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ABSTRACT

Estimating unknown signals from parameterized measurement models is a

common problem that arises in diverse areas such as statistics, imaging, ma-

chine learning, and signal processing. In many of these problems, however,

only a limited amount of data is available to recover the unknown signal.

Additional constraints are required to successfully recover the unknown sig-

nal if there are more unknowns than measurements. Sparsity has proven to

be a powerful constraint for signal recovery when the unknown signal has

few nonzero elements. If a signal is sparse in a parameterized measurement

model, the model parameters must be known to recover the signal. An ex-

ample of this problem is the recovery of a signal that is a sum of a small

number of sinusoids. Reconstruction of this signal requires recovery of both

the amplitude of the sinusoids as well as their frequency parameters. Apply-

ing traditional sparse reconstruction techniques to such problems requires a

dense oversampling of the parameter space.

As an alternative to existing methods, this work proposes an optimiza-

tion problem to recover sparse signals and sparse parameter perturbations

from few measurements given a parameterized model and an initial set of

parameter estimates. This problem is then solved by a newly developed Suc-

cessive Linearized Programming for Sparse Representations algorithm, which

is guaranteed to converge to a first-order critical point. For simulated recov-

ery of four sinusoids from 16 noiseless measurements, this method is able

to perfectly recover the signal amplitudes and parameters whereas existing

approaches have significant error. To demonstrate the potential application

of the proposed technique to real-world problems, the novel algorithm is used

to find sparse representations of real-world Radio Frequency data. With this

dataset, the proposed technique is able to produce sparse recoveries without

highly oversampled dictionaries and actually produces sparser solutions than

standard sparse recovery techniques with oversampled dictionaries.
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CHAPTER 1

INTRODUCTION

Linear inverse problems involve determining unknown variables from a set of

linear equations, and have important applications in a wide variety of fields,

including medical imaging, geophysics, statistics, and signal processing [1].

The inverse problem formulation is very general and applies to a wide num-

ber of measurement models. A case of particular importance is when there

are fewer measurements than unknowns (often referred to as the underde-

termined case). Such problems are ill-posed [2] in the sense that they do

not, in general, have a unique solution. In such cases, additional constraints

are required to recover the unknown variables. In standard linear inverse

problems, the unknown variables will be represented as a vector x in CN , the

measurements by a vector b in CM , and the linear measurement model as a

matrix A in CM×N . For the underdetermined case, A is full row rank and

N ≥M . Then the inverse problem involves solving b = A ∗ x.

In signal processing, many important applications involve signals with pa-

rameterized signal models. Some common and well-studied parameterized

signals include finite-length signals composed of sums of few sinusoidal com-

ponents (for example [3]) and source localization using sensor arrays [4]. In

the case of sinusoidal signals, the unknown parameters are frequency, am-

plitude and phase. For source localization, the unknown parameters are the

signal energy and direction of arrival. Other examples of parametrized signals

arise in problems such as imaging and model fitting.

Given a parameterized signal model, it is often possible to form an inverse

problem to recover the unknown signal. For example, given a model a(·) that

maps a parameter ω ∈ R into CM and a set of measurements of the unknown

signal b ∈ CM , one could discretize the space of possible parameters ω to form

a vector ω ∈ RN . Defining A(ω) =
[
a(ω1), a(ω2), . . . , a(ωn)

]
as a mapping

from RN to C(M×N), the linear measurement model for a parameterized signal

can be written as b = A(ω)∗x. For a fixed sampling of the parameter space,
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the unknown signal weights x can be solved as an inverse problem.

As underdetermined (and full row-rank) inverse problems have infinitely

many solutions, one must regularize reconstructions using prior assumptions

on the known signal x. In recent years, enforcing sparsity in the recovered

signal has proven to be a powerful regularization technique. A K-sparse

signal x ∈ RN is one with only K nonzero elements. By enforcing signal

sparsity, one can recover, under certain conditions, the unique sparse solution

to an undetermined system of linear equations ([5] and [6] among many

others). Given a linear measurement model b = A ∗ x and appropriate

conditions on A, one can recover a K-sparse x by solving an `1 minimization

problem known as Basis Pursuit (BP) [7] or using greedy algorithms such

as Orthogonal Matching Pursuit [8]. These recovery results form the core of

the emerging fields of Compressed Sensing (CS) and sparse recovery.

Compressed Sensing and sparse recovery techniques have been success-

fully applied to parameterized signal models in a variety of contexts. In

prior work [9], the authors applied sparse representation techniques to the

problem of source localization with a linear array. By discretizing the di-

rection of arrival θ and performing recovery with Basis Pursuit Denoising

(BPDN, a version of the Basis Pursuit problem with inequality constraints),

the researchers were able to outperform traditional estimators in terms of

resolution and robustness to correlated sources. This idea has been extended

to multiple data snapshots and studied in comparison to classic parameter

estimation methods [10]. The authors of [11] formulated a wideband array

processing formulation parameterized by source location in two-dimensional

space. Discretizing this space, the authors demonstrated recovery with simu-

lated data using a block-sparsity penalty. Another interesting application of

sparse reconstruction is recovery of narrowband radar signals [12], which are

parameterized in range-doppler space by time and frequency shifts. Applying

BP, the researchers were able to resolve nearby targets more accurately with

fewer measurements than traditional matched filtering.

One of the common problems when applying sparse reconstruction tech-

niques to parameterized signal models is that the dictionary A(ω) is a func-

tion of the unknown parameters. A major assumption of sparse recovery

algorithms is that the signal dictionary A is exactly known. For sparse sig-

nals with unknown parameters, however, the dictionary is not directly given.

In this case, the common approach is to sample and discretize the parameter
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space to form a signal dictionary. Intuitively, a dense sampling is needed

to obtain an accurate reconstruction. This dense discretization, however,

can result in poor recovery by BP as the highly correlated elements of the

dictionary violate the Restricted Isometry Property [5] ([13] showed this for

Discrete Fourier Transforms oversampled in the frequency domain). It is

necessary to estimate the unknown parameters to form the signal dictionary.

This thesis considers the joint recovery of both the unknown parameters

and the unknown signal weights from a single set of measurements. As many

parameterized signal models have few nonzero signal weights compared to

the total number of possible parameter values, it is natural to study the

application of sparsity constraints to recovering signals with parameterized

measurement models. By jointly seeking the unknown signal weights and

parameters, one can adapt the dictionary to create sparse solutions. Prior

work has investigated CS problems with unknown signal dictionaries, but

there are limitations when applying existing techniques to sparse recovery of

signals with parameterized measurement models.

1.1 Prior Work on Sparse Recovery with Unknown

Signal Dictionaries

Compressive sensing typically requires that the signal dictionary A is exactly

known. In the case of parameterized signal models, the signal dictionary will

be a function of the potentially unknown parameters. One common option

is to simply discretize the parameter space, as explored, for example, in [9].

As model mismatch may occur if the true signal parameters do not match

the discretization, the authors proposed an ad-hoc grid refinement approach

to adjust grid elements near detected peaks. Compensating for such model

mismatch can be very critical in order to recover the unknown signal. In

[14], the authors study the effects of perturbations on the dictionary and

found perturbations in the dictionary can result in considerable changes in

the recovered signal.

When the signal dictionary A is completely unknown, the dictionary must

be learned from a training dataset. For example, Blind CS [15] provides

uniqueness conditions to recover an unknown sparsifying basis given a known

sensing model and a set of measurement vectors. Given multiple measure-
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ments and a randomized sampling matrix, this techniques can be an effective

way to learn a basis for the signal in which it is sparse. In the related field

of sparse dictionary learning, many techniques exist to learn an unknown

signal dictionary from a set of measurement vectors, for example the K-SVD

algorithm [16]. These methods, however, require many measurements and

do not exploit any special structure of the unknown dictionary.

Because many applications have at least some prior knowledge on the signal

dictionary, further work has sought ways to correct for errors from an initial

signal dictionary A0. Inspired by the method of Total Least-Squares, the

approach taken by the Sparse Total Least-Squares (STLS) method ([17], [18])

is to allow for errors in both the measurements and the signal dictionary. The

signal dictionary is taken as A0 +dA, where dA is an unknown perturbation

of the signal dictionary. A modified BPDN problem can then be solved

via an exact branch-and-bound method or an alternating algorithm that

approaches a stationary point. This formulation allows for the use of an

initial estimate of the signal dictionary and controls the amount of deviation

from that dictionary. One of the applications considered by the researchers

is direction of arrival estimation, where the initial signal dictionary is formed

using a discretization of the direction of arrival parameter space.

In order to enforce knowledge of the parameterized signal model in the

sparse recovery problem, it would be desirable to find a structured perturba-

tion from an initial dictionary estimate. Toward this end, further work [19]

[20] introduced a Perturbed CS model where the unknown perturbation is a

linear function of a set of perturbation parameters. This was again applied to

the direction of arrival estimation problem, where the signal dictionary was

formed by discretizing the space. The perturbation matrix can be formed

using a linearization of the parameterized model with respect to the pa-

rameters. The authors then develop recovery guarantees for the perturbed

compressed sensing problem, extending the Restricted Isometry Property.

Several other approaches have also been taken toward reconstructing sparse

signals with parameterized measurement models. Considering the recon-

struction of frequency-sparse signals, recent work [13] has developed iterative

thresholding algorithms to recover structured-sparse signals. This method

bypasses explicit dictionary formation by leveraging existing parametric es-

timators for frequency-sparse signals. Although very appealing, this work

is only formulated for frequency-sparse signals and the extension to other
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applications is not immediately obvious. Taking a Bayesian approach, the

authors of [21] develop a Maximum a Posteriori (MAP) estimator for esti-

mating parameter perturbations and sparse signals using a sparsity-inducing

prior. This results in an iterative recovery algorithm to provide a principled

approach to choosing parameters. This Bayesian model is also based on a

linear perturbation model.

Current approaches for sparse recovery have several major limitations when

applied to parameterized signal models. The common formulation for CS re-

covery involves a known, finite-dimensional representation of the signal dic-

tionary A. When the unknown signal is a function of a continuous, unknown

parameter, it is not immediately obvious how to best form a signal dictio-

nary for sparse recovery. Although the obvious approach is to create a dense

discretization of the unknown parameter and seek sparse signal weights, it is

not immediately clear if a given discretization will work well or poorly for a

given recovery problem.

Current approaches to sparse recovery with parameterized signal models

have been somewhat successful but are still limited. Some researchers have

developed sparse recovery algorithms for specific parameterized models. Oth-

ers have attempted to develop solutions that perturb the initial dictionary

or parameter estimates. As these approaches rely on specific perturbation

models, the error can still depend on the initial sampling. For example, in

the case of the linearized perturbation model in [19], the accuracy of the

linearized model used depends on the closeness of the true parameter value

to the original estimate.

What is clear is that there are several possible approaches to recovering

sparse signals with parameterized measurement models. What is less clear

is what is the best approach to recovering the unknown signal. The next

section presents a simple example to help motivate a potential solution to

recover sparse signals with parameterized measurement models.

1.2 Example Recovery of Frequency-Sparse Signals

A simple example of a parameterized signal is a complex sinusoid, which is

parameterized by a frequency and a complex amplitude. A frequency-sparse

signal can be thought of as the sum of a small number of complex sinusoids.
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Given a set of time-domain measurements of such a signal, is it possible to

recover the unknown parameters using sparse recovery techniques?

This section first considers a complex-valued, discrete-time signal which

is the sum of K sinusoids, x(n) =
∑K

i=1(ai ∗ exp(ı ∗ ωi ∗ n)),where ai is a

complex weight and ωi is a real-valued frequency parameter. This signal is

K-frequency-sparse. Of all possible frequency parameters, only K are used

to form the signal. As real-world signals are of finite durations, the time sam-

ples are limited to n = 0, 1, . . . ,M−1. Due to the well-known time-frequency

tradeoff, a finite-length signal will not have a sparse Discrete Fourier Trans-

form (DFT) when the time duration is short. Figure 1.1 demonstrates this

well-studied phenomenon for a frequency sparse signal with K = 3. When

the signal has a long duration the DFT seems to naturally provide a sparse

representation of the signal, but at short time durations this is not necessarily

true. For this example, it is not even immediately clear from the DFT of the

length-32 signal that the signal is composed of three finite-length sinusoidal

components. Given this observation, it would seem advantageous to apply

sparse recovery techniques to attempt to recover the K unknown frequency

and K unknown amplitude parameters.

In order to apply sparse reconstruction techniques to this problem, it is

necessary to generate a signal dictionary. A natural way to do so is to define

a set of parameters ω ∈ RN with values bounded between zero and 2π and

N ≥M . Given a set of noiseless, time-domain measurements b ∈ CM of the

frequency-sparse signal, one can form a sparse recovery problem by defining

A(ω) ∈ C(M×N) with each column ai of A given by a complex sinusoid of

length M and frequency ωi.

Given a fixed ω, one can then solve b = A(ω) ∗ x using sparse recovery

techniques. The sparse signal x corresponds to the unknown amplitude pa-

rameters and the values of ω at the nonzero values of x correspond to the

unknown frequency parameters. The number of nonzero components in x

corresponds to the recovered model order K.

