
c© 2013 Henry John Duwe III

EXPLOITING APPLICATION LEVEL ERROR RESILIENCE VIA
DEFERRED EXECUTION

BY

HENRY JOHN DUWE III

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Assistant Professor Rakesh Kumar

Abstract

Many programs exhibit application level error resilience which allows certain

subcomputations to execute in an imprecise, yet energy efficient manner,

potentially yielding significant overall energy savings without sacrificing end-

to-end quality. In this thesis we identify one fundamental problem that must

be addressed to realize these energy benefits: even in applications with a

large degree of error resilience, error resilient instructions are interleaved with

instructions that must be executed precisely at a fine-grained level (about

every seven instructions). This interleaving prohibits any energy savings

due to the significant costs associated with switching between the modes,

typically via voltage scaling, which may require hundreds to thousands of

cycles to transition between levels. We propose a novel execution model for

single-core architectures that reduces total switching by deferring execution

of instructions requiring mode switches, thereby aggregating instructions of

the same energy mode and reducing the number of mode switches. Deferred

execution introduces overheads of its own due to data transfer across the

two modes, and we present hardware and software optimizations to mitigate

these overheads, yielding up to 9%-29% energy savings across a suite of

benchmarks.

ii

To my family, for their loving guidance

iii

Acknowledgments

I would like to thank my advisor, Professor Rakesh Kumar, for keeping me

focused on the important aspects of this work while driving me to produce

quality research. I would also like to thank Sorin Lerner, Ranjit Jhala, Yu-

vraj Agarwal, and Rajesh Gupta for their helpful comments, insights, and

suggestions. Their intellectual rigor and humor were greatly appreciated.

Lastly, I would like to recognize all the little bits of vital help provided by

the Coordinated Science Laboratory IT staff and other students in my group.

I appreciate their attention to my concerns and complaints and their alacrity

to brainstorm solutions.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

List of Abbreviations . ix

Chapter 1 Introduction . 1

Chapter 2 Characterizing Error Resilience 4
2.1 Identifying Robust Instructions 5
2.2 Characteristics of Robust Instructions 6
2.3 The Case for Deferred Execution 8
2.4 Software-Based Aggregation 10

Chapter 3 A Deferred Execution Model 11
3.1 The Deferred Execution Queue 12
3.2 Basic HW Support for Deferred Execution 15
3.3 HW Support for Direct Queue Access for Data Passing 17
3.4 HW Support for Direct Queue Access for Control Passing . . . 18

Chapter 4 Methodology . 21
4.1 Energy Models . 21
4.2 Architectural Energy Models 23
4.3 Experimental Setup . 25

Chapter 5 Results . 27

Chapter 6 Related Work . 34

Chapter 7 Conclusion . 37

References . 38

v

List of Tables

3.1 Added Instructions. Each type of added instruction is
listed along with its function and which level of hardware
support requires it. 20

4.1 Architecture-Specific Parameters. We abstract en-
ergy costs of the underlying architecture into these par-
ameters. 21

4.2 Execution-Specific Parameters. We summarize the
characteristics of each program execution with these pa-
rameters. 22

4.3 Three Relaxed Hardware Correctness Design As-
sumptions for a Single Core Architecture. EU is
Execution Units, D$ the L1 Data Cache, FD is Fetch and
Decode Units. 25

5.1 Average Energy Savings for Various Design Points.
The savings are with respect to the baseline EBas with all
instructions run in high reliability mode. Only a design
with both deferred execution and hardware support for
writing all elements directly to the queue achieves average
energy benefits. A negative number indicates an increase
in energy over the baseline. 28

vi

List of Figures

2.1 Fraction of Robust Instructions. Benchmarks are sorted
left to right according to the fraction of robust instructions. . 7

2.2 Granularity of Delicate-Robust Interleaving. The
figure shows the average switching period (i.e., the average
number of instructions between mode switches). 8

2.3 Average Data Transferred across Blocks. This figure
shows the data transferred from delicate to robust blocks
per robust instruction. 9

3.1 A Deferred Execution Model Example. 12
3.2 Original x86 for a Sgemm-Like Kernel. Gray back-

ground indicates robust instructions; blocks labeled .P1,
.P2 are robust. 13

3.3 Deferred Execution Assembly Modifications. (a)
Sgemm-like assembly code snippet transformed to utilize de-
ferred execution using only basic hardware-support. The
robust blocks have been relocated and an enqa instruction
is used to enqueue its address during delicate execution.
Inputs to the robust blocks is communicated via the enq

and deq instructions. (b) Sgemm-like assembly code snippet
transformed to utilize deferred execution using additional
hardware support for data and control flow passing. Mod-
ifications to the ISA appear in bold. 14

vii

5.1 Energy Savings per Benchmark with (T) Aggres-
sive, (M) Medium and (B) Mild Assumptions. For
each benchmark, we show energy savings from deferred ex-
ecution (EDef+) and ideal savings (EOpt). Benchmarks fall
into three classes: (1) those with a large fraction of ro-
bust instructions, (2) those with a low fraction of robust
instructions, and (3) those with delicate-robust dependen-
cies in their innermost loop. In the aggressive setting (top),
benchmarks in class 1 get significant energy savings (9%-
29%), those in class 2 get limited savings (<5%), and those
in class 3 may see large energy increases (�100%). With
the medium assumptions (middle) only the benchmarks in
class 1 see savings, albeit reduced to 5%-20%. There are
no savings in the mild setting (bottom). 29

5.2 Breakdown of Energy Overheads. Two overheads re-
main using the deferred execution model: (1) the switching
overhead due to a finite queue capacity and (2) the over-
head of hardware support. 31

5.3 Optimizations’ Impact on Switching. A larger switch-
ing period results in less total switching overhead. For most
benchmarks dynamic aggregation provides several orders of
magnitude improvement. 32

5.4 Energy Savings vs. Buffer Size and Switching Over-
head. We determine optimal queue size based on switching
overhead (Esw); for Esw = 1000 a 64KB queue provides the
best energy reductions. 33

viii

List of Abbreviations

DEQ Deferred Execution Queue

DEQMU Deferred Execution Queue Management Unit

DVS Dynamic Voltage Scaling

RRADW Robust Read After Delicate Write

DRARW Delicate Read After Robust Write

DWARW Delicate Write After Robust Write

DRARR Delicate Read After Robust Read

DWARR Delicate Write After Robust Read

RB Robust Block

EU Execution Unit

FD Fetch And Decode Unit

D$ Data Cache

SW Software

HW Hardware

ISA Instruction Set Architecture

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computer

SRAM Static Random Access Memory

DRAM Dynamic Random Access Memory

CAM Content Addressable Memory

ix

Chapter 1

Introduction

Many programs enjoy a degree of application-level error resilience. For exam-

ple, in a graphics application, minor errors in the computation of the RGB

levels of individual pixels may be imperceptible to the human eye, and hence

yield acceptable outputs. Much recent work has investigated the possibility

of detecting [1] or specifying such operations [2, 3], and exploiting the re-

silience for obtaining significant energy savings, by executing error resilient

operations on low energy (but potentially error inducing) hardware [4, 5].

Not all applications exhibit (enough) exploitable error resilience. Further,

as observed previously [4, 3], we find that even in error resilient applica-

tions, not all instructions are resilient or robust with respect to (errors in)

relaxed hardware. Errors in certain critical or delicate instructions either

cause catastrophic exceptions or led to an unacceptable degradation in out-

put quality. More crucially, we observe that even in resilient applications

with a large fraction of robust instructions, there is very often a fine-grained

interleaving of delicate and robust instructions, yielding a switch between

the two modes of execution once every seven instructions.

Due to the significant costs of switching between correct (i.e., high reli-

ability) and relaxed (i.e., low reliability) hardware modes, the fine-grained

alternation becomes a fundamental obstacle to realizing the energy savings

of error resilient applications. For example, using one of the most common

mechanisms for trading off correctness and power in relaxed designs, voltage

scaling, it may take hundreds [6] to thousands [7] of cycles to transition be-

tween voltage levels depending on whether an on-chip or an off-chip voltage

regulator is used. Thus, the cost of mode-switching every seven instructions

would dwarf any savings from relaxed execution.

Thus, to realize the potential energy savings from application level error

resilience, we need some means of mitigating or eliminating the overhead

of fine-grained mode switching. One approach is to radically redesign the

1

hardware from the circuit level upward, to support fine-grained switching

[5].

