
c© 2013 Alexander J von Alt

FROM INTEREST POINTS TO MAP TRANSFORMATION: A
DISCUSSION OF RGB-D SLAM AND ITS APPLICATIONS

BY

ALEXANDER J VON ALT

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Seth Andrew Hutchinson

Abstract

This thesis examines SLAM using a single handheld projected-IR RGB-D

camera. It focuses primarily on the use of different interest point detectors,

their descriptor extractors, and their matchers in the estimation of pairwise

alignment of frames captured using such a sensor. Such estimates give the

initial pose estimate of each frame. They are encoded as edge constraints in

the pose graph and integral in SLAM’s recovery of the optimal trajectory of

poses. BRISK and FREAK feature detectors using FLANN and brute-force

matchers are analyzed. Their suitability for use in visual odometry estima-

tion is investigated. A method of automatically tuning the BRISK-AGAST

detector so as to produce a consistent number of features is developed and

studied in the context of RGB-D SLAM.

An augmented reality application making use of RGB-D SLAM is also

developed. This method uses RGB-D SLAM to create a map of an envi-

ronment. The map is then distorted using affine transformations to change

the dimensions and appearance of the environment. Views of this distorted

environment are generated in real time at the camera’s current pose. The ef-

fectiveness of the approach is considered and example outputs are provided.

ii

To Grandma V: Another one for your book.

iii

Acknowledgments

I’d like to thank my parents Chris and Mary von Alt for their unconditional

support throughout the course of my education. From preschool to graduate

school, they’ve been there for me. I’d like to thank my fellow denizens of

room 1514 Beckman for their camaraderie and the many rich and interesting

discussions we had. Most of all, I would like to thank my advisor Profes-

sor Seth Hutchinson for his guidance, support, and patience throughout the

course of my study. Without his encouragement I probably never would have

gotten into computer vision. For that and the many conversations we had

shaping this project, I am eternally grateful.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Problem Description and Objectives 2
1.3 Organization of Thesis . 2
1.4 Important Terms and Abbreviations 3

Chapter 2 General Concepts . 5
2.1 Chapter Summary . 5
2.2 Notation . 5
2.3 ROS and OpenCV . 6
2.4 Coordinate Frames, Transformations, and Pose 7
2.5 3-D Projection . 12
2.6 Interest Points . 18
2.7 Quaternions . 34
2.8 RANSAC . 50
2.9 Rigid Transformation between Two Trajectories 55

Chapter 3 SLAM - Simultaneous Localization and Mapping 61
3.1 Basics . 61
3.2 SLAM Techniques . 62
3.3 RGB-D SLAM . 66
3.4 RGB-D SLAM Details . 67

Chapter 4 Interest Point Additions and Testing 73
4.1 Motivation . 73
4.2 Preliminary Work . 75
4.3 BRISK-AGAST Detection . 78
4.4 Remarks on BRISK-AGAST and Motivation toward the

Adjustable BRISK Detector 91
4.5 Adjustable BRISK Detector 94
4.6 BRISK Descriptor . 97
4.7 FREAK Descriptor . 99
4.8 Matchers . 100
4.9 Incorporation into the RGB-D SLAM System 100
4.10 Evaluation of RGB-D SLAM Data 101

v

4.11 Chapter Conclusion . 105

Chapter 5 Feature Detection - Experiments 106
5.1 Chapter Summary . 106
5.2 Chapter Organization . 107
5.3 ORB and SURF Baseline . 107
5.4 BRISK-AGAST and BRISK with Brute-Force 109
5.5 BRISK-AGAST and FREAK with Brute-Force 113
5.6 BRISK-AGAST and BRISK with FLANN 117
5.7 BRISK-AGAST and FREAK with FLANN 119
5.8 Adjustable BRISK-AGAST and BRISK with Brute-Force . . . 124
5.9 Adjustable BRISK-AGAST and FREAK with Brute-Force . . 129
5.10 Adjustable BRISK-AGAST and BRISK with FLANN 134
5.11 Adjustable BRISK-AGAST and FREAK with FLANN 137
5.12 Comparison of BRISK-AGAST and Adjustable BRISK-

AGAST Detectors . 140
5.13 Comparison of Brute-Force and FLANN Matchers 145
5.14 Comparison of BRISK, FREAK, and SURF Descriptors 146
5.15 Summary . 148

Chapter 6 Point Cloud Transformation Work 151
6.1 RGB-D SLAM System Map 151
6.2 Method . 152
6.3 Results and Discussion . 160
6.4 Concluding Remarks . 169

Chapter 7 Conclusion . 171
7.1 Summary . 171
7.2 Future Work . 172

References . 173

vi

Chapter 1

Introduction

1.1 Background

In recent years robots have risen greatly in popularity, finding applications in

a number of environments from packing pallets in factories to exploring the

solar system. Two concepts fundamental to the design of robotic applications

working in any environment are those of localization and mapping.

Localization is the process of determining the pose of a robot. Given a map

of the robot’s environment, localization algorithms discover the orientation

of the robot – the direction that it is facing – and its location – the physical

portion of the environment that the robot occupies.

Mapping is the process of creating a map of an environment. Mapping

algorithms make use of the robot’s sensor measurements and known pose

to build a model of the environment describing such things as the position

of landmarks, the location of objects, and the structure of the environment

itself.

Simultaneous Localization and Mapping (SLAM) seeks to solve both the

localization and mapping problems at once. Given a robot at an unknown

pose in an unknown environment, SLAM uses the robot’s sensor measure-

ments to build a map of the environment and localize the robot in this map.

This thesis examines a popular approach to SLAM using RGB-D cameras

such as the Kinect, sensors that record both color images of an environment

and the depth of objects in those images. The RGB-D SLAM System [1] is

utilized to investigate the use of different image features in the estimation

of visual odometry during SLAM. An augmented reality application is also

developed. This program modifies the structure and appearance of a map

generated using the RGB-D SLAM System [1] and generates photo-realistic

views of this map in real time.

1

1.2 Problem Description and Objectives

RGB-D SLAM is developed in [1], [2], and [3] as a GraphSLAM problem.

A pose graph, with each node representing a distinct camera pose, is con-

structed and optimized. Edge constraints that represent the relative change

in pose between nodes are found using visual odometry.

Visual odometry [4],[5],[6] between two camera poses, also known as pair-

wise alignment [2], is found by computing the rigid transformation between

feature points found in the image at one pose and matching features in the

other pose’s image. Pairwise alignment is typically done using slower, more

accurate feature points such as SIFT [7] in [3] and SURF [8] in [1].

The first part of this thesis examines the use of the faster feature detection

systems BRISK [9] and FREAK [10] for visual odometry. A self-tuning

BRISK detector termed the Adjustable BRISK detector is also developed

and tested. The best parameter configuration for each of these features

is determined and their relative efficacy in the pairwise alignment task is

evaluated.

The second part of this thesis details the development of an augmented re-

ality tool using the maps and poses generated by the RGB-D SLAM System.

This application allows users to distort the structure of the mapped envi-

ronment using affine transformations, generating consistent, photo-realistic

views of the distorted environment in real time.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows.

Chapter 2 will introduce and summarize fundamental concepts relating to

tools and algorithms used in this thesis. It is a summary of much of the

background that enabled the work done later in the thesis.

Chapter 3 introduces Simultaneous Localization and Mapping. It discusses

the goals of SLAM and presents some of the core probabilistic SLAM tech-

niques. Approaches to solving SLAM using an RGB-D camera are discussed.

Lastly, the RGB-D SLAM System [1] used in much of this thesis is explained

in detail.

Chapter 4 presents work done to test additional feature detectors, descrip-

2

tor extractors, and feature matchers in the RGB-D SLAM framework. Anal-

ysis of the tunable parameters of these tools is performed and a method of

evaluating the performance of a SLAM algorithm using its discrete trajectory

estimate is presented.

Chapter 5 presents the experimental results for the feature detectors pre-

sented in Chapter 4. Results are discussed and the effects of various pa-

rameters are analyzed. Detection, extraction, and matching techniques are

compared and the best feature detection configuration for visual odometry

is identified.

Chapter 6 presents work done involving map-based scene distortion. A

method of changing the appearance of a scene in a consistent manner is

developed and experimental results are presented.

1.4 Important Terms and Abbreviations

• Adjustable BRISK: A version of the BRISK-AGAST detector devel-

oped in this thesis.

• AGAST: Adaptive and Generic Corner Detection Based on the Accel-

erated Segment Test - A corner feature detector. [11]

• AGAST-BRISK: A version of AGAST used to detect feature points

for the BRISK extractor. [9]

• BRISK: Binary Robust Invariant Scalable Keypoints - A feature de-

tection algorithm which produces binary descriptors. [9]

• brute-force: A descriptor matching algorithm which examines all pos-

sible matches.

• brute-force-Hamming: A brute-force matching algorithm which uses

the Hamming distance measure.

• brute-force-SSE3: A brute-force matching algorithm which measures

Hamming distance in 1 byte increments. [10]

• FLANN: Fast Library for Approximate Nearest Neighbors - A match-

ing algorithm for feature descriptors. [12]

3

• FLANN-LSH: A FLANN detector which measures distance using the

Hamming distance function. [13] [12]

• FREAK: Fast Retina Keypoints - A feature detection algorithm sim-

ilar to BRISK which also produces binary descriptors. [10]

• ICP: Iterative Closest Point. A point alignment algorithm. [14]

• NMS: Non-maxima Suppression - A method of selecting local maxima

pixels in an image or scale-pyramid. In the context of AGAST, this

method selects local maxima that are unique, ensuring that selected

pixels have a greater intensity or score than all other neighboring pixels.

• RANSAC: Random Sampling and Consensus - A model fitting algo-

rithm for data with outliers. [15]

• RGB: Red Green Blue, often referring to an image with red, green,

and blue color channels.

• RGB-D: Red Green Blue Depth, often referring to a pair of RGB

and depth images, where the depth image gives the depth of the cor-

responding RGB pixel.

• RGB-D SLAM: The RGB-D camera based SLAM algorithm developed

at the University of Freiburg that is experimented with in thesis. [1]

• SIFT: Scale Invariant Feature Transform - A popular feature detection

algorithm developed by Lowe. [7]

• SLAM: Simultaneous Localization and Mapping

• SURF: Speeded-Up Robust Features - A popular feature detection

algorithm making use of Harr wavelets. [8]

4

Chapter 2

General Concepts

2.1 Chapter Summary

This chapter serves as a catch-all for the techniques and mathematical con-

cepts that do not fall under the umbrella of SLAM (Chapter 3). Each section

explains the related concept in sufficient detail to enable reader to under-

stand its application in other parts of the thesis. Each section also serves as

a primer on its subject for future reference. It explains the fundamentals of

the concept and cites useful related works for a deeper discussion.

2.2 Notation

The following notations and conventions will be used in this thesis:

• Variables written in bold lower-case represent vectors.

• Variables written in bold upper-case represent matrices.

• Matrix elements will be referred to in row, column order. Pairs of

trailing subscripts may be used to indicate subsets of a matrix.

A 6× 8 matrix, M, is one with six rows and eight columns.

Mi,j is the element of the matrix located at the ith row and jth column.

M3:5,4:6 is the submatrix of M located between rows 3 and 5 and

columns 4 and 6.

• Reference frame is indicated in the style of [16], using leading super-

scripts and subscripts.

• The coordinate frame in which a variable is expressed is indicated by

the leading superscript.

5

• The leading subscript indicates the source coordinate frame, when

transforming between two reference frames.

• Trailing superscripts indicate inverse and transpose operations.

As an example, consider a point v and two coordinate systems C1 and C2.
C1v gives the location of v in C1, and C2v is the location in C2 coordinates.

The transformation C1
C2T relates the two coordinate systems such that:

C1v = C1
C2T

C2v

The relation between C1
C2T and C2

C1T can be expressed as:

C1
C2T = C2

C1T
−1

The superscript T indicates the transpose of a matrix:

C2
C1T

T

2.3 ROS and OpenCV

OpenCV [17] and ROS [18] are two powerful software tools used in this

thesis. The Robotic Operating System (ROS) creates a modular framework

for programs to perform I/O operations and interact. Using ROS it is a

simple matter to switch between real time sensor data, prerecorded data,

and simulated sensor data as inputs to a program. Furthermore, ROS has

modules which perform much of the low level driver work for interfacing with

sensors. Using ROS, interfacing with a Kinect is as simple as booting up the

related driver and “subscribing” to the “topic” Kinect images are published

on.

OpenCV is a library of common computer vision algorithms created for

C++ and Python. OpenCV contains classes and functions which handle

much of the low level work associated with modifying and displaying images.

The library contains a number of the most common algorithms for filtering

images and detecting and working with interest points. There is also a wealth

of algorithms performing higher level tasks such as camera calibration, object

detection, and 3-D reconstruction.

6

2.4 Coordinate Frames, Transformations, and Pose

2.4.1 Coordinate Frames

In many applications of robotics it is useful and necessary to describe the

position of objects in an environment both absolutely and relative to each

other. Coordinate frames provide a useful language with which to do so.

This thesis will deal primarily in a three-dimensional space of real numbers

R3, and with 3-D coordinate frames describing it.

These coordinate frames can be considered as bases for a three-dimensional

vector space R3 that we wish to describe. Each basis is made up of three

3 × 1 vectors 〈b1,b2,b3〉 [19]. These vectors are linearly independent and

span R3, meaning each point in R3 is described by a single and unique com-

bination of the scaled vectors. Additionally, these vectors are constrained to

be orthonormal, meaning they are of unit length ||bi|| = 1, i ∈ 1 . . . 3 and

mutually orthogonal bi ·bj = 0; i 6= j; i, j ∈ 1 . . . 3. This constraint simplifies

the calculation of transformations relating two coordinate frames.

In accordance with ROS conventions [20], these coordinate frames are or-

ganized so that each axis, pointing in the direction of the corresponding

basis vector, is ordered in a forward-left-up format, with the x axis pointing

forward, the y axis pointing left, and the z axis pointing up. These coor-

dinate systems are right-handed, meaning they satisfy the right hand rule

for determining the orientation of cross products. The right hand rule states

that, for vectors u and v, the resulting cross product u× v will point in the

direction of the thumb of a right hand, when that hand is aligned with u

and curled toward v. Right-handed coordinate systems satisfy the property

b1 × b2 = b3.

2.4.2 Transformations between Coordinate Frames

The relationship between two coordinate frames can be expressed in terms

of the angles between their corresponding axes and the relative locations of

their origins. Section 2.2 of [16] has an excellent explanation of describing one

coordinate system B = 〈xB,yB, zB〉 in terms of another A = 〈xA,yA, zA〉,
using the rotation matrix A

BR and the translation term A
Bρ.

The basis vectors of B, xB , yB , and zB, can be expressed in terms of A

7

by projecting them onto each of A’s basis vectors. Equation (2.1) illustrates

this process for xB.

AxB =

 xB · xA
xB · yA
xB · zA

 (2.1)

Organizing these projections columnwise yields the rotation matrix A
BR

that describes B relative to A. This rotation matrix, expanded in Equation

(2.2), is known as the direction cosine matrix, as the dot product between

two unit vectors is equal to the cosine of the angle between them. The rota-

tion matrix describes the difference in orientation between the two reference

frames. The translation term A
Bρ simply gives the location of the origin of B

in terms of A.

A
BR =

[
AxB

AyB
AzB

]
=

 xB · xA yB · xA zB · xA
xB · yA yB · yA zB · yA
xB · zA yB · zA zB · zA

 (2.2)

Equation (2.3) shows how the terms
〈
A
BR,AB ρ

〉
can be used to express a

point described in the B coordinate frame, Bd, in terms of A.

Ad =A
B R Bd + A

Bρ (2.3)

2.4.3 Homogeneous Coordinates

Homogeneous coordinates are frequently used in the field of computer vision

for tasks such as transformation and projection. Typically used with 2-D

and 3-D space, homogeneous coordinates represent a point using one more

dimension than that of the point. A 2-D vector
[
u v

]T
is represented in

homogeneous coordinates by
[
u v 1

]T
, and a 3-D vector

[
x y z

]T
is

represented by
[
x y z 1

]T
.

Homogeneous coordinates are only uniquely defined up to a scale factor.

8

Scalar multiples of homogeneous vectors are considered equal.
x

y

z

w

 = α


x

y

z

w

 =


x
w
y
w
z
w

1


Equation (2.4) demonstrates conversion to homogeneous coordinates. A

vector p is converted into a vector in homogeneous coordinates ph by ap-

pending a one to the end of the vector.

p =

[
u

v

]
ph =

uv
1

 (2.4)

For a given n × n matrix M operating on the vector b, an equivalent

matrix Mh that operates on the vector bh in homogeneous coordinates can

be obtained by appending a row and column of zeros to the matrix and

setting Mh(n,n) to 1. This process is demonstrated in Equation (2.5).

b = Ma a =

[
1

2

]
M =

[
2 3

4 5

]
b =

[
8

14

]

bh = Mhah ah =

1

2

1

 Mh =

2 3 0

4 5 0

0 0 1

 b =

 8

14

1

 (2.5)

A vector in homogeneous coordinates ch can be converted to one in normal

coordinates c by normalizing the homogeneous vector to c̄h and then post-

multiplying it with the transform S2 for the 2-D case and S3 for the 3-D case,

as seen in Equation (2.6).

S2 =

[
1 0 0

0 1 0

]
S3 =

1 0 0 0

0 1 0 0

0 0 1 0


ch =

1

2

5

 c̄h =
(

1
ch(3,1)

ch

)
=

0.2

0.4

1

 c = S2c̄h =

[
0.2

0.4

] (2.6)

9

Note that normalizing a homogeneous vector has a meaning apart from

typical normalization. Here the vector is not scaled so that the magnitude of

the normalized vector is 1; rather the vector is scaled so that the last element

of the vector is 1.

Homogeneous coordinates are useful for writing compact equations that

combine translation and rotation operations. Equation (2.3) is expressed

more succinctly in homogeneous coordinates in Equation (2.7).

Adh = A
BT Bdh (2.7)

The components of this equation are made explicit in Equation (2.8). The

4 × 4 homogeneous transformation matrix is a composition of the rotation

matrix and translation vector. The first 3 × 3 elements are the rotation

matrix.
A
BT(1:3,1:3) = A

BR

The last column is the homogeneous version of the translation vector.

A
BT1:4,4 = A

Bρh =

[
A
Bρ

1

]

The remaining elements of the transformation matrix are all zeros.

A
BT4,1:3 =

[
0 0 0

]
[
Ad

1

]
=

[
A
BR A

Bρ

0 0 0 1

][
Bd

1

]
(2.8)

2.4.4 Pose

An object’s pose describes its position in space relative to an external refer-

ence frame. The pose can be broken down into two components – its location

and its orientation [21]. An object’s location describes its position relative

to the origin of the reference frame. Its orientation describes the direction in

which the object is pointing.

Pose representation is typically approached by rigidly fixing a reference

frame to the object in question. The pose of the object relative to an external

10

reference frame is expressed as the transformation between the corresponding

frames [16].

There are several approaches to representing pose as a transformation be-

tween the object frame C and the external frame W . In [21] pose is repre-

sented with a 6× 1 vector.[
tx ty tz ψ θ φ

]T
Here x, y, and z are the location of the origin of C in W coordinates.[

tx ty tz
]T

= W
C ρ

The yaw, pitch, and roll angles ψ, θ, and φ specify rotation about the Wz,
Wy,and Wx axes respectively in order to obtain C.

ROS represents the pose of C in W as the translation from the origin of

W to the origin of C and the rotation of the axes of C in W [20]. The

rotation term is given in quaternion format, which essentially specifies a

vector about which to rotate and an angle to rotate, in order to obtain the

desired orientation. Quaternions will be discussed in greater depth in Section

2.7.

The complete pose in ROS is represented as a 6× 1 vector.[
tx ty tz w x y z

]T
Here tx, ty, and tz are the translation terms and w, x, y, and z are the

quaternion terms.

The book [16] and paper [1] represent pose using a direction cosine matrix

and a translation term. In accordance with Equation (2.3), the pose would

be given by the pair
〈
W
C R, W

C ρ
〉
.

This thesis will primarily use a quaternion based notation
〈
W
C Q, W

C ρ
〉
,

where the quaternion W
C Q describes the rotational component of the rigid

transformation representing the pose and W
C ρ gives the translational compo-

nent. For more details on quaternions refer to Section 2.7.

In certain circumstances, an alternate notation T will be used as a pose

representation for compactness and clarity. The transformation T is a homo-

geneous transformation matrix with the format described in Equation (2.8).

11

This transformation representation is equivalent to the quaternion based rep-

resentation 〈Q,ρ〉.
T⇔ 〈Q,ρ〉

2.4.5 Useful References

The linear algebra course notes [19] provide an excellent and succinct expla-

nation of vector spaces and coordinate systems. The book [21] gives a brief

overview of robot pose, but limits applications to planar robots and their

2-D poses. Chapter 1 of [16] provides a fairly detailed explanation of robot

pose and dynamics. Chapter 2 details coordinate frames, transformations,

and their representations in excellent detail.

2.5 3-D Projection

3-D projection provides the mathematical framework with which we can

model the imaging process of a camera. In the context of this thesis, 3-

D projection will be considered as any method that maps a point in 3-D

space onto a 2-D plane in that space. This section will present information

essential to an understanding of projection and the imaging process.

First, the fundamentals of projection and imaging will be explained in

the context of basic orthographic projection and the orthographic camera

model. The pinhole camera model will then be introduced, and perspective

projection will be explained. Transformation from 3-D world coordinates to

2-D image coordinates will also be discussed. Finally, “inverse perspective

projection” will be presented, where pixels in an image with known depth

are reconstructed in three-dimensional space to form a point cloud.

2.5.1 Orthographic Camera Model

The orthographic camera model is one of the most basic camera models. It

maps objects in a scene directly onto the imaging plane, without changing

their vertical or horizontal position relative to the plane or their size. Objects

imaged using the orthographic model appear the same size, regardless of their

distance from the camera. Although the orthographic model is generally

12

inferior to the pinhole camera model discussed later in this section, it is

useful when the camera is at an approximately constant distance from all

objects in the scene [22]. Examples of such cases include aerial and satellite

photography. The projection method utilized by the orthographic camera

model is orthographic projection.

2.5.2 Orthographic Projection

Orthographic projection is inspired by the orthographic camera model. It

is a form of affine projection where distance and the ratio of distances are

preserved along axes orthogonal to the projection axis. Any information

encoded along the projection axis is lost in entirety. The term “orthographic

projection” comes from the orthogonal relationship between the projection

lines and the plane of projection.

For this explanation, orthographic projection of a 3-D point Cp onto a

plane CL will be considered. The point Cp and plane CL are defined relative

to a camera frame C, with axes in the direction of the basis vectors Cx, Cy,

and Cz. To simplify calculations, CL is defined to be a distance zo from the

origin, such that, given in point-normal form, the plane contains the point

(0, 0, zo) and the camera frame basis vector Cz is normal to it. If this is not

the case in practice, it is a simple matter to define a new reference frame Ĉ

with the relationship Ĉp = Ĉ
CD Cp, such that the above property holds for

Ĉ. Points would then be transformed into this new frame prior to projection.

The orthographic projection Cp′ of Cp onto CL is formed according to

Equation (2.9). The 3-D points Cp and Cp′ and the orthographic projection

matrix O are defined in homogeneous coordinates.

Cp′ = O Cp (2.9)

Cp =


px

py

pz

1

 , O =


1 0 0 0

0 1 0 0

0 0 0 zo

0 0 0 1

 , Cp′ =


p′x

p′y

zo

1


As previously mentioned, orthographic projection and the orthographic

camera model work fairly well in scenes that do not have much variety in

13

depth. When there are significant differences in the relative depth of objects,

images generated using the orthographic model appear unrealistic. The pin-

hole camera model and its associated perspective projection method produce

much better results in such cases.

2.5.3 The Pinhole Camera Model

The pinhole camera model is an imaging model more in line with a human

being’s perception of depth. Objects imaged using the pinhole camera model

appear smaller as their depth in the scene increases. The pinhole camera

model assumes all light used to form an image passes through a single central

point – the pinhole of the camera. Light passing through the pinhole reflects

off the imaging plane and an inverse image of the scene is formed. Since

light in this model travels in a straight line through the pinhole, and the

focal length, the shortest distance between the pinhole and imaging plane, is

typically much less than the depth of objects in the scene, a projected point

lying on the image plane will generally be at a much smaller vertical and

horizontal distance from the pinhole than the point’s real world counterpart.

As an object moves closer to the image, the angle between the projecting light

rays and the imaging plane decreases and projected points appear farther

away from the optical center of the image. This has the net effect of making

an imaged object appear larger as its scene depth decreases.

2.5.4 Perspective Projection

The pinhole camera model inspires the perspective projection technique. In

perspective projection, the location of a point projected onto a plane is scaled

by its depth. This explanation will detail the projection of a 3-D point Cp

onto a plane CL in the camera frame C, forming the projected point Cp′. The

plane CL is orthogonal to the z axis and contains the point (0, 0, zo). Equa-

tions and points are given in homogeneous coordinates, using homogeneous

14

vectors to represent points.

Cp =


px

py

pz

1

 , Cp′ =


p′x

p′y

zo

1


Perspective projection of a point Cp depends on the depth pz in addition to

the lateral position px and height py. The horizontal and vertical locations

of Cp′ are inversely proportional to pz. The x and y components px and

py move closer to the optical center (0, 0, zo) as the depth of the point in

the scene pz increases. This relationship is formalized in the perspective

formula equation given Equation (2.10) and the homogeneous normalization

in Equation (2.11).

Cp′h = Dp
Cp (2.10)

Cp′h =


p′hx
p′hy
p′hz
w

 =


px

py

pz
pz
zo

 , Dp =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
zo

0



Cp′ =
1

w
Cp′h =

1

w


px

py

pz
pz
zo

 =


pxzo
pz
pyzo
pz

zo

1

 (2.11)

Perspective projection is often presented in a form that encapsulates a

transformation from the 3-D camera frame C to the 2-D image frame I. This

allows for direct conversion from world coordinates to image coordinates in

one step. In this form, CL is called the normalized image plane and is defined

to be a unit distance from the origin, such that zo = 1. Substituting zo = 1

into Equation (2.11) yields the simplified form in Equation (2.12).

Cp′(zo = 1) =


px
pz
py
pz

1

1

 =


p′x

p′y

1

1

 (2.12)

15

The intrinsic calibration matrix of the camera I
CK is the transformation

from points on the normalized image plane in C to the image frame I. The

intrinsic calibration matrix for the Kinect’s RGB camera is given in Equation

(2.13). This model allows for rectangular pixels of width lu and height lv on

the normalized image plane. A translated origin is also made possible with

the uo and vo terms, where
[
uo vo 1

]T
is the location of the camera frame

origin in image coordinates.

I
CK =

lu 0 uo

0 lv vo

0 0 1

 (2.13)

The transformation from 3-D homogeneous coordinates in C to 2-D ho-

mogeneous coordinates in I is given in Equation (2.14).

Lp′ =
[
I
CK 0

]
Cp′ (2.14)

Lp′ =

p
′
u

p′v

1

 , Cp′ =


p′x

p′y

1

1


Combining the Kinect calibration matrix with perspective projection given

in Equation (2.10) and the transformation in Equation (2.14) yields the per-

spective projection formula in its standard form in Equation (2.15). Homo-

geneously normalizing Equation (2.15) yields Equation (2.17).

Lp′h =
[
I
CK 0

]
Cp′h

=

lu 0 uo 0

0 lv vo 0

0 0 1 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0



px

py

pz

1


=

p
′
hu

p′hv
w

 =

lupx + pzuo

lvpy + pzvo

pz

 (2.15)

16

Lp′ =
1

w
Lp′h (2.16)

=


lupx
pz

+ uo

lvpy
pz

+ vo

1

 (2.17)

Perspective projection is used in this thesis to generate 2-D images from

the point cloud maps produced by the RGB-D SLAM System.

2.5.5 Inverse Perspective Projection

Range sensors such as the Kinect can produce range images using perspective

projection. Rather than RGB color intensities, range image pixels record the

depth pz of the scene along the projection lines. It is possible to recover the

original structure of the imaged scene using these range images and inverse

perspective projection. Using the intrinsic camera matrix I
CK, inverse per-

spective projection estimates the original location in C for each point in the

image frame I.

The equation governing inverse perspective projection and the transfor-

mation from I to C, Equation (2.18), can be recovered by solving Equation

(2.17) for px and py. Here, a pixel Ip′ is transformed into the camera frame

C and reconstructed in 3-D space to form the point Cp. Using inverse per-

spective projection on every pixel in the range image produces a 3-D point

cloud.

Cp =


px

py

pz

1

 =



pz
lu

(pu − uo)

pz
lv

(pv − vo)

pz

1

 (2.18)

In cases where both color and range images have been recorded and the

transformation I
DD from the depth image frame D to the image frame I is

known, colored point clouds can be created.

17

First a registered range image is generated. This registered range image

expresses the depth measurements in the color image’s coordinate frame.

Pixels in the camera image with available range data are then reconstructed

in the color camera world frame using Equation (2.18). In the result of each

projection
〈
Cp, (r, g, b)

〉
, Cp is the location of the point in C, and (r, g, b) are

the red, green, and blue color intensities.

Inverse perspective projection is frequently used with the Kinect and simi-

lar sensors. The resulting point clouds play a vital role in the visual odometry

measured by most SLAM systems that use an RGB-D camera.

2.5.6 Useful References

Chapters 1 and 2 of [22] provide an excellent and much more thorough expla-

nation of orthographic and perspective projection as well as other projection

methods such as weak-perspective projection and paraperspective projection.

Rich camera models are also developed that model lenses and even the hu-

man eye. Perspective projection is discussed in Section 1.4 of [23]. Camera

models are discussed in Section 1.5 of [23].

2.6 Interest Points

Interest points or feature points are one of the fundamental tools of computer

vision. In essence, interest point detection systems are tools for reducing

the dimensionality of an image and summarizing it. These systems take

an image, select distinct and identifiable components, and describe those

components in a manner that facilitates comparison with other images. An

image containing thousands or millions of data points (pixels), each with a

rather uninformative description, is reduced to tens or hundreds of interest

points with much more informative descriptions. Pixels with five associated

values in the form of position and color intensity, are replaced by feature

descriptors consisting of hundreds of values describing local image properties.

Interest points find their way into almost all corners of computer vision.

Some applications of note are 3-D modeling [24], scene description [25], object

detection [26], tracking [27], and image stitching [28].

18

Typical use of interest points can be broken into three main stages: detec-

tion, extraction, and matching. The detection process takes an image and

outputs a list of feature locations. Extraction takes those feature locations

and creates a “fingerprint” of each one using local image properties. The

matcher takes two or more sets of descriptors and identifies which descrip-

tors in one set are similar to a descriptor in the other set. Each of these

processes will be explained in this section and interest point retrieval will be

detailed for the BRISK [9] and FREAK [10] methods.

2.6.1 Characteristics of Good Interest Point

Exactly what makes a good interest point is a difficult question to answer.

What is desired in an interest point varies based on the application. Proper-

ties that are valuable in some cases might be unimportant or even detrimental

in others. However, there are some properties that are useful in most cases

and are certainly worth considering.

• Rotational and translational invariance - A feature that is detected in

one image should also be detected in a rotated or translated version of

that image. Interest points are often used to match different pictures

taken of the same scene. Movement of the camera parallel to the pro-

jection plane should not have a significant impact on what features are

detected.

• Perspective invariance - A similar but much more elusive goal is per-

spective invariance. Here, it is desired that the detected features and

their descriptors should not vary with changes in perspective as the

camera moves throughout the scene. An object viewed from different

camera poses should produce similar interest points and descriptors.

• Scale invariance - The same features should be selected in a scene

regardless of the scale. Objects become smaller in an image as they

move farther from the camera. If an object contains features when it is

close to the camera, those same features should be detected at a greater

distance as well.

• Robustness to noise - Interest points and descriptors should be robust

to noise. Introducing noise into an image should not change which

19

features are detected. Likewise, a feature’s descriptor should not change

much as noise is introduced into the image. Furthermore, introducing

small amounts of noise into the descriptor should not significantly alter

matching results.

• Robustness to lighting - The intensities of pixels in an image vary with

the amount of light present in a scene. It is desirable that the same

features are selected regardless of the amount of ambient light. This

has applications to object matching and tracking, where detection of

the same object may be desired at day or night.

• Computation and matching time - The amount of time allowed to com-

pute a set of interest points varies with the application. Real time

applications operating at 30 frames per second (fps) might require sim-

pler interest points than offline problems.

• Memory - Although this is not a typical problem, embedded applica-

tions or large datasets may necessitate fewer features or smaller de-

scriptors in order to satisfy physical memory constraints.

2.6.2 Detectors

An interest point detector takes an image and outputs a set of feature points

F = {f1, f2, . . . } found in that image. Each feature point consists of a

location in the image (u, v) and, optionally, a feature scale σ. The scale is

the location of the feature in a scale pyramid, a stack of versions of the image

that are increasingly more blurred and downsampled.

2.6.3 Extractors

Descriptor extractors take a set of interest point locations F and construct

a descriptor yi for each interest point fi. This descriptor “describes” the

appearance of its feature point using local image properties such as pixel

intensities or gradient magnitudes. The two main descriptor categories dis-

cussed in this thesis are binary descriptors and real valued descriptors.

A binary descriptor is formed by comparing pixel patches sampled using

a predefined pattern around an interest point. Each bit in the descriptor

20

records the result of a patch comparison, indicating which of a pair of patches

is brighter.

Real valued descriptors consist of a vector of real numbers. SIFT [7] and

SURF [8], two popular interest point solutions which use real valued de-

scriptors, build their descriptors using multiple 2-D histograms, with each

histogram sampling a patch near the interest point.

Binary descriptors are typically chosen for their rapid extraction and match-

ing speeds. Real valued descriptors usually create a more accurate descrip-

tion of the interest point and produce more accurate matches at the cost of

additional run time.

2.6.4 Matching

When speaking of distances and interest points, there are two main notions

of distance. Distance between interest points typically refers to a Euclidean

distance describing the difference in location in the image between two in-

terest points. Distance between descriptors refers to a measure of similarity

between descriptors. The smaller the distance between descriptors, the more

similar the surroundings of the interest points used to generate the descrip-

tors. Matchers use the distances between descriptors to establish correspon-

dences between their associated interest points.

An interest point matcher identifies matching interest points in two images

by examining their descriptors. It examines two sets of descriptors, a query

set Y that is the set being matched, and a training set T that the matches

are drawn from. The k nearest descriptors in T are found for each query

descriptor in Y according to the distance function ∆(y, t). It should be

noted that these matches are one-way. The fact that a descriptor t is the

best match in T for a query descriptor y1 does not mean there cannot be an

even closer query descriptor y2 with is a better match for t.

The matching process where the set of k matches T̂ is found for a query

descriptor y is expressed more formally in Equation (2.19), where ∆(y, t) is

the distance function used to measure distance between two descriptors y

and t.

Y = {y1,y2, . . .ym}

21

For each y` ∈ Y we have:

T̂` = {t̂1, t̂2, . . . , t̂k} (2.19)

t̂1 = argmin

t∈T

∆(y`, t)

t̂2 = argmin

t∈T\{t̂1}

∆(y`, t)

...

t̂k = argmin

t∈T\{t̂1···∪t̂k−1}

∆(y`, t)

2.6.4.1 Distance Function

The distance function ∆(y, t) used during the matching process depends on

the type of descriptor supplied. The two most popular distance measures are

Hamming distance for use with binary descriptors and squared Euclidean

distance for use with real valued descriptors. They are detailed here for

descriptors of size n.

• Binary Descriptors - Distance between binary descriptors such as those

in BRISK and FREAK is measured using Hamming distance. The

Hamming distance is a measure of dissimilarity between two bit strings.

It is found by performing an element by element comparison of the two

bit strings and counting the number of instances where the strings do

not match. This is equivalent to XORing the two descriptors and then

counting the number of ones. The Hamming distance equation is given

in Equation (2.20).

∆hamming(y, t) =
n∑
i=1

yi ⊕ ti =
n∑
i=1

b(yi, ti) (2.20)

Here, b(x, y) indicates bit inequality, and yi and ti are the i-th bits in

the descriptors y and t, respectively.

b(x, y) =

{
1 x 6= y

0 x = y

22

• Real Valued Descriptors - Distance between SIFT or SURF descriptors

is found by computing the squared euclidean distance. The distance

equation for these descriptors is given in Equation (2.21). A squared

distance metric is preferred. For purposes of comparison, typical Eu-

clidean distance measures provide no addition information of use while

requiring a time-consuming square root operation in each measurement.

∆Euclidean(y, t) = ||y− t||2 =
n∑
i=1

(yi − ti)2 (2.21)

2.6.4.2 Popular Matchers

Finding the candidate matches is a challenge in itself. Two popular search

methods are brute-force and FLANN. Brute-force is an exhaustive search

where the distance between every query descriptor and every training de-

scriptor is considered. This approach is suitable when there is a small num-

ber of features or the distance metric is fast to compute. As the number of

features increases, the number of comparisons grows with the square of the

number of features and brute-force is no longer useful.

