
c© 2013 by Muhammad Salman Malik. All rights reserved.

SECURITY ANALYSIS OF INTER CONTROL CENTER COMMUNICATION
PROTOCOL USING MODEL CHECKING

BY

MUHAMMAD SALMAN MALIK

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Roy Campbell

Abstract

Inter Control Center Communication Protocol (ICCP) plays a critical role in the Supervisory Control and

Data Acquisition (SCADA) architecture by allowing utilities to exchange data in real time. Given the

critical nature of ICCP, security of ICCP is of paramount importance to power community. However, the

present state of ICCP security can be best described as an afterthought. The protocol itself does not provide

strong authentication and authorization primitives. Furthermore, like many other protocols, interpretation of

ICCP’s standards is subject to user’s interpretation and can aggravate the security situation if not interpreted

and implemented in a uniform manner. In this work we undertake the task of formalizing parts of ICCP

protocol and analyze and address the potential security issues found within those parts. We develop model

of the protocol in a model checking tool called UPPAAL and then use Computation Tree Logic (CTL)

properties over this model to see if they are valid. Once a problem is identified, we design a checker that

can detect exploitation of the identified vulnerabilities. The soundness of these checkers is then verified by

validating properties on the system in conjunction with this new checker.

ii

To my parents and siblings who have shown great support throughout my studies.

iii

Table of Contents

List of Figures . v

List of Tables . vi

Chapter 1 Introduction and Motivation . 1

Chapter 2 Approach . 3

Chapter 3 Protocol Overview . 5
3.1 Devices in ICCP . 6
3.2 Transfer Set Allocation . 8

Chapter 4 Properties of Interest . 10

Chapter 5 Device Object Modeling in UPPAAL . 11
5.1 Model Overview . 11
5.2 Client Model . 12
5.3 Server Model . 12
5.4 Device Model . 13
5.5 Correctness Property . 14
5.6 Attacker Model . 15

Chapter 6 Transfer Set Object Modeling in UPPAAL . 17
6.1 Server Model . 17
6.2 Client Model . 17
6.3 Correctness Property . 18
6.4 Attacker Model . 18
6.5 Attacker Model Validation . 19
6.6 Auxiliary Models . 19

Chapter 7 Checker Design . 21
7.1 SBO Checker . 21
7.2 TS Checker . 22

7.2.1 Designing a Checker . 22

Chapter 8 Prior Work . 24

Chapter 9 Conclusion . 25

Appendix A UPPAAL Background . 26

Appendix B List of Conformance Blocks of ICCP . 27

Appendix C Model Parameter Description . 30

References . 33

iv

List of Figures

2.1 Formal Design Approach . 3

3.1 Device Functionality . 7
3.2 Transfer Set Operations . 8

5.1 System Overview . 11
5.2 Client Model in UPPAAL . 12
5.3 Server Model in UPPAAL . 13
5.4 Observer Model . 13
5.5 Device Model in UPPAAL . 14
5.6 First Attacker Model in UPPAAL . 16
5.7 Second Attacker Model in UPPAAL . 16

6.1 Server’s model in UPPAAL . 17
6.2 Client’s model in UPPAAL . 18
6.3 Attacker’s model in UPPAAL . 19
6.4 Initializer Model in UPPAAL . 19
6.5 Timer Model . 19
6.6 Observer Model in UPPAAL . 20

7.1 Checker Model in UPPAAL . 21
7.2 New Checker Model in UPPAAL . 22
7.3 Checker’s model in UPPAAL . 22
7.4 Refined Checker model in UPPAAL . 23

v

List of Tables

5.1 Properties in UPPAAL as CTL Formulas . 14

A.1 UPPAAL’s Entities’ Details . 26

B.1 ICCP Blocks and Related Services . 27

C.1 Model Variables and Their Description . 30

vi

Chapter 1

Introduction and Motivation

The power grid relies heavily on a number of different protocols so as to perform its day to day operations

successfully. These protocols are used to carry information between both inter and intra-substation entities.

Inter Control Center Communication protocol (ICCP) is one such protocol that is of great importance to

power grid community as it carries real time data as well as commands between two control centers. Given

the sensitive nature of the information exchanged between utilities over this protocol, it is necessary to make

sure that this information does not get corrupted on its way to the destination entities. At a minimum

we would require that whenever such a situation arises, an operator is apprised of it so that he can take

corrective measures and ensure smooth operation of services. Furthermore, we also require that the protocol

has no intrinsic vulnerabilities that can be used as a mean of disrupting the system and services through

remote exploitation of these vulnerabilities. Thus, we need to check the protocol against such subtler forms

of vulnerabilities that could lead the system to potentially unsafe states.

There already exist proposals to make ICCP secure by adding an encryption and authorization layer

beneath ICCP [11]. The primary focus of these efforts is to prevent unauthorized access to ICCP data

between communicating nodes and also to protect the integrity of data. Furthermore, message replay attacks

are prevented by using sequence numbers, e.g. as done in TCP. However, little efforts have been made to

understand the intrinsic weaknesses in the protocol itself. Such weaknesses can lead to more subtler form

of vulnerabilities than Man-In-The-Middle(MITM) attacks, as we will see later. Although we do need to

consider and prevent against MITM attacks, the focus of this work is to study and understand any potential

vulnerabilities that might be present due to intrinsic weaknesses in the protocol. Our goal is to find such

vulnerabilities and to augment the protocol with a set of checkers so that the protocol is secured against the

vulnerabilities found. This is necessary because modifying the protocol itself might require fork-lift changes

to the widely deployed ICCP base and hence is not a viable solution. We also emphasize here that our focus

is on the conceptual vulnerabilities rather than implementation specific vulnerabilities. Thus even with our

checking mechanisms in place, implementation specific bugs may still make the system prone to attacks.

In summary, we make the following contributions through this work: 1. Formal modeling of parts of

1

ICCP protocol 2. Manual and automatic vulnerability analysis of parts of the protocol 3. Checker designs

that can alarm the operator when any of the aforementioned vulnerabilities are exploited by a client.

2

Chapter 2

Approach

Our approach is described as a flow chart in Figure 2.1 and is inspired by the work flow presented in [12].

Unlike their approach of focusing on modifying the protocol to mitigate or eliminate vulnerabilities this work

focuses on the design of communication checkers to detect vulnerability exploitation. Our approach can be

broken down into three major phases: modeling the system, modeling the attacker, and designing/validating

the checker.