In this thesis, we present a different, modular and less invasive approach

to overcoming the fundamental switching obstacle in the case of single-core

execution: a novel execution model that reduces switching by deferring the

execution of instructions that require a mode switch. The key idea of the ex-

ecution model is that when instructions requiring a mode switch are encoun-

tered, they can be saved or “remembered” for execution later, through the

use of a single hardware structure – a deferred execution queue – that saves

both references to the deferred instructions, as well as their input operands.

By deferring the execution of instructions which require mode switches, the

queue allows us to aggregate sequences of delicate and robust instructions.

This reduces the number of mode switches and hence, the switching overhead.

If the preceeding description sounds too simple and good to be true, it

is. While the queue-based deferred execution model reduces the overhead

of switching, the queue itself introduces new overheads which may be pro-

hibitive if implemented naively. Intuitively, to maintain the data dependen-

cies in deferred execution, the queue must also transfer the data operands

produced by instructions in one mode and consumed by instructions in the

other. In particular, we observe that the nature of communication between

instructions of different types, for example, high fan-out and large degrees of

data transfer between the instructions of different types, commonly results in

prohibitive performance overheads from using a naive queue implementation.

Therefore, in order to fully realize the benefits of a deferred execution model,

additional software and hardware optimizations will be needed. For this rea-

son, we propose the use of several compiler optimizations and a hardware

queue that employs specialized mechanisms for efficiently transferring both

data inputs and instruction pointers between modes.

In summary, the thesis makes the following contributions to realize energy

savings from application level error resilience 1:

• We identify two key program characteristics which have a significant impact

on the design of systems which exploit application level error tolerance: the

interleaving of delicate and robust instructions, and the nature of (data)

communicated between the two kinds of instructions (Chapter 2).

• We propose a novel deferred execution model that reduces the overhead of

2

mode switching in the single core case by effectively aggregating instruc-

tions of similar modes. A naive implementation brings its own overheads,

which we address through several software and hardware optimizations

(Chapter 3).

• We show that with suitable optimizations, deferred execution can yield

significant energy benefits (9%-29%) (Chapter 5).

1 The work presented in this thesis is based on a collaborative effort led by the author.
The author wrote the profiling tool that analyzed benchmarks based on their delicate-
robust marking. The author also made all energy estimations and gathered needed energy
assumptions. The author led and reviewed all manual inspections of benchmarks. The
author also led the design of the deferred execution technique and necessary optimizations.
Figure 3.1 was not produced by the author. The author participated in the fault injection
campaign, but neither wrote the fault injection tool nor performed a majority of the fault
injections. Joseph Sloan, Manish Gupta, and Alan Leung aided in manual inspection
of benchmarks and design details, produced Figure 3.1, and performed the bulk of fault
injections.

3

Chapter 2

Characterizing Error Resilience

To understand the energy reduction that can be achieved by relaxing hard-

ware correctness, we first need to determine which programs, and which parts

of those programs, are even amenable to relaxed correctness. To this end, we

performed an empirical analysis of the Parboil [8] and SciMark2 [9] bench-

mark suites to gather the following information: first, which instructions can

or cannot tolerate errors, second, the granularity of interleaving between such

instructions, and third, the amount of data communicated between such in-

structions. We start with some basic definitions for the terminology used in

the remainder of this thesis, then describe our characterization methodology

(Section 2.1), and finally discuss the empirical characterization of the bench-

marks (Section 2.2) in order to motivate the notion of deferred execution.

Definitions. We define the intuitive notions of error resilience as follows.

We say an instruction1 is robust if, with high probability, the program com-

pletes successfully with acceptable output quality even if the instruction’s

output contains error. An instruction is delicate if it is not robust. Intu-

itively, an instruction is delicate if an error in the instruction’s output results

in abnormal program termination or unacceptable output quality with high

probability. We can generalize the aforementioned notions to sequences of

instructions. A robust (respectively delicate) block is a group of adjacent

robust (respectively delicate) instructions within the same basic block. The

robust (respectively delicate) partition for a program is the set of all robust

(respectively delicate) blocks of that program. We further define unaccept-

able program output to be an output with any deviation from the correct

result (note that Parboil benchmarks define a range of outputs; SciMark2

benchmarks have unique, discrete outputs). The astute reader will notice

that we have yet to define our notion of high probability. For ease of presen-

tation, we do so in the current section with a discussion of our experimental

1By “instruction” we mean a machine (e.g., x86) instruction

4

methodology for disambiguating robust and delicate instructions.

2.1 Identifying Robust Instructions

To identify the robust instructions empirically, we implemented a tool that

uses Pin’s binary instrumentation [10] to perform the following experiment

for each dynamic execution of the benchmark for a given input set:

1. We randomly select a dynamic instruction, and flip some randomly

chosen bit of its output.

2. We record whether that particular execution terminates abnormally or

produces unacceptable output.

We repeat the aforementioned experiment, choosing the instruction and

flipped-bit from a uniform distribution over the respective universes, to col-

lect statistics of the following form: static instruction I failed IN% of exper-

iments. We run enough random experiments for these statistics to stabilize,

i.e., for the failure rate of each static instruction to converge to a stable fig-

ure. In our experience, the number of experiments required depends on the

benchmark. We say that an instruction I passes with high probability if it

passes at least 80% of the experiments. An instruction which passes with

high probability is robust and all other instructions are delicate.

Manual Inspection. To verify that the results of our empirical categoriza-

tion were accurate, we then manually inspected the assembly code for each

benchmark to ensure that the robust instructions were indeed intuitively error

resilient. For example, instructions that perform data processing or floating-

point arithmetic are typically resilient, but instructions that compute array

indices, or pointer targets, or loop bounds are not.

Thus, while we have used a particular, fairly standard, methodology for

characterizing instructions as delicate or robust, we believe from the manual

analysis that any other methodology would arrive at a partition with similar

characteristics.

5

2.2 Characteristics of Robust Instructions

Next, we describe the results of our classification, in order to obtain a quan-

titative understanding of the application level error resilience. In particular,

our results address three questions. First, how robust are applications – i.e.,

what fraction of the instructions of a given application are robust? Second,

what is the granularity of the interleaving between delicate and robust in-

structions – i.e., how frequently is there a mode switch? Third, how much

communication is there between delicate and robust instructions – i.e., how

much data is transferred across the two kinds of blocks?

Application Robustness. Figure 2.1 shows the fraction of dynamic in-

structions that were determined to be robust (y-axis) for the suite of bench-

marks (x-axis).

Several benchmarks (sor, cutcp, stencil, fft, and LU) have large frac-

tions of robust instructions (40%-75%), and hence, exhibit a large degree

of application level error resilience. Hence, these benchmarks may present

an opportunity to save energy by relaxing the correctness of hardware. The

common characteristic of these particular benchmarks that leads to a large

fraction of robust instructions, is that their kernels are largely dominated by

long sequences of floating-point operations. The benchmarks sgemm, sparse,

and tpacf have a modest fraction of robust instructions (20%-25%) that

may be profitably exploited. These benchmarks tend to have less robust in-

structions due the presence of more intermediate control operations within

inner parts of their kernels. The benchmarks monte and sad have the small-

est number of robust instructions, making them the least likely benchmarks

to realize potential energy benefits. Again, a common characteristic is that

monte and sad tend to have more control in the inner parts of their kernel

(e.g., updating the state of a random number generator or scanning blocks in

an image). See Chapter 5 for more discussion on these particular benchmarks

as they are also unique in the type of error-tolerance exhibited.

These results confirm what many other researchers have found, which is

that (1) for some applications the fraction of robust instructions may be large

enough to actually exploit by running at low-power and conserving energy

and (2) not all instructions of applications are robust. For this reason, a

classification of the computation as either delicate or robust is an essential

part of attempting to reclaim any potential energy benefits.

6

sor cutcp stencil fft LU sgemm sparse tpacf monte sad
0

10

20

30

40

50

60

70

80

%
 D

yn
am

ic
 R

ob
us

t

Figure 2.1: Fraction of Robust Instructions. Benchmarks are sorted
left to right according to the fraction of robust instructions.

Granularity of Delicate-Robust Interleaving. Figure 2.2 shows the

average number of instructions between high and low reliability mode switches

(i.e., the switching period). All benchmarks with the exception of monte

have an average robust block size of less than 10 instructions. Some of the

benchmarks even had average switching periods as low as 2. Therefore, Fig-

ure 2.2 suggests that a common program characteristic for many applications

is that delicate and robust instructions tend to be interleaved at a very fine

granularity. Even in the best case, where the switching period is every ten

instructions on average, this still means there will need to be millions to bil-

lions of switches in total. This can have a significant impact on the design

as discussed in Section 2.3.