FLANN (Fast Library for Approximate Nearest Neighbor) [12] is a tree

based method that is valuable when the search space is large. It organizes

the training descriptors into a k-d tree, so that large groups of descriptors

can be eliminated with one comparison [12]. FLANN does not guarantee to

find the absolute nearest neighbor, but will produce a good candidate at a

much more rapid speed for large datasets. For values of k larger than one,

T̂ is populated by examining leaves neighboring the approximate nearest

neighbor.

The FLANN method produces only approximate nearest neighbors. This

will result in a larger number of mismatches than the brute-force method.

Whether this is an acceptable trade-off for the run time gains is dependent

upon the application, however there are methods of mitigating the additional

risk. All matches should be filtered to remove poor matches. Using a stricter

filtering criterion, it is possible to reduce the chance of accepting an incorrect

match at the cost of an increased rejection rate for correct matches.

23

2.6.4.3 Match Filtering

The descriptor matcher algorithms do not allow for the possibility of no

match being found. As long as there are at least k descriptors in the training

set, matches will be returned. This approach does not reflect the reality of

images, where it is very possible for an object and the features representing

it to move out of frame. To allow for this possibility, matching descriptors

are filtered using their measured distances.

Two popular filtering approaches will be discussed here. An approach that

filters using only the distance between the query descriptor and its nearest

match is referred to as the 1-nn method. The second approach, the 2-nn

method, examines the ratio of distances between the nearest and second

nearest training descriptor matches for each query descriptor. The nearest

neighbor or 1-nn method is a simple approach useful for first pass work with

a new descriptor, while the 2-nn method requires a more complex search, but

is better at rejecting bad matches and is more frequently used in practice.

For the purposes of these explanations, filtering of a single match with

query descriptor y and a set of training descriptor matches T̂ , as defined in

Equation (2.19), will be considered. The distance between the i-th training

descriptor match t̂i and the query descriptor y will be given as ∆(y, t̂i).

Recall that t̂1 is the best match for y, t̂2 is the second best, and so on. The

final match result will be given by t̄ where a null value indicates that no

suitable match was found.

The 1-nn method examines the nearest descriptor t̂1 with distance ∆(y, t̂1)

and performs a thresholding operation. If ∆(y, t̂1) is less than a threshold

τ1, then the match is considered good and t̄ is set to t̂1 . If it is not within

the threshold or no nearest neighbor is found at all, then y is considered

unmatched. Equation (2.22) expresses this formally.

t̄ =

{
t̂1 ∆(y, t̂1) < τ1

∅ otherwise
(2.22)

The 2-nn method requires additional search, but reduces the likelihood of

an erroneous match. It examines the two nearest descriptors t̂1 and t̂2 with

distances ∆(y, t̂1) and ∆(y, t̂2) satisfying ∆(y, t̂1) ≤ ∆(y, t̂2). The method

24

examines the ratio of distances r between these two matches.

r =
∆(y, t̂1)

∆(y, t̂2)
∈ (0, 1]

The value of r provides information indicative of the quality of the match

candidate t̂1. If r is small, then t̂1 is a much better match than t̂2 and a

clear favorite, whereas as r approaches one, both candidates are of roughly

equal quality. This indicates that either the feature in question is not visually

distinct in the training set T , or it is not represented in T at all. In either case,

a small amount of noise in the descriptor could change the matching result,

so the quality of the match is suspect and the feature is left unmatched.

In practice, this filtering is performed by comparison with a user defined

threshold τ2. If r is less than τ2 then the match is good. The 2-nn filter

operation is given in Equation (2.23).

t̄ =

{
t̂1 ∆(y, t̂1) < τ2∆(y, t̂2)

∅ otherwise
(2.23)

The threshold τ1 is not considered in the 2-nn method. This is done to

give robustness to the matcher. It is argued that as long as r is small, then

that match is unique and a suitable choice. For a more complete discussion

of this 2-nn method refer to the SIFT paper [7] that describes this filtering

technique.

2.6.5 AGAST, BRISK, and FREAK

Both BRISK and FREAK make use of a modified version of the AGAST

detector that searches space and scale for “corner-like” features and supplies

their locations (u, v, σ) to sub-pixel precision. The interest points are de-

scribed with binary descriptors created by comparing the intensity of image

patches surrounding the feature. The patch sampling pattern, descriptor or-

der, and matching scheme differ between BRISK and FREAK, although both

use a Hamming distance metric. Both methods claim excellent rotational and

scale invariance.

25

Figure 2.1: USAN kernel applied to various points. Figure from [31].

2.6.5.1 BRISK-AGAST Detector

The BRISK and FREAK systems make use of the BRISK-AGAST feature

detector, a custom version of the Adaptive and Generalized Accelerated Seg-

ment Test (AGAST) specialized for use with the BRISK descriptor. AGAST

[11] and its predecessor FAST [29] [30] were inspired by SUSAN [31] and

its Univalue Segment Assimilating Nucleus (USAN) type edge detector. In

essence, the SUSAN detector identifies points which are dissimilar from their

surrounding. The intensity of a candidate interest point is compared to the

intensities of pixels located inside of a circular kernel about that point. If

a sufficient number of pixels are all much darker or lighter than the point

under consideration, then that point is chosen as a SUSAN interest point.

Figure 2.1 is illustrative of the principle. Points like e and d, where the

majority of pixels in the kernel were of similar intensity as the center point,

would not be taken as interest points, whereas points like a and b would.

AGAST and FAST operate on the Accelerate Segment Test (AST) princi-

ple, an approach similar in concept to USAN. In the AST test only the pixels

lying on the edge of the kernel are considered. If there is a sufficient number

of contiguous pixels which are all darker or all brighter than the center point

by at least a threshold t, then that center point is taken as an interest point.

26

Considered in this manner, points a and d in Figure 2.1 would be corner

features, whereas points such as b and c would not. By examining certain

pixels on the edge of the circle first, candidate feature points can be rapidly

disqualified with a small number of comparisons.

The BRISK-AGAST implementation searches across space and scale for

maxmimal AST features according to their FAST score s, given in Equation

(2.24). Here, L(x) denotes the intensity of the pixel x. The sets Sbright and

Sdark are the sets of pixels taken from the Bresenham circle B about c which

are all brighter or darker than c by at least t. The Bresenham circle B is

a discrete approximation of a circle at a fixed radius from c. The pixels

b ∈ B lie along the circumference of this circle. The set Sunkown is the set of

Bresenham circle pixels that are not found in Sbright or Sdark. All three sets

are detailed in Equation (2.25).

s(c) = max

 ∑
b∈Sbright

|L(b)− L(c)| − t,
∑

b∈Sdark

|L(c)− L(b)| − t

 (2.24)

Sbright = {b |b ∈ B,L(b)− L(c) > t}

Sdark = {b |b ∈ B,b− c < −t}

Sunkown = B − (Sbright + Sdark) (2.25)

A non-maxima suppression (NMS) algorithm is used to find these points.

The scores are computed using the FAST 9-16 metric, with minimum segment

length of nine and a Bresenham circle of radius three, giving a circumference

of 16 pixels. The scale space is composed of o octave levels ci and intra-

octave levels di i = 0 . . . o− 1. An octave or intra-octave level is a version of

the original image scaled and downsampled according to the octave’s scale.

The first octave level c0 is the original image and subsequent octave levels are

found by half sampling the preceding octave level. The first intra-octave level

d0 is found by downsampling c0 by 1.5 and subsequent intra-octave levels are

half samples of the previous intra-octave level.

The location of the feature point (x, y, σ) is refined to sub-pixel coordinates

by finding the refinement terms ∆x, ∆y and ∆σ, so that the final location

of the interest point is given by (x̄, ȳ, σ̄) = (x + ∆x, y + ∆y, σ∆σ). The

27

sub-pixel coordinates are found by estimating the location of the maximum

FAST-9-16 score near the interest point using its neighboring 26 pixels.

This is accomplished in three steps. First, a maximum FAST-9-16 score

and its location are estimated at each of the three octave levels surrounding

σ. A 2-D quadratic is fit to the nine nearest pixels on each of these octave

levels and its critical point, the maximum local FAST score at that octave

level, is found. The locations of the maximum scores are given by ∆x′−1,

∆x′0, and ∆x′1, where the subscript indicates the position of the octave level

relative to σ. The FAST score maxima are given by s′−1, s′0, and s′1.

Next, the maximum score across all 27 pixels is found by fitting a 1-D

parabola to the three maxima and their locations found in the first step.

The peak of this parabola is the maximum score and the location of the peak

is the scale refinement term ∆σ.

Last, the sub-pixel refinements ∆x and ∆y are found by estimating the

location in space of the maximum score found in the second step. This

is accomplished using 2-D interpolation to interpolate between the location

of the two maxima found in step 1 corresponding to the two octave levels

surrounding ∆σ. The interpolation weight is found using the scale refinement

term ∆σ.

2.6.5.2 BRISK Descriptor

The BRISK descriptor [9] is a binary descriptor constructed by comparing

image intensities sampled at locations surrounding the interest point. The

descriptor is both rotation-normalized and scale-normalized, meaning that

changing the orientation and size of an image should not change the descrip-

tors extracted from it. The implementation of the BRISK descriptor used in

OpenCV [17] is built using a 60 point sampling pattern shown in Figure 2.2.

The first step in the descriptor construction process is computing an ori-

entation α for the interest point. This orientation describes the direction

that the interest point is pointing relative to the image’s u axis. Orientation

plays a vital role in providing rotational invariance to the interest point. By

constructing the descriptor relative to the orientation, similar descriptors can

be formed for the same interest point found in multiple images, even if there

is a large amount of rotation about the imaging axis between these images.

The orientation of the interest point is found using the mean gradient

28

Figure 2.2: The BRISK sampling pattern from [9]. The blue circle denotes
the location of a sampling point and the red dashed circle indicates the size
of the Gaussian kernel used to measure the sample’s intensity.

29

ḡ, which will be explained in a following paragraph. The sampling pattern

shown in Figure (2.2) is scaled by the interest point’s scale σ̄ and the gradient

for each long point pair (pi,pj) is found. These pairs are points in the

sampling pattern with a distance greater than δmin. The set of all such

points are collectively referred to as the long point pair set L. The values

δmin and δmax can be specified by the user, but are typically left at the default

of 5.85σ and 8.2σ, respectively.

L = {(pi,pj) | ||pj − pi|| > δmin = 5.85σ̄}

The gradient for each of these long point pairs is computed using Equation

(2.26). In this equation, the term Υ (p, β) is the smoothed intensity obtained

by applying a Gaussian kernel of size 2β to octave level c0 at sampling point

p =
[
px py

]T
, given in Equation (2.27).

g(pi,pj) =
(
Υ (pj, βj)− Υ (pi, βi)

) (pi − pj)

||pj − pi||2
(2.26)

Υ (p, β) =

px+β∑
u=px−β

py+β∑
v=py−β

1

2πβ2
e
− (u−px)2+(v−py)2

2β2 co(u, v) (2.27)

The mean gradient ḡ, the mean of these long point-pair gradients, is then

found according to Equation (2.28), where |L| is the number of long point

pairs in L.

ḡ =

(
ḡx

ḡy

)
=

1

|L|
∑

(pi,pj)∈L

g(pi,pj) (2.28)

The orientation α of the interest point is found in Equation (2.29) by

computing atan2 of the x and y mean gradients ḡx and ḡy.

α = atan2(ḡy, ḡx) (2.29)

30

atan2(x, y) =



arctan (y
x
) x > 0

arctan (y
x
) + π y ≥ 0, x < 0

arctan (y
x
)− π y < 0, x < 0

+π
2

y > 0, x = 0

−π
2

y < 0, x = 0

undefined y = 0, x = 0

Once the orientation is found, the orientation α and scale σ̄ are used to

rotate and scale the sampling pattern. The new sampling points in this

pattern such as pα are indicated with a superscript α. The new Gaussian

kernel sizes of the form βσ̄ are indicated by the superscript σ̄.

A 512 bit descriptor is constructed by comparing all the short-distance

pairings (pαi ,p
α
j), where ||pαj − pαi || < δmax = 8.2σ̄. An example mapping of

a bit b` in the descriptor is given in Equation (2.30). The term pα is given

in relation to p =
[
px py

]T
in Equation (2.31).

b` =

{
1, Υ (pαj , β

σ̄
j) > Υ (pαi , β

σ̄
i)

0, otherwise
(2.30)

pα =

(
σ cos (α)px

σ sin (α)py

)
(2.31)

The dissimilarity between two BRISK descriptors is measured using the

Hamming distance, the number of bits where the two descriptors do not

agree.

2.6.5.3 FREAK Descriptor

FREAK descriptor construction is similar in approach to BRISK. A normal-

ized sampling pattern is used to perform Gaussian kernel intensity compar-

isons and construct a binary descriptor. FREAK differentiates itself in the

format of its sampling pattern and the selection of point pairs for orientation

computation and descriptor construction. The FREAK sampling pattern,

shown in Figure 2.3, differs in format from BRISK. FREAK contains fewer

sampling points, but has overlapping kernels and a much wider range of

kernel sizes.

FREAK perform rotation and scale normalization in a similar manner to

31

Figure 2.3: The FREAK sampling pattern from [10]. A dot denotes the
location of a sampling point and a circle indicates the radius of the
Gaussian kernel used to measure the sample’s intensity. FREAK contains
fewer sampling points than BRISK, but has overlapping fields and a much
wider range of field sizes.

32

Figure 2.4: The FREAK point pairs used to compute the global orientation
of the feature point. Figure from [10].

BRISK. Orientation is still found using the average gradient between point

pairs, as in Equations (2.28) and (2.29), but FREAK uses fewer point pairs

and selects those point pairs based on kernel size, rather than distance. The

point pairs used are shown in Figure 2.4. Each circle in this figure indicates

a Gaussian kernel used for comparison. At the center of each circle is its

sampling point. Lines drawn between these sampling points indicate a point

pairing. Notice that pairings are only made between points whose kernels

are the same size.

The point pairs used for FREAK descriptor construction are indicated by

the lines in Figure 2.4. The descriptor is organized in a coarse to fine manner

where comparisons between points with the largest kernels are located near

the front of the descriptor and the smallest kernel comparisons are located

33

near the end.

2.6.5.4 FREAK Descriptor Comparison

FREAK descriptor comparison is done as a chain of four comparisons. The

descriptors are compared 128 bits at a time, proceeding to the next 128 only

if the Hamming distance between the current 128 bit blocks is sufficiently

small. This process continues until a match is ruled out or all 512 bits have

been examined. In experiments, it was found that over 90% of candidates

could be discarded with the first 128 bit comparison [10].

2.7 Quaternions

Quaternions are a complex number system first proposed by Hamilton [32].

A quaternion consists of four terms – a real component and three imaginary

components i, j, and k. The real component is sometimes called the scalar

component and the imaginary components are collectively referred to as the

vector component. Quaternions are well known for their value in working

with 3-D rotations. They are frequently used to represent the orientation

of an object, express rotations within a reference frame, and describe the

transformation between two frames.

It is a well known fact that any change in orientation in a 3-D coordinate

system can be represented as a single rotation of less than 180 degrees about

some vector. Quaternions can be used to represent this vector, angle pair.

The quaternion version Q of a rotation of γ about a unit vector
[
xv yv zv

]T
is given in Equation (2.32).

Q =


cos(γ

2
)

xv sin(γ
2
)

yv sin(γ
2
)

zv sin(γ
2
)

 (2.32)

34

2.7.1 Quaternion Math and Properties

2.7.1.1 Notation

The vector form of a quaternion will be used by default here. A quaternion

will be indicated in normal uppercase.

Q =

[
w

x

]
=


w

x

y

z


x ∈ R3;w, x, y, z ∈ R

A quaternion may also be represented using the complex form:

Q = w + ix+ jy + kz

With multiplicative identities:

i j = k i 2 = j 2 = k 2 = −1

j k = i

k i = j

2.7.1.2 Scaling

The product of a quaternion Q and a scalar α is another quaternion.

αQ = Qα =

[
αw

αx

]
=


αw

αx

αy

αz



2.7.1.3 Addition

Two quaternions Q1 and Q2 can be added.

Q1 + Q2 =

[
w1

x1

]
+

[
w2

x2

]
=

[
w1 + w2

x1 + x2

]

35

2.7.1.4 Multiplication

The product of two quaternions Q1, Q2 is given by:

Q1Q2 =

[
w1

x1

][
w2

x2

]
=

[
w1w2 − x1 · x2

w1x2 + w2x1 + x1 × x2

]

In this section, the values of quaternion will frequently be made explicit

using a vector style notation. The product of quaternions in this format is

indicated in the style

[
w1

x1

][
w2

x2

]
. This product is not a matrix product. It

is possible to discern between quaternion and matrix products by examining

the number of elements in the brackets. Quaternions are always of size

4× 1. Multiplying two 4× 1 vectors is an illegal operation, so the intended

quaternion multiplication should be apparent.

2.7.1.5 Identity

The additive identity for quaternions 0 =


0

0

0

0

 satisfies the property:

Q + 0 = Q

The multiplicative identity for quaternions 1 =


1

0

0

0

 satisfies the property:

1Q = Q1 = Q

2.7.1.6 Associativity

Both addition and multiplication operations are associative for quaternions.

(Q1 + Q2) + Q3 = Q1 + (Q2 + Q3)

(Q1Q2)Q3 = Q1(Q2Q3)

36

2.7.1.7 Commutativity

Addition of quaternions is commutative.

Q1 + Q2 = Q2 + Q1

Multiplication of quaternions is not commutative in most cases, generally,

Q2Q1 6= Q1Q2.

2.7.1.8 Distributivity

Multiplication of quaternions is distributive.

Q1(Q2 + Q3) = Q1Q2 + Q1Q3

(Q1 + Q2)Q3 = Q1Q3 + Q2Q3

2.7.1.9 Conjugation

The conjugate Q∗ of a quaternion is obtained by scaling its imaginary com-

ponents by -1.

Q∗ =

[
w

−x

]
=


w

−x
−y
−z


The conjugate of a product of quaternions is the product of the conjugate

of each quaternion in reverse order.

(Q1Q2Q3)∗ = Q∗3Q∗2Q∗1

Conjugates can be used to extract the real and imaginary components of

a quaternion.

w =
1

2
(Q + Q∗)

x =
1

2
(Q−Q∗)

37

2.7.1.10 Magnitude and Norm

The magnitude or norm of a quaternion Q is ||Q||. It can be found by taking

the square root of the product of quaternion with its conjugate. The resulting

quaternion has only one non-zero term, the real component, which gives the

magnitude of Q.

QQ∗ = Q∗Q =

[
w2 + ||x||2

0

]
||Q||2 = ||QQ∗|| = w2 + x2 + y2 + z2

2.7.1.11 Normalization

A quaternion Q with magnitude ||Q|| = 1 is a unit quaternion. A quaternion

Q1 can be normalized to produce a unit quaternion Q by dividing by its

magnitude.

Q =
Q1

||Q1||

2.7.1.12 Inversion

The inverse of a quaternion is its conjugate divided by its squared norm.

Q−1 =
Q∗

||Q||2

2.7.1.13 Division

The quotient of two quaternions is the product of the dividend and the inverse

of the divisor.

Q1/Q2 = Q1Q−1
2

38

2.7.1.14 Exponential

The exponential of a quaternion exp (Q) is:

exp (Q) = exp (w)

[
cos (||x||)
x
||x|| sin (||x||)

]

2.7.1.15 Logarithm

The logarithm of a quaternion ln (Q) is:

ln (Q) =

[
ln (||Q||)

x
||x|| arccos (w

||Q||)

]

2.7.1.16 Power

A quaternion power Qu is found using exponential and logarithm operations.

Qu = exp (ln (Q)u)

The variable u can be a quaternion itself or a scalar.

2.7.2 Rotation with Quaternions

2.7.2.1 Basics

Unit quaternions can be used to represent a rotation of γ about a vector v.

The quaternion version Q of such a rotation is:

Q =

[
cos
(
γ
2

)
v
||v|| sin

(
γ
2

)]

A point (px, py, pz) can be represented in quaternion form Qp as a vector

with no rotation. Quaternions representing points do not necessarily have

39

unit norms.

Qp =


0

xp

yp

zp


Such a point Qp can be rotated by a unit quaternion Q to Q′p by pre-

multiplying the point by Q and post-multiplying it by Q−1.

Q′p = QQpQ
−1

Sequential rotations by multiple unit quaternions can be combined into a

single rotation by a single quaternion.

Q′p = Q1(Q2(Q3 Qp Q−1
3)Q−1

2)Q−1
1

= (Q1Q2Q3)Qp(Q
−1
3 Q−1

2 Q−1
1)

= (Q1Q2Q3)Qp(Q1Q2Q3)−1

= QQpQ
−1

(2.33)

Where Q is equal to Q1Q2Q3.

2.7.2.2 Example

Consider a point p = (1, 1, 0) with quaternion representation Qp shown as a

red x in Figure 2.5.

Qp =


0

1

1

0



40

A rotation of π/2 radians about the vector
[
0 0 1

]T
is given in quaternion

form as Q1.

Q1 =


cos(γ

2
)0

0

1

 sin(γ
2
)

 =


√

2/2

0

0√
2/2


Rotating p by Q1 gives the point q = (−1, 1, 0) with quaternion Qq.

Qq = Q1QpQ
−1
1 =


√

2/2

0

0√
2/2




0

1

1

0



√

2/2

0

0

−
√

2/2

 =


0

−1

1

0


Applying a second quaternion rotation Q2 of π/2 radians about the vector[
0 1 0

]T
to q yields point r = (0, 1, 1) with quaternion Qr.

Qr = Q2QqQ
−1
2 =


√

2/2

0√
2/2

0




0

−1

1

0



√

2/2

0

−
√

2/2

0

 =


0

0

1

1


An equivalent rotation from p to r is given by the quaternion Q3 = Q2Q1.

The axis angle rotation described by this quaternion is indicated by the angle

γ3 and axis x3.

Q3 =


√

2/2

0√
2/2

0



√

2/2

0

0√
2/2

 =


0.5

0.5

0.5

0.5



γ3 = 2 arccos(0.5) = 2
3
π , x3 = 1

sin(π/3)

0.5

0.5

0.5

 =

0.5774

0.5774

0.5774



Qr = Q3QpQ
−1
3 =


0.5

0.5

0.5

0.5




0

1

1

0




0.5

−0.5

−0.5

−0.5

 =


0

0

1

1


41

Figure 2.5: Rotation of points using quaternions. p is the red x, q the green
+, and r is the blue *.

2.7.2.3 Multiple Representations

Each transformation or rotation can be represented by two different quater-

nions Q and Q′.

Q′ = −Q =


−w
−x
−y
−z



(Q′)−1 = −Q−1 =


−w
x

y

z


(Q′)Qp(Q

′)−1 = (−Q)Qp(−Q−1) = QQpQ
−1

42

This is supported by the observation that a clockwise rotation about a

vector is equivalent to a counter-clockwise rotation about a vector pointing

in the opposite direction.

Borrowing from the earlier example, observe that applying the operation

(Q′1)Qp(Q
′
1)−1 still produces q = (−1, 1, 0).

Qq = (Q′1)Qp(Q
′
1)−1 =


−
√

2/2

0

0

−
√

2/2




0

1

1

0



−
√

2/2

0

0√
2/2

 =


0

−1

1

0



2.7.2.4 Measuring the Difference between Two Quaternions with a
Distance Metric

For two unit quaternions Q1 and Q2, the unit quaternion Qd that transforms

Q2 into Q1 such that Q1 = QdQ2 can be obtained by the equation Qd =

Q1Q−1
2 .

This Qd with scalar component wd can be used to obtain an angular dis-

tance metric γ between the two quaternions. The distance metric follows

from the quaternion definition in terms of angle axis notation presented ear-

lier in this section.

wd = cos
(γ

2

)
γ = 2 arccos(wd)

Since Qd is a unit quaternion, the domain of wd is [−1, 1], yielding a range

for γ of [0, 2π], assuming an arccos function with a range of [0, π]. However,

Euler’s rotation theorem states that the magnitude of the largest rotation

should be π radians. A closer examination reveals that negative values of wd

produce angles larger than the predicted π radians. Recalling that Q′ = −Q

produces a rotation equivalent to Q, the range of γ can be limited to [0, π]

by altering the equation for γ to:

γ = 2 arccos(max(wd, w
′
d)) γ ∈ [0, π]

or equivalently:

γ = 2 arccos(|wd|) γ ∈ [0, π]

43

2.7.2.5 Transformation

Rigid transformations between any two right-handed orthogonal coordinate

systems A and B that share an origin can be accomplished using quaternions.

The rotational transformation from B to A, A
BQ can be described as the

clockwise rotation of angle γ about the unit vector v that would align the

basis vectors of A with those of B.

A
BQ =

[
cos(γ

2
)

v sin(γ
2
)

]

A quaternion representation of a point expressed in the B coordinate frame
BQq can be expressed in terms of A by applying this transformation, detailed

in Equation (2.34).

AQq = A
BQ BQq

A
BQ−1 (2.34)

Equation (2.34) can be extended to express any rigid transformation be-

tween A and B by incorporating a translation quaternion term A
BQρ. Equa-

tion (2.35) expresses such a transformation from BQq to AQq.

AQq = A
BQ BQq

A
BQ−1 + A

BQρ (2.35)

This equation can be further refined to allow scaling by α, yielding the

Vector Quaternion Scaling (VQS) transformation [33] in Equation (2.36).

AQq = α
(
A
BQ BQq

A
BQ−1

)
+ A

BQρ (2.36)

2.7.3 Conversion to Other Representations

It is often necessary to convert between quaternions and other more fre-

quently used rotational representations such as Euler angles or rotation ma-

trices.

2.7.3.1 Axis Angle

The most straightforward conversion of a quaternion Q is to the axis-angle

format, where the 3-D rotation is given in the form of a vector v and an

44

angle γ.

The conversion from a unit vector and angle to quaternion was given at

the beginning of the section in Equation (2.32). The more general conversion

for a vector of any magnitude is given in Equation (2.37).

Q =

[
w

x

]
=

[
cos
(
γ
2

)
v
||v|| sin

(
γ
2

)] (2.37)

Axis angle format is recovered in two parts. First, the angle γ is found by

doubling the arc-cosine of the real component of the normalized quaternion.

If the angle is not zero, the vector is found by dividing the first three elements

of the normalized quaternion by the sine of half the angle.

γ = 2 arccos

(
w

||Q||

)

v =


x

sin (γ/2)||Q||
γ 6= 0

0 γ = 0

2.7.3.2 Rotation Matrix

When converting from a rotation matrix R ∈ SO(3) to a quaternion Q, one

of four formulas must be used, depending on the values of R. These formulas

are given in [34] and restated in Equation (2.38).

Q =


Q0(R) if R(2,2) > −R(3,3), R(1,1) > −R(2,2), R(1,1) > −R(3,3)

Q1(R) if R(2,2) < −R(3,3), R(1,1) > R(2,2), R(1,1) > R(3,3)

Q2(R) if R(2,2) > R(3,3), R(1,1) < R(2,2), R(1,1) < −R(3,3)

Q3(R) if R(2,2) < R(3,3), R(1,1) < −R(2,2), R(1,1) < R(3,3)

(2.38)

Q0(R) =
1

2


√

1 + R(1,1) + R(2,2) + R(3,3)

(R(2,3) −R(3,2))/
√

1 + R(1,1) + R(2,2) + R(3,3)

(R(3,1) −R(1,3))/
√

1 + R(1,1) + R(2,2) + R(3,3)

(R(1,2) −R(2,1))/
√

1 + R(1,1) + R(2,2) + R(3,3)



45

Q1(R) =
1

2


(R(2,3) −R(3,2))/

√
1 + R(1,1) −R(2,2) −R(3,3)√

1 + R(1,1) −R(2,2) −R(3,3)

(R(1,2) + R(2,1))/
√

1 + R(1,1) −R(2,2) −R(3,3)

(R(3,1) + R(1,3))/
√

1 + R(1,1) −R(2,2) −R(3,3)



Q2(R) =
1

2


(R(3,1) −R(1,3))/

√
1−R(1,1) + R(2,2) −R(3,3)

(R(1,2) + R(2,1))/
√

1−R(1,1) + R(2,2) −R(3,3)√
1−R(1,1) + R(2,2) −R(3,3)

(R(2,3) + R(3,2))/
√

1−R(1,1) + R(2,2) −R(3,3)



Q3(R) =
1

2


(R(1,2) −R(2,1))/

√
1−R(1,1) −R(2,2) + R(3,3)

(R(3,1) + R(1,3))/
√

1−R(1,1) −R(2,2) + R(3,3)

(R(2,3) + R(3,2))/
√

1−R(1,1) −R(2,2) + R(3,3)√
1−R(1,1) −R(2,2) + R(3,3)


To convert from a quaternion to a rotation matrix, Equation (2.39) is used.

This equation is presented in various forms in the literature of quaternions.

These other forms can be obtained using the property of unit quaternions

that w2 + x2 + y2 + z2 = 1.

R =

w
2 + x2 − y2 − z2 2xy + 2wz 2xz − 2wy

2xy − 2wz w2 − x2 + y2 − z2 2yz + 2wx

2xz + 2wy 2yz − 2wx w2 − x2 − y2 + z2

 (2.39)

2.7.3.3 Euler Angles

This section assumes a body fixed 3-2-1 application of Euler angles, where

3-2-1 indicates the order of the specified rotations. In body fixed 3-2-1, a

rotation of ψ about the body z-axis is applied, followed by a rotation of θ

about the body y-axis, and finally a rotation of φ about the body x-axis.

To obtain the quaternion Q from the Euler angles roll φ, pitch θ, and yaw

ψ, Equation (2.40) is used.

Q =


cos(φ

2
) cos(θ

2
) cos(ψ

2
) + sin(φ

2
) sin(θ

2
) sin(ψ

2
)

sin(φ
2
) cos(θ

2
) cos(ψ

2
)− cos(φ

2
) sin(θ

2
) sin(ψ

2
)

cos(φ
2
) sin(θ

2
) cos(ψ

2
) + sin(φ

2
) cos(θ

2
) sin(ψ

2
)

cos(φ
2
) cos(θ

2
) sin(ψ

2
)− sin(φ

2
) sin(θ

2
) cos(ψ

2
)

 (2.40)

46

To convert from a quaternion to Euler angles roll φ, pitch θ, and yaw ψ,

Equation (2.41) is used.

φ = atan2(2wx+ 2yz , 1− 2(x2 + y2))

θ = arcsin(2(wy − xz))

ψ = atan2(2wz + 2xy , 1− 2(y2 + z2))

(2.41)

2.7.4 Angular Interpolation with Quaternions

Spherical Linear Interpolation (Slerp) is a method of interpolating a 3-D

rotation between two orientations [35]. The algorithm assumes that rotation

at a uniform angular velocity about a fixed axis occurs between the two

orientations. If the two orientations are represented using the quaternions

Q1 and Q2 sampled at times t1 and t2 with t2 > t1, the trajectory of rotation

would lie along the arc between the quaternions located on the sphere of all

unit quaternions.

The interpolated orientation estimate represented by a quaternion Q̂ at

time instant t for t1 ≤ t ≤ t2 is given by Equation (2.42).

Q̂ = Q1(Q−1
1 Q2)u (2.42)

u =
t− t1
t2 − t1

∈ [0, 1]

To avoid computation of quaternion products and powers, the solution is

often implemented using an alternate formulation given in Algorithm 1. The

algorithm uses standard linear interpolation at small angles. The numerical

stability of the sine operation breaks down for very small angles, so incorrect

values could be computed with Slerp. In the first step of the algorithm, the

angle between the two quaternions is measured by taking the inverse cosine of

Qp ·Qq. The operation Qp ·Qq denotes the dot product of the two quaternions

in vector form. This dot product is computed in the same manner as a vector

dot product.

Qp ·Qq = wpwq + xp · xq

It is possible to use Slerp to interpolate between points as well as quater-

nions by representing the points in quaternion format. Such an interpolation

47

Algorithm 1: Slerp: an algorithm for spherical linear interpolation

Input: Qp Qq quaternions representing 3-D orientations
Input: u the interpolation ratio
Output: Q̂ the interpolated orientation
γ ← arccos

(
Qp ·Qq

)
1

if γ < 0.01 then2

/* Solution unstable at small angles, do linear

interpolation instead */

Q̂← (1− u)Qp + uQq3

else4

Q̂← sin(γ(1−u))
sin(γ)

Qp + sin(uγ)
sin(γ)

Qq5

return Q̂6

between the points p = (1, 0, 0) and q = (0, 0.5, 0.5) is shown in Figure 2.6.

2.7.5 Useful References

Appendix E of [36] gives an overview of orientation representations. The

properties of quaternions are given and conversion between quaternions and

other orientation representations is detailed. The article [34] is a useful ref-

erence for conversion between various orientation representations. It also

discusses the representation of coordinate frames, pose, and the transfor-

mation between coordinate frames. In [37], the properties of quaternions,

their use as representations of orientation, and conversion to and from them

are discussed. The use of quaternions to represent rotations is discussed in

[35]. This paper also introduces the Slerp algorithm for interpolation using

quaternions. The tutorial on quaternions [38] is useful in understanding their

mathematical properties. Finally, for the adventurous, there is Hathaway’s

Primer on Quaternions published in 1896 [39]. The terminology in this book

is a little outdated, but it makes for an interesting read and presents a dif-

ferent approach to discussing mathematics from an older era.

48

Figure 2.6: Slerp interpolation between two points. The point p is denoted
by the red x and q is indicated by the green +. The black circles show
sequential interpolations in step sizes of ∆u = 0.05.

49

2.8 RANSAC

2.8.1 Motivation

Model fitting is a problem that is ubiquitous across the sciences. Least

squares [40] and total least squares [41] are typical approaches that work

well with data containing no or low level noise. When the experimental data

contains large outliers, these approaches break down in effectiveness. Instead

of attempting to identify and reject erroneous data points, the techniques

incorporate the bad data, resulting in significant skewing of the model [22].

Random Sampling and Consensus (RANSAC) [15] is a model fitting ap-

proach that seeks to distinguish between the correct and erroneous compo-

nents of the data and build a model only for the correct data. First proposed

in [15], it is essentially a guess-and-check method where model hypotheses are

generated from randomly selected subsets of the data and evaluated against

the entire dataset. RANSAC is not an explicit modeling solution itself. It

is a framework for model fitting where the user will specify his own mod-

eling parameters, distance metrics, and data assumptions according to the

problem at hand.

2.8.2 Basics

The RANSAC algorithm attempts to find the model M∗ for a data set P

which has a sufficient number of inliers while minimizing the distance between

those inliers and the model. The process is described below and outlined in

Algorithm 2.

RANSAC consists of a sequence of k trials. In each trial, a subset Si of n

points in the dataset P is drawn with replacement. From this subset a model

hypothesis Mi is generated, typically using a least squares approach. This

model is then tested against the whole dataset P , and the set of inliers S∗i is

obtained. A point p ∈ P is considered an inlier if the distance between it and

its predicted location according to Mi is less than a threshold t, according

to a predefined distance metric. If more than d inliers are found, the model

is considered good, and a more refined model M∗
i is generated using S∗i .

This new model is then added to a list of candidate models. The entire

process is repeated until k trials have been performed. Once complete, the

50

Algorithm 2: RANSAC the RANSAC Algorithm

Data: P - the dataset
Input: k - the number of iterations
Input: d - the minimum number of inliers required for a model to be

good
Input: n - the number of samples needed to generate a model
Input: t - the threshold specifying how close a point must be to its

predicted location in order to be considered an inlier
Output: M∗ - the model
for i← 1 to k do1

Si ← n uniformly drawn random samples from P2

Mi ← the model hypothesis for Si3

S∗i ← ∅4

forall p ∈ P do5

if p is an inlier according to Mi and t then6

add p to the set S∗i7

if more than d inliers were found then8

M∗
i ← model hypothesis generated from all inliers9

else10

M∗
i ← ∅11

M∗ ←M∗
112

for i = 2→ k do13

if M∗
i exists and its model error is less than the model error of M∗

14

then
M∗ ←M∗

i15

return M∗
16

51

list of candidate models is evaluated against P according to the predefined

distance metric, and the model with the smallest total distance between its

inliers and their predicted values is returned as M∗. Selection of the number

of iterations k is detailed in Section 2.8.3, selection of the number of samples

n is detailed in Section 2.8.4, and selection of d the minimum inlier count is

discussed in Section 2.8.6.

It should be noted that RANSAC approaches vary a little based on the

reference text. The approach described above is the one outlined in [22].

The original algorithm in [15] differs in what is done once d inliers are found.

Whereas [22] opts to continue searching and find the model with the smallest

error satisfying the d inlier criterion, [15] takes the first model satisfying the

constraint as M∗ and halts the search there.