Model the
protocol

Define safety
properties

Verify the
properties
over the

defined model

Refine the
model and
properties

Model the
attacker

Verify properties
over system and
attacker models

System safe

Refine the
model

Design
checker

Verify properties
over system,
attacker, and

checker models

Properties
hold?

Properties
hold?

Properties hold or
violation detected?

Counter trace
shows a valid

attack?

System model design loop Threat model design loop Detection model design loop

yes

no

yes

yes

yesno

no

no

Figure 2.1: Formal Design Approach

In the first phase, a formal model of the protocol is defined along with correctness properties for the

protocol. These correctness properties are captured using a set of computation tree logic (CTL) formulas.

The properties are then verified using UPAAL’s model checking tool. We expect these properties to hold in

the absence of an attacker or flaws in the protocol. In case of violation of properties in this phase, we rectify

the system model so as to remove the modeling errors that might have caused the verification of properties

to fail.

In the second phase, a generic attacker model is added to the system. An attacker model is required so

as to probe bad states in the system where a client is denied service; It is not possible to find such states or

the sequence of actions that could lead to such states if we don’t have an attacker model. Once this model is

added, the model checking tool is run again to verify correctness properties defined previously. If the model

checking shows a violation of one or more of the properties, we use the counter trace produced by the model

3

checking tool to guide the design of a communication checker. This checker model is then incorporated into

the system. The goal here is not to be proactive in defending against attack but to alert the operator when

conditions that could potentially result in a violation take place, i.e. an attacker should not go undetected

in the event of an attack.

Finally, CTL formulas are specified to verify the validity of the checker. Those properties are then verified

by the model checking tool again. If a violation is observed, the checker is updated to ensure that the goal

of detecting potential attacks is met.

4

Chapter 3

Protocol Overview

The Inter Control Center Communication protocol (ICCP) has sprung from the deregulation efforts by the

industry to create open standard for communication between utilities [14]. The movement that started

in 1980’s, led by Electric Power Research Institute (EPRI) to create a Utility Communication Architecture

(UCA), which succeeded in standardizing ICCP that also came to be called as Telecontrol Application Service

Element 2 (TASE.2) at that time. Since then ICCP has become increasingly popular among utilities, and

has been used to connect control centers so that they can exchange both operational and non-operational

data.

ICCP embodies an object oriented design where data or devices in a given control center appear as

objects to a remote control center and the remote control center can do operations on these objects by using

the exposed interfaces [5]. This not only made the design of applications which use this information simpler,

but it also provides operators with the ability to create custom primitives/objects. Beneath it, ICCP uses

Manufacturing Message Specification (MMS), which is a protocol initially introduced in factory automation

but found widespread use in power systems. A mapping from ICCP objects to the MMS services is defined

in the standards.

Although ICCP follows a client-server paradigm, a given entity can act both as a client and a server at a

given point in time. Whether an entity acts as a client or server to another communicating entity depends

on the agreement between two control centers. This agreement is referred to as a “Bilateral Table” in the

standards. Depending on the role of communicating control centers, one of the control centers exposes lists

of operations that can be performed on list of objects (devices) that it possesses. Since this control center

serves the requests of remote control center, we refer to this control center as a “Server” in our ICCP model.

The remote control center that requests resources or performs operations on these resources is referred

to as a “Client.” Depending on their role, control centers from now on will be referred as a client or server

only. Note that the requested objects can be either concrete devices like transformers, relays etc., or could

also be abstract data structures like Transfer Sets etc. Access to manipulate all these objects contained in

a given server is generally controlled by the mutual agreement between those two entities, and is codified in

5

the Bilateral Table.

In terms of its functionality, ICCP is divided into 9 blocks. Utilities are free to implement any of the

blocks while deploying ICCP, however, Block 1 is mandatory for any utility that claims to be conforming to

ICCP. Other blocks may be added on top of this basic block to provide extra services. Table B in Appendix B

shows the functionality each block is capable of providing. In this dissertation, we consider a part of ICCP

for the purpose of security analysis. Our selection of these parts is based on the observation that these

sections of the protocol involve resource allocation/deallocation and hence need to be analyzed.

3.1 Devices in ICCP

Block 5 of the ICCP standard defines device control mechanisms that ICCP can provide to remote control

centers. There can be two types of devices associated with a given control center: Direct Control (Non-

SBO) and Select-Before-Operate(SBO) devices. SBO devices are critical because they enable clients to

request exclusive access to them. Availability of these devices is important because preventing legitimate

clients from accessing devices for an extended time period might disrupt operations, and could potentially

cause instability. We are thus interested in modeling the way SBO devices can be selected and operated

to investigate if an attacker could abuse this feature. As defined in the standards, Operations are the

requests that client makes to the server that could lead to a change in the device state. Actions on the other

hand are the activities performed by the server under certain circumstances and might not have anything

to do with the operations. {Select, Operate , Set Tag Value, Get Tag Value} and {Timeout, Local

Reset, Success, Failure} are the list of actions and operations, respectively, that are defined for SBO

devices. Figure 3.1 shows the functionality of the protocol as an SDL-like diagram. Note that the diagram

uses an extra construct which is not defined in standard SDL. Specifically, the element shown with a dotted

boundary depicts an internal event and is an extension to SDL.

The device initially starts in ‘IDLE’ state. Upon receiving a ‘Select’ request from a client, the request

is checked for the type of device that it wants to address and then the status of the device is also checked

by looking at the tag that the device is carrying at that instance in time. If the checks pass then the device

moves to the ‘ARMED’ state. In this state if the device does not receive any operate command within some

time bound, it will move back to the ‘IDLE’ state. This “internal” timeout event is represented by a dotted

shape (This is an add-on construct to SDL; SDL maintains that the transition from one state to another

should solely be based on a new received signal/message). On the other hand if an ‘Operate’ request is

received in time then the ‘Command’ type of that request is checked in conjunction with the device tag

status to determine any hindrance to operate the device. If the ‘Command’ type and the device tags are

6

IDLE

Device Type SBO?

Select

Tagged “Open-And-Clos-
Inhibit”

Yes

ErrorNo

ARMED

No

Select
Operate(Command)

Tagged “Open-And-Close-
Inhibit”

Yes

Tagged “Close-Only-Inhibit”

No

Succes(In Operating)

No

Command == “Close|Raise”

Yes

Yes

No

Key

Timeout

Start State
Message from Client

Message to Client
Decision

Task
Internal Event

Figure 3.1: Device Functionality

compatible then the operation may succeed and the device is then again sent back to the ‘IDLE’ state.