To quantify the performance of this sparse recovery formulation, con-

sider a length-32 vector of noiseless, complex-valued measurements of a K-

frequency-sparse signal with K = 3. In this section a sparse x will be recov-

ered via BP from the model b = A(ω) ∗ x. The final choice remaining is the

selection of the discretized set of parameters ω.

An obvious choice is to extend the sampling inherent in the DFT. The
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(a) DFT magnitude of length-1024 signal com-
posed of three sinusoids
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(b) DFT magnitude of length-32 signal with
three sinusoids

Figure 1.1: DFT magnitude of an example signal composed of three
sinusoidal components for lengths of 1024 and 32 samples. Circles represent
the true magnitude of the sinusoidal components. For the signal of
length-1024, the frequency domain representation seems naturally sparse,
but the frequency components are no longer clearly separated in a length-32
signal.

DFT can be seen as a frequency-domain sampling of the Discrete-Time

Fourier Transform with evenly spaced samples between zero and 2π. For

sparse recovery, it is intuitively desirable to have a sample near each un-

known frequency, so one would want to oversample compared to the typical

DFT frequencies. By defining an oversampling factor k such that N = k∗M ,

an evenly spaced sampling is given by ωi = i∗2∗π
k∗M for i = 0, 1, . . . , k ∗M − 1.

Adjusting the oversampling factor allows one to adjust the density of the

parameter sampling.
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To assess the performance of sparse recovery with evenly sampled parame-

ters, one can compare with the idealized case where the unknown frequencies

are in the sampling set. Define ω∗ as the sampling where the frequencies of

ω closest to the three true frequencies are replaced by the true frequencies.

The set of parameters ω∗ will be referred to as the oracle parameters. One

can then form A(ω) and A(ω∗) to compare the recoveries.

Figure 1.2 shows an example recovery for a five-times oversampled ω and

the corresponding ω∗ of an example frequency-sparse signal with K = 3. As

expected for such a low oversampling, there is significant error in the recov-

ered signal, but it still appears promising. Using ω∗, the recovery is exact.

This suggests that highly oversampling the dictionary may not necessarily

achieve the most accurate reconstructions.

In order to explore the effect of parameter oversampling on this sparse

recovery problem, one can examine error in recovered coefficients and number

of nonzero components in the sparse recovery as a function of oversampling

factor. Ideally, as the oversampling factor increases, coefficient estimation

error should approach zero and the number of nonzero components should

approach K.

A set of 30 example frequency-sparse signals with K = 4 and M = 32

were generated with identical amplitudes and random frequency parameters.

If the frequency parameters were closer than 2π/M they were regenerated.

These signals were then recovered using BP with evenly spaced parameters

and the oracle parameters. Figure 1.3 shows the coefficient recovery error and

number of nonzero coefficients as a function of oversampling. The error in

the estimated coefficients does not approach zero as oversampling increases.

The number of nonzero elements does decrease with oversampling factor, but

even at high oversampling factors two elements are required to approximate

each unknown. Recovery with the oracle, however, is exact and does not

depend drastically on the oversampling factor.

The final quantity shown in Figure 1.3 is the coherence of the matrix A(ω)

as a function of the oversampling factor. The mutual coherence of a matrix

A is defined as

max
1≤i≤N,1≤j≤N,i6=j

|〈ai, aj〉|
〈ai, ai〉

(1.1)

The mutual coherence rapidly increases as a function of the oversampling

factor. This implies that the columns of the dictionary become increasingly
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(a) Sparse reconstruction with BP, noiseless
measurements, and five-times oversampled fre-
quency parameters.
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(b) Sparse reconstruction with BP, noise-
less measurements, five-times oversampled fre-
quency parameters. The nearest sampled fre-
quencies are replaced by the true signal fre-
quencies.

Figure 1.2: Sparse recovery of a length-32 signal composed of three complex
sinusoids with noiseless measurements. Recovery using a five-times
oversampled DFT frame is reasonable, with recovered parameters near the
unknown signals. The coefficient estimates, however, show considerable
error. When the true frequency parameters are part of the parameter
sampling the recovery is exact.

correlated, which is expected of the oversampled DFT. From a sparse recovery

perspective, this is discouraging, as the recovery guarantees developed by

the sparse reconstruction community only hold for signal dictionaries with

sufficiently low mutual coherence. This implies that although sparse recovery

may be possible with highly oversampled dictionaries, it will certainly never
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(b) Number of nonzero coefficients recov-
ered as a function of oversampling
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(c) Dictionary coherenece as a function of
oversampling

Figure 1.3: Sparse recovery, using BP, of noiseless signals of length-32
composed of four sinusoids averaged over 30 example signals. Coefficient
estimation error does not uniformly decrease with oversampling for evenly
spaced reconstructions. The number of nonzero components does fall with
oversampling, but eventually levels off. For the oracle reconstructions, the
true frequencies replace the nearest evenly spaced frequency sample. The
oracle reconstruction is able to recover the signal coefficients exactly
regardless of oversampling factor. Note that the dictionary coherence,
related to the recovery guarantees for sparse signals, increases rapidly with
oversampling factor.

be guaranteed.

Simply oversampling the parameter space does not eliminate recovery er-

ror, even in this highly simplified case. Introducing additional complications

such as noise will only decrease recovery performance. This simple example

demonstrates some of the limitations of oversampling the parameter space,

but it also demonstrates that sparse recovery can be a powerful tool. The

oracle reconstructions are able to recover the unknown parameters with little
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error.

This observation leads to a new way to recover sparse signals with parame-

terized measurement models. The oracle and evenly sampled parameter sets

differ only at the K frequencies closest to the true frequencies. At all other

locations they are identical. If one could jointly recover a perturbation in the

parameters forming the measurement model while recovering a sparse signal,

it may be possible to exactly recover the unknown parameters. In fact, since

only K parameters should be perturbed, this perturbation term should also

be sparse. This observation suggests a possible sparse recovery technique for

signals with parameterized measurement models, where one recovers both

the sparse signal and a sparse set of parameter perturbations from an initial

parameter estimate.

1.3 Proposed Solution

This thesis proposes a new sparse recovery technique for parameterized signal

models involving the joint recovery of a sparse signal and a sparse parameter

perturbation given a parameterized model, a measurement vector, and an

initial set of parameters. The goal is to exploit the parameterized model to

recover the unknown signal weights and parameters using sparse recovery

techniques.

Given a set of measurements b ∈ CM , a differentiable, parameterized signal

model A(ω), and an initial set of parameter estimates ω ∈ RN (withN ≥M),

this thesis proposes a new Perturbed Sparse Recovery (PSR) problem to solve

for the unknown, sparse signal weights x and sparse parameter perturbations

dω. This problem can be formulated mathematically as

min
x,dω

‖x‖1 + λ ∗ ‖dω‖1 (1.2)

subject to ‖b−A(ω + dω) ∗ x‖2 ≤ ε

where λ ∈ R and ε ∈ R are parameters to control the size of the parameter

perturbation and deviations from the measurements, respectively. The final

parameter estimates are taken to be ω∗ = ω+dω. Interestingly, this nonlinear

programming problem can be solved as a series of linearized subproblems

using convex programming techniques.
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This formulation directly uses the parameterized signal model and has the

potential to recover both the unknown signal weights and parameters. By al-

lowing for parameter perturbations, this model will hopefully be less sensitive

to the initial sampling of the parameter space. This formulation attempts

to correct for modeling error present when the parameters are unknown by

recovering the parameter perturbations.

This recovery problem is applicable a wide range of signals with param-

eterized measurement models, provided that the recovered solution should

be sparse. The major requirement is that the elements of the parameterized

signal model must be differentiable with respect to the unknown parameters.

Many problems in imaging, array processing, and estimation fit the proposed

model.

1.4 Comparison to Existing Sparse Recovery

Formulations

The proposed formulation is related to existing sparse recovery techniques,

and can be seen as an important generalization of existing methods. The BP

method seeks to find the minimum `1 norm x solution to the linear model

b = A ∗ x. This can be extended to a measurement model with noise,

b = A ∗ x + e for e ∈ Rm and ‖e‖2 < ε. One then solves the Basis Pursuit

Denoising (BPDN) problem.

min
x

‖x‖1 (1.3)

subject to ‖A ∗ x− b‖2 ≤ ε

The proposed recovery problem is similar to the BPDN problem, with the

major addition of a parameterized model for the matrix A. If the parameters

of the sensing matrix are known in advance, one can simply generate a fixed

A using the parameterized model and solve the appropriate BPDN problem.

The PSR formulation recovers both the unknown signal weights x and the

underlying parameters in order to estimate the unknown sparse signal.

The PSR approach differs from previous methods to deal with unknown

sensing matrices. Unlike the dictionary learning problem, this problem is for-

mulated for a single measurement vector using a parameterized signal model.
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Although the Bayesian approach in [21] was formulated for recovering un-

known parameter perturbations, the authors consider a uniform prior on

the parameters with a linearized measurement model. The iterative thresh-

old solver proposed in [13] also attempts to recover unknown signal weights

and parameters, but takes a very different approach. They formulate a

structured-sparse recovery algorithm that iteratively reconstructs the sig-

nal using spectral-estimation tools. This approach means that this model is

limited only to recovering frequency-sparse signals.

The most closely related methods are the STLS formulation and the Per-

turbed CS formulation. The STLS formulation aims to recover a sparse signal

x using an `1 relaxation subject to a perturbed model (A+dA)∗x = b. The

size of the general perturbation term, dA, is controlled by weighting the `1

norm of the signal x against the Frobenius norm of the perturbation. This

formulation does not explicitly take advantage of any structure or parame-

terization in the signal dictionary, but can still be used to compensate for

model mismatch when there is a parameterized signal model. The proposed

PSR problem may be more appropriate when a signal model is known and is

relatively easy to compute, as this will enforce more information about the

signal.

The work developing Perturbed CS considers a parameterized signal model,

but only with a linear perturbation model. This model takes the form

A(ω + dω) = A0 + B ∗ ∆ with A0 and B given (∆ is the diagonal ma-

trix with elements given by the perturbations dω). In this prior work, the

parameterized model is strictly linear in the sense that ai = ai,0 + bi ∗ dωi.
The parameters are constrained by the `∞ norm to control the maximum pa-

rameter perturbation. To solve this, an alternating algorithm dubbed the Al-

ternating Algorithm Perturbed Basis Pursuit Denoising (AA-P-BPDN) was

developed. The recovery algorithm is only valid for the linear perturbation

model.

Of existing techniques, recovery via STLS and Perturbed CS using the

AA-P-BPDN technique are most closely related to the proposed PSR prob-

lem. All three approaches are based around convex relaxations of the sparse

approximation problem using the `1 norm while allowing for perturbations

in the signal dictionary from an initial estimate. To the best of the author’s

knowledge, this represents the current state of the art in this area. The STLS,

AA-P-BPDN, and standard BPDN will form the most relevant comparisons
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to the solution proposed in this thesis.

1.5 Contributions of This Thesis

The key contribution of this thesis is the PSR problem formulation and a

solution algorithm, Successive Linearized Programming for Sparse Recovery,

to find first-order critical points of the PSR problem. This formulation allows

for joint recovery of sparse perturbation parameters and sparse signals from

parameterized signal models. Due to the generality of the problem formula-

tion, it is possible to apply this technique to a wide variety of problems in

array processing, spectral estimation, and imaging.

The formulation for parameter perturbation recovery is more general than

the linear structure in [19], and contains the linear structure as a subset. The

proposed algorithm is, to the best of our knowledge, novel and is applicable to

a far wider range of models than the alternating algorithm in [19]. Unlike the

spectral-estimation algorithm in [13], SLPSR is applicable to a wide range of

parameterized measurement models.

This new approach is applied to simulations of frequency-sparse signals

and narrow-band source localization with linear arrays. The PSR approach

is able to recover the unknown coefficient and parameters of frequency-sparse

signals almost exactly in the noiseless case, outperforming other state of the

art sparse recovery approaches. Interestingly, the PSR approach exhibits the

best performance at low oversampling factors, suggesting that this approach

does not require highly oversampled signal dictionaries. With additive noise,

the PSR approach performs well compared to existing methods.

In order to explore the potential application of sparse recovery techniques

to real-world signals with parameterized representations, the proposed tech-

nique is applied to the reconstruction of Radio Frequency(RF) data consist-

ing of transmitters broadcasting continuous-wave Morse code. This signal is

frequency-sparse over blocks. The proposed sparse recovery technique can be

used to form sparse representations of these signals while estimating trans-

mitter frequencies without using highly oversampled signal dictionaries.

The details of the problem formulation and proposed recovery algorithm

are developed in Chapter 2. After developing the necessary recovery algo-

rithm, the PSR formulation is applied to simulated signals in Chapter 3.
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Finally, the proposed method is applied to the recovery of frequency-sparse

RF data in Chapter 4.
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CHAPTER 2

PROPOSED PARAMETERIZED SPARSE
RECOVERY FORMULATION AND

ALGORITHM

In order to recover sparse representations of signals with parameterized mea-

surement models, one must first define a sparse recovery problem. In this

chapter, a parameterized signal model is introduced, along with a corre-

sponding sparse recovery problem. The proposed problem, unfortunately,

has nonlinear constraint equations that prevent the use of current solution

approaches. This chapter develops a novel, iterative algorithm, Successive

Linearized Programming for Sparse Reconstruction (SLPSR), to find first-

order critical points of the sparse recovery problem for parameterized models.

