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Abstract

Health Information Exchange (HIE) is an infrastructure that facilitates exchange of elec-

tronic health records between healthcare organizations. Because medical records are highly

sensitive data subject to various federal and local regulation, in addition to company policies,

it is imperative to provide privacy and security guarantees, as well as audit trail.

In this thesis, we consider the problem of providing the functionality of a HIE composed

of a distributed collection of providers (sources) who contribute to a centralized repository

represented by a cryptographic file system, and suggest an implementation that demonstrates

its feasibility. While security-enhanced file systems have been extensively studied before,

more recent research establishes a rigorous standard of formally provable security properties.

However, since encryption imposes overhead and loss of functionality, we propose a novel

cryptographic construction called BlindStorage that enables keyword search capability over

encrypted indices.

The major contribution of this work is the demonstration how an advanced encryption

technique can be deployed in a context close to the requirements for a standards-based HIE.

We emphasize practical aspect of our design by using Web Services-based transactions that

closely follow a subset of the state-of-the-art Cross-Enterprise Document Sharing-b (XDS.b)

standard in the architecture. Document Repository and Document Registry gateways are

being used to interface between hospital-facing Web Services and the central BlindStorage

parts of the network, so that hospital applications can use the established XDS.b exchange

standard without being affected by the core BlindStorage-based implementation.
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Chapter 1

Introduction

Over the last two decades the government, industry, and academia have been incraesingly

recognizing the importance of health information technology. Healthcare has tended to

lag other industries (like communications and financial services) in transiting to electronic

records. However, as proprietary electronic medical record (EMR) systems get deployed

at healthcare organization, so does the need increase to exchange records via a Health

Information Exchange.

At the same time, multiple federal, state, and organizational policies prohibit insecure

transfer of certain type of sensitive medical data. It follows that unless we are willing

to accept negative consequences of incomplete information (that could potentially lead to

misdiagnoses or adverse effects of interacting prescription medication), we must use strong

cryptography that could be mathematically proven to be equivalent to physical security.

There exists a variety of HIE architectures, both in production and as prototypes, that

prevent unauthorized access to documents in transit. However, they are mostly focused

access control mechanism, and in cases where encryption at rest is used, no formal security

analysis is possible due to their complexity.

All architectures of complex systems could be classified as either distributed or centralized,

and HIEs are no exception. From the security point of view, distributed approaches are often

optimal, as nodes that wish to communicate with each other can establish a secure point-to-

point link, and exchange information directly without leaking anything to the environment.

Unfortunately, point-to-point design often leads to quadratic complexity and inefficiency,

and limited functionality. For instance, it is very difficult to implement a successful search

feature without a central index. Similarly, each transaction in the system should be subject to

audit, which is significantly easier to accomplish with a centralized component that can take
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part in all transactions. Therefore, we argue that a centralized architecture that guarantees

security no weaker than in a distributed approach is optimal.

Virtually the only way to accomplish this goal is to use cryptography, which immediately

introduces another challenge — severe loss of functionality. As a rule, the stronger the

cryptogtaphic scheme is, the less observers can find out about the data, and therefore, the

fewer operations could be performed on it. This relegates the hub in centralized architectures

to a mere “dumb” storage device, losing ability to leverage potential functionality that we

discussed before. This is the reason why the research community makes major efforts to

enrich cryptographic schemes with additional functionality.

One of the most popular, and wildly applicable, examples of such functionality is search-

able encryption. It generally refers to schemes that allow pre-precessing of the record to

contruct an index, which will later be used for keyword look-ups. Moving beyond single

keywords — e.g., to wildcard searches or even keyword conjunctions — is still a research

question.

In this thesis, we introduce a searchable encryption scheme called BlindStorage that can

be used as a foundation of a centralized HIE architecture that maintains strong security

guarantees. It was designed with security proofs in mind from the early stages, and therefore

provides an advantage over other HIE architectures. In addition, one of its strong points is

that in only requires a Get/Put interface to a storage devices, which allows to use readily

available highly scalable NoSQL products, instead of creating a storage server from scratch.

However, we must still demonstrate that our HIE will be practical and interoperable

enough to provide additional motivation for its implementation. In order to show this, we

wrap BlindStorage around a web services-based environment that closely follows the princi-

ples of Cross-Enterprise Document Sharing (XDS.b) profile, which is used as the standard

of choice for established health information exchange. We design gateway nodes that relay

messages between web services and BlindStorage parts of the architecture. We implemented

each part in a programming language that best fits its requirements (C++ for BlindStor-

age — bit manipulation, efficiency, pointer arithmetic; Java EE for web services - readily

available frameworks, simplicity of higher-level language abstractions). The system was also

tested by exchanging a CCD document that was published for CDA guideline validation.
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This rest of this thesis is organized as follows. In Chapter 2 we give background and dis-

cuss related work on approaches to secure storage, searchable encryption, and applications

of encryption in the healthcare domain. We also discuss health information exchanges —

a number of proposed architectures, and messaging standards in use. Chapter 3 presents

the HIE architecture, and how it can be implemented with BlindStorage building blocks

— low-level file system and searchable encryption that is built on top of that, as well the

connectivity layer that relays messages between web services and BlindStorage components.

Implementation is discussed in Chapter 4, and we talk about limitations, alternative ap-

proaches, and possible extensions in the final two chapters.
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Chapter 2

Background and Related Work

2.1 Secure Cryptographic Storage

Over the past decade, we have observed several major trends in computing that direct the

industry and research efforts. First, more and more computing devices are connected online

each day, along with the humans that use them. Major new industries such as advertising

and social media accommodate new customers, but require gathering vast quantities of data

for analytics. Additionally, already established industries seek to better understand and

optimize their processes with data mining (business intelligence). This gives rise to the

phenomenon of “big data”, directing a lot of effort towards efficient management of data

sets. Second, this data grows at a faster rate than the capacity of individual processors as

predicted by Moore’s law, making it necessary to distribute storage and computation across

multiple machines. Finally, financial advantages such as specializing and aligning business

structure around specific types of services that benefit from economy of scale enabled growth

of companies that specialize in managing other parties’ data. These trends set a fertile ground

for rising popularity for cloud computing, hosted systems, and storage outsourcing.

While some industries work with data that is not considered particularly sensitive and

therefore can immediately take advantage of cloud storage providers, healthcare is abided

by multiple regulations to ensure confidentiality and integrity of patients’ data. Any solution

that uses third-party services providers must provide strong security and privacy guarantees

on top of their primary function (e.g., file storage). There is a variety of federal and local

laws that prohibit transfer of certain classes patients’ data in health information exchanges,

such as genetic information, substance abuse, mental health, and HIV/AIDS. However, if

security of an HIE-like system could be mathematically proven to not leak any information
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Figure 2.1: Convergence between efficient file systems and secure key-value stores

at all, it might be possible to not be subject to these laws.

As a result of increasing recognition of the importance of security, research community

has been exploring various approaches towards securing storage systems with cryptography.

The overall process is illustrated in Fig 2.1. One approach is to retrofit existing file systems

that were primarily designed for efficiency and functionality with partial security features

such as encryption of file contents and paths, while another approach is to move forward

from theoretically secure but inefficient key-value stores, enriching them with functionality

and improving efficiency.

2.1.1 File systems

Traditionally, a file system has been considered local to a computer; therefore, most research

was directed towards making file systems consistent, error-resistant, and efficient, and little

towards security. Early distributed file systems such as NFS did not focus much on security

either, and when they did, they did not consider protecting data from the server, as the most

common setting was that both the server and the clients were under the same authority.

Hence, only access control mechanisms such as authentication and authorization were being

improved to prevent unauthorized users, while still assuming that systems administrators

were working under common authority. As a result of this common setting, little effort was

made to secure contents of the files from the file server.

One of the first file system designs that explicitly focused on security through cryptogra-

phy, the Cryptographic File System (CFS) was introduced by Matt Blaze in 1993 [1]. Users

can associate a key with the directories they wish to protect, and file contents and paths in
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corresponding directories will be encrypted and decrypted by a system-level daemon. Clear-

text is never stored or sent to remote file server, and CFS can use any available file system

including remove file servers such as NFS.