7

WAIT

Get Next DS/TS Value

Start State
Message from Client

Message to Client
Decision

Key

Allocating TS to Client

Start Transfer

Transfer Set Type==Data
Set Transfer Set?

RBE Attribute
Set?Yes

Monitor Conditions

Stop Transfer/
Conclude/

Abort

No

Disable TS

Task

DS Size< =
Max MMS PDU

No

Yes

Error

No
Event

Occured
Condition

Met

Internal Event

MMS PDU

Wait for Start
Time

Start Time
Arrived

Yes

Conclude/
Abort

Figure 3.2: Transfer Set Operations

3.2 Transfer Set Allocation

Transfer sets are not covered by a single block of ICCP, rather they can be found in multiple blocks (1,4,8

and 9) and are associated with the type of object being monitored. In our case we consider the Data Set

Transfer Set and operations associated with it. Transfer Sets are defined in the standards as “objects used

to control data exchange by associating data values with transmission parameters such as time intervals. For

example, there are four types of Transfer Sets: Data Set Transfer Sets, Time Series Transfer Sets, Transfer

Account Transfer Sets, and Information Message Transfer Sets.” Although we talk about Data Set Transfer

Set operations here, the functionality of other Transfer Sets is quite similar with differences in type of data

they handle. Essentially, the Data Set Transfer Set is a mechanism used by ICCP clients to retrieve data

values related to a single physical object. This data set is transferred from the server to the client based on

the transfer conditions e.g. interval timeout, value change, an integrity time out, or at operator’s request.

More specifically, the Transfer Set object operations that an ICCP client can perform as defined within

TASE.2 are: Start Transfer, Stop Transfer, Get Next DSTransfer Set Value, and Get Next TSTransfer Set

Value. The relationship of these operations (derived from informal description of the standards) is shown in

Figure 3.2.

As shown in Figure 3.2, client uses a “Get Next DSTransfer Set Value” operation before starting the data

transfer. This operation allocates one of the available transfer sets to the requesting client, if possible. Once

8

the transfer set is allocated, the client requests to start the transfer. Server checks this request to see if the

transfer set type matches with the data set transfer set type. If it does not match i.e the transfer set type is

one of the Time Series Transfer Sets, Transfer Account Transfer Sets, or Information Message Transfer Sets

then the server starts to monitor the events specified by the client, otherwise Report By Exception (RBE)

flag is used to determine how to report the data. After checking RBE, the server waits for the time specified

by the client as the instant when it should start monitoring events and when this time is reached the server

enters the monitoring state. In this state if a specific ‘event’ occurs then the data is reported back to the

client as MMS PDU(s). Data may also be reported in case when a condition is met e.g. in case of periodic

data transfer, the time interval elapses and demands sending the data to client.

9

Chapter 4

Properties of Interest

To understand the security properties of interest in context of ICCP, one should consider the intrinsic

security mechanisms built into ICCP when it was proposed. ICCP’s development started in 1980’s and like

many other power grid protocols little consideration was given to the security aspect of ICCP. Since the

protocol allows data to be sent as clear-text on wire, it provides no inherent authentication mechanisms

and does not mandate the access control implementation (in the form of BLT) for the resources that a

server shares with clients, security of ICCP is of great concern to utilities. Furthermore, there is always a

potential for misinterpretation of the informal description of the protocol which can further aggravate the

security situation of ICCP because if two vendors implement different variants of the protocol then there

may be inconsistencies in the way they inter-operate and these loopholes might be exploited by faulty clients

inadvertently or willingly by malicious clients.

A good starting point to determine the security properties to monitor for ICCP is to consider the classic

Confidentiality, Integrity, and Availability (CIA) trio. Among these three pillars of security we have been

considering integrity and availability as the critical properties for ICCP. First, the clear-text nature of the

protocol is problematic because a compromised node or a malicious insider can cause man-in-the-middle

(MITM) attacks and can change the contents of the packets that are traversing through it. This is an

important concern because the remote control centers use ICCP to adjust set points of physical devices (e.g.,

relays and breakers) over the network. A higher or lower set point value than the normal value might cause

serious harm not only to the devices but also to the personnel around the device. Second, availability (also

called liveness) is important for the proper functioning of the overall system because if resources are not

properly handled by a server then legitimate clients may be denied access to resources by a rogue client.

In that sense, liveness properties are particularly interesting in a power grid setup because they can reveal

more subtler weaknesses in the protocol. Finally, confidentiality might not be important in context of ICCP

because the protocol carries control data like set points etc. which we believe will already be well known

among operators. In conclusion, we study two kinds of resource exhaustion vulnerabilities in context of

ICCP networks which can give rise to denial of service attacks.

10

Chapter 5

Device Object Modeling in UPPAAL

In this chapter we delve into the formal modeling and checking of the protocol. It is not practical to model

the entire ICCP protocol as that would lead to state space explosion. So we only model parts that are related

to object resource allocation as they are potentially vulnerable to resource exhaustion. Specifically we model

access to devices using Select-Before-Operate and allocation of transfer sets. In this chapter we illustrate

our approach using the former model, which allows a client to request exclusive access to a device before

operating on it. Next chapter covers the latter part of ICCP. A brief introduction to UPPAAL is provided

in Appendix A. Readers are also encouraged to see UPPAAL’s documentation for further information.

5.1 Model Overview

We model the Client, Server and Device in UPPAAL. These models share messages by using synchronization

channels. Figure 5.1 provides an overview of the channels shared between each entity. The channel names

are shown in bold and the directionality of a channel is specified by the arrow heads. The figure also shows

the list of shared variables used to pass messages between automata. Names of the variables are shown in

italics which are then followed by the type indexed by the value they take in UPPAAL models. Also note

that the client takes its identifier as a parameter and is shown with an underline. This parameter is used

by the client to identify itself to the server. This helps the server to keep track of requests from different

connected clients and facilitates the server in replying to the requests of the clients.

