work . 6
1.6 Thesis Outline . 7

CHAPTER 2 GOVERNING EQUATIONS 8
2.1 Hill-Clohessy-Wiltshire Frame 8
2.2 Equations of Motion . 10
2.3 Equations of Motion in Matrix Form 10

CHAPTER 3 NECESSARY CONDITIONS FOR SADDLE POINT
EQUILIBRIUM . 12
3.1 General Optimization Equations 12
3.2 Differential Game Optimization Equations 14
3.3 Analytical Problem Summary 23

CHAPTER 4 SOLUTION OF THE DIFFERENTIAL GAME 24
4.1 Introduction to Particle Swarm Optimization (PSO) 24
4.2 Application to the Differential Game Problem 27
4.3 Problem Description . 28
4.4 Sample Solution: Open-Loop Case 1 28
4.5 Sample Solution: Open-Loop Case 2 33
4.6 Open-Loop Controller Summary 37

v

CHAPTER 5 SOLUTION FOR THE FEEDBACK CONTROLLER . 38
5.1 Introduction to Kriging . 38
5.2 Kriging Software . 39
5.3 Problem Description . 40
5.4 Sample Solution: Kriging Case 1 40
5.5 Sample Solution: Kriging Case 2 48
5.6 Practical Limitations When Using Kriging 53
5.7 Kriging Summary . 53

CHAPTER 6 CONCLUSION . 55
6.1 Summary . 55
6.2 Future Work . 56

REFERENCES . 57

vi

LIST OF TABLES

4.1 PSO Weights . 27
4.2 Problem Parameters . 28
4.3 Initial Conditions for Open-Loop Case 1 29
4.4 Final Decision Variables for Open-Loop Case 1 29
4.5 Final Conditions for Open-Loop Case 1 29
4.6 Initial Conditions for Open-Loop Case 2 33
4.7 Final Decision Variables for Open-Loop Case 2 33
4.8 Final Conditions for Open-Loop Case 2 33

5.1 Nominal Initial Conditions Case 1 40
5.2 Kriging Calculation Parameters Case 1 41
5.3 Initial Conditions for Comparison 41
5.4 Final Positions for Open-Loop (PSO) Optimal Trajectories

with Final time 42.2136 minutes 41
5.5 Final Positions for Closed-Loop (Kriging) Trajectories with

Final time 42.2137 minutes . 41
5.6 Nominal Initial Conditions Case 2 48
5.7 Kriging Calculation Parameters Case 2 48
5.8 Initial Conditions (Final time 41.8 minutes) Case 2 48
5.9 Final Positions Kriging Case 2 50
5.10 Final Positions PSO (Final time 41.72 minutes) Case 2 50
5.11 Final Positions Kriging with Too Many Data Points 53

vii

LIST OF FIGURES

1.1 Illustrating a Function with a Saddle Point 4

2.1 Hill-Clohessy-Wiltshire (HCW) Frame 9

3.1 Control Angle Visualization 15

4.1 Illustration of PSO Algorithm 26
4.2 Optimal Pursuit/Evasion Trajectories in 3D Case 1 30
4.3 View of 3D Trajectory from XY Plane Case 1 31
4.4 Control Time History for 3D Trajectory Case 1 32
4.5 Optimal Pursuit/Evasion Trajectories in 3D Case 2 34
4.6 View of 3D Trajectory from XY Plane Case 2 35
4.7 Control Time History for 3D Trajectory Case 2 36

5.1 Field of Extremals - Perturbation in Evader Only 43
5.2 Comparing Trajectory Solutions from PSO and Kriging 44
5.3 Magnified View Comparing Terminal Trajectory Solutions

from PSO and Kriging . 45
5.4 Comparing Control Time History from PSO and Kriging . . . 46
5.5 Magnified View Comparing Terminal Control Time His-

tory from PSO and Kriging 47
5.6 Field of Extremals - Perturbation in Both Players Initial

Conditions . 49
5.7 Kriging Pursuit/Evasion Trajectories Case 2 51
5.8 Control Time History for Kriging Case 2 52

viii

LIST OF SYMBOLS

u Control vector

f Cost function

x State vector

x Scalar component of state vector

y Scalar component of state vector

z Scalar component of state vector

ω Angular velocity

µ Gravitation parameter

a Semimajor axis

a Thrust acceleration vector

p Pursuing vehicle

e Evading vehicle

ψ Terminal constraint vector

g Constraint vector

λ Adjoint variable vector

H Hamiltonian

L Lagrangian

tf Final time

α In-plane control angle

β Out-of-plane control angle

ix

r Particle position

v Particle “velocity”

i Iteration number

j Current generation

k Particle number

S Set of training locations

wi Kriging weights

x

CHAPTER 1

INTRODUCTION

1.1 Pursuit/Evasion Game Definition and Motivation

A pursuit/evasion game is an optimization problem in which there are two

players that have conflicting goals. Perhaps the best known example of such

a game is the “homicidal chauffeur problem”. This is one of the simplest

pursuit/evasion games and was introduced by Rufus Issacs [1] in 1965. It

describes a runner attempting to escape capture from a car (with higher speed

but less mobility) in active pursuit. In this problem, both the runner and

the car are optimizing time until capture, but the runner wants to maximize

that time while the car is trying to minimize that time. Hence, this type of

problem is often called a “minimax” problem.

The minimax problem considered in this work is a differential game be-

tween two spacecraft in orbit around Earth. The motion of the spacecraft is

described in relative coordinates, specifically in the Hill-Clohessy-Wiltshire

reference frame. An interception is the goal in this case, i.e. the positions at

the final time will match (but the velocities need not). In terms of the goals,

this problem is similar to the homicidal chauffeur example - the pursuing

vehicle is minimizing the time until interception and the evading vehicle is

maximizing the time until interception.

In fact, the evader would like to drive the interception time to infinity, if

possible. To guarantee the existence of a solution to the game in this work,

the pursuer was assigned a thrust sufficiently higher than that of the evader

to ensure that the evader cannot escape.

There are a number of potential applications for this analysis. First, it

could be used to simulate interaction between hostile intelligence satellites.

The second and more subtle application is to give an estimate for a “worst-

case scenario” in some maneuver in which there is uncertainty in one player’s

1

motion. For example, consider a satellite with a sporadic and uncontrolled

thruster and the pursuing repair satellite. The longest possible time until

capture occurs in the case in which the rogue satellite is actively avoiding

capture, i.e. the pursuit/evasion game. Knowledge of this worst-case scenario

could provide design bounds on the vehicles and controller software used for

such a repair mission.

1.2 One-Sided Optimization

The simplest optimization problem is one-sided, meaning that there is only

one player that is trying to optimize some cost. The problem may be con-

strained or unconstrained. An example of unconstrained optimization in

orbit mechanics is to find the thrust profile to maximize the final energy in a

given time. This problem is unconstrained because there are no requirements

for a feasible solution.

A problem where the goal is to find the thrust history from Earth to

rendezvous with Mars at an unspecified time is a constrained problem. In

order to be a feasible solution, the spacecraft must have matched the position

and velocity of Mars at the unspecified final time. These requirements restrict

the possible choices for the thrust time history.