This algorithm linearizes the nonlinear constraint set at the current iterate

and solves the linearized subproblem using Second-Order Conic Program-

ming (SOCP) or subgradient descent. This chapter then develops the first-

order necessary conditions for this problem to provide a stopping criterion

for the algorithm. It is not immediately obvious that this iterative algorithm

converges, but this chapter provides a proof of convergence to a first-order

critical point. Finally, the proposed problem is formulated as a Maximum a

Posteriori (MAP) estimation problem with Laplacian priors on the parame-

ter perturbations and signal coefficients. This MAP formulation allows this

problem to be interpreted as an estimation problem, and demonstrates how

to take a Bayesian approach to parameter tuning and introduction of addi-

tional constraints. Although the MAP formulation is not directly exploited

in this work, it may provide an important tool for future work on sparse

signal and parameter recovery.

To begin, a mathematical model is required for sparse signals with param-

eterized measurement models. Consider a set of signal coefficients, y ∈ CR,

and signal parameters, β ∈ RR. These parameters and coefficients are related

to a set of measurements b ∈ CM . The number of weights and parameters,

R, is less than the number of measurements M . A key assumption is that

the measurements are related to the unknown weights and parameters by the
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model b =
R∑
i=1

a(βi) ∗ yi where a(βi) is a function mapping a parameter β to

CM . The function a(•) essentially generates a vector, or dictionary element,

corresponding to a given parameter value.

The goal of signal recovery is to reconstruct the unknown signal coeffi-

cients, signal parameters, and model order given only the measurements b.

Unfortunately, there is no guarantee of a unique solution to this problem

without additional constraints. Typically, there are infinitely many com-

binations of y, β and R that can describe a typical set of measurements.

However, the model order is assumed to be small. It is then reasonable to

search for a sparse solution—a solution where R is very small and there are

few elements in y and β.

To formulate a sparse recovery problem, one needs to form a finite-dimensional

optimization problem that can be executed on a digital computer. Given a set

of initial parameter values, ω ∈ RN , with N ≥ M , one can form a mapping

A(ω) from RN to CM×N where A(ω) is given by

A(ω) =
[
a(ω1), a(ω2), · · · , a(ωN)

]
(2.1)

For the proposed recovery algorithm, it is critical that the elements of a(ωi)

are differentiable with respect to the parameter ωi.

The final component to be considered in the sparse signal model is measure-

ment noise. The measurements are assumed to be corrupted by an additive

noise term. The unknown weights and parameters y ∈ CR and β ∈ RR are

related by the linear model z =
∑R

i=1(a(βi) ∗ yi). Then the measurements

are given by b = z + ν, where ν is an additive noise term with ‖ν‖ < ε.

To recover the unknown weights y and the parameters β from the noisy

measurements b, this thesis proposes solving a nonlinear programming prob-

lem given an initial set of parameter values ω ∈ RN to recover a set of

parameter perturbations dω ∈ RN and weights x ∈ CN . Again, the elements

of the model a(ωi) are assumed to be differentiable with respect to ωi. In

order to jointly recover a sparse vector of weights and a sparse vector of pa-

rameter perturbations, this work proposes the following problem, referred to
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as Perturbed Sparse Recovery.

min
x,dω

‖x‖1 + λ ∗ ‖dω‖1 (2.2)

subject to ‖b−A(ω + dω) ∗ x‖2 ≤ ε

In this formulation, the parameter λ ∈ R weights the tradeoff between

sparsity of the recovered weights and the size of the perturbations. The

parameter ε ∈ R allows for deviations from the measurements to compensate

for noise. The `1 norm is used to promote sparsity in the final solution as

in [7]. Given a solution to the PSR problem, x∗ and dω∗, one can take the

estimated model order, R∗, to be given by the cardinality of the support of

x∗. The solution is then related to the parameterized model by y∗ = x∗supp(x∗)
and β∗ = (ω∗+dω∗)supp(x∗). Solving the PSR problem can potentially recover

the unknown signal parameters and coefficients. However, the PSR problem

is nonlinear as the constraint ‖b−A(ω+dω)∗x‖2 ≤ ε can have an arbitrary

dependence on dω. As traditional sparse recovery algorithms are formulated

for the linear model A ∗ x = b, current approaches are not applicable. In

order to solve the PSR problem, a new sparse recovery algorithm is required.

2.1 Sparse Recovery Algorithm

The goal of this section is to develop a recovery algorithm for the sparse

vector x ∈ CN and parameter perturbations dω ∈ RN . What is given is a

set of initial parameters ω ∈ RN , a model a(ωi) that maps a parameter value

to a vector in CN , and a set of measurements b ∈ CM .

The algorithm developed in this section is capable of finding first-order

critical points of the PSR problem by solving linearized subproblems. The al-

gorithm, Successive Linearized Programming for Sparse Recovery (SLPSR),

takes an initial, feasible point (x0,dω0) and generates a series of feasible it-

erates (xk,dωk). The initial feasible solution is found by solving a standard

BPDN problem with dω0 set to zero. Iterates are generated as the solutions

to linearized versions of the PSR problem. A step (sx, sdω) from the current

iterate is found by solving the linearized problem. As the linearization only

holds around the point (xk,dωk), the step is restricted to a Trust-Region [22]

around the point (xk,dωk). The linearized subproblem, MinSubproblem, is
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defined as:

arg min
sx,sdω

‖xk + sx‖1 + λ ∗ ‖dωk + sdω‖1 (2.3)

subject to ‖b−A(ω + dωk) ∗ xk + J ∗ (

[
sx

sdω

]
)‖2 ≤ ε

‖sx‖2 + ‖sdω‖2 ≤ ∆k

The parameters λ and ε are the same as in the original problem formulation.

Here J is the Jacobian of the function b−A(ω+dωk)∗xk at (xk,dωk). The

Jacobian exists as the function a(ωi) is assumed to be differentiable with

respect to the parameters. The trust-region is enforced by limiting the norm

of the step (sx, sdω) with the parameter ∆k.

It is important to note that the linearized subproblem is a convex objective

function subject to a convex constraint. A minimizer therefore exists and can

be found using convex programming techniques.

After calculating the step for the linearized subproblem, the new point

(xk + sx,dωk + sdω) is only a tentative solution as it may not be feasible. A

correction step is calculated by fixing dω+ sdω and calculating the minimum

change in δx to produce a feasible solution. The function FeasibleProjection

is defined as the minimum norm δx that satisfies ‖b −A(ω + dωk + sdω) ∗
(xk + sx + δx)‖2 ≤ ε. Given this new point (xk + sx + δx,dωk + sdω), the new

objective function value, ‖xk + sx + δx‖1 + λ ∗ ‖dωk + sdω‖1, is calculated.

If this function value is an improvement over the previous iterate, the new

point is accepted and the trust region radius, ∆k+1, increased. If it is not

an improvement, the algorithm remains at (xk,dωk) and decreases the trust

region radius ∆k. This continues until the first-order necessary conditions

are satisfied or a maximum number of iterations are reached. The first-order

necessary conditions are discussed in Section 2.2.

In order to solve the linearized subproblems, either SOCP or subgradient

descent can be applied. Solving for the feasible projection is simply the

projection onto a convex set, and can be solved using standard quadratic

programming techniques [23]. Solution methods for the subproblems are

discussed in Section 2.3. After discussing the solution of the subproblems,

the convergence of this algorithm from an initial estimate to a first-order

critical point is proven.

19



Algorithm 1 Successive Linearized Programming for Sparse Recovery
(SLPSR)

Require: 0 < η < 1, 0 < ε, 0 < λ,ω,x0,dω0

1: x← x0

2: dω ← dω0

3: while x,dω is not First-Order Critical do
4: Jk ← J(x,dω)
5: Ak ← A(ω + dω)
6: sx, sdω ←MinSubproblem(x,dω, ω, λ, ε,Jk,Ak)
7: δx ← FeasibleProjection(x,dω, ω, sx, sdω, ε,b)
8: if ‖x + sx + δx‖1 + λ ∗ ‖dω + sdω‖1 < ‖x‖1 + λ ∗ ‖dω‖1 then
9: x← x + sx + δx

10: dω ← dω + sdω
11: ∆← 1

η
∗∆

12: else
13: x← x
14: dω ← dω
15: ∆← η ∗∆
16: end if
17: end while

2.2 First-Order Necessary Conditions for Optimality

To provide a stopping criterion and prove convergence of the SLPSR algo-

rithm, one must be able to characterize first-order critical points of the PSR

problem. For differentiable problems, first-order necessary conditions for

nonlinear programming problems can be found from the well-known Karush-

Kuhn-Tucker conditions [23]. The `1 norm, however, is not differentiable

at any point where an element equals zero. It is still possible, however, to

characterize first-order critical points of continuous, convex but nonsmooth

functions using the subdifferential [24] of the objective function, ∂f(x,dω).

The subdifferential is an extension of the standard gradient definition. For

a convex, real-valued, nonsmooth function, the subdifferential is the set of

subgradients. Formally, a subgradient is defined as:

Definition 1. For a continuous function f(x) : RN → R at the point x ∈ RN ,

a vector d ∈ RN is a subgradient of f at x if

f(y) ≥ f(x) + dT ∗ (y − x),∀y ∈ RN (2.4)

If a function f is differentiable, then the subgradient is unique and equal to
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the gradient. If f(x) is convex, then one can define the set of subgradients of

f at x as ∂f(x). For such an f , ∂f(x) is a non-empty, convex, and compact

set. Intuitively, this set defines all linear functions that lie below the convex

function f . The notion of a subdifferential can then be used to extend the

definition of first-order necessary conditions for smooth functions (using the

gradient) to nonsmooth functions.

For smooth functions, a necessary condition for a point x to be a first-

order critical is that the gradient of f(x) is zero. The equivalent condition

for nonsmooth functions is that the zero element exists in the subdifferen-

tial of f at x. The PSR, problem, however, is a constrained optimization

problem. The first-order necessary conditions for nonsmooth functions con-

strained by smooth constraints can be found via the Lagrange multiplier

technique [25]. At a feasible point (x,dω), The first-order critical conditions

are 0 ∈ ∂f(x,dω) + J(x,dω)T ∗ (b−A(ω + dω) ∗ x) ∗ γ for some Lagrange

multiplier γ ≥ 0.

Now, one must develop the first-order necessary conditions for the proposed

PSR problem. To begin, consider real-valued signals, measurements, and

measurement models. A slightly different formulation will be required for

complex-valued measurements. Considering the objective function of the

PSR formulation, ‖x‖1 +λ∗‖dω‖1 with x ∈ RN and dω ∈ RN , the objective

function is nondifferentiable for any xi = 0 and any dωi = 0.

One can then characterize the subdifferential, ∂f(x,dω) as

∂f(x,dω) =



[
∂x

∂dω

]
:

∂xi =

sign(xi) if |xi| > 0[
−1, 1

]
if |xi| = 0

,

∂dωi =

λ ∗ sign(dωi) if |dωi| > 0[
−λ, λ

]
if |dωi| = 0


(2.5)

For a complex-valued x,b and A(ω) (but with real-valued ω), the story is

somewhat different. In general, complex derivatives are quite different than

gradients of real-valued functions. However, because the PSR problem only

involves the optimization of a real-valued function (the `1 norm) with respect

to the complex variable x, one can exploit the well-known CR calculus [26] by
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writing the objective function in terms of the real and complex parts of the

complex variables. This effectively transforms the optimization problem into

the optimization of a real-valued function with 2 ∗ N real-valued variables.

The measurements and the constraints must be rewritten

bc =

[
real(b)

imag(b)

]
(2.6)

Ac(ω) =

[
real(A(ω)),−imag(A(ω))

imag(A(ω)), real(A(ω))

]
(2.7)

If x is similarly rewritten

xc =

[
real(x)

imag(x)

]
(2.8)

then the constraint of the PSR problem for complex-valued vector x can be

written as ‖bc −Ac(ω) ∗ xc‖2 ≤ ε. This constraint is now also a real-valued

inequality that is a function of the real-valued parameters ω, real(x), and

imag(x). Jc is defined as the Jacobian of this function with respect to ω,

real(x), and imag(x).

Now it is possible to characterize the subdifferential of the PSR problem in

terms of the real and imaginary components, x = xr + ı∗xi. The real-valued

function ‖x‖1 +λ∗‖dω‖1 =
N∑
j=1

√
x2
r,j + x2

i,j +λ∗‖dω‖1 has a subdifferential

with respect to the real and imaginary components of x and the real-valued

parameter perturbations dω.