Next incremental improvement of CFS is the Transparent Cryptographic File System

(TCFS) [2]. It provides more convenience and flexibility compared to CFS, by allowing

more granular file-level encryption (e.g., an option to skip executables and only encrypt

document), and one-time authorization that will persist across file accesses by the same

user.

Cryptfs [3] is another prominent early cryptographic file systems that is similar to CFS

and TCFS. It is implemented as a kernel module with a stackable vnode interface, meaning

that it serves as a wrapper around traditional vnodes. It provides a number of incremental

advantages, such as not requiring auxiliary storage space on a local disk (that could lead to

potential vulnerabilities), and working with later versions of NFS.

One common major disadvantage of all these approaches is the total lack of theoretical

security analysis, potentially making them vulnerable for future attacks. In addition, they

do not provide any extra functionality or flexibility beyond file access, with further restric-

tions by their kernel module implementations. While we may be convinced that the basic

functionality of encrypting file contents is reasonably error-free, it is much more difficult for

the authors to convince us that metadata-relation operations remain secure.

2.1.2 Key-value stores

Key-value stores have been gaining popularity in clouds and other distributed systems. Mul-

tiple large-scale cloud storage providers emerged, such as Amazon S3, Microsoft Azure, and

Dropbox, providing a key-value interface to their systems. Traditional relational databases

have given way to NoSQL stores that exhibit higher scalability and response time in ex-

change for lesser consistency. In addition, while securing relational databases is possible as

demonstrated by projects such as CryptDB [4], the inherent need for server-side computa-

tion due to relational algebra severely limits cryptographic approaches. On the other hand,

it is trivial to encrypt values in key-value stores, and decrypt them on the client side, while
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still taking advantage of the distributed nature of cloud infrastructure. Because of this,

significant research efforts are directed towards enhancing cryptographic cloud storage sys-

tems with extra functionality, such as adding search capability [5], proof of data possession

protocols [6], and public auditing [7]. Seny Kamara and Kristin Lauter give an excellent

overview of cryptographic cloud storage architectures in [8].

In the next three sections, we concentrate on the problem of searchable encryption. There

are two general approaches to enabling search - either using a homomorphic encryption

scheme that remain inefficient, or by designing a data structure that contains a precomputed

index with an elaborate construction. Within the data structure approach, schemes are

differentiated into oblivious RAMs, private-key cryptosystems, and public-key approaches.

Oblivious RAMs

Oblivious RAM (O-RAM) is a data structure that solves the problem of searchable en-

cryption in full generality, first proposed by Goldreich [9] and Ostrovsky [10]. It was first

investigated in context of untrusted random access memory that is used by programs be-

ing executed on a local computer. Oblivious RAMs hide access pattern, randomizing the

location of an object after each access, preventing the adversary from correlating trapdoors

with returned results. However, this data structure is very inefficient, requiring logarithmic

complexity of the number of rounds, as well as bandwidth per request.

O-RAM construction was improved by Pinkas and Reinman [11], who applied recent

advances in data structures such as Cuckoo hashing to enable linear external memory, and

O(log2n) request complexity. Since request complexity is still non-constant, we consider this

construction inefficient for practical considerations. In addition, their scheme only guarantees

amortized logarithmic complexity, meaning that client may potentially wait O(n) time in

the worst case. This is unacceptable with commercial cloud storage providers who typically

provide quality of service guarantees via service level agreements.

One of the latest works in O-RAMs was introduced by Stefanov et. al [12]. They decided

to not pursue traditional design decisions of O-RAMs, and instead evaluate the system in a

practical setting, and determine if practical results justify suboptimal theoretical properties.
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Their scheme requires linear client storage, but the evaluation demonstrates that for a 1 TB

file system, 858 MB of storage is needed on the client. Additionally, they reduced the con-

stant factor of the bandwidth overhead to 26x, for 1 TB configuration. The major drawback

of this scheme is that both the server and the client needs to perform complex operations and

store state, which makes error recovery difficult, and prevents using established commercial

cloud key-value stores such as Amazon S3 and Dropbox. Additionally, this scheme still has

logarithmic bandwidth overhead that is inherent to all oblivious RAMs.

Symmetric cryptosystems

One of the most influential works on symmetric searchable encryption was done by Curt-

mola et al. [5], which introduced improved definitions for both non-adaptive and adaptive

searchable encryption, as well as corresponding constructions. In this work, their SSE-1 con-

struction takes constant number of rounds, and requires linear storage space on the server,

proportional to the number of keywords and documents. However, the major drawback of

their scheme is that it requires non-trivial operations on the server-side, which cannot be im-

plemented with a simple GET/PUT interface that is supported by many popular key-value

stores today. This construction was used as the foundation for a more comprehensive stor-

age system CS2 [13], which supports additional features such as search authentication and

integrity. Their SSE-1 scheme was extended in later work to support dynamic updates [14]

and distributed architectures [15]. However, these newer papers offer only incremental ad-

vantages over the original construction.

Assymmetric cryptosystems

Public-key searchable encryption allows separation of document source and producer roles,

by enabling producers to use consumer’s public key to upload documents to the storage.

Representative work in this area was done by Boneh et al. [16], with a later construction

that allows private information retrieval [17]. The fundamental drawback that inherent to

all public-key searchable encryption schemes is that the set of keywords is vulnerable to

dictionary attacks, as search trapdoors can be generated by anyone who possesses document
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consumer’s public key. We consider keyword protection important enough in the healthcare

domain (e.g., if keywords are used for diagnoses then sensitive conditions will be revealed),

and therefore, do not use public-key encryption.

2.1.3 Encryption in Healthcare Context

As the importance of securing electronic health records started to be recognized in the last

decade along with advances in cryptographic systems, it was imminent for researchers to

propose applications of cryptography in healthcare. In Patient Controlled Encryption [18],

the authors argue that encryption can be used as a tool to implement an access control sys-

tem that allows patients to control how their records are disseminated. They explored a way

to encrypt a hierarchical XML-based medical record, such that different parts of it would

be accessible with different keys, effectively implementing access control. In Indivo [19] HIE

architecture, the authors propose to use encrypted stores at HCOs as document reposito-

ries, and the system uses general-purpose access control policies to enable personal control of

health records. This design, however, does not use any advanced encryption schemes, mean-

ing that medical records would have to be decrypted by the server before being transmitted

to clients.

On the public-key cryptography side, there have been several proposals to use attribute-

based encryption (ABE), either to allow patients to share their records among multiple

healthcare providers [20], or to enable healthcare organizations to securely export medical

records directly to patients’ mobile devices [21]. A major advantage of ABE in healthcare

context is that sensitive categories of documents (e.g., diagnoses) could be mapped to at-

tributes, and that individuals or organization that do not possess the attributes would be

denied decryption. There are still challenges with ABE schemes, such as managing effective

key distribution infrastructure and dealing with key and attribute revocations.
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2.2 Health Information Exchanges

2.2.1 Overview

Health Information Exchange refers to infrastructure that facilities exchange of medical

records between healthcare organizations, and possibly, patients. As the government started

federal and local programs to encourage implementation of information technology in health-

care, hospitals increased their efficiency and automated operations by using commercial

electronic medical records (EMR) systems. More often than not, EMR formats are propri-

etary and not easily exportable across organizations, making it difficult to exchange medical

records between HCOs. Hence, the need for regional and even national HIEs became ev-

ident, and academia, government, and industry invested heavily in exploring methods to

implement HIEs.

There is a variety of challenges associated with exchange of medical information. First and

foremost, medical data is considered extremely sensitive, and several laws have been enacted

to regulate access to it and its reporting. One of the first major laws is the Health Insurance

Portability and Accountability Act (HIPAA), which introduces the Privacy Rule that is

heavily concerned with managing patient’s informed consent, and the Security Rule, which

specifies a number of safeguard policies that must be implemented by HCOs to protect

medical data. Following HIPAA, the Health Information Technology for Economic and

Clinical Health (HITECH) Act was passed to encourage “meaningful use” of electronic health

record, with electronic health information exchange being one of the major components of

meaningful use criteria. A number of other laws such as the federal Genetic Information

Nondiscrimination Act (GINA), and state-level Illinois Health Information Exchange and

Technology Act define sensitive information that is not allowed to be transmitted insecurely.