In an optimization problem, the “cost function”, or “objective function”, is

the function that is being optimized (minimized or maximized). In order to

achieve the optimal value, some variables called the “controls” or “decision

variables” are defined. The optimizing process varies these controls in order

to find the optimal solution. In trajectory optimization, the control variables

are usually the thrust pointing angles and/or the thrust magnitude. By

denoting the objective function as f(x), the optimal control variable vector

u can be written as

uT = arg min
u

f(x) (1.1)

This means that the optimal choice of u causes the smallest f(x) out of all

other possible choices for u.

2

1.3 Differential Game

1.3.1 Two-Sided Optimization

The differential game problem considered in this work is a not a one-sided

optimization, but instead is a two-sided optimization. A two-sided problem

has two players that are each optimizing the same cost function, but with

different goals. This means that although the cost function is the same, one

player wants to minimize that cost while the other player wants to maximize

it.

The optimal solution to a differential game is the solution that, if changed,

would cause one of the player’s situations to worsen, i.e. change contrary to

that player’s goal. This is referred to as a saddle point solution.

To illustrate the concept of a saddle point solution, consider the 3D plot of

z = x2− y2 in Figure 1.1. This figure’s shape demonstrates why the solution

point is known as a saddle point.

In this case the objective is simply z. The point (x, y, z) = (0, 0, 0) is the

saddle point. Note that in the x direction (along the x− z plane), the saddle

point is the minimum and in the y direction (along the y− z plane), it is the

maximum. Imagine the x and y coordinates to be two players, with the x

player attempting to minimize the objective and the y player maximizing the

objective. If the x player chooses a different solution, i.e. a different point

on the x-axis, the new z value is increased - contrary to the goal of the x

player.

In Section 1.2, the u vector represented the set of controls for the one-

player problem. For a two-sided problem, each player has its own set of

controls. Therefore, an expression for the control variables similar to eqn.

(1.1) can be written as

[
u1 u2

]T
= arg min

u1

max
u2

f(x) (1.2)

1.3.2 Pursuit/Evasion Game

A common type of differential game is a pursuit/evasion game. The objec-

tive function is the final maneuver time, or time to capture. Following the

3

Figure 1.1: Illustrating a Function with a Saddle Point

4

discussion in Section 1.3.1, the players have conflicting goals and each has its

own set of active controls. The pursuer is the vehicle that is minimizing the

time to capture and the evader is maximizing the final time (or driving it to

infinity if possible). As stated previously, the saddle-point solution is such

that if a player deviates from its optimal strategy, that player’s situation

would worsen. In the pursuit/evasion case, this means that

1. if the pursuer changed its control history, the time to capture would be

increased, and

2. if the evader changed its control history, the time to capture would be

decreased.

For the pursuit/evasion game between spacecraft in this work, the vehicles

are assumed to have only continuous low-thrust capability. The continuous

thrust complicates the solution of the equations of motion and necessitates

the use of a numerical solver.

1.4 Numerical Methods

The differential game between two satellites described in this work is solved

in two ways. Each solution uses a different numerical solver. The two types

of solutions are differentiated by the method of calculating the controls at

each instant. The first solution, the open-loop solution, uses only the initial

states to solve for an expression for the entire control-time history. The

second (closed-loop) solution uses a feedback controller to find the controls

as functions of the states at any time.

The open-loop problem is derived using optimal control theory. This

derivation yields a set of necessary conditions that must be satisfied by a

local extremum (the complete derivation is given in Chapter 3). Some of

the necessary conditions are differential equations and some are terminal

boundary conditions. The differential equations describe the evolution of

new parameters conjugate to the states called the Lagrange multipliers, dou-

bling the size of the problem. These necessary conditions constitute a two-

point boundary value problem (TPBVP), with some known initial conditions

and some known terminal conditions. The open-loop pursuit/evasion prob-

lem was solved with particle swarm optimization (PSO). PSO is a type of

5

heuristic, stochastic optimizer [2, 3] that has several benefits over the more

traditional methods for solving TPBVPs. One drawback, however, is in com-

putation time.

This large computation time is the motivation for creating a computa-

tionally cheap closed-loop solver. The nature of the differential game makes

a feedback controller difficult to design. The efficiency of some methods of

feedback control depends on variations in the expected state remaining small,

but this problem requires the capability to adapt to large errors in state. A

method called “kriging” [4, 5, 6], which originated in geostatistics, applied

to a static problem, has been applied to a dynamic feedback control problem

in orbit mechanics by Ghosh and Conway [7]. Kriging yielded a successful

method of closed-loop control. The kriging process involves interpolation

between a pre-computed group of open-loop optimal trajectories.

PSO and the kriging procedure and application will be described compre-

hensively in Chapters 4 and 5 respectively.

1.5 Previous Work

There are not many extant numerical solutions of pursuit/evasion games for

the spacecraft vs. spacecraft case. Menon and Calise [8] developed an ef-

fective guidance strategy for two spacecraft involved in a three dimensional

pursuit/evasion game. By using feedback linearization and a quadratic ob-

jective function, established methods for the solution of LQ problems are

available and the optimal feedback laws may be found in closed form.

Horie [9] solved a coplanar orbital pursuit/evasion game using the semi-

direct method with collocation developed by Horie and Conway [10, 11].

That numerical method is quite different from what is used in this work;

the most significant difference being that it employs the analytical neces-

sary conditions for (and thus must find Lagrange multipliers for) only one

of the two players. It also employs Earth-centered polar coordinates while

this work takes advantage of the simplification resulting from using coordi-

nates referenced to the local HCW frame. Pontani and Conway [12] solved a

more sophisticated 3D version of this problem, but also used the semi-direct

optimization method and Earth-centered coordinates.

6

1.6 Thesis Outline

Chapter 2 discusses the Hill-Clohessy-Wiltshire equations of motion that

relate the relative positions of each vehicle to a ghost point in circular orbit.

In Chapter 3, the analytical necessary and sufficient conditions for optimality

for the pursuit/evasion problem are derived. Chapter 3 ends with a summary

of all the equations, knowns, and unknowns that characterize the two-point

boundary value (TPBVP) problem. Chapter 4 contains a detailed description

of Particle Swarm Optimization (PSO), how it is applied to the TPBVP from

Chapter 3, and some sample solutions. The closed-loop problem is discussed

in Chapter 5, including a description of kriging and some sample solutions.

Chapter 6 contains a summary of the work and suggestions for future work.

7

CHAPTER 2

GOVERNING EQUATIONS

2.1 Hill-Clohessy-Wiltshire Frame

In order to model the differential game, the equations of motion must be

developed for the system. This work is considering a pursuit/evasion problem

in Earth orbit with the two spacecraft in relatively close proximity. These

conditions allow for the use of a relative reference frame and relative equations

of motion that are much simpler than those of the full model. The relative

frame used here is the Hill-Clohessy-Wiltshire (HCW) frame.

The Hill-Clohessy-Wiltshire (HCW) frame describes the location of an

object in space relative to another (moving) object in a circular orbit, where

each vehicle is assumed to have a point mass. The equations of motion that

come from the HCW frame are accurate as long as the objects are not very

far apart. The HCW frame is shown in Figure 2.1. The shaded gray area

is the circular orbit, viewed at an angle in three-dimentional space. The

blue coordinate system shows Earth’s inertial frame. The purple coordinate

system is the HCW reference frame, with red vector r̄ locating an object in

the HCW frame. The orange vector r∗ locates the origin of the HCW frame

relative to Earth.