2.8.3 Number of Iterations

The number of iterations k is an important parameter that the user must

determine. This parameter specifies the number of trials the algorithm must

perform in order to be reasonably sure that at least one subset has been drawn

which contains no outliers. Although it is possible to select k arbitrarily, most

approaches calculate k using some assumptions about the data. The original

work [15] proposes two approaches to selecting k. Both approaches make

use of another parameter w, which is the probability that a point drawn

uniformly from P is an inlier. The parameter w is supplied by the user.

1. The first approach calculates the mean and variance of g, the number of

trials required to draw a subset of n samples containing no outliers, and

selects a value for k that is one or two standard deviations above the

expected value of g. The expected value is given by Equation (2.43).

In this derivation, wn is the probability that all n points in a trial are

inliers. The probability that this event occurs for the first time in trial

52

j is given by (1− wn)j−1wn.

E [g] = P (1 good trial in 1 trial) + 2P (1 good trial in 2 trials) + . . .

= wn + 2(1− wn)wn + . . . j(1− wn)j−1wn + . . .

= wn[1 + 2(1− wn) + . . . j(1− wn)j−1 . . .

=
wn

1− wn
∞∑
j=0

j(1− wn)j

=
wn(1− wn)

(1− wn)(1− 1 + wn)2
= w−n (2.43)

The standard deviation is given by Equation (2.44) and the value of k

is given by Equation (2.45).

E[g2] =
2− wn

w2n

σ2 = E[g2]− E[g]2 =
2− wn

w2n
− 1

w2n
=

1− wn

w2n

σ =

√
1− wn
wn

(2.44)

k = dE[g] + 2σe (2.45)

Plugging Equation (2.43) and Equation (2.44) into Equation (2.45)

yields a recommended value of:

k =

⌈
1 + 2

√
1− wn

wn

⌉

2. An alternate approach uses z, the desired probability that at least one

trial set contains no outliers. The probability z can then be applied to

Equation (2.46) to determine k. The probability z is specified by the

user as a bound.

P (all sets contain an outlier) = (1− z) = (1− wn)k

log(1− z) = log((1− wn)k) = klog(1− wn)

k =
log(1− z)

log(1− wn)

(2.46)

53

2.8.4 Number of Samples

The parameter n is the number of data samples used in each trial. It is

generally selected as the minimum number of data points required to generate

a model. Applications such as 2-D line fitting use n = 2, 2-D circle fits use

n = 3, and a value of n = 7 is used for fundamental matrix estimation [22].

2.8.5 Distance Metric

The choice of a distance and error metric varies based on the model used.

In the RGB-D SLAM System, the RANSAC based pairwise alignment uses

Mahalanobis distance [42] to measure the distance e between matching 3-D

points which have been aligned using the modeled transformation.

The distance e is compared to a user defined threshold t to determine

whether the aligned matching points form an inlier or outlier. Inliers are

points where e ≤ t, and outliers are points where e > t. The overall model

error is found by computing the mean of e for all inliers.

2.8.6 Number of Inliers Required for a Valid Model

The parameter d specifies a lower bound on the number of points that must

fall within a distance of t from the model for the model to be considered valid.

This parameter is typically selected using y, the probability that a point is

within t of an incorrect model generated using n points. The parameter d

can then be found such that yd−n, is sufficiently low.

The probability y is also unknown and must be estimated. One popular

estimation technique is to assume that y < (1 − w) and then choose d such

that (1 − w)d is less than the desired probability. Other implementations

assume that the number of outliers for the true model is less than the number

for a randomly selected model, and tune d using the inlier-outlier ratio at

each iteration.

2.8.7 Useful References

The original paper [15] gives a fairly detailed and complete explanation of

RANSAC. Chapter 15 of [22] provides a similar description of RANSAC as

54

well as pseudocode for the line fitting case and several other examples of

RANSAC implementations.

2.9 Rigid Transformation between Two Trajectories

2.9.1 Motivation

This section will detail an approach to solving the absolute orientation prob-

lem. The absolute orientation problem, despite its name, seeks to estimate

the rigid transformation consisting of a rotation matrix R and a translation

vector ρ relating two coordinate systems with known correspondences. The

thesis [43] phrases the absolute orientation problem very succinctly:

[The absolute orientation problem is] the determination of the

translational, rotational, and uniform scalar correspondence be-

tween two different Cartesian coordinate systems given a collec-

tion of corresponding point pairs.

One such solution is a least squares approach that seeks to find the rigid

transformation that minimizes the sum of squared distances between corre-

sponding points using Singular Value Decomposition (SVD). This approach

was first introduced in [44]. In notes on the matter, [45] generalizes this ap-

proach to allow for arbitrary weighting of correspondence pairs. This latter

approach is detailed below.

2.9.2 Details

Consider two point sets in R3: P = {p1 . . .pn} and Z = {z1 . . . zn} with

correspondences (pi, zi) for i = 1 . . . n. Each pair of correspondences is re-

lated by the Equation (2.47), where R is a 3× 3 rotation matrix, ρ is a 3× 1

translation vector, and Ni is a 3× 1 noise vector.

zi = Rpi + ρ +Ni (2.47)

The least squares solution is the transformation
〈
R̂, ρ̂

〉
that minimizes

the weighted sum of squared distance between the transformed points in P

55

and their corresponding points in Z. This desired transformation is given

in Equation (2.48). The weight associated with the ith correspondence pair

(pi, zi) is wi ∈ (0,∞). In this formulation, R is a 3 × 3 orthogonal matrix

and is not necessarily in SO(3). In the event that it is not, additional steps

will be taken to find a rotation matrix which is in SO(3).

〈
R̂, ρ̂

〉
= argmin

R,ρ

n∑
i=1

wi||Rpi + ρ− zi||2 (2.48)

The paper [45] shows that it is possible to decouple the calculation of R̂

from that of ρ̂ by expressing ρ in terms of the 3-D rotation matrix R and

p̄ and z̄, the centroids of P and Z respectively. Using this substitution it is

possible to first solve for R̂ and then use that result to find ρ̂.

p̄ =

n∑
i=1

wipi

n∑
i=1

wi

z̄ =

n∑
i=1

wizi

n∑
i=1

wi

The substitution is found by differentiating with respect to ρ the cost

function minimized in Equation (2.48). The derivative is then set to 0 and

ρ is solved for using algebraic manipulations.

0 = d
dρ

(
n∑
i=1

wi||Rpi + ρ− zi||2
)

0 = 2
n∑
i=1

wi (Rpi + ρ− zi)

0 = ρ
n∑
i=1

wi +
n∑
i=1

wi (Rpi − zi)

ρ =

−

n∑
i=1

wi (Rpi − zi)

n∑
i=1

wi

= z̄−Rp̄ (2.49)

The substitution given in Equation (2.49) is then used in Equation (2.48)

to express the minimization in terms of only R, given in Equation (2.50). In

this equation, the terms p′i and z′i are the difference between the points, pi

56

and zi, and their centroids, p̄ and z̄.

p′i = pi − p̄ , z′i = zi − z̄

R̂ = argmin
R

n∑
i=1

wi||(Rpi + z̄−Rp̄)− zi||2

= argmin
R

n∑
i=1

wi||(R(pi − p̄)− (zi − z̄)||2

= argmin
R

n∑
i=1

wi||(Rp′i − z′i||2 (2.50)

The orthogonal matrix R̂ minimizing Equation (2.50) is then found by

expressing Equation (2.50) as a maximization of a matrix trace and using

properties of traces to find R̂.

Expanding the squared magnitude term in Equation (2.50) and eliminating

terms that do not affect the minimization [44] gives:

R̂ = argmin
R

− 2
n∑
i=1

wi(z
′
i)
TRp′i

= argmax
R

n∑
i=1

wi(z
′
i)
TRp′i

= argmax
R

Trace

(
R

n∑
i=1

wi(z
′
i)
Tp′i

)
= argmax

R
Trace (RH)

(2.51)

where:

H =
n∑
i=1

wiz
′
i(p
′
i)
T

The singular value decomposition (SVD) of H is then taken.

H = UΛVT

Substituting the SVD into the trace, it is shown in [45] that R̂ can be

57

expressed as in Equation (2.52).

R̂ = argmax
R

Trace (RH)

= argmax
R

Trace
(
RUΛVT

)
= argmax

R
Trace

(
ΛVTRU

)
(2.52)

Since Λ is diagonal and non-negative and the product VTRU is an orthog-

onal matrix, the Trace
(

ΛVTRU
)

satisfies the inequality:

Trace
(

ΛVTRU
)
< Trace (Λ)

Equation (2.52) is therefore maximized when VTRU is the identity matrix.

The orthogonal matrix R̂ can then be found.

I = VT R̂U

R̂ = VUT

The orthogonal matrix R̂ found above could incorporate reflection as well

as rotation. To ensure that R̂ is only a rotational matrix, the determinant

of VUT must be examined. If the determinant is one, VUT is the optimal

rotation matrix.

If the determinant is -1 and the smallest singular value is 0, then the

matrix that minimizes Equation (2.48) is a reflection, and the optimal ro-

tation matrix is given by the next best minimization VrUT , where Vr =[
v1 v2 −v3

]
. If the determinant is -1 and all of the singular values are

nonzero, this indicates that there is a large amount of noise in one of the

point sets and the least-squares SVD approach is not suitable [44].

In [45] the first two cases are combined into a convenient general formula:

R̂ = V


1

. . .

1

det(V UT)

UT , ρ̂ = z̄− R̂p̄ (2.53)

For a more thorough discussion of derivation of this SVD based approach

58

and a richer discussion of the orientation rectification of reflections, the reader

is encouraged to consult [44] and [45].

Applications of the least squares SVD algorithm in this thesis use a uniform

unit weight wi = 1,∀i. A summarization of the approach with unit weights

is given in Algorithm 3.

Algorithm 3: Least-Squares SVD: an algorithm for finding the
transformation relating two corresponding point sets

Data: P,Z - corresponding point sets

Output:
〈
R̂, ρ̂

〉
- The optimal transformation

/* Find the centroids for P and Z */

p̄← 1
n

n∑
i=1

pi
1

z̄← 1
n

n∑
i=1

zi
2

/* Center each centroid at the origin */

P ′ ← {p− p̄ | p ∈ P}3

Z ′ ← {z− z̄ | z ∈ Z}4

/* Compute the sum of outer products H and its SVD */

H ←
n∑
i=1

p′z′T

5

(U,Λ, V)← SVD(H)6

/* Compute R̂ */

R̂ ← V


1

. . .

1
det(V UT)

UT

7

/* Compute ρ̂ */

ρ̂← z̄− R̂p̄8

return
〈
R̂, ρ̂

〉
9

2.9.3 Useful References

This least-squares SVD algorithm for solving the absolute orientation prob-

lem was introduced in [44]. The paper provides a thorough explanation of

the algorithm as well as a detailed derivation of the optimal rotation matrix.

The optimal translation derivation is not included, citing an earlier work

59

[46]. The algorithm proposed in [44] assigns a uniform weight to all point

correspondences. The paper [45] expands the algorithm to allow for varying

correspondence weights. The derivation for optimal translation and rotation

is also detailed in [45].

A summary paper [47] provides a detailed description and comparison of

the SVD technique and three other algorithms used to solve the absolute

orientation problem. The paper explains the details of each algorithm and

evaluates them in terms of robustness, accuracy, stability, and efficiency. It

is a good first reference for understanding the absolute orientation problem.

60

Chapter 3

SLAM - Simultaneous Localization and
Mapping

This chapter will introduce the topic of Simultaneous Localization and Map-

ping (SLAM). Section 3.1 will present the SLAM problem and discuss fun-

damental concepts. Section 3.2 will introduce several probabilistic SLAM

techniques and discuss their salient details. Trajectory-oriented SLAM will

also be discussed in this section. In Section 3.3, several SLAM approaches

using an RGB-D camera will be covered. Finally, Section 3.4 will introduce

and explain the SLAM algorithm used in the University of Freiburg’s RGB-D

SLAM System [1].

The SLAM tutorials [48],[49] are a useful introduction to simultaneous

localization and mapping and its history. Many of the concepts discussed in

this chapter are explained in greater detail in these tutorials.

3.1 Basics

The SLAM problem, as the name suggests, is a problem of localization and

mapping. Placed in an environment with unknown structure at an unknown

pose, a robot is tasked with generating a map of the environment and deter-

mining its location in this map. Given no prior knowledge of the environment,

the robot uses the evolution of its sensor data over time to build a map M

of the environment and estimate a history of its poses.

As with other parts of this thesis, a robot’s pose T̄ is described as transfor-

mation from a coordinate frame C attached to the robot to the world frame

W ; the map is defined relative to W . The pose is given in quaternion format

as 〈Q , ρ〉. The term Q is a quaternion describing the rotational component

of the rigid transformation from C to W and ρ is the translational component

of this transformation.

61

T̄⇔ 〈Q , ρ〉

SLAM is performed by using the sensor data to identify landmarks in the

environment and examining how the position of the robot relative to these

landmarks changes as the robot moves through the environment.

SLAM can either be online or offline. Offline SLAM techniques gather all

available sensor data and then use it compute the map M of the environment

and estimate the trajectory {T̄1, T̄2, . . . } the robot traveled.

Offline techniques typically do not run at near real time rates, processing

the data at a slower rate than that at which it is supplied. Offline techniques

are not causal. Each pose estimate leverages all available data, not just the

data recorded prior to the robot reaching the pose in question.

Online SLAM runs in real time and estimates the current pose of the robot

using only previously obtained data. The poses and map obtained using

online SLAM are generally not as accurate as offline ones. Online SLAM

trades accuracy for faster run times and the ability to localize the robot in

real time. This thesis will focus on the online variety of SLAM.

3.2 SLAM Techniques

There are many ways to approach solving SLAM. Most popular approaches

are probabilistic in nature, using Bayesian inference to estimate the pose

and map. The text [21] gives a thorough explanation of several fundamental

approaches to probabilistic SLAM.

Probabilistic SLAM seeks to estimate the posterior probability function

given in Equation (3.1) [21]. In this function, the pose T̄t is the pose at the

sampling instant t, z1:t represents the sensor data recorded up to time t, and

u1:t gives the control inputs to the robot up to time t.

P
(
T̄t,M | z1:t,u1:t

)
(3.1)

This probability function is estimated and updated by sequentially apply-

ing time-update and measure-update steps. The time update step uses the

motion model P
(
T̄t+1 | T̄t,u1:t+1

)
. The motion model finds the probability

distribution for a new pose T̄t+1 given the current pose T̄t and the control

62

inputs u1:t+1 up to time t + 1. This motion model is incorporated into the

pose and map posterior during the time-update, giving the new pose and

map posterior.

P
(
T̄t+1,M | z1:t,u1:t+1

)
The measurement update step then uses observation model

P
(
zt+1 | T̄t+1,M

)
to incorporate a new set of measurements zt+1 into the pose and map poste-

rior. This produces the fully updated posterior.

P
(
T̄t+1,M | z1:t+1,u1:t+1

)
Three of the most well-known classes of probabilistic SLAM are EKF-

SLAM, GraphSLAM, and FastSLAM.

3.2.1 EKF-SLAM

EKF-SLAM is a widely used probabilistic SLAM approach. It uses an Ex-

tended Kalman Filter (EKF) to estimate Equation (3.1) as a Gaussian distri-

bution. The approach assumes uncorrelated zero mean Gaussian noise terms

wt and vt in the motion and observation models given in Equation (3.2).

The functions f(·) and h(·) are non-linear deterministic equations modeling

the motion and sensor observations of the robot.

T̄t+1 = f
(
T̄t,ut+1

)
+ wt+1

zt+1 = h
(
T̄t+1,M

)
+ vt+1 (3.2)

These equations and their Taylor series based linearizations are used to

develop the Extended-Kalman filter equations used to estimate µt and Σt,

the mean and covariance terms for the multivariate Gaussian approximation

of Equation (3.1).

63

3.2.2 GraphSLAM

GraphSLAM makes use of the Extended Information Filter (EIF) [21]. Sim-

ilar to EKF-SLAM, this approach approximates Equation (3.1) as a multi-

variate Gaussian, but does so using the canonical parameterization of the

Gaussian. It finds the information matrix Ωt and the information vector ξt

in addition to the mean vector µt. A derivation of the canonical parameteri-

zation is given in Chapter 3.5 of [21]. The canonical parameterization terms

are related to their standard counterparts in Equation (3.3).

Ω = Σ−1 ξ = Σ−1µ (3.3)

3.2.3 FastSLAM

FastSLAM [50] is a particle filter [51],[52] based SLAM approach. It estimates

Equation (3.1) by factoring it into separate posteriors, with one for the robot

poses and one for each landmark in the map. This factorization is made

possible by the observation that the location of individual landmarks of a

map are conditionally independent of each other given the poses of the robot.

The re-factorization is given in Equation (3.4) [21].

P
(
T̄t,M | z1:t,u1:t

)
= P

(
T̄t | z1:t,u1:t

) ∏
m∈M

P (m | z1:t,u1:t) (3.4)

The pose posterior is estimated using a particle filter. Each particle consists

of a pose hypothesis and an individual EKF for each landmark m in the map

M . This approach allows FastSLAM to maintain different data-landmark

associations in separate particles, making it more robust to data association

problems than EKF-SLAM or GraphSLAM. FastSLAM owes its name to the

fact that it can be implemented in logarithmic time complexity, giving it

computational advantages over EKF [21].

3.2.4 Trajectory-Oriented SLAM

In its standard formulation, SLAM seeks to estimate the pose of the robot

and the location of landmarks in the map. An alternate approach, termed

trajectory-oriented SLAM, instead seeks to estimate the robot’s trajectory

64

in the form of a sequence of discrete poses [48].

This approach is particularly useful when working with a large amount of

sensor data, such as the scans produced by a laser range finder. In these

situations it is more reliable and simpler to align the scans rather than use

them to identify landmarks [48].

One such variant is consistent pose estimation (CPE) [53],[54],[55],[56]. In

CPE, the robot’s poses are represented as the nodes of a graph. The edges

in the graph give the constraints between nodes as the rigid transformations

between the nodes’ poses. Each edge connecting two poses T̄i and T̄j has

an observation T′i,j giving the true transformation between the poses. The

transformation T̃i,j that aligns the scans taken at those two nodes is termed

the measurement. This measurement T̃i,j is modeled as the observation T′i,j

corrupted by additive zero-mean Gaussian noise vi,j [53].

T̃i,j = T′i,j + vi,j

SLAM, formulated in this manner, is a GraphSLAM variant. The optimal

length n sequence of trajectories T̄ can be found by minimizing Equation (3.5)

[57]. In this equation, e(Ti,Tj, T̃i,j) is a vector error function composed of a

quaternion in vector form concatenated with a translation vector. Together,

these terms measure how well the transformation between poses Ti and Tj

matches the measurement T̃i,j. The set C is the set of all edges in the pose

graph. The information matrix Ωi,j is the inverse of the edge covariances.

T̄ =
{
T̄1, . . . , T̄n

}

T̄ = argmin
{T1∈SE(3)...Tn∈SE(3)}

∑
<i,j>∈C

e(Ti,Tj, T̃i,j)
T Ωi,j e(Ti,Tj, T̃i,j) (3.5)

The map when using CPE is not found explicitly. It can be obtained by

merging the scans taken at each pose.

65

3.3 RGB-D SLAM

RGB-D cameras recording color and range images have grown in popularity

in recent years with the release of the low cost and widely available Kinect

sensor. Most SLAM implementations using these sensors are reminiscent

of a laser range finder SLAM approach, leveraging dense 3-D point clouds

obtained from the range images to approximate motion between poses as a

rigid transformation between corresponding point clouds. This section will

discuss alternatives to the RGB-D SLAM System [1] that all make use of

RGB-D cameras.

Willow Garage [2] developed a SLAM application using the Kinect. Their

CPE based approach uses pairwise alignment estimates between sequential

range images to build a pose graph. Pose-pose transformation constraints,

point-point distance constraints, and point-point color intensity constraints

are encoded into this graph. The graph is optimized using a g2o non-linear

graph optimizer [58] to obtain global alignment. Pairwise alignment between

sequential frames is estimated using an iterative closest point (ICP) algorithm

[14]. The range images are uniformly downsampled and matching points are

identified. ICP is then used to recover the rigid transformation between point

clouds.

The paper [59] presents a novel approach to SLAM based on image warp-

ing. Localization is done by comparing each new image to a reference image.

Every time a new RGB-D image is recorded, that image is warped according

to the previous pose estimate and a motion model in order to approximate

the reference image. The relative motion from the last frame is then found

by identifying the pose refinement that produces the warped image that is

most similar to the reference image in terms of pixel intensity and depths.

The paper [3] presents a SLAM method similar in approach to [1]. SLAM

is performed by using pairwise image alignments to construct a pose graph

and then optimizing that pose graph to obtain global alignment. Alignment

between two images is performed by finding the rigid transformation be-

tween 3-D point clouds constructed from SIFT feature points. SIFT features

are extracted from both images and 3-D point clouds are constructed using

inverse perspective projection and the depth of the features given by the

registered range image. Matching features are identified through descriptor

comparison and a RANSAC-based approach is used to estimate the trans-

66

formation between point clouds. This transformation is used to initialize an

ICP algorithm that produces a refined transformation estimate. The camera

poses at the times the images were captured are then encoded into the pose

graph with the relative transformation as a constraint. The pose graph is

optimized using TORO [60], a gradient decent based optimizer.

3.4 RGB-D SLAM Details

The RGB-D SLAM System [1] is an open source RGB-D SLAM implemen-

tation on the robotics platform ROS. It is a six degree of freedom SLAM

technique capable of supplying real time pose estimates at a rate of 3-4 Hz

and producing dense RGB point cloud based maps. At the time of this writ-

ing, the RGB-D SLAM System is one of the most prominent open source

SLAM solutions for use with Kinect style RGB-D cameras.

The RGB-D SLAM System’s algorithm is similar to [3]. It is a trajectory-

oriented SLAM technique, meaning it seeks to estimate only the pose of

the camera and not the location of landmarks in the map. As with most

trajectory-oriented SLAM algorithms, the map is not explicitly estimated.

It is constructed by merging 3-D point clouds constructed from the RGB

and depth images taken at each pose.

Pairwise alignments between images are found and added as constraints

between poses in a pose graph. A g2o non-linear graph optimizer is then used

to perform global alignment. In the literature, the initial pairwise alignment

is referred to as the SLAM front end and the graph optimization is the back

end. Figure 3.1 gives a flow chart depicting the major steps in the RGB-D

SLAM System algorithm.

The pose graph plays a key role in the RGB-D SLAM Systems. Nodes of

the pose graph are significant poses or “key frames” that have been selected

for their distinct location in the map. Together, they make up a discrete

estimate of the camera’s trajectory. The pose graph is integral in localizing

new frames of RGB-D data in the map and determining what to do with

those frames once their relative alignment has been determined.

67

Figure 3.1: A flowchart illustrating the major steps in the RGB-D SLAM
System’s approach. This figure is a modified version of one found in [1].

68

3.4.1 RGB-D SLAM System Front End

The RGB-D SLAM System’s front end takes an RGB-D image and deter-

mines the pose of the camera at the time the image was captured. This pose

is expressed as T̄, the transformation from the camera frame to the world

frame at that time instant.

When a new frame of data is received, features are located in the RGB

image and descriptors are extracted. A 3-D point cloud is constructed, using

these features and their associated depth values to perform inverse perspec-

tive projection. This point cloud, consisting of the locations of the interest

points in 3-D, is termed a landmark point cloud Γ . The descriptors of these

features are matched with those of the most recent key frame to identify

point correspondences.

Pairwise alignment of the new frame with index i and a key frame with

index j is done using a RANSAC-based transformation estimator to estimate

T̃i,j the rigid transformation that aligns Γi with Γj. If the transformation is

not large in terms of translation or rotation, the pose T̄i of the new frame

is computed by combining T̃i,j with the key frame’s pose and processing for

that frame halts.

The RANSAC based transformation estimator estimates T̃i,j by finding

the transformation that minimizes the Euclidean distance between inlier

matches. Matching points in the landmark point clouds are repeatedly sam-

pled in random sets of three matches and the rigid transformations between

matching points are estimated using the SVD based least squares approach

detailed in Section 2.9. Inliers of the transformation which produced the

largest amount of inlier matches are used to refine that transformation, yield-

ing the final transformation between frames.

3.4.2 RGB-D SLAM System Back End

If no transformation between the most recent key frame and the new frame

can be recovered, or if the transformation is large, the new frame is added

as a node in the pose graph. Pairwise alignment between the new frame and

each node in the pose graph is then performed. Edge weights between the

new node with index i and each matching node with index j are encoded in

the pose graph using an measurement given by the transformation T̃i,j and

69

a matrix Ωi,j which assigns weight based on the number of inliers.

Every time a new node is added to the pose graph, the pose graph is

optimized using g2o, a non-linear graph optimizer [58]. The graph optimizer

finds the sequence of poses T̄ that minimize a non-linear error function. This

equation, given in the trajectory-oriented SLAM section, is restated here as

Equation (3.6) [58].

T̄ =
{
T̄1, . . . , T̄n

}

T̄ = argmin
{T1∈SE(3)...Tn∈SE(3)}

∑
<i,j>∈C

e(Ti,Tj, T̃i,j)
T Ωi,j e(Ti,Tj, T̃i,j) (3.6)

In Equation (3.6), the error function e(·) measures the difference between

the observed transformation T̃i,j and the actual transformation between

poses Ti and Tj. This error function produces a vector of quaternion ro-

tation and translation terms measuring how well the actual transformation

matches the measured transformation. This vector is 0 when the transfor-

mations match exactly. A more complete explanation of this error function

is given in [1] and [58]. The value C is the set of correspondences represented

by connected nodes. The matrix Ωi,j assigns a weight to those nodes.

3.4.3 RGB-D SLAM Map Generation

The RGB-D SLAM map is generated using keyframes and their associated

point clouds. Point clouds are defined relative to the camera frame C.

The point cloud P is formed by reconciling the 3-D locations of the pixels

in the RGB frame recorded at the sampling instant using inverse perspective

projection and the registered depth map, as discussed in Section 2.5. Each

point in P consists of a color, given in RGB intensities, and a location, given

in 3-D Euclidean coordinates.

The landmark point cloud Γ is also created using inverse perspective pro-

jection. It is found by pairing the interest point locations obtained from the

RGB frame with their corresponding depths and reconciling the location of

these points in 3-D space. Points in Γ consist only of a 3-D location and do

not contain color intensity information.

70

The RGB-D SLAM System’s map M is formed by transforming each

keyframe point cloud Pi into the world frame W using Ti and then merging

the point clouds for each keyframe into a single point cloud. An example

map is shown in Figure 3.2 and three of the point clouds used to generate

the map are shown in Figure 3.3. The map generation function is given in

Equation (3.7) where n is the number of nodes in the pose graph.

M =
n⋃
i=1

WPi (3.7)

Figure 3.2: A map generated by the RGB-D SLAM System.

(a) (b)

(c)

Figure 3.3: Three of the keyframe point clouds used to construct the map
in Figure 3.2.

A landmark map can also be formed using the keyframes. This is accom-

71

plished by transforming each landmark point cloud Γi into the W coordinate

frame and merging them into a single point cloud.

72

Chapter 4

Interest Point Additions and Testing

This chapter will discuss work on the incorporation of an alternative feature

detector, AGAST, and alternative descriptors, BRISK and FREAK, into the

RGB-D SLAM System’s code-base. It will explain the motivation for using

more advanced binary descriptors and AST detectors, compared to the ex-

isting ORB and SURF solutions. It will also explain the tunable parameters

in these descriptors and detectors, and their effects on the SLAM algorithm.

Use of dynamic adaptive feature detection in OpenCV will also be discussed.

This class of detector dynamically changes the parameter values of the un-

derlying feature detector, so as to maintain a consistent number of interest

points in an image sequence.

The detection, description, and extraction techniques used in obtaining

Binary Robust Invariant Scalable Keypoints (BRISK) and Fast Retina Key-

points (FREAK) are developed in greater detail in Chapter 2.6. The RGB-D

SLAM System that is the focus of the alterations detailed in this chapter is

explained in Section 3.3.

4.1 Motivation

Interest points or features play a key role in the RGB-D SLAM System [1].

These interest points, reconstructed into 3-D point clouds using inverse per-

spective projection, serve as SLAM landmarks. Sets of matching interest

point are used to identify the same landmarks across pairs of frames. The

reconstructed 3-D locations of matching points are then used to perform

pairwise alignment of the point clouds, where the rigid transformation be-

tween the camera poses used to generate the point clouds is measured. This

transformation is encoded as an edge constraint in the pose graph, with the

number of matching interest points assigning a weight to this edge. Interest

73

points are also used in the selection of key frames, where the dissimilarity

between the point sets of the current frame and existing key-frames is used

as a metric in determining when to add a new key-frame. The current im-

plementation of the RGB-D SLAM System makes use of a choice of three

interest point packages: SIFT [7], SURF [8], and ORB [61].

SIFT and SURF are both algorithms that produce robust and well localized

features, but at a high computational cost. One study [9] using a single core

of an i7 2.67 GHZ processor found average detection times of 1611 ms per

frame with SIFT and 107 ms per frame with SURF for 800 × 640 images.

Extraction and matching times were even worse with averages of 9784 ms per

frame and 291.6 ms per frame for SIFT and 559.1 ms per frame and 194.6

ms per frame for SURF. While these times can be decreased through careful

tuning of parameters and down-sampling of the image, it is clear that, at the

moment, these feature point systems are too computationally intensive for

use at high frame rates.

In pursuit of more efficient feature detection, ORB features are also in-

cluded in the default installation of the RGB-D SLAM System. This FAST

based detection system runs at a significantly greater speed than SURF. One

paper [61] recorded detection times of 15.3 ms per 800×600 frame, compared

to SURF’s 217.3 ms per frame and SIFT’s 5228.7 ms per frame. While ORB’s

speed allows for real time detection, ORB pays a price in terms of accuracy

and precision. Its simpler descriptors and less robust features impair de-

tection and matching. In testing of the ORB implementation, the RGB-D

SLAM System would lose track or fail completely at times of large angular

movement. SURF features, which have been found to be robust to changes

in rotation and perspective [8], had no such problem.

The sluggishness of SIFT and SURF and the inaccuracy of ORB leave us

wanting for a detector which is fast enough to run at near real time speeds,

but robust and accurate enough to provide meaningful SLAM results. Recent

developments in the field of corner detectors and binary descriptors suggest

two potential candidates in the form of BRISK [9] and FREAK [10]. These

two algorithms claim detection times on the order of 35-40 ms per frame with

robustness and matching accuracy comparable to SURF and SIFT.

74

4.2 Preliminary Work

In order to begin work with BRISK and FREAK, it was necessary to first

gain an understanding of their behavior. Important questions regarding their

performance in the ROS environment and their response to a real time video

feed from the Kinect camera needed answering. To this end, a test program

was constructed.

This modular program allowed for evaluation of interest point packages

without the overhead and additional complexity of a full SLAM algorithm.

It facilitated the characterization of the run time performance of various

combinations of interest point detectors, descriptor extractors, and feature

matching algorithms. It also enabled evaluation of the quantity and quality

of feature matches obtained under these configurations with varied parameter

settings.

The test platform was developed using the ROS “Fuerte” robotic simula-

tion package [18] and the OpenCV library v2.4.3 [17] on a machine running

the Ubuntu 11.10 “Oneiric” Linux distribution. The visual input device was

a Microsoft Kinect RGB-D camera, recording 640× 480 RGB and IR-Depth

images at a rate of 30 Hz. OpenNI drivers were used to interface with Kinect

and the ROS openni kinect package supplied camera video data and calibra-

tion parameters in the ROS message format.

4.2.1 Organization

In format, the test program is quite simple. The user defines the desired

interest point detector, descriptor extractor, and feature matcher in an XML

configuration file. Parameters for the selected interest point algorithms and

additional configuration options are also specified in this file.

When the program is launched, it parses the XML file and initializes itself

accordingly. A subscription service is established which listens for ROS mes-

sages containing images from the Kinect’s RGB camera. Each time an image

is published, a callback function is called. This callback function is responsi-

ble for preparing the image for processing, performing all feature detection,

extraction, and matching operations, and displaying the results.

75

4.2.2 Preprocessing

First the image is prepared for feature detection. The RGB channels are con-

verted to the single greyscale channel required by most detection algorithms.

It is then downsampled to satisfy run time requirements specified by the

user. Additional filtering is performed with a Gaussian filter for smoothing

and with a median filter to remove salt and pepper noise.

4.2.3 Detection

The altered image is then passed to the interest point detection function.

This function identifies interest points using the prescribed method and re-

turns a length m vector of OpenCV Keypoints k. Each keypoint ki typically

consists of the location (x, y) and scale σ that the feature was detected at.

Depending on the detector used, it may also include an orientation θ and

intensity L.

k =


k1

k2

...

km

 =


(x1, y1, σ1, {θ1, L1})
(x2, y2, σ2, {θ1, L2})

...

(xm, ym, σm, {θm, Lm})



4.2.4 Description

The altered image and vector of keypoints k are then passed to the descriptor

extraction function. This function returns an m×n descriptor matrix where

the i-th row is the length n descriptor for the interest point located at index

i in the keypoint vector. The original image, keypoint vector, and descriptor

matrix are then stored for future comparison.

The format of the descriptor depends on the extraction method. Binary

extractors such as ORB, BRISK, and FREAK produce bit string descriptors

of length n = 512. The more complex extractors such as those for SIFT and

SURF produce descriptors composed of real numbers. These descriptors are

“shorter,” with a typical length of n = 128, and are normalized to have unit

magnitude. The length 128 descriptors are actually larger than the binary

descriptors since each real number is represented using 32 bits.

76

4.2.5 Matching

The feature sets for two frames of Kinect data are compared using the match-

ing function. This matching function takes the two sets of descriptors, a query

set and a training set, and identifies matching descriptors in the training set

for each descriptor in the query set.

The matching algorithm used in this function is specified by the user as

well as k, the number of matches to find in the training set for each query

descriptor. For matching of SIFT or SURF descriptors, a FLANN or brute-

force matcher can be used. For matching of binary descriptors, versions using

Hamming distance measures are used. These are the brute-force-Hamming

matcher, the brute-force-SSE3 matcher, and the FLANN-LSH matcher.

These matchers return k DMatch’s for each query descriptor. A DMatch

is a datatype used to indicate correspondence between two descriptors. It

consists of a pair of indices identifying the location of the descriptors in the

query set and training set and a float indicating the distance between the

two descriptors. This set of DMatch’s is then filtered in one of the manners

described in Section 2.6. Matches where the distance or ratio of distances

between descriptors falls below a specified threshold are kept and all others

are discarded.

4.2.6 Outputs for Evaluation

The test program has a number of outputs for evaluation of interest points.

Every time an image is processed, the number of feature points detected is

reported, as well as the time required to detect those interest points and the

time needed to compute their descriptors.

When a match between images is performed, statistics are computed for

the percentage of features that have been matched and the mean distance

between matching descriptors. Matching time is also reported. The matched

images are displayed in a composite image showing the images side by side

with detected features and correspondence lines drawn on top. An example

of this output is shown in Figure 4.1.

77

Figure 4.1: Feature matching output from the test program.

4.3 BRISK-AGAST Detection

This section details the BRISK-AGAST interest point detector implemented

in OpenCV. This detector is used to identify interest points for both the

BRISK and FREAK descriptors. This section will examine the adjustable

parameters of the detector: the threshold value t and the number of octaves

o. The threshold parameter is used in the identification of candidate interest

points, and the octaves parameter is used in the creation of the scale pyramid.

The effects of these parameters on the interest point detection process will

be detailed. How changes in these parameters affect the quantity and location

of features will also be examined. This latter analysis is done to justify the

development of a BRISK-AGAST detector called the Adjustable BRISK-

AGAST detector which is able to adjust these parameters automatically in

order to maintain a constant number of features per image.

4.3.1 Basics

A description of the BRISK-AGAST feature detection process is given in

Section 2.6. A quick overview of the salient details will now be given.

The BRISK-AGAST detector searches for features across a scale pyramid,

sometimes called a scale stack. A scale pyramid is a set of images composed

of the original image as well as downsampled and smoothed versions of that

image.

The octave parameter o determines the number of octave levels in the scale

pyramid. Each octave level is a smoothed and downsampled version of the

78

level proceeding it. The scale pyramid is made up of o + 1 octave levels ci

and o− 1 intra-octave levels di, resulting in a total of 2o levels. The scale σ

of each level is twice that of the previous corresponding level.

σ(ci) = 2i σ(di) = 1.5(2i)

Each level is created by down-sampling the previous corresponding level

by 2, resulting in the doubling of scale. Creation of c0 and d0 is a special

case. If o is zero, the scale pyramid is made up of a single octave level c0

containing the original image. If o is 1, only the first intra-octave level d0

is added. This level is obtained by downsampling c0 by 1.5. Typically, an

increase in o by one results in the addition of an octave level followed by an

intra-octave level. A typical scale pyramid has between one and eight levels.