Amount of Communication across Delicate-Robust Blocks. Fig-

ure 2.3 presents the amount of direct data transferred, via the register file,

between the delicate and robust blocks. This does not include data trans-

ferred through memory accesses. If a value is produced by a delicate in-

struction and consumed in two different robust blocks, it is counted twice.

Figure 2.3 shows that the number of inputs per instruction can vary greatly

across the benchmarks. Benchmarks with long chains of robust instructions

(e.g., sor, cutcp, fft, and tpacf) tend to have a low number of inputs from

the delicate partition per instruction on average, while other benchmarks

with more control flow and a low number of robust instructions (e.g., sgemm

and sad) tend to have a large number of inputs from the delicate partition

7

sor cutcp stencil fft LU sgemm sparse tpacf monte sad
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Sw
itc

hi
ng

 P
er

io
d

(#
 In

st
ru

ct
io

ns
)

Figure 2.2: Granularity of Delicate-Robust Interleaving. The figure
shows the average switching period (i.e., the average number of instructions
between mode switches).

per instruction on average (>13).

Therefore, the results in Figure 2.3 suggest that a significant amount of

data transfer capacity may be needed between delicate and robust partitions.

In Chapter 3 and Chapter 5, it becomes quickly apparent that this common

type of program characteristic can have a significant impact on our ability

to realize any potential energy benefits.

2.3 The Case for Deferred Execution

Given a classification of instructions as delicate or robust, a system can seek

to conserve energy by executing delicate instructions in a high reliability

mode as usual (i.e., nominal voltage, high power) and robust instructions in

a low reliability mode (i.e., low power).

A Naive Approach. One approach for attempting to conserve energy

using a single-core architecture would begin by executing delicate instruc-

tions in the high reliability mode. Upon fetching a robust instruction, the

system would trigger a mode switch to the low reliability mode. The core

would continue executing robust instructions in this mode until a delicate

instruction is fetched, causing a corresponding switch to the high reliability

mode.

8

sor cutcp stencil fft LU sgemm sparse tpacf monte sad
0

2

4

6

8

10

12

14

Ro
bu

st
 D

at
a

In
pu

ts
 P

er
 In

st
ru

ct
io

n
(B

yt
es

)

Figure 2.3: Average Data Transferred across Blocks. This figure
shows the data transferred from delicate to robust blocks per robust
instruction.

The Cost of Switching. A reliability mode switch entails, at the very

least, a voltage scaling of execution units, but may also include a scaling of

the entire core (except the instruction cache). The overhead of using voltage

scaling at a coarse granularity is a significant limitation encountered by many

systems employing Dynamic Voltage Scaling (DVS) – see Chapter 6. In order

to protect delicate instructions and their corresponding data, there are also

additional overheads from saving and restoring architectural context before

switching modes. Thus, assuming any realistic energy overheads associated

with switching (100-1000 cycles) and the empirically determined frequency

of mode switching in Figure 2.2 (average of seven instructions), the naive

approach would result in a catastrophic increase in energy usage over the

baseline of executing all instructions in the high reliability mode.

For example, the inner loop of stencil is executed 47 million times for

the small input, resulting in over 300 million switches in its inner loop. For a

switching overhead of 1000 cycles, the switches alone would cause an increase

in energy consumption by a factor of over 400x, thereby eliminating any

potential savings.

9

2.4 Software-Based Aggregation

Given that switching costs are of primary concern, we investigate three static

techniques for reducing switches between reliability modes: static aggrega-

tion, loop unrolling, and mode promotion. In short, all three techniques seek

to produce long spans of robust instructions by exploiting three characteris-

tics of robust code.

Static Aggregation. Static aggregation is a form of code motion that

relocates robust instructions within a basic block into a continuous span,

with the constraint that no data dependencies from the original program can

be violated. This optimization relies on the fact that robust instructions

often only depend on the results of other robust instructions and thus can

be hoisted away from the delicate portion of a basic block.

Loop Unrolling. In cases when a loop body is robust, loop unrolling fol-

lowed by static aggregation allows us to produce even larger robust blocks by

aggregating robust instructions across several iterations of the loop. This op-

timization capitalizes on the fact that robust instructions tend to be the data

processing instructions in the body of the innermost loops of computational

kernels.

Mode Promotion. Finally, mode promotion opportunitistically assigns

some robust instructions to be executed in high reliability mode, despite their

classification as robust, if the mode switch to low reliability mode is likely to

waste more energy than it saves. In particular, we apply the heuristic that

a mode switch is ignored when a robust instruction’s output flows to a deli-

cate instruction within the same basic block, because we would immediately

switch to high reliability mode to execute the delicate instruction anyway.

From our experiments, discussed more in Chapter 5, we find that static

aggregation and loop unrolling provide on average only a 2x-3x reduction

in the total number of mode switches during the execution of the program.

While beneficial, this is not nearly enough reduction to have an effect on the

1000%-10000% switching overheads from the naive approach. Although we

investigated mode promotion on all benchmarks, we found that only cutcp

and sad showed any benefit from this technique and thus did not investigate

it further.

10

Chapter 3

A Deferred Execution Model

Given the astronomical costs of the naive approach, even with static aggrega-

tion, it is essential to develop mechanisms to reduce the switching overheads.

At a high level, instead of immediately switching modes on fetching the first

robust or delicate instruction, we instead defer robust instructions to a queue

to keep track of the robust instructions that have yet to execute. We execute

robust instructions only when we must : either to respect a flow dependency

in the original program, or because the queue is full and must be emptied

to make forward progress. In this way we can batch the execution of robust

instructions, reducing switching costs.

Consider the example shown in Figure 3.1, which contains a sample pro-

gram consisting of two delicate (I1, I3) and two robust instructions (I2, I4),

as shown in green and red, respectively. To provide some intuition, we will

now walk through each step of deferred execution for this example.

1. Delicate instruction I1 executes in high reliability mode. The output i

is computed and updated precisely (i = 201). The next instruction, I2,

is robust, so it is deferred to the queue, as depicted by the red arrow

labeled 1. At this point, the queue holds a pointer to instruction I2,

as well as the data value i = 201. Note that no mode switch has taken

place yet.

2. Instruction I3 is delicate and executes in high reliability mode, which

updates the value of i to 202. Instruction I4, however, is robust and is

deferred to the queue, as indicated by the arrow labeled 2. The queue

is updated with instruction pointer I4 and data input i = 202.

3. At this point, we have executed all the delicate instructions and must

switch to a low reliability mode to begin executing the deferred robust

instructions. The instruction pointer for I2 and data input i = 201

11

High-

Reliability

Mode

i =200

i = i +1

b = i * 20

i = i +1

a = i * 10

I1:

I2:

I3:

I4:

i = i +1

i = i +1I1:

I3:

I4, 202

2

1

4

Low-

Reliability

Mode

Queue

I2, 201

b = i * 20

a = i * 10I2:

I4:

I4, 202
3

Figure 3.1: A Deferred Execution Model Example.

are read from the queue, and I2 is executed in low reliability mode, as

shown by the blue arrow labeled 3.

4. Finally, the pointer for I4 is read off the queue, along with input data

i = 202, and I4 executes in low reliability mode as depicted in the figure

as blue arrow 4.

3.1 The Deferred Execution Queue

There are two requirements that our queue must fulfill. First, any dependen-

cies between the robust instructions it contains must be preserved. Second,

it must provide reliable storage and access for any values produced by deli-

cate instructions since these values, by definition, cannot tolerate errors. We

first present an abstract queue design based on these requirements, and then

propose the additional hardware and software support for it. We illustrate

this support with a sgemm-like kernel shown in Figure 3.2.

To defer a robust block for future execution, we record a partial snapshot

of its context in the queue in which it would have executed in the original

program. This context consists of the starting address of the robust block,

and the set of input values consumed by that block. Specifically, we enqueue

the starting address (PC) of the robust block, followed by a sequence of

input values, corresponding to the register contents produced by delicate

instructions that the robust block consumes. In this way, one can view the

queue as a sequence of activation records, where the first element of each

12

movaps 8(%rsp), %xmm3

.L1: add %r12, %rax

xor %r9, %r9

.L2: add #1, %r9

.P1: movaps %xmm3, %xmm0

addss (%rax, %r9, 8), %xmm1

mulss %xmm0, %xmm1

cmp %r9, %r12

jle .L2

add #1, %r10

.P2: addss %xmm1, (%r13, %r10, 8)

cmp %r10, %r11

jle .L1

push %r13

call <print output>

Figure 3.2: Original x86 for a Sgemm-Like Kernel. Gray background
indicates robust instructions; blocks labeled .P1, .P2 are robust.

record is always a starting address, and the remaining elements are input

values defined by delicate instructions.