The reference object, at the origin of the reference frame, continues to move

in the same circular orbit. The movement of the second object is described

in terms of relative distance from the origin in the HCW reference frame.

In this work, there are two objects in the HCW frame: the pursuer and

the evader. The origin of the reference frame moves as a fictitious satellite in

an unperturbed, circular orbit would move. The states of both vehicles are

described relative to this imaginary object in a circular orbit.

8

Figure 2.1: Hill-Clohessy-Wiltshire (HCW) Frame

9

2.2 Equations of Motion

The HCW equations are:

ẍ− 2ωẏ − 3ω2x = ax (2.1a)

ÿ + 2ωẋ = ay (2.1b)

z̈ + ω2x = az (2.1c)

where

ω =

√
µ

a3

where µ is the gravitation parameter of the primary body, a is the semimajor

axis of the circular orbit, and ax, ay and az are the components of applied

thrust acceleration in the x, y, and z directions.

2.3 Equations of Motion in Matrix Form

The governing equations may be rewritten in matrix form. First, a state

vector x is defined as

x =
[
x y z vx vy vz

]T
=

[
x1 x2 x3 x4 x5 x6

]T
With this state vector and the thrust acceleration vector, a, the equations

of motion from Section 2.2 can be written in state-space form [13] as

ẋ = Ax+ a (2.2)

where

10

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


(2.3)

and

a =
[
0 0 0 ax ay az

]T
(2.4)

11

CHAPTER 3

NECESSARY CONDITIONS FOR SADDLE
POINT EQUILIBRIUM

3.1 General Optimization Equations

In order to simulate the differential game, the problem must be fully defined.

The approach used to define the system in this work was to use optimal

control theory to derive the necessary and sufficient conditions for an optimal

game. A feasible solution of the resulting equations will be a critical point for

the optimization problem. Before deriving the equations for the differential

game, a brief summary of the general optimization equations is given.

Consider a general nonlinear optimization problem, i.e.

Minimize f(x, u)

subject to

g(x, u, ẋ) = 0

with terminal constraintsψ[x(tf), tf] = 0

(3.1)

where f(x, u) is the function to be optimized (also known as the cost func-

tion), g is a vector describing the system dynamics, and ψ contains any

terminal constraints as functions of the final time and/or the states, x, at

the final time.

The scalar function defined as the Lagrangian, L, of the problem (3.1)

comes from the cost function, f . The cost function is of the form

f = φ[x(tf), tf] +

∫ tf

t0

Ldt

where φ is a function of the final states and the final time. The cost function

has two components: φ is a cost assigned only at the final time, while the

integral of L is an accumulated cost over the entire time interval.

12

Define the Hamiltonian, H, as

H = L+ λTg (3.2)

where λ is a vector of additional unknown, time-dependent variables called

Lagrange multipliers (also known as adjoint or costate variables). Each ad-

joint variable corresponds to a constraint in g, so the number of Lagrange

multipliers is equal to the number of constraints.

To simplify the result, define a function Φ as

Φ = φ+ νTψ (3.3)

where ν is a vector of unknown constants (additional Lagrange multipliers).

With these functions defined, the necessary conditions (NCs) for optimality

for the problem defined in eqn. (3.1) are [14]:

λ̇ = −∂H
∂x

(3.4)

with

λ(tf) =
∂Φ

∂x
(3.5)

and

∂H

∂u
= 0 (3.6)

Eqn. (3.6) is called the “optimality condition”.

These are the NCs for a general problem with an objective of any form.

The expressions for φ and L will vary based on the problem objective and

user specifications. The objective of interest here is to minimize the final

time. To achieve a cost function for this objective, i.e.

f = tf

there are a few possible choices for sets of φ and L. For example, one choice

is φ = 0 and L = 1. The set used in this work is φ = tf and L = 0, because

this option simplifies the Hamiltonian. Using these values for an objective of

13

minimizing final time, eqn. (3.2) becomes

H = λTg (3.7)

The sufficient condition (SC) for optimality for eqn. (3.1) is

∂H2

∂u∂u
≥ 0 (3.8)

i.e. the Hessian of the Hamiltonian must be positive semi-definite. It should

be noted that this sufficient condition applies to problems where the objec-

tive is minimization, such as in eqn. (3.1). In a maximizing problem, the

cost function, Hamiltonian, and NCs remain the same, but the SC changes

slightly. If system (3.1) were to maximize the objective, the SC would become

∂H2

∂u∂u
≤ 0 (3.9)

i.e. the Hessian of the Hamiltonian must be negative semi-definite.

3.2 Differential Game Optimization Equations

Section 3.1 discusses the general equations that can be applied to any prob-

lem. This section applies these conditions to the differential game in the

HCW reference frame, yielding the full analytical problem.

3.2.1 Controls

The first step in defining the pursuit/evasion analytical problem is to define

the controls, represented by the symbol u in Section 3.1. The controls are

the values that the optimizer adjusts to find the optimal solution. In this

minimax problem, the controls for each player are two angles that orient

the thrust acceleration vector in the Hill-Clohessy-Wiltshire frame. Angle α

represents the in-plane angle and β represents the out-of-plane angle. Figure

3.1 shows how the control angles orient the thrust acceleration vector a in

the HCW reference frame. The out-of-plane component of the frame, the z

coordinate, is shown in red, while the x and y plane is shown in purple.

14

Figure 3.1: Control Angle Visualization

15

From geometry, the thrust acceleration vector components can be ex-

pressed in terms of the control angles as well as the thrust acceleration

magnitude.

a =
[
‖a‖ sinα cos β ‖a‖ cosα cos β ‖a‖ sin β

]T
(3.10)

Substituting the values of the thrust acceleration vector into eqn. (2.1)

yields the following equations of motion

ẍ− 2ωẏ − 3ω2x = ‖a‖ sinα cos β (3.11a)

ÿ + 2ωẋ = ‖a‖ cosα cos β (3.11b)

z̈ + ω2x = ‖a‖ sin β (3.11c)

3.2.2 Pursuit/Evasion Problem

The rest of the pursuit/evasion problem definition can be derived from the

general optimization equations in Section 3.1.