By examining each level of the pyramid, the detector can find features

of different sizes using the same feature test. The BRISK detector uses the

FAST-9-16 accelerated segment test (AST) as its feature test. In FAST-9-16,

interest points are found by comparing the intensity of a center pixel to those

on a 16 pixel circle located at a radius of 3 pixels about the center. If more

than 9 connected pixels on the circle are all significantly brighter or darker

than the center pixel, then the center is taken as a candidate point.

Non-maximal suppression (NMS) is used to eliminate neighboring can-

didates, yielding a set of finalized interest points which have the maximum

FAST score of their neighbors in space and scale. The location of these points

is then refined in scale and space using quadratic models and interpolation.

A flowchart depicting the detection process is shown in Figure 4.2.

4.3.2 Threshold

The threshold t is used during the selection of candidate features and the

generation of FAST scores for non-maximal suppression.

During candidate feature selection, the pixels on a Bresenham circle B

of radius 3 about a candidate pixel c are examined for every pixel c in the

scale pyramid. Each pixel bc,i on the circle about c is assigned to one of

three sets, Sdark, Sbright, or Sunkown, based on its difference in intensity with

c. If the difference in intensity is greater than t the pixel bc,i is assigned

to Sbright, if the difference is less than −t the pixel is assigned to Sdark, and

79

Build Image Scale Stack

Image

Threshold: t Detect Candidate
Features

Use NMS to Remove
Neighboring Features

Number of
Octaves: o

Use polynomial model with
surrounding FAST scores to

perform sub-pixel localization on
the features

Feature Point
Locations

Figure 4.2: A flowchart detailing BRISK-AGAST interest point detection.

if the difference is between −t and t the pixel is assigned to Sunkown. The

center pixel c is labeled as a candidate interest point if there are at least 9

connected pixels in Sbright or at least 9 in Sdark.

Figure 4.3 shows an example application of the FAST-9-16 test. Here,

pixels lying on the Bresenham circle B for c are indicated with red boxes.

The dashed line indicates a connected segment of pixels which all belong to

Sbright. Since there are nine pixels in the connected segment, c would be

chosen as a candidate interest point.

B = {bc,1 . . .bc,16}

Equation (2.25) describes the set assignment process for pixels lying on

the Bresenham circle. In this equation, the intensity of a pixel c is denoted

by L(c). The threshold t is also used in calculation of the FAST score s(c)

for a candidate point c in Equation (2.24).

The threshold t can take integer values between 1 and 255 for an 8-bit

greyscale image, but typical values range from 2 to 100, depending on the

scene and desired number of features. Decreasing t results in a larger number

of pixels being placed in Sbright and Sdark and a corresponding increase in the

80

Figure 4.3: A 16 pixel Bresenham Circle used for FAST-9-16 Score
Calculation. Image source: Edward Rosten.

81

number of candidate interest points.

Such a decrease alters all FAST scores a corresponding amount, essentially

introducing an offset to all the candidate interest points’ scores. The altered

scores have no net effect on the final detection results. The offset introduces

no new maxima, meaning the same interest points will be selected from the

same set of candidates by the Non-Maxima Suppression (NMS) algorithm.

Note that it is possible for some previously detected feature points to be

replaced by new neighboring candidates, if these new candidates had high

FAST scores in the previous configuration, but did not have the required

number of connected pixels in a single set to be taken as candidate interest

points. In such cases, the decrease in t adds extra points to Sbright and Sdark,

allowing the new candidates to pass the nine connected pixel test.

4.3.2.1 Change in Point Location with Respect to t

The location of previously detected interest points will not change with re-

spect to t. This will be shown by discussing each step of the localization

process for a single interest point, and showing that the relevant values re-

main the same. First the interest point localization process will be detailed,

then it will be shown that the localization solution does not change with

respect to t.

For the purposes of this explanation, consider an interest point with an

initial location in the scale pyramid of (x, y, σ). Three 3 × 3 scores patches

are given, containing the FAST scores for the interest point and the 26 pixels

surrounding it in the scale pyramid.

These score patches are organized by octave level, with the first patch at

the octave level below the interest point, the second patch at the octave

level of the interest point, and the third patch at the octave level above the

interest point. Each 3× 3 patch is created from the nine pixels neighboring

the interest point at that octave level. The score patch at the octave level of

the interest point is created from the interest point and its eight neighbors

on that octave level.

The value at each pixel in the patch is given by that pixel’s FAST score.

The FAST scores making up these patches are denoted s(i,j), where i and

j indicate the position of the scored pixel relative to the interest point in

space. For instance, if the interest point was located at (2, 2, 1), then the

82

Figure 4.4: A BRISK 3× 3 Score Patch.

score s(−1,0) at the octave level corresponding to a scale of one would be

located at (1, 2, 1). Figure 4.4 shows an example score patch. If this score

patch were located at the interest point’s octave level, s(0,0) would be the

FAST score of the interest point.

Positional refinement of the interest point is performed using the refine-

ments terms (∆x,∆y,∆σ). The final location of the interest point is given

in Equation (4.1).

(x̄, ȳ, σ̄) = (x+ ∆x, y + ∆y, σ∆σ) (4.1)

The refinement terms for the interest point are found in 3 steps.

1. 2-D quadratics are fit to the 3× 3 score patches. These quadratics are

used to determine the value of the maximum score in each patch and

its location in sub-pixel coordinates. These three maximum scores are

denoted as s′(−1), s
′
(0), and s′(1), where a subscript of -1 corresponds to

the octave level below the interest point and the subscript of 1 indicates

the octave level above the interest point. The locations of these three

maximum scores in sub-pixel coordinates is given by ∆ x′(−1), ∆ x′(0) ,

and ∆ x′(+1) respectively.

x′(−1) = (∆x′(−1) , ∆y′−1)

2. The maximum scores for each of the three levels are then fit to a

parabola to estimate overall maximum score. The location in scale

of this maximum score gives the scale refinement term ∆σ.

3. The positional refinement terms ∆x and ∆y are then found by interpo-

lating between the two maximum score locations found in Step 1 which

83

surround the scale refinement term found in Step 2.

In Step 1, the maximum score s′ and its location x′ are found for each of

the three score patches. This is accomplished by fitting the parameters of

the 2-D quadratic function given in Equation (4.2) to the score patch and

finding the value and location of the quadratic’s local maximum.

s = ai2 + bij + cj2 + di+ ej + f (4.2)

The parameters ζ of the 2-D quadratic are found by performing a least

squares fit. The 2-D quadratic is written in matrix form as:

s = ζT q(i, j)

where:

ζ =



a

b

c

d

e

f


q(i, j) =



i2

ij

j2

i

j

1


The least squares fit can then be expressed as a minimization of the energy

function E(ζ) given in Equation (4.3).

E(ζ) =
1∑

i=−1

1∑
j=−1

(ζT q(i, j)− si,j)2 (4.3)

Setting the derivative with respect to ζ of the energy function equal to

zero and solving for ζ yields Equation (4.4).

ζ = M−1Qs (4.4)

84

M =
1∑

i=−1

1∑
j=−1

q(i, j)q(i, j)T

Q =
[
q(−1,−1) q(0,−1) . . . q(1, 1)

]

s =



s−1,−1

s0,−1

s1,−1

...

s1,1


The local maximum for Equation (4.2) is found at the location ∆x′ where

the partial derivatives with respect to i and j are 0, assuming the determinant

of Hessian H(s) passes the second derivative test stated in Equation (4.5).

H(s) =


∂2s

∂2i

∂2s

∂i∂j

∂2s

∂i∂j

∂2s

∂2j

 det (H(s)) =
∂2s

∂2i

∂2s

∂2j
− ∂2s

∂i∂j

∂2s

∂j∂i
< 0

∂s

∂i
= 2ai+ bj + d

∂s

∂j
= 2cj + bi+ e (4.5)

Setting the partial derivatives to 0 and solving for i and j gives the location

of the local maximum ∆x′, given in Equation (4.6).

∆x′ =

[
∆x′

∆y′

]

∆x′ =
be− 2cd

4ac− b2
∆y′ =

bd− 2ae

4ac− b2
(4.6)

The maximum score is then given by Equation (4.7), concluding Step 1.

s′ = ζT q(∆x′,∆y′)

= a(∆x′)2 + b(∆x′)(∆y′) + c(∆y′)2 + d(∆x′) + e(∆y′) + f (4.7)

In Step 2, the scale refinement term ∆σ is found by fitting the 1-D parabola

specified in Equation (4.8) to the maximum scores ∆x′−1, ∆x′0, and ∆x′1

85

found in Step 1 and their associated scale values. Scale values of σ̂−1 = 0.75,

σ̂0 = 1, and σ̂1 = 1.5 are used rather than the actual scale values of the score

patches, giving a multiplicative refinement term ∆σ rather than the refined

scale σ̄ of the interest point itself. Posing the problem in such a manner

allows for time saving pre-computations in the BRISK implementation.

s = ασ̂2 + βσ̂ + γ (4.8)

The least-squares fit of the parabola to the supplied scales and scores can

be found in the same manner as the 2-D fit in Step 1. Writing Equation (4.8)

in matrix form gives Equation (4.9) and its least squares solution is given in

Equation (4.10).

s = ζ1D

σ̂
2

σ̂

1

 (4.9)

ζ1D = M−1
1DQ1Ds1D (4.10)

M1D =
1∑

i=−1

σ̂
4
i σ̂3

i σ̂2
i

σ̂3
i σ̂2

i σ̂i

σ̂2
i σ̂i 1

 Q1D =

σ̂
2
−1 σ̂2

0 σ̂2
1

σ̂−1 σ̂0 σ̂1

1 1 1


s1D =

s−1

s0

s1

 ζ1D =

αβ
γ


The scale ∆σ of the maximum score is found by setting the derivative of

Equation (4.8) equal to zero and solving for σ̂. The value of ∆σ in terms of

the parabola parameters is given in Equation (4.11), concluding Step 2.

∆σ =
−β
2α

(4.11)

In Step 3, the spatial refinement terms ∆x and ∆y are found using linear

interpolation. The locations of the critical points for the score patches above

and below ∆σ are used to interpolate the value of ∆x and ∆y at ∆σ. This

interpolation operation is detailed in Equation (4.12). In this equation ∆x′(+)

is the location of the critical point found in Step 1 whose scale is closest to,

86

but greater than ∆σ, and ∆x′(−) is the critical point location whose scale is

closest to, but less than ∆σ.[
∆x

∆σ

]
=

[
(1− u)x′(+) + ux′(−)

∆σ

]
(4.12)

u =
∆σ − σ̂(−)

σ̂(+) − σ̂(−)

σ̂(+) > ∆σ > σ̂(−)

This concludes the description of the interest point localization process. It

will now be shown that changes in the threshold t by an amount ∆t do not

change the location of the interest point.

When the threshold t is changed by ∆t, the FAST scores are globally offset

by ∆t. This fact should be intuitive given an examination of the FAST score

equation shown in Equation (2.24). These new FAST scores will be denoted

s̃. The relationship between the new and old FAST scores of the three score

patches used in the interest point location refinement process is given in

Equation (4.13).

s̃i,j = si,j + ∆t (4.13)

This change in scores has no effect on the model fit performed in Step 1

except for the parameter f . Applying this change in scores to Equation (4.4)

yields a new parameter vector ζ̃ given in Equation (4.14).

ζ̃ = M−1Qs̃ = M−1Q(s + ∆t1)

= M−1Qs + ∆tM−1Q1 (4.14)

It can be shown through direct computation that the first eight rows of

the matrix M−1Q sum to zero and the ninth row sums to one, leading to the

simplification:

∆t
(
M−1 Q 19×1

)
=


0
...

0

∆t


Substituting this simplification into Equation (4.14) gives the new param-

87

eter matrix ζ̃, specified in Equation (4.15).

ζ̃ = M−1Qs +


0
...

0

∆t

 = ζ +


0
...

0

∆t

 =



a

b

c

d

e

f + ∆t


(4.15)

We can conclude that the location ∆x′ of the 2-D quadratic’s critical point

does not change in the presence of a global offset, since the refinement lo-

cations terms ∆x̃′ and ∆ỹ′ obtained by plugging ζ̃ into Equation (4.6) are

equal to ∆x′ and ∆y′.

∆x̃′ =
b̃ẽ− 2c̃d̃

4ãc̃− b̃2
=
be− 2cd

4ac− b2
= ∆x′

∆ỹ′ =
b̃d̃− 2ãẽ

4ãc̃− b̃2
=
bd− 2ae

4ac− b2
= ∆y′

The maximum score s̃′ located at (∆x̃′,∆ỹ′) is s′ offset by ∆t.

s̃′ = a(∆x′)2 + b(∆x′)(∆y′) + c(∆y′)2 + d(∆x′) + e(∆y′) + (f + ∆t)

= s′ + ∆t

In Step 2, the increase in all of the score maxima obtained from Step 1 does

not change the location of the scale refinement term ∆σ̃ for similar reasons.

The parameter values ζ̃1D change in a similar manner to the ζ̃ terms.

Substituting s̃1D into Equation (4.10) yields Equation (4.16).

s̃1D = s1D + ∆t 1(3×1)

ζ̃1D = M−1
1DQ1Ds̃1D = M−1

1DQ1Ds1D + ∆t M−1
1D Q1D 1(3×1)

= ζ1D +

 0

0

∆t

 =

 α

β

γ + ∆t

 (4.16)

Plugging ζ̃1D into Equation (4.11) shows that the spatial refinement terms

88

∆σ̃ and ∆σ are equivalent.

∆σ̃ =
−β̃
2α̃

=
−β
2α

= ∆σ

Since the location of the critical points ∆x′(−1), ∆x′(0), ∆x′(1), and ∆σ

do not change when t is changed, the final interpolated location refinement

obtained in Step 3 (∆x,∆y,∆σ) remains the same.

4.3.2.2 Number of Features Detected

The number of features detected varies significantly with changes in t. Table

4.1 shows the results of setting t to 10, 15, and 20 at several different o values.

As can be seen in columns 2, 3, and 4, decreasing t significantly increases

the number of features detected and increases the total detection time per

image. This is the result of an increase in the number of candidate features

which need to be evaluated, and finalized features which must be localized.

The detection time per feature remains approximately constant.

Table 4.1: BRISK-AGAST detection results with a BRISK Extractor and
brute-force-Hamming matcher.

Octave Threshold Feature Count Detect Time Extract Time Match Time Detect Time / Feat.
(ms) (ms) (ms) (ms)

0 10 1854.661 15.468 9.532 179.352 0.008
0 15 1308.360 11.112 7.032 92.484 0.008
0 20 968.099 8.549 5.296 52.340 0.009
1 10 728.261 12.657 4.198 27.272 0.017
1 15 585.079 11.212 3.444 17.767 0.019
1 20 477.365 9.154 2.577 11.768 0.019
2 10 628.538 14.315 3.679 20.431 0.023
2 15 503.082 11.904 2.977 13.188 0.024
2 20 416.191 9.984 2.315 9.186 0.024
3 10 607.029 15.269 3.530 18.972 0.025
3 15 484.509 12.669 2.871 12.386 0.026
3 20 400.750 10.829 2.365 8.513 0.027
4 10 602.046 15.462 3.489 18.600 0.026
4 15 480.162 12.675 2.759 12.052 0.026
4 20 396.635 11.038 2.346 8.345 0.028

4.3.3 Octave

The octave parameter o determines the number of octave levels in the scale

pyramid used for interest point detection. There is a total of 2o levels in the

pyramid. For a more detailed description of scale pyramid construction refer

to Section 2.6.

89

4.3.3.1 The Number of Octaves and Feature Detection

The scale pyramid plays a role in the detection of candidate interest points,

and the selection and localization of finalized interest points.

The pyramid makes up the search space for candidate interest points. Can-

didates are found by examining each level for points which satisfy the FAST

9-16 criterion. Candidate features are then compared to the 9 × 9 patch at

their scale level, the level above, and the level below to determine if they sat-

isfy the maximum criterion to become finalized interest points. The positions

of these interest points are then refined using the same three levels.

Intuitively, it appears that increasing o, and thereby the search space,

would increase the number of features detected, but this is not the case in

practice. Some peculiarities of the NMS algorithm used to select finalized

interest points result in a steady decrease in the number of detected points

as the pyramid grows larger.

For a scale pyramid of l levels, the NMS algorithm behaves as expected for

the first l− 1 levels. It examines the three levels surrounding each candidate

point and determines whether the candidate has a greater score than all its

neighbors. However, the behavior of the NMS algorithm changes at level l.

Since there are no levels above l, the NMS algorithm evaluating candidates

on l will only examine levels l and l − 1. As a result, many interest points

are finalized which would not be selected if l + 1 were available. When o is

increased, regular NMS is applied to level l, and these points are eliminated.

The decrease in the quantity of previously detected points coupled with the

ever decreasing size of each level leads to a steady decline in the total number

of features detected with each octave level added.

This behavior is exemplified in Table 4.1. Increasing the value of o from

zero to one results in significant decrease in the number of features detected.

With a value of o = 0, the scale pyramid has one level and NMS considers

only the 8 surrounding scores. When o is increased to one, intra-octave

levels d0 and d−1 are added and considered in the NMS, resulting in 400-900

fewer interest points. Subsequent increases result in a slight decrease of 5-

10 features per octave level. Each additional level eliminates some interest

points that are not truly maxima and replaces them with fewer new points.

Increasing the number of octaves from o = l
2

to o = l
2

+ 1 has no effect on

the detection or localization of interest points not detected on level l. Since

90

the lower levels are unchanged by the addition of new levels, points detected

and localized using the lower levels will remain unchanged as well.

It is almost certain that interest points found at level l which are not

eliminated by the stricter NMS check will change in location. Points located

in level l of the scale pyramid will have their scale refined from σ = 1.5(2
l−1
2)

to σ = 1.5(2
l−1
2)(∆σ), with ∆σ as defined in Equation (4.11). This in turn

will result in new interpolated positional refinement terms ∆x and ∆y, and

a completely different interest point location.

Increasing the number of octaves results in an initial decrease in detection

time per image, followed by subsequent increases. The initial decrease is

due to a substantial decrease in the number of features detected. Hundreds

fewer detected interest points means hundreds fewer localization operations

must be performed. As o continues to increase, the feature decrease slows

to a few features per level, while the detection time climbs by roughly 1 ms

per level as a result of the increased size of the search space. The increased

space means more pixels must be examined to determine whether they are

candidates and more candidates must be evaluated to determine if they are

maxima. The increase in detection time is so significant that, at o = 3, the

detector takes as much time as o = 0 while detecting one-third of the interest

points.

The detection time per feature (Column 7 of Table 4.1) paints a clearer

picture of what is happening. Each increase in o results in a corresponding

increase by approximately 8 µs in detection time for each interest point found.

4.4 Remarks on BRISK-AGAST and Motivation

toward the Adjustable BRISK Detector

Experiments with the Kinect and BRISK-AGAST detector revealed that the

number of features varies quite substantially throughout the course of a video

sequence. Figure 4.5 shows the feature count during one such sequence. Four

sample frames taken from this video sequence are shown in Figure 4.6. The

count oscillates between low and high values dropping as low as 200 features

per frame between frames 195 and 205, and then spiking up to almost 1800

features per frame near frame 230. This type of behavior is problematic in

the RGB-D SLAM System. When too many features are present, the number

91

Figure 4.5: The feature count in a video sequence using a BRISK-AGAST
detector with t = 15 and o = 0.

of matches used in the computation of visual odometry becomes large and

the processing rate for new frames decreases. If too few are present, there

may not be enough feature matches with any keyframe to recover the motion

between frames at all. In the RGB-D SLAM System it is desirable to have a

detector that produces a consistent number of features, no matter the current

view so as to avoid such problems.

OpenCV provides a framework for such a detector in the DynamicAdapt-

edFeatureDetector class. This class takes a feature detector, an image, and

bounds on the desired number of features, and iteratively tunes the feature

detector so as to produce a feature count within the specified bounds. Un-

fortunately, this detector was designed for use in the processing of image sets

rather than video sequences. As such it assumes no correlation between the

content of sequential frames and is not designed with efficient detection times

in mind.

The detector does not preserve its tuned parameter settings between im-

ages. Instead it performs an iterative refinement of these parameters for

92

(a) Frame 40 (b) Frame 200

(c) Frame 230 (d) Frame 500

Figure 4.6: Sample frames from the video sequence used to generate Figure
4.5.

93

every image. The refinement process repeatedly generates a new detector,

performs feature detection on the image, and then adjusts the parameters

of the next detector based on a comparison between the number of features

detected and the desired bounds. This process repeats until an acceptable

number of features is detected or the maximum number of iterations for the

image is reached.

This process is very time-intensive for BRISK. A new detector must be in-

stantiated at every iteration of the refinement– typically 3-5 times per image.

With a creation time of 300 ms per BRISK detector and multiple detection

passes on each image, any potential savings in matching time and improve-

ment in accuracy due to a more consistent feature count are outweighed by

the dropped frames and additional detection time.

Figure 4.7 illustrates this difference. In Figure 4.7a, the detection time per

image is shown for a BRISK detector with t = 15, o = 1. A similar plot for a

dynamic BRISK detector with a minimum feature count of 600, a maximum

count of 800, and a maximum of 3 iterations is shown in 4.7b. The average

detection time of 11 ms per frame for the BRISK detector is almost 1/80th

of the 831 ms for the dynamic detector. Note the sharp jumps in detection

time in 4.7b. These jumps occur when the number of iterations required to

refine the parameters changes. Times near 400 ms are the result of a one

iteration detection, times near 800 ms are the result of two, and those near

1200 ms are the result of three. Even at one iteration, the extra overhead

involved with instantiating the dynamic detector makes detection take 40

times longer than the average BRISK detector.

A detector capable of finding a consistent number of features would be very

useful in the RGB-D SLAM System, but the dynamic detectors provided by

OpenCV are too slow for practical use.

4.5 Adjustable BRISK Detector

In response to experiments with the dynamic detector, I created the Ad-

justable BRISK detector. This interest point detector has detection times

comparable to BRISK, while producing a more consistent number of features.

It leverages the large amount of visual consistency between sequential frames

in a video sequence to use previous detection results to inform the selection

94

(a) (b)

Figure 4.7: Figure 4.7a shows the detection time per frame for a BRISK
detector with t = 15, o = 1. Figure 4.7b shows the detection time per frame
for a dynamic BRISK detector with feature boundaries 600-800.

of future BRISK parameters.

The Adjustable BRISK detector is a modified version of the BRISK-

AGAST detector. It selects interest points in the same manner, but has

additional functions that allow for tuning of the threshold value to keep the

number of features detected relatively constant.

Usage is similar to that of the BRISK detector. The user specifies six

parameters in the initialization of the detector:

• init thresh - The starting threshold value to use in the first detection.

• nOctaves - The number of octaves to use in the detection of feature

points. This parameter is exactly the same as in the BRISK-AGAST

detector.

• min features - The lower-bound on the acceptable number of features.

• max features - The upper-bound on the acceptable number of features.

• min thresh - The lowest acceptable value that the threshold can take.

• max thresh - The greatest acceptable value that the threshold can take.

The detect function is used to extract a list of interest points from an image.

Immediately after a detect call, the updateParams function is called with

the number of interest points detected, n, as a parameter. This function

adjusts the detector parameters to produce more points if too few interest

points were detected, and less if too many were detected. The threshold

95

update logic for updateParams is given in Equation (4.17), where t is the

previous threshold and t̂ is the new threshold value.

t̂ =

{
0.9t min features > n

1.1t max features < n
(4.17)

Although the number of octaves o and the threshold value t are both

capable of changing the number of features, only t is adjusted in Equation

(4.17). This is because t can take a much broader range of values, and those

values give finer control of the feature count than o.

Figure 4.9 demonstrates this, showing feature detection counts for ranges of

t and o on the famous “Lena” image (Figure 4.8). In Figure 4.9b, the feature

count is shown for the range of all possible o values 0 - 9. As discussed in

Section 4.3, increasing o from 0 to 1 results in a sharp decrease in the number

of feature detected, from 1435 to 299 in this case. Subsequent increases in o

result in decreases in the feature count of only 1-2 features.

Figure 4.9a shows the large set of values t can cover and the wide range of

feature counts that it can produce. With a properly selected threshold value,

most any range of feature counts can be achieved.

Note the detection efficiency in Figures 4.9e and 4.9f, given in µs per

feature. For threshold values less than 80, an approach altering only the

threshold is able to produce features more efficiently than one changing the

number of octaves. It should also be mentioned that a change in the value of o

used to detect features would necessitate the reinitialization of the descriptor

extractor, so as to generate a new look-up table including the appropriate

number of scale levels. The generation of the look-up table is a time-intensive

process which requires several hundred milliseconds.

Concerns regarding the stability of the detected feature points also played

a role in the choice to use only the threshold value to control the number

of features. We saw in Section 4.3 that the location of an interest point is

constant with respect to t. This property only extends to the lower levels of

the scale pyramid for o. Interest points located at the top level will almost

surely change location when o is increased, since the localization technique

for those points expands to include scale refinement and inter scale level

interpolation.

The change in the location of the features is an issue in the RGB-D SLAM

System. When the algorithm processes a new frame, it performs visual odom-

96

Figure 4.8: Lena.

etry by comparing features between the new frame and existing key frames

and then examining the rigid transformation between the reconciled 3-D lo-

cations of the matching pairs in the two frames.

The RGB-D SLAM System uses feature matches with previously detected

frames to estimate the pose of the camera. If a change in o results in a change

in the location of interest points, their descriptors might be altered enough to

prevent matches from being established, resulting in a loss of tracking. Even

if enough matches are found, the change in position of the interest points

may alter their relative positions, resulting in an incorrect motion estimate

that introduces error into the estimated trajectory.

A multiplicative threshold adjustment in Equation (4.17) is chosen over

the more typical constant adjustment because of the nature of the feature

count - threshold plot in Figure 4.9a. For large values of t, large changes

in t are required to elicit a significant change in the feature count, while

at smaller values of t very small changes in t are required to prevent gross

changes in the feature count.

4.6 BRISK Descriptor

The BRISK descriptor is formed as described in Section 2.6. It is a binary

descriptor formed using the sampling pattern in Figure 2.2 which has been

rotated and expanded in accordance with the orientation and scale of the

interest point being described.

97

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Detection results for the Lena image across a range of threshold
values and octave counts. The first column shows the results for the
BRISK-ÃGAST detector with o = 0 and t = 1→ 100. The second column
shows results for t = 15 and o = 1→ 9. The first row gives the number of
features detected, the second gives the total detection time at each setting,
and the third gives the detection efficiency in µs per feature.

98

The implementation of the BRISK descriptor used in this thesis had two

open parameters: nOctaves and patternScale. The parameter nOctaves

is the number of octave levels used in detection of the interest point. This

value is used in the generation of the look-up table that expedites descriptor

creation. The parameter patternScale specifies the size of the sampling pat-

tern used to generate the descriptor. Increasing the value of patternScale

increases the scale of the sampling pattern, moving each sampling point far-

ther from the interest point being described, and increasing the radius of the

Gaussian kernel located at each sampling point.

In experiments with patternScale, it did not appear to have much of an

impact on the quality of the matches, although keeping the value close to 1.0

produced the most consistent results.

4.7 FREAK Descriptor

The FREAK descriptor is described in Section 2.6. It is a binary descriptor

similar in form to BRISK. Both extractors use a sampling pattern to compare

image intensities and build the binary descriptor strings. Both also use the

orientation and scale of the interest point to rotate and scale the sampling

pattern, providing a measure of scale and rotational invariance. FREAK

differs from BRISK in the pattern used to generate the descriptor and the

method in which two descriptors are matched. FREAK’s sampling pattern

(Figure 2.3) is made up of fewer sampling points than BRISK. These sampling

points have overlapping kernels with a much wider variety in kernel size, and

are organized in a manner reminiscent of the human eye.

The FREAK descriptor incorporated into the RGB-D SLAM System had

four open parameters: orientationNormalized, scaleNormalized, pat-

ternScale, and nOctaves.

• The parameter orientationNormalized is a Boolean variable which

specifies whether to determine the orientation of each interest point

and rotate the sampling pattern accordingly prior to description.

• The parameter scaleNormalized is a Boolean variable which specifies

whether to expand or shrink the sampling pattern in accordance with

the interest point’s scale prior to description.

99

• The parameter patternScale is a positive floating point value. Exactly

as in the BRISK descriptor, patternScale allows the user to expand or

contract the sampling pattern for all interest points, so as to use more

or less of the image in descriptor creation. The default value is 22.0,

however cursory tests with the test program produced best results for

the Kinect with values near 15.0.

• The parameter nOctaves is the number of octave levels used during

the extraction of the interest point descriptor. This value is used in the

generation of a look-up table that expedites the sampling and compar-

ison step during descriptor construction.

4.8 Matchers

Brute-force matchers using Hamming and Euclidean distance measures, and

FLANN matchers using Euclidean distance are included in the default in-

stallation of the RGB-D SLAM System. A FLANN matcher implementation

using Locality-Sensitive Hashing (LSH) [13],[12] was added for this thesis.

A FLANN-LSH matcher allows use of a Hamming distance metric in the

FLANN framework, making it possible to use a FLANN matcher with bi-

nary descriptors such as BRISK and FREAK.

4.9 Incorporation into the RGB-D SLAM System

This section details changes made to the RGB-D SLAM System to facilitate

testing of additional feature detectors, extractors, and matchers.

The RGB-D SLAM algorithm was modified to incorporate the BRISK-

AGAST, Dynamic BRISK, and Adjustable BRISK detectors, as well as the

BRISK and FREAK descriptor extractors, and the brute-force-SSE3 and

FLANN-LSH matchers. Several additional changes were made to facilitate

testing of these detectors, extractors, and matchers.

Cases for the three detectors were added to the CreateDetector function

in the misc.cpp file. Cases for the FREAK and BRISK descriptors were

also added to CreateDescriptorExtractor in the same file. Corresponding

parameters for the initialization of the detectors and extractors were added to

100

the parameter server in the parameter server.cpp file. An updateParams

call was also added to the detect call in the node.cpp file, to be used only

when the Adjustable BRISK detector is selected.

The brute-force-Hamming matcher in the node.cpp file was altered to

allow use with any binary descriptor, not just ORB. Options for the brute-

force SSE3 and FLANN-LSH matchers were added in the same location.

Finally, new timing code was added to monitor the performance of the

new additions and a playback timer was incorporated to limit the duration

of the RGB-D SLAM System’s run time and provide more consistent video

sequence lengths for comparison.

4.10 Evaluation of RGB-D SLAM Data

Quantitative evaluation of the feature detection, extraction, and matching

functions in the RGB-D SLAM System is accomplished in this thesis through

the comparison of the estimated camera trajectory to a set of ground truth

poses.

4.10.1 Trajectory Evaluation

Two methods were developed for the comparison of the estimated trajectory

obtained from the RGB-D SLAM System to the ground truth trajectory.

The absolute trajectory error (ATE) [62] examines the difference in location

and orientation between matching poses in the aligned trajectory estimate

and the ground truth. The relative motion error (RME) [63] compares the

relative motion between poses in the ground truth and trajectory estimate.

4.10.1.1 Goal and Notation

There are two collections of time stamped trajectories D̀ and E. The se-

quence D̀ = {d̀1, d̀2, . . . d̀i . . . d̀n} is the collection of ground-truth poses and

timestamps, and E = {e1, e2, . . . ej . . . em} is the set of discrete pose estimates

and their timestamps. The ground truth sequence describes the position and

orientation of a camera throughout a video sequence. The estimated trajec-

tory is the output of a SLAM algorithm which is estimating the position and

101

orientation of that camera throughout the same video sequence.

• The set of ground truth timestamped poses D̀ is recorded at a rate of

100 Hz, while the set of estimated timestamped poses E is recorded

asynchronously and much less frequently.

• Each ground truth timestamped pose d̀i = (t̀d,i, J̄i) consists of a time-

stamp t̀d,i and a pose J̀i, describing the rigid transformation from cam-

era coordinate frame at time t̀d,i to G, the ground truth’s world frame.

• This transformation J̀i can be expressed as a translation vector ρ̀d,i

and a quaternion Q̀d,i.

J̀i ⇔
〈

Q̀d,i, ρ̀d,i

〉
• Each estimated timestamped pose ej = (te,j, T̄j) gives the estimated

rigid transformation T̄j from the camera coordinate frame at time te,j

to W , the estimate’s world frame.

• This transformation T̄j can be expressed as a translation vector ρe,j

and a quaternion Qe,j.

T̄j ⇔
〈
Qe,j,ρe,j

〉
• The timestamps for both sets are synchronized, giving the time since

Unix epoch.

4.10.1.2 Alignment in Time

Both ATE and RPE require alignment of the higher rate ground truth times-

tamped poses with the asynchronous trajectory estimate. This is achieved

by interpolating a ground truth pose for every estimate pose, giving a set

of interpolated pose and time estimates D = {d1, d2, . . . di . . . dm}. The pro-

cess, using linear interpolation on the translation terms and spherical linear

interpolation (Slerp) [35] on the rotational terms, is as follows:

For each timestamped pose ej ∈ E:

1. Find the two sequential timestamped poses d̀i and d̀i+1 such that t̀d,i <

te,j < t̀d,i+1.

102

2. Compute the interpolation weight u.

u =
te,j − t̀d,i
t̀d,i+1 − t̀d,i

3. Obtain ρd,j via linear interpolation.

ρd,j = ρ̀d,i + u(ρ̀d,i+1 − ρ̀d,i)

4. Obtain Qd,j via Slerp.

Qd,j =
sin (γ(1− u))

sin(γ)
Q̀d,i +

sin (uγ)

sin(γ)
Q̀d,i+1

γ = arccos(Q̀d,i · Q̀d,i+1)

5. Construct dj = (te,j, J̄j).

J̄j ⇔
〈
Qd,j,ρd,j

〉

4.10.1.3 Absolute Trajectory Error

The absolute trajectory error is similar to the error metric used in [1]. The

error is measured at each matching pose pair
(
GT̄i, J̄i

)
. Here, GT̄i is the

estimated timestamped pose at i expressed in terms of the ground truth

world frame G.

In order to calculate the error, the rigid transformation T from W to G

must be found. This transformation is given using a quaternion as 〈Q,ρ〉
and using a rotation matrix as 〈R,ρ〉.

T⇔ 〈Q,ρ〉 ⇔ 〈R,ρ〉

The transformation T is estimated by computing the rigid transformation

between the translation terms of matching poses (ρe,j,ρd,j) as in [44]. For a

more complete documentation of this process refer to Section 2.9.

The approach estimates T as the rigid transformation T̂ that minimizes

the sum of squared distance between the estimated pose translation terms

transformed according to T and the corresponding ground truth pose trans-

103

lation terms.

T̂⇔
〈

Q̂, ρ̂
〉
⇔
〈
R̂, ρ̂

〉
〈
R̂, ρ̂

〉
= argmin

R,ρ

m∑
i=1

||Rρe,i + ρ− ρd,i||2

The estimated poses in the ground truth world frame are given as:

GT̄i ⇔

〈
Q̂Qe,i , Q̂

[
0

ρe,i

]
Q̂
−1

+

[
0

ρ̂

]〉
, i = 0 . . .m

ATE evaluates how closely the poses in the estimated trajectory match

the ground truth poses. The error is measured using the translational error

and the rotational error terms. The translational error is given by Equation

(4.18). The rotational error is given by Equation (4.19).

GT̄j ⇔
〈
GQe,j,

Gρe,j
〉

εi = ||Gρe,i − ρd,i|| (4.18)

φi = 2 arccos(|Re{ (GQe,i)
−1Qd,i}|) (4.19)

Here, Re{Q} is the real, scalar component of the quaternion Q and Q−1 is

the inverse of the quaternion Q.

4.10.1.4 Relative Motion Error

The relative motion error metric is an error measurement inspired by [63]. It

evaluates how closely the motion between poses in the estimated trajectory

matches that of the ground truth. The motion is recovered by finding the

rigid transformation between sequential poses for both datasets. The angu-

lar difference between the two rotations gives the rotational error and the

difference in translation terms gives the translational error.

The relative motion T̃i between two estimated poses T̄i and T̄i+1 is given

by:

T̃i = T̄i+1T̄
−1
i

104

T̃i ⇔
〈

Q̃e,i, ρ̃e,i

〉
If the SLAM algorithm has estimated the poses correctly, this motion should

be the same as the ground truth motion J̃i between the ground truth poses

J̄i at di and J̄i+1 at di+1.

J̃i = J̄i+1J̄
−1
i

J̃i ⇔
〈

Q̃d,i, ρ̃d,i

〉
The difference in angle of rotation and translation between the two trans-

formations J̃i and T̃i indicates how much angular and positional error was

introduced by the motion from T̄i to T̄i+1.