It follows that an effective HIE must either properly segment data (which is a major non-

trivial multifaceted problem), or provide a level of electronic security that is equivalent to

physical security (which can be accomplished by formally proving security properties of

cryptographic systems).

An important component of a successful HIE is reliable auditing, which puts constraints
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on architectural design choices.

2.2.2 Architectures

In 2010, the Presidents Council of Advisors on Science and Technology (PCAST) released a

report [22] that recommended an architecture for nationwide health information exchange.

The report proposes an approach based on a separation of duties between managers of repos-

itories of health data and a key authority that does not manage health data but grants access

by making access control decisions and distributing keys. It emphasizes the importance of

protection of data both “on the wire” (in transit), and “at rest” (in a storage system). This

report had influence on a number of HIE architectures, and we particularly incorporate its

recommendation of encrypting data at rest with the possibility of using encryption as access

control in future extensions.

The Nationwide Health Information Exchange Network (NHIN) initiative launched two

major projects - CONNECT and DIRECT.

CONNECT1 is a large-scale architecture that is composed of a set of profiles and Java-

based web services for a secure interoperable health information exchange [23]. While it

provides extensive facilities for authentication and authorization, it remains unclear whether

the data is properly encrypted across the entire chain of transaction. Additionally, the

architecture is complex enough to rule out any attempts of formal security analysis.

The DIRECT project2 is a lightweight architecture for HIE that is based on S/MIME

protected email messages. In this design, the DNS system is augmented to contain “pointers”

to HCOs that participate in the exchange.

An example of a non-US health information exchange is the partially centralized Dutch

EPD [24] system, where the central hub that is run by the government contains a reference

index per patient, and the actual documents are located on hospitals’ systems. We favor the

principles of a partially centralized approach where we can use the third party to provide

as much functionality as possible while not compromising on security (e.g., auditing or

1http://www.connectopensource.org/
2http://wiki.directproject.org/
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replication), but in the EPD design, data breach of the hub can lead to major consequences

as there is no at-rest encryption.

2.3 Message Standards

Since one of the major goals of a Health Information Exchange is to promote interoperability

between different proprietary health information management systems, the choice of envelope

standard for messaging is important. Web services have been established as a popular

technology for interoperable remote method invocation, so the natural choice is to use an

XML [25] based standard.

2.3.1 Electronic Health Records

Electronic health records contain both structured data (such as patient’s information and

diagnosis/billing codes), and unstructured information (doctor’s notes), and as a result of

this, most widely-used standards for EHRs use an XML-based format. The underlying

standard behind many clinical systems is Health Level Seven (HL7), which is designed to

support all healthcare workflows. A subsection of HL7 that is used for information exchange

is collectively called Clinical Document Architecture (CDA), which is further subdivided into

Continuity of Care Records (CCR) that are used for patient summaries, and Continuity of

Care Documents (CCDs), which are used for more detailed information. The major benefit

of using CCDs is that this format is encouraged by the HITECH Meaningful Use criteria,

and therefore, the architecture proposed in this thesis must support it.

2.3.2 Cross-Enterprise Document Sharing

Cross-Enterprise Document Sharing.b (XDS.b) integration profile was developed by the IHE

and specifies a set of actors (web services) that participate in the HIE process, as well as

required and optional SOAP-based message formats that are used between these services.

Even though new revisions of XDS are still under active development, with the latest revision
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9.0 being released on August 31, 2012, it proved to be successful enough to be selected for

a number of HIE implemenetations. For example, Illinois’ Office of Health Information

Technology requires their ILHIE prototypes to support XDS.b [26].

Since we aim to support exchange of encrypted data between enterprises, we consider how

to incorporate it within the XDS.b standard. One approach is to use XML Encryption [27],

which introduces EncryptedData and EncryptedKey elements. However, recent work [28]

has shown significant vulnerabilities in XML Encryption, and we decided to not use it.
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Chapter 3

Design

3.1 Architecture

The general architecture of our health information exchange design is composed of two parts:

web services-based end notes (Document Sources and Consumers) that represent healthcare

organizations and use transactions that are heavily influenced by Cross-Enterprise Docu-

ment Sharing (XDS.b), and the core storage system that is based on searchable encryption

implemented on top of our novel cryptographic BlindStorage construction. The overall ar-

chitecture is illustrated in Fig. 3.1 with web services components color-coded in blue.

The XDS.b profile specifies five actors: Document Source, Document Consumer as end

nodes, Document Registry that maintains metadata for all documents, Document Repository

that physically stores the records, and Patient Identity Source that aggregates unique iden-

tifiers for patients and provides validation services1. We decided that implementing Patient

Identity Source was outside the scope of this thesis, and that Document Registry function

is implemented by the BlindStorage server. Its index and data structures contain the map-

ping between the keywords and references to the documents. The documents themselves are

stored in a separate storage, which is also accessible via a Get/Put interface.

In the existing design, keywords belong to a flat domain (i.e., they represent one queriable

attribute such as patient’s name), although a more complex keyword domain could be built

by using prefixes. Therefore, only a limited subset of query operations is currently supported

- specifically, requesting documents by patient’s name.

The interface between web components and BlindStorage is implemented with gateways

that translate XML-based messages into corresponding BlindStorage API calls. These gate-

1http://wiki.ihe.net/images/d/d7/XDS-Actor-Transaction-b.jpg
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Figure 3.1: Architecture overview: Web services-compliant end nodes exchange documents via gateways that relay messages
to the BlindStorage server. Messages between the services are labeled with XDS.b transactions that they correspond to.

ways are considered trusted code and define the boundaries in our security analysis, and

must reside on the healthcare organizations’ systems, either as separate visible nodes or as

intercepting proxies. The advantage of intercepting proxy configuration is that end nodes

are completely oblivious to the translation process, resulting in simplified configuration. On

the other hand, it complicates network design and introduces more points of failure while

making changes to the HIE; therefore, we decided to use the explicit approach. In this

architecture, end notes would directly establish connections to the gateways.

An alternative design was considered when the gateways would be located at the third

party that is responsible for record storage. This provides the benefit of reducing multiple

instances, as only one set of adapters would need to be active per the entire HIE system, as

opposed to having one adapter per HCO. This design could be viable without redoing the

security analysis if we assume that the organization that hosts these servers does not collude

with the core HIE provider. However, due to the increasing organizational complexity this

design was not selected for our architecture.

The main cryptographic storage architecture could be represented as a stack of layers:

BlindStorage that implements the key-value store, searchable encryption that uses BlindStor-

age to provide document indexing and keyword search capability, and the application-specific

HIE layer that translates domain-specific requests into keyword searches. The following sec-

tions in this chapter will fully describe each of these building blocks, from the lowest to the

highest layer.
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3.2 BlindStorage: Cryptographic File System2

3.2.1 Definition

The Syntax. A blind storage system consists of a client and a “dumb” storage server.

The server is expected to provide only two operations, download and upload. The data is

represented as an array of blocks; the download operation is allowed to specify a list of indices

of blocks to be downloaded; similarly, the upload operation is allowed to specify a list of data

blocks and indices for those blocks.

A blind storage system is defined by three polynomial-time algorithms on the client-

side: bstore.Keygen, bstore.Build and bstore.Access. Of these, bstore.Access is an

interactive protocol.

• bstore.Keygen takes security parameter as an input and outputs a key Kbstore (typ-

ically a collection of keys for the various cryptographic primitives used). Note that

Kbstore, which the client is required to retain throughout the lifetime of the system, is

required to be independent of the data to be stored.

• bstore.Build takes as inputs a key Kbstore, a list of ids and data (encoded as blocks)

{idi, datai}ti=1 for all the files the storage will be initialized with, and generates an array

of blocks A to be uploaded to the server.