Figure 5.1: System Overview

11

5.2 Client Model

The model of the client is shown in Figure 5.2. Client makes a request to server only if the server is not

busy. Requests are sent over the Request channel in conjunction with the RequestType variable, where value

of RequestType is used by the server to determine which operation among {Select, Operate, Set Tag

Value} is being requested by the client. Note that we don’t model the Get Tag Value operation because it

does not change the state of the device in any way. Once the client sends a Select request it waits for the

server response by listening to {Success[id], Failure[id]} channels. Here id is a parameter of the client

which is used by the client to identify itself to the server. If the ‘Select’ request succeeds, the client jumps

to the Selected state. This state is not ‘committed’ in the model but has an invariant to ensure that it

makes a request before device times out to an idle state. It can make either an ‘Operate’ or ‘Set Tag Value’

request to the server. In that case, it moves to either OperateSent or TagSent states and listens again to

the synchronization channels for the server’s response. Note that two edges in the client model have a guard

based on clock c. These guards along with the invariants on the starting states ensure that the client waits

for some time before making a new request. In absence of such guards, client can make infinite requests to

the server without letting time pass – leading to time locks which when present in the system can act as a

barrier to the verification of a property. Another interesting point to note here that the client model adheres

strictly to the protocol. This is unlike a rogue client which might not send requests in a specified order.

end!

c<=1

c<=1
begin!

Success[id]?

Failure[id]?

RequestType:=0,
clientID:=id,
c:=0

SelectedFlag:=true,
SelectSuccess:=true,
Clock:=0

c<=1

c<=1

TagType:int[0,1]

CmdType:Cmd_t
RequestType:=1,
Cmd:=CmdType,
clientID:=id,
numTagSent:=0,
SelectSuccess:=false

c>=1

(sBusy or SelectedFlag) and c>=1

Request! numTagSent<TagSentLimit

c>=1

Request!

Success[id]?

Failure[id]?

Success[id]?

Request!

Failure[id]?

Failure[id]?

sBusy==0 and !SelectedFlagStart
SelectSent

Wait1

Initial Selected OperateSent

TagSent

Wait2

OperateSuccess:=true, SelectedFlag:=false,
Clock:=0

c:=0

numTagSent++,
c:=0

c:=0

c:=0

RequestType:=2,
Tag:=TagType,
clientID:=id

c:=0

Figure 5.2: Client Model in UPPAAL

5.3 Server Model

Figure 5.3 shows the model of the server in UPPAAL. Server waits in the Start state for a request from

clients. Once a request arrives on the Request channel the server moves to the RequestReceived state and

12

DevTagged?Error?

SetTag!

Success[clientID]!

Operated?

Armed?

Failure[clientID]!

Error?

Error?

Operate!

Select!
Request?

RequestType==2

RequestType==1

RequestType==0

TagRequestSent

RequestSucceededFailed

OperateRequestSent

SelectRequestSentRequestReceived

Start

sBusy:=0

sBusy:=0

sBusy:=1

Figure 5.3: Server Model in UPPAAL

c<=Timeout

end?

begin?

c==Timeout

Unsafe

Safe

Wait
c:=0

Figure 5.4: Observer Model

based on the RequestType variable it sends a Set Tag Value, Select or an Operate request to the device

by synchronizing with it over SetTag, Select or Operate channels respectively. This request from the server

to the device results in either success or failure. Error is indicated to the server over Error channel and

success is indicated over either of the DevTagged, Selected or Operated channels. Based on the type of

response that the server receives from the device, the server signals success or failure to the requesting client

using the Success[clientID]or Failure[clientID] channels respectively. Note that clientID is a global

variable which is set by the client when making a request and is used by the server to respond back to it.

5.4 Device Model

Device behavior in presence of different inputs from the server is shown in Figure 5.5. A device starts in

IdleStart state and can move non-deterministically to either of the No Tag or OtherTag states. Transition

to these states ‘tags’ the device with two of the four possible tag values. Once the device has moved to

one of these states, it listens to Select channel for requests from the server. If a Select synchronization is

initiated by the server then the device transits to SelectReceived state and then goes to the ArmedState

after signaling the server about successful select using the Armed channel. In the ArmedState, the device

sets up a timer and listens to Select, Operate, and SetTag channels for requests from the server. A Select

synchronization in ArmedState leads to Error signal being sent to the server but the timer is reset by the

device if the requesting client ID is found to be the same as the client ID that armed the device in first

place. If an Operate synchronization is received in ArmedState then the device checks if the client that

armed the device is actually performing the ‘Operate’. If this is the case then the device checks the current

tag value along with the ‘Command’ attribute of the ‘Operate’ request to see if the combination allows the

device to be operated. In case all checks are passed, the device performs the ‘Operate’ operation, signals the

success to server over Operated channel and transits back to the Idle state. The third possibility while in

13

SetTag?

Select?

DevTagged!

DevTagged!

Error!

Operate?

Operated!

Error!

SetTag?

SetTag? c<Timeout

Error!

Select?SetTag?

Operate?

Error!

Tagged:=1 Tagged==0 and lastArmID==clientID

Tagged==1 || Tagged==0 || (Tagged==2 and Cmd==1)

Tagged!=0 and lastTagID==clientID and lastArmID==clientID

(Tagged!=0 and lastTagID!=clientID) or lastArmID!=clientID

Tagged==3 || (Tagged==2 and Cmd==0)

lastArmID!=clientID

lastArmID!=clientID

lastArmID==clientID

Operate?

Armed!

Select?

Operate?

c==TimeoutError!

Error!

Select?

Error!
lastArmID==clientID

ArmedState

IdleStart OtherTag

Fail1

Idle

SetTagReceived

Fail3

Fail2

OperateOrFail

No_Tag

SelectReceived

OperateReceivedc:=0

Tagged:=Tag,
lastTagID:=clientID

c:=0

Tagged:=Tag

c:=0 lastArmID:=-1,
SelectedFlag:=false

c:=0

Tagged:=0

lastArmID:=clientID,
c:=0

c:=0,
SelectedFlag:=false

Figure 5.5: Device Model in UPPAAL

ArmedState is to get a SetTag signal. Upon receiving this synchronization, the device checks whether the

client should be able to set the tag. This depends on the current device tag as well as on the condition that

the client that tagged the device previously is trying to modify the tag. If appropriate conditions are met

then the new device tag is stored in the Tagged variable and a success message is sent to the server using

DevTagged synchronization. If no message is received by the device in the ArmedState within a Timeout

units of time then the device transits to the Idle state automatically.

5.5 Correctness Property

Table 5.1 shows the different properties that can be modeled in UPPAAL. For the purpose of check-

ing time bounded liveness, we used the following properties: 1) E<> client.Clock>Limit, 2) A[] not

observer.Unsafe.