Robust Input Data. Through significant inspection (both manual and

automatic) we see that the vast majority of data inputs to the robust partition

are addresses or parts of addresses (indices, etc.). Consequently all data

inputs passed on the queue are addresses. In the rare instance that a value

stored in a register must be passed from the delicate partition to the robust

partition, a new robust block is generated which simply moves the value from

the queue to a register. Instructions are inserted into the delicate partition to

enqueue the values onto the queue and then to enqueue the new robust block

address. R3 in Figure 3.3 is an example of such a robust block. Once that

data is in a register in the robust partition it never needs to be re-transferred

again.

Flushes. To execute robust instructions, we first switch the processor state

into a low reliability mode, then restore and execute each robust block from

the queue in turn until it is empty (i.e., flush the queue). A queue flush

is trigged under three conditions. First, when the queue fills up it needs

to be flushed to make forward progress. Second, on program termination

any remaining queue entries are flushed. Third, if a delicate instruction has

a memory data dependency on a robust instruction in the queue, then the

queue must be flushed before the delicate instruction may execute. Note

that this is done for memory dependencies, not register dependencies, as

all register dependencies are implicitly preserved by virtue of the order of

the queue. We incorporate an additional instruction, flush, to allow for a

13

movaps 8(%rsp),%xmm3

enqa .P3

enq 8(%rsp)

.L1: add %r12, %rax

xor %r9, %r9

.L2: add #1, %r9

enqa .P1

enq %r9

enq %rax

cmp %r9, %r12

jle .L2

add #1, %r10

enqa .P2

enq %r13

enq %r10

cmp %r10, %r11

jle .L1

push %r13

call <print output>

.R1: deq ($2,$1,8) %xmm5

movaps %xmm3, %xmm0

addss %xmm5, %xmm1

mulss %xmm0, %xmm1

jdeqa $PB1 num

.R2: deq $1,$2,8 %r6

addss %xmm1, (%r6)

jdeqa $PB2 num

.R3: deq $1

movaps $1, %xmm3

jdeqa $PB3 num

(a)

.J1: movapsaj 8(%rsp),%xmm3

ldcon .PB1

ldcon .PB2

.L1: add %r12, %rax

xor %r9, %r9

.L2:

.J2: addaj #1, %r9

cmp %r9, %r12

jle .L2

.J3: addj #1, %r10

cmp %r10, %r11

jle .L1

push %r13

call <print output>

.R1: movaps %xmm3, %xmm0

addss ($2,$1,8),%xmm1

mulssj %xmm0, %xmm1

#1, %rax

.R2: addssj %xmm1,($1,$2,8)

#2, %r13, %r10

.R3: movapsj $1, %xmm3

#0

(b)

Figure 3.3: Deferred Execution Assembly Modifications. (a)
Sgemm-like assembly code snippet transformed to utilize deferred execution
using only basic hardware-support. The robust blocks have been relocated
and an enqa instruction is used to enqueue its address during delicate
execution. Inputs to the robust blocks is communicated via the enq and
deq instructions. (b) Sgemm-like assembly code snippet transformed to
utilize deferred execution using additional hardware support for data and
control flow passing. Modifications to the ISA appear in bold.

manual queue flush for the third case.

Memory Data Dependencies. There are four classes of dependencies

through memory, which correspond to the various permutations of reads

and writes between delicate and robust blocks: dependencies within robust

blocks (robust-robust), within delicate blocks (delicate-delicate), from ro-

bust to delicate blocks (robust-delicate), and from delicate to robust blocks

(delicate-robust). Of these four classes, only robust-delicate dependencies

require the use of a flush, while the rest require no special handling.

A common delicate-robust dependency is a robust read after a delicate

write (RRADW), which occurs, for example, when delicate code initializes

14

an in-memory array from disk for further processing by robust code. Delicate-

robust dependencies are respected automatically in the proposed execution

model because robust blocks only execute after being enqueued. Similarly,

delicate-delicate dependencies are respected because we never modify the

ordering of delicate instructions with respect to each other. Robust-robust

dependencies are also respected because robust blocks are executed in queue

order, which preserves the original program ordering. The last class of de-

pendencies, those from robust to delicate instructions, are potentially prob-

lematic, so we handle them carefully.

Robust-Delicate Dependencies. DRARW dependencies (true dependen-

cies) are handled by requiring a manual flush immediately before the delicate

read instruction executes. DWARW dependencies (anti-dependencies) also

require explicit flushes to prevent the robust write instruction from executing

after the delicate write instruction. Such dependencies happen very rarely in

practice. More subtly, even read-only dependencies (DRARR dependencies)

must be handled specially; low reliability mode operations may in fact lower

cache voltages to a point where a robust read could corrupt the stored data

value. Thus a delicate instruction reading that same value after the execution

of the robust read would potentially read an incorrect value in high reliabil-

ity mode! This is also a very rare occurrence and could be protected either

by using a small amount of duplication on such data. Finally, DWARR de-

pendencies are allowable, as the delicate write clobbers any potential errors

introduced by the robust read, but a manual flush is required to ensure the

robust instruction reads the correct value.

3.2 Basic HW Support for Deferred Execution

A possible implementation for our deferred execution would use a software-

implemented queue with only minimal hardware modifications: an ISA ex-

tension for an instruction that initiates the mode switches. Such a system

would need software support for enqueuing and dequeuing data, with each

such operation taking at least four additional instructions: one fetch and up-

date for the queue head (tail), two to check bounds and branch beyond the

mode switch instruction, and one to load/store the input itself. These over-

heads are so unreasonably high that it is clear we simply cannot implement

15

our deferred execution model without additional architectural support.

Hardware-supported dynamic aggregation incorporates a reliable hardware

implementation of the deferred execution queue to hold addresses for robust

blocks and memory accesses. We describe the basic hardware support re-

quired for deferred execution next.

DEQMU. We introduce the deferred execution queue management unit

(DEQMU), a reliable hardware unit that manages the queue. The DEQMU

holds the queue state (e.g., head, tail, etc.) and implements the logic to

dequeue and use addresses (effectively memory indirect operations). The

DEQMU also performs the robust block address dequeue to PC instruction.

The deferred execution queue (DEQ) is a hardware data store accessed ex-

clusively through the DEQMU. While the DEQ incurs a power overhead

(details in Section 4.2), it facilitates the deferred execution model resulting

in net energy savings.

The DEQ is implemented as a two-level structure. A small (less than

1KB), low-latency buffer holds the current robust block’s queue elements and

is backed by a larger, low-power, higher delay store that holds all remaining

queue elements. When one robust block’s queue elements are dequeued the

next robust block’s queue elements are loaded out of the second level store

into the buffer. Besides the head of the queue (the current robust block’s

address) the remainder of the buffer stores the inputs to the robust block.

When a dequeue instruction executes, a reliable address is used to perform

a memory access. Note that only the storage and passing of the address to

the memory needs to be reliable. Any storage or communication of values

can be unreliable.

New Instructions. The proposed hardware support requires several mod-

ifications to the ISA. An enqa instruction is used in the low reliability mode

to enqueue a robust block address onto the queue. A jdeqa instruction reli-

ably increments the head of the queue by an immediate value and loads the

address at the new head of the queue into the PC. To communicate inputs

to the robust blocks which are generated by delicate blocks, the enq and deq

instructions are used to enqueue and dequeue the inputs respectively.

Figure 3.2 illustrates these modifications using an example code snippet

(from an sgemm-like benchmark). The example code has four robust instruc-

tions and two robust blocks (after applying static aggregation). To execute

16

this code in a deferred manner, using the DEQ, each robust block is relocated

to the end of the listing and replaced with an enqa instruction. Additionally,

after enqueing the robust block address, we then use several enq instructions

to communicate the inputs to the robust blocks. These transformations are

shown in Figure 3.3a.

Reliable Effective Address Calculation. Since almost every modern

processor, whether load-store, RISC or CISC, requires an effective address

calculation for each memory address, our design includes reliable hardware

adders and a shifter in the load-store unit to compute the addresses reli-

ably. Immediate scales and displacements come from the fetch portion of

the instruction and are either reliable (mild and medium design points–see

Section 4.2) or we accept the low probability that they will be corrupted

(aggressive design point).