In the minimax problem, there are two objects in the HCW frame that are

each subject to eqn. (2.2). Therefore, the total set of equations of motion

for the pursuit/evasion problem is as follows

ẋp = Axp + ap (3.12a)

ẋe = Axe + ae (3.12b)

where subscripts p and e denote the pursuer and the evader, respectively,

and the state vectors are defined as

xp =
[
xp yp zp vx,p vy,p vz,p

]T
=

[
x1 x2 x3 x4 x5 x6

]T
and

xe =
[
xe ye ze vx,e vy,e vz,e

]T
=

[
x7 x8 x9 x10 x11 x12

]T
16

The minimax problem also has some terminal constraints, denoted by ψ

in eqn. (3.1). The objective is achieved and the problem is completed when

capture has occurred (i.e. the positions of the pursuer and the evader are

equal and the time is the final time. This requirement is represented in terms

of the terminal constraints

ψ =

x1f − x7fx2f − x8f
x3f − x9f

 = 0 (3.13)

This minimax problem is a two-sided optimization problem, meaning that

the two players have conflicting goals (see Section 1.3.2). The pursuer’s

objective is to minimize the final time while the evader’s objective is to

maximize the final time. If the control vector u is defined as

u =
[
α β

]T
using the thrust pointing angles, then the total control vector can be written

as a function of the conflicting goals as follows

[
up ue

]T
= arg min

up

max
ue

tf (3.14)

By examining the equations of motion in eqn. (3.12), it is seen that the

equations governing each vehicle are decoupled from the other. Due to this

separability, eqn. (3.14) can be split into two parts

up = arg min
up

tf (3.15a)

ue = arg max
ue

tf (3.15b)

Pontryagin’s minimum principle states that minimizing the Hamiltonian

produces the same solution as minimizing the cost directly. Therefore, tf in

eqn. (3.15) can be replaced by the Hamiltonian H

up = arg min
up

H (3.16a)

ue = arg max
ue

H (3.16b)

To find the Hamiltonian for the pursuit/evasion problem, eqns. (3.7) and

17

eqn. (3.1) are combined to yield

H = λp
T ẋp + λe

T ẋe (3.17)

where

λp =
[
λ1 λ2 λ3 λ4 λ5 λ6

]T
and

λe =
[
λ7 λ8 λ9 λ10 λ11 λ12

]T
Now that the controls and Hamiltonian are defined, the necessary con-

ditions for the specific problem can be found. Applying eqn. (3.4) to the

Hamiltonian (3.17) yields the equations for the evolution of the Lagrange

multipliers

λ̇p = −ATλp (3.18a)

λ̇e = −ATλe (3.18b)

with boundary conditions at tf given by eqn. (3.5):

λ1f = ν1 λ7f = −ν1
λ2f = ν2 λ8f = −ν2
λ3f = ν3 λ9f = −ν3
λ4f = 0 λ10f = 0

λ5f = 0 λ11f = 0

λ6f = 0 λ12f = 0

These boundary conditions can also be written as:

18

λ1f + λ7f = 0

λ2f + λ8f = 0

λ3f + λ9f = 0

λ4f = 0

λ5f = 0

λ6f = 0

λ10f = 0

λ11f = 0

λ12f = 0

(3.19)

or even more simply:

λpf + λef = 0 (3.20)

The optimal controls can then be derived from the Hamiltonian in terms

of the values of the Lagrange multipliers. This is done using the optimality

condition eqn. (3.6) and the sufficient conditions in eqns. (3.8) and (3.9).

For the pursuer, these become

sin βp = − λ6√
λ24 + λ25 + λ26

(3.21a)

cosαp = − λ5

cos βp
√
λ24 + λ25 + λ26

(3.21b)

sinαp = − λ4

cos βp
√
λ24 + λ25 + λ26

(3.21c)

and for the evader

19

sin βe =
λ12√

λ210 + λ211 + λ212
(3.22a)

cosαe =
λ11

cos βe
√
λ210 + λ211 + λ212

(3.22b)

sinαe =
λ10

cos βe
√
λ210 + λ211 + λ212

(3.22c)

An interesting relationship exists between the control laws for the pursuer

and evader - they are always equal, regardless of initial conditions. A simple

proof is shown below.

From eqn. (3.27),

λp(t) = Φ̃(t, t0)λp(t0) (3.23)

λe(t) = Φ̃(t, t0)λe(t0) (3.24)

Using the boundary conditions provided in eqn. (3.20) and eqn. (3.27),

Φ̃(t, t0)[λp0 + λe0] = 0

Under the assumption that Φ̃ is invertible

λp0 + λe0 = 0

λp0 = −λe0

Eqn. (3.18) shows that the differential equations for both the pursuer and

the evader evolve in the same way. If they begin equal and opposite, they

20

will remain equal and opposite at each instant in time

λ1 = −λ7
λ2 = −λ8
λ3 = −λ9
λ4 = −λ10
λ5 = −λ11
λ6 = −λ12

(3.25)

Substituting eqn. (3.25) into eqns. (3.21) and (3.22) yields

βp = βe

αp = αe

(3.26)

3.2.3 Problem Simplification

Eqn. (3.18) describes the evolution of the Lagrange multipliers. It can be

shown [13] to have a solution of the form

λi(t) = Φ̃(t, t0)λi(t0), (i = p, e) (3.27)

where, setting ξ = t− t0

Φ̃ =



4− 3 cosωξ 6ωξ − 6 sinωξ 0 −3ω sinωξ −6ω(1− cosωξ) 0

0 1 0 0 0 0

0 0 cosωξ 0 0 ω sinωξ

− sinωξ
ω

−2(1−cosωξ)
ω

0 cosωξ 2 sinωξ 0
2(1−cosωξ)

ω
3ωξ−4 sinωξ

ω
0 −2 sinωξ 4 cosωξ − 3 0

0 0 − sinωξ
ω

0 0 cosωξ


An additional simplification for this particular problem results from the

nature of that analytical solution. Knowing Φ̃ and the boundary conditions

from eqn. (3.19), it is possible to solve algebraically for 9 out of the 12 initial

Lagrange multipliers in terms of the remaining 3 as well as the final time.

21

In other words, matrices C and Ξ can be found such that

C
[
λ1,0 λ2,0 λ3,0 01x6

]T
= Ξ

[
λ4,0 λ5,0 λ6,0 λ7,0 λ8,0 λ9,0 λ10,0 λ11,0 λ12,0

]T
(3.28)

If one defines P as

P =

[
Φ̃(tf , t0) 0

0 Φ̃(tf , t0)

]
then Ξ can be found as

Ξ =



P(1,4) P(1,5) P(1,6) P(7,7) P(7,8) P(7,9) P(7,10) P(7,11) P(7,12)

P(2,4) P(2,5) P(2,6) P(8,7) P(8,8) P(8,9) P(8,10) P(8,11) P(8,12)

P(3,4) P(3,5) P(3,6) P(9,7) P(9,8) P(9,9) P(9,10) P(9,11) P(9,12)

P(4,4) P(4,5) P(4,6) 0 0 0 0 0 0

P(5,4) P(5,5) P(5,6) 0 0 0 0 0 0

P(6,4) P(6,5) P(6,6) 0 0 0 0 0 0

0 0 0 P(10,7) P(10,8) P(10,9) P(10,10) P(10,11) P(10,12)

0 0 0 P(11,7) P(11,8) P(11,9) P(11,10) P(11,11) P(11,12)

0 0 0 P(12,7) P(12,8) P(12,9) P(12,10) P(12,11) P(12,12)


and

C =



P(1,1) P(1,2) P(1,3) 0 0 0 0 0 0

P(2,1) P(2,2) P(2,3) 0 0 0 0 0 0

P(3,1) P(3,2) P(3,3) 0 0 0 0 0 0

P(4,1) P(4,2) P(4,3) 0 0 0 0 0 0

P(5,1) P(5,2) P(5,3) 0 0 0 0 0 0

P(6,1) P(6,2) P(6,3) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


With C and Ξ known (and a given value for ω), for any chosen values

of λ1,0, λ2,0, λ3,0, and tf , the remaining initial Lagrange multipliers can be

calculated with simple matrix multiplication. When solving the minimax

problem with numerical methods, eqn. (3.28) allows the number of decision

22

variables to be reduced from thirteen to just four: the three initial Lagrange

multipliers and the final time. This drastically simplifies the numerical solu-

tion. This simplification is only possible because the HCW reference frame

was used.