∂f(xc,dω) =



∂xr

∂xi

∂dω

 :

∂xr,j =


xr,j
|xj | if |xj| > 0[
−
√

1− ∂x2
i,j,
√

1− ∂x2
i,j

]
if |xj| = 0

,

∂xi,j =


xi,j
|xj | if |xj| > 0[
−
√

1− ∂x2
r,j,
√

1− ∂x2
r,j

]
if |xj| = 0

,

∂dωj =

λ ∗ sign(dωj) if |dωj| > 0[
−λ, λ

]
if |dωj| = 0



(2.9)
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For real-valued x, the first-order necessary conditions for the PSR problem

for a feasible point (x,dω) are given by 0 ∈ ∂f(x,dω) + J(x,dω)T ∗ (b −
A(ω + dω) ∗ x) ∗ γ for some γ ≥ 0 . Similarly, for complex-valued x, the

conditions are given by 0 ∈ ∂f(xc,dω)+Jc(xc,dω)T ∗(bc−Ac(ω+dω)∗xc)∗γ
for some γ ≥ 0.

It is important to note that these are equivalent to the first-order necessary

conditions for the linearized subproblem with s = 0. The stopping criterion

for the SLPSR algorithm provided by these first-order necessary conditions

corresponds to a first-order critical point of the linearized subproblem.

The simple form of the subdifferential for the PSR problem is fortuitous,

as it is possible to actually directly check the first-order necessary conditions.

This involves solving a constrained least-squares problem.

To formulate this least-squares problem for a real-valued x, one notes that

the subdifferential is fixed for nonzero elements and is allowed to vary between

negative one and one for zero-valued elements. Define Ix as the set of nonzero

elements of x and Idω as the set of nonzero elements of dω. Similarly, Icx

and Icdω denote the corresponding sets of zero-valued elements. Define a

vector g ∈ RN+N , where gIx = sign(xIx), gIdω
= sign(dωIdω

), and the

other elements of g are set to zero. Next, one must define a matrix Φ ∈
R(N+N)×(|Ixc|+|Idω

c|+1). There is one column in Φ for each zero-valued elements

of x and dω. For each zero-valued element in x, Φ is equal to one at the

corresponding column and row index. Similarly, for each zero-valued element

in dω, Φ is equal to λ at the corresponding column and row index. The

elements of Φ are zero everywhere else, except the final column. This column

corresponds to the Lagrange multiplier, and is equal to J(x,dω)T ∗(b−A(ω+

dω) ∗ x).

The formulation of g and Φ allows for the recovery of y ∈ ∂f(x,dω) +

J(x,dω)T ∗ (b−A(ω+ dω) ∗x) ∗ γ such that y is the minimum norm vector
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in the set. This is done by solving

u∗ = arg min

u∈R(|Icx|+|Icdω|+1)

‖g + Φ ∗ u‖2
2 (2.10)

subject to − 1 ≤ u1 ≤ 1

− 1 ≤ u2 ≤ 1

. . .

− 1 ≤ u|Icx|+|Icdω| ≤ 1

0 ≤ u|Icx|+|Icdω|+1

and then taking y∗ = g+Φ∗u∗. If ‖y∗‖2
2 = 0 then the current point is a first-

order critical point of the PSR problem. This problem can be solved using

standard techniques for constrained least-squares problems. The problem

can be extended to the case of complex x using the definitions of xc, bc, Ac

and Jc and solved using Second-Order Conic Programming.

The first-order necessary conditions characterize the solutions to the PSR

problem and provide a stopping criterion for the SLPSR algorithm. Criti-

cally, the subgradient for this problem takes a simple form and it is possible

to test for first-order critical points using convex programming methods.

2.3 Solution of SLPSR Subproblems

In order to actually recover sparse signals and parameter perturbations us-

ing the SLPSR subproblem, it is necessary to have reasonably efficient solu-

tion techniques to the linearized subproblem MinSubproblem and the feasi-

ble projection step FeasibleProjection. For both real-valued and complex-

valued x, there are at least two techniques to solve MinSubproblem. One po-

tential method is formulation as Second-Order Conic Programming (SOCP)

and another is subgradient descent. There are several solvers available for

solving SOCP (for example SeDuMi [27]), allowing for easy implementation.

SOCP allows for the formulation and solution of convex, quadratically con-

strained optimization problems. SOCP will find the unique minimizer for

MinSubproblem. Subgradient descent, analogous to gradient descent for

nonsmooth optimization, provides an alternative that is simpler to imple-
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ment and has a low computational complexity per iteration. Because of the

varying tradeoffs of both approaches, both are developed for the linearized

subproblem. Finally, the feasible projection step can be cast as a constrained

least-squares problem and solved with a combination of a projection step and

a line-search.

2.3.1 Formulation as Second-Order Conic Program

The standard form [28] for SOCP is a linear objective function subject to

conic and linear constraints.

min
x

cT ∗ x (2.11)

subject to ‖Qi ∗ x + ri‖2 ≤ fTi ∗ x + pi

A ∗ x = b

For i = 1 . . .m, Qi, ri, fi, and pi define the second-order cone constraints.

This problem consists of a linear objective function subject to linear and con-

vex constraints. Thus it has a unique minimizer that can be found efficiently

through interior-point approaches.

To formulate MinSubproblem using SOCP for real-valued x and b, one

can introduce two auxiliary variables for each element of x representing the

positive and negative component, x+ and x−. The variables x+ and x− are

constrained to have positive elements, and x = x+ − x− . Similar auxiliary

variables are defined for the real-valued parameter perturbations, dω+ and

dω−. Given an initial, feasible point (xk,dωk), the linearized subproblem
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MinSubproblem can be rewritten as

arg min
x+,x−,dω+,dω−

1TN ∗ x+ + 1TN ∗ x− + λ ∗ 1TN ∗ dω+ + λ ∗ 1TN ∗ dω− (2.12)

subject to ‖d + [J,−J] ∗ (


x+

dω+

x−

dω−)

)‖2 ≤ ε

‖

[
(x+ − x−)− xk

(dω+ − dω−)− dωk

]
‖2 ≤ ∆k

x+ ≥ 0,x− ≥ 0,dω+ ≥ 0,dω− ≥ 0

where each vector is constrained to have non-negative elements, 1N is a vector

of length N composed of all ones, and the vector d ∈ RN is given by

d = b−A(ω + dωk) ∗ xk + J ∗ (

[
xk

dωk

]
) (2.13)

At the optimal point, this problem is the same as MinSubproblem, but is

formulated using SOCP without linear equality constraints. This problem

can then be implemented as a convex programming problem and solved via

efficient interior point methods.

For complex-valued x, a slightly different formulation is required to convert

MinSubproblem. This formulation exploits the CR calculus representation

developed in Section 2.2. The optimization is now carried out with respect

to xr,xi,dω+,dω−, and a new set of parameters t ∈ RN is used to bound

the elements of x. Given an initial, feasible point xk ∈ CN , dωk ∈ RN , the
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linearized subproblem MinSubproblem can be rewritten as

arg min
xr,xi,dω+,dω−,t

1TN ∗ t + λ ∗ 1TN ∗ dω+ + λ ∗ 1TN ∗ dω− (2.14)

subject to ‖d + [Jc] ∗ (

 xr

xi

(dω+ − dω−)

)‖2 ≤ ε

‖

 xr − real(xk)

xi − imag(xk)

(dω+ − dω−)− dω

 ‖2 ≤ ∆k

dω+ ≥ 0,dω− ≥ 0√
x2
r,1 + x2

i,1 ≤ t1√
x2
r,2 + x2

i,2 ≤ t2

. . .√
x2
r,N + x2

i,N ≤ tN

where the variables dω− and dω+ are constrained to have non-negative el-

ements, 1N is a vector of length N composed of all ones, and the vector

d ∈ RN is given by

d = bc −Ac(ω + dωk) ∗ xc,k + Jc ∗ (

[
xc,k

dωk

]
) (2.15)

In this formulation, the conic constraints
√
x2
r,j + x2

i,j ≤ tj enforce the `1

norm for complex-valued x. The SOCP formulation allows for efficient solu-

tions of the subproblems for either real-valued or complex-valued x.

2.3.2 Solution of Linearized Subproblems with Subgradient
Descent

An alternative approach to solving the linearized subproblem is subgradi-

ent descent, which is analogous to gradient descent for smooth problems.

Although SOCP formulations are capable of directly solving the linearized

subproblem with a convex programming approach, it is often desirable to

have a solution method that can be simply and directly implemented with
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reasonable computational complexity. The notion of subgradients introduced

in Section 2.2 provides the basis for a low-complexity, iterative solution.

Using the form of the subgradients introduced in Section 2.2, it seems

reasonable to attempt a gradient descent approach. The key observation is

that the solution to the problem

min
g∈∂f(x,dω)

‖g‖2
2 (2.16)

gives a descent direction that can be defined as −g
‖g‖2 [24]. For the uncon-

strained case, a descent direction can be found using the definitions for real-

valued or complex-valued subgradients as defined in Section 2.2. Finding g

simply involves setting the elements corresponding to zero values of x and dω

to zero. Each step of the gradient descent must be projected into the feasible

set of the linearized constraint (similar to the method described in Section

2.3.3), and the total step must be constrained to ∆k. The most important

parameter for the subgradient descent approach is the step size µ. One rea-

sonable approach is the Armijo-Wolfe rule [29] which balances the size of

the step taken with the improvement in the objective function. Algorithm 2

provides pseudocode for subgradient descent with the Armijo rule. Various

approaches for correcting or averaging descent directions over iterations can

be employed [30]. Due to the reasonably simple form of the subdifferential

and the descent direction, subgradient descent can be a reasonable approach

for solving MinSubproblem.

2.3.3 Solution of the Feasible Projection Step

The remaining subproblem to be solved is the projection of the candidate step

into the feasible subspace with dω fixed. The function FeasibleProjection

was defined as the minimum norm δx that satisfies ‖b−A(ω+ dωk + sdω) ∗
(xk + sx + δx)‖2 ≤ ε. This is a simple minimum-norm problem subject to

a convex constraint. This can be accomplished using a standard projection

operator and a bisection search.

First, take Ak = A(ω+dωk+sdω), and define the minimum-norm solution

as xmn = A†k ∗ b, where A†k is the Moore-Penrose pseudoinverse [31]. One

can then define a shifted version of this problem, using the minimum norm

solution. The projector onto the nullspace of Ak is also required, and can
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Algorithm 2 MinSubproblem Solved with Subgradient Descent

Require: x,dω, ω, λ,∆, n, 0 < c < 1, 0 < α < 1
1: k ← 1
2: sx ← 0
3: sdω ← 0

4: ns ← ‖
[

sx
sdω

]
‖2

5: while k < n and ns < ∆ do
6: g← arg ming∈∂f(x+sx,dω+sdω) ‖g‖2

7: d← −g/‖g‖2

8: µ← 1
9: f0 ← ‖x + sx‖1 + λ ∗ ‖dω + sdω‖1

10:

[
tx
tdω

]
←
[

sx
sdω

]
+ µ ∗ d

11: f ← ‖x + tx‖1 + λ ∗ ‖dω + tdω‖1

12: while f > f0 + c ∗ µ ∗ dT ∗ g do
13: µ← α ∗ µ

14:

[
tx
tdω

]
←
[

sx
sdω

]
+ µ ∗ d

15: f ← ‖x + tx‖1 + λ ∗ ‖dω + tdω‖1

16: end while

17:

[
sx
sdω

]
←
[

tx
tdω

]
18: ns ← ‖

[
sx
sdω

]
‖2

19: k ← k + 1
20: end while
21: return sx, sdω
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be written using A†k, PN(A) = (I − A†k ∗ Ak). Taking δ0 = xk + sx − xmn

and δmn = PN(A) ∗ δ0, the problem can now be viewed as a search for the

first feasible point on the line connecting δ0 and δmn. The problem is a

one-dimensional bisection search over γ ∈
[
0, 1
]

for the zero of the function

‖Ak ∗ (γ ∗ δ0 + (1 − γ) ∗ δmn)‖2 = ε. Due to the simple form of the feasible

projection approach, this will generally be much faster than applying general

quadratic programming solvers. Algorithm 3 shows the pseudocode for this

approach.

Due to the special structure of the problems in the SLPSR algorithm,

it is possible to formulate solvers with reasonably simple form. Next it is

necessary to discuss the convergence of this algorithms to a first-order critical

point.

Algorithm 3 Feasible Projection

Require: x,dω, ω, sx, sdω, ε,b,A(·), ns
1: As ← A(ω + dω + sdω)
2: xmn ← As

† ∗ b
3: P← (I−As

† ∗As)
4: δ0 ← x + sx − xmn

5: δmn ← P ∗ δ0
6: γ ← 0.5
7: k ← 1
8: δx ← δmn

9: while k < ns do
10: if (‖As ∗ (γ ∗ δ0 + (1− γ) ∗ δmn)‖2 ≤ ε) then
11: δx ← γ ∗ δ0 + (1− γ) ∗ δmn

12: γ ← γ ∗ 2
13: else
14: γ ← γ ∗ 0.5
15: end if
16: k ← k + 1
17: end while
18: return (δx + xmn)− (x + sx)

2.4 Convergence of the SLPSR Algorithm

Because of the nonlinear form of the constraint function, it is not immediately

obvious that the SLPSR algorithm converges to a first-order critical point
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of the PSR problem. This section examines the convergence of the SLPSR

algorithm to a first-order critical point, as defined in Section 2.2. In the

formulated PSR problem, the objective function is convex over x and dω, but

the constraint function has a nonlinear dependence on the variables. Because

of this nonlinear dependence, it is difficult to say anything general about

the convergence of the algorithm to a global minimizer. It will be shown,

however, that the SLPSR algorithm will continue to reduce the objective

function ‖x‖1 + λ ∗ ‖dω‖1 as long as the current iterate is not at a first-

order critical point. The proof assumes that the mapping A(ω) is twice

differentiable with respect to ω and that the norm of the Hessian of A(ω)

is finite with respect to all ω. This assumption is necessary to linearize the

constraint and to bound the error incurred by linearizing the constraint. The

proof also requires that the matrix A(ω) have bounded spectral norm for all

ω. This is required to bound the projection into the feasible set. Given these

assumptions, one can show the following convergence result.