3.3 HW Support for Direct Queue Access for Data

Passing

Despite providing the basic hardware support for the deferred execution

queue described in Section 3.2, we observe that there is significant perfor-

mance overhead for communicating inputs to robust blocks via the queue

(i.e., multiple enq and deq instructions). This is also clearly evident from

the doubling of instructions in the inner loops of the code in Figure 3.3a. For

this reason, we propose the use of additional hardware support that allows

delicate instructions that produce inputs for robust instructions, to enqueue

those values directly onto the deferred execution queue without any addi-

tional performance overhead. Thus, any instruction that may be marked as

delicate and generate a result used by a robust instruction must have an

analogue that both writes its result to the destination register and enqueues

its result on the DEQ (e.g., an adda instruction).

Robust Block Contexts. While profiling benchmarks we observe that cer-

tain dynamic delicate instructions produce an output value used by multiple

dynamic robust blocks; we refer to this instruction as having a high fan-out.

The deferred execution queue requires that each robust block has this value

enqueued for it. Typically this would require additional instructions executed

17

in the high reliability mode to enqueue these values from registers for each

robust block. This solution incurs significant energy overheads from fetching

and decoding additional instructions. To reduce this overhead, we propose a

robust block context unit whose purpose is to hold the register context for

a particular robust block. Registers that are required for a robust block are

statically known and loaded into the context unit before the robust block be-

comes active. In the high reliability mode, this unit snoops on the common

data bus and updates the value of any register in an active robust block’s

context. Each context is a small CAM addressed by register ID. This unit

does not need to be very large because few robust blocks are generally active

at the same time. Furthermore each robust block generally only requires a

few registers to be tracked in this manner.

The ldcon instruction loads the robust block’s context into an available

context structure. Enqa instructions enqueue the values stored in the robust

block’s context and also check whether or not a reliability mode switch is

triggered.

3.4 HW Support for Direct Queue Access for Control

Passing

Communicating the addresses of robust blocks onto the queue (i.e., the con-

trol flow of the robust blocks) can also be a significant performance overhead

which prohibits us from realizing energy benefits. Recall that whenever a

robust block is encountered, the address for that block is enqueued so that it

can be executed later after more robust instructions have been aggregated.

We propose hardware support that allows the robust block pointers to be

written and read from the queue in an intuitive fashion that eliminates the

need for any special enqueue and dequeue instructions and their associated

performance overhead.

Similar to hardware support for direct data passing to the queue, hardware

support for control flow passing also entails incorporating new instructions

which are the analogue of any instruction which immediately precedes a ro-

bust block (e.g., an addj instruction). An addj instruction in the high relia-

bility mode computes an add and then enqueues the address of the deferred

robust block onto the queue without incurring any additional performance

18

overheads since the enqueue occurs in parallel and its completion rarely re-

quired for continued delicate execution. Likewise one of these “j” instructions

is the last instruction of a robust block. An addj instruction in the low relia-

bility mode computes an add, dequeues the address of the next robust block,

and loads the dequeued value into the PC. Note that the dequeue happens

in parallel and is read from the low-latency DEQ buffer.

The support for these additional instruction basically involves including a

new bit (switch bit) for each instruction. The switch bit is set to zero, except

on the last instruction which is executed before a high to low reliability mode

switch or on the last instruction of a robust block. In other words, the switch

bit signals to the system that a switch is needed from one of the two modes.

If the switch bit = 1, and the system is in the high reliability mode, the

delicate instruction enqueues a robust block address RX onto the queue.

The RX value is loaded from a table which maps PC values to robust block

addresses (for all instructions with switch bit = 1). If the switch bit = 1,

and the system is in the low reliability mode, the robust instruction gets the

next PC value from the queue.

Figure 3.3b continues with the example from Figures 3.2 and 3.3a, and

shows how the program would be transformed to utilize the additional hard-

ware support for direct data and control passing in the queue. The instruc-

tions which contain a mode switch after the execution (i.e., switch bit = 1),

use an instruction ending with “j” (e.g., “addj”). Delicate instructions which

generate inputs for robust instructions are signified with “a” (e.g., adda). Us-

ing additional hardware support for directly passing data and control flow

to the queue, clearly reduces the number of cycles needed for communicat-

ing data between the delicate and robust partitions significantly. In fact, in

Chapter 5, we observe that these modifications are essential to realizing any

potential energy benefits.

Table 3.1 summarizes the additional instructions required for each level of

hardware support. Effectively three bits are required for the proposed hard-

ware support. One for direct data enqueing, one for direct data dequeueing

(i.e., addition of the queue addressing mode), and one for direct robust block

enqueueing and dequeueing.

19

Table 3.1: Added Instructions. Each type of added instruction is listed
along with its function and which level of hardware support requires it.

Added
Instructions

Function
Hardware
Support Level

enq, deq
Enqueues and dequeues data to and from
the DEQ

Basic

enqa, jdeqa
Enqueues robust block addresses on DEQ
and dequeues robust block addresses into
PC

Basic,
Direct Data

Data Producing
(e.g., adda)

Performs normal operation, also enqueues
result on queue

Direct Data,
Direct RB
Address

Data Consuming
(e.g., addss ($2,$1,8), %xmm1)

Dequeues input operands from queue (us-
ing immeditate indices), performs normal
operation

Direct Data,
Direct RB
Address

Control Passing
(e.g., addj)

Perform normal operation then enqueue
robust block address

Direct RB
Address

ldcon
Loads the static robust block contexts for
specified robust block

Direct Data,
Direct RB
Address

20

Chapter 4

Methodology

We start by describing the different architecture– and execution–specific pa-

rameters that we use to evaluate the energy savings (Section 4.1). Next,

we describe various architectural assumptions and how we use them to ar-

rive at values for the architecture-specific energy parameters (Section 4.2).

Finally, we describe the experimental setup used to determine the values

of the execution-specific parameters, and hence the overall energy savings

(Section 4.3).

4.1 Energy Models

We calculate the total energy required (to execute a particular benchmark)

from a set of architecture- and execution- specific parameters. We obtain

values for the former by an analysis of the energy required by different hard-

ware components, and the latter from statistics gathered from the execution

of the benchmark. Table 4.1 and Table 4.2 enumerate these parameters.

Table 4.1: Architecture-Specific Parameters. We abstract energy costs
of the underlying architecture into these parameters.

Ehi
The energy required to execute a single instruction in the default,
high reliability, high energy mode

Elo
The energy required to execute a single instruction in the low reli-
ability, low energy mode

Esw

The energy required to carry out a single mode switch across high
and low reliability modes

EQ

The fixed energy required by the deferred execution queue for the
duration of a single instruction

Eqop

The additional energy required to execute a single queue operation
(i.e., an enq or deq)

21

Table 4.2: Execution-Specific Parameters. We summarize the
characteristics of each program execution with these parameters.

NDel

The total number of (dynamic) delicate instructions in an execu-
tion

NRob The total number of (dynamic) robust instructions in an execu-
tion

NSw The total number of mode switches in an execution
NCySw The number of cycles for a mode switch

NQop

The total number of deferred execution queue (e.g., enq or deq)
operations in an execution

Energy Models. We combine the architecture– and execution–specific pa-

rameters to obtain three models for energy costs, depending on how the pro-

gram is executed. First, the baseline, where all instructions execute at the

high energy level

EBas
.
= (NDel + NRob) × Ehi

Next, an ideal model where the robust instructions execute with low energy

without any further overheads

EOpt
.
= EBas + NRob × (Elo − Ehi)

Next, a naive model where robust instructions execute in the low energy

level, and a mode switch is triggered whenever one is encountered and whose

costs are accounted for

ENai
.
= EOpt + NSw × Esw

Next, the deferred execution model where we account for both the fixed cost

of the queue and each queue operation

EDef
.
= ENai + (NDel + NRob + NSw ×NCySw) × EQ + NQop × Eqop

22

Finally, the deferred execution model with hardware support for direct data

robust block transfers has, in essence, NQop is 0 as the robust inputs are

enqueued directly by the delicate instruction which defines the input and

the robust block addresses are enqueued by the instruction that is executed

immediately before them (marked with an “a” and “j” suffix respectively–see

Section 3.3)

EDef+
.
= EDef −NQop × Eqop

Effect of Optimizations on Execution Parameters. Aggregating in-

structions via static analyses (e.g., by loop unrolling) may marginally lower

NSw. Aggregation with static approaches are limited beyond the basic block

level. Using deferred execution reduces the number of switches NSw roughly

by a factor of one over the number of robust blocks that can fit on the queue

at a time. The number of robust blocks that can fit on a queue at one time

depends on how many times each robust block is executed and the number

of data inputs that the block requires to be on the queue. Furthermore, we

also account for robust flushes that can drain the queue and hence, limit the

number of robust blocks that can be enqueued (and thus increases NSw).