In the first property we search the system for a state where Clock goes above a certain user defined time

limit, Limit. Clock is a local clock to the client model and keeps track of elapsed time since last succes

The second property is used to verify the client’s ability to successfully ‘Operate’ the device within

Table 5.1: Properties in UPPAAL as CTL Formulas

Property Type Description

1 A[]p Safety p holds in all states in all paths
2 E〈〉p Reachability p holds in at least one state
3 A〈〉p Liveness p holds in at least one state in all paths
4 E[]p Safety p holds in all states of at least one path
5 p → q Liveness Whenever p is satisfied q is satisfied

14

Timeout units of time after ‘Selecting’ the device. This observer pattern for checking time bounded reach-

ability from one state to another has been inspired by [6]. Figure 5.4 shows the observer model. The basic

idea here is that when the client successfully selects a device, it synchronizes with the observer over the

begin channel. Once synchronized the observer waits for the client to tell it about its successful ‘Operate’

operation of the device. If the client successfully operates the device and informs the observer in due time

(using end channel) then the observer moves to the Safe state otherwise it moves to the Unsafe state.

5.6 Attacker Model

Our goal is to discover vulnerabilities and design checkers to detect their potential exploitation rather than

focusing on specific attacks. Therefore, we define a generic attacker model as depicted in Figure 5.6, which

can send messages at will and is not constrained by the state transition model of the standard protocol.

Unlike a protocol compliant client, it can send any combination of request type and associated parameters.

After making a request, it listens to Failure[id] and Success[id] for failure or success, respectively.

Afterwards, it waits before making a new request. The only constraint we placed on the attacker is that

some time elapses between two consecutive requests. This is to ensure that we don’t run into time locks.

Starting with this initial model, we explore vulnerabilities in the system iteratively, as shown in Figure 2.1.

Once we find a counter trace, we first examine it to determine whether it actually exhibits a valid vulnerability

or not. As an example of the latter kind of traces, a counter trace from UPPAAL showed that the property

does not hold because the client does not make a request at all in that time period. Since these traces were

an artifact of the initial client model, we refine the model to make requests at least once per time unit.

Finally, if the counter trace found indicates a valid vulnerability, we constrain the attacker model to avoid

that trace in future experiments so that we can check for the existence of different vulnerabilities or to see

whether the same vulnerability could be reached by a different set/order of events.

We check the first correctness property from Section 5.5 after introducing an attacker in the system. This

resulted in a counter trace where the attacker sends ‘Select’ requests to the server over and over again after

arming the device, and does not allow the device to transit to Idle state, representing a valid vulnerability

exploitation. We then restrain the attacker model with a maximum number of ‘Select’ requests, resulting in

the model shown in Figure 5.7. The first correctness property holds true but the second property fails with

this attacker, revealing a new vulnerability in which even if the client is able to arm the device, an attacker

can still prevent the client from operating it. The counter trace shows that the attacker uses the tag ‘Open-

and-Close-Inhibit’, which disallows anyone to operate the device. We then further constrain the attacker

model by preventing the use of such a tag, but a new counter trace is found by UPPAAL, in which the

15

c<=2*Timeout

Success[id]?

CmdType:Cmd_t,
ReqType:Req_t,
TagType:Tag_t

clientID:=id,
RequestType:=ReqType,
Cmd:=CmdType,
Tag:=TagType,
c:=0

c>=2

Failure[id]?

Request!
sBusy==0 RequestSentStart FailedOrSucceded

c:=0

Figure 5.6: First Attacker Model in UPPAAL

Request!

c<=1

Success[id]?

Success[id]?
ReqType:int[1,2]

c<=2*Timeout

CmdType:Cmd_t,
ReqType:Req_t,
TagType:Tag_t

c<=2

clientID:=id,
RequestType:=ReqType,
Cmd:=CmdType,
Tag:=TagType,
c:=0

RequestType!=0

RequestType!=0 || (RequestType==0 and !SelectedFlag and numSelects<2)

RequestType==0

c>=Timeout

Failure[id]?

(sBusy or SelectedFlag) and c>=1

(RequestType==0 and SelectedFlag)

c>=2

RequestType==0 and numSelects>=2

sBusy==0

Start

RequestSentInitial FailedOrSucceded

Wait

RequestDecided

c:=0

c:=0

c:=0

SelectedFlag:=true,
numSelects++

c:=0

RequestType:=ReqType

c:=0

Figure 5.7: Second Attacker Model in UPPAAL

attacker tags the device with ‘Close-only-Inhibit’ and the client fails to operate when sending an ‘Operate’

request with ‘Command’ attribute of either ‘Close’ or ‘Raise.’ Once we eliminate this tag from the attacker

model, all properties hold, indicating that there are no other vulnerabilities.

16

Chapter 6

Transfer Set Object Modeling in
UPPAAL

6.1 Server Model

Figure 6.1 shows the model of the server in UPPAAL. Initially, a server has a certain number of Transfer Sets

available as modeled by the TransferSets variable. Clients connected to the server can ask for available

Transfer Sets from the server over the Requestchannel. Once a request is received by the server, it can

either assign a Transfer Set to the requesting client and send a success message over the Success[clientID]

channel or it could flag a failure to the requesting client over Failure[clientID] channel. Note here that

the variable clientID is a global variable which is set by the clients when sending a request to the server

and this helps server in sending the reply back to the correct client. Furthermore, server also maintains a

queue to keep track of which clients failed to get a Transfer Set and it makes one available to them as soon

as a Transfer Set is released by a client.

Success[headQueue()]!

Initialize?

Release?

Success[clientID]!

Failure[clientID]!

Request?

PendingRequests>0

PendingRequests==0

TransferSets>0

TransferSets==0

Start

ResourceReleased RequestReceivedWait

TransferSets--, deQueue(),
PendingRequests--

initialize()

TransferSets++,
ServerBusy=false,
ReleaseCount++

ServerBusy=true

TransferSets--,
ServerBusy=false

ServerBusy=false,
enQueue(clientID),
PendingRequests++

ServerBusy=true,
RequestCount++

Figure 6.1: Server’s model in UPPAAL

6.2 Client Model

The model of the client is shown in Figure 6.2. A client makes requests to the server if it has not acquired

(AcquiredTS) the desired number (DesiredTS) of Transfer Sets. Note that before making a request to the

server over the Request channel, the client synchronizes with an observer automata similar to that shown

in 5.4 by using the begin channel. This observer is used to measure the amount of time that elapses between

17

the instance at which a request is sent by the client to the instance at which a success message is received.