Theorem 1. Given a feasible point (x ∈ RN ,dω ∈ RN), of the PSR problem

which is not a first-order critical point, ∃ a ∆ > 0 such that the feasible pro-

jection of the linearized subproblem minimizer reduces the objective function

of the PSR problem, ‖x‖1 + λ ∗ ‖dω‖1.

Proof. Given that the elements of ai(ω + dω) are twice differentiable for all

dω, then the approximation error of the constraint function for a perturbation

s =

[
sx

sdω

]
from the point (x,dω) can be bounded by the integral mean value

theorem. Defining r = A(ω+dω+sdω)∗(x+sx)−(A(ω+dω)∗x+J(x,dω)∗s)

gives ‖r‖2 ≤ c∗‖s‖2
2. This allows the formulation of a bound on the correction

step δx required to maintain feasibility.

There are two possible cases. The first case is when the constraint ‖b −
A(ω + dω) ∗ x‖2 ≤ ε is not tight (does not hold with equality). In this case,

one can simply choose a ∆ small enough that all points x+sx,dω+sdω with

‖sx‖2 + ‖sdω‖2 ≤ ∆ are feasible. Then, if the current iterate is not a first-

order critical point, the solution to the linearized subproblem will reduce the

objective function. The candidate point x + sx, dω + sdω is already feasible

and δx = 0. Then, by definition, the linear subproblem has reduced the

function value and maintained feasibility.

The more complicated case occurs when the constraint is tight, as the
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solution may no longer be feasible even for small values of ∆. A feasible

solution is found by projecting the point into the feasible set with dω + sdω

fixed. From the residual error r, one can bound the necessary correction step

as δx = A†(ω + dω + sdω) ∗ r. Since the problem assumes A(ω) has finite

matrix norm for all ω, ‖δx‖2 ≤ d ∗ ‖s‖2
2 for some d that does not depend on

the size of the perturbation.

By considering the improvement in the function value for a simple subgra-

dient descent strategy, we show next that if ∆ is small enough the improve-

ment in the model will be better than the worst-case correction step. This

result will show that there exists a ∆ > 0 such that the subgradient approach

will reduce the objective function unless the current point is a first-order

critical point. The true minimizer will do at least as well as the subgradient

approach. If (x,dω) is not a first-order critical point, then there exists a

descent direction ĝ = −g
‖g‖2 with g given by g = arg ming∈PN(J)∗∂f(x,dω) ‖g‖2.

One must find the optimal gradient step size t ∈ R from the point (x,dω)

for the descent direction. Define the PSR objective function as a weighted

`1 norm, ‖

[
x

dω

]
‖w,1 =

∑
i |xi|+ λ ∗

∑
j |dωj|. The step size is then given by

arg min
t∈R

‖

[
x

dω

]
+ t ∗ ĝ‖w,1 (2.17)

subject to t ≥ 0

‖t ∗ ĝ‖2 ≤ ∆

Now it must be shown that for the optimal t, the feasible projection of the

gradient step is an improvement over the original point. This requires the

following to be true

‖

[
x

dω

]
+ t ∗ ĝ +

[
δx

0

]
‖w,1 ≤

‖

[
x

dω

]
+ t ∗ ĝ‖w,1 + d ∗ ‖s‖2

2 ≤

‖

[
x

dω

]
‖w,1 (2.18)

The second term applies the triangle inequality and the Norm Equivalence
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of norms on finite dimensional spaces (C ∗ ‖x‖α ≤ ‖x‖β ≤ D ∗ ‖x‖α for some

constant C,D for all x). The question is: does such a step s exist? For a

small enough ∆, the constraint on the linearized subproblem will be tight,

‖s‖2 = ∆. Rewriting Equation 2.18, this then gives the requirement that

d ∗∆2 ≤ ‖

[
x

dω

]
‖w,1 − ‖

[
x

dω

]
+ ∆ ∗ ĝ‖w,1 (2.19)

As the weighted `1 norm is piecewise linear, the objective-function improve-

ment becomes proportional to ∆, so ‖

[
x

dω

]
‖w,1 − ‖

[
x

dω

]
+ ∆ ∗ ĝ‖w,1 =

∆ ∗ eT ∗ ĝ = c ∗ ∆ for some unknown slope parameter e. The term on the

left-hand side of Equation 2.19 is proportional to ∆2 because the worst case

correction step is bounded by the square of the norm of s. One then chooses

a ∆ > 0 such that the inequality holds, or that the step remains feasible

before projection. This will then reduce the objective function of the PSR

problem.

As either case 1 or case 2 holds, it is possible to pick a ∆ > 0 such that

the objective function is improved unless the current iterate is a first-order

critical point.

Given this result, the SLPSR algorithm will reduce the parameter ∆ un-

til a feasible iterate is found that reduces the objective function. This will

continue until the first-order necessary conditions are satisfied, ensuring con-

vergence to a first-order critical point.

This analysis can be extended to complex-valued x using the CR calculus

as in Section 2.2. The construction of this proof gives no indication of con-

vergence rate, but the uniform improvement of each iterate is a meaningful

result for the algorithm. This implies that the SLPSR algorithm produces a

series of iterates that are all strictly feasible and shows monotonic improve-

ment in the objective function until a first-order critical point is reached.

2.5 Selection of Regularization Parameters

The SLPSR algorithm requires the selection of two parameters, λ and ε. The

basic intuition is that λ weights the changes in parameters and changes in
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the signal weights. Therefore, it is critical to choose 0 < λ ≤ ∆x

∆dω
where ∆x

is an approximation of the change in the `1 norm of x possible by perturbing

the initial parameters. Similarly, ∆dω is an approximation of the increase in

the `1 norm of dω.

The inequality constraint parameter ε should be chosen with respect to

the norm of the additive noise term ν. This can be seen by manipulat-

ing the assumed measurement model, A(ω + dω) ∗ x + ν = b. Then

‖A(ω + dω) ∗ x− b + ν‖2 = 0, so it is desirable to formulate the inequality

constraint to be ‖A(ω+dω)∗x−b‖2 ≤ c∗‖ν‖2 for some multiplier c near 1.

In practice, one wants to choose an ε slightly larger than the expected norm of

the noise term. For example, if the noise term is a vector in RN with elements

identically, independently distributed as mean-zero Gaussian random vari-

ables with variance σ2, then E(‖ν‖2
2) = E(νT ∗ν) =

∑N
i=1E(νi ∗νi) = N ∗σ2.

2.6 Initialization of SLPSR with BPDN Solution

An important corollary of the convergence result and the initialization of the

SLPSR algorithm is that the SLPSR algorithm is guaranteed not to increase

the `1 norm of the solution x over the BPDN solution for a given ω and ε.

This can be seen from the fact that the SLPSR technique is initialized with

the solution x of the BPDN problem and zero as the parameter perturbation.

As the objective function, ‖x‖1 + λ ∗ ‖dω‖1, will be reduced every time a

new iterate is accepted it is clear that the `1 norm of x will be decreased if a

new iterate is accepted. Therefore, the solution found by SLPSR will never

have a higher `1 norm than the BPDN solution.

2.7 Relationship to MAP Estimation

Although the PSR problem has been formulated as a optimization problem,

it is not immediately clear how to interpret this new problem. A potential

interpretation of the PSR problem is as a MAP estimation problem with

sparsity-inducing priors, similar to the methods developed in [21] and [32].

This formulation requires probabilistic models for all the relevant parameters,

but provides benefits in terms of interpretation, extension, and parameter
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tuning for the PSR problem.

The measurement model used to develop the PSR problem was given as

b = A(ω + dω) ∗ x + ν where the measurements are b ∈ CM , the unknown

signal is x ∈ CN , the initial parameter set is ω ∈ RN , the unknown parameter

perturbations are dω ∈ RN , the measurement model A(ω) is a mapping from

RN to CM×N , and the additive noise term is ν ∈ CN . The goal is to develop a

Bayesian estimator for the unknown signal and parameter perturbation that

promotes sparsity in the recovered solution.

When there is no particular known structure to the noise term ν, a Gaus-

sian noise assumption is appealing due to its simplicity and its applicability

to many cases. For complex-valued ν, this model assumes that the noise is

distributed as a multivariate, mean-zero, white, circularly symmetric com-

plex Gaussian, ν ∼ CN (0, σ2 ∗ I). The probability density function of ν is

then given by

CN (ν|0, σ2 ∗ I) =
1

πM ∗ |σ2 ∗ I|
∗ exp{νHΣ−1ν} (2.20)

Here σ, the noise variance, is assumed to be known. Because any linear

transformation of complex, Gaussian random variables is also complex and

Gaussian, one can form the conditional distribution the measurements b as

P (b|x, σ,dω) ∼ CN (A(ω + dω) ∗ x, σ2 ∗ I).

Next, one must introduce a prior on x ∈ CN aimed at enforcing sparsity.

One possible choice is the Laplacian distribution, which is sharply peaked

at the mean with fairly heavy tails. For mean-zero variables, the Laplacian

tends to favor zero, but allows for large elements with fairly high probabil-

ity. As will be seen, the log-likelihood of this distribution also has a strong

connection to `1 objective functions. Assuming independence between the

elements of x, the prior distribution on xi is 1
z

exp(−λx ∗ |xi|) where z is a

normalization factor and λx is a known parameter that is constant for all xi.

Using the independence assumption,

P (x|λx) =
1

z
∗ exp(−λx ∗ |x1|) ∗ exp(−λx ∗ |x2|) ∗ . . .

∗ exp(−λx ∗ |xN |)

=
1

z
∗ exp(−λx ∗ ‖x‖1) (2.21)
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where z is again a normalization constant. This prior will serve to promote

a signal x with many zero elements.

For the parameter perturbations dω ∈ RN , it is not immediately obvious

what an appropriate prior would be. A key observation is that the parameter

perturbations from the initial set of parameters ω should also be sparse. The

perturbations should not change parameters corresponding to zero elements

of x, specifically supp(dω) ⊆ supp(x). A sparsity-promoting prior similar

to the prior applied to x would be appropriate. Assuming the elements

of dω are independent, each element is taken to be Laplacian distributed

with probability density function given by 1
z
∗ exp (−λdω ∗ |dωi|) where z is

a normalization factor and λdω is a known parameter. Because the elements

of dω are assumed independent, the distribution over dω can be written as

P (dω|λdω) =
1

z
∗ exp(−λdω ∗ |dω1|) ∗ exp(−λdω ∗ |dω2|) ∗ . . .

∗ exp(−λdω ∗ |dωN |)

=
1

z
∗ exp(−λdω ∗ ‖dω‖1) (2.22)

where z is again a normalization constant. Similarly to the prior on x, the

prior on dω will serve to promote a signal dω with many zero elements.

Assuming that the signal amplitudes x and parameter perturbations dω

are independent, one can form the posterior to estimate the unknowns x and

dω. The posterior is given by

P (x,dω|b, λdω, λx, σ) =
P (x,dω,b|λdω, λx, σ)

P (b|λdω, λx, σ)

∝ P (b|x,dω, λdω, λx, σ) ∗ P (x|λx) ∗ P (dω|λdω) (2.23)

Taking the negative of the log-likelihood of this posterior and minimizing

over x and dω yields the following optimization problem (ignoring constant

terms)

min
x,dω

1

σ2
‖b−A(ω + dω) ∗ x‖2

2 + λx ∗ ‖x‖1 + λdω ∗ ‖dω‖1 (2.24)

Interestingly, this formulation is identical to a dual formulation of the PSR

problem, where the constraint ‖b−A(ω + dω) ∗ x‖2
2 ≤ ε2 is integrated into

the objective function, balanced by a constant multiplier.

36



Ultimately, the PSR formulation can be seen as a constrained dual of

the MAP estimation formulation with sparsity-inducing Laplacian priors.

However, the constant multiplier relating the two problems will be unknown

beforehand. This formulation still has very interesting implications for the

PSR problem. First, this interpretation helps motivate the PSR formulation

as a form of MAP estimation. This also helps to relate the PSR problem to

other potential parameter estimation techniques.

Importantly, the MAP interpretation allows for an alternative method of

parameter selection. Consider the dual form of the PSR objective function,

τ1∗‖b−A(ω+dω)∗x‖2
2 +τ2∗‖dω‖1 +‖x‖1. The MAP formulation can guide

the selection of τ1, τ2, with the MAP formulation corresponding to τ1 = 1
λx∗σ2

and τ2 = λdω
λx

.