• bstore.Access takes as input file id id, an operation specifier op (bstore.read,

bstore.write, bstore.update or bstore.delete), and optionally data data (if op is

bstore.write or bstore.update). Then it interacts with the server (through the

upload/download interface) and returns a status message and optionally file data (for

the bstore.read and bstore.update operations). For the bstore.update operation,

bstore.Access allows more flexibility:3 first it requires only id as input, and outputs

the current size of the file with that ID; then it accepts as input (an upper bound on)

2Joint work with Manoj M. Prabhakaran and Muhammad Naveed
3Our construction achieves this level of flexibility without efficiency overheads; one can always use a

bstore.read followed by a bstore.write to get the effect of an update, but this is less efficient and potentially
reveals more information.
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what the size of the file will be after update; then it outputs the current file data, and

only then requires the new data with which the file will be updated.

Security Requirement. The security requirement of a blind-storage system is specified

following the “real/ideal” paradigm that is standard in cryptographic literature. This in-

cludes specifying an adversary model and an “ideal functionality,” as detailed below. The

formal security requirement we shall require is that of Universally Composable security [29]

(but restricted to our adversary model).4

In the adversary model we consider, the adversary is allowed to corrupt only the server

passively — i.e., as an honest-but-curious adversary. (If the client is corrupt, we need not

provide any security guarantees.)

The ideal functionality is specified as a virtual trusted third party Fstore that mediates

between the client and the server (modeling the information leaked to the server). Fstore

accepts two commands from the client: Fstore.Build and Fstore.Access, along with inputs

to these commands (which are identical to the inputs to bstore.Build and bstore.Access

as described above). In this ideal model, it is Fstore which maintains the collection of files,

and performs all the operations specified by the Fstore.Build and Fstore.Access commands.

In addition, it reveals limited information to the server as follows:

• On receiving the command Fstore.Build, Fstore sends to the server the system param-

eters — namely, upperbounds on the total number of files and total amount of data

to be stored.

• On command Fstore.Access, Fstore sends a tuple (op, j, size) to the server, where op

specifies what the access operation is,j is the last instance when the same file was

accessed (j = 0 means that this file was not accessed before), and size is the size (in

number of blocks) of that file. For the bstore.update operation, the size of the file

revealed is the larger of the sizes before and after the update.

4We remark that for our setting of passive adversaries, UC security is a conceptually simpler notion than
for the setting of active adversaries. Nevertheless, for the sake of concreteness, we use the UC security model,
which automatically ensures security even when the inputs to the client are adaptively chosen, influenced
by the adversary.
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(4)
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T: index table
record ≘ file

D: data array
record ≘ file block

Figure 3.2: Simplified diagram of BlindStorage that shows two main data structures: index table T and data array D.

We remark that even when using the ideal Fstore functionality, an adversary can learn

some statistics about the files and accesses by analyzing the patterns in the information

revealed to it. Such information could indeed be sensitive, and it is up to the higher-

level application that uses a blind-storage system to ensure that this is not the case. The

cryptographic construction seeks to only match the guarantees given by Fstore.

3.2.2 Construction

Before we consider formal specification of the construction, consider the simplified diagram

in Figure 3.2. In this example, we consider the scenario when the client receives a filename

as its input (1) and retrieves the contents of the file from the servers, and there are two

files stored in the file system, represented by different patterns. Upon receiving the file

name, the client applies hash function to it to generate file id, and then encrypts file id with

format-preserving encryption to generate the index in the table T that contains the record

with addressing information (2). Each record in T corresponds to a potential file in the file

system, so that the size of T is the upper bound on the total number of files we allow to store.

After retrieving T-record, the client generates a pseudorandom set of indices of encrypted

blocks that reside in the data array D by running a pseudorandom number generator a

number of times that depends on the file size (3). Therefore, the number of records in D

multiplied by the block size determines the maximum capacity of the file system. This set

of encrypted blocks is returned to the client (4) and contains both required file blocks and
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possibly blocks that either belong to some other file, or are empty.

Next steps are not shown in the diagram. The client decrypts the set, determines which

blocks belong to the file that was requested, and returns them to the upper layer. After

that in a bstore.read operation, these blocks are re-encrypted, their version number is

incremented, and they are uploaded back to the array D. In case of bstore.update, set size

may be increased and new blocks are merged into the set, after which the set is pushed to

the server, and the corresponding index entry in T is updated with new file size.

The construction uses a variety of symbols for parameters, functions, data structures,

keys, and other elements, and we list them all along with their use in the reference table 3.1

for easy look-up.

A BlindStorage construction scheme.

The construction relies on the following primitives:

– a pseudorandom function (PRF), Φ,

– and a pseudorandom permutation (PRP), Ψ with short input/output strings; such a

PRP is a special case of a format-preserving encryption.

– a pseudorandom generator (PRG), Γ.

(In the implementation of our prototype, as described in Chapter 4, Φ and Ψ will be imple-

mented relying on the AES block-cipher.) The construction is given in terms of various size

parameters nD, mD, nT and mT, and an expansion parameter α > 1, and a super-logarithmic

function β(·), that are all specified later. k stands for the security parameter, and it is an

implicit input to all the cryptographic primitives.

• bstore.Keygen: A key KΦ for the PRF Φ, and a key KID for the PRP Ψ are generated;

Kbstore is set to be the pair (KΦ, KID).

• bstore.Build(F,Kbstore): F is a list of files f = (idf , dataf). Below sizef denotes the

number of blocks in an encoding of dataf ; each block has two short header fields
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Table 3.1: Reference table of symbols in BlindStorage construction.

A combined array of T and D for uniform indexing and simplified key-value back-
end, optional to implement

B array of versions of all blocks in D; can be merged with D in the implementation
D array that contains all encrypted file blocks, see Figure 4.2 for format
f file under consideration, consists of a file name and its data
F set of all files for initial construction
idf numeric file identifier; limited by |T|
k security parameter; needed to ensure negligible probability of failure in the anal-

ysis
KID key of the PRP Ψ (indexing of T)
KΦ key of the PRF Φ (encryption of records in T adn D)
Kbstore a pair of (KΦ, KID)
op access operation to perform on BStore, one of read, write, update, delete
Sf set of blocks in D that contains blocks of f, as well as other “overhead” blocks

Ŝf only those blocks in Sf that constitute file f, without “overhead” blocks
sizef size of file f— number of blocks
T index table that contains addressing information for data blocks, see 4.1 for

format
α expansion parameter that specifies the number of overhead blocks in Sf

β(k) defines the lower bound on |Sf | for security to hold
Γ pseudorandom generator used to generate a sequence of pseudorandom block

addresses in D from a single number; seeded with σ
Φ pseudorandom function for encrypting records in tables T and D
Ψ pseudorandom permutation for hiding the index in T
σf seed of Γ corresponding to file f
τf index in T that specifies the record corresponding to file f
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containing idf , and a version number initialized to 0. (idf is not allowed to be all 0s,

which is reserved to indicate a free block.)

– Let D be an array of nD blocks of mD bits each, and T be an array of nT (shorter)

records of mT bits each.

– Initialize every block in D and every record in T with all 0s (to be encrypted

later).

– For each file f in F,

1. Generate a pseudorandom subset Sf ⊆ [nD], of size |Sf | = max(dα · sizefe, β(k))

as follows.

(a) Generate a fresh seed σf for the PRG Γ, uniformly at random. σf is not

allowed to be all 0s, which is reserved to indicate an empty entry.

(b) Run the PRG for sufficiently many iterations, and parse the resulting

string Γ(σf) into a sequence of |Sf | integers in the range [nD]. (Duplicate

numbers in the sequence can be removed now, by inserting the numbers

into a binary search tree as they are generated, or more conveniently,

when the subset Ŝf is generated below.)

(c) These numbers form the subset Sf .

2. At location τf = ΨKID
(idf) in T, record (σf , sizef). Note that this can be used

to reconstruct Sf given idf (using accees to T).

3. Check if at least sizef blocks in D that are indexed by the numbers in Sf are

free (this can be done by checking the headers of those blocks, but in this

phase, a sorted “free-list” could be used to do this faster). If not, abort. By

the choice of our parameters, this will happen only with negligible probability.

4. Pick a random subset Ŝf ⊆ Sf of size |Ŝf | = sizef , such that the blocks in D

that are indexed by the numbers in Ŝf are all free. (Instead of picking a truly

random subset, we may rely on the fact that the numbers in the sequence

used to generate Sf are in a pseudorandom order, and we can pick a prefix of

this sequence with sizef distinct numbers indexing free blocks.)