The angular error φ can be found as in Equation (4.20).

φi = 2 arccos
(∣∣∣Re{Q̃e,iQ̃

−1

d,i

}∣∣∣) for i = 1 . . .m (4.20)

The translational error is found by taking the Euclidean distance between

the two translation terms.

εi = ||ρ̃e,i − ρ̃d,i|| for i = 1 . . .m

4.11 Chapter Conclusion

This chapter introduced several interest point detectors, descriptor extrac-

tors, and descriptor matchers, and explained their incorporation into the

RGB-D SLAM System. It also introduced two methods for evaluating the

pose estimates of a SLAM system against a set of ground truth poses. The

next chapter will use the tools and methods developed here to discuss the re-

sults of testing the RGB-D SLAM System using these new feature detection

systems.

105

Chapter 5

Feature Detection - Experiments

5.1 Chapter Summary

This chapter details testing of the RGB-D SLAM System using the feature

detectors, descriptors, and matchers outlined in Chapter 4. Testing con-

sisted of an evaluation of pose estimate quality obtained using the RGB-D

SLAM System with BRISK-AGAST and Adjustable BRISK-AGAST detec-

tors, BRISK and FREAK descriptor extractors, and brute-force and FLANN

matchers, while processing each frame in an RGB-D video sequence. This

video sequence and the associated ground truth trajectory of poses were sup-

plied for SLAM benchmarking in [62]. The ground truth pose information

was recorded using an external motion capture system at a rate of 100 Hz.

The primary video sequence used for testing was the “freiburg1 room”

dataset. This video captures a scene consisting of a pair of L shaped desks

forming a “T” shape with a stuffed animal sitting in an office chair at the

right-most desk. The video pans across the two desks from left to right,

recording the desks as well as the room they are located in. Figure 4.6 shows

example frames from this video sequence. The video was selected because it

provides a combination of translational and rotational movement and revisits

locations in the scene. This allows for testing of the performance of pairwise

alignment in the presence of changes of rotation, scale, and perspective. The

ability of RGB-D SLAM to recognize loop closures is also tested by this

sequence.

The feature detection systems are evaluated in terms of detection, extrac-

tion, matching, and aggregate run time as well as the Absolute Trajectory

Error (ATE) and Relative Motion Error (RME) metrics for the estimated

poses outlined in Section 4.10.

106

5.2 Chapter Organization

This chapter will first analyze the performance of each configuration and

suggest suitable parameter settings for these configurations. Interest point

detectors, descriptor extractors, and matchers will then be compared and an

“optimal” configuration will be suggested.

Each configuration will be analyzed independently in Sections 5.3-5.11.

The major results of this chapter are found in the interest point detector

comparison section (Section 5.12), the matcher comparison section (Section

5.13), and the extractor comparison section (Section 5.14). A summary of

these results is given in Section 5.15.

5.3 ORB and SURF Baseline

The default RGB-D SLAM program allows for the choice from two main

feature detection systems SURF and ORB. A third system, GPU-SIFT, is

available only with computers containing an NVIDIA GPU. Both SURF and

ORB trials were run using the 21 s video sequence in order to establish a

baseline for evaluation.

The ORB feature system consisted of a FAST feature detector, an ORB

descriptor extractor, and a brute-force matcher using the Hamming distance

metric. The SURF feature system consisted of a SURF detector, a SURF

descriptor extractor, and a FLANN matcher. Both SURF and ORB detectors

were DynamicAdaptedFeatureDetector implementations similar in concept

to the one discussed in Section 4.4. The dynamic implementations run up to

max iters passes on each image while tuning their detector’s parameters, in

an attempt to ensure that the number of features in each frame falls between

min features and max features.

The default ORB system was tested using a wide range of values for min -

features, max features, and max iters. A complete run processing the

full 21 s video sequence was unable to be completed. The ORB system en-

countered significant difficulties at times of large angular motion, typically

losing its localization solution when the camera was rotating about an object

or panning. This is due to the nature of the ORB descriptor. Although it was

designed to be robust to in-plane rotations, panning of the camera resulted

107

Table 5.1: SURF results.

min max max Run time RME Trans. RME Ang. ATE Trans. ATE Ang.
feat. feat. iters. (s) (m) (rad) (m) (rad)
300 301 1 158.227 0.019 ± 0.046 0.013 ± 0.015 0.210 ± 0.120 0.199 ± 0.067
300 301 3 174.124 0.016 ± 0.024 0.012 ± 0.010 0.119 ± 0.071 0.095 ± 0.050
300 350 2 160.671 0.015 ± 0.022 0.013 ± 0.010 0.141 ± 0.073 0.135 ± 0.054
300 700 1 156.570 0.021 ± 0.059 0.015 ± 0.021 0.274 ± 0.150 0.468 ± 0.079
300 700 2 158.354 0.015 ± 0.024 0.013 ± 0.010 0.160 ± 0.098 0.137 ± 0.060
300 700 3 172.320 0.017 ± 0.037 0.013 ± 0.015 0.143 ± 0.081 0.148 ± 0.047
300 400 1 150.693 0.018 ± 0.037 0.013 ± 0.013 0.154 ± 0.092 0.135 ± 0.060
300 400 2 160.207 0.016 ± 0.028 0.013 ± 0.012 0.140 ± 0.074 0.121 ± 0.050
300 400 3 168.596 0.021 ± 0.056 0.014 ± 0.020 0.134 ± 0.099 0.100 ± 0.061
400 500 2 165.869 0.020 ± 0.082 0.014 ± 0.029 0.177 ± 0.122 0.173 ± 0.044
400 500 3 176.769 0.016 ± 0.035 0.013 ± 0.013 0.126 ± 0.073 0.101 ± 0.050
500 600 1 154.761 0.018 ± 0.038 0.013 ± 0.014 0.156 ± 0.102 0.144 ± 0.060
500 600 2 170.537 0.017 ± 0.047 0.013 ± 0.021 0.221 ± 0.095 0.282 ± 0.065
500 600 3 187.104 0.014 ± 0.022 0.012 ± 0.011 0.111 ± 0.055 0.103 ± 0.054

Table 5.2: Average SURF timings.

min features max features max iters Detect Time Extract Time Match Time Run time
(s) (s) (s) (s)

300 301 1 0.081 0.077 0.025 158.227
300 301 3 0.146 0.075 0.025 174.124
300 350 2 0.111 0.077 0.027 160.671
300 700 1 0.086 0.081 0.038 156.570
300 700 2 0.093 0.081 0.038 158.354
300 700 3 0.100 0.082 0.039 172.320
300 400 1 0.083 0.079 0.030 150.693
300 400 2 0.105 0.078 0.030 160.207
300 400 3 0.126 0.077 0.030 168.596
400 500 2 0.114 0.080 0.035 165.869
400 500 3 0.140 0.079 0.035 176.769
500 600 1 0.085 0.081 0.036 154.761
500 600 2 0.125 0.080 0.038 170.537
500 600 3 0.157 0.081 0.038 187.104

in a change in perspective that the system could not handle. The descrip-

tors changed in appearance to such an extent that the number of matching

features dropped to a level insufficient for pairwise alignment, resulting in a

failure of the RGB-D SLAM System. The ORB configuration was able to

track the camera well during periods of solely translational movement.

The DynamicAdaptedFeatureDetector SURF system was tested for target

feature bounds from 300-400 features per image to 500-600 features per im-

ages and values of max iters ranging from one to three. The RGB-D SLAM

System was able to successfully run to completion using all of these settings.

The results of these runs are summarized in Table 5.1, Table 5.2, and Figure

5.1. The scatter plots in Figure 5.1 show the mean ATE and RME values

in Table 5.1 compared to the total run time required to process the video

sequence.

From this data, a baseline for RGB-D SLAM was established. Processing

the video sequence with SURF took between 150 s and 187 s or approximately

6.8 to 8.5 times longer than the length of the sequence. There was a mean

error of 0.017 m and 0.013 rad using the RME metric and an error of 0.166

m and 0.176 rad using the ATE metric.

108

150 155 160 165 170 175 180 185 190
0

0.02

0.04

0.06

0.08

0.1
Detector: surf Extractor: surf Matcher: flann

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

150 155 160 165 170 175 180 185 190
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(a)

150 155 160 165 170 175 180 185 190
0

0.1

0.2

0.3

0.4

Detector: surf Extractor: surf Matcher: flann

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

150 155 160 165 170 175 180 185 190
0

0.1

0.2

0.3

0.4

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(b)

Figure 5.1: RME (Figure 5.1a) and ATE (Figure 5.1b) for the SURF
Baseline. These plots compare the total run time for each configuration in
Table 5.1 to the mean estimated pose error.

Table 5.3: Trajectory errors for a BRISK-AGAST detector, a BRISK
extractor, and a brute-force matcher.

Thresh Oct Scale Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Feat. (m) (rad) (m) (rad)

10 0 1.500 1206.4 0.074 ± 0.144 0.039 ± 0.067 0.738 ± 0.365 0.907 ± 0.458
12 0 1.500 1006.3 0.059 ± 0.108 0.035 ± 0.052 0.365 ± 0.286 0.766 ± 0.171
6 0 2.000 1893.9 0.163 ± 0.389 0.123 ± 0.336 1.551 ± 0.483 2.515 ± 0.409
8 0 2.000 1449.2 0.110 ± 0.198 0.064 ± 0.126 0.600 ± 0.340 1.022 ± 0.308
12 0 2.000 981.2 0.071 ± 0.113 0.042 ± 0.064 0.558 ± 0.318 1.058 ± 0.301
14 0 2.000 836.1 0.055 ± 0.083 0.033 ± 0.044 0.349 ± 0.282 0.360 ± 0.208
8 0 3.000 1294.1 0.096 ± 0.152 0.057 ± 0.078 0.584 ± 0.234 1.085 ± 0.225
10 0 3.000 1056.3 0.067 ± 0.088 0.041 ± 0.052 0.441 ± 0.347 0.809 ± 0.277
12 0 3.000 887.7 0.066 ± 0.114 0.040 ± 0.064 0.554 ± 0.342 0.970 ± 0.209
14 0 3.000 760.1 0.062 ± 0.112 0.039 ± 0.075 0.445 ± 0.285 0.596 ± 0.155
16 0 3.000 659.7 0.072 ± 0.165 0.054 ± 0.204 0.446 ± 0.313 0.644 ± 0.185
6 1 1.500 661.5 0.048 ± 0.126 0.026 ± 0.044 0.210 ± 0.146 0.316 ± 0.050
6 1 2.000 624.7 0.060 ± 0.212 0.032 ± 0.077 0.661 ± 0.328 1.067 ± 0.293

5.4 BRISK-AGAST and BRISK with Brute-Force

The BRISK-AGAST detector (Section 4.3), BRISK extractor (Section 4.6),

and brute-force matcher configuration has three open parameters thresh,

nOctaves, and patternScale. The parameters thresh and nOctaves affect

the location and number of features detected in each frame, while pattern-

Scale affects the size of the sampling region used to construct descriptors.

Cursory testing produced the best results for values of thresh between six

and twenty, values of nOctaves of zero and one, and patternScale values

between 0.5 and 3.0. A more complete set of tests was then run using thresh

values between six and twenty in increments of two, nOctaves values of zero

and one, and patternScale values of 0.8, 1.0, 1.2 , 1.5, 2.0, and 3.0. Error

and timing results for trials which ran to completion are shown in Table 5.3

and Table 5.4 and plotted in Figure 5.2.

Results were only found for patternScale values of 1.5, 2.0, and 3.0. For

109

Table 5.4: BRISK-AGAST detector, BRISK descriptor, brute-force matcher
timing results. Detection, extraction, and match timings are given as
average per frame.

Threshold Octaves Scale Detect Time Extract Time Match Time Run time
(s) (s) (s) (s)

10 0 1.500 0.012 0.008 0.011 125.853
8 0 2.000 0.015 0.009 0.011 146.960
6 0 2.000 0.019 0.012 0.012 176.204
12 0 2.000 0.010 0.007 0.011 139.166
14 0 2.000 0.009 0.006 0.010 125.084
12 0 1.500 0.010 0.007 0.011 120.976
16 0 3.000 0.008 0.005 0.010 127.844
14 0 3.000 0.009 0.005 0.010 138.745
12 0 3.000 0.010 0.006 0.011 149.556
10 0 3.000 0.012 0.007 0.011 158.164
8 0 3.000 0.015 0.009 0.012 135.669
6 1 1.500 0.016 0.005 0.011 81.640
6 1 2.000 0.015 0.005 0.011 96.693

80 90 100 110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

Detector: brisk Extractor: brisk Matcher: bruteforce

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 90 100 110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(a)

80 90 100 110 120 130 140 150 160
0

0.02

0.04

0.06

0.08

0.1
Detector: brisk Extractor: brisk Matcher: bruteforce

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 90 100 110 120 130 140 150 160
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(b)

Figure 5.2: Error metrics for the runs using a BRISK detector BRISK
extractor and brute-force matcher shown in Table 5.3. Figure 5.2a shows
the ATE values and Figure 5.2b gives the RME values.

110

small values of patternScale, the sampling kernels in the sampling pattern

used to generate the BRISK descriptor contain very few pixels. A shift in the

location of an interest point by just one pixel or a small out-of-plane rotation

of the camera can have a significant impact on the contents of these kernels.

This, in turn, changes the result of the binary comparisons between these

Gaussian kernels and alters the content of descriptors. With larger values

of patternScale, small changes in the location of an interest point do not

alter the BRISK descriptor as significantly, so more matches are found, and

the RGB-D SLAM System is able to obtain a localization solution more

frequently. However, increasing the size of the sampling kernels also makes

the descriptors of nearby interest points appear more similar, leading to a rise

in the incidence of false matches between interest points which may result in

incorrect estimates of the transformations found by pairwise alignment.

This effect can be seen in Table 5.3. The lowest error trajectory estimates

are found for a patternScale value of 1.5. While there are more successful

completions for scale values of 2.0 and 3.0, the ATE translation and rota-

tion errors are two to three times larger than the best trajectory estimate

generated using smaller kernels.

Increasing patternScale also increases the time needed to process the

video sequence. The increase in the number of erroneous matches introduces

more edges to the pose graph and alters the weights of the already existing

edges. This means that the g2o pose graph optimizer must operate on a more

complex graph and must run for more iterations during each optimization,

while it optimizes the pose graph using incorrect constraints. Increasing the

scale from 1.5 to 2.0 adds roughly 20 s to optimization time, while increasing

from 2.0 to 3.0 adds another 10 s. Figure 5.3 shows this increase in the

accumulated optimization time for settings of thresh = 10, nOctaves = 0,

and patternScale’s of 1.5 and 3.0. The increase in total optimization time

of 33.5 s from 93.41 s to 127.92 s almost completely explains the increase in

total run time from 125.85 s to 158.16 s.

These observations suggest that it is best to select a value of pattern-

Scale which is just large enough to allow for reliable matching of descriptors,

while not being too large to result in erroneous matches. This data suggests

a value of patternScale between 1.5 to 2.0 would be suitable.

As discussed in Section 4.3, increasing nOctaves from zero to one results

in a significant decrease in the number of features detected and a drop in run

111

(a) BRISK-AGAST detector
(b) Adjustable BRISK-AGAST
detector

Figure 5.3: Comparison of optimization time and accumulated optimization
time in the RGB-D SLAM System using an AGAST detector, a BRISK
descriptor, and a brute-force matcher. Figure 5.3a shows optimization time
for thresh = 10 nOctaves = 0 patternScale = 1.5 and Figure 5.3b shows
optimization time for threshold = 10 nOctaves = 0 patternScale = 3.

times across the board. Subsequent increases in the number of octaves raise

detection times and slightly reduce the number of features. Due to the added

detection time and no perceivable benefit, the value of nOctaves was limited

to zero and one. Table 5.3 shows that only two of the forty-eight trials with

an nOctaves value of one were successful. With this setting, a comparatively

small number of features were detected at each frame. Consequently, at times

when the appearance of objects changes significantly such as during large

angular movement, or at times when few features are detected, the number

of matching features between the current frame and previous keyframes may

drop to a level where visual odometry cannot be estimated and localization

is lost. Only by relaxing the threshold constraint significantly can enough

features be detected to allow for reliable localization.

When it is possible to use an nOctaves value of one and still reliably

detect enough features for continuous localization, doing so is preferable, as

the location of interest points detected using the scale stack is more precise

and consistent than that of interest points localized using solely the original

image.

The value of the threshold, thresh, for the AGAST-BRISK detector is

discussed in detail in Section 4.3. In short, increasing thresh decreases

the number of features detected but also decreases detection, extraction and

matching times. Care has to be taken not to decrease thresh too low, or

112

each frame will be saturated with features and a large number of erroneous

matches will be found. As such, the general goal of tuning thresh is to

select a value that is just small enough to consistently provide a pose solution

without increasing run time too much.

The experimental results in Tables 5.3 and 5.4 support this approach.

Comparing rows of the same number of octaves and sampling pattern size

shows that increasing the threshold will decrease the RME and ATE trans-

lational and rotational errors and also decrease total run time. The best

result was found with a thresh value of six, an nOctaves value of one, and

a patternScale value of 1.5. Here, a mean absolute trajectory error of

0.210± 0.146 m and 0.316± 0.050 rad was found with a run time of 81.640

s. The value of thresh was actually quite low with these settings, but, more

importantly, the number of features was near its lowest. Comparing the av-

erage number of features to the error values shows that, in general, the errors

are smallest when the feature counts are lowest.

Even this detector configuration is not ideal in terms of the number of

interest points found. Figure 5.4 shows the number of features detected

using the “best result” configuration. The feature count changes quite a bit

depending on the content of each frame. In order to ensure the bare minimum

of approximately 200 features per frame needed for consistent localization are

found at all times, the value of thresh must be kept low, resulting in a larger

number of features and erroneous matches near the peaks at frame indices

150 (22 s), 250 (37 s), and 450 (70 s).

It would be best to use a detector that produces a consistent number

of features regardless of the scene make up, so as to limit the frequency of

erroneous matches while maintaining consistent localization. The Adjustable

BRISK-AGAST detector (Section 4.5) is such a detector and will be discussed

in Sections 5.8-5.11.

5.5 BRISK-AGAST and FREAK with Brute-Force

The BRISK-AGAST detector (Section 4.3), FREAK extractor (Section 4.7),

and brute-force-Hamming matcher configuration has five open parameters.

The parameters thresh and nOctaves affect the location and number of fea-

tures detected, patternScale affects the size of the sampling region used to

113

Figure 5.4: Number of features detected and detection, extraction, and
matching timings for each frame for thresh=6 nOctaves=1
patternScale=1.5.

construct descriptors, and the Boolean variables scaleNormalization (SN)

and orientationNormalization (ON) determine whether the sampling pat-

tern is scaled and rotated prior to descriptor extraction so as provide a mea-

sure of scale and rotation invariance. Cursory testing produced the best

results for values of thresh between eight and twenty, values of nOctaves of

zero and one, and patternScale values between 8.0 and 22.0. A more com-

plete set of tests was then run using thresh values between eight and twenty

in increments of four, nOctaves values of zero and 1, and patternScale val-

ues of 8.0, 10.0, 12.0, 16.0 and 20.0 . Combinations of scaleNormalization

and orientationNormalization with both enabled, both disabled, and only

SN enabled were used. Settings with SN disabled and ON enabled were not

used because consistent localization could not be obtained in that configura-

tion. Error and timing results for trials that ran to completion are shown in

Table 5.5 and Table 5.6.

Contrary to the BRISK description case, increasing thresh resulted in a

slight increase in the ATE translation and rotation errors as the number of

features decreased. This is indicative of the FREAK and brute-force com-

114

Table 5.5: Results using a BRISK-AGAST detector, a FREAK extractor,
and a brute-force-Hamming matcher.

Thr. Oct Sc. SN/ Avg. RME Tr. RME Ang. ATE Tr. ATE Ang.
ON Feat (m) (rad) (m) (rad)

8 0 8.0 FF 1540.9 0.046 ± 0.149 0.043 ± 0.172 0.219 ± 0.185 0.443 ± 0.125
8 0 10.0 FF 1540.9 0.049 ± 0.320 0.025 ± 0.113 0.181 ± 0.319 0.342 ± 0.109
8 0 12.0 FF 1540.9 0.026 ± 0.061 0.017 ± 0.024 0.194 ± 0.173 0.431 ± 0.049
8 0 14.0 FF 1540.9 0.020 ± 0.049 0.014 ± 0.017 0.132 ± 0.090 0.251 ± 0.072
8 0 16.0 FF 1540.9 0.024 ± 0.059 0.016 ± 0.020 0.156 ± 0.130 0.296 ± 0.036
8 0 18.0 FF 1540.9 0.024 ± 0.057 0.015 ± 0.019 0.147 ± 0.118 0.320 ± 0.039
10 0 12.0 FF 1242.1 0.040 ± 0.158 0.021 ± 0.050 0.325 ± 0.307 0.683 ± 0.066
10 0 14.0 FF 1242.1 0.042 ± 0.208 0.022 ± 0.075 0.245 ± 0.196 0.392 ± 0.038
10 0 18.0 FF 1242.1 0.023 ± 0.064 0.015 ± 0.024 0.156 ± 0.092 0.322 ± 0.051
12 0 16.0 FF 1033.7 0.045 ± 0.191 0.021 ± 0.054 0.231 ± 0.185 0.520 ± 0.062
12 0 18.0 FF 1033.7 0.050 ± 0.197 0.028 ± 0.095 0.187 ± 0.166 0.368 ± 0.091
8 0 10.0 TF 1540.9 0.050 ± 0.260 0.023 ± 0.081 0.191 ± 0.312 0.159 ± 0.098
8 0 12.0 TF 1540.9 0.023 ± 0.079 0.016 ± 0.026 0.125 ± 0.105 0.241 ± 0.032
8 0 14.0 TF 1540.9 0.024 ± 0.057 0.015 ± 0.016 0.146 ± 0.090 0.277 ± 0.038
8 0 16.0 TF 1540.9 0.021 ± 0.054 0.014 ± 0.018 0.112 ± 0.095 0.251 ± 0.051
8 0 18.0 TF 1540.9 0.019 ± 0.038 0.014 ± 0.014 0.124 ± 0.100 0.178 ± 0.027
10 0 12.0 TF 1242.1 0.040 ± 0.141 0.020 ± 0.045 1.025 ± 0.410 1.059 ± 0.132
10 0 14.0 TF 1242.1 0.032 ± 0.130 0.026 ± 0.130 0.701 ± 0.323 1.700 ± 0.490
10 0 16.0 TF 1242.1 0.036 ± 0.123 0.019 ± 0.039 0.139 ± 0.143 0.302 ± 0.047
10 0 18.0 TF 1242.1 0.025 ± 0.081 0.016 ± 0.029 0.175 ± 0.126 0.358 ± 0.045
12 0 14.0 TF 1033.7 0.031 ± 0.118 0.018 ± 0.038 0.212 ± 0.157 0.419 ± 0.040
12 0 16.0 TF 1033.7 0.036 ± 0.120 0.019 ± 0.036 0.224 ± 0.189 0.459 ± 0.043
12 0 18.0 TF 1033.7 0.041 ± 0.165 0.031 ± 0.114 0.173 ± 0.139 0.524 ± 0.230
8 0 16.0 TT 1540.9 0.036 ± 0.124 0.021 ± 0.049 0.181 ± 0.118 0.167 ± 0.052
8 0 18.0 TT 1540.9 0.021 ± 0.053 0.015 ± 0.021 0.174 ± 0.111 0.227 ± 0.026
10 0 18.0 TT 1242.1 0.039 ± 0.127 0.021 ± 0.045 0.350 ± 0.212 0.657 ± 0.117

Table 5.6: Timing results for RGB-D SLAM using a BRISK-AGAST
detector, a FREAK descriptor extractor, and a brute-force matcher.
Matching, extraction, and detection times are given in seconds per frame.

Threshold Octaves Scale SN/ON Detect Time Extract Time Match Time Run time
(s) (s) (s) (s)

8 0 8.0 FF 0.017 0.004 0.176 257.749
8 0 10.0 FF 0.017 0.004 0.178 256.906
8 0 12.0 FF 0.017 0.004 0.172 268.341
8 0 14.0 FF 0.016 0.004 0.173 263.032
8 0 16.0 FF 0.016 0.004 0.177 266.874
8 0 18.0 FF 0.016 0.004 0.174 275.894
10 0 12.0 FF 0.015 0.004 0.138 212.240
10 0 14.0 FF 0.014 0.004 0.139 225.409
10 0 18.0 FF 0.014 0.004 0.137 230.736
12 0 16.0 FF 0.012 0.003 0.106 184.934
12 0 18.0 FF 0.012 0.003 0.105 195.961
8 0 10.0 TF 0.017 0.004 0.179 266.824
8 0 12.0 TF 0.017 0.004 0.179 263.745
8 0 14.0 TF 0.017 0.004 0.178 273.765
8 0 16.0 TF 0.016 0.004 0.175 272.098
8 0 18.0 TF 0.016 0.004 0.178 291.475
10 0 12.0 TF 0.015 0.004 0.135 213.724
10 0 14.0 TF 0.014 0.004 0.139 219.921
10 0 16.0 TF 0.014 0.004 0.144 237.775
10 0 18.0 TF 0.014 0.004 0.141 234.662
12 0 14.0 TF 0.013 0.003 0.106 186.431
12 0 16.0 TF 0.012 0.003 0.105 190.798
12 0 18.0 TF 0.012 0.003 0.106 202.901
8 0 16.0 TT 0.017 0.006 0.178 266.104
8 0 18.0 TT 0.017 0.006 0.179 269.047
10 0 18.0 TT 0.014 0.005 0.137 219.186

115

bination being more discerning than the BRISK and brute-force combina-

tion, trending more toward disqualifying correct matches than allowing false

matches. It therefore requires comparatively more features than the BRISK

variant to estimate pairwise alignment, but it is better able to handle higher

feature counts.

As would be expected if this were the case, the non-zero nOctaves values

resulted in the detection of too few features to perform pairwise alignment.

Since there were no successful runs with these settings, nOctaves should be

set to zero.

Increasing patternScale resulted in a greater total run time on the order

of a 20-40 s increase for an increase from 12.0 to 18.0. Increasing pattern-

Scale also affected the ATE and RME metrics, with the error values de-

creasing until the sampling pattern scale neared 16.0, and then increasing

again as the scale neared 20.0. The best results were found near a scale of

14.0 or 18.0, depending on whether scaleNormalization was enabled.

Figure 5.5 shows a breakdown of the ATE and RME metrics for the

three ON/SN configurations. Enabling scaleNormalization and leaving

orientationNormalization off yielded a decrease in ATE translation error

on the order of 0.02 to 0.04 m and an improvement in the angular error of

0.1 to 0.2 rad for low thresh values, but made no discernible improvement

when thresh was around twelve. Total run time increased by 5-10 s when

only SN was enabled, and fell below normal values when both SN and ON

were enabled.

While enabling SN did not affect the number of successfully completed

runs, enabling ON caused nine of the twelve previously successful configura-

tions to fail. As such, it is recommended that both ON and SN be disabled

as neither provides any tangible benefit.

The best results were observed for settings with ON and SN disabled, a

thresh value of twelve, an nOctaves value of zero, and a patternScale of

18.0. This setup gave a run time of 195.96 s and a mean ATE of 0.187 m

and 0.368 rad.

116

180 200 220 240 260 280 300
0

0.5

1

1.5

Detector: brisk Extractor: freak Matcher: bruteforce

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

180 200 220 240 260 280 300
0

0.5

1

1.5

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

(a)

180 200 220 240 260 280 300
0

0.02

0.04

0.06

0.08

0.1
Detector: brisk Extractor: freak Matcher: bruteforce

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

180 200 220 240 260 280 300
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

(b)

Figure 5.5: ATE and RME error values for the values in BRISK-AGAST
detector, BRISK extractor, brute-force-Hamming matcher configuration.
The blue circles are runs where ON and SN are off, the red crosses are runs
where just SN is enabled, and the green x’s are runs where both SN and
ON are enabled. Figure 5.5a gives the absolute trajectory error and Figure
5.5b gives the relative motion error.

Table 5.7: ATE and RME values for runs using a BRISK-AGAST detector,
a BRISK descriptor extractor, and a FLANN matcher.

Thresh. Oct. Scale Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Feat. (m) (rad) (m) (rad)

14 0 1.000 877.8 0.067 ± 0.170 0.041 ± 0.134 0.511 ± 0.284 0.805 ± 0.211
12 0 1.500 1006.3 0.054 ± 0.105 0.031 ± 0.047 0.415 ± 0.310 0.721 ± 0.204
14 0 1.500 856.0 0.056 ± 0.121 0.033 ± 0.075 0.648 ± 0.295 1.777 ± 0.710
8 0 2.000 1449.2 0.094 ± 0.148 0.058 ± 0.135 0.414 ± 0.291 0.732 ± 0.173
12 0 2.000 981.2 0.053 ± 0.075 0.033 ± 0.044 0.317 ± 0.249 0.672 ± 0.198
14 0 2.000 836.1 0.060 ± 0.103 0.036 ± 0.052 0.270 ± 0.251 0.368 ± 0.159
8 0 2.500 1382.2 0.075 ± 0.120 0.044 ± 0.065 0.501 ± 0.357 0.891 ± 0.371
12 0 2.500 941.3 0.056 ± 0.087 0.033 ± 0.044 0.399 ± 0.294 0.789 ± 0.264
14 0 2.500 804.0 0.078 ± 0.182 0.045 ± 0.110 0.576 ± 0.255 1.524 ± 0.249
8 0 3.000 1294.1 0.098 ± 0.157 0.051 ± 0.066 0.570 ± 0.347 1.155 ± 0.152
10 0 3.000 1056.3 0.065 ± 0.081 0.041 ± 0.049 0.397 ± 0.275 0.876 ± 0.210
12 0 3.000 887.7 0.066 ± 0.099 0.039 ± 0.057 0.517 ± 0.347 0.567 ± 0.251

5.6 BRISK-AGAST and BRISK with FLANN

The BRISK-AGAST detector, BRISK descriptor extractor, and FLANN

matcher configuration has three open parameters: thresh, nOctaves, and

patternScale. In response to the results with the brute-force matcher, the

parameter testing was centered around configurations which were known to

work. Values for thresh between eight and fourteen in increments of two,

values of nOctaves of zero and one, and patternScale values between 1.0

and 3.0 in increments of 0.5 were examined. Successfully completed runs are

recorded in Table 5.7 and Table 5.8 and plotted in Figure 5.6.

All trial runs with an nOctaves value of one failed as well all but one

run with a patternScale value of 1.0. This run had large ATE errors with

an average translation error of 0.511 ± 0.284 m and an orientation error of

117

Table 5.8: BRISK-AGAST BRISK FLANN timing results. Matching,
extraction, and detection results given in seconds per frame.

Threshold Octaves Scale Detect Time Extract Time Match Time Run time
(s) (s) (s) (s)

14 0 1.000 0.009 0.006 0.012 88.496
12 0 1.500 0.011 0.007 0.010 120.269
14 0 1.500 0.009 0.006 0.010 107.381
8 0 2.000 0.015 0.010 0.010 146.389
12 0 2.000 0.011 0.007 0.011 127.816
14 0 2.000 0.009 0.006 0.010 108.068
8 0 2.500 0.015 0.009 0.010 161.709
12 0 2.500 0.010 0.007 0.012 138.190
14 0 2.500 0.009 0.006 0.010 121.562
8 0 3.000 0.015 0.009 0.010 169.040
10 0 3.000 0.012 0.007 0.010 146.625
12 0 3.000 0.010 0.006 0.010 142.105

80 90 100 110 120 130 140 150 160 170
0

0.5

1

1.5

Detector: brisk Extractor: brisk Matcher: flann

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 90 100 110 120 130 140 150 160 170
0

0.5

1

1.5

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(a)

80 90 100 110 120 130 140 150 160 170
0

0.02

0.04

0.06

0.08

0.1

Detector: brisk Extractor: brisk Matcher: flann

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 90 100 110 120 130 140 150 160 170
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(b)

Figure 5.6: ATE and RME error values for the values in Table 5.7.
Obtained using a BRISK-AGAST detector, a BRISK extractor, and a
FLANN matcher. Figure 5.6a gives the absolute trajectory error compared
to the total run time for each parameter setting and Figure 5.6b gives the
relative motion error compared to the total run time. Points marked with
red +’s are runs of note.

118

0.805 ± 0.211 rad. Such large errors, particularly the orientation values,

are indicative of very poor performance. In general, the errors decreased as

patternScale increased until a scale of 2.0 was reached, after which, the

errors began to increase again. Performance was best when an average of

800-900 features per frame were detected, occurring for thresh values of

twelve and fourteen.

Increasing patternScale increased total run time by approximately 10

s per 0.5 scale increase. Increasing thresh from eight to twelve decreased

the average number of features detected by roughly 500 features per frame

and an additional 150 features per frame drop resulted from an increase from

twelve to fourteen. Total run time decreased by around 20 s in each case, with

average detection and extraction times decreasing by several milliseconds per

frame.

The best results were obtained with a configuration with a thresh value of

fourteen, an nOctaves value of zero, and patternScale value of 2.0, giving

a mean ATE of 0.270 ± 0.251 m and 0.368 ± 0.159 rad and a run time of

108.0768 s.

The translation and orientation errors were quite large for all runs. This

was primarily due to difficulties encountered during rotations of the camera.

The blurriness of the image frames during rotation and the substantial change

in the appearance of the scene reduced the number of suitable matches be-

tween frames and introduced error into the pose estimate. This effect can be

seen in Figure 5.7, depicting instantaneous ATE values for the best run. Note

the increase in translation error at the 8 s mark, when the camera begins its

horizontal rotation about a desk, and the large spike at the 10 s mark when

the camera performs a vertical pan upwards from the desk and then back

down. This creates a loop closure event which is not handled well, as can be

seen by the constantly increasing rotational error afterwards.

5.7 BRISK-AGAST and FREAK with FLANN

The BRISK-AGAST detector, FREAK descriptor extractor, and FLANN

matcher configuration has five open parameters: thresh, nOctaves, pattern-

Scale, orientationNormalization, and scaleNormalization. For this set

of runs, thresh took values between six and fourteen in increments of two,

119

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

time (s)

A
n
g
le

 (
ra

d
)

Angular Error

Figure 5.7: ATE values for the best BRISK-AGAST detector, BRISK
extractor, and FLANN matcher run using nOctaves = 0, patternScale =
2.0 and thresh = 14.

nOctaves was set to zero and one, patternScale took values between 14.0

and 24.0 in increments of 2.0, and the normalization terms were configured

with both ON and SN disabled, just SN enabled, and both ON and SN en-

abled. The successful runs are recorded in Table 5.9 and Table 5.10. Figure

5.8 plots average RME and ATE errors delimited using blue circles when no

normalization was applied, using red crosses when just scale normalization

was enabled, and black x’s when both scale and orientation normalization

were enabled.

When nOctaves was set to one, this configuration was unable to maintain

localization throughout the entire run in any of the trials. With this nOc-

taves setting, a small number of features was detected and the system was

unable to find enough matches between frames to estimate pairwise align-

ment. The lack of odometry information caused SLAM to fail at the start of

the video in each case.

With nOctaves set to zero, the system was able to consistently complete

runs using thresh values between six and twelve with average feature counts

ranging from 2027 features per frame with a threshold of six to 1033 features

per frame with a threshold of twelve. For a thresh value of fourteen, the

120

Table 5.9: RME and ATE values using a BRISK-AGAST detector, a
FREAK descriptor extractor, and a FLANN matcher.