The MAP interpretation also allows for the introduction of different dis-

tributions for the noise model or signal priors. For example, suppose for

real-valued measurements, signals, and noise, the noise is no longer white

Gaussian. The noise correlations can then be captured in the correlation

matrix R, which will not be identity in general. This formulation can be

translated into a weighted `2 norm, ‖b−A(ω+dω)∗x‖2
W,2, where W = R−1.

Another interesting extension possible from the MAP estimation interpreta-

tion is the use of hyperparameters to determine values for σ, λx, and λdω

when they are unknown. Appropriate conjugate priors can be chosen to make

the problem tractable.

This chapter has developed the PSR problem and introduced the SLPSR

algorithm to solve it. The SLPSR algorithm is guaranteed to find a first-order

critical point of the PSR problem. By formulating the PSR problem, it is

possible to recover both a sparse signal and a sparse set of parameter pertur-

bations for recovery with a parameterized model. Chapter 3 presents a series

of numerical experiments exploring the performance and implementation of

the SLPSR algorithm for recovery of sparse signals using parameterized mea-

surement models.
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CHAPTER 3

NUMERICAL EXPERIMENTS

After developing the SLPSR algorithm and studying the PSR problem, it

is imperative to validate this new technique with realistic simulations. This

chapter presents a series of numerical experiments conducted in the MAT-

LAB programming environment. Two common parameterized models are

simulated: frequency-sparse signals and far-field source localization on a lin-

ear sensor array. This chapter presents a quantitative comparison of sparse

recovery with standard BPDN, STLS, Perturbed CS via the AA-P-BPDN al-

gorithm, and the proposed SLPSR algorithm. The goal of this chapter is to

establish that sparse recovery is possible in these parameterized dictionaries

and explore the various tradeoffs involved.

3.1 Implementation of Sparse Recovery Methods in

MATLAB

In order to test the properties of these sparse recovery algorithms, it is first

necessary to have practical implementations of these techniques. All of the

methods studied in this chapter involve solving a convex objective function

that can be seen as a convex relaxation of non-convex functions which enforce

sparsity, such as the `0 pseudo-norm (the count of the number of nonzero

terms in the recovered solution).

These methods seek a sparse solution to the underdetermined system of

equations b = A(ω) ∗ x. In this formulation, b ∈ CM is a measurement

vector, A(ω) is the parameterized measurement model mapping a set of

parameters ω ∈ RN to a matrix in C(M×N), and x ∈ CN is a vector of

unknown signal weights. The BPDN problem is implemented as a convex

programming problem and the other formulations are solved iteratively by a

series of convex programming problems.
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The standard basis pursuit problem can be adapted to parameterized mod-

els given a fixed set of parameters ω. The BPDN problem is then given by

min
x∈CN

‖x‖1 (3.1)

subject to ‖A(ω) ∗ x− b‖2 ≤ ε

Here the signal dictionary A(ω) is fixed. The parameter ε controls the devi-

ation from the measurements and is used to correct for additive noise. In the

noiseless case, the inequality constraint can be rewritten with equality. This

convex programming problem for a complex-valued, unknown x is solved by

reformulating the problem using SOCP and solving with the SeDuMi package

for MATLAB [27]. This takes the form

min
t∈RN

1TN ∗ t (3.2)

subject to ‖Ac(ω) ∗ xc − bc‖2 ≤ ε√
x2
r,1 + x2

i,1 ≤ t1√
x2
r,2 + x2

i,2 ≤ t2

. . .√
x2
r,N + x2

i,N ≤ tN

ti ≥ 0,∀i

The vector 1N is of length N with every element equal to one.

For BPDN, the parameter ε must be chosen to compensate for additive

noise to the measurements. Using simulated data, this parameter is selected

by initializing ε to the norm of the known noise term and searching around

this value to determine the parameter value that gives the best recovery

performance.

Recovery using STLS was implemented using the alternating algorithm de-

veloped in [18], adapted for complex signal recovery. The STLS formulation

can be written as

min
x∈CN ,dA∈C(M×N)

‖x‖1 + λ1 ∗ ‖dA‖2
F + λ2 ∗ ‖(A(ω) + dA) ∗ x− b‖2

2 (3.3)

Here the signal dictionary is fixed given an initial sampling, and the problem
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recovers a general perturbation dA and sparse signal x. A stationary point

of this problem can be found by first fixing dA and solving

min
x∈CN

‖x‖1 + λ2 ∗ ‖(A(ω) + dA) ∗ x− b‖2
2 (3.4)

which can be solved in MATLAB using the YALL1 package for complex-

valued variables [33]. Then fixing x, one can solve for dA using the following

quadratic program.

min
dA∈C(M×N)

λ1 ∗ ‖dA‖2
F + λ2 ∗ ‖(A(ω) + dA) ∗ x− b‖2

2 (3.5)

This approach will reduce the objective function with each iteration, and is

a form of block coordinate descent. This iterative approach guarantees the

convergence of this problem to a stationary point. For this work, recovery is

run for a maximum of 100 iterations or until the objective function has not

changed for 10 iterations. The STLS technique is initialized with the BPDN

solution.

For STLS, it is necessary to select the parameters λ1 and λ2. The param-

eter λ1 trades off between the norm of x and the perturbation norm. This

parameter must be chosen small enough such that the change in the BPDN

solution to the ideal weights, ∆x is larger than the squared Frobenius norm

of the difference between the original signal dictionary and the dictionary

generated with the true signal parameters ‖dA∗‖2
F . Searching for λ1 around

∆x

‖dA∗‖2F
should provide a reasonable regularization parameter. The parameter

λ2 can be initialized using the optimal dual variable found by the solution of

the BPDN problem via SeDuMi. This dual variable corresponds to the op-

timal Lagrange multiplier of the BPDN problem used to initialize the STLS

recovery. This should provide a good initial estimate of the regularization

parameter.

The Perturbed CS model can be solved using the AA-P-BPDN algorithm.
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For a parameterized model, this recovery problem can be written as

min
x∈CN ,dω∈RN

‖x‖1 (3.6)

subject to ‖(A(ω) + B ∗∆) ∗ x− b‖2 ≤ ε

‖dω‖∞ ≤ r

∆ = diag(dω)

Here the matrix B is a linear approximation to the change in the model

A(ω) with respect to ω. Choosing B will be discussed for each model. This

problem is initialized with the BPDN solution then updated by first fixing

dω and solving

min
x∈CN

‖x‖1 (3.7)

subject to ‖(A(ω) + B ∗∆) ∗ x− b‖2 ≤ ε

Next, one fixes x and solves the following constrained least-squares problem

min

dω∈
[
−r, r

]N ‖(A(ω) + B ∗∆) ∗ x− b‖2 (3.8)

This is again a form of block coordinate descent and will converge to a first-

order critical point of the Perturbed CS model.

For the AA-P-BPDN algorithm, the parameters ε and r must be chosen.

The parameter ε is selected as in the BPDN model. The parameter r controls

the maximum possible parameter perturbation. Given an evenly spaced ini-

tial parameter sampling, r should intuitively be chosen to be less than half

the sampling spacing to preserve uniqueness. The AA-P-BPDN algorithm

was run for 100 iterations or until the solution had not improved the objective

function significantly for 10 iterations.

Finally, the SLPSR technique is applied to the simulated data. The SLPSR

algorithm is implemented as discussed in Chapter 2 using SOCP to solve the

linearized subproblems. The algorithm was run for 100 iterations or until

the first-order necessary conditions were satisfied.
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3.2 Recovery of Simulated Frequency-Sparse Signals

In order to demonstrate the joint recovery of sparse vectors and parameter

perturbations, this section considers the reconstruction of frequency-sparse

signals from M complex-valued, time-domain measurements. The unknown

parameters to be estimated are the digital frequencies and the unknown

weights are the complex-valued amplitudes corresponding to those frequen-

cies. The digital frequency is bound between zero and 2π for this recovery.

For this work, the simulated K-frequency-sparse signals will take the form

b(t) =
∑K

k=1 βi ∗ exp(ı ∗ ωi ∗ t) for t = 0, 1, . . . ,M − 1 to form a vector

b ∈ CM . The goal of sparse recovery in this application is to provide an

accurate reconstruction of this parameterized signal using very few recovery

elements.

To simulate additive noise, a circularly symmetric, white, complex-valued

Gaussian noise term was generated in MATLAB and added to the simulated

measurements. The noise amplitude was adjusted to achieve the desired

Signal-to-Noise Ratio (SNR).

An important question is how to sample the parameter space. One ap-

pealing approach is to evenly sample the digital frequency space, similar to

the DFT. In this section the parameters will evenly sample the space, with

ωi = 2∗π∗i/(k∗M), i = 0, 1, 2, . . . , k∗M−1. Here k is the oversampling fac-

tor. Then the set of parameter samples will be ω ∈ R(k∗M). Increasing k will

increase the density of the sampling. When k = 1 the sampled frequencies

correspond to the DFT frequencies.

For frequency-sparse signals, the parameterized model is given by

A(ω) =
[
a(ω1), a(ω2), · · · , a(ωn)

]
(3.9)

where the elements of a(·) are given by aj(ωi) = 1√
M
∗ exp(ı ∗ ωi ∗ j), j =

1, 2, . . . ,M . Then A(ω) maps the vector of frequencies ωN to a matrix A ∈
CM×N where each column is a complex sinusoid of frequency ωi and of length

M .

Given an initial set of parameters ω, the goal is to recover a set of sparse

weights x ∈ CN and parameter perturbations dω ∈ RN . The elements of x

correspond to the complex amplitudes of each frequency component in A(ω).

The final model element to consider is the Jacobian of the signal model.
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For the SLPSR algorithm, this should be defined with respect to the real and

imaginary components of x and the real-valued parameters, xj = xr,j+ı∗xi,j.
First, define the function ∂a(ωi),

∂a(ωi) =


0 ∗ ı ∗ 1√

M
∗ eı∗ωi∗0

1 ∗ ı ∗ 1√
M
∗ eı∗ωi∗1

· · ·
(M − 1) ∗ ı ∗ 1√

M
∗ eı∗ωi∗(M−1)

 (3.10)

Then the Jacobian of the model A(ω+dω)∗x at the point x,dω with respect

to xr,xi, and dω is given by

Jc(xr,xi,dω) =
[ real(A(ω + dω)),−imag(A(ω + dω)),

imag(A(ω + dω)), real(A(ω + dω)),

real(∂a(ω1) ∗ (xr,1 + ı ∗ xi,1)), real(∂a(ω2) ∗ (xr,2 + ı ∗ xi,2)), . . .

imag(∂a(ω1) ∗ (xr,1 + ı ∗ xi,1)), imag(∂a(ω2) ∗ (xr,2 + ı ∗ xi,2)), . . .

. . . , real(∂a(ωn) ∗ (xr,n + ı ∗ xi,n))

. . . , imag(∂a(ωn) ∗ (xr,n + ı ∗ xi,n))

]
(3.11)

This defines the change in the real and imaginary parts of the model equations

with respect to the variables x,dω.

Developing the Jacobian also allows one to define an appropriate matrix B

for the linearized model used in the AA-P-BPDN algorithm. One can define

the matrix B as

B =
[
∂a(ω1), ∂a(ω2), · · · , ∂a(ωn)

]
(3.12)

To test recovery, four complex sinusoids were generated with frequencies

ω∗ uniformly randomly distributed between zero and 2π. If generated fre-

quencies were closer than 2π
M

, ω∗ was regenerated. The real and imaginary

parts of the weights were drawn independently from uniform random distri-

butions on [1,−1]. Thirty examples of such signals were generated to form a

testing dataset. Circularly symmetric, white, complex-valued Gaussian noise

was also simulated and added to the signal to generate noisy versions with

20 dB and 10 dB SNR. Figure 3.1 shows an example of this signal in the

time-domain and the frequency domain.

Parameters were initialized as described in Section 3.1 using the known

properties of the simulated data where necessary. For the BDPN, AA-P-
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Figure 3.1: Example of simulated data containing four complex sinusoids
without noise. The simulated data are 16 samples long. Figure 3.1(a) shows
the complex, time-domain signal. Figure 3.1(b) shows the DFT magnitude
of this data. Note that although there are four peaks in the DFT, the
signal is not truly sparse in the DFT domain due to the effects of the
finite-length window.

BPDN, and SLPSR methods, the parameter ε was swept from the initial

estimate to four times the initial estimate. For the SLPSR recovery, the

parameter λ was swept from one times the initial estimate to 0.1 times the

initial estimate. The parameter r, for recovery using AA-P-BPDN, was var-

ied to be 0.1 to 0.5 times the sampling spacing. For recovery with STLS, the

parameters λ1 and λ2 were varied from 0.1 to 10 times the initial estimate.

These algorithms were all applied to the simulated frequency-sparse dataset

to test sparse recovery approaches for this parameterized model. Figure 3.2

compares a sample recovery using BP with an eight-times oversampled dictio-

nary and the proposed SLPSR recovery with an oversampling factor of one.