21



5. Write the sizef blocks of dataf onto the blocks in D that are indexed by the

numbers in Ŝf (in increasing order). These blocks get marked as not free.

– Encode T (which has shorter records) into blocks of the same size as D (each

block with a version number field, but no id field) and combine it with D into

a single array A. This is done in such a way that given an index τ into T, it is

possible to identify a single block of A that contains the record T[τ ].

– Encrypt each block of A using the PRF Φ and the key KΦ. The version number

field is left unencrypted, while the rest is encrypted using the version number

(initialized to 0) and the index number of the block as IV. More precisely, for

the ith block A[i], we split it as vi||B[i] (vi being the version number), and then

update B[i] to B[i]⊕ ΦKΦ
(vi||i).

(If the block-size of the PRF is less than the size of the block B[i], then a few

lower-order bits of the IV are reserved for use as a counter, to obtain multiple

blocks from the PRF for a single block in A.)

• bstore.Access(id, op,Kbstore): We describe the case when op = bstore.update, and

mention how the other operations differ from it.

1. First, compute τ = ΨKID
(id), and recover (the block containing) the record T[τ ]

from the server.

2. Decrypt the block (by unmasking it with ΦKΦ
(vi||i) where i is the index of the

block containing the record T[τ ], and vi is the version number encoded in the

block), to obtain (σf , sizef).

3. If σf is not all 0s, then output sizef as the current size of the file. Else, output a

message indicating that the file is not present; also, for the next step, set σf to be

a freshly generated seed, and set sizef to be 0.

4. Accept as input size′f , the size of the file after update.

5. Use σf to reconstruct a set Sf as described above, but with size

|Sf | = max(dα ·max(sizef , size
′
f)e, β(k)).
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Then retrieve the set of blocks D[Sf ] from the server.

6. Decrypt each of these blocks (using ΦKΦ
and the version number and index of

the respective blocks) and identify Ŝf as the set of indices of blocks belonging to

this file (by checking if their headers match id). If Ŝf is not empty, combine these

blocks together (in increasing order of their indices) to recover the entire contents

of the file, and output it.

7. Accept as input new contents data′ encoded as size′f blocks.

8. Identify a subset Ŝ ′f ⊆ Sf of size size′f as follows. If size′f < sizef , then Ŝ ′f ⊆ Ŝf ,

is a random subset of Ŝf . Else, Ŝf ⊆ Ŝ ′f ⊆ Sf such that Ŝ ′f \ Ŝf is a random set

of free blocks in Sf . If no such subset exists, abort. Again, by the choice of our

parameters, this will happen only with negligible probability.

9. Then update D[Ŝ ′f ] with the blocks of data′. If size′f < sizef mark as free the blocks

indexed by Ŝf \ Ŝ ′f .

10. Update T[τ ] with (σf , size
′
f).

11. Encrypt all the blocks corresponding to D[Ŝf ∪ Ŝ ′f ] and the block correspond-

ing to T[τ ] using the IV vi||i as described in the bstore.Build step, but after

incrementing vi for each block.

12. Upload the newly reencrypted blocks back to the server. Note that it is a subset

of the blocks that were downloaded that are uploaded back, with their version

numbers incremented by 1, and reencrypted.

• When op = bstore.read, the steps 1 through 6 from above are carried out, but setting

size′f = 0.

• When op = bstore.write, the behavior is the same as when op = bstore.update,

except that the new file data is taken as input upfront, and no data is returned.

• When op = bstore.delete, the behavior is the same as when op = bstore.write,

except that it takes size′f = 0, and also, the record in T[τ ] is updated with σf = 0

(indicating that there is no file).
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3.2.3 Security Analysis

We sketch a proof of security that our construction is a secure realization of the deal blind

storage functionality Fstore, for the adversary model in which the server is corrupted only

passively. The proof follows the standard real/ideal paradigm in cryptography (see [29], for

instance), and uses some of the standard conventions and terminology.

Roughly, the proof involves demonstrating a simulator S which interacts with a client

only via the ideal functionality Fstore (the ideal experiment), yet can simulate the view of

the server in an actual interaction with the client in an instance of our scheme (the real

experiment). The simulated view would be indistinguishable from the real view, even when

combined with the inputs to the client (from an “environment”). Further — and this is the

adaptive nature of our security guarantee — the inputs to the client at any point in either

experiment can be arbitrarily influenced by the view of the server till then.

Before describing our simulator, we describe the main reason for security. Suppose the

client makes a read access to a file for the first time. In the ideal experiment, the server

learns this file’s size and nothing about the other files. In the real experiment, the server

sees a couple of downloads — a record in T and a set of blocks Sf in D. Thanks to the

encryption, it is easy to enforce that the contents of these downloaded blocks give virtually

no information to the server. But we need to ensure that the location of these blocks also

do not reveal anything more than the size of this file. For instance, it should not be revealed

how many files were added to T and D before this file was added. Intuitively, this is ensured

by the fact the record in T and the pseudorandom subset Sf were determined by a process

that was independent of the other files in the system. The only way the other files in the

system influenced this process was in determining the subset Ŝf ⊆ Sf of blocks that actually

carried the data. However, recall that this subset is chosen randomly (or pseudorandomly)

from the set of free blocks in Sf , provided such a subset of adequate size exists. Though the

probability of Ŝf not existing depends on the number of occupied blocks (this probability

is zero initially, and grows as more and more files get added to the system), every subset

of Sf of that size is (virtually) equally likely to be Ŝf . Hence the simulator can sample

Ŝf from virtually the same distribution as in the real experiment, conditioned on an abort
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not occurring. Thus the crucial argument in proving security boils down to showing that

the probability of the client aborting in our protocol is negligible. We will give a standard

probabilistic argument to prove this assumption.

Now we describe our simulator S, which is in fact quite simple, and then discuss the main

combinatorial argument used to show that the simulation is indistinguishable from the real

execution. For the sake of clarity, we leave out some of the routine details of this proof, and

focus on aspects specific to our construction.

The simulator interacts with the functionality Fstore on the one hand, and interacts with

the server on the other, translating each message it receives from Fstore into a set of simulated

messages in the interaction between the client and the server in our scheme.

1. When it receives the initial message from Fstore with the system parameters, S can

calculate the size of A; it simulates the blocks in A by picking uniformly random bit

strings, with the version number in each block set to 0.

2. S initializes a table to map integers j to triples of the form (τj, Sj, Ŝj). Initially this

table is empty. After Fstore reports j∗ accesses to S, this table will have j∗ entries. S

also maintains the set X = ∪jŜj, initialized to the empty set.

3. Subsequently, in access number j∗, when S receives a tuple (op, j, size) from Fstore, it

proceeds as follows:

(a) S first checks if j > 0. If so it sets τj∗ = τj. Else it generates a random value for

τj∗ .

(b) If op = bstore.delete, S sets Sj∗ = Ŝj∗ = ∅ and (if j > 0) sets X = X \ Ŝj.

(c) If j = 0, and op 6= bstore.delete, S samples Sj∗ with |Sj∗| = max(dα · sizee, β(k))

uniformly, and a Ŝj∗) ⊆ Sj∗ conditioned on |Ŝj∗| = size, and Ŝj∗ ∩X = ∅; also, X

is updated to X ∪ Ŝj∗ .

If no such set Ŝj∗ exists, the simulation aborts.

(d) If j > 0 and op = bstore.read, S simply sets (Sj∗ , Ŝj∗) = (Sj, Ŝj).
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(e) If j > 0 and op = bstore.write or op = bstore.update, S checks if |Ŝj| > size or

not. If it is, then Sj∗ and Ŝj∗ are set to random subsets of Sj and Ŝj respectively,

of appropriate sizes. Further, X is set to X \(Ŝj \ Ŝj∗). Else, if |Ŝj| ≤ size, Sj∗ and

Ŝj∗ are set to random supersets of Sj and Ŝj respectivly, subject to the conditions

from item (3) above. Also, X is updated to X ∪ Ŝj∗ .