If the client does not succeed in a given time limit then we say that the system has entered an unsafe state.

Also note that the client model is also capable of returning the acquired Transfer Sets back to the server.

This is modeled by using the Release channel. Once the client synchronizes over this channel, the server

adjusts the number of Transfer Sets and make one available to a client whose request might have failed

earlier.

c<=2

end! Success[id]?

end!

Request!
Initialize?

Release!

Failure[id]?

Success[id]?

begin!

c>=1

AcquiredTS==DesiredTS
and !ServerBusy

AcquiredTS<DesiredTS
and !ServerBusy and c>=1

Wait2
Start

ReleaseResource RequestedWait

AcquiredTS++,
c:=0

c:=0

AcquiredTS--,
c:=0

Failed=true

AcquiredTS++,
c:=0

clientID:=id

Figure 6.2: Client’s model in UPPAAL

6.3 Correctness Property

For the purpose of checking the liveness property, we use A<> Client.DesiredTS == Client.AcquiredTS

as an invariant. This property asserts that the client would eventually acquire its desired count of Transfer

Sets. The property holds true in absence of an attacker since the DesiredTS < TransferSets available at

the server. Thus, our system exhibits liveness with respect to Transfer Set allocation.

6.4 Attacker Model

Figure 6.3 shows the model of the attacker. Note that it is quite similar to the client model. However, unlike

the client model, there is no lower or upper time bound on the rate of requests that an attacker can make,

rather we limit the number of requests that the attacker can make to the client. Note that in absence of

both constraints (i.e. timing as well as the request limit) the attacker would lead the whole system into a

time lock by making requests very fast while not allowing the time to pass. Another thing worth noticing

here is that as opposed to a legitimate client, the attacker does not have any upper limit on AcquiredTS

either. This is intentionally modeled into the system so that we can keep the attacker model generic and see

what problems it can cause in the system.

18

Success[id]?

Request!
Initialize?

Release!

Failure[id]?

Success[id]?

c>=1

AcquiredTS>0
and !ServerBusy

!ServerBusy and Requests<=RequestLimit

Start

ReleaseResource
RequestedWait

AcquiredTS++AcquiredTS--,
c:=0

c:=0

c:=0

AcquiredTS++,
c:=0

clientID:=id,
Requests++

Figure 6.3: Attacker’s model in UPPAAL

6.5 Attacker Model Validation

The next step consists in attempting to verify the same liveness property but this time by adding an attacker

in the network. We connect an attacker to the server and as expected, verifying the liveness invariant in

presence of this attacker is not successful and the property was quickly violated (it took 0.10 seconds on

average for UPPAAL to generate a violation trace), validating that such an attacker can pose a threat to

legitimate clients and deny them service.

6.6 Auxiliary Models

Beside the models presented above, there are some other useful models that facilitate in checking the prop-

erties over the model. These include initializer, timer and observer model. We talk briefly about these

three here.

Initialize!
SystemStartedSystemIdle

Figure 6.4: Initializer Model in UPPAAL

x<=value

Set?

Timeout!

Set?

x==value

WaitingExpired

x:=0

x:=0

Figure 6.5: Timer Model

Figure 6.4 shows the model which is used to initialize all the other automata in the system by synchroniz-

ing with them over the Initialize channel. Furthermore, Figure 6.5 shows the timer used by the checker

model (to be covered in the next section) and helps facilitate the checker to move from one state to another

when a certain time has elapsed.

Figure 6.6 shows the observer model used in the system. Note that it is slightly different from the observer

19

c<=timeout

begin?

begin?

end?

begin?

end?

begin?

c==timeout

Unsafe

Safe

Wait

c:=0

c:=0

c:=0

unsafe:=true

c:=0

Figure 6.6: Observer Model in UPPAAL

model shown earlier and has self-looping edges (e.g. in Unsafe state). These edges prevent the system from

deadlocks which otherwise may arise in absence of such edges.

20

Chapter 7

Checker Design

7.1 SBO Checker

Following the iterative checker design loop described in Figure 2.1, we explore various designs informed

by the counter traces. For each design, we systematically tried to check, 1) if a legitimate client can be

prevented from accessing a device (see 5.5), and 2) whether an alarm is always raised when such denial-

of-service occurs. The latter check is encoded in UPPAAL as follows: A[] (client.Clock>Limit and

!client.SelectSuccess) imply checker.Alarm

We first design a checker to monitor for consecutive selects. This checker, described in Figure 7.1, is

based on the first counter trace collected and captures the specification that no legitimate client should send

multiple ‘Selects’ without an intermediate ‘Operate’ request. Verifying for the properties above revealed a

possible evasion technique in which an attacker can send a sequence of ‘Select’ and unsuccessful ‘Operate’

requests, keeping a device blocked all the time while exploiting the fact that the checker resets its counters

whenever it sees an ‘Operate’ request after a ‘Select’ request.

Request?

clientID!=attackerID

numSelects[attackerID]++

numSelects[attackerID]:=0

RequestType==1

RequestType==2

numSelects[attackerID]>=2

numSelects[attackerID]<2

RequestType==0 and clientID==attackerID
UpdateCountersWait Check

Alarm

Figure 7.1: Checker Model in UPPAAL

We refine this checker with two improvements: 1) rather than just counting the consecutive ‘Selects’,

we also look at the time between requests, and 2) we enable the checker to differentiate between successful

‘Operates’ from non-successful ones. The resulting design of the checker is shown in Figure 7.2. The

verification of the property show that this checker cannot be evaded and will always raise an alarm when an

attack occurs.

21

Success[attackerID]?

Operate?

Request?

c:=0,
AlreadySelected:=true

Failure[attackerID]?

c<=Timeout

AlreadySelected:=false

RequestType!=0 or clientID!=attackerID

c>Timeout

Request?

RequestType==0 and clientID==attackerID

clientID!=attackerID
or RequestType==2

RequestType==1 and
clientID==attackerID
and AlreadySelected

RequestType==0 and
clientID==attackerID
and !AlreadySelectedStart Wait

RequestReceived

Operated
Alarm

NextRequest

c:=0

AlreadySelected:=false

Figure 7.2: New Checker Model in UPPAAL

Furthermore, we verify that this checker would not generate false positives by verifying that the following

property does not hold: E<> client.SelectSuccess and client.Clock>Limit and checker.Alarm. The

property claims that the three states can not be reached simultaneously and hence shows absence of false

positives.