The true amplitudes, parameters, and parameter perturbations are marked

with circles. The BPDN recovery is reasonable, with several nonzero elements

near the true parameter value used to recover the signal. The BPDN recov-

ery, however, does use more than four coefficients to describe the signal. The

SLPSR recovery, promisingly, consists of only four nonzero elements that

exactly match the amplitude and parameter values of the simulated data.

The SLPSR parameter perturbations also recover the unknown frequency

parameter values.

As noise is added to the simulated data, it is no longer reasonable to expect

perfect recovery of the unknown signal weights and parameters using sparse
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Figure 3.2: Example recovery of simulated data containing four complex
sinusoids with a noiseless measurement of sixteen samples. The SLPSR
reconstruction with no oversampling and the BP reconstruction with
eight-times oversampling are compared. The SLPSR method is able to
exactly recover the unknown coefficients and parameter perturbations. The
SLPSR solution uses only four nonzero elements.
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Figure 3.3: Example recovery of simulated data containing four complex
sinusoids with a SNR of 20 dB from 16 measurements. The SLPSR
reconstruction with no oversampling and the BPDN solution with
eight-times oversampling are compared. The same parameter ε is used for
both reconstructions. The SLPSR solution uses fewer elements, has better
parameter estimates, and more accurately recovers the unknown
coefficients.

recovery techniques. Figures 3.3 and 3.4 show the recovery at 20 dB and 10

dB of the same simulated data in Figure 3.2. Again, the BPDN recovery

is shown for an eight-times oversampled dictionary, and the SLPSR algo-

rithm for a dictionary with an oversampling factor of one. The parameter ε
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is the same for both reconstructions. The BPDN recovery recovers nonzero

coefficients near the true parameter values, but shows odd artifacts in the

recovery as noise is added to the signal. The SLPSR performance is degraded

as well, but still seems to recover parameters and weights close to the true

values. The signal coefficients are no longer exactly recovered, and the small-

est parameter perturbations are not recovered. Still, the SLPSR technique

seems to produce sparse parameter estimates without a highly oversampled

dictionary.
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Figure 3.4: Example recovery of simulated data containing four complex
sinusoids with a SNR of 10 dB from 16 measurements. The SLPSR
reconstruction with no oversampling and the BPDN reconstruction with
four-times oversampling are compared. The same parameter ε is used for
both reconstructions. Although the SLPSR recovery performance has
degraded from the noiseless case, it still recovers fairly sparse solutions.
The BPDN recovery generates a large artifact that could be mistaken for
an additional frequency component.

Although example recoveries provide some interesting insight into sparse

recovery for frequency-sparse signals, a quantitative comparison between

BPDN, SLPSR, AA-P-BPDN, and STLS is required. Using the simulated

frequency-sparse dataset, reconstructions using each technique were obtained

for oversampling factors ranging from one to 16. The parameters for each

reconstruction varied as previously described. Note that for the STLS tech-

nique, recovery with 16 times oversampling was not numerically stable using

the parameter values tested. This oversampling factor is omitted from the

STLS analysis.

For the reconstructions, three metrics were calculated to assess the quality

of the sparse reconstructions. First, the coefficient recovery error captures
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the accuracy of the true coefficient recovery by taking the absolute differ-

ence between the true coefficient, rounded to the nearest parameter value in

the recovery, and the recovered coefficient at that parameter value. This is

summed over all four frequency coefficients. Next, the error in the parameter

recovery finds the indexes with coefficients larger than a small threshold (0.01

in this chapter) and computes the smallest absolute error between the recov-

ered parameter values and the true parameter values. Note that because

the STLS approach uses an unstructured perturbation, it is omitted from

the parameter recovery analysis. Further assumptions would be required to

estimate parameter values from the STLS solution. This metric is again

summed over all four frequency components in the simulated signal. Finally,

the number of nonzero elements is the number of recovered coefficients above

the small threshold of 0.01. This metric assesses the sparsity of the recovered

signal.

Over all tested parameter values, the values minimizing the coefficient

recovery error were used to compute the three metrics. The results were

averaged for all tested methods over the thirty simulated examples.

Figure 3.5 shows these metrics as a function of oversampling factor for

the noiseless case. Generally, the recovery performance of AA-P-BPDN,

BPDN, and STLS improves with the oversampling factor, but these methods

are unable to exactly recover the frequency-sparse signal. Interestingly, the

only method capable of near-exact recovery of the unknown coefficients and

parameters of the frequency-sparse signal is the proposed SLPSR method.

The best recovery using the SLPSR method is actually for low oversampling

factors. The SLPSR technique does not require a highly oversampled signal

dictionary for sparse recovery and actually shows better signal recovery with

low oversampling factors.

Recovery of noiseless signals, however, is not of as much practical interest

as recovery of signals with noise. The four sparse recovery techniques were

applied to frequency-sparse signals with additive noise. The results are shown

in Figures 3.6 and 3.7 for 20 dB and 10 dB SNR, respectively.

In the presence of additive noise, perfect recovery is no longer possible.

The STLS technique is capable of recovering the coefficients more accurately

than with the standard BPDN reconstruction, while using fewer elements

on average. The STLS reconstruction generally improves with oversampling.

The STLS technique does not, however, provide improved parameter esti-
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Figure 3.5: Recovery of four sinusoids from 16 noiseless measurements,
averaged over 30 trials. Figure 3.5(a) shows the average error in coefficient
recovery for BP, SLPSR, STLS and AA-P-BPDN as a function of the
oversampling factor. Figure 3.5(b) shows the average error in parameter
recovery. Figure 3.5(c) shows the average number of nonzero coefficients
recovered. The SLPSR approach is able to recover the signal with minimal
error, even at coarse initial samplings. The other techniques are not able to
exactly recover the signal even in the noiseless case.

mates due to the unstructured parameter perturbation. The AA-P-BPDN

algorithm generally improves on the recovery performance of BPDN, and

outperforms the proposed SLPSR technique at high oversampling factors.

This suggests that for highly oversampled dictionaries, the linear perturba-

tion model used in the AA-P-BPDN algorithm may be more appropriate

for reconstruction. Interestingly, the SLPSR solution again demonstrates

improved recovery at lower oversampling factors. This technique produces

solutions that are quite sparse, while still providing parameter recovery errors

on par with the other algorithms tested. Performance of the SLPSR algo-

rithm generally decreases (errors increase) with the oversampling factor. For
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Figure 3.6: Recovery of four sinusoids from 16 measurements with 20 dB
SNR, averaged over 30 trials. Figure 3.5(a) shows the average error in
coefficient recovery for BPDN, SLPSR, STLS and AA-P-BPDN as a
function of the oversampling factor. Figure 3.5(b) shows the average error
in parameter recovery. Figure 3.5(c) shows the average number of nonzero
coefficients recovered. The SLPSR approach with no oversampling provides
the best performance of the available methods, estimating the parameters
and the coefficients well with few nonzero coefficients.

frequency-sparse signals, the proposed SLPSR algorithm can perform sparse

recovery without the need for a highly oversampled signal dictionary. In fact,

the most accurate coefficient recovery of all tested methods was the SLPSR

technique with no oversampling. This solution was consistently sparser than

the AA-P-BPDN or BPDN solutions at any oversampling factor.

The proposed SLPSR algorithm is capable of recovering simulated, frequency-

sparse signals without the need for highly oversampled signal dictionaries.

The following sections present further numerical examples of SLPSR recov-

ery of frequency-sparse signals to examine the sensitivity to parameters and

super-resolution potential of this technique.
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Figure 3.7: Recovery of four sinusoids from 16 measurements with 10 dB
SNR, averaged over 30 trials. Figure 3.5(a) shows the average error in
coefficient recovery as a function of the oversampling factor. Figure 3.5(b)
shows the average error in parameter recovery. Figure 3.5(c) shows the
average number of nonzero coefficients recovered.

3.3 Parameter Sensitivity

For the proposed SLPSR recovery algorithm, there are two key parameters

to select: λ and ε. This section contains some simple numerical examples of

the SLPSR sensitivity to these two parameters for frequency-sparse signals.

The parameter λ is used to weigh between the norm of the parameter

perturbations and the norm of the sparse signal x. Section 2.5 lays out the

basic intuition for selecting this parameter; this section investigates the effect

of varying this parameter on the recovery of frequency-sparse signals. Figure

3.8 shows the results of varying the parameter λ from the suggested bound

to 0.1 times the suggested bound. Exactly at the calculated bound recovery

is affected, but recovery is robust to the changes in parameter value below

this guideline.
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(b) Recovered parameter perturba-
tions, one times the calculated bound
for λ
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(c) Recovered coefficient magnitude,
0.5 times the calculated bound for λ
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tions, 0.5 times the calculated bound
for λ
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(e) Recovered coefficient magnitude,
0.1 times the calculated bound for λ
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(f) Recovered parameter perturba-
tions, 0.1 times the calculated bound
for λ

Figure 3.8: SLPSR recovery of four sinusoids from 16 noiseless
measurements for different values of the regularization parameter λ. The λ
value is taken as one, 0.5, and 0.1 times the bound calculated for this
recovery. There are errors in recovery exactly at the calculated bound, but
the recovery is relatively robust for a wide range of λ values.
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(a) Recovered coefficient magnitude,
20 dB SNR, one times the calculated
bound for ε
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(b) Recovered parameter perturba-
tions, 20 dB SNR, one times the cal-
culated bound for ε
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(c) Recovered coefficient magnitude,
20 dB SNR, two times the calculated
bound for ε
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tions, 20 dB SNR, two times the cal-
culated bound for ε
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(e) Recovered coefficient magnitude,
20 dB SNR, four times the calculated
bound for ε
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(f) Recovered parameter perturba-
tions, 20 dB SNR, four times the cal-
culated bound for ε

Figure 3.9: SLPSR recovery of four complex-valued sinusoids from 16
noiseless measurements for different values of the regularization parameter
ε. The ε value is taken as one, two, and four times the bound calculated for
this recovery. Adjusting this parameter can significantly impact the
recovered coefficients.
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For this algorithm, the other major parameter to select is ε, which allows

for deviations from the measurements to correct for noise. Intuitively, ε

should be chosen to be slightly larger than the norm of any additive noise

term. Figure 3.9 shows the effect of varying this parameter from one times

the norm of the additive noise term to four times the additive noise term, at

20 dB SNR. The recovery is more sensitive to the selection of this parameter

than λ. Selecting an ε that is too large results in degraded recovery, especially

of the signal coefficients.

For sparse recovery with the SLPSR algorithm, careful selection of the two

key parameters are required. The recovery, however, seems to be less heavily

affected by the parameter λ as long as it is below the selection guidelines

developed in Section 2.5. The selection of the parameter ε requires more

careful thought, but this is also required for the BPDN, AA-P-BPDN, and

STLS (through the dual variable) algorithms.

3.4 Example of Super-Resolution

This work does not present a formal resolution analysis of the SLPSR algo-

rithm for frequency-sparse signals. The estimation of the unknown frequency

parameters, for instance, will be bounded by the statistical properties of this

problem. As the algorithm is only convergent to a first-order necessary point,

the achievable resolution of the SLPSR algorithm is also a function of the ini-

tial sampling of the parameter space. Given the performance of the SLPSR

algorithm in the noiseless case, however, this algorithm could potentially ex-

ceed the classic resolution of the DFT. Regardless of zero-padding, the DFT

is typically defined to have a resolution limit of 2∗π
M

.

The SLPSR algorithm is able to resolve frequency components spaced more

closely than 2∗π
M

. Figure 3.10 shows the recovery of a two-frequency sparse

signal at 20 dB SNR. The two frequency components are separated by 0.3 ∗
2∗π
M

. This example demonstrates that the SLPSR algorithm can recover the

coefficients and parameter values of frequency-sparse signals with frequency

components separated by less than the DFT resolution limit.

Using sparse recovery with BPDN and an oversampled signal dictionary,

it is also possible to resolve closely spaced frequency components. Figure

3.11 demonstrates BPDN recovery for two- and eight-times oversampled dic-
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(b) Recovered parameter perturbations using
SLPSR, 20 dB SNR

Figure 3.10: Example recovery demonstrating the potential super-resolution
capability of SLPSR. In this example, the length-16 signal is composed of
two complex sinusoids with additive Gaussian noise at 20dB SNR. The
spacing between the sinusoid frequencies is only 2∗pi∗0.3

16
, less than the

Rayleigh resolution limit for this problem. In this example the DFT is
unable to resolve the two frequencies, but SLPSR can recover the
coefficients and parameter perturbations almost exactly.

tionaries. With the eight-times oversampled dictionary, there are two peaks

corresponding to each transmitter. Clearly the resolution ability of BPDN

depends on the sampling of the signal dictionary. However, it is important

to note that simply increasing the dictionary oversampling will not necessar-

ily increase the resolution. The fundamental resolution limit of the signal

will depend on the frequency spacing, SNR, and relative amplitudes of the

signals. Increasing oversampling factor does not automatically increase res-
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(a) Recovered coefficient magnitude
using BPDN, two-times oversampled,
20 dB SNR
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(b) Recovered coefficient magnitude
using BPDN, eight-times oversam-
pled, 20 dB SNR

Figure 3.11: Example recovery demonstrating the potential super-resolution
capability of standard BPDN recovery with evenly-spaced frequency
sampling. In this example, the length-16 signal is composed of two complex
sinusoids with additive Gaussian noise at 20dB SNR. The spacing between
the sinusoid frequencies is only 2∗pi∗0.3

16
, less than the Rayleigh resolution

limit for this problem. At an oversampling factor of eight, BPDN is capable
of resolving two peaks, but does make significant errors estimating the
signal amplitude coefficients. At an oversampling factor of two, BPDN is
not able to resolve the peaks. Note that the resolution of recovery via
BPDN is dependent on the oversampling factor.

olution ability, which is still governed by these fundamental limits.