Again, if no such set Ŝj∗ exists, the simulation aborts.

(f) Finally, it creates the simulated view in which it downloads the record T[τ ],

followed by a request to download the blocks D[Sj∗ ]. In the case of operations

other than bstore.read, it will also request to upload new versions of blocks

indexed by Ŝj∗ , with the block number incremented, and with fresh random bits

in lieu of encrypted strings.

The simulation essentially maintains the indices of the two sets seen by the server, Sj

which is downloaded, and the set Ŝj which is uploaded back. It maintains consistency in

terms of the pattern (same subsets are used if the same file is accessed) and the size of the

files.

We note that there are two differences between this simulation and the real execution.

Firstly, the simulated execution uses truly random strings instead of the outputs from Φ

and Ψ. To handle this we can consider a “hybrid experiment” in which the real execution

is modified so that instead of Φ, Ψ and Γ, truly random functions are used. By the security

guarantees of the PRF, the PRP and the PRG (the last one applied after the others, so that

the PRG’s seed is completely hidden from the server), this causes only an indistinguishable

difference.

The second difference is in aborting: the simulation aborts when it cannot find enough

blocks which are not occupied by blocks of files that have been accessed (i.e., blocks listed in

X), whereas the real protocol aborts when it cannot find blocks which are actually unoccu-

pied (even considering files that have not yet been accessed). However, it can be seen that

at any point in the hybrid execution above, as well as in the simulated execution, the sets

Sf and Ŝf are identically distributed, conditioned on a valid set Ŝf existing. This is because,

Sf is identically distributed in both experiments (being chosen independent of the files in
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the system), and every subset of Ŝf of the right size is equally likely to be Ŝf . However, the

probability of a valid subset Ŝf existing is not necessarily the same in the two experiments.

To complete our proof, therefore it remains to show that the probability of the client or the

simulator aborting is negligible. Before proceeding, we remark that our goal here is to give

an asymptotic proof of security (showing that the error in security goes down as a negligible

function of the security parameter). The concrete parameters from this analysis are overly

pessimistic and an actual implementation can use less conservative parameters.

First, recall that in the simulation as well as in the modified real execution we are consid-

ering, the output of the PRG Γ on random seeds (used to define the pseudorandom subsets)

have been replaced with truly random strings. Then we upperbound the abort probability as

follows. Let d0 be an upperbound on the total number of data blocks that will be occupied.

Suppose there has been no abort so far, and a new file f of sizef blocks is to be inserted into the

system (either during the bstore.Build stage of during an bstore.update or bstore.write

operation). Some d ≤ d0 out of the nD blocks in D are filled. These blocks were filled by

picking random subsets, and then within these subsets, choosing random subsets with free

blocks. The net effect is of choosing a random subset of d blocks out of the nD blocks. Now,

when f is being inserted, we pick a random subset Sf of size |Sf | = max(dα · sizefe, β(k)).

The expected number of occupied blocks within this set is d
nD
· |Sf |. By a standard application

of Chernoff bound,5 the probability that more than 2 d
nD
|Sf | blocks are occupied is 2−Ω(|Sf |),

provided d
nD

is upperbounded by a constant less than 1. Since |Sf | ≥ β(k), this probability

is 2−Ω(β(k)), and since β(k) is super-logarithmic in k (for e.g., log2 k), this probability is

2−ω(log k) which is negligible in k. Thus except with negligible probability, of the |Sf | blocks

chosen, at least |Sf |(1− 2 d
nD

) ≥ αsizef(1− 2 d
nD

) are free. We shall pick α ≥ 1
1−2γ

where γ is

an upperbound on d/nD so that the number of free blocks is at least sizef . Thus except with

negligible probability, the client will not abort, when adding this file. By a union bound,

the probability that it aborts remains negligible as long as it adds only polynomially many

5In choosing a random subset of blocks, the blocks are not chosen independent of each other. So in order
to apply Chernoff bound, we first consider the experiment in which the blocks are selected independent of
each other with the same fixed probability, so that the expected number of blocks chosen is, say 3/2d. Then,
by an application of Chernoff bound, except with 2−Ω(nD) probability, at least d blocks are occupied. Now,
in this experiment, we bound the probability that more than 2 d

nD
|Sf | blocks in Sf , again using Chernoff

bound. This probability is an upperbound on the corresponding probability in the original experiment.
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files.

3.3 Searchable Encryption6

3.3.1 Definitions

Our syntax for a searchable encryption scheme is simpler than in [15], since all non-trivial

operations are carried out by the client, and hence, there are no server side algorithms to be

specified.

A searchable encryption scheme (a.k.a. SSE or searchable symmetric encryption scheme)

consists of five probabilistic polynomial time procedures (run by the client), sse.keygen,

sse.indexgen, sse.search, sse.add and sse.remove. These procedures interact with a “dumb”

server which provides download and upload facilities to access blocks in an array, and also a

simple file-system to lookup documents by identifiers. Looking ahead, in our implementation,

the upload and download facilities are used to implement a blind-storage scheme which is used

to store the keyword indices, and the file lookup facility is used to store the actual (encrypted)

documents.

• sse.keygen: It takes the security parameter as input, and outputs a key Ksse. All of

the following procedures take Ksse as an input.

• sse.indexgen: It takes as input the collection of all the documents (labeled using docu-

ment IDs), a dictionary of all the keywords, and for each keyword, an index file listing

the document IDs in which that keyword is present.7 It interacts with the server to

create a representation of this data on the server side.8

• sse.search: This procedure takes as input a keyword w, interacts with the server, and

returns all the documents containing w.

6Joint work with Manoj M. Prabhakaran and Muhammad Naveed
7The index files can be generated by this algorithm if it is not provided as input.
8Typically, this would consist of a collection of (encrypted) documents, labeled by document indices

(different from document IDs), and a representation of the index, which in our constructions will be stored
using a blind-storage system.
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• sse.add: This procedure takes as input a new document (labeled by a document ID that

is currently not in the document collection), interacts with the server, and incorporates

it into the document collection.

• sse.remove: This procedure takes as input a document ID, interacts with the server,

and if a document with that ID is present in the server, removes it from the document

collection.

Security Requirement. As in the case of blind-storage, we shall specify an ideal func-

tionality, Fsse to capture the security requirements of a dynamic SSE scheme. We note that

the standard UC security in this case automatically ensures what has been called security

against adaptive chosen keyword attacks (CKA2-security) for searchable encryption.

Fsse accepts one of the following commands from the client (along with corresponding

inputs, as described above), and behaves as follows. It initializes and maintains the document

collection as specified by the commands, and answers the search queries correctly based on

the current document collection. In addition it informs the server which command was

received and reveals additional information as follows:

• On receiving the command Fsse.indexgen, it reveals to the server the multi-set consist-

ing of the sizes of all the documents, and a system parameter specifying a (typically

liberal) upperbound on the total number of keywords and (keyword, document) pairs

supported by the system. The documents in the set are assigned serial numbers for

future reference (sorted randomly). We shall refer to these documents as the original

documents (as opposed to newly added documents).

• On receiving the command Fsse.add, it reveals to the server the size of the document.

A serial number is assigned to this document (counting from the original documents

and all the newly added documents) for future reference. Note that many documents

with the same document ID can be deleted or added back, but the serial number is

unique for each version of the document. For each keyword in the document, the

set of serial numbers for all newly added documents (i.e., not the original documents)

(possibly deleted) that have that keyword is also revealed to the adversary.
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If a previous version of the document (i.e., a document with the same document ID)

existed in the collection, its serial number is also revealed to the adversary.

• On receiving the command Fsse.remove, it reveals to the server the serial number of

the document being removed from the collection. It reveals no additional information.

• On receiving the command Fsse.search, it reveals to the server the last instance the

same keyword was searched on (or that it is being searched for the first time) and

the set of serial numbers of all the documents that matched the search query. This

includes deleted versions of the documents.

We highlight a few aspects of our security definition, compared to that in [15] and prior

work. In [15], when a document is deleted, the scheme reveals the number of keywords in

the document and further, for each keyword, upto two other documents that share the same

keyword. This is the case even if that keyword is never searched on. In contrast, by our

security requirement, if an original document is deleted, only the number of keywords in it

that are searched can be revealed. Further, it is not revealed that a deleted document shared

a keyword with another document, unless such a keyword is explicitly searched for.