7.2 TS Checker

7.2.1 Designing a Checker

This step consists of designing a checker that can analyze communications that reach ICCP servers and

identify abuses of the Transfer Set operations. Guided by our intuition, we designed a rate-based checker that

can trigger an alarm when a client requests too many Transfer Sets in a short period of time. Figure 7.3 shows

the model of the checker. The checker starts by initializing a timer via a synchronization channel. Once that

timer expires, the checker moves to Evaluate state from where it can either move to the AttackNotDetected

or AttackDetected state depending on whether or not the rate of Transfer Set requests has exceeded a certain

threshold.

AttackEverDetected=true,
RequestCount:=0

Initialize?

Timeout?

RequestCount:=0
started

Evaluate

Set! RequestCount/EvalTime>=ThreshRequestCount/EvalTime<Thresh

AttackDetected
Idle

TimerSet

AttackNotDetected

Figure 7.3: Checker’s model in UPPAAL

To check that our checker will eventually detect the attack when it happens, we verified the property

22

Client.Failed−− >Checker.AttackEverDetected which failed showing that the attacker could exhaust

the Transfer Set even when it sends requests at very low rates. This counter trace motivated us to redesign

the checker. The new checker model is shown in Figure 7.4. In this model, rather than looking at the rate

of requests, we look at the rate of release of resources in a given time window. This checker is guided by the

intuition that if the rate of release of resources is below a given threshold then the client would eventually

be denied of resources.

Set!

Timeout?

Initialize?

ReleaseCount:=0

TimerSet

Idle
AttackNotDetected

Evaluate

ReleaseCount/EvalTime<Thresh

AttackDetected

ReleaseCount/EvalTime>=Thresh
AttackEverDetected=true,
ReleaseCount:=0started

Figure 7.4: Refined Checker model in UPPAAL

23

Chapter 8

Prior Work

The complexity of network and communication protocols has made the analysis of their security a challenging

task. While everyone agrees on the importance of carefully studying the security properties of protocols,

different methods to conduct such analysis have been investigated. Manual inspection appears commonly

adopted by standard bodies but, unfortunately, manually keeping track of the complexity of the many

functionalities and protocol state combinations is hard and error prone, even for skilled experts.

A more rigorous approach is to rely on a mathematical framework to prove for all possible protocol

states that security properties hold. Formal methods have gained in popularity but still face important

limitations that prevent wide adoption. Formal verification consists in proving that a system satisfies its

formal specifications [10]. This requires writing the specifications in a formal mathematical language and

then using either a theorem prover or a model checker to verify the satisfaction of a given set of properties.

This approach has been successfully used to verify hardware designs [1], [16]. With respect to software

and to communication protocols in particular, the larger number of system states and interactions among

components often leads to combinatorial explosion [7].

As observed by [12], research efforts to apply formal methods focus either on verifying the correctness

of authentication or encryption procedures [8], [9], [15], [2], or on conducting vulnerability analysis at the

level of the network rather than the protocol [3], [4], [13]. As a result, the security posture of protocols

that have not been designed with security in mind is still not well understood. In particular, time-based

vulnerabilities such as denial-of-service (DoS) are difficult to formalize because of the unbounded nature of

time. [12] offers initial steps towards addressing this challenge by proposing a model checking approach to

automatically identify threats to a subset of IEEE 802.16 WiMAX protocols. We follow the same direction

by providing a practical case study of applying model checking to study vulnerabilities and checker design

for the ICCP standard.

24

Chapter 9

Conclusion

We showed that model checking can not only help reveal the sequence of actions that can lead ICCP

client/server into bad states but it could also help in the design of specialized communication protocol

checkers. These checkers are desirable as they can secure ICCP against exploitation of protocol vulnerabilities

without modifying the protocol. As case studies, we described the formal design and verification (using

UPPAAL) of a communication checker for ICCP that protects against the exploitation of resource exhaustion

vulnerabilities. Formal design and verification provide a structured way to explore the design space for

checkers, and are necessary to ensure that the checkers can indeed secure the protocol against exploitations.

While formal methods run into scalability issues with larger models, careful protocol abstraction, and use of

other state space reduction techniques could alleviate the problem.

25

Appendix A

UPPAAL Background

A timed automaton is represented in UPPAAL as a finite state machine that can have time bounds on the

states (known as invariants) as well as on the transitions (known as guards). Each automata in UPPAAL

requires an initial location which is represented by a double circle. Depending on the guards on the transitions

associated with the initial location, the automata takes one of the enabled edges non-deterministically to

move to the connected destination location. Here, the enabled edge is defined as the transition for which the

guard evaluates to true. A guard can be composed of conditions on local/global variables in the model or can

be conditioned on clocks in the model or can be the combination of the two. Furthermore, a transition could

either be internal or external. An external transition is synchronized with another automaton in the system:

one of the automata signals the other automaton using synchronization channels and both the automata

take their respective transitions to new locations. Note that guards on the edges of both the automata needs

to be true in order for this synchronization to take place. Moreover, an automata can also update system

variables on a given transition with new values. Variables also contribute to the state space of the system

unless they are declared as ‘meta’ variables. Meta variables are temporary variables which can only be used

when synchronizing between two automata. Table A.1 summarizes the entities, their functionality as well as

the color code as they appear in UPPAAL models.

Table A.1: UPPAAL’s Entities’ Details
Name Color Purpose

Invariants Orchid To force an automata out of a given state after some time
Guards Green To decide which transition is enabled when
Updates Dark Blue To change the values of variables in the system
Synchronization Light Blue To send/receive a signal to/from another automaton
State Names Pink To identify states in an automaton