After examining the recovery of frequency-sparse signals in detail, the final

section of this chapter examines sparse recovery with a different parameter-

ized model.

3.5 Simulated Source Localization with a Linear Array

Another common and important parameterized model arises in array process-

ing, where signals arrive on an array of sensors and are spatially sampled.

Here the goal is to recover the spatial location of signal sources from the sig-

nal arriving on the array. This work considers the simple case of simulated,

narrow-band, far-field, complex-valued signals arriving on a linear array with

equally spaced elements.

In this simplified case, the goal is to recover the angular direction of arrival

θ of each source from the measurements on a linear array with equally spaced
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sensors. Simulated complex sinusoidal sources of the same frequency were

placed at a radial distance r and angle θi from the array center generating

a time-domain signal bi ∗ exp(ı ∗ ω ∗ t). The wave propagates spatially with

a speed c. As signals from different locations will arrive at the sensors at

different times, it is possible, in principle, to determine the origin of the

sources.

The simulated array consisted ofM sensors in a linear pattern. The spacing

between sensors was d. Then, depending on the origin of the source, the

array measurements will have a different response. With this simple array

geometry and far-field sources (r >> M ∗ d), it is only possible to estimate

the angle of arrival θi of each signal arriving at the array. For this geometry,

the array response of a far-field signal from a direction θi is given by

a(θi) =



1

exp(−ı ∗ 2πfd
c
∗ cos(θi))

exp(−ı ∗ 2πfd
c
∗ cos(θi) ∗ 2)

...

exp(−ı ∗ 2πfd
c
∗ cos(θi) ∗ (M − 1))


(3.13)

where c is the speed of the wave in meters per second, f is the frequency of

the signal in hertz, and d is the array spacing in meters. Given a sampling

of the direction of arrival from zero to π, the parameterized model A(θ) can

be defined with each column giving the response from a different θi.

For the AA-P-BPDN algorithm and the proposed SLPSR solution, it is

necessary to define the function ∂a(θi),

∂a(θi) =


0

2πıfd
c
∗ sin(θi) ∗ exp(−2πıfd

c
∗ cos(θi))

...
2πıfd(M−1)

c
∗ sin(θi) ∗ exp(−2πıfd(M−1)

c
∗ cos(θi))

 (3.14)

This definition can be used to form the Jacobian and the matrix B required

for AA-P-BPDN.

The goal then is to recover the complex-valued amplitudes and unknown

directions of arrival of the incoming narrow-band, far-field sources. In this

example, f was chosen small enough to allow for unambiguous source lo-
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calization. Reconstructions were done using a single data snapshot, or one

measurement from each sensor.

Thirty example snapshots were simulated of two signals incident on a lin-

ear array of eight elements. The source frequency was the same for both

sources and across all simulations. The sources were placed at random an-

gles generated uniformly between zero and π at a large radial distance. The

real and imaginary parts of the signal amplitudes were drawn independently

from a uniform random distribution over
[
−1, 1

]
. The time differences be-

tween the source locations and each array element were calculated and used

to generate the signal at the array. To generate noisy signals, white, cir-

cularly symmetric, complex-valued Gaussian noise was added to the signal.
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Figure 3.12: Example recovery of simulated source localization of two
narrow-band, far-field sources with eight sensors. The SLPSR
reconstruction with no oversampling and the BP reconstruction with
four-times oversampling are compared. In this model, the SLPSR recovery
is not exact, but does appear to improve parameter and coefficient
estimates compared to the BP recovery.

Figure 3.12 shows the simulated recovery of an example, noiseless signal

using BPDN and a four-times oversampled dictionary and the SLPSR algo-

rithm with an oversampling factor of one. In this case, the SLPSR recovery

is not exact, but does seem to improve sparse recovery when compared with

the BPDN solution.

As with the frequency-sparse signals, the AA-P-BPDN, BPDN, STLS, and

SLPSR algorithm were applied to the recovery of the simulated direction of

arrival data. The recovery coefficient error, parameter recovery error, and
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recovery, no noise

Figure 3.13: Recovery results of simulated source localization of two
narrow-band, far-field sources with eight sensors. Figure 3.13(a) shows the
average error in coefficient recovery for BP, SLPSR, STLS and
AA-P-BPDN as a function of the oversampling factor. Figure 3.13(b) shows
the average error in parameter recovery. Figure 3.13(c) shows the average
number of nonzero coefficients recovered. Even in the noiseless case, none of
the sparse-recovery algorithms are able to perfectly recover the signal. The
SLPSR recovery with no oversampling, however, achieves the best recovery
of all methods tested.

coefficient recovery error were calculated as for the frequency-sparse signals.

Figure 3.13 shows the results of this for the noiseless case. For this model,

the recovery is not quite error-free, even in the noiseless case. The SLPSR

algorithm however, achieves the lowest error in the recovered coefficients and

parameters while generating sparse solutions.

However, with this parameterized model, the recovery techniques do not

perform as well with additive noise. Figure 3.14 shows the results of the

recovery with 20 dB SNR. Here the sparse recovery techniques do not perform

as well, in particular the SLPSR recovery. The AA-P-BPDN and SLPSR
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Figure 3.14: Example recovery of simulated source localization of two
narrow-band, far-field sources with eight sensors in an equally spaced, linear
array. Figure 3.14(a) shows the average error in coefficient recovery for
BPDN, SLPSR, STLS and AA-P-BPDN as a function of the oversampling
factor. Figure 3.14(b) shows the average error in parameter recovery.
Figure 3.14(c) shows the average number of nonzero coefficients recovered.

techniques both improve coefficient estimates and generate sparser solutions

than BPDN, but the linear perturbation model of AA-P-BPDN outperforms

the SLPSR technique.

This example demonstrates that it is necessary to carefully consider the

parameterized model when developing sparse recovery techniques.

Now that the proposed algorithm has been explored with simulated data,

Chapter 4 demonstrates the sparse recovery of real-world RF data using the

BPDN and SLPSR algorithms.
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CHAPTER 4

RECONSTRUCTION RESULTS FOR
SPARSE SIGNAL RECOVERY OF RADIO

FREQUENCY DATA

The ultimate goal of developing sparse recovery techniques is to apply them

to real-world signals. Many real-world signals exhibit considerable structure

and are sparse in a particular signal dictionary. Using Radio-Frequency data,

this chapter considers the recovery of real-world frequency-sparse signals.

The goal is to recover sparse representations of these signals that accurately

estimate the amplitudes and frequencies present in the signal. In this chapter,

the techniques developed for simulated frequency-sparse signal recovery in

Section 3.2 are applied to real-world data. The proposed SLPSR technique

is used to recover sparse signals and parameter perturbations, and the results

are compared against BPDN reconstructions.

An example of a real-world, frequency-sparse signal can be found in the

High Frequency (HF) spectrum. This segment of the electromagnetic spec-

trum corresponds to frequencies between 3 megahertz and 30 megahertz.

In parts of the HF spectrum, there are many amateur radio transmitters

with well-defined center frequencies and minimal modulation around those

center frequencies. Many of these transmitters are transmitting a form of

continuous-wave Morse code, with long and short duration signals. These

signals appear to be frequency-sparse over short segments, with the addi-

tional complication of transition events when the transmitters turn on or

off.

This chapter applies the sparse recovery algorithm developed in this work

to RF data, specifically the HF spectrum. The data was collected by Pro-

fessor Steve Franke of the University of Illinois. Received RF signals were

down-converted from a center frequency of 7.1 megahertz to complex base-

band and sampled at 250 kilohertz. This dataset contains many different

transmitters, and segments of the data appear to be frequency-sparse.

In order to create a dataset suitable for testing sparse recovery with a

parameterized measurement model, the complex baseband signal with a 250
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kilohertz bandwidth was bandpass filtered to a 16 kilohertz bandwidth, which

was then down-sampled by a factor of eight. This dataset represents a narrow

segment of the HF spectrum with several well-defined transmitters, which

appears to be frequency-sparse.

4.1 Reconstruction of Radio-Frequency Data

To explore the potential of the proposed SLPSR algorithm for joint recovery

of sparse signal weights and sparse parameter perturbations on real-world

data, the BPDN algorithm and SLPSR algorithm were both applied to a

segment of the RF data. Figure 4.1 shows the magnitude spectrogram cor-

responding to this segment of data. This spectrogram was generated with

length-64 Hann windows with a 50% overlap. As can be seen in the fig-

ure, there appear to be transmitters in different bands broadcasting in short

bursts. There is no particularly obvious modulation. Due to these observa-

tions, it is reasonable to assume these are radio transmitters broadcasting

continuous-wave Morse code. Judging by the spectrogram, it appears that

this data may be well modeled as a frequency-sparse signal.

The goal of applying sparse recovery techniques to this dataset is to repre-

sent the data as a combination of only a few complex-valued sinusoids. The

formulation of Section 3.2 is applied to this data to recover a set of sparse

signal weights x and, in the case of the SLPSR algorithm, a set of sparse

parameter perturbations dω.

The initial parameter sampling was chosen with an evenly spaced grid, the

same sampling used when recovering the simulated data. The parameters

ωi correspond to i ∗ 2 ∗ π/(k ∗M) where k is the oversampling factor and

i = 0, 1, . . . , k ∗ M − 1. When k is equal to one, the parameters are not

oversampled and correspond to the DFT frequencies. For both the SLPSR

and BPDN algorithms, the parameter ε was varied between ten and twenty

percent of the total power in each reconstructed data frame. For the SLPSR

technique, the initial parameter λ was chosen using the guidelines in Section

2.5. The change possible in the `1 norm of x, ∆x, was taken to be 20% of the

`1 norm of the BPDN solution. The estimated parameter perturbation, ∆dω

was calculated by allowing for up to four elements to move up to one half

of the spacing between parameter values. The parameter λ was then tuned
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Figure 4.1: Magnitude Spectrogram of example section of Radio-Frequency
spectral data. The spectrogram if formed with length-64 Hann windows
with a 50% overlap. The data appear to be composed of complex sinusoids
of finite durations. It is quite likely that this dataset captures transmitters
in different bands broadcasting a form of continuous-wave Morse code. As
the transmitters appear to be quite discrete and do not show obvious
modulation, it is likely they can be well modeled as a complex,
frequency-sparse signal.

around this initial estimate.

Figure 4.2 shows two sample reconstructions using the BPDN technique

with ε set to 10% of the total norm of the data. The reconstructions use

length-64 windows of data with no overlap as measurement vectors. Results

are shown with a two- and four-times oversampled dictionary. The results

are displayed by taking a dense grid of frequencies and plotting the recovered

sparse magnitudes x at the corresponding frequency parameter value.

The sparse solutions recovered by BPDN seem qualitatively reasonable.

The recovered coefficients are clustered around the transmitters that are vis-

ible in the spectrogram. This gives an estimate of the measured data as a
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(a) Coefficient Magnitude of sparse recovery using BPDN, using
a two-times oversampled dictionary
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(b) Coefficient Magnitude of sparse recovery using BPDN, using
a four-times oversampled dictionary

Figure 4.2: Example sparse recovery of RF data with BPDN.
Reconstructions are done with length-64, non-overlapping segments of data.
This corresponds exactly to the time domain data used to generate the
spectrogram in Figure 4.1. The BPDN recovery seems qualitatively
reasonable. Studying the reconstructions in detail, however, it appears that
the BPDN solution uses several nearby frequency elements to describe each
transmitter, and the recovery quality varies with the initial sampling.
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frequency-sparse signal, with some errors. Using a two times oversampled

dictionary, the elements used to reconstruct a given transmitter can be quite

spread apart. As oversampling increases, the sparse recovery appears to more

closely approximate the center frequencies of the transmitters. It is impor-

tant to note, however, that the BPDN solution still uses several elements to

approximate each transmitter. Overall, the solutions seem reasonable, but

the reconstruction depends heavily on the selection of the initial sampling

grid. As the BPDN solutions use several elements to describe each trans-

mitter, it may also be able to generate sparser solutions to represent this

data.

After attempting recovery with BPDN, the SLPSR technique was applied

to this dataset to see if the sparse recovery could be improved by allowing

for parameter perturbations. The data was the same used for the BPDN

recovery. Figure 4.3 shows the results of the SLPSR algorithm for the same

parameter ε used for the BPDN recovery, with no frequency oversampling.

The magnitude of the recovered sparse signal is plotted at the point corre-

sponding to the final frequency parameter (the original frequency parameter

plus the recovered parameter perturbation). The resulting