Thresh. Oct. Scale SN/ON Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Feat (m) (rad) (m) (rad)

6 0 12.0 FF 2027.1 0.025 ± 0.052 0.017 ± 0.022 0.175 ± 0.105 0.136 ± 0.058
8 0 12.0 FF 1540.9 0.027 ± 0.068 0.017 ± 0.026 0.133 ± 0.109 0.281 ± 0.035
10 0 12.0 FF 1242.1 0.088 ± 0.543 0.033 ± 0.145 0.807 ± 0.629 0.822 ± 0.087
6 0 14.0 FF 2027.1 0.020 ± 0.038 0.014 ± 0.014 0.105 ± 0.081 0.232 ± 0.061
8 0 14.0 FF 1540.9 0.022 ± 0.050 0.015 ± 0.016 0.140 ± 0.098 0.151 ± 0.031
10 0 14.0 FF 1242.1 0.029 ± 0.097 0.018 ± 0.036 0.145 ± 0.122 0.336 ± 0.027
6 0 16.0 FF 2027.1 0.019 ± 0.030 0.014 ± 0.012 0.130 ± 0.107 0.143 ± 0.043
8 0 16.0 FF 1540.9 0.028 ± 0.092 0.017 ± 0.030 0.218 ± 0.114 0.267 ± 0.066
10 0 16.0 FF 1242.1 0.029 ± 0.099 0.021 ± 0.071 0.192 ± 0.124 0.273 ± 0.054
12 0 16.0 FF 1033.7 0.042 ± 0.163 0.021 ± 0.053 0.580 ± 0.239 0.697 ± 0.061
6 0 18.0 FF 2027.1 0.018 ± 0.027 0.013 ± 0.011 0.130 ± 0.107 0.197 ± 0.040
8 0 18.0 FF 1540.9 0.018 ± 0.037 0.014 ± 0.014 0.100 ± 0.080 0.172 ± 0.032
10 0 18.0 FF 1242.1 0.031 ± 0.098 0.020 ± 0.045 0.211 ± 0.135 0.418 ± 0.035
12 0 18.0 FF 1033.7 0.033 ± 0.120 0.033 ± 0.161 0.286 ± 0.204 0.577 ± 0.100
8 0 10.0 TF 1540.9 0.033 ± 0.146 0.020 ± 0.054 0.170 ± 0.144 0.378 ± 0.092
8 0 12.0 TF 1540.9 0.044 ± 0.198 0.026 ± 0.087 0.222 ± 0.196 0.332 ± 0.049
8 0 14.0 TF 1540.9 0.018 ± 0.036 0.014 ± 0.016 0.116 ± 0.096 0.196 ± 0.028
10 0 14.0 TF 1242.1 0.039 ± 0.146 0.029 ± 0.126 0.314 ± 0.191 0.554 ± 0.092
8 0 16.0 TF 1540.9 0.018 ± 0.035 0.014 ± 0.016 0.135 ± 0.082 0.198 ± 0.024
10 0 16.0 TF 1242.1 0.032 ± 0.096 0.019 ± 0.033 0.160 ± 0.139 0.350 ± 0.045
12 0 16.0 TF 1033.7 0.045 ± 0.195 0.021 ± 0.055 0.293 ± 0.192 0.395 ± 0.088
8 0 18.0 TF 1540.9 0.023 ± 0.067 0.015 ± 0.023 0.103 ± 0.110 0.209 ± 0.040
10 0 18.0 TF 1242.1 0.021 ± 0.046 0.015 ± 0.018 0.156 ± 0.105 0.325 ± 0.037
12 0 18.0 TF 1033.7 0.045 ± 0.171 0.033 ± 0.159 0.310 ± 0.238 0.445 ± 0.128
8 0 16.0 TT 1540.9 0.027 ± 0.078 0.018 ± 0.037 0.129 ± 0.114 0.178 ± 0.073
10 0 16.0 TT 1242.1 0.052 ± 0.209 0.026 ± 0.070 0.506 ± 0.340 0.750 ± 0.209
8 0 18.0 TT 1540.9 0.024 ± 0.057 0.015 ± 0.019 0.138 ± 0.102 0.215 ± 0.040
10 0 18.0 TT 1242.1 0.039 ± 0.150 0.021 ± 0.047 0.410 ± 0.302 0.702 ± 0.099

Table 5.10: Timing results for a BRISK-AGAST detector, a FREAK
descriptor extractor and a FLANN matcher.

Threshold Octaves Scale SN/ON Detect Time Extract Time Match Time Run time
(s) (s) (s) (s)

6 0 12.0 FF 0.024 0.006 0.157 241.805
8 0 12.0 FF 0.019 0.005 0.129 211.845
10 0 12.0 FF 0.016 0.004 0.096 174.986
6 0 14.0 FF 0.023 0.006 0.147 237.078
8 0 14.0 FF 0.019 0.005 0.122 197.530
10 0 14.0 FF 0.016 0.004 0.094 173.639
6 0 16.0 FF 0.023 0.006 0.139 237.392
8 0 16.0 FF 0.019 0.005 0.117 202.754
10 0 16.0 FF 0.016 0.004 0.090 178.110
12 0 16.0 FF 0.013 0.003 0.072 155.096
6 0 18.0 FF 0.023 0.006 0.133 229.029
8 0 18.0 FF 0.018 0.005 0.110 214.611
10 0 18.0 FF 0.015 0.004 0.089 184.755
12 0 18.0 FF 0.012 0.003 0.070 159.665
8 0 10.0 TF 0.017 0.004 0.187 273.743
8 0 12.0 TF 0.019 0.005 0.121 197.936
8 0 14.0 TF 0.019 0.005 0.117 196.575
10 0 14.0 TF 0.015 0.004 0.092 183.275
8 0 16.0 TF 0.018 0.005 0.113 204.757
10 0 16.0 TF 0.015 0.004 0.089 183.015
12 0 16.0 TF 0.013 0.003 0.070 151.175
8 0 18.0 TF 0.018 0.005 0.110 210.489
10 0 18.0 TF 0.014 0.004 0.086 180.158
12 0 18.0 TF 0.013 0.003 0.066 151.110
8 0 16.0 TT 0.018 0.007 0.170 253.919
10 0 16.0 TT 0.015 0.006 0.130 205.679
8 0 18.0 TT 0.018 0.007 0.161 246.134
10 0 18.0 TT 0.015 0.006 0.122 200.840

121

140 160 180 200 220 240 260 280
0

0.2

0.4

0.6

0.8

Detector: brisk Extractor: freak Matcher: flann

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

140 160 180 200 220 240 260 280
0

0.2

0.4

0.6

0.8

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

(a)

140 160 180 200 220 240 260 280
0

0.02

0.04

0.06

0.08

Detector: brisk Extractor: freak Matcher: flann

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

140 160 180 200 220 240 260 280
0

0.02

0.04

0.06

0.08

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

ON = F SN = F

ON = F SN = T

ON = T SN = T

(b)

Figure 5.8: ATE and RME error values for the values in Table 5.9.
Obtained using a BRISK-AGAST detector, a FREAK extractor, and a
FLANN matcher. Figure 5.8a gives the absolute trajectory error and
Figure 5.8b gives the relative motion error.

system encountered difficulty at the peak of the large vertical rotation near

the 10 s mark. At the peak of this rotation, the camera captures a drawn

shade on a white wall, shown in Frame 200 of Figure 4.6b. Images at this

point lack a suitable number of corners which are distinct enough to be taken

as interest points using a threshold of fourteen, causing localization to fail.

The FREAK descriptor in combination with the FLANN matcher handled

large numbers of features well. False matches due to the sheer number of

features began to become a problem with the average of 2027 features per

frame at a threshold of six, but even then the absolute trajectory errors

incurred were smaller than those found using a threshold of ten or twelve

and fewer features. With each scale and normalization setting, a threshold

of eight, yielding an average of 1540 features per frame, produced the smallest

errors.

Similar to the other BRISK-AGAST detector configurations, thresh was

inversely proportional to detection, extraction, matching, and total run times.

Each increase of thresh by two yielded a 4-5 ms increase in detection time

per frame, a 1 ms increase in extraction time, a 30 ms increase in matching

time, and a 20 s increase in total run time.

Changes to patternScale did not noticeably change mean ATE and RME

values or run times in the successfully completed trials, but there was a slight

improvement for scales of 14.0 and 18.0. No trials using sampling pattern

scales larger than 18.0 were able to successfully run to completion. Trials

using these larger scales failed near the 8 s mark when the camera began its

122

first horizontal rotation. As the camera rotated, descriptors generated using

a larger sampling pattern changed more than those using a smaller pattern,

resulting in a decrease in the number of matches between frames, a failure

to estimate pairwise alignment, and a loss of localization.

Strange behavior occurred at low sampling pattern scales of 6.0, 8.0, and

10.0 when scale normalization and orientation normalization were both en-

abled. When the camera began its first horizontal rotation at the 8 s mark,

the program slowed significantly, taking between 2 s and 3 s to process each

frame with the RANSAC based transformation recovery algorithm taking

seconds to complete where it normally took tens of milliseconds. Although

the exact cause could not be confirmed, it appears that the FLANN matcher

selected matching points which appear to be good matches according to the

2-nn distance ratio test described in Section 2.6.4.3, but are in fact false

matches with very inconsistent transformations. This could result in the

RANSAC algorithm running to its maximum number of iterations for each

frame to key-frame comparison and explain the long processing time for each

new frame.

Enabling scale normalization slightly improved the RME and ATE metrics

but did not alter run time significantly. Enabling both orientation and scale

normalization resulted in a decrease from fourteen successful runs to four

successful runs, and a substantial increase in the error terms for the runs

that were successful.

The best results were found using a thresh value of eight, an nOctaves

value of zero, and a patternScale value of 14.0 with scale normalization

enabled and orientation normalization disabled. This run produced one of

the smallest ATE of 0.116±0.096 m and 0.196±0.028 rad with a run time of

196.575 s. The trajectory and ATE metrics for this run are shown in Figure

5.9. The system was able to successfully map the horizontal rotation at the

8 s mark while incurring no significant error, but encountered some difficulty

with poor odometry during the vertical rotation at the 10 s mark. This can

be seen by the spike in translation and angular error at 10 s and the break in

the estimate trajectory. Once the vertical rotation was completed, the system

was able to recover, perform loop closure, and continue with relatively little

error for the rest of the run.

123

−1

0

1

2

−1

−0.5

0

0.5

1
0.8

1

1.2

1.4

1.6

1.8

Interpolated GT Trajectory

Estimate Trajectory in GT Frame

(a)

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

time (s)

A
n
g
le

 (
ra

d
)

Angular Error

(b)

Figure 5.9: The estimate trajectory, shown with blue circles, compared to
the ground truth trajectory, shown with red crosses, is shown in Figure 5.9a.
ATE metrics for the run using thresh = 8, nOctaves = 0, patternScale
= 15, ON disabled, and SN enabled are shown in Figure 5.9b.

5.8 Adjustable BRISK-AGAST and BRISK with

Brute-Force

Results using the BRISK-AGAST detector show that any benefits from us-

ing a faster AGAST based detector and binary descriptors are offset by the

low threshold values required to guarantee the minimum number of features

necessary for continuous localization. The Adjustable BRISK-AGAST de-

tector seeks to remedy this problem by allowing the user to specify a desired

number of features. The detector then dynamically changes the threshold

value based on the number of features detected in the most recent frame so

as to maintain a relatively constant feature count at the desired level. This

approach takes steps to ensure that there are always enough features to per-

form localization, while limiting the number of excessive features to curtail

false matches and reduce total run time.

The first configuration tested which utilized the Adjustable BRISK-AGAST

detector was the BRISK descriptor extractor with a brute-force matcher.

This setup had four open parameters, fMin and fMax, the feature bounds

specifying the desired number of features, nOctaves, specifying the size of

the detector’s scale stack, and patternScale, specifying the size of the de-

scriptor sampling pattern. Cursory testing showed that limiting the differ-

ence in the feature bounds to one produced the best result. More complete

testing was performed using feature bounds of 200-201, 300-301, 400-401,

500-501, 600-601, and 700-701. Values ofnOctaves of zero, one, two, and

124

Table 5.11: First pass ATE and RME results for SLAM using an
Adjustable BRISK-AGAST detector, a BRISK descriptor extractor, and a
brute-force-Hamming matcher.

Feat. Octaves Scale Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Bnd. Feat. (m) (rad) (m) (rad)

600-601 0 0.750 617.4 0.020 ± 0.039 0.014 ± 0.017 0.105 ± 0.079 0.165 ± 0.048
700-701 0 0.750 720.2 0.019 ± 0.049 0.014 ± 0.017 0.086 ± 0.069 0.146 ± 0.035
800-801 0 0.750 811.3 0.020 ± 0.036 0.015 ± 0.014 0.169 ± 0.111 0.162 ± 0.063
300-301 0 1.000 317.1 0.031 ± 0.067 0.020 ± 0.029 0.141 ± 0.114 0.172 ± 0.052
400-401 0 1.000 417.3 0.021 ± 0.034 0.015 ± 0.015 0.134 ± 0.098 0.142 ± 0.045
500-501 0 1.000 515.1 0.022 ± 0.042 0.015 ± 0.017 0.174 ± 0.129 0.167 ± 0.087
600-601 0 1.000 618.1 0.017 ± 0.026 0.013 ± 0.010 0.112 ± 0.075 0.142 ± 0.042
700-701 0 1.000 721.7 0.017 ± 0.025 0.013 ± 0.012 0.103 ± 0.083 0.136 ± 0.037
800-801 0 1.000 816.3 0.015 ± 0.019 0.012 ± 0.010 0.091 ± 0.060 0.120 ± 0.036
300-301 0 1.250 317.3 0.025 ± 0.052 0.016 ± 0.018 0.134 ± 0.133 0.233 ± 0.062
400-401 0 1.250 414.0 0.023 ± 0.042 0.016 ± 0.021 0.202 ± 0.107 0.189 ± 0.099
500-501 0 1.250 517.0 0.019 ± 0.034 0.014 ± 0.014 0.181 ± 0.128 0.152 ± 0.076
600-601 0 1.250 626.5 0.019 ± 0.034 0.014 ± 0.013 0.125 ± 0.085 0.137 ± 0.041
700-701 0 1.250 720.0 0.016 ± 0.019 0.013 ± 0.011 0.130 ± 0.074 0.141 ± 0.040
800-801 0 1.250 809.7 0.016 ± 0.021 0.013 ± 0.011 0.092 ± 0.063 0.145 ± 0.032
700-701 1 0.750 692.2 0.018 ± 0.024 0.014 ± 0.011 0.090 ± 0.055 0.201 ± 0.051
800-801 1 0.750 780.0 0.021 ± 0.037 0.016 ± 0.017 0.106 ± 0.071 0.168 ± 0.030
500-501 1 1.000 504.2 0.018 ± 0.024 0.013 ± 0.010 0.093 ± 0.066 0.148 ± 0.032
600-601 1 1.000 600.0 0.016 ± 0.016 0.013 ± 0.009 0.125 ± 0.079 0.236 ± 0.072
700-701 1 1.000 690.7 0.016 ± 0.025 0.013 ± 0.011 0.104 ± 0.077 0.183 ± 0.044
800-801 1 1.000 776.6 0.016 ± 0.023 0.013 ± 0.010 0.098 ± 0.077 0.225 ± 0.049
500-501 1 1.250 500.7 0.017 ± 0.022 0.014 ± 0.010 0.109 ± 0.085 0.183 ± 0.038
600-601 1 1.250 597.3 0.017 ± 0.024 0.013 ± 0.010 0.078 ± 0.069 0.122 ± 0.041
700-701 1 1.250 689.5 0.018 ± 0.030 0.013 ± 0.010 0.132 ± 0.100 0.301 ± 0.054
800-801 1 1.250 771.3 0.017 ± 0.020 0.014 ± 0.010 0.109 ± 0.067 0.209 ± 0.039
500-501 2 1.000 500.3 0.023 ± 0.038 0.016 ± 0.014 0.131 ± 0.113 0.163 ± 0.036
600-601 2 1.000 592.4 0.021 ± 0.030 0.015 ± 0.012 0.180 ± 0.084 0.129 ± 0.049
700-701 2 1.000 681.9 0.020 ± 0.027 0.014 ± 0.010 0.164 ± 0.090 0.260 ± 0.034
800-801 2 1.000 755.7 0.023 ± 0.055 0.016 ± 0.022 0.166 ± 0.084 0.160 ± 0.058
500-501 2 1.250 496.7 0.020 ± 0.025 0.015 ± 0.011 0.139 ± 0.109 0.166 ± 0.052
600-601 2 1.250 596.2 0.020 ± 0.027 0.015 ± 0.011 0.155 ± 0.093 0.137 ± 0.069
700-701 2 1.250 677.1 0.020 ± 0.024 0.014 ± 0.010 0.146 ± 0.102 0.239 ± 0.038
800-801 2 1.250 754.5 0.020 ± 0.028 0.015 ± 0.011 0.111 ± 0.092 0.156 ± 0.036
700-701 3 1.000 680.8 0.026 ± 0.503 0.017 ± 0.018 0.123 ± 0.129 0.153 ± 0.041

three were tested as well as patternScale values of 0.75, 1.0, and 1.25. The

results of successful trials using these values are recorded in Table 5.11 and

Table 5.12. A second round of testing was performed to refine the settings,

using feature bounds of 300-301 to 400-401 in increments of 10, an nOctaves

count of zero, and patternScale values of 1.0, 1.1, and 1.25. The results of

this second round are recorded in Table 5.13 and Table 5.14. The average

ATE and RME values for all the trials are plotted in Figure 5.10a.

Testing showed that the RGB-D SLAM System was able to successfully

run to completion using all the feature bounds except for the 200-201 range.

At the 200-201 range, the system had difficulty finding enough inter-frame

feature matches to recover odometry, typically failing at the start of the video

sequence or the beginning of the first camera rotation. Increasing the feature

count generally resulted in decreases in the ATE translation and orientation

errors on the order of 0.01 m and 0.02 rad for each 100 feature increase.

Each increase in the feature bounds also resulted in an across the board

increase in detection, extraction, matching, and aggregate run times. Each

100 feature increment resulted in an approximately 1 ms growth in detection

125

Table 5.12: First pass timing results for SLAM using an Adjustable
BRISK-AGAST feature detector, a BRISK descriptor extractor, and a
brute-force-Hamming matcher. Detection, extraction, and matching times
are given in seconds per frame.

Feat. Octaves Scale Detect Time Extract Time Match Time Run time
Bnd. (s) (s) (s) (s)

600-601 0 0.750 0.008 0.005 0.038 114.666
700-701 0 0.750 0.009 0.005 0.051 132.141
800-801 0 0.750 0.010 0.006 0.067 145.495
300-301 0 1.000 0.004 0.003 0.010 76.053
400-401 0 1.000 0.005 0.003 0.017 96.074
500-501 0 1.000 0.006 0.004 0.026 114.676
600-601 0 1.000 0.008 0.005 0.038 134.272
700-701 0 1.000 0.008 0.005 0.048 143.877
800-801 0 1.000 0.010 0.006 0.067 172.104
300-301 0 1.250 0.004 0.003 0.010 82.781
400-401 0 1.250 0.005 0.003 0.017 99.655
500-501 0 1.250 0.006 0.004 0.027 133.590
600-601 0 1.250 0.008 0.004 0.037 146.175
700-701 0 1.250 0.008 0.005 0.051 168.586
800-801 0 1.250 0.009 0.006 0.064 189.741
700-701 1 0.750 0.020 0.006 0.053 115.677
800-801 1 0.750 0.024 0.006 0.068 130.393
500-501 1 1.000 0.014 0.004 0.028 102.884
600-601 1 1.000 0.016 0.005 0.040 114.634
700-701 1 1.000 0.019 0.005 0.052 125.907
800-801 1 1.000 0.022 0.006 0.066 146.741
500-501 1 1.250 0.013 0.004 0.027 107.102
600-601 1 1.250 0.016 0.005 0.039 125.036
700-701 1 1.250 0.018 0.005 0.051 145.405
800-801 1 1.250 0.022 0.006 0.066 153.981
500-501 2 1.000 0.018 0.004 0.029 94.899
600-601 2 1.000 0.022 0.005 0.039 108.758
700-701 2 1.000 0.026 0.006 0.051 121.122
800-801 2 1.000 0.031 0.006 0.064 131.064
500-501 2 1.250 0.017 0.004 0.027 99.880
600-601 2 1.250 0.021 0.005 0.039 114.521
700-701 2 1.250 0.025 0.005 0.051 131.970
800-801 2 1.250 0.029 0.006 0.062 140.398
700-701 3 1.000 0.029 0.006 0.050 119.464

Table 5.13: ATE and RME results for the refinement pass of the Adjustable
BRISK-AGAST detector, BRISK descriptor extractor, and brute-force
Matcher.

Feat. Octaves Scale Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Bnd. Feat. (m) (rad) (m) (rad)

300-301 0 1.000 317.1 0.028 ± 0.056 0.017 ± 0.020 0.192 ± 0.134 0.232 ± 0.073
310-311 0 1.000 328.2 0.028 ± 0.074 0.018 ± 0.028 0.147 ± 0.103 0.114 ± 0.069
320-321 0 1.000 337.4 0.030 ± 0.063 0.019 ± 0.025 0.179 ± 0.150 0.218 ± 0.070
330-331 0 1.000 346.2 0.028 ± 0.055 0.018 ± 0.028 0.169 ± 0.113 0.148 ± 0.083
340-341 0 1.000 359.8 0.023 ± 0.042 0.015 ± 0.014 0.127 ± 0.085 0.220 ± 0.051
350-351 0 1.000 371.6 0.027 ± 0.058 0.017 ± 0.020 0.148 ± 0.095 0.114 ± 0.060
360-361 0 1.000 378.4 0.026 ± 0.060 0.017 ± 0.024 0.144 ± 0.103 0.118 ± 0.055
370-371 0 1.000 390.7 0.026 ± 0.058 0.016 ± 0.021 0.156 ± 0.116 0.144 ± 0.063
380-381 0 1.000 397.7 0.021 ± 0.035 0.014 ± 0.013 0.112 ± 0.092 0.105 ± 0.038
390-391 0 1.000 406.9 0.019 ± 0.025 0.014 ± 0.012 0.122 ± 0.075 0.122 ± 0.051
310-311 0 1.100 329.7 0.028 ± 0.053 0.018 ± 0.023 0.219 ± 0.165 0.147 ± 0.086
320-321 0 1.100 341.4 0.031 ± 0.069 0.019 ± 0.026 0.210 ± 0.136 0.230 ± 0.075
330-331 0 1.100 346.3 0.028 ± 0.061 0.017 ± 0.023 0.184 ± 0.131 0.142 ± 0.059
340-341 0 1.100 361.6 0.027 ± 0.053 0.017 ± 0.020 0.147 ± 0.104 0.157 ± 0.082
350-351 0 1.100 373.5 0.025 ± 0.058 0.016 ± 0.019 0.137 ± 0.095 0.108 ± 0.049
360-361 0 1.100 387.3 0.021 ± 0.033 0.015 ± 0.012 0.118 ± 0.092 0.147 ± 0.038
370-371 0 1.100 389.3 0.021 ± 0.036 0.016 ± 0.020 0.111 ± 0.091 0.112 ± 0.045
380-381 0 1.100 401.1 0.024 ± 0.043 0.016 ± 0.019 0.139 ± 0.091 0.145 ± 0.044
390-391 0 1.100 408.2 0.025 ± 0.044 0.017 ± 0.018 0.147 ± 0.107 0.128 ± 0.055
310-311 0 1.250 331.1 0.030 ± 0.060 0.018 ± 0.022 0.170 ± 0.131 0.171 ± 0.050
330-331 0 1.250 348.3 0.023 ± 0.041 0.016 ± 0.016 0.192 ± 0.159 0.197 ± 0.071
350-351 0 1.250 372.5 0.021 ± 0.038 0.015 ± 0.015 0.146 ± 0.107 0.167 ± 0.043
360-361 0 1.250 382.9 0.024 ± 0.056 0.017 ± 0.025 0.126 ± 0.111 0.116 ± 0.056
370-371 0 1.250 385.0 0.021 ± 0.039 0.015 ± 0.016 0.151 ± 0.112 0.136 ± 0.046
380-381 0 1.250 399.7 0.024 ± 0.043 0.016 ± 0.017 0.105 ± 0.093 0.121 ± 0.046
390-391 0 1.250 408.6 0.022 ± 0.041 0.016 ± 0.019 0.126 ± 0.089 0.113 ± 0.047

126

Table 5.14: Timing results for the refinement pass of the configuration using
an Adjustable BRISK-AGAST detector, a BRISK descriptor extractor, and
a brute-force matcher. Detection, extraction, and matching times are the
average time required to perform the operation on a single frame.

Feat. Octaves Scale Detect Time Extract Time Match Time Run time
Bnd. (s) (s) (s) (s)

300-301 0 1.000 0.004 0.003 0.010 76.945
310-311 0 1.000 0.004 0.003 0.011 81.160
320-321 0 1.000 0.005 0.003 0.012 82.036
330-331 0 1.000 0.005 0.003 0.012 81.403
340-341 0 1.000 0.005 0.003 0.012 85.734
350-351 0 1.000 0.005 0.003 0.013 87.910
360-361 0 1.000 0.005 0.003 0.014 91.207
370-371 0 1.000 0.005 0.003 0.016 96.787
380-381 0 1.000 0.005 0.003 0.016 94.552
390-391 0 1.000 0.005 0.003 0.016 92.476
310-311 0 1.100 0.004 0.003 0.011 82.083
320-321 0 1.100 0.004 0.003 0.012 82.808
330-331 0 1.100 0.004 0.003 0.012 83.435
340-341 0 1.100 0.005 0.003 0.012 91.555
350-351 0 1.100 0.005 0.003 0.013 89.268
360-361 0 1.100 0.005 0.003 0.015 91.300
370-371 0 1.100 0.005 0.003 0.015 91.859
380-381 0 1.100 0.005 0.003 0.015 94.646
390-391 0 1.100 0.005 0.003 0.017 99.260
310-311 0 1.250 0.004 0.003 0.010 88.864
330-331 0 1.250 0.005 0.003 0.012 89.840
350-351 0 1.250 0.005 0.003 0.013 93.098
360-361 0 1.250 0.005 0.003 0.015 103.980
370-371 0 1.250 0.005 0.003 0.015 101.453
380-381 0 1.250 0.005 0.003 0.015 104.176
390-391 0 1.250 0.005 0.003 0.016 104.174

60 80 100 120 140 160 180 200 220 240
0

0.1

0.2

0.3

Detector: abrisk Extractor: brisk Matcher: bruteforce

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

60 80 100 120 140 160 180 200 220 240
0

0.1

0.2

0.3

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(a)

60 80 100 120 140 160 180 200 220 240
0

0.02

0.04

0.06

0.08

0.1
Detector: abrisk Extractor: brisk Matcher: bruteforce

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

60 80 100 120 140 160 180 200 220 240
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(b)

Figure 5.10: ATE and RME error values for the trials in Table 5.11. Results
obtained using an Adjustable BRISK-AGAST detector, a BRISK extractor,
and a brute-force matcher. Figure 5.10a gives the mean absolute trajectory
error compared to the total run time for each parameter setting and Figure
5.10b gives the mean relative motion error compared to the total run time.

127

and extraction times per frame, a 10 ms addition to matching times, and a

20 s increase to total run time. Such large increases in run time for relatively

small gains in trajectory accuracy make feature bounds around the 300 to

400 mark preferable.

The adjustable detector made a wider range of scale stacks viable. The

RGB-D SLAM System was able to consistently run to completion utilizing

nOctaves values of zero, one, and two, however larger feature bounds were

needed for non-zero nOctaves values. In trials utilizing non-zero nOctaves

values with feature bounds smaller than 500-501, the system typically failed

around the time of the first horizontal rotation. With the larger scale stack,

the detector was unable to react to the changing scene quickly enough in

order to supply a sufficient number of features. This resulted in a decrease

in the number of matches, a failure to recover the transformation between

poses, and ultimately a failure of the RGB-D SLAM System program.

Increasing nOctaves from zero to one resulted in a 12 ms increase to av-

erage detection times and a 20 ms increase to average matching times, but a

20 s decrease to total run time. This decrease is mostly explained by an in-

crease in the accuracy of interest point locations when nOctaves is increased

to one. The more accurately localized features result in more consistent de-

scriptors, better inter-frame matches and better initial pose estimates. This,

in turn, means less time must be spent optimizing the pose graph resulting

in a shorter total run time. Figure 5.11 illustrates this difference in opti-

mization time for two trials using a scale of 1.0 and 500-501 feature bounds.

When the value of nOctaves is increased from zero to one, the total pose

graph optimization time drops from 72.5 s to 56.4 s.

The increase in nOctaves from zero to one resulted in a slight decrease

in the trajectory error. Subsequent increases to nOctaves resulted in an in-

crease in trajectory error. Although the slight improvement to the trajectory

estimate and the relative improvement to run time using an nOctaves value

of one is promising, the inability to use this setting with features bounds in

the 300 to 400 range means that a detector operating at that range with an

nOctaves value of zero will be more efficient.

Altering patternScale from 1.0 had no perceivable benefit. At a sampling

pattern scale of 0.75, the RGB-D SLAM System failed for feature bounds be-

low 600-601 and nOctaves values larger than one. Increasing patternScale

to 1.25 increases total run time by an average of 11 s and made no noticeable

128

(a) (b)

Figure 5.11: Pose graph instantaneous and accumulated optimization time
for an Adjustable BRISK-AGAST detector, a BRISK extractor, and a
brute-force matcher with a feature bounds of 500-501 and patternScale of
1.0. Figure 5.11a shows detection time for nOctaves = 0 and Figure 5.11b
shows detection time for nOctaves = 1.

improvements to the trajectory estimate. As such, it is recommended that

patternScale be left near 1.0 with this feature detection configuration.

The best results for this configuration were found using feature bounds of

370-371, an nOctaves value of zero, and a patternScale value of 1.1. With

these settings, the absolute trajectory error was found to be 0.111± 0.091 m

and 0.112 ± 0.045 rad, with a total run time of 91.86 s. Figure 5.12 shows

the absolute trajectory error for this run. The system handled the horizontal

rotations at the 8 s and 12 s marks well. It encountered difficulty at the 10

s mark, where it interpreted the vertical rotation of the camera as a vertical

translation. This is illustrated by the difference in height of the ground truth

and estimate poses near the middle of the trajectory plot (Figure 5.12b). The

rest of the run was handled well, but error began to accumulate at around

the 18 s when the camera rotated to the right and downward.

5.9 Adjustable BRISK-AGAST and FREAK with

Brute-Force

The RGB-D SLAM System configuration using an Adjustable BRISK-AGAST

detector with a FREAK descriptor extractor and a brute-force matcher had

six open parameters: fMin and fMax, the feature bounds, nOctaves, the

129

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

time (s)

A
n
g
le

 (
ra

d
)

Angular Error

(a)

−1

0

1

2

−1

−0.5

0

0.5

1
0.8

1

1.2

1.4

1.6

1.8

Interpolated GT Trajectory

Estimate Trajectory in GT Frame

(b)

Figure 5.12: ATE error values and estimated trajectory for the best trial
using an Adjustable BRISK-AGAST detector, a BRISK extractor, and a
brute-force matcher run with nOctaves = 0, patternScale = 1.1 and a
feature bound of 370-371. Figure 5.12a shows the instantaneous trajectory
errors for the entire run. Figure 5.12b shows the estimated trajectory with
blue circles compared to the ground truth trajectory with red crosses.

number of octaves, patternScale, the scale of the FREAK sampling pat-

tern used for descriptor construction, and orientationNormalization and

scaleNormalization, two Boolean variables toggling whether the sampling

pattern is rotated and scaled in accordance with the feature’s orientation

and scale. This configuration was tested with patternScale values ranging

from 8.0 to 24.0, feature bounds covering ranges from 300 to 700 features,

nOctaves values of zero and one, and settings with both the orientation and

scale normalization disabled, only scale normalization enabled, and both nor-

malization terms enabled. The results of the successful runs are recorded in

Table 5.15 and Table 5.16. Plots of the mean ATE and RME values for each

successful run are shown in Figure 5.13.

This configuration did not operate well with non-zero nOctaves values.

Most trials using an nOctaves value of one failed at the first rotation due to

a lack of matching features. Interestingly, trials using an nOctaves value of

one were able to operate using a lower pattern scale than those using a value

of zero. Three of the four successful runs using an nOctaves of one occurred

with a small sampling patternScale of 8.0. Trials using an nOctaves value

of zero were unable to make it past the first camera rotation at this scale.

The RGB-D SLAM System using an nOctaves value of one operated at a

limited range of feature values between 500 and 700 and had higher than

average run times as a result. The error metrics for most of the trials using

130

Table 5.15: ATE and RME results for an Adjustable BRISK-AGAST
detector with a FREAK descriptor extractor and a brute-force matcher.

Feat. Oct. Scale SN/ON Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Bnd. Feat. (m) (rad) (m) (rad)

500-600 1 8.0 FF 547.6 0.020 ± 0.025 0.014 ± 0.012 0.198 ± 0.099 0.253 ± 0.075
600-700 1 8.0 FF 644.3 0.023 ± 0.039 0.015 ± 0.015 0.176 ± 0.091 0.224 ± 0.097
600-700 0 12.0 FF 662.6 0.021 ± 0.039 0.015 ± 0.017 0.143 ± 0.090 0.166 ± 0.041
400-500 0 15.0 FF 458.1 0.019 ± 0.032 0.014 ± 0.013 0.128 ± 0.112 0.215 ± 0.047
500-501 0 15.0 FF 515.1 0.024 ± 0.055 0.018 ± 0.035 0.153 ± 0.100 0.230 ± 0.030
500-600 0 15.0 FF 558.3 0.018 ± 0.033 0.013 ± 0.014 0.131 ± 0.093 0.184 ± 0.040
600-700 0 15.0 FF 662.6 0.018 ± 0.035 0.013 ± 0.013 0.099 ± 0.083 0.115 ± 0.028
600-700 1 15.0 FF 644.1 0.019 ± 0.038 0.013 ± 0.013 0.132 ± 0.091 0.200 ± 0.064
500-501 0 16.0 FF 515.1 0.026 ± 0.065 0.016 ± 0.021 0.108 ± 0.090 0.161 ± 0.049
500-501 0 18.0 FF 515.1 0.027 ± 0.068 0.016 ± 0.024 0.165 ± 0.121 0.130 ± 0.061
400-401 0 20.0 FF 416.1 0.052 ± 0.139 0.033 ± 0.088 0.137 ± 0.122 0.236 ± 0.073
500-501 0 20.0 FF 513.5 0.057 ± 0.190 0.033 ± 0.079 0.159 ± 0.187 0.224 ± 0.068
400-401 0 22.0 FF 414.2 0.086 ± 0.302 0.055 ± 0.203 0.142 ± 0.247 0.109 ± 0.166
600-700 1 8.0 TF 642.6 0.019 ± 0.028 0.015 ± 0.011 0.115 ± 0.089 0.214 ± 0.036
600-700 0 12.0 TF 662.6 0.021 ± 0.044 0.015 ± 0.022 0.167 ± 0.115 0.206 ± 0.056
400-500 0 15.0 TF 458.1 0.024 ± 0.053 0.017 ± 0.021 0.154 ± 0.119 0.220 ± 0.031
500-600 0 15.0 TF 560.5 0.022 ± 0.051 0.015 ± 0.018 0.127 ± 0.100 0.143 ± 0.037
600-700 0 15.0 TF 662.6 0.020 ± 0.047 0.014 ± 0.019 0.105 ± 0.069 0.139 ± 0.031

Table 5.16: Timing results for RGB-D SLAM using an Adjustable
BRISK-AGAST detector, a FREAK descriptor extractor, and a brute-force
matcher. Detection, extraction, and matching times are given in seconds
per frame.

Feat. Octaves Scale SN/ON Detect Time Extract Time Match Time Run time
Bnd. (s) (s) (s) (s)

500-600 1 8.0 FF 0.016 0.002 0.035 138.658
600-700 1 8.0 FF 0.018 0.002 0.048 153.775
600-700 0 12.0 FF 0.009 0.002 0.047 114.198
400-500 0 15.0 FF 0.006 0.002 0.023 92.999
500-501 0 15.0 FF 0.007 0.002 0.026 97.597
500-600 0 15.0 FF 0.007 0.002 0.034 123.837
600-700 0 15.0 FF 0.009 0.002 0.048 127.055
600-700 1 15.0 FF 0.019 0.002 0.048 133.743
500-501 0 16.0 FF 0.007 0.002 0.026 99.898
500-501 0 18.0 FF 0.006 0.002 0.026 110.865
400-401 0 20.0 FF 0.006 0.002 0.017 84.743
500-501 0 20.0 FF 0.007 0.002 0.027 99.194
400-401 0 22.0 FF 0.006 0.002 0.017 82.585
600-700 1 8.0 TF 0.019 0.002 0.048 108.815
600-700 0 12.0 TF 0.009 0.002 0.048 113.702
400-500 0 15.0 TF 0.006 0.002 0.023 90.816
500-600 0 15.0 TF 0.007 0.002 0.034 104.644
600-700 0 15.0 TF 0.008 0.002 0.047 122.012

131

80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

Detector: abrisk Extractor: freak Matcher: bruteforce

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

ON = F SN = F

ON = F SN = T

80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

ON = F SN = F

ON = F SN = T

(a)

80 90 100 110 120 130 140 150 160
0

0.02

0.04

0.06

0.08

0.1
Detector: abrisk Extractor: freak Matcher: bruteforce

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

ON = F SN = F

ON = F SN = T

80 90 100 110 120 130 140 150 160
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

ON = F SN = F

ON = F SN = T

(b)

Figure 5.13: ATE and RME error values for the entries in Table 5.15.
Obtained using an Adjustable BRISK-AGAST detector, a FREAK
extractor, and a brute-force matcher. Figure 5.13a gives the mean absolute
trajectory error compared to the total run time for each parameter setting
and Figure 5.13b gives the mean relative motion error compared to the
total run time.

this nOctaves value were worse than average. Although a trial using an

nOctaves value of one, feature bounds of 600-700, a sampling pattern scale

of 8.0, and SN enabled had better than average run time and error results,

the failure of trials using similar settings with one octave, indicates that the

system using a detector with an nOctaves value of one is inconsistent in this

configuration. Therefore, it is best to use an nOctaves value of zero.