We remark that our functionality explicitly reveals deleted versions of the documents in

search results, but this information was revealed (implicitly) by the leakage functions in

[15] as well, as the identifiers for each keyword in a deleted document is revealed and this

information links the deleted documents to future searches on the same keyword (when the

same identifier for the keyword is revealed).

3.3.2 Searchable Encryption from Blind Storage

In this section, we describe how an efficient dynamic searchable encryption scheme can be

easily built on top of a blind-storage scheme.

The construction uses a blind-storage system, and a pseudorandom permutation Ψ′ for

mapping document IDs (with versioning) to pseudorandom document indices.9

9Long document names can be handled using a hash function, in much the same way long file names
are handled in the blind-storage system. Here the hash collisions can be stored in an encrypted document
of fixed size, indexed by the pseudorandom document index, kept outside the blind-storage system.
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• sse.keygen: It generates a key Ksse = (Kbstore,KdID) where Kbstore is generated by

bstore.Keygen and KdID is a key for the PRP Ψ′.

• sse.indexgen:

1. Firstly, for each document d, assign a pseudorandom ID η0
d = Ψ′KdID

(0||idd), where

idd is the document ID, to which a single bit is prepended (to indicate that this

is a document already present while creating the initial index).

2. For each keyword w, construct an index file with file-ID index0
w that contains η0

d

for each document d that contains the keyword w. No specific format is required

for the data in this file; in particular, it could contain a “thumbnail” about each

document in the list.

3. Next, initialize a blind-storage system with the collection of all these index files

(using bstore.Build).

4. Also, (outside of the blind-storage system) upload encryptions of all the docu-

ments labeled with their pseudorandom document index η0
d.

• sse.remove: To minimize the amount of information leaked, we rely on a lazy delete

for documents that are already present during sse.indexgen (but not for the documents

that were added later).

Given a document ID idd, proceed as follows:

1. First check if a document with index η0
d = Ψ′KdID

(0||idd) exists, and if so delete it

(using the file system interface of the server). The index files are not updated for

the keywords in this document right away, but only during a subsequent search

operation (see below).

2. Else (if there was no file with index η0
d), check if a document with index η1

d =

Ψ′KdID
(1||idd) exists. If it does not, return a status message to indicate this. If it

does exist, proceed as follows:

(a) retrieve document indexed by η1
d, and then delete it.
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(b) for each keyword w in the document, use the blind-storage bstore.update

facility to update the index file with file-ID index1
w to remove η1

d from it.

• sse.add: To add a document d to the document collection, first call sse.remove to

remove any earlier copy of a document with the same document ID. Then proceed as

follows:

1. Firstly assign it a pseudorandom document index as η1
d = Ψ′KdID

(1||idd). Note that

the bit preprended to idd in this case is 1, to indicate that this is a document that

was added after creating the initial index.

2. Then, for each keyword w that appears in this document, use the bstore.update

facility of the blind-storage scheme to update the file with file-ID index1
w to include

η1
d. Note that the file-IDs used in this phase are different from the ones used during

sse.indexgen. Also, note that the bstore.update operation will create a file if it

does not already exist.

• sse.search: Given a keyword w, retrieve the two index files with file-IDs index0
w and

index1
w from the blind-storage system: for the file index1

w the bstore.read operation is

used, and for the file index0
w, the first stage of bstore.update operation is used. All

the documents containing the keyword w have their document indices listed in these

two files. Attempt to retrieve all these documents from the server; but some of the

documents listed in index0
w could have been deleted. Complete the bstore.update

operation on the file index0
w to remove the deleted files from its list.

3.4 HIE Interface

The HIE interface is performed with two web services that use messaging format correspond-

ing to a subset of XDS.b transactions: Document Registry and Document Repository. The

definition of these two web service gateways is given in Figure 3.3, and explained in next

two sections.
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Document Registry:

• RegistryStoredQuery(Keywords) : OIDs

Document Repository:

• ProvideAndRegisterDocumentSet(Keywords, Documents) :

Success/Failure

• RetrieveDocumentSet(OIDs) : Documents

Figure 3.3: Inteface definition for web service gateways.

3.4.1 Document Registry

The role of document registry gateway is to map a set of keywords to a set of document

references that contain these keywords. In the scenario that we implemented as described

in 4, this service uses patient’s first name and family name as the keywords. The XDS.b

profile uses globally unique object identifiers (OIDs) for documents, which can also be used

as keys in the secondary storage. Within the XDS.b profile, this transaction is known as

Registry Stored Query (ITI-18).

Document Registry web services invokes the HIE layer of BlindStorage with keywords as

parameters, which are then passed down the stack to the searchable encryption layer. Upon

the completion of BlindStorage access operation, object identifiers are returned to the HIE

layer, translated to SOAP response message, and passed back to the Document Consumer.

3.4.2 Document Repository

The Document Repository gateway serves both the Source and the Consumer; hence, it must

implement two separate methods. The first method corresponds to Retrieve Document Set

(ITI-43) transaction and is rather unsophisticated. Since at this stage keyword look-up

has already been performed and Document Consumer knows the set of document OIDs to

retrieve, the gateway only needs to pass these identifiers down to the BlindStorage module

as a simple Get request. This request is then relayed to the secondary storage that contains

bodies of the documents in encrypted form, and is then passed back to the Consumer.
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The second service implemented by Document Repository corresponds to XDS.b Provide

and Register Document Set (ITI-15) transactions. In this case, the gateway is responsible for

accepting a set of Continuity of Care Documents of a particular patient, extracting patient’s

name, translating them into keywords, and invoking the HIE layer of BlindStorage with a set

of (keyword, document) pairs. This request is then translated into the bstore.write opera-

tion, BlindStorage index is updated with a new mapping between the keyword and document

reference, and the CCD document is encrypted and stored in the secondary storage.
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Chapter 4

Implementation

Since our HIE architecture consists of two major components - the interoperable, web-

services based side that directly interfaces with hospital systems, and the secure, efficient

BlindStorage part, it was also prudent to consider different technology choices for their

implementation. The cryptographic storage and searchable encryption components need to

perform a significant amount of bit-level manipulation, efficient encryption and decryption,

and pointer arithmetic, and we decided to implement it in C++. On the other hand, the HIE

side had to be based on web services per our general design and goal to follow XDS.b profile

as closely as possible, and would benefit from a higher-level language and readily available

frameworks to generate boilerplate code. The Java EE platform provides a convenient JAX

API along with a set of tools to generate web service definition language (WSDL) descriptor

files directly from the source code, and therefore, we chose to implement the HIE side in

Java.

Besides these advantages, intentionally selecting different technologies for implementing

an advanced encryption technique and a standards-based HIE serves as a basis of measuring

the transparency of our solution to the HIE context for the purpose of evaluation. We will

consider the project successful when a document producer can upload a valid CCD document

to the HIE using an XDS.b-like interface, and a document consumer can retrieve it using

only registry and repository services.

4.1 BlindStorage

The core BlindStorage code is implemented as a set of C++ object, built around T and D

tables. The format of their records are shown in Figures 4.1 and 4.2.
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size seed

4 4size (bytes)

T-record

encrypted

Figure 4.1: Record format in the T table.

raw data version

1024 (parametrized) 4size (bytes)

D-record high_idlow_idpad

1 4 4

encrypted

Figure 4.2: Record format in the D table.

Each T-record that corresponds to a file contains file size (in the number of blocks), and

a 32-bit PRG seed, encrypted with Kbstore. Whenever file blocks need to be accessed from

D table, the seed is used as a parameter to the srand() function, and the rand() PRG is

called 4 ∗ size times. We set the expansion parameter α to 4 as it provides nearly optimal

balance between the probability of failure (not being able to find free blocks), and overhead.