3.3 Analytical Problem Summary

After applying the general optimization equations to the pursuit/evasion

problem and using simplifications in Section 3.2, the final system to be solved

consists of:

• 12 differential equations - the equations of motion from eqn. (3.12)

• 12 algebraic equations - Lagrange multipliers from eqn. (3.27) and

(3.28)

• 13 known values - 1 initial time, 12 initial states

• 12 constraints - 12 final Lagrange multipliers from eqn (3.20)

• 4 unknown values - the final time and 3 Lagrange multipliers from eqn.

(3.28)

All equations must be solved simultaneously, because the optimal controls

(3.21) and (3.22) are functions of the Lagrange multipliers. By solving this

system, the trajectories for the differential game are found.

While the HCW equations (2.1) have an analytical solution if the right-

hand sides - ax, ay, and az - are zero (i.e. no external applied thrust), this

work assumes that these values are never zero (i.e. constant external applied

thrust). This assumption necessitates the use of a numerical solver.

23

CHAPTER 4

SOLUTION OF THE DIFFERENTIAL
GAME

4.1 Introduction to Particle Swarm Optimization

(PSO)

Section 3.3 contains the summary of the differential game problem. As stated

in that section, the Lagrange multiplier time histories are able to be found

analytically for each choice of the decision parameters (λ10 , λ20 , λ30). How-

ever, the equations of motion require the controls of eqns. (3.21) and (3.22)

and must be integrated numerically. A frequently used method for numeri-

cal optimization of such a continuous system subject to constraints is called

a direct method. A direct method converts the differential equations into

algebraic constraints (e.g. using collocation) and then the problem becomes

a nonlinear programming (NLP) problem [15]. When using NLP solvers, an

initial guess of all the parameters must be provided. This initial guess must

be in the neighborhood of the optimal solution. Often, the appropriate local

neighborhood for a parameter is not at all intuitive, making it extremely dif-

ficult to find solutions. Also, there is no guarantee of global optimality once a

solution has been found. If the guess lies in the region near a local optimum,

NLP will likely converge to that globally non-optimal solution. Thus another

numerical solution method, more likely to locate the global minimum, known

as particle swarm optimization (PSO) is used in this work.

Particle swarm optimization is a type of heuristic, stochastic optimizer

[2, 3]. It is a population-based process, in this respect similar to some evo-

lutionary computation methods such as the genetic algorithm. Evolutionary

computation methods mimic various processes found in nature. For exam-

ple, PSO is modeled after the behavior of a flock of birds searching for food.

Other types of metaheuristics (e.g. genetic algorithms) follow the process of

natural selection.

24

PSO creates an initial population of particles (or agents) that each rep-

resent a solution in an n-dimensional space, where n is the number of pa-

rameters to be optimized. This initial population of solutions is randomly

generated within user-specified bounds. Each particle has a fitness associ-

ated with it. The fitness is a measure of how closely the particle matches the

desired solution. In other words, it is a weighted sum of the constraints to be

satisfied. The particles then begin taking a series of steps in specified direc-

tions in the solution space and eventually converge on the optimal solution.

This process is described in the cartoon of Figure 4.1

The new position, r of each particle, k, after taking a step is given by

rk
(j+1)(i) = rk

(j)(i) + vk
(j+1)(i) (4.1)

where j represents the state in the current generation and i represents the

iteration number.

The direction that each particle steps is determined by a so-called “veloc-

ity” vector, denoted vk in eqn. (4.1). This velocity vector does not have the

units of velocity, but rather behaves as a displacement. The velocity vector

has the form

vk
(j+1)(i) = wvk

(j)(i)+c1R(0, 1)[Ψk
(j)(i)−rk(j)(i)]+c2R(0, 1)[ρk

(j)−rk(j)(i)]
(4.2)

where w, c1, c2 are weights, Ψ is the individual particle’s best location, ρ is

the global best position, and R(0, 1) is a random variable between 0 and 1.

In other words, the velocity vector is a randomized, weighted sum of the

vectors

• in the direction the particle was moving during the previous generation

(called “inertial” component)

• pointing towards the individual particle’s best fitness (called “cogni-

tive” component)

• pointing towards the position of the best global fitness (called “social”

component)

There are three common ways to address a particle that exceeds the bounds

of the search space. The method used in this work is to “wrap” the search

25

Figure 4.1: Illustration of PSO Algorithm

26

space i.e. if a particle reaches and will exceed an upper bound, the particle is

automatically transported to the corresponding lower bound (as if the search

space were wrapped such that the lower bound and upper bound touched).

Another option is to reflect the particle from the edge of the search space,

meaning that the current velocity is multiplied by −1. A third method

is to halt the particle at the boundary, and allow the cognitive and social

components to pull the particle away from the bound.

PSO has two significant benefits over NLP. First, PSO does not require

an initial guess. The initial population is randomly generated. The user-

specified values include the size of the population, the number of generations,

and the bounds on the search space. Second, the global nature of PSO makes

it much less likely to get “stuck” at a local, non-optimal solution. As they

travel across the search space towards the current global best fitness, the

particles often discover a new global best fitness on the way.

4.2 Application to the Differential Game Problem

Applying PSO to the minimax problem described in Section 3.3 is straightfor-

ward. As shown in Section 3.2.3, there are a total of four decision parameters:

three are initial Lagrange multipliers and the fourth is the final time. For

each particle, the fitness is determined by integrating the equations of mo-

tion with ode45 in MATLab, using the optimal controls (3.21) and (3.22),

forward to that particle’s final time and creating a weighted sum of the con-

straints. The constraints, in this case, state that the difference in positions

of the vehicles at the final time is equal to zero. If the vehicles occupied the

same point in space, the fitness would be equal to zero.

The weights for both the components of the velocity update vector and

the fitness penalty function were determined largely by trial and error. The

values used for the solutions in this work are listed in Table 4.1

Table 4.1: PSO Weights

w c1 c2 Fitness Penalty
0.65 2 2 6378

27

4.3 Problem Description

A few simplifying assumptions were made about the system for the solution to

the minimax problem. First, both vehicles were assumed to be point masses

i.e. spacecraft attitude was not considered. Second, the propulsion systems

are assumed ideal, with constant parameters. Unless otherwise stated, mass

loss caused by propellant expulsion is accounted for. The mass loss is doc-

umented through the variation of the thrust acceleration magnitude with

time as mass is expelled, i.e. the current mass is inversely proportional to

the current acceleration which is given by:

ainstantaneous =
ainitial

1− t(ainitial

c
)

(4.3)

where c is the exhaust velocity.

The numerical method for solving the minimax problem requires several

inputs, which are separated into two groups: the problem parameters and the

initial conditions of the pursuer and evader. The problem parameters include

the reference orbit to which the HCW frame is attached, thrust acceleration

magnitudes of each vehicle, and effective exhaust velocity. Table 4.2 lists the

values chosen for this study. All the results to follow use these parameters.