4.2 Architectural Energy Models

As described in Section 4.1, our energy model accounts for energy at the

instruction level. We reflect lower-level energy costs at the instruction level

by using an energy estimation similar to that in [3].

Concretely, we assume that at the high reliability level, each instruction

takes one unit of energy and one unit of time to execute (i.e., Ehi = 1).

Thus, each additional instruction added due to deferring incurs an overhead

of one energy unit and one time unit. To evaluate energy savings, we assume

that each instruction executed in the low energy level takes a fraction of

a unit (i.e., Elo < 1). We consider such assumptions reasonable as even

between floating-point and integer instructions, there is only approximately

8% energy difference for their entire execution [3].

Next, we describe the relative energy costs of key architectural elements,

and discuss how we aggregate them into three values for Elo corresponding to

23

mild, medium or aggressive settings for the low energy, low reliability mode.

Energy Costs: Core. We use the core model of [3] which assumes the

core accounts for 65% of energy of a processor with the cache using 35%.

Execution functional units account for 40% of the energy of the core. We

assume that the core may be voltage scaled to save up to 40% energy. We

performed a detailed measure of process, voltage, and temperature (PVT)

variation guardbands across a set of open cores and determined that the

mean worst-case guardband corresponds to 40% energy savings. The cache

energy may be reduced by 70% (the mildest assumption used by [3]).

Energy Costs: Data Cache. A potential problem may arise when caches

containing delicate data are voltage scaled while executing robust instruc-

tions. The only data that will have an increased susceptibility to corruption

are those that reside in cache lines accessed (read or written) at reduced volt-

age. Thus if the robust and delicate data can be partitioned and there are no

DRARR data dependencies (DWAR* dependencies overwrite the data any-

way and DRARW dependencies already must accept the possibility of data

corruption), the data cache may be voltage scaled. By manual examination

we have found that these two conditions are met for our benchmarks.

Energy Costs: Queue. To estimate the energy overhead from the queue

structure, the low-latency buffer portion of the queue is assumed to be im-

plemented using flip-flops (a la registers). The large data store of the queue

is assumed to have similar energy to a cache, but implemented with lower

power SRAM cells [11, 12, 13]. We estimate that the queue store requires

an energy overhead of 10% of a similarly sized cache. Lastly we assume that

the queue access latency is the same as a register access since most accesses

come directly from the low-latency buffer structure.

Energy Levels: Mild, Medium and Aggressive. We evaluate deferred

execution under three different energy-reduction design assumptions–mild,

medium, and aggressive–which correspond to three different valuations for

Elo. Mild energy reduction only uses voltage scaling on functional units in the

execution stage of the pipeline. In particular, mild assumes a 40% reduction

of power for only execution units. Medium energy reduction uses voltage

24

Table 4.3: Three Relaxed Hardware Correctness Design
Assumptions for a Single Core Architecture. EU is Execution Units,
D$ the L1 Data Cache, FD is Fetch and Decode Units.

Design Relaxed Components Elo

Mild E 0.896
Medium EU, D$ 0.651
Aggressive EU, D$, FD 0.495

scaling on the execution functional units and the L1 data cache. Specifically,

medium assumes the mild reduction and a 70% reduction in energy used by

the data cache. Aggressive energy reduction uses voltage scaling on the entire

core and the L1 data cache. The three design assumptions are visualized

and tabulated in Table 4.3.

4.3 Experimental Setup

The last piece of the methodology is the set of benchmarks that we used to

evaluate savings, as well as the means by which we compute the values of the

different execution-specific parameters, such as the number of delicate and

robust instructions (NDel, NRob), the number of mode switches (NSw), and

queue operations (NQop.)

Benchmarks. We evaluate deferred execution on a set of applications

drawn from the SciMark2 and Parboil benchmark suites, which include sci-

entific and multimedia applications. We selected these benchmarks as prior

work [14, 3, 5] has demonstrated that they exhibit a significant amount of

application level resilience, and hence, are likely to be suitable candidates for

energy reductions. Each application was compiled for an x86-64 architecture

with gcc using optimization level -O2 and debugging information.

Simulating Executions. Potentially robust instructions are marked at

the x86 assembly level using the categorization described in Chapter 2. As

other research has shown [14] and our fault injections confirmed, almost all

address calculations must be delicate. We make the conservative assumption

that control flow in the program is also likely delicate and execute it in the

high reliability mode, based on prior research [14]. Another Pintool profiles

25

each benchmark to gather data on the dynamic interleaving of robust and

delicate instructions. It also returns various counts on instructions, robust

instructions, number of executions of individual robust blocks, and amount

of data directly crossing the delicate- robust boundary. From these, and the

sizes of the deferred execution queue, we can derive the values of NDel, NRob,

NSw and NQop. When we evaluate the benchmarks, e.g., to determine the

delicate and robust instructions (Chapter 2) or to compute the energy sav-

ings (Chapter 5), we only consider the “kernel” portion of these applications.

That is, the Parboil and SciMark2 timing code is ignored to ensure that it

does not skew the results.

Manual Inspection. We perform a manual inspection of assembly code

to determine if any basic static aggregation or loop unrolling applies to each

robust block. If such static aggregation can be applied, the number of robust

addresses enqueued for that robust block is reduced, reducing both the per-

formance overhead from executing enqa and jdeqa instructions (i.e., NQop)

and the reduction of mode switches (NSw). The manual inspection also yields

the locations of robust flushes.

26

Chapter 5

Results

Next, we present the overall energy savings from the deferred execution of

robust instructions, and give a detailed breakdown of the benefits yielded by

each of the optimizations described in Chapter 3, in the context of a single

core architecture. In particular, we demonstrate how our optimizations affect

the number of switches, allowing energy benefits. Finally, we explore the

sensitivity of deferred execution energy reduction to the switching overhead

and queue size.

Overall Energy Savings. Table 5.1 summarizes the overall energy reduc-

tion of the naive architecture, where instructions are executed as compiled

and the system switches modes whenever the instruction types change, and

the deferred execution model, using different types of hardware and software

support. Savings are shown as percentages against the baseline where all

instructions execute at Ehi. The first observation (row 1) from the results of

Figure 5.1 is that with the naive approach the overhead of switching more

than erases any hope of recovering the potential energy benefits, and yields a

dramatic increase in energy consumption (as indicated by the large negative

savings percentage).

Static aggregation (row 2), e.g., loop unrolling, lowers the the number of

switches NSw enough to reduce the energy overhead on average by a factor of

two. Therefore using static approaches alone is clearly not enough to reduce

the large increase in energy consumption from frequently switching.

Next, observe that while the deferred execution model reduces the over-

head of switching (by lowering NSw), it also introduces new overheads from

transferring state and data to the queue. Deferred execution using software

support alone (row 3) lowers NSw enough to provide another factor of 100

improvement in energy consumption, but is still insufficient to achieve overall

energy reductions. By using the basic hardware queue support for deferred

execution, (row 4) the cost of queue operations is reduced (lowering Eqop) and

27

Table 5.1: Average Energy Savings for Various Design Points. The
savings are with respect to the baseline EBas with all instructions run in
high reliability mode. Only a design with both deferred execution and
hardware support for writing all elements directly to the queue achieves
average energy benefits. A negative number indicates an increase in energy
over the baseline.

Technique Cost Savings (%)

Naive ENai -32718
Static ENai -12331
Dynamic (SW) EDef -158
Dynamic (HW) EDef -32
Dynamic (“” + direct data) EDef -3
Dynamic (“” + direct RB address) EDef+ 10

hence, brings the energy increase down to 32%. Next, by adding hardware

support for direct data addressing (row 5), we reduce the number of queue

operations NQop, and this allows for the deferred execution to nearly break

even on energy with the baseline. Finally, with hardware support to directly

populate all queue elements, both data and robust block addresses (row 6),

we can eliminate NQop entirely. This enables deferred execution to achieve

positive energy reduction relative to the baseline single-mode execution.