There are two representations of T and D data structures in memory . First, during the

initial construction phase of BlindStorage TDisk and DDisk are located in local memory and

can be accessed directly. After the initial Build operation is completed, these structures

are saved to the disk (or uploaded to a remote key-value server) and are no longer accessed

directly. Instead, we follow the proxy design pattern1, and use two other objects - TFile

and DFile. These do not store data in memory, but instead access records on demand. In

a local implementation of BlindStorage, this is done by seeking to a correct position in the

file; in the distributed version, it sends a GET(index) request to the key-value store.

Each T and D record has a pair of method to encrypt and decrypt its data with AES-128

(Crypto++ library is used).

The BlindStorage code is compiled as a local executable, and accepts queries through

a command line interface. Java web services in return run these processes through an

execute() method, and communicate via standard input and standard output streams. Al-

though this way of inter-process communication is suboptimal in terms of both performance

1http://www.oodesign.com/proxy-pattern.html
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and general software engineering practices (Java Native Interface (JNI) being the alterna-

tive), it allows effortless testing of individual layers, as BlindStorage executables can be

launched and tested directly from the command line.

4.2 Web Services

Our goal of implementing web services was to remain as close to standards-based HIE as

possible while keeping the scope of this project manageable. One of the most comprehensive

open HIE frameworks with source code readily available is NHIN CONNECT, and we studied

what features is supports and what technologies it is built on, to replicate a scaled-down

version of a production system. The Enterprise Service Components in the CONNECT

solution provide implementation of XDS.b Document Registry and Repository actors which

is claimed to be one of “critical enterprise components required to support electronic health

information exchange” 2. Examining the underlying technology behind CONNECT shows

that it is built using Java Enterprise Edition (JEE), and in particular, Java API for XML

Web Services (JAX-WS).

This investigation gives evidence that we will accomplish our goal of staying close to

the requirements for a standards-based HIE system if we use the same technologies for our

implementation.

We implemented the four actors that correspond to XDS.b actors using Java EE and JAX-

WS on Apache Tomcat 7 with Apache Axis. Document Repository and Document Registry

actors are represented as web services. On the other hand, Document Source and Document

Consumer actors are connection initiators, and they are implemented as standalone Java

application that use web services client library.

The Document Source application accepts a set of CCD documents as its input, processes

them to locate XML <patient> node, and extracts patient’s first and last name from this

node. These two names are then merged into a single keyword, and transmitted to Document

Registry along with CCD contents. Document Consumer first invokes Document Registry

to look-up document object identifiers that belong to a particular patient, and then contacts

2http://www.connectopensource.org/about/what-is-connect
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Document Repository to retrieve these documents.

4.3 Evaluation

The National Institute of Standards and Technology (NIST) published a series of testing

tools “for promoting the adoption of standards-based interoperability by vendors and users

of healthcare information systems”, which includes validation tools and sample CCD docu-

ments. For the evaluation of our project, we downloaded a representative Healthcare Infor-

mation Technology Standards Panel (HITSP) summary document using HL7 CCD from the

MeaningfulUse Examples Jan20113 data set. Since these documents were explicitly pub-

lished for testing conformance of HIEs to CDA standards, we consider this data set to be

ideal for our purpose of evaluation of correctness and transparency.

We successfully transmitted the test document through our HIE implementation, and

verified correctness. Since neither Document Source nor Document Consumer actors were

aware of BlindStorage and only communicated with Registry and Repository services, we

also successfully verified correctness.

3http://xreg2.nist.gov/cda-validation/downloads.html
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Chapter 5

Discussion

In this chapter, we will explore a number of topics that are relevant to HIEs in general and

our implementation in particular.

5.1 Push and Pull Methods

Health information exchanges use one of two exchange methods — “push” technology, when

the document source automatically delivers clinical data without a prompt, and a “pull”

method (also known as portals) that requires physicians to search for the data they need [30].

We observe that our implementation acts as a hybrid of these two: on one hand, consumers

do not directly communicate with sources and therefore sources must proactively upload

records to the repository as in the “push” model. On the other hand, searchable encryption

provides an option for consumers to perform basic queries that is more typical of a “pull”

method.

We first discuss the advantages of both approaches. One problem with “push” methods is

that typically there must be a pre-existing patient-physician relationship to enable this kind

of delivery. With data being encrypted in the repository, document sources could push the

record to the HIE in advance, and instead only control access through key distribution. The

document consumer benefits in a similar way, as it only needs to contact the HIE storage

for the document instead of locating and connecting to the source.

Unfortunately, in additional to getting some benefits of both methods, we also receive

their limitations. Before a document is pushed out to the HIE, the document source must

know which keywords will be considered during subsequent queries, and update the index

with these keywords. To provide functionality of flexible searches the source must either
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precompute many keyword combinations or subdivide the keyword namespace into a non-

flat structure, or our architecture would need to be extended with multiple BlindStorage

systems that would represent different indices. Document consumers are similarly limited

by both the type of queries they are allowed to make (keyword searches), and flat keyword

domains.

5.2 Efficiency

Another topic of discussion is whether efficiency (or performance) is important for HIEs.

Since no summary statistics on HIE document rate were readily available, we will not spec-

ulate on specific numbers. However, it is not unreasonable to assume that virtually every

nontrivial cryptographic scheme that supports advanced functionality is bound by some

performance bottleneck — whether it is the number of keyword combinations supported,

worst case access time, or storage overhead. Any index-based searchable encryption scheme,

including ours, supports a trivial extension of functionality by building another layer on

top of keywords. For example, document repositories could natively support basic keyword

conjunctions by building the index from keyword pairs in the first place. This increases the

number of keywords quadratically.

A simple example like this demonstrates that in any case, better efficiency is preferred

as it can be traded in for other features — be it functionality, fewer number of servers, or

simpler maintenance. Therefore we consider that performance advantages of BlindStorage

as compared to other cryptographic schemes remain meaningful and useful even if we cannot

directly measure the impact of efficiency.

5.3 Key Infrastructure

A major component of any distributed system with different levels of access is the key

infrastructure. In-depth exploration of key infrastructure for a HIE is a topic of a project of

no lesser size, but we can make several remarks.
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In our design, we assume that there exists only one set of symmetric keys for all sources

and consumers that participate in the exchange. While we did reject public-key searchable

encryption on the basis of insufficient keyword protection, this does not mean that a public

key infrastructure could not be used for dissemination of symmetric keys to the index.

Additionally, searchable encryption that is built on top of BlindStorage uses different keys

for keyword protection and encryption of medical records, which implies that there could be

a variety of combinations of keying schemes.

5.4 Who Runs The HIE?

The questions of making the business case for an entity and justifying its existence can be

easily overlooked if we only look at the architecture from the technical point of view. It has

been claimed that arguably superior technologies — such as a distributed social network

Diaspora — never made an impact due to lack of either a business model or some other

support.

In case of health information exchanges, there exists enough evidence that states and even

federal government are willing to run such an infrastructure as a public service. Nevertheless,

it is worthy to consider other alternatives.

In fact, we claim that the cryptographic nature of our HIE design opens new opportuni-

ties for private businesses to provide the services of Document Registries and Repositories.

BlindStorage has already been explicitly designed to support a minimal key-value storage

back-end (which we call secondary storage), and since the index is never seen in plain-text

by the server, it is entirely plausible that a private enterprise that is unaffiliated with HCOs

can operate a limited HIE — an option that is not possible with traditional HIEs.
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Chapter 6

Conclusion

In this thesis we considered how a health information exchange can be implemented with a

cryptographic storage scheme that supports keyword search. We discussed common archi-

tectures of HIEs, why they are important, some of the driving factors behind the adoption

of information technology, and how cryptography can be of assistance in the healthcare

domain. While cryptography can be a power tool, it imposes severe limitations on function-

ality, which is the reason for many approaches to data preprocessing and indexing prior to

encryption.

We introduce BlindStorage, a cryptographic file system that is easily used as a building

block to implement searchable encryption. In its turn, searchable encryption provides an

interface a domain-specific application, which in our case is a gateway that connect a greater

distributed HIE to the secure core. One of the main contributions of this paper was the

demonstration how an advanced encryption technique can be deployed in a context close to

the requirements for a standards-based HIE, which was evaluated for correctness and end-to-

end transparency with a test CCD dataset. Finally, other secondary aspects were discussed

that are relevant to health information exchanges and our implementation in particular.
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