Table 4.2: Problem Parameters

Vehicle Ref Orbit Thrust Mag (N/kg) Exhaust Vel (km/s)
Pursuer GEO 0.0686 3
Evader GEO 0.0343 3

4.4 Sample Solution: Open-Loop Case 1

Table 4.3 contains the initial conditions of both the pursuer and the evader

for an example open-loop solution. Many solutions have been obtained for

various initial conditions. This case with parameters as given in Table 4.2

and 4.3 is representative in complexity and degree of success obtained. Note

that the evader begins its motion from the origin of the HCW reference frame.

The initial x-position of the pursuer (-38.93 km) is the difference in orbit

altitude such that, if no maneuver were executed, would result in a drift,

28

i.e. a separation of the two vehicles in longitude, of 1
2

degree per day. The

numerical solution beginning from the initial conditions in Table 4.3 yields

the optimal decision parameters shown in Table 4.4. The final positions of

both vehicles are given in Table 4.5, where it can be seen that the terminal

condition of interception is satisfied “exactly”. The vehicles intercept to an

accuracy on the order of centimeters.

Table 4.3: Initial Conditions for Open-Loop Case 1

Vehicle x (km) y (km) z (km) Vx (km/s) Vy (km/s) Vz (km/s)
Pursuer -38.9328 -100 10 0 0 0
Evader 0 0 0 0 0 0

Table 4.4: Final Decision Variables for Open-Loop Case 1

λ1,0 λ2,0 λ3,0 tfinal (min)
-0.2382 -0.5704 0.0553 41.312

Table 4.5: Final Conditions for Open-Loop Case 1

Vehicle x (km) y (km) z (km)
Pursuer 40.0557 97.8551 -9.6483
Evader 40.0557 97.8551 -9.6483

Difference 0 0 0

Figure 4.2 shows the optimal minimax trajectory in the HCW reference

frame. The path is in 3D space. For clarity, the view of the path projected

onto the XY plane is shown in Figure 4.3. The thrust pointing angle time

histories are provided in Figure 4.4. It should be noted that the controls for

the pursuer and the evader exactly overlap. This result was expected because

of the analysis in Section 3.2.1.

29

Figure 4.2: Optimal Pursuit/Evasion Trajectories in 3D Case 1

30

Figure 4.3: View of 3D Trajectory from XY Plane Case 1

31

Figure 4.4: Control Time History for 3D Trajectory Case 1

32

4.5 Sample Solution: Open-Loop Case 2

A second solution was obtained to demonstrate the robustness of the nu-

merical solver. In this Case 2, with initial conditions given in Table 4.6, the

evader is displaced from the origin of the HCW reference frame (in Case 1

it begins from the origin, as indicated in Table 4.3). The decision variables

chosen by the optimizer are listed in Table 4.7. The final states in Table 4.8

show that the PSO solver again finds an “exact” interception.

Table 4.6: Initial Conditions for Open-Loop Case 2

Vehicle x (km) y (km) z (km) Vx (km/s) Vy (km/s) Vz (km/s)
Pursuer -35.9328 -101.5 5 0 0 0
Evader -0.5 1 0.4 0 0 0

Table 4.7: Final Decision Variables for Open-Loop Case 2

λ1,0 λ2,0 λ3,0 tfinal (min)
-0.2405 -0.6494 0.0282 41.4430

Table 4.8: Final Conditions for Open-Loop Case 2

Vehicle x (km) y (km) z (km)
Pursuer 35.9386 101.3223 -4.044
Evader 35.9386 101.3223 -4.044

Difference 0 0 0

33

Figure 4.5: Optimal Pursuit/Evasion Trajectories in 3D Case 2

34

Figure 4.6: View of 3D Trajectory from XY Plane Case 2

35

Figure 4.7: Control Time History for 3D Trajectory Case 2

36

4.6 Open-Loop Controller Summary

Particle swarm optimization has been shown to be an effective tool for solving

this differential game. For the two cases presented, and for many other cases

solved but not shown, PSO finds the optimal decision variables (three of the

initial Lagrange multipliers and the final time) as well as the optimal control

time-history. For each solution, interception is achieved almost exactly i.e.

on the order of micrometers.

The CPU time for these solutions varies with the number of particles cre-

ated in the search space and the number of iterations taken to achieve inter-

ception. For each computation, there were 175 (a number chosen by trial and

error) PSO particles in the search space. The number of iterations typically

varied between 150 and 800, with an average of approximately 300 iterations.

For 175 particles, each iteration takes a CPU time of approximately 1.7 sec-

onds. Therefore, the average CPU time of a single PSO calculation with 175

particles is 8.5 minutes, but can extend up to 30 minutes.

37

CHAPTER 5

SOLUTION FOR THE FEEDBACK
CONTROLLER

5.1 Introduction to Kriging

While the PSO method provides a satisfactory method for open-loop op-

timal trajectory determination, computation time is sufficiently long as to

make continued updates by recalculating new open-loop trajectories from

intermediate points unfeasible in real-time. Instead, this work develops a

method of closed-loop control to adapt to any changes in the initial state of

either vehicle without having to recalculate the entire trajectory. Some typ-

ical methods of feedback control may not be applied to this problem due to

the nature of the differential game as well as the potentially large magnitude

of the changes in states. An alternative method, called kriging, has recently

been applied to the field of optimal space trajectories [7]. This is the method

of feedback control used for the minimax problem.

Kriging is a group of interpolation and extrapolation techniques for deter-

mining the value of a variable at an unknown location based on the known

values of the variable at surrounding points, i.e. it was developed to be ap-

plied to a static system. It originated as a method used by geologists to map

the location of natural resources. Ghosh and Conway have recently and for

the first time applied kriging to a continuous dynamical system, an optimal

spacecraft trajectory [7].

Kriging requires a set of known points and associated parameter values that

are then used to interpolate values at unsampled points [4, 5, 6]. Consider p

known “training locations” in a set S

S = {x∗1, x∗2, ...x∗p}

and the corresponding known, optimal open-loop controls

38

{u∗(x1), u∗(x2), ...u∗(xp)} = {u∗s1, u∗s2, ...u∗sp}

Kriging calculates an estimation of control ũ∗(x0) corresponding to x0 /∈ S
but x0 ∈ ConvexHull(S). The control at this untrained location is given by

ũ∗(x0) =

p∑
i=1

wi(x0)u
∗
si (5.1)

where the wi are weights. In other words, the estimated control is a weighted

linear combination of the observed controls from the known training loca-

tions. The kriging process calculates the optimal values for the weights wi.

The manner of optimally selecting these values is thoroughly described in

the literature [4, 5, 6, 7].

In order to create a feedback controller for an optimal spacecraft trajectory

with kriging, set of training locations is needed. This set consists of randomly

perturbed initial conditions for the pursuit/evasion game. The strategy, then,

is to use the procedure outlined in Chapter 4 for each initial condition to

produce a group of optimal paths called a “field of extremals”. The kriging

code then takes this field as an input and creates a feedback controller that,

given the states, provides the required control at each time.

5.2 Kriging Software

There are several open-source versions of kriging software. The software used

in this work is a MATLab Toolbox for kriging called DACE [16]. Each time a

controller is calculated from a field of extremals, there are several parameters

that the user must specify. The regression model order, correlation model,

and initial guesses for the correlation parameters are all values that must be

specified. The accuracy of the controller is very sensitive to the choices of

these values.