Energy Savings Per Benchmark. Figure 5.1 shows the energy reduc-

tion for each benchmark given a switching overhead of Esw = 1000 and a

queue size of 64KB. The switching overhead is chosen to reflect a realistic

energy overhead for switching a large fraction of a chip. A queue size of

64KB represents the best queue size for the largest number of benchmarks

given the switching overhead of 1000. We discuss the impact of queue sizes

on the the number of switches NSw later. The three graphs correspond the

aggressive (left), medium (center) and mild (right) energy settings. In each

case, the y-axis, shows the ideal energy savings (EOpt) assuming no overheads

at all, and the energy saved by deferred execution assuming all optimizations

(EDef+). Both set of results are shown as percentages relative to the base-

line (EBas). The benchmarks are sorted by decreasing fraction of robust

instructions. Note that a positive energy reduction is desirable while a neg-

ative energy reduction indicates a case where overheads from optimizations

actually increase the energy of a benchmark.

28

sor cutcp stencil fft LU sgemm tpacf sparse monte sad

0

10

20

30

40

%
 E

ne
rg

y
Re

du
ct

io
n

Deferred Execution
Ideal

sor cutcp stencil fft LU sgemm sparse tpacf monte sad

0

10

20

30

40

%
 E

ne
rg

y
Re

du
ct

io
n

Deferred Execution
Ideal

sor cutcp stencil fft LU sgemm sparse tpacf monte sad

0

10

20

30

40

%
 E

ne
rg

y
Re

du
ct

io
n

Deferred Execution
Ideal

Figure 5.1: Energy Savings per Benchmark with (T) Aggressive,
(M) Medium and (B) Mild Assumptions. For each benchmark, we
show energy savings from deferred execution (EDef+) and ideal savings
(EOpt). Benchmarks fall into three classes: (1) those with a large fraction of
robust instructions, (2) those with a low fraction of robust instructions, and
(3) those with delicate-robust dependencies in their innermost loop. In the
aggressive setting (top), benchmarks in class 1 get significant energy
savings (9%-29%), those in class 2 get limited savings (<5%), and those in
class 3 may see large energy increases (�100%). With the medium
assumptions (middle) only the benchmarks in class 1 see savings, albeit
reduced to 5%-20%. There are no savings in the mild setting (bottom).

29

Savings with Aggressive Energy Settings. For an aggressive design

where all logic units and the data cache are mode switched (Figure 5.1(left))

we find three classes of benchmarks:

• Class 1: benchmarks sor, cutcp stencil, fft, and LU where deferred

execution achieves significant energy benefits (10%-30%) due to a large

fraction of robust instructions and rare delicate-robust dependencies.

• Class 2: benchmarks sgemm, sparse, tpacf, and monte where deferred

execution achieves limited (<5%) or no energy benefits due to a low

fraction of robust instructions.

• Class 3: benchmark sad where deferred execution offers no energy ben-

efits due to frequent delicate-robust dependencies regardless of fraction

of robust instructions.

Monte Carlo simulations have been identified as having a significant frac-

tion of robust operations [3], yet our results indicate that monte shows a lim-

ited fraction of robust instructions (12%). The reason for the lack of robust

instructions is that the pseudorandom number generator used requires both

significant amounts of control and many address computations to update its

state. If a hardware random number generator were used, monte would have

nearly 50% robust instructions and would show an energy reduction of up to

17%.

Savings with Medium Energy Settings. With a medium portion of the

chip mode switched (Figure 5.1(center)) the Class 1 benchmarks with a high

fraction of robust instructions still show modest energy benefits (6%-17%)

from deferred execution. However, the gains from low reliability mode are

not enough to offset the overheads of switching for the other classes.

Savings with Mild Energy Settings. In the mild energy setting (Fig-

ure 5.1(right)), we see no energy savings at all. We see that by only applying

a low reliability mode to functional units, there are meager energy savings

to be had even in the ideal case, much less in a realizable implementation.

Remaining Overheads. However, even in the mild design point there is

still potential for achieving a 2%-7% energy reduction. There are two over-

heads incurred by our deferred execution implementation inhibiting achieving

further energy reductions: (1) the remaining switching overhead (Esw) and

(2) additional hardware support overhead (EQ).

30

sor cutcp stencil fft LU sgemm tpacf sparse monte sad

0

10

20

30

40

%
 E

ne
rg

y

Queue Structure
Switching
Ideal

Figure 5.2: Breakdown of Energy Overheads. Two overheads remain
using the deferred execution model: (1) the switching overhead due to a
finite queue capacity and (2) the overhead of hardware support.

These two remaining overheads are compared to the ideal energy savings

for each benchmark in Figure 5.2. The hardware queue itself represents a

relatively constant 6.5%-7% energy overhead for all the benchmarks, while

the energy consumed by the remaining switching overhead is on average

2.84%, and varies between 0% and 6.25%.

For most benchmarks the remaining switches are a result of the signifi-

cant amount of data addresses that must be transferred from the delicate

partition to the robust partition, which causes the queue to frequently fill

up thereby triggering switches. Further mechanisms such as various forms of

compression may further alleviate this overhead, but we leave that to future

work. While a deferred execution model can significantly limit the impact of

switching overhead, the queue size versus power tradeoff limits the reduction

of switches by limiting the size of the queue structure itself.

Switching Overhead after Optimizations. Figure 5.3 summarizes our

evaluation of how each of the aggregation optimizations impacts the av-

erage switching period (NDel + NRob)/NSw, that is the average number of

instructions before a mode switch is triggered. In the figure, the y-axis is

the average switching period for the corresponding benchmark shown on the

x -axis. For each benchmark there are four bars representing the execution

using no aggregation (i.e., the naive architecture), with static aggregation,

deferred execution with basic hardware support, and deferred execution us-

31

sor cutcp stencil fft LU sgemm sparse tpacf monte sad

101

102

103

104

105

106

Sw
itc

hi
ng

 P
er

io
d

(#
 In

st
ru

ct
io

ns
)

Naive Static Agg Dynamic Agg All

Figure 5.3: Optimizations’ Impact on Switching. A larger switching
period results in less total switching overhead. For most benchmarks
dynamic aggregation provides several orders of magnitude improvement.

ing all optimizations. These results assume that a fixed buffer size of 64KB

is used.

We observe that static aggregation increases the low switching period aris-

ing from finely interleaved robust and delicate instructions by up to 10% in

several benchmarks (e.g., sor and fft), yet does not provide this increase

for all benchmarks. With deferred execution, however, the switching period

is drastically increased by 2-3 orders of magnitude for most benchmarks.

Therefore, static aggregation clearly does not sufficiently reduce the switch-

ing overhead to warrant using this technique alone, instead the deferred ex-

ecution provides the most dramatic increase in the switching period, so that

energy benefits might be yielded.

Sensitivity of Energy Savings to Switching Overhead and Queue

Size. Figure 5.4 shows the sensitivity of the average energy benefits to two

critical design parameters, the switching overhead and the queue size. Note

that a bigger queue means fewer switches (i.e., lower NSw) but a larger en-

ergy cost (i.e., higher EQ). With typical switching overheads found in the

error-resilient architectures [7, 6] we find the optimal queue size needed is

around 16KB to 64KB. This is comparable with the cache sizes found within

current processor designs, meaning the area/power overhead from using ei-

ther a dedicated hardware queue or shared cache for the queue would be

small. Further, queues of this size may leave flexibility in the design of a

32

1 10 100 1000

0

10

20

%
 E

ne
rg

y

1KB
4KB
16KB

64KB
128KB
256KB

Figure 5.4: Energy Savings vs. Buffer Size and Switching
Overhead. We determine optimal queue size based on switching overhead
(Esw); for Esw = 1000 a 64KB queue provides the best energy reductions.

shared cache that allows for the queue size to be dynamically adjusted ac-

cording the application needs. At a switching overhead of Esw = 1000 a

64KB queue is optimal while small queues (<16KB) cannot reduce energy.

For switching overheads of Esw = 1, 10, or 100, energy benefits from exploit-

ing robust instructions via deferred execution are seen at all queue sizes less

than 512KB, with 2KB, 8KB, and 16KB being optimal, respectively. At any

larger switching overhead (≥ 10000) no queue size produces energy benefits,

but the optimal queue size becomes larger (e.g., 256KB at Esw = 10000). Us-

ing these results we can optimize the queue structure size given the amount of

switching overhead our design would incur. For example with the switching

overhead of 1000 a 64KB queue size is optimal.