26

Appendix B

List of Conformance Blocks of ICCP

Table B.1: ICCP Blocks and Related Services

Block Name Objects Services Access Control Specification

1 Basic Services

Association

Initiate

Conclude

Abort

Data Value

Get Data Value Visibility

Set Data Value Get Data Value

Get Data Value Names Set Data Value

Get Data Value Type Get Data Value Type

Data Set

Create Data Set Visibility

Delete Data Set Delete Data Set

Get Data Set Element Values Get Data Set Element Values

Set Data Set Element Values Set Data Set Element Values

Get Data Set Names Get Data Set Element Names

Get Data Set Element Names

DSTransfer Set

Start Transfer Visibility

Stop Transfer Start Transfer

Data Set Transfer Set Condition

Monitoring

Stop Transfer

Stop Transfer

Next DSTrans-

fer Set

Get Next DSTransfer Set Value

27

Table B.1 – Continued from previous page

Block Name Objects Services Access Control Specification

2 Extended

Data Set

Condition

Monitoring

3 Blocked

Transfers

4
Information

Message

Information

Message

IMTransfer Set

Start Transfer Visibility

Stop Transfer Start Transfer

Data Set Transfer Set Condition

Monitoring

Stop Transfer

5 Device Control Device

Select Visibility

Operate Select

Get Tag Operate

Set Tag Set Tag

Timeout

Local Reset

Success

Failure

6 Programs Program

Start Visibility

Stop Start

Resume Stop

Reset Resume

Kill Reset

Get Program Attributes Kill

Get Program Attributes

7 Events

Event Condition Event Notification

Event Enrollment

Create Event Enrollment Visibility

Delete Event Enrollment Event Enrollment

28

Table B.1 – Continued from previous page

Block Name Objects Services Access Control Specification

Get Event Enrollment Attributes Get Event Enrollment Attributes

8

Accounts/

Additional

User Objects

TATransfer Set

Start Transfer Visibility

Stop Transfer Start Transfer

Transfer Account TS Condition

Monitoring

Stop Transfer

9 Time Series
TSTransfer Set

Start Transfer Visibility

Stop Transfer Start Transfer

Time Series TS Condition Moni-

toring

Stop Transfer

Get Next TSTransfer Set Name

Next TSTransfer Set Get Next TSTransfer Set Value

29

Appendix C

Model Parameter Description

Table C.1: Model Variables and Their Description

Name Description Values

Global numClients ID range of clients 0:Client,1:Attacker

Request Channel from

client/attacker to client

N/A

Success[id] Channel from server to

client/attacker

N/A

Failure[id] Channel from server to

client/attacker

N/A

Select Channel from server to de-

vice

N/A

Operate Channel from server to de-

vice

N/A

SetTag Channel from server to de-

vice

N/A

Error Channel from device to

server

N/A

Armed Channel from device to

server

N/A

Operated Channel from device to

server

N/A

DevTagged Channel from device to

server

N/A

30

Table C.1 – Continued from previous page

Name Description Values

RequestType Shared variable between

client/attacker and server

0:Select,1:Operate,2:Tag

Tag Shared variable between

client/attacker and server

0:Other,1:Close-Only-

Inhibit,2:Open-and-close-

inhibit,3:No-tag

RequestType Shared variable between

client/attacker and server

0:Select,1:Operate,2:Tag

Cmd t Range of Command values

used when operating de-

vice

0:Close—Raise,1:Other

Req t Range of request types

used by the clients

0:Select,1:Operate,2:Tag

Tag t Range of request types

used by the clients

0:Select,1:Operate,2:Tag

sBusy Flag to determine server’s

busy status

0:NotBusy,1:Busy

clientID ID of the client that made

the most recent request

0:Client,1:Attacker

Timeout Time after which the de-

vice times out from armed

to idle state

4 units

Client c Clock for timing certain

states

Infinite

SelectSuccess Auxiliary variable for ver-

ifying a property

True/False

OperateSuccess Auxiliary variable for ver-

ifying a property

True/False

Attacker c Clock for timing certain

states

Infinite

31

Table C.1 – Continued from previous page

Name Description Values

Device c Clock for timing certain

states

Infinite

Tagged Current Tag of the device 0:Other,1:Close-Only-

Inhibit,2:Open-and-close-

inhibit,3:No-tag

lastArmID Records the ID of client

that armed the device re-

cently

0:Client,1:Attacker

lastTagID Records the ID of client

that tagged the device re-

cently

0:Client,1:Attacker

32

References

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli. Metropo-
lis: An integrated electronic system design environment. Computer, 36(4):45–52, 2003.

[2] R. Corin and A. Saptawijaya. A logic for constraint-based security protocol analysis. In S&P, Proc.,
page 14. IEEE, 2006.

[3] M. Danforth. Models for threat assessment in networks. Technical report, DTIC, 2006.

[4] S.J. Engle. A policy-based vulnerability analysis framework. PhD thesis, Univ. of California, 2010.

[5] G. Ericsson and A. Johnsson. Examination of elcom-90, tase. 1, and iccp/tase. 2 for inter-control center
communication. Power Delivery, IEEE Trans., 12(2):607–615, 1997.

[6] Klaus Havelund, Kim Larsen, and Arne Skou. Formal verification of a power controller using the real-
time model checker uppaal. Formal Methods for Real-Time and Probabilistic Systems, pages 277–298,
1999.

[7] Audun Jsang. Security protocol verification using spin, 1995.

[8] A. Khan, M. Mukund, and S. Suresh. Generic verification of security protocols. Model Checking Software,
pages 903–903, 2005.

[9] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using fdr. Tools and Algorithms
for the Construction and Analysis of Systems, pages 147–166, 1996.

[10] B. Meenakshi. Formal verification. Resonance, 10(5):26–38, 2005.

[11] John T. Michalski, Andrew Lanzone, Jason Trent, and Sammy Smith. Secure iccp integration consid-
erations and recommendations. Technical report, Sandia National Laboratories, 2007.

[12] P. Narayana, R. Chen, Y. Zhao, Y. Chen, Z. Fu, and H. Zhou. Automatic vulnerability checking of
ieee 802.16 wimax protocols through tla+. In Secure Network Protocols, 2nd IEEE Workshop on, pages
44–49. IEEE, 2006.

[13] R.W. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities. In S&P, Proc.,
pages 156–165. IEEE, 2000.

[14] JT Robinson, T. Saxton, A. Vojdani, D. Ambrose, G. Schimmel, RR Blaesing, and R. Larson. De-
velopment of the intercontrol center communications protocol (iccp). In Power Industry Computer
Application Conference, IEEE Proc., pages 449–455. IEEE, 1995.

[15] V. Shmatikov and U. Stern. Efficient finite-state analysis for large security protocols. In Computer
Security Foundations Workshop, IEEE Proc., pages 106–115. IEEE, 1998.

[16] I. Van Langevelde, J. Romijn, and N. Goga. Founding firewire bridges through promela prototyping.
In Parallel and Distributed Processing Symposium, Proc., pages 8–pp. IEEE, 2003.

33