The regression model order can be chosen as a polynomial of order 0, 1,

or 2.

The correlation model and correlation parameters determine the covariance

matrix used to solve for values at untrained locations [17]. The possible

choices for the correlation model are exponential, generalized exponential,

39

Gaussian, linear, spherical, and cubic spline. The correlation parameters are

optimized by the kriging code, but the user-required initial guess of these

correlation parameters can be anything (usually between 0 and 5 for this

work). Upper and lower bounds must also be specified for the correlation

parameter search space (in this work, between 10−5 and 10).

5.3 Problem Description

The problem description remains the almost the same as in Section 4.3.

The difference for this problem is that the mass is assumed to be constant,

for simplicity. This is a reasonable assumption, because in the the open-loop

cases considered in this work, the final mass fractions of both vehicles remain

above 94%.

5.4 Sample Solution: Kriging Case 1

Table 5.1 contains the initial conditions for both the pursuer and the evader

for a nominal, unperturbed case. It is a 2D version of the example given

in Section 4.4. All the results for the kriging are in 2D, so all out-of-plane

positions and velocities are zero. Note that the evader begins its motion at

the origin of the CW reference frame. Random perturbations of less than 5

km are made in the initial positions of the evader to create the field of 30

extremals shown in Figure 5.1.

Table 5.1: Nominal Initial Conditions Case 1

Vehicle x (km) y (km) Vx (km/s) Vy (km/s)
Pursuer -38.9328 -100 0 0
Evader 0 0 0 0

The kriging parameters used to find an effective controller for this field of

extremals are listen in Table 5.2. These values were determined primarily by

trial and error.

To verify that kriging produces a nearly optimal trajectory, a path is begun

from an arbitrary initial point and obtained using the feedback-controller

40

created by kriging. This path can then be compared with the optimal open-

loop trajectory calculated from that same initial point.

Table 5.2: Kriging Calculation Parameters Case 1

Regression Order 1
Correlation Model Exponential

Initial Guess Corr. Parameters 0.2
Lower Bound 10−5

Upper Bound 10

The initial conditions used for the comparison of the resulting open-loop

and closed-loop trajectories are in Table 5.3. For this perturbed case, the

evader’s starting position is moved a total of 2.25 km from its original posi-

tion. The final positions for both the open-loop calculation and the closed-

loop calculation are in Tables 5.4 and 5.5. A comparison of the final states

shows that the kriging calculation not only achieves an accurate intercep-

tion, but in fact finds almost the same trajectories as those found by the

PSO solver.

Table 5.3: Initial Conditions for Comparison

Vehicle x (km) y (km) Vx (km/s) Vy (km/s)
Pursuer -38.9328 -100 0 0
Evader 1.5 1.5 0 0

Table 5.4: Final Positions for Open-Loop (PSO) Optimal Trajectories with
Final time 42.2136 minutes

Vehicle x (km) y (km)
Pursuer 44.0724 102.7363
Evader 44.0724 102.7363

Difference 0 0

Table 5.5: Final Positions for Closed-Loop (Kriging) Trajectories with
Final time 42.2137 minutes

Vehicle x (km) y (km)
Pursuer 44.0730 102.7367
Evader 44.0727 102.7365

Difference 0.0002886 0.00022643

41

Figure 5.2 shows the optimal trajectories resulting from both PSO and

kriging on the same plot for comparison. In this figure, the two solutions

are indistinguishable. Figure 5.3 shows a magnified view of the interception

points. Note that the axes require a very small range to capture the difference

between the trajectories.

Figure 5.4 shows the control time histories resulting from PSO and kriging

on the same plot. Again, the two solutions are indistinguishable at this view,

so Figure 5.5 is provided to capture the difference in the controls at the

interception point.

42

Figure 5.1: Field of Extremals - Perturbation in Evader Only

43

Figure 5.2: Comparing Trajectory Solutions from PSO and Kriging

44

Figure 5.3: Magnified View Comparing Terminal Trajectory Solutions from
PSO and Kriging

45

Figure 5.4: Comparing Control Time History from PSO and Kriging

46

Figure 5.5: Magnified View Comparing Terminal Control Time History
from PSO and Kriging

47

5.5 Sample Solution: Kriging Case 2

The second sample solution of kriging allows for perturbations in the initial

positions of both the pursuer and the evader. Table 5.6 contains the initial

conditions for both the pursuer and the evader for a nominal, unperturbed

case. These nominal positions are the same as in Section 5.4. Once again,

all the results are in 2D and the evader begins its motion at the origin of the

CW reference frame. Random perturbations of less than 5 km are made in

the initial positions of both the pursuer and the evader to create the field of

30 extremals shown in Figure 5.6.

Table 5.6: Nominal Initial Conditions Case 2

Vehicle x (km) y (km) Vx (km/s) Vy (km/s)
Pursuer -38.9328 -100 0 0
Evader 0 0 0 0

The kriging parameters used to find an effective controller for this field of

extremals are listen in Table 5.7. These values were determined primarily by

trial and error.

Table 5.7: Kriging Calculation Parameters Case 2

Regression Order 2
Correlation Model Exponential

Initial Guess Corr. Parameters 0.02
Lower Bound 10−5

Upper Bound 2

The initial conditions chosen arbitrarily to test the success of the kriging in

achieving an interception are listed in Table 5.8. The final positions of both

the pursuer and the evader using the kriging feedback controller are shown

in Table 5.9. The final time for this case is 41.8 minutes. For comparison,

the final positions from the solution found by the PSO solver for the initial

conditions in Table 5.8 are given in Table 5.10.

Table 5.8: Initial Conditions (Final time 41.8 minutes) Case 2

Vehicle x (km) y (km) Vx (km/s) Vy (km/s)
Pursuer -34.7861 -99.9714 0 0
Evader -1.1076 1.4647 0 0

48

Figure 5.6: Field of Extremals - Perturbation in Both Players Initial
Conditions

49

Table 5.9: Final Positions Kriging Case 2

Vehicle x (km) y (km)
Pursuer 34.1938 102.7025
Evader 34.1933 102.7027

Difference 0.000056 0.0000267

Table 5.10: Final Positions PSO (Final time 41.72 minutes) Case 2

Vehicle x (km) y (km)
Pursuer 34.194 102.703
Evader 34.194 102.703

Difference 0 0

As in Section 5.4, the kriging controller yields the same optimal trajectories

as the open-loop PSO solver (starting from the same initial conditions) and

achieves an accurate interception. The trajectories and control time histories

are shown in Figures 5.7 and 5.8 respectively.

50

Figure 5.7: Kriging Pursuit/Evasion Trajectories Case 2

51

Figure 5.8: Control Time History for Kriging Case 2

52

5.6 Practical Limitations When Using Kriging

It seems reasonable that if the kriging calculations do not have enough data

points, the interpolation will not be accurate. It is not intuitive, however,

that kriging also breaks down if there are too many data points. In fact,

when creating a controller with an average of 50 data points, the vehicles do

not follow the optimal (open-loop) solution and do not achieve interception.