Successful trials occurred using feature bounds between 400 and 700. Trials

with feature counts in the 300-400 range experienced difficulty in recovering

the transformation between frames. Trials with counts near 300 features per

frame failed completely and were unable to track any motion at all, while

trials with averages near 350 features per frame had difficulty tracking the

rotation of the camera and failed near the 8 s mark.

For those successful runs, the average number of features per frame did

not appear to play a significant role in the quality of the trajectory estimate.

Trials with averages of 410 features per frame produced errors as small as

those of 660 average feature runs. As with the other Adjustable BRISK-

AGAST configurations, increasing the feature bounds resulted in an increase

to detection, matching, and total run times. As such, it is best to use fea-

ture bounds near the 400-500 range, thereby keeping run times low without

harming the quality of the pose estimates.

This SLAM configuration worked best using patternScale values between

132

12.0 and 22.0. Trials using low values in the 8.0-12.0 range worked well with

higher features counts of around 550 to 650 features per frame, while trials

using patternScale’s between 18.0 and 22.0 worked better with lower feature

counts of around 410 to 510 features per frame. A sampling pattern scale of

15.0 worked well with a wide range of feature counts from 450 to 650, but

experienced difficulty tracking camera rotations with feature bounds near

410 features per frame. In general, it is best to use a scale of around 15.0

since it provides the most robust performance, but a scale in the 20.0 to 22.0

range should be used for best results if the average feature count is expected

to be lower than 450.

Orientation normalization is best left disabled. All runs using orientation

normalization failed completely, with trials using smaller feature bounds fail-

ing to recover any odometry at all and trials using bounds around 600-700

features per frame failing at the 8 s mark when the camera began to rotate.

Enabling scale normalization resulted in a 10 s improvement to run times for

most configurations and resulted in no noticeable change to the error met-

rics. Only runs using a patternScale value of 15.0 were able to consistently

complete the entire test sequence with scale normalization enabled. For runs

with average feature counts in the 450-650 range, scale normalization should

be enabled and a patternScale of 15.0 should be used, but normalization

should be turned off for runs with a smaller feature count.

The best results for this detector, extractor, and matcher configuration

were found using feature bounds of 400-401, an nOctaves value of zero, a

patternScale value of 22.0, and orientation and scale normalization dis-

abled. With these settings, an ATE of 0.142 ± 0.247 m and 0.109 ± 0.166

rad was achieved with a run time of 82.585 s. The ATE metrics and the

recovered trajectory for the entirety of the run are shown in Figure 5.14.

The estimated trajectory followed the ground truth very well. The larger

than typical standard deviations are due to several large outliers at the 10 s

and 14 s marks. The algorithm misinterpreted the rotation of the camera as

translational movement, resulting in the 2 m and 1.5 rad spikes in the error

plots and the outliers in the middle of the trajectory estimate.

133

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

time (s)

A
n
g
le

 (
ra

d
)

Angular Error

(a)

−1
0

1
2

3

−1

0

1

2

3
0.5

1

1.5

2

2.5

3

Interpolated GT Trajectory

Estimate Trajectory in GT Frame

(b)

Figure 5.14: Results for the best trial using an Adjustable BRISK-AGAST
detector, a FREAK descriptor extractor, and a brute-force matcher.
Settings of nOctaves = 0, feature bounds of 400-401, patternScale of 22.0
and SN and ON disabled were used. Figure 5.14a shows the ATE for the
entire 21 s run. Figure 5.14b shows the estimated trajectory, indicated with
blue circles, compared to the ground truth trajectory, indicated with red
crosses.

5.10 Adjustable BRISK-AGAST and BRISK with

FLANN

The Adjustable BRISK-AGAST detector, BRISK descriptor extractor, and

FLANN matcher configuration for the RGB-D SLAM System has the same

four open parameters that the corresponding brute-force configuration has:

fMin and fMax, nOctaves, and patternScale. This FLANN configuration

was tested using feature bounds ranging from 200-201 to 600-601 in incre-

ments of 100, nOctaves values of zero, one, and two, and patternScale

values of 0.75, 1.0, 1.25, and 1.5. The results are recorded in Table 5.17 and

Table 5.18. The mean ATE and RME values for these runs are plotted in

Figure 5.15.

Successful runs were completed using all nOctaves settings. As with the

brute-force tests, trials using an nOctaves setting of zero were able to operate

using smaller feature bounds than those with nOctaves values of one and

two. Runs where the detector used an nOctaves value of two only ran to

completion with higher patternScale settings of 1.25 and 1.5, with runs

using a patternScale of 0.75 or 1.0 failing due to an inability to find enough

feature matches between frames.

Increasing the value of nOctaves resulted in a slight increase in the mean

134

Table 5.17: AME and RME values for tests using an Adjustable
BRISK-AGAST detector, a BRISK descriptor extractor, and a FLANN
matcher.

Feat. Octaves Scale Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Bnd. Feat. (m) (rad) (m) (rad)

500-501 0 0.750 516.9 0.018 ± 0.022 0.013 ± 0.011 0.081 ± 0.071 0.185 ± 0.025
600-601 0 0.750 617.4 0.019 ± 0.029 0.014 ± 0.013 0.078 ± 0.058 0.138 ± 0.045
600-601 1 0.750 598.9 0.020 ± 0.030 0.015 ± 0.012 0.107 ± 0.091 0.172 ± 0.035
500-501 0 1.000 515.1 0.019 ± 0.031 0.014 ± 0.012 0.133 ± 0.094 0.138 ± 0.055
600-601 0 1.000 618.1 0.019 ± 0.035 0.014 ± 0.016 0.105 ± 0.068 0.118 ± 0.038
400-401 1 1.000 403.8 0.022 ± 0.039 0.015 ± 0.015 0.189 ± 0.134 0.253 ± 0.046
500-501 1 1.000 504.2 0.023 ± 0.055 0.015 ± 0.022 0.136 ± 0.100 0.293 ± 0.088
600-601 1 1.000 600.0 0.020 ± 0.032 0.014 ± 0.014 0.138 ± 0.101 0.278 ± 0.042
300-301 0 1.250 317.3 0.029 ± 0.054 0.018 ± 0.020 0.117 ± 0.122 0.189 ± 0.054
400-401 0 1.250 414.0 0.023 ± 0.043 0.015 ± 0.016 0.123 ± 0.089 0.123 ± 0.044
500-501 0 1.250 517.0 0.019 ± 0.035 0.014 ± 0.015 0.146 ± 0.108 0.176 ± 0.050
600-601 0 1.250 626.5 0.018 ± 0.031 0.013 ± 0.011 0.132 ± 0.094 0.156 ± 0.036
400-401 1 1.250 406.1 0.018 ± 0.023 0.013 ± 0.009 0.145 ± 0.088 0.165 ± 0.051
500-501 1 1.250 500.7 0.018 ± 0.023 0.014 ± 0.010 0.116 ± 0.091 0.222 ± 0.034
600-601 1 1.250 597.3 0.018 ± 0.028 0.014 ± 0.013 0.094 ± 0.069 0.158 ± 0.038
500-501 2 1.250 496.7 0.020 ± 0.027 0.015 ± 0.011 0.165 ± 0.101 0.174 ± 0.052
600-601 2 1.250 596.2 0.020 ± 0.023 0.014 ± 0.009 0.133 ± 0.094 0.174 ± 0.043
300-301 0 1.500 315.4 0.031 ± 0.066 0.018 ± 0.022 0.172 ± 0.127 0.169 ± 0.078
300-301 0 1.500 315.4 0.027 ± 0.051 0.018 ± 0.020 0.153 ± 0.103 0.139 ± 0.056
500-501 0 1.500 516.9 0.025 ± 0.059 0.016 ± 0.021 0.130 ± 0.087 0.125 ± 0.051
600-601 0 1.500 628.6 0.021 ± 0.039 0.015 ± 0.017 0.176 ± 0.115 0.138 ± 0.094
400-401 1 1.500 403.9 0.021 ± 0.038 0.015 ± 0.014 0.126 ± 0.081 0.230 ± 0.063
500-501 1 1.500 504.6 0.020 ± 0.027 0.015 ± 0.011 0.115 ± 0.098 0.116 ± 0.043
600-601 1 1.500 598.0 0.016 ± 0.020 0.013 ± 0.009 0.107 ± 0.086 0.185 ± 0.047
500-501 2 1.500 501.6 0.027 ± 0.047 0.018 ± 0.017 0.177 ± 0.123 0.198 ± 0.035
600-601 2 1.500 589.6 0.023 ± 0.043 0.016 ± 0.017 0.129 ± 0.112 0.189 ± 0.033

Table 5.18: Timing results for an Adjustable BRISK-AGAST detector a
BRISK descriptor extractor and a FLANN matcher.

Feat. Octaves Scale Detect Time Extract Time Match Time Run time
Bnd. (s) (s) (s) (s)

500-501 0 0.750 0.007 0.004 0.022 91.930
600-601 0 0.750 0.007 0.005 0.028 102.744
600-601 1 0.750 0.016 0.005 0.033 94.892
500-501 0 1.000 0.006 0.004 0.020 103.213
600-601 0 1.000 0.007 0.004 0.025 123.413
400-401 1 1.000 0.011 0.003 0.016 83.260
500-501 1 1.000 0.013 0.004 0.023 98.066
600-601 1 1.000 0.015 0.005 0.030 107.329
300-301 0 1.250 0.004 0.003 0.010 81.985
400-401 0 1.250 0.005 0.003 0.015 101.348
500-501 0 1.250 0.006 0.004 0.019 117.426
600-601 0 1.250 0.007 0.005 0.025 131.379
400-401 1 1.250 0.011 0.003 0.016 90.212
500-501 1 1.250 0.015 0.004 0.021 104.485
600-601 1 1.250 0.015 0.005 0.029 111.403
500-501 2 1.250 0.017 0.004 0.021 93.611
600-601 2 1.250 0.020 0.005 0.028 104.319
300-301 0 1.500 0.004 0.003 0.010 85.577
300-301 0 1.500 0.004 0.003 0.010 84.584
500-501 0 1.500 0.010 0.004 0.018 123.427
600-601 0 1.500 0.007 0.004 0.026 144.497
400-401 1 1.500 0.011 0.003 0.014 93.870
500-501 1 1.500 0.013 0.004 0.020 100.680
600-601 1 1.500 0.015 0.005 0.025 123.628
500-501 2 1.500 0.017 0.004 0.020 103.220
600-601 2 1.500 0.020 0.005 0.027 111.136

135

80 90 100 110 120 130 140 150
0

0.05

0.1

0.15

0.2

0.25

Detector: abrisk Extractor: brisk Matcher: flann

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 90 100 110 120 130 140 150
0

0.05

0.1

0.15

0.2

0.25

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(a)

80 90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1
Detector: abrisk Extractor: brisk Matcher: flann

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(b)

Figure 5.15: ATE and RME values for the entries in Table 5.17. Obtained
using an Adjustable BRISK-AGAST detector, a BRISK extractor, and a
FLANN matcher. Figure 5.15a gives the mean absolute trajectory error
compared to the total run time for each parameter setting. Figure 5.15b
gives the relative motion error compared to the total run time.

ATE on the order of 0.03 m and 0.07 rad per unit increase. Incrementing the

value of nOctaves also resulted in an increase in detection times by around

5 ms per frame, an increase in matching times by 3 ms per frame, and a

decrease in total run time by 10 to 15 s. This decrease in time is a result

of a slight drop in the number of features detected at each feature bound

setting, and smaller pose graph optimization times. Values for nOctaves of

zero and one are still preferable as they can operate using a wider range of

sampling pattern scales and at lower feature counts, resulting in faster overall

run times.

Testing showed that at patternScale settings of 0.75, the RGB-D SLAM

System only operated with an nOctaves value of zero and higher feature

bounds. Increasing the patternScale value to 1.25 from 1.0 resulted in

around an 8 s increase to run times, but decreased ATE by an average of

0.05 m and 0.09 rad. Increasing patternScale to 1.5 from 1.25 also increased

run time by 7 s while making no noticeable improvement to the ATE trans-

lation error, but around a 0.02 rad improvement to the orientation error. A

patternScale setting of 1.0 should be used when speed is the only concern,

and a setting of 1.25 or 1.5 is preferable for general operations.

No trials succeeded using feature bounds of 200-201. There was difficulty

finding enough matches at this setting resulting in a loss in odometry either

at the start of the run, or at the first camera rotation. All other feature

bounds resulted in successful runs, although the 300-301 range only worked

136

with an nOctaves value of zero, and an nOctaves value of two required

feature bounds of at least 500 features per frame to run to completion.

Each 100 feature increment to the feature bounds resulted in a roughly

5 ms per frame increase to detection, extraction, and matching run times,

and a 10 to 15 s increase to total run time. Such feature bounds increases

resulted in slight improvements to the absolute trajectory errors until the

500-501 feature bound, and then a gradual degradation in the quality of the

trajectory estimate afterwards. Feature bounds between 300 and 500 are

suitable for this configuration, depending on whether accuracy or speed is

preferred.

Although several trials produced comparable results, the trial that best

balanced run time and accuracy was the one using feature bounds of 300-

301, an nOctaves value of zero, and a patternScale value of 1.5. This

implementation had absolute trajectory errors of 0.153±0.103 m and 0.139±
0.056 rad and a total run time of 84.584 s. Figure 5.16 shows the absolute

trajectory error for the entirety of this run. As with most RGB-D SLAM

System runs, there was difficulty capturing the vertical rotation at the 10

s mark. There was also some low level noise in the ATE terms for the

whole run, explainable by the degradation in the quality of FLANN matches

compared to a brute-force matcher.

5.11 Adjustable BRISK-AGAST and FREAK with

FLANN

The RGB-D SLAM System using an Adjustable BRISK-AGAST detector,

a FREAK extractor and a FLANN matcher has six modifiable parameters

for feature detection. In its testing, fMin-fMax ranges of 200-201 to 600-

601 were used in increments of 100, in addition to patternScale values

between 16.0 and 24.0 in increments of 2.0, nOctaves values of zero and one,

and normalization settings with both scale and orientation normalization

disabled, only scale normalization enabled, and both terms enabled. The

results of successful runs using these settings are recorded in Table 5.19 and

Table 5.20. The mean ATE and RME values for each run are plotted in

Figure 5.17.

Trial runs using feature bounds of 400-401, 500-501, and 600-601 were able

137

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

time (s)

A
n
g
le

 (
ra

d
)

Angular Error

Figure 5.16: ATE translation and orientation errors for the Adjustable
BRISK-AGAST, BRISK, FLANN trial run using feature bounds of
300-301, 0 nOctaves, and a patternScale of 1.5.

Table 5.19: ATE and RME values using an Adjustable BRISK-AGAST
detector, a FREAK extractor, and a FLANN matcher.

Feat. Oct. Scale SN/ON Avg. RME Trans. RME Ang. ATE Trans. ATE Ang.
Bnd. Feat. (m) (rad) (m) (rad)

500-501 0 16.0 FF 515.1 0.024 ± 0.048 0.016 ± 0.018 0.196 ± 0.147 0.164 ± 0.063
600-601 0 16.0 FF 618.1 0.021 ± 0.041 0.015 ± 0.016 0.094 ± 0.069 0.161 ± 0.051
400-401 0 18.0 FF 417.3 0.030 ± 0.066 0.020 ± 0.030 0.157 ± 0.121 0.296 ± 0.094
500-501 0 18.0 FF 515.1 0.023 ± 0.046 0.015 ± 0.018 0.176 ± 0.135 0.252 ± 0.047
600-601 0 18.0 FF 618.1 0.019 ± 0.033 0.014 ± 0.012 0.122 ± 0.073 0.194 ± 0.051
500-501 0 20.0 FF 513.5 0.048 ± 0.174 0.030 ± 0.100 0.153 ± 0.142 0.164 ± 0.100
400-401 0 22.0 FF 414.2 0.040 ± 0.059 0.027 ± 0.036 0.124 ± 0.100 0.266 ± 0.028
500-501 0 16.0 TF 515.1 0.022 ± 0.039 0.015 ± 0.017 0.139 ± 0.111 0.226 ± 0.037
600-601 0 16.0 TF 618.1 0.021 ± 0.043 0.014 ± 0.015 0.100 ± 0.088 0.183 ± 0.046
500-501 0 18.0 TF 515.1 0.022 ± 0.050 0.015 ± 0.018 0.163 ± 0.122 0.156 ± 0.049
600-601 0 18.0 TF 618.1 0.025 ± 0.061 0.016 ± 0.020 0.140 ± 0.110 0.257 ± 0.046
400-401 0 22.0 TF 414.2 0.063 ± 0.197 0.049 ± 0.208 0.141 ± 0.154 0.174 ± 0.150

Table 5.20: Timing results for an Adjustable BRISK-AGAST detector, a
FREAK extractor, and a FLANN matcher.

Feat. Octaves Scale SN/ON Detect Time Extract Time Match Time Run time
Bnd. (s) (s) (s) (s)

500-501 0 16.0 FF 0.007 0.002 0.024 99.938
600-601 0 16.0 FF 0.008 0.002 0.032 111.254
400-401 0 18.0 FF 0.005 0.002 0.016 85.825
500-501 0 18.0 FF 0.006 0.002 0.023 102.019
600-601 0 18.0 FF 0.007 0.002 0.030 111.960
500-501 0 20.0 FF 0.007 0.002 0.023 93.776
400-401 0 22.0 FF 0.005 0.002 0.017 84.048
500-501 0 16.0 TF 0.007 0.002 0.024 101.698
600-601 0 16.0 TF 0.008 0.002 0.032 112.666
500-501 0 18.0 TF 0.006 0.002 0.023 101.719
600-601 0 18.0 TF 0.008 0.002 0.030 114.660
400-401 0 22.0 TF 0.006 0.002 0.017 85.999

138

80 85 90 95 100 105 110 115
0

0.1

0.2

0.3

Detector: abrisk Extractor: freak Matcher: flann

A
T

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 85 90 95 100 105 110 115
0

0.1

0.2

0.3

A
T

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(a)

80 85 90 95 100 105 110 115
0

0.02

0.04

0.06

Detector: abrisk Extractor: freak Matcher: flann

R
M

E
 T

ra
n
s
la

ti
o
n
a
l
E

rr
o
r

(m
)

Runtime (s)

80 85 90 95 100 105 110 115
0

0.02

0.04

0.06

R
M

E
 A

n
g
u
la

r
E

rr
o
r

(r
a
d
)

Runtime (s)

(b)

Figure 5.17: ATE and RME values for the entries in Table 5.19. Obtained
using an Adjustable BRISK-AGAST detector, a FREAK extractor, and a
FLANN matcher. Figure 5.17a gives the mean absolute trajectory error
compared to the total run time for each parameter setting. Figure 5.17b
gives the mean relative motion error compared to the total run time.

to run to completion. Runs using bounds of 200-201 and 300-301 experienced

difficulty at the 8 s mark. With these lower feature bounds, enough matching

features could not be found, resulting in a failure to track the camera’s pose

through the horizontal rotation. The 500-501 feature bound was the most

consistent, able to function with almost all the patternScale settings. In

these trials, increasing the feature bounds by increments of 100 netted an

average decrease to the ATE metrics of 0.047 m and 0.006 rad, but at the

cost of a 1.2 ms per frame increase to detection times, a 7.4 ms per frame

increase to matching times, and a 12.6 s increase to total run time. It is

best to use as small feature bounds as possible, as the improvement to pose

accuracy does not warrant a greater than 10% increase to run time.

No trial runs were successful using an nOctaves setting of one. In every

case, the detector was unable to supply enough matching features to recover

the translation between poses, and tracking failed at the start of the run.

All patternScale values functioned adequately with the exception of 24.0.

Runs using this larger value had difficulty during the first rotation, with the

number of matching features dropping below acceptable levels, and localiza-

tion failing. Sampling pattern scales of 16.0 and 18.0 were the most consis-

tent, able to operate with most all feature bounds. In general, increasing

the scale resulted in a small increase in ATE on the order of 0.03 m and

0.007 rad, and an increase to run time of 1.8 s; however with low feature

bounds the greater patternScale values performed better, yielding a higher

139

number of correct matches, and a faster total run time due to a more rapid

pose graph optimization. As such, it is best to use a scale of 16.0 with most

feature bounds, but a scale of 22.0 for settings where the average number of

features per frame is near 400.

Similar to the brute-force matching case, enabling orientation normaliza-

tion caused all trials to fail. These runs all failed at the start of the first

major turn. In each case, no matter the feature bounds, not enough match-

ing features could be found to track the camera’s pose through the horizontal

rotation and localization failed. In order to achieve any results at all, orien-

tation normalization should be disabled.

Enabling scale normalization netted a slight overall improvement in the

mean ATE with a 0.013 m decrease in the translation term, but a 0.003 rad

increase in the orientation term. This improvement came at the cost of an

average of a 1.38 s increase to total run times.

The best results were found using feature bounds of 400-401, a pattern-

Scale value of 22.0, an nOctaves value of zero, scale normalization enabled,

and orientation normalization disabled. Using these settings, mean absolute

trajectory errors of 0.141± 0.154 m and 0.174± 0.150 rad were found, with

a total run time of 88.99 s. Plots of the ATE terms for the entire 21 s run

are shown in Figure 5.18. At the conclusion of the first horizontal rotation of

the camera at the 9.5 s mark, the error spiked to 1 m and 2.5 rad when the

system estimated the view of the desk was from a pose opposite of the true

pose. Additional peaks in the error occurred at the 10 s and 10.75 s marks,

indicating some trouble tracking the pitch of the camera.

5.12 Comparison of BRISK-AGAST and Adjustable

BRISK-AGAST Detectors

The Adjustable BRISK-AGAST detector was an enormous improvement over

the standard BRISK-AGAST detector. With each extractor and matcher

combination, the adjustable detector reduced total run times, decreased the

absolute trajectory errors, and improved the stability in pose localization.

Consider the plots in Figure 5.19. These plots show the mean ATE trans-

lation and rotation errors of representative runs using each detector and

matcher combination, with BRISK runs indicated by a blue circle and Ad-

140

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

time (s)

A
n
g
le

 (
ra

d
)

Angular Error

(a)

−1

0

1

2

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

2

Interpolated GT Trajectory

Estimate Trajectory in GT Frame

(b)

Figure 5.18: Results for the best trial using an Adjustable BRISK-AGAST
detector, a FREAK descriptor extractor, and a FLANN matcher. Settings
of nOctaves = 0, feature bounds of 400-401, patternScale of 22.0 and SN
enabled and ON disabled were used. Figure 5.18a shows the ATE for the
entire 21 s run. Figure 5.18b shows the estimated trajectory, indicated with
blue circles, compared to the ground truth trajectory, indicated with red
crosses.

justable BRISK runs with a red triangle. These runs were the “best” in each

configuration, chosen for rapid run times, small ATE and RME errors, or a

combination of the two.

Configurations using a FLANN matcher showed noteworthy improvement

when using the adjustable detector. Total run times were reduced by 80-140

s and there was a 0.05-0.2 m improvement to ATE translation error and a

0.2 to 0.4 rad improvement to the rotation error. Trials using the FREAK

descriptor were able to reduce run times from 229.0288 s to 85.9990 s and

rotation error from 0.1966 rad to 0.1737 rad with only a 0.01 m increase to

translation error, from 0.1301 m to 0.1405 m.

The FREAK descriptor configurations using a brute-force matcher showed

similar improvements with run time savings of 20-40 s and even better es-

timation results. The fastest Adjustable BRISK trial at 81.9846 s with a

mean error of 0.1172 m and 0.1894 rad was faster and more accurate than

the most accurate BRISK detector run at 108.0683 s, 0.2705 m, and 0.3682

rad, an improvement of over 26 s, 16 cm, and 10 ◦.

The BRISK descriptor and brute-force matcher combination showed the

most improvement. Although there was no significant change in overall run

times, the adjustable detector expanded the values of patternScale and

nOctaves that RGB-D SLAM could operate at dramatically, and improved

141

60 80 100 120 140 160 180
0.05

0.1

0.15

0.2

0.25

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

brisk_brisk_bruteforce

abrisk_brisk_bruteforce

60 80 100 120 140 160 180
0.1

0.15

0.2

0.25

0.3

0.35

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(a)

50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

brisk_brisk_flann

abrisk_brisk_flann

50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(b)

80 85 90 95 100 105 110 115 120 125
0

0.2

0.4

0.6

0.8

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

brisk_freak_bruteforce

abrisk_freak_bruteforce

80 85 90 95 100 105 110 115 120 125
0

0.5

1

1.5

2

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(c)

80 100 120 140 160 180 200 220 240
0

0.1

0.2

0.3

0.4

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

brisk_freak_flann

abrisk_freak_flann

80 100 120 140 160 180 200 220 240
0.1

0.2

0.3

0.4

0.5

0.6

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(d)

Figure 5.19: A comparison of mean ATE values and total run times for
BRISK and Adjustable BRISK detectors.

ATE metrics from averages around 0.5 m and 1 rad to 0.12 m and 0.16 rad.

The more consistent number of features supplied by the adjustable detector

helped improve stability, accuracy, and run time. Figure 5.20 shows the num-

ber of features detected in each frame for standard and Adjustable BRISK-

AGAST detectors. Both detectors have similar average feature counts with

624.7 for the regular detector and 600.0 for the adjustable detector, but the

adjustable detector is able to keep the feature count around 600, with a stan-

dard deviation of 70.6 features per frame compared to the regular detector’s

standard deviation of 226.1 features.

This more consistent feature count improves stability by limiting the possi-

bility of localization failure due to not enough matches. The 200 frame index

marks the peak of the vertical rotation which caused many failures during

testing. At this index, the feature count for the normal detector dropped be-

low 200 features, reaching a level where localization failure is very possible.

The Adjustable BRISK detector was able to compensate for the change in

image appearance at this time and reduce thresh, stopping the drop at 450

features, well away from the danger zone.

Trajectory estimate quality is improved by the more consistent number

142

(a) (b)

Figure 5.20: Feature counts per frame for a BRISK detector (Figure 5.20a)
and an Adjustable BRISK detector (Figure 5.20b). Both detectors had
nOctaves set to 1. The BRISK detector had a thresh value of 6 giving an
average of 624.7 features per frame and the Adjustable detector had feature
bounds of 600-601.

of features and matches. Preventing the feature count from dropping too

low ensures that a rich set of matching features is available for the RANSAC

based pairwise alignment. Limiting the total number of features from growing

too large reduces the number of outliers that are introduced to RANSAC’s

sampling set in the form of false matches. This, in turn, limits the number

of sampling iterations that RANSAC must perform and lessens the chance

that RANSAC will return an incorrect odometry estimate.

The more consistent number of features actually increased total run time

from 96.69 s to 114.15 s, with an increase in total matching time from 95.25

s to 321.7 s, a decrease in the total transformation recovery time from 69.11

s to 56.9 s, and a decrease in total pose graph optimization time from 65.09 s

to 54.79 s. The increase in matching time is due to the fact that the matching

time of a brute-force matcher, which tries all combinations between feature

sets, grows quadratically with the number of features. Despite the increase in

run time at similar feature averages, the Adjustable BRISK detector is still

an overall improvement to run time, as smaller average feature counts can

be safely used while producing trajectory estimates of comparable quality.

An RGB-D SLAM System run with an average of 600 features is one of the

fastest settings possible for the regular detector, and one of the slowest for

the Adjustable BRISK detector.

The adjustable detector does a fairly good job at keeping the number of

143

Figure 5.21: The value of thresh and the number of feature detected using
an Adjustable BRISK-AGAST detector with feature bound of 600-601,
indicated by the dashed red line.

features per frame within the desired bounds. Consider Figure 5.21, showing

the numbers of features detected and the internal threshold value of a detector

supplied with bounds of 600-601 features per frame. The detector was able to

keep the feature count between 550 and 650 features for the majority of the

run. From frame index 190-220 it experienced some difficulty. As the number

of features dropped, the detector reacted by decreasing its threshold until

the minimum value was reached. At this point, the detector was no longer

capable of reacting, and the feature count dropped below 500. Additional

difficulties were encountered when the feature count began to rise again. The

detector did not increase the threshold value quickly enough to match the

increasing feature count, and the count spiked to nearly 900 features, while

the detector caught up.

144

50 100 150 200 250 300
0.1

0.15

0.2

0.25

Runtime (s)
A

T
E

 T
ra

n
s
la

ti
o

n
 E

rr
o

r
(m

)

brisk_brisk_bruteforce

brisk_brisk_flann

50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(a)

80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

brisk_freak_bruteforce

brisk_freak_flann

80 100 120 140 160 180 200 220 240
0

0.5

1

1.5

2

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(b)

60 80 100 120 140 160 180
0.06

0.08

0.1

0.12

0.14

0.16

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

abrisk_brisk_bruteforce

abrisk_brisk_flann

60 80 100 120 140 160 180
0.1

0.15

0.2

0.25

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(c)

80 85 90 95 100 105 110 115 120 125
0.05

0.1

0.15

0.2

0.25

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

abrisk_freak_bruteforce

abrisk_freak_flann

80 85 90 95 100 105 110 115 120 125
0.1

0.15

0.2

0.25

0.3

0.35

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(d)

Figure 5.22: A comparison of mean ATE values and total run times for
brute-force-Hamming and FLANN-LSH matchers.

5.13 Comparison of Brute-Force and FLANN Matchers

Figure 5.22 gives a breakdown of mean absolute trajectory errors for each

of the four detector, extractor combinations. Brute-force-Hamming matcher

results are indicated with a blue circle and FLANN-LSH results are shown

with a red triangle. The brute-force matcher was a clear favorite for use

with the normal BRISK-AGAST detector. Brute-force and FLANN matchers

produced comparable errors, but FLANN took at least 40 s longer to process

the video sequence. While the brute-force runs required 4 to 6 s to process

each second of the video, the FLANN runs took between 7.5 s and 15 s.

FLANN was much more competitive with brute-force when using the Ad-

justable BRISK-AGAST detector. Absolute trajectory errors were com-

parable for the two matching methods, with average brute-force ATE val-

ues of 0.1453 ± 0.028 m and 0.2049 ± 0.0605 rad compared to FLANN’s

0.1411±0.0288 m and 0.02034±0.0498 rad with a FREAK descriptor. Errors

of 0.141±0.0379 m and 0.1668±0.0485 rad for brute-force and 0.1317±0.0287

m and 0.1049 ± 0.0679 m and 0.1178 ± 0.0381 rad for FLANN were found

with a BRISK descriptor. Average run time for FLANN matchers was 9 s

145

faster than brute-force for BRISK descriptor extractors and 11 s faster for

FREAK extractors. Trials with feature counts in the 200-400 range ran 1 to

2 s faster with a brute-force matcher, while those with higher feature counts

of 500-700 ran at least 15 s faster with a FLANN matcher.

5.14 Comparison of BRISK, FREAK, and SURF

Descriptors

Figure 5.23 plots mean ATE and RME values for the best runs using and Ad-

justable BRISK detector. Several top runs using the default RGB-D SLAM

System’s feature detection system, SURF, are also plotted. All configurations

using an Adjustable BRISK detector produced runs with errors comparable

to SURF, and the BRISK extractor with brute-force matcher produced two

runs that were better than SURF.

The SURF run with the lowest ATE had a run time of 187.104 s and an

ATE of 0.111 ± 0.055 m and 0.103 ± 0.054 rad. The run with the overall

lowest mean ATE used an Adjustable BRISK detector, a BRISK extractor,

and a brute-force matcher with an nOctaves value of one, a patternScale

of 1.25, and feature bounds of 600-601. These settings produced a total run

time of 125.036 s an ATE of 0.078± 0.069 m and 0.122± 0.041 rad. Another

setting of the same configuration produced errors equal to the best SURF

run at an even faster run time of 91.86 s, with ATE means of 0.111± 0.091

m and 0.112± 0.045 rad, using an nOctaves value of zero, a patternScale

setting of 1.1, and feature bounds of 370-371.

Figure 5.24 plots the absolute trajectory errors for these three runs. The

SURF system is more robust to changes in perspective and was capable of

tracking the camera through the vertical rotation at the 10 s mark with no

notable increase in rotation error, and only a 0.2 m increase an translation

error. The 125 s BRISK run also performed well during this rotation with

an increase trajectory error of 0.1 rad and 0.2 m. The 91.86 s BRISK run

experienced difficulties typical of the BRISK system in these circumstances

with a 0.7 m increase in translation error a 0.3 rad increase in rotation error.

During normal translational and small rotational movement, both BRISK

settings outperformed SURF with translation and rotation errors slightly

smaller than SURF’s for the majority of the run.

146

60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

Runtime (s)

A
T

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

abrisk_freak_bruteforce

abrisk_brisk_bruteforce

abrisk_brisk_flann

abrisk_freak_flann

surf_surf_flann

60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Runtime (s)

A
T

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(a)

60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

Runtime (s)

R
M

E
 T

ra
n

s
la

ti
o

n
 E

rr
o

r
(m

)

abrisk_freak_bruteforce

abrisk_brisk_bruteforce

abrisk_brisk_flann

abrisk_freak_flann

surf_surf_flann

60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

Runtime (s)

R
M

E
 R

o
ta

ti
o

n
 E

rr
o

r
(r

a
d

)

(b)

Figure 5.23: A comparison of mean ATE and RME values and total run
times for the top runs using BRISK, FREAK, and SURF descriptors. Red
upward-point triangles indicate runs using FREAK descriptors and
brute-force matchers, blue downward-pointing triangles are BRISK and
brute-force runs, green pentagrams are BRISK and FLANN runs, black
hexagrams are FREAK and FLANN runs, and the cyan x’s are SURF runs.

147

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

time (s)

Translation Error

T
ra

n
s
la

ti
o
n
 E

rr
o
r

(m
)

Surf

91.86 s BRISK

125.0 s BRISK

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

time (s)

Rotation Error

R
o
ta

ti
o
n
 E

rr
o
r

(r
a
d
)

Figure 5.24: A comparison of instantaneous ATE for top SURF and BRISK
runs.

Figure 5.25 shows the map generated for the 91.86 s BRISK run. Despite

some errors near the middle of the run, the overall map quality was quite

good. Notice the sharp vertical drop in the pose near the middle of the two

desks. This corresponds to the spike in translation error at the 10 s mark.

The top right portion of the map is slightly distorted. This is a result of the

increasing pose and translation errors near the 18 s mark.

5.15 Summary

The Adjustable BRISK-AGAST detector is a viable alternative to SURF in

the RGB-D SLAM System. It provides well localized, useful interest points

in only a fraction of the detection time. FREAK descriptors and FLANN

matchers are effective tools and produce useful results, but a BRISK descrip-

tor extractor and brute-force matcher works best with lower feature bounds

needed for the fastest run times. Care should be taken during the selection of

parameters for the detector and extractor. Since the combination of AGAST

interest points and BRISK descriptors is not as robust to changes in perspec-

tive as SURF, failure of RGB-D SLAM during large rotations is possible if

148

(a)

(b)

Figure 5.25: Maps generated in RGB-D SLAM. Figure 5.25a is generated
using the default SURF settings. Figure 5.25b is generated using an
Adjustable BRISK-AGAST detector with BRISK descriptors and a
brute-force matcher. Camera pose estimates are overlaid on both images.

149

these values are not chosen with care.

150

Chapter 6

Point Cloud Transformation Work

There are many applications of SLAM systems in robotics. Most applications

typically center around the localization of a robot or other objects in an

environment or the description of that environment in the form of a map. The

RGB-D SLAM System and similar systems produce maps with a high degree

of visual fidelity that are ideal for map-based augmented reality applications.

Such applications can include insertion of objects into the map, alteration of

the appearance of objects in the map, and modification of the structure and

appearance of the map itself.

This chapter details such an augmented reality application for an RGB-D

SLAM System, where the structure of a map, represented using a 3-D point

cloud of RGB pixels, is altered. This method allows the user to create dis-

torted maps by applying transformations to the original map, and to generate

photo-realistic views of these distorted maps. A method of sub-sampling the

map so as to reduce projection time and to limit visual irregularities asso-

ciated with the projection of occluded and partially occluded objects is also

presented.

The structure of the remaining portions of the chapter is as follows. Section

6.1 will review the generation of RGB point cloud based maps using the RGB-

D SLAM System. Section 6.2 will explain the technical details of the map

transformation and projection application. Section 6.3 will present typical

outputs of this application and discuss the method’s effectiveness.

6.1 RGB-D SLAM System Map

The RGB-D SLAM map is generated using keyframes. Each keyframe f =〈
P, Γ, T̄

〉
is a representative sample of the input video sequence consisting of

a point cloud P , a landmark point cloud Γ , and a discrete pose T̄. Both point

151

clouds are defined relative to the camera frame C at the time of sampling.

The point cloud P and landmark point cloud Γ are formed as described in

Section 3.4.

The pose T̄ is given as the transformation from C to the world frame W .