33

Chapter 6

Related Work

Next we discuss related work on opportunitistic energy reduction via pur-

posefully unreliable hardware or software.

Purely Hardware Approaches. Recent research in digital signal process-

ing and circuit design have explored the possibility of exploiting timing and

logic failures to improve the energy-efficiency of hardware. Algorithmic noise-

tolerance [15] proposes a scheme for voltage over-scaling digital filters while

mitigating timing errors via error control. In contrast, Kulkarni et al. [16]

explore the use of logic errors, instead of timing errors, to produce more

energy-efficient circuits: they propose a multiplier constructed from logically

incorrect building blocks that allow for design-time tradeoffs between cor-

rectness and energy savings. Similar techniques have been proposed in the

context of floating-point units [17], integer logic units [18], and value mem-

oization [19]. At the microarchitectural level, researchers have developed

techniques to improve energy efficiency without introducing software-visible

error even in the face of timing failures: the Razor architecture [20] em-

ploys error-detection circuits to permit aggressive energy optimizations such

as power gating, voltage and frequency scaling, and sub-threshold operation

with minimal guardband. A common theme among hardware-focused solu-

tions is that these techniques are transparent to software, which limit their

ability to exploit application-specific opportunities for energy savings. A key

focus of our work is to demonstrate that our deferred execution model, by

exposing errors to software, is capable of exploiting application-level error

resilience to achieve significant energy benefits.

Purely Software-Based Approaches. Prominent among software ap-

proaches to opportunistic energy reduction is the notion of acceptability ori-

ented computation [21, 22]. Through code transformations that approximate

the original program semantics, techniques such as loop perforation [21] can

extract energy savings at the cost of degraded quality of service. These

34

techniques apply in exactly those cases in which a high proportion of in-

structions are robust by our definition. In a related vein, Green [2] proposes

a software programming model and runtime system for dynamically tuning

approximation decisions via a feedback loop between programmer-specified

approximation, calibration, and quality of service monitoring routines. The

focus of their work is a software-only mechanism for monitoring quality of

service, while our work focuses on a related, but different concern: given a

program that we know is error resilient, how can we efficiently extract its

potential for energy savings with only lightweight modifications?

Error-Resilient Architectures. Closest in spirit to our work are ap-

proaches that employ co-designed architectural and software capabilities for

exploiting application level error resilience. Liu et al. [23] propose software

modulation of DRAM refresh rates to selectively lower data integrity of global

and heap data structures. De Kruijf, et al. [24] present Relax, an architec-

tural framework with ISA extensions for demarcating regions of code for

executing under relaxed reliability. Narayanan et al. [25] propose allow-

ing software to selectively use voltage overscaled functional units as well as

switching reliability modes at a much coarser granularity based on the power

and performance requirements of applications. The ERSA architecture [4]

employs a multicore design in which unreliable cores cooperate with a reli-

able core at a coarse granularity to preserve quality of service for a class of

parallel application. Unlike previous work, we focus on automatic techniques

for extracting coarse-grained regions for reliability mode switching.

The EnerJ language [3] and Truffles architecture [5] present a high level

language and architecture for software-exposed hardware unreliability: the

EnerJ type system allows type-directed approximation while disallowing flow

from approximate computation into values that must be precise. The Truffles

architecture then serves as an execution substrate for such a language: the

machine language is extended with approximate variants of arithmetic and

logical instructions, and hardware structures are duplicated or modified to

allow very fine-grained switching between reliability modes on the order of

a single cycle. Although similar in goal to our system, to support such fine-

grained interleaving of approximate operations, Truffles requires pervasive

and complex circuit modifications such as voltage-translation circuitry, du-

plication of functional units and pipeline registers, and a dual-voltage cache

35

with voltage modulation at the cache-line granularity. In contrast, we present

a lightweight design with modular changes (an additional queue and context

unit) along with static and dynamic optimizations that allow us to achieve

energy benefits at coarser granularity.

Reliability Software. Other research focuses on improving reliability for

a given performance target [14]. Their work identifies a rigorous method-

ology for quantifying the error tolerance of static instructions. Using these

quantities various code scheduling optimizations (e.g., loop unrolling) were

proposed to improve reliability by reducing the number of highly vulnerable

instructions. However, this work focuses on improving reliability through

software-only optimizations rather than reducing power using both software

and hardware techniques.

36

Chapter 7

Conclusion

Many programs contain a latent potential for energy savings by executing

their robust instructions with relaxed reliability. However, we have identi-

fied a key program characteristic, instruction interleaving, that significantly

impacts the ability to realize this potential, due to the high cost of switching

reliability modes. Indeed, a naive approach that employs eager switching

has dramatic overheads (over 300x on average) that completely negate any

energy benefits. In response, we propose a deferred execution model in which

we defer and aggregate robust instructions to be executed in batch. With this

approach, we can reduce the number of mode switches by several orders of

magnitude. Although the introduction of a hardware queue introduces new

data transfer overheads, we propose novel low-overhead hardware support

for minimizing this overhead, allowing us to demonstrate up to 29% energy

savings.

37

References

[1] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of
service profiling,” in ICSE, 2010, pp. 25–34.

[2] W. Baek and T. M. Chilimbi, “Green: A framework for support-
ing energy-conscious programming using controlled approximation,” in
PLDI, 2010, pp. 198–209.

[3] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in PLDI, 2011, pp. 164–174.

[4] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE,
2010, pp. 1560–1565.

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012,
pp. 301–312.

[6] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in HPCA,
2008, pp. 123–134.

[7] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage
scaling,” in ISLPED, 2000, pp. 9–14.

[8] J. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. Liu, and W. Hwu, “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

[9] R. Pozo and B. Miller, “SciMark2,” Aug. 2012. [Online]. Available:
http://math.nist.gov/scimark2/index.html

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized pro-
gram analysis tools with dynamic instrumentation,” in PLDI, 2005.

38

http://math.nist.gov/scimark2/index.html

[11] N. Verma, “Ultra-low-power SRAM design in high variability advanced
CMOS,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 2009.

[12] M. Qazi, M. Sinangil, and A. Chandrakasan, “Challenges and directions
for low-voltage SRAM,” Design Test of Computers, IEEE, vol. 28, no. 1,
pp. 32–43, Jan.-Feb. 2011.

[13] D. Jeon, Y. Kim, I. Lee, Z. Zhang, D. Blaauw, and D. Sylvester, “A
470mv 2.7mw feature extraction accelerator for micro autonomous ve-
hicle navigation in 28nm cmos,” in ISSCC, in press, 2013.

[14] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable software
for unreliable hardware: Embedded code generation aiming at reliabil-
ity,” in CODES+ISSS, 2011, pp. 237–246.

[15] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999, pp. 30–35.

[16] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in VLSID, 2011.

[17] J. Tong, D. Nagle, and R. Rutenbar, “Reducing power by optimizing the
necessary precision/range of floating-point arithmetic,” VLSI Systems,
IEEE Transactions on, vol. 8, no. 3, pp. 273–286, 2000.

[18] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient vlsi implementation of soft-
computing applications,” Trans. Cir. Sys. Part I, vol. 57, no. 4, pp.
850–862, Apr. 2010.

[19] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Trans. Comput., vol. 54, no. 7,
pp. 922–927, July 2005.

[20] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-
power pipeline based on circuit-level timing speculation,” in MICRO,
2003.

[21] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in ESEC/FSE, 2011, pp. 124–134.

[22] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard, “Randomized
accuracy-aware program transformations for efficient approximate com-
putations,” in POPL, 2012, pp. 441–454.

39

[23] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-
ing dram refresh-power through critical data partitioning,” in ASPLOS,
2011, pp. 213–224.

[24] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An archi-
tectural framework for software recovery of hardware faults,” in ISCA,
2010, pp. 497–508.

[25] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-
tic processors,” in DATE, 2010, pp. 335–338.

40

	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	Chapter 2 Characterizing Error Resilience
	Identifying Robust Instructions
	Characteristics of Robust Instructions
	The Case for Deferred Execution
	Software-Based Aggregation

	Chapter 3 A Deferred Execution Model
	The Deferred Execution Queue
	Basic HW Support for Deferred Execution
	HW Support for Direct Queue Access for Data Passing
	HW Support for Direct Queue Access for Control Passing

	Chapter 4 Methodology
	Energy Models
	Architectural Energy Models
	Experimental Setup

	Chapter 5 Results
	Chapter 6 Related Work
	Chapter 7 Conclusion
	References