With the same kriging parameters and initial conditions as in Tables 5.7 and

5.8, a controller created from 50 data points per extremal results in the final

conditions shown in Table 5.11.

Table 5.11: Final Positions Kriging with Too Many Data Points

Vehicle x (km) y (km)
Pursuer 35.9491 106.7209
Evader 35.0875 104.7089

Difference 0.8616 2.0120

It was discovered that if there are too many data points, the correlation

matrix used to calculate untrained states is too large for the kriging software

to process accurately. The fields of extremals used to obtain the results in

Sections 5.4 and 5.5 had an average of 50 data points per extremal after

the initial calculation. Creating a controller directly from these fields gave

poor results. The solution to this limitation is to use fewer data points via

interpolation. The interpolation function “interp1” in MATLab was used

to interpolate each state vs. time and each control vs. time individually.

The default interpolation order (3) was used for each variable except for the

controls, which used an interpolation order of 1 due to their linear nature.

Using the interpolation, the number of data points was reduced to 32 for

each extremal, yielding the results in Sections 5.4 and 5.5.

5.7 Kriging Summary

The interception errors for both examples of kriging, in Tables 5.5 and 5.9, are

both larger than that of PSO, but still achieve interceptions to an accuracy

of millimeters. This is a small loss of accuracy compared to the micrometers

that the PSO achieves, but the CPU time gains outweigh the accuracy loss.

53

The a priori calculation of the field of extremals and the feedback controller

takes approximately 4.5 hours. However, after the feedback controller is

obtained, the CPU time of the kriging solution is an average of only 3 seconds.

As discussed in Section 4.6, the average computation time of the PSO solution

is on the order of 10 minutes.

54

CHAPTER 6

CONCLUSION

6.1 Summary

A differential game problem where one player’s goal is to minimize the time

until capture, while the other player wishes to maximize the time until cap-

ture, is called a minimax problem. In this work, the minimax problem be-

tween two satellites in the HCW reference frame is solved using Particle

Swarm Optimization (PSO). PSO is a beneficial choice as a numerical solver

because it does not require an initial guess to iterate upon. It is also a

very simple and straightforward technique to implement, particularly as it

requires no gradient information with respect to the system constraints or

objective. PSO’s global approach provides protection from the solver find-

ing and remaining at a local minimum and makes it more likely the global

minimum will be found. These benefits are balanced by a longer compu-

tation time than some of the more conventional numerical methods. If a

mid-course correction were needed, a new solution directly from PSO would

be impractical due to the computation cost. The method used in this paper,

called kriging, provides an alternative to using PSO in real time. Instead,

a closed-loop feedback controller is found a priori using a field of extremals.

Using the feedback controller, the kriging result is both simple and fast to

calculate - about 200 times faster than the PSO calculation. The speed of

the kriging calculation implies that this method could be used as a real time

controller. Together, PSO and kriging have been found to provide accurate

solutions to both the open-loop and the closed-loop minimax problem.

55

6.2 Future Work

The results in this work are preliminary and there is much more exploratory

work that remains to be done on the subject of applying the kriging method,

originally intended for stationary systems, to dynamic systems. There are

also several interesting cases with the pursuit/evasion problem that could be

explored. Therefore, there are two distinct areas of focus for future work:

kriging and the pursuit/evasion problem.

Kriging has only begun to be applied to dynamic systems, let alone orbit

mechanics. There is still work to be done in verifying kriging’s accuracy and

fidelity. Also, there has been little research into applying kriging to problems

with terminal constraints.

One major assumption that was made in this work was that the pur-

suer always had a thrust acceleration magnitude sufficiently higher than the

evader, in order to ensure that capture does occur. Finding the situations

with conditions such that the evader may escape capture altogether would

be an important study if this methodology were ever used on real spacecraft.

56

REFERENCES

[1] R. Issacs, Differential Games. John Wiley and Sons, Inc., 1965.

[2] P. Ghosh and B. A. Conway, “A Direct Method for Trajectory Opti-
mization Using the Particle Swarm Approach,” 21 st AAS/AIAA Space
Flight Mechanics Meeting, American Astronautical Society. New Or-
leans, 2011, paper 11-155.

[3] P. Ghosh and B. A. Conway, “Numerical Trajectory Optimization with
Swarm Intelligence and Dynamic Assignment of Solution Structure,”
Journal of Guidance Control and Dynamics, vol. 35, no. 4, pp. 1178–
1191, 2012.

[4] N. Cressie, “Statistics for Spatial Data,” Wiley-Interscience, 1993.

[5] J. Martin and T. Simpson, “Use of Kriging Models to Approximate
Deterministic Computer Models,” AIAA Journal, vol. 43, no. 4, pp.
853–863, 2005.

[6] E. H. Issaks and R. M. Srivastave, “An Introduction to Applied Geo-
statistics,” Oxford University Press, 1990.

[7] P. Ghosh and B. A. Conway, “Near-Optimal Feedback Strategies for
Optimal Control and Pursuit-Evasion Games: A Spacial Statistical Ap-
proach,” AIAA Guidence, Navigation, and Control Conference. Min-
neapolis, MN, August 2012.

[8] P. K. A. Menon and A. J. Calise, “Guidence Laws for Spacecraft Pursuit-
Evasion and Rendezvous,” AIAA Guidence, Navigation, and Control
Conference. Minneapolis, MN, August 1988, technical Papers, Part 2
(A88-50160 21-08). Washington, DC, American Institute of Aeronautics
and Astronautics. pp. 688–697.

[9] K. Horie and B. A. Conway, “Optimal Fighter Pursuit-Evasion Maneu-
vers Found via Two-Sided Optimization,” Journal of Guidance, Control
and Dynamics, vol. 29, no. 1, pp. 105–112, 2006.

[10] K. Horie, “Collocation with Nonlinear Programming for Two-Sided
Flight Path Optimization,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, 2002.

57

[11] B. A. Conway and K. Horie, “A New Collocation-based Method for
Solving Pursuit-Evasion (Differential Games) Problems,” AAS/AIAA
Astrodynamics Specialist Conference. Quebec City, Canada, August
2001, aSS Paper 01-445.

[12] M. Pontani and B. A. Conway, “Numerical Solution of the Three-
Dimensional Orbit Pursuit Evasion Game,” Journal of Guidance Control
and Dynamics, vol. 32, no. 2, pp. 474–487, March-April 2009.

[13] M. Pontani and B. A. Conway, “Optimal Finite-Thrust Rendezvous Tra-
jectories Found via Particle Swarm Algorithm.”

[14] A. E. Bryson and Y. Ho, Applied Optimal Control. Taylor & Francis,
LLC, 1975.

[15] B. A. Conway and S. W. Paris, “Spacecraft Trajectory Optimization
Using Direct Transcription and Nonlinear Programming,” in Spacecraft
Trajectory Optimization, B. A. Conway, Ed. Cambridge University
Press, 2010, ch. 3.

[16] H. B. Nielsen, “DACE: A MATLab Kriging Toolbox,”
Technical University of Denmark, 2007. [Online]. Available:
http://www2.imm.dtu.dk/hbni/dace/

[17] S. r. N. Lophaven, H. B. Nielsen, and J. Sø ndergaard, DACE: A MAT-
Lab Kriging Toolbox.

58