In circumstances where it is more convenient to refer to this transformation

in terms of a quaternion rotation and vector translation, the notation 〈Q,ρ〉
is used.

T̄⇔ 〈Q,ρ〉

Keyframes are chosen to represent distinct portions of the scene. They are

selected by comparing the pose at the current frame to that of already existing

keyframes. When there is a significant translational or rotational difference

between the current pose and all existing keyframe poses, the input frame is

chosen as a new keyframe.

This chapter will assume the number of keyframes is fixed at n, yielding

a set of keyframes F = {f1, f2, . . . , fn}. In the RGB-D SLAM System, the

number of keyframes n is not constant. As the environment is explored,

more keyframes will be added and n will increase. This change in n is of no

concern to the development of the transformation and projection method, as

n changes at a much slower rate than the method runs.

The RGB-D SLAM System’s map M that is used for visualization purposes

is formed by transforming each keyframe point cloud Pi into the world frame

W using T̄i and then combining all transformed point clouds into a single

point cloud. An example map is shown in Figure 3.2 and three of the point

clouds used to generate the map are shown in Figure 3.3. The map generation

function is given in Equation (6.1).

M =
n⋃
i=1

WPi (6.1)

6.2 Method

This section will detail the generation of an h×d RGB image Is for an RGB-D

SLAM map that has been distorted using an affine transformation matrix A.

The image Is has a height of h pixels and a width of d pixels. The image is

152

created by using perspective projection to project a portion of the distorted

map onto the image plane located at Cz = 1, where C is the current camera

coordinate frame. This process makes use of the set of RGB-D SLAM System

keyframes F as well as the current frame fs =
〈
Ps, Γs, T̄s

〉
.

Figure 6.1 contains a flow chart depicting this process. The point cloud

Pi for each keyframe fi is transformed according to the affine transformation

matrix A, producing a transformed point cloud P̂i. Since the transformation

A will change infrequently in expected use, it is computationally efficient

to transform all the keyframes once and cache the transformed keyframes

for future use. The keyframes are sampled by identifying keyframes whose

pose is close to the current pose, producing the keyframe set F ′. This set is

then sampled again by evaluating the keyframes in terms of the Hausdorff

distance [64] between their landmark point clouds and Γs, producing the set

F̄ . The transformed point clouds of up to k nearby keyframes are then used

to form the sampled distorted map M̄ . The sampled distorted map M̄ is

projected and scaled according to the camera’s intrinsic matrix K. Finally,

the projected cloud is translated so that its centroid falls at the center of the

image (h/2, d/2), and Is is formed.

6.2.1 Point Cloud Transformations

The RGB-D SLAM System map M in Equation (6.1) is created by merging

the point clouds WP for all the keyframes F . The distorted maps in this

transformation and projection method are created in a similar manner. In-

dividual distorted point clouds P̂i are created for each keyframe. Distorted

point clouds for select keyframes are then merged with the distorted input

point cloud to form a sampled distorted map M̄ .

A keyframe point cloud Pi is transformed into a distorted point cloud P̂i

using the affine transformation matrix A supplied by the user. This trans-

formation matrix, specified in the world frame using homogeneous coordi-

nates, can perform operations such as rotations, translations, scales, flips,

and shears to distort the point clouds. The matrix can be written as a prod-

uct of three matrices As, Ar, and At. In this formulation, the matrix As

performs scaling, skewing, flipping, and shearing operations. The matrix Ar

performs 3-D rotations about the origin. The matrix At performs transla-

153

Figure 6.1: Flowchart for the point cloud transformation application of the
RGB-D SLAM System.

154

tions.

A = AsArAt

As =


sxx sxy sxz 0

syx syy syz 0

szx szy szz 0

0 0 0 1


The scaling matrix As has on-diagonal and off-diagonal terms. The on-

diagonal terms sxx, syy, and szz are responsible for scaling along the axes.

The off-diagonal terms sxy, sxz, syx, syz, szx, and szy are responsible for

skewing and shearing effects.

Before it is distorted, the point cloud Pi for each keyframe fi is transformed

into the world frame W by applying the transformation representing the

pose T̄i. This transformation, given in quaternion vector form as 〈Qi,ρi〉,
is applied to each point 〈p, L〉 in the point cloud Pi. Each point 〈p, L〉 is

composed of a 3-D location p and RGB intensities L. The transformation is

described in Equation (6.2).

WPi =
{〈

Wp1, L1

〉
,
〈
Wp2, L2

〉
, . . .

}
[

0
Wp

]
= Qi

[
0

p

]
Q−1
i +

[
0

ρi

]
(6.2)

The distorted point cloud P̂i is then created by applying the affine transfor-

mation matrix A to each point
〈
Wp, L

〉
in WPi. This operation is described

in Equation (6.3). The RGB intensities L for each point are left unaltered

in both the coordinate frame transformation using T̄i and the affine trans-

formation using A.

P̂i = {〈p̂1, L1〉 , 〈p̂2, L2〉 , . . . }

[
p̂

1

]
= A

[
Wp

1

]
(6.3)

155

6.2.2 Keyframe Sampling

Keyframe sampling is used to build the distorted sampled map M̄ from the

keyframes and their distorted point clouds. By building this map using

keyframes sampled at poses similar to the current pose, a realistic looking

image can be constructed without the need to reason about occlusion in the

distorted map. Up to k keyframes are selected using the Hausdorff distance

[64] between each key frame’s landmark point cloud Γi and the current land-

mark point cloud Γs.

The Hausdorff distance measure used to evaluate the similarity of two

landmark point clouds is very computationally intensive, requiring 2ab −
(a + b) Euclidean distance measurements to evaluate the distance between

two point clouds of size a and b. With average point cloud sizes of 500 points,

and on the order of 60 to 100 keyframes per map, it is important to limit

the number of Hausdorff distance measurements so as to maintain reasonable

run times.

For this reason, the set of keyframes F is first filtered to produce a smaller

set of keyframes F ′. This is accomplished by measuring the transformation

between the current pose T̄s and the keyframe poses and selecting only those

keyframes that have a translation transformation magnitude smaller than a

threshold of τ4 and a rotational transformation magnitude smaller than a

threshold of θ. The τ4 and θ constraints ensure that only keyframes with pose

orientations and translations similar to that of the input frame are chosen.

The translation and orientation constraints are considered separately because

small changes in orientation result in much larger changes to the content of a

frame’s point cloud than do small changes in translation. Keyframes whose

poses differ significantly from the current pose will have little to no visual

overlap with the current camera image, and are therefore poor choices for use

in construction of the sampled map. Such keyframes are removed, leaving

the smaller set F ′. Equation (6.4) details the filtering process.

F ′ =
{
fi | fi ∈ F, 2 arccos(|<{Q−1

i Qs}|) < θ, ||ρi − ρs|| < τ4

}
(6.4)

Hausdorff distance is then used to select k keyframes to form an even

smaller set F̄ . The distance between keyframe landmark point clouds and

156

the current frame’s landmark point cloud is considered. Similar to pairwise

alignment in the RGB-D SLAM System, landmark point clouds Γ are used

rather than the full point clouds P . The landmark point clouds are repre-

sentative samples of the full point clouds, containing only around 500 points

compared to the up to 307,200 points in a full point cloud. This leads to sig-

nificant computational savings, making it possible to compute the Hausdorff

distance in reasonable amounts of time.

Each landmark point cloud Γ ′j in F ′ is transformed to the world coordinate

frame and the Hausdorff distance hj with the current landmark point cloud

Γs is found. The Hausdorff distance measures the largest minimal distance

between points in one point cloud and the nearest points in another point

cloud and vice versa. Equation (6.6) expresses this notion more formally,

measuring the Hausdorff distance between two point clouds A and B. In

this equation, the function ∆(x,y) denotes a distance function between two

points x and y. This function can be any distance function such as Maha-

lanobis, Manhattan, or Euclidean distance. In the implementation developed

for this thesis, squared Euclidean distance was used.

h = H Dist(A,B)

= max

{
max
a∈A

(
min
b∈B

(∆(a, b))

)
,max
b∈B

(
min
a∈A

(∆(b, a))

)}
(6.5)

= max

{
max
a∈A

(
min
b∈B

(
||a− b||2

))
,max
b∈B

(
min
a∈A

(
||a− b||2

))}
The k keyframes used to make up M̄ are then selected by identifying the

k keyframes in F ′ whose Hausdorff distance measure is closest to, but still

larger than τ3. A justification for this constrained minimization approach will

be given in the next paragraph. Equation (6.6) details the selection of F̄ ,

the set of these k keyframes. The constraints Φ(Γ ′) are detailed in Equation

(6.7).

157

F̄ = {f̄1, f̄2, . . . , f̄k} (6.6)

f̄1 =

{
f ′j | Γ ′j = argmin

Γ ′s.t.Φ1(Γ ′)

H Dist(Γ ′, Γs) , f ′j ∈ F ′
}

f̄2 =

{
f ′j | Γ ′j = argmin

Γ ′s.t.Φ2(Γ ′)

H Dist(Γ ′, Γs) , f ′j ∈ F ′
}

...

f̄k =

{
f ′j | Γ ′j = argmin

Γ ′s.t.Φk(Γ ′)

H Dist(Γ ′, Γs) , f ′j ∈ F ′
}

Φ1(Γ ′) =
{
Γ ′j | H Dist(Γ ′j , Γs) > τ3 , f ′j ∈ F ′

}
(6.7)

Φ2(Γ ′) =
{
Γ ′j | H Dist(Γ ′j , Γs) > τ3 , f ′j ∈ F ′\{f̄1}

}
...

Φk(Γ
′) =

{
Γ ′j | H Dist(Γ ′j , Γs) > τ3 , f ′j ∈ F ′\{f̄1 · · · ∪ f̄k−1}

}
The τ3 constraint is an important step to enforce diversity in the selected

keyframes. Without the term, keyframes which almost exactly resemble the

current frame would be selected. There would be a very large amount of

overlap between each of the keyframes’ point clouds, resulting in a map M̄

which closely resembles the input point cloud P . Enforcing a distance of at

least τ3 introduces a measure of dissimilarity between the point clouds and

ensures that additional data not available at the current camera pose will

be incorporated into the sampled map. This more expansive map increases

the range of transformations A that can be applied while still presenting

a realistic view. Without this dissimilarity in keyframes, operations which

make the current view “zoom out,” such as those increasing the apparent

depth of a room, would not be practical. Increasing depth would make the

displayed image shrink toward its center. With most of the sampled map

already displayed, the distorted image would be a smaller version of the

original image surrounded by a field of empty pixels. Expanding the map

beyond the original image allows for incorporation of portions of the map

not displayed in the “zoomed in” version, creating a more realistic looking

image with a scaled depth.

158

Finally, the sampled distorted map M̄ is constructed. The current frame’s

point cloud Ps is transformed into world coordinates and distorted according

to Equation (6.2) and Equation (6.3), producing P̂s. The transformed point

cloud P̂s is merged with the transformed point cloud P̂ for each keyframe in

F̄ . The merged point cloud is then downsampled using a voxel grid filter [65].

A 3-D grid of voxels is fit over the point cloud and all points falling within

a given voxel are replaced by a single point located at the centroid of the

replaced points with RGB intensities equal to the mean intensities of the re-

placed points. This downsampling step reduces map redundancy introduced

by overlapping component point clouds and serves as a low pass spatial filter,

reducing the appearance of small alignment issues. Equation (6.8) depicts

the relevant operations needed to produce the sampled transformed map M̄ .

M̄ = Voxel Downsample


⋃
f̄i∈F̄

P̂i

 ∪ P̂s

 (6.8)

6.2.3 Projection

An image of the map M̄ is then created at the current camera pose T̄s. The

map is transformed into the current camera frame C using the inverse of the

transformation used to represent the current pose (T̄s)
−1. Equation (6.9)

relates the transformation of the location of a point 〈p, L〉 ∈ M̄ into the

camera frame using quaternion multiplication.[
0
Cp

]
= Q−1

s

([
0

p

]
−

[
0

ρs

])
Qs (6.9)

The location of each point is then projected onto the image plane located

at Cz = 1, using the pixel lengths pu and pv retrieved from the camera’s

intrinsic matrix K. The translation terms cu and cv in K are not used. Since

the point cloud generated from the image has been transformed, the optical

center of the projected distorted map will likely no longer be at (cu, cv). A

new optical center must be found. The terms cu and cv are replaced by µu

and µv, the centroids of the projected point cloud. Calculation of µu and µv

is detailed in Equation (6.11). In this equation, |M̄ | is the number of points

in the map.

159

K =

pu 0 0 cu

0 pv 0 cv

0 0 1 0



µu =
1

|M̄ |
∑
m∈M̄

puxp
zp

µv =
1

|M̄ |
∑
m∈M̄

pvyp
zp

(6.10)

(6.11)

The location of the projected points is given by the perspective projection

equation in Equation (6.12). Here the projection of a point
〈
Cp, L

〉
with

3-D location given by p =
[
xp yp zp

]T
is shown. The terms h and d denote

the dimensions of the h× d image Is that is constructed. The values up and

vp give the location of the projected point on the imaging plane.

upvp
1

 =


puxp
zp
− d/2 + µu

pvyp
zp
− h/2 + µv

1

 , ∀p ∈ M̄ (6.12)

Once all points contained in M̄ have been projected onto the imaging

plane, the distorted image Is can be created. The location of a projected

point is converted into pixel indices by rounding up and vp to the nearest

whole number. The RGB intensity of the pixel in Is at this location is set to

the intensity L of the projected point. If no point is assigned to a pixel, that

pixel’s intensity is estimated using a 3× 3 median filter to select the median

value of the nine pixel patch surrounding the unassigned pixel.

6.3 Results and Discussion

This section will present experimental results for the map transformation

method detailed in Section 6.2. In general, the method worked well and was

160

Figure 6.2: A map generated by the RGB-D SLAM System.

able to consistently transform the map using a variety of scaling and shearing

operations and supply consistent images of the distorted map at a rate of 3-4

Hz.

Care has to be taken to ensure that the map is suitable for the type of

transformation desired. For instance, maps generated using mostly rotational

movement of a camera fixed on a pivot will become more sparse farther away

from the pivot. Objects farther way from the pivot will not be imaged in

as great detail and will be represented using a comparatively sparse set of

RGB points. Consequently, scaling operations which “zoom in” on these far

away objects will produce sparse, poor images due to a lack of available data.

In general, however, as long as the map was generated with a good variety

of rotational and translational movement, the generated images are of good

quality.

In order to test this distortion method, several transformation matrices

were applied to the map depicted in Figure 6.2. This map was generated

for the room depicted in Figure 6.3. The world frame W in this map was

defined such that the z-axis points toward the left-most wall supporting the

white board, the y-axis points toward the floor, and the x-axis points “into”

the room, normal to the plane formed by the poster board and bookshelf.

In the following figures, the world frame axes will be indicated using a set

of coordinate axes labeled /map. In this set of axes, the red line indicates

the x-axis, the green line indicates the y-axis, and the blue line indicates the

z-axis.

For these experiments, k = 3 keyframes were chosen to form the sample

map, using filtering thresholds of τ4 = 2 m and θ = 0.3 rad, and a minimum

Hausdorff distance of τ3 = 10 m2.

161

Figure 6.3: A photo of the mapped location.

Two representative poses were chosen for comparison. View 1, shown in

Figure 6.4, faces the white board with its camera axes aligned with the world

frame axes. View 2, shown in Figure 6.5, faces toward the poster board with
Cx pointing in the negative W z direction, Cy pointing in the Wy direction,

and Cz pointing in the Wx direction.

For both views, the sampling algorithm was able to select keyframes whose

point clouds contain data not available to the camera at the current view,

producing suitable sampled maps M̄1 and M̄2. Figure 6.6 shows the images

generated for both views with no map distortions applied. Notice the black

blob visible near the left portion of the View 2 image. This is the result of the

finite range of the Kinect’s depth sensor. While mapping, the RGB-D SLAM

System never received data regarding the depth of the back wall represented

by the black blob. Consequently, the wall was not incorporated into the map

and cannot be displayed in the image. This same effect can occur for light

fixtures that are within the maximum range of the depth sensor. These light

fixtures saturate the IR camera, hindering the Kinect from detecting the

IR pattern projected onto the fixtures, thus preventing recovery of a depth

estimate and the incorporation of these objects into the map.

Three transformations were applied to the map and images for the two

views. The first transformation was a scaling transformation. The maps’ x

coordinates were scaled by a factor of 0.5 and their z coordinates were scaled

by 1.5. The transformation matrix A1 representing this operation is given in

Equation (6.13). The transformation should result in an increase in apparent

depth in View 1 and a contraction in the horizontal direction. Conversely,

the apparent depth should be reduced in View 2 and there should be an

expansion in the horizontal direction.

162

(a) (b)

(c) (d)

(e)

Figure 6.4: Components of the sampled map created for View 1. Figure
6.4a shows the input point cloud, Figures 6.4b, 6.4c, and 6.4d show the
three selected keyframe point clouds, and Figure 6.4e shows the sampled
map obtained by merging and downsampling these four point clouds.

163

(a) (b)

(c) (d)

(e)

Figure 6.5: Components of the sampled map created for View 2. Figure
6.5a shows the input point cloud, Figures 6.5b, 6.5c, and 6.5d show the
three selected keyframe point clouds, and Figure 6.5e shows the sampled
map obtained by merging and downsampling these four point clouds.

164

(a) (b)

Figure 6.6: Output images obtained without any map distortion. Figure
6.6a shows the output for View 1 and Figure 6.6b shows the output for
View 2.

A1 =


0.5 0 0 0

0 1 0 0

0 0 1.5 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


0.5 0 0 0

0 1 0 0

0 0 1.5 0

0 0 0 1

 (6.13)

The results of this transformation are shown in Figure 6.7. The sampled

maps were distorted in the desired manner and the expected image distortions

occurred. Note the decrease in quality of image 2. The “zooming in” caused

by the Wx scaling operation illustrates the sparseness of points representing

objects farther away from the camera. Decreasing the Wx scaling term any

further would be inadvisable at this pose.

The second transformation was another scaling operation. In this trans-

formation, the maps were scaled in the world x-axis by 1.5 and scaled by 0.75

in the world z-axis. This should produce the opposite effect of the first trans-

formation. In View 1, the decrease in z will result in a decrease in apparent

depth, and the increase in x will result in an expansion in the horizontal

direction. In View 2, decreasing z will result in a horizontal contraction of

the projected image, and the increase in x will result in an increase in appar-

165

(a) (b)

(c)

(d)

Figure 6.7: The distorted point clouds and output images for View 1 and
View 2 where x was scaled by 0.5 and z was scaled by 1.5, relative to the
world frame W . Figure 6.7a shows M̄ at View 1 and Figure 6.7b shows Is
at View 1. Figure 6.7c shows M̄ at View 2 and Figure 6.7d shows Is at
View 2.

166

ent depth. The transformation matrix for this transformation A2 is given in

Equation (6.14). Figure 6.8 shows the results of this transformation.

A2 =


1.5 0 0 0

0 1 0 0

0 0 0.75 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


1.5 0 0 0

0 1 0 0

0 0 0.75 0

0 0 0 1

 (6.14)

The last transformation was a skewing operation using a factor of 0.4. The

skewed transformation is given by A3 in Equation (6.15). This operation

should make the room appear on an incline along the length of the room,

with the height of the floor and ceiling increasing as x decreases. The height

of the floor and ceiling should be constant with respect to z. This should

result in a skewing of View 1 toward the top left corner of the image. View

2 should remain unchanged in the horizontal direction, but the height of the

ceiling should decrease as apparent depth increases.

A3 =


1 0.4 0 0

0.4 1 0 0

0 0 1.05 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


1 0.4 0 0

0.4 1 0 0

0 0 1.05 0

0 0 0 1

 (6.15)

Figure 6.9 shows the results for both views using this transformation. View

1 is skewed toward the top left of the image and the depth of objects appears

unchanged. In View 2, there is some skewing toward the bottom left of the

image. This is due to an error in the positioning of the camera in View 2.

The z-axis of the camera in View 2 is rotated slightly past the x-axis of the

167

(a)

(b)

(c)

(d)

Figure 6.8: The distorted point clouds and output images for View 1 and
View 2 resulting from the second transformation test. In this test, the
sampled maps defined in the world frame were scaled by 1.5 in the x
direction and scaled by 0.75 in the z direction. Figure 6.8a shows M̄ at
View 1 and Figure 6.8b shows Is at View 1. Figure 6.8c shows M̄ at View 2
and Figure 6.8d shows Is at View 2.

168

(a)

(b)

(c)

(d)

Figure 6.9: The distorted point clouds and output images for View 1 and
View 2 resulting from the third transformation test. In this test, the
sampled maps were skewed along the x and y dimensions. Figure 6.9a
shows M̄ at View 1 and Figure 6.9b shows Is at View 1. Figure 6.9c shows
M̄ at View 2 and Figure 6.9 shows Is at View 2.

world frame. This results in a slight skewing of the image, which would not

occur with perfect alignment.

6.4 Concluding Remarks

Overall, the method of map transformation and projection was effective. The

projected images appeared realistic and the distorted map provides consis-

tent distortion across a variety of poses. The 3-4 Hz rate is suitable and

capable of keeping up with the RGB-D SLAM System which typically runs

at a rate of 3 Hz. Run time could be improved using a better optimized

Hausdorff measurement algorithm. Additional run time improvements could

be achieved using more stringent thresholds for τ4 and θ so as to limit the

169

number of Hausdorff distances that must be computed.

170

Chapter 7

Conclusion

7.1 Summary

This thesis examined the use of interest point detectors, descriptor extractors

and matchers to perform pairwise alignment in RGB-D SLAM. Analysis of

the effects that their parameters had on feature localization and matching was

performed, and the best settings for each detector, extractor, and matcher

combination were determined. A self-tuning BRISK-AGAST detector was

also developed, which was capable of supplying a constant number of features

per image despite changes in image composition.

It was found that an Adjustable BRISK-AGAST detector in combination

with a BRISK descriptor and a brute-force matcher using a Hamming dis-

tance metric produced the best results in RGB-D SLAM. A setting using a

detector with feature bounds of 370-371, no scale-pyramid, and an extrac-

tor sampling pattern of scale 1.1 produced the best results, with trajectory

accuracy comparable to the SURF configuration and half the run time.

An application of the RGB-D SLAM System was developed that allowed

a user to change the appearance of an environment viewed through a camera

in a consistent manner. A technique for applying affine transformations to

the RGB-D SLAM map was formulated and a method of sampling the map

using Hausdorff distance was devised. This technique allowed for efficient

generation of images of the distorted map without the need to reason about

occlusion. The application was able to generate photo-realistic views of the

distorted scene at a rate of 3-4 Hz. Images of the map showed a consistent

structure in the distorted map at a variety of poses.

171

7.2 Future Work

The rise in the popularity of RGB-D cameras in recent years has created a

demand for good RGB-D feature points. Existing RGB feature points do

work with RGB-D images, but interest points selected in RGB images tend

to be near corners and edges where there is a sharp discontinuity in depth

resulting in a decrease in the quality of the depth measurement. Feature

detectors and descriptors that leverage the available depth data should be

able to identify more distinct locations in the scene that can be found more

consistently. Such detectors would greatly improve the range image sampling

process prior to pairwise alignment. Descriptor extractors that consider the

surface normal near an interest point and adjust the sampling pattern ac-

cordingly would produce descriptors that are much more robust to changes in

perspective. Better descriptors would reduce the number of match outliers,

allowing for a faster and more accurate RANSAC based visual odometry

estimate.

The update rules for the Adjustable BRISK-AGAST detector could also be

improved. Smarter update rules inspired by a model of the relationship be-

tween the threshold value, image characteristics, and the number of features

would be more responsive and better able to regulate the feature count.

Along the same lines, a self-tuning SURF detector would be of great benefit

to the RGB-D SLAM System. Such a detector would produce detection

results comparable to the current implementation while halving detection

times.

The map distortion application could be improved by a more informed

method of sampling the map. Under certain transformations and poses,

the map sampling algorithm was unable to provide enough diversity in the

keyframes, resulting in grainy looking images. Incorporating the affine trans-

formation used to distort the map into the keyframe sampling process would

help identify locations where sampled map is sparse and chose keyframes

accordingly, improving sample diversity and image quality.

172

References

[1] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the RGB-D SLAM system,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on, 2012, pp.
1691–1696.

[2] N. Fioraio and K. Konolige, “Realtime visual and point cloud SLAM,”
in Proc. of the RGB-D Workshop on Advanced Reasoning with Depth
Cameras at Robotics: Science and Systems Conf.(RSS), vol. 27, 2011.

[3] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping:
Using depth cameras for dense 3D modeling of indoor environments,”
in 12th International Symposium on Experimental Robotics (ISER),
vol. 20, 2010, pp. 22–25.

[4] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Com-
puter Vision and Pattern Recognition, Proceedings of the 2004 IEEE
Computer Society Conference on, vol. 1. IEEE, 2004, pp. 652–659.

[5] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],”
Robotics & Automation Magazine, IEEE, vol. 18, no. 4, pp. 80–92, 2011.

[6] F. Fraundorfer and D. Scaramuzza, “Visual odometry : Part II: Match-
ing, robustness, optimization, and applications,” Robotics Automation
Magazine, IEEE, vol. 19, no. 2, pp. 78–90, 2012.

[7] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision (IJCV), vol. 60, no. 2, pp.
91–110, 2004.

[8] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[9] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in Computer Vision (ICCV), 2011 IEEE
International Conference on, 2011, pp. 2548–2555.

173

[10] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,”
in Computer Vision and Pattern Recognition, Proceedings of the 2012
IEEE Computer Society Conference on, 2012, pp. 510–517.

[11] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adap-
tive and generic corner detection based on the accelerated segment test,”
in Computer Vision–ECCV 2010. Springer, 2010, pp. 183–196.

[12] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with au-
tomatic algorithm configuration,” in International Conference on Com-
puter Vision Theory and Applications (VISSAPP09), 2009, pp. 331–340.

[13] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: efficient indexing for high-dimensional similarity search,” in Pro-
ceedings of the 33rd international conference on Very large data bases.
VLDB Endowment, 2007, pp. 950–961.

[14] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 14, no. 2, pp. 239–256, 1992.

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[16] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed.
Prentice Hall, 2004.

[17] G. R. Bradski and V. Pisarevsky, “Intel’s computer vision library: appli-
cations in calibration, stereo segmentation, tracking, gesture, face and
object recognition,” in Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on, vol. 2. IEEE, 2000, pp. 796–797.

[18] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating sys-
tem,” in Robotics and Automation (ICRA) Workshop on Open Source
Robotics, 2009 IEEE International Conference on, Kobe, Japan, May
2009.

[19] V. Olshevsky, “Notes on applied linear algebra,” 2006. [On-
line]. Available: http://www.math.uconn.edu/∼olshevsky/classes/
fall06/math227/math227.php

[20] “Coodinate frames, transforms, and tf,” 2013. [Online]. Available:
http://ros.org/wiki/tf/Overview/Transformations

174

http://www.math.uconn.edu/~olshevsky/classes/fall06/math227/math227.php
http://www.math.uconn.edu/~olshevsky/classes/fall06/math227/math227.php
http://ros.org/wiki/tf/Overview/Transformations

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[22] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach,
1st ed. Prentice Hall, 2002.

[23] M. Shah, Fundamentals of Computer Vision. Orlando, FL: University
of Central Florida, Dec. 1997.

[24] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3D object mod-
eling and recognition using local affine-invariant image descriptors and
multi-view spatial constraints,” International Journal of Computer Vi-
sion, vol. 66, no. 3, pp. 231–259, 2006.

[25] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Com-
puter Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, vol. 2. IEEE, 2006, pp. 2169–2178.

[26] S. Kim, K.-J. Yoon, and I. S. Kweon, “Object recognition using a gener-
alized robust invariant feature and Gestalt’s law of proximity and simi-
larity,” Pattern Recognition, vol. 41, no. 2, pp. 726–741, 2008.

[27] C. Tomasi and T. Kanade, “Shape and motion from image streams
under orthography: a factorization method,” International Journal of
Computer Vision, vol. 9, no. 2, pp. 137–154, 1992.

[28] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using
invariant features,” International Journal of Computer Vision, vol. 74,
no. 1, pp. 59–73, 2007.

[29] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking,” in Computer Vision (ICCV2005), Tenth IEEE Inter-
national Conference on, vol. 2, 2005, pp. 1508–1515.

[30] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in European Conference on Computer Vision, vol. 1, May
2006, pp. 430–443.

[31] S. M. Smith and J. M. Brady, “Susan - a new approach to low level
image processing,” International Journal of Computer Vision, vol. 23,
pp. 45–78, 1995.

[32] W. Hamilton and W. Hamilton, Elements of quaternions. Longmans,
Green, & Co., 1866.

[33] W. Robinett and R. Holloway, “The visual display transformation for
virtual reality,” Presence: Teleoperators and Virtual Environments,
vol. 4, no. 1, pp. 1–23, 1995.

175

[34] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, 2006.

[35] K. Shoemake, “Animating rotation with quaternion curves,” ACM SIG-
GRAPH computer graphics, vol. 19, no. 3, pp. 245–254, 1985.

[36] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. Cambridge, MA: MIT Press, June 2005.

[37] Y. Großekatthöfer, “Introduction into quaternions for spacecraft
attitude representation,” 2012. [Online]. Available: http://www.
tu-berlin.de/fileadmin/fg169/miscellaneous/Quaternions.pdf

[38] K. Shoemake, “Quaternions,” 2013. [Online]. Available: http:
//www.cs.ucr.edu/∼vbz/resources/quatut.pdf

[39] A. S. Hathaway, A Primer of Quaternions. Macmillan and Co., 1896.

[40] E. W. Cheney and D. R. Kincaid, Numerical mathematics and comput-
ing. Brooks/Cole, 2012.

[41] I. Markovsky and S. Van Huffel, “Overview of total least-squares meth-
ods,” Signal processing, vol. 87, no. 10, pp. 2283–2302, 2007.

[42] P. C. Mahalanobis, “On the generalized distance in statistics,” in Pro-
ceedings of the national institute of sciences of India, vol. 2, no. 1. New
Delhi, 1936, pp. 49–55.

[43] R. J. Michaels, “A new closed-form approach to absolute orientation,”
M.S. thesis, Lehigh University, Bethlehem, Pennsylvania, 1999.

[44] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-D point sets,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PAMI-9, no. 5, pp. 698 –700, Sept. 1987.

[45] O. Sorkine, “Least-squares rigid motion using SVD,” 2007. [Online].
Available: http://igl.ethz.ch/projects/ARAP/svd rot.pdf

[46] T. S. Huang, S. D. Blostein, and E. A. Margerum, “Least-squares esti-
mation of motion parameters from 3-D point correspondences,” in Com-
puter Vision and Pattern Recognition, Proceedings of the 1986 IEEE
Conference on, 1986, pp. 24–26.

[47] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid
body transformations: a comparison of four major algorithms,” Machine
Vision and Applications, vol. 9, no. 5-6, pp. 272–290, 1997.

176

http://www.tu-berlin.de/fileadmin/fg169/miscellaneous/Quaternions.pdf
http://www.tu-berlin.de/fileadmin/fg169/miscellaneous/Quaternions.pdf
http://www.cs.ucr.edu/~vbz/resources/quatut.pdf
http://www.cs.ucr.edu/~vbz/resources/quatut.pdf
http://igl.ethz.ch/projects/ARAP/svd_rot.pdf

[48] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (SLAM): Part II,” Robotics & Automation Magazine, IEEE, vol. 13,
no. 3, pp. 108–117, 2006.

[49] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: Part I,” Robotics & Automation Magazine, IEEE, vol. 13, no. 2,
pp. 99–110, 2006.

[50] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
a factored solution to the simultaneous localization and mapping prob-
lem,” in Proceedings of the National conference on Artificial Intelligence,
2002, pp. 593–598.

[51] N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the
American Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[52] R. Y. Rubinstein, Simulation and the Monte Carlo method. Wiley-
Interscience, 2009, vol. 190.

[53] F. Lu and E. Milios, “Globally consistent range scan alignment for en-
vironment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–349,
1997.

[54] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2D range scans,” Journal of Intelligent and Robotic Sys-
tems, vol. 18, no. 3, pp. 249–275, 1997.

[55] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic
environments,” in Computational Intelligence in Robotics and Automa-
tion, 1999. CIRA’99. Proceedings. 1999 IEEE International Symposium
on, 1999, pp. 318–325.

[56] K. Konolige, “Large-scale map-making,” in Proceedings of the 19th na-
tional conference on Artificial intelligence, 2004, pp. 457–463.

[57] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” Intelligent Transportation Systems Magazine,
IEEE, vol. 2, no. 4, pp. 31–43, 2010.

[58] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011, pp. 3607–3613.

[59] C. Audras, A. Comport, M. Meilland, and P. Rives, “Real-time dense
appearance-based SLAM for RGB-D sensors,” in Australasian Conf. on
Robotics and Automation, 2011.

177

[60] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard, “Ef-
ficient estimation of accurate maximum likelihood maps in 3D,” in In-
telligent Robot Systems (IROS), Proceedings of the 2007 International
Conference on. IEEE, 2007, pp. 3472–3478.

[61] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Computer Vision (ICCV), 2011 IEEE
International Conference on, 2011, pp. 2564–2571.

[62] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Intelligent
Robot Systems (IROS), Proceedings of the 2012 International Confer-
ence on, Oct. 2012.

[63] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner, “On measuring the accuracy of SLAM algorithms,”
Autonomous Robots, vol. 27, no. 4, pp. 387–407, 2009.

[64] H. Alt and M. Godau, “Measuring the resemblance of polygonal curves,”
in Proceedings of the eighth annual symposium on Computational geom-
etry, 1992, pp. 102–109.

[65] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, Shanghai, China, May 2011.

178

	Chapter 1 Introduction
	Background
	Problem Description and Objectives
	Organization of Thesis
	Important Terms and Abbreviations

	Chapter 2 General Concepts
	Chapter Summary
	Notation
	ROS and OpenCV
	Coordinate Frames, Transformations, and Pose
	Coordinate Frames
	Transformations between Coordinate Frames
	Homogeneous Coordinates
	Pose
	Useful References

	3-D Projection
	Orthographic Camera Model
	Orthographic Projection
	The Pinhole Camera Model
	Perspective Projection
	Inverse Perspective Projection
	Useful References

	Interest Points
	Characteristics of Good Interest Point
	Detectors
	Extractors
	Matching
	AGAST, BRISK, and FREAK

	Quaternions
	Quaternion Math and Properties
	Rotation with Quaternions
	Conversion to Other Representations
	Angular Interpolation with Quaternions
	Useful References

	RANSAC
	Motivation
	Basics
	Number of Iterations
	Number of Samples
	Distance Metric
	Number of Inliers Required for a Valid Model
	Useful References

	Rigid Transformation between Two Trajectories
	Motivation
	Details
	Useful References

	Chapter 3 SLAM - Simultaneous Localization and Mapping
	Basics
	SLAM Techniques
	EKF-SLAM
	GraphSLAM
	FastSLAM
	Trajectory-Oriented SLAM

	RGB-D SLAM
	RGB-D SLAM Details
	RGB-D SLAM System Front End
	RGB-D SLAM System Back End
	RGB-D SLAM Map Generation

	Chapter 4 Interest Point Additions and Testing
	Motivation
	Preliminary Work
	Organization
	Preprocessing
	Detection
	Description
	Matching
	Outputs for Evaluation

	BRISK-AGAST Detection
	Basics
	Threshold
	Octave

	Remarks on BRISK-AGAST and Motivation toward the Adjustable BRISK Detector
	Adjustable BRISK Detector
	BRISK Descriptor
	FREAK Descriptor
	Matchers
	Incorporation into the RGB-D SLAM System
	Evaluation of RGB-D SLAM Data
	Trajectory Evaluation

	Chapter Conclusion

	Chapter 5 Feature Detection - Experiments
	Chapter Summary
	Chapter Organization
	ORB and SURF Baseline
	BRISK-AGAST and BRISK with Brute-Force
	BRISK-AGAST and FREAK with Brute-Force
	BRISK-AGAST and BRISK with FLANN
	BRISK-AGAST and FREAK with FLANN
	Adjustable BRISK-AGAST and BRISK with Brute-Force
	Adjustable BRISK-AGAST and FREAK with Brute-Force
	Adjustable BRISK-AGAST and BRISK with FLANN
	Adjustable BRISK-AGAST and FREAK with FLANN
	Comparison of BRISK-AGAST and Adjustable BRISK-AGAST Detectors
	Comparison of Brute-Force and FLANN Matchers
	Comparison of BRISK, FREAK, and SURF Descriptors
	Summary

	Chapter 6 Point Cloud Transformation Work
	RGB-D SLAM System Map
	Method
	Point Cloud Transformations
	Keyframe Sampling
	Projection

	Results and Discussion
	Concluding Remarks

	Chapter 7 Conclusion
	Summary
	Future Work

	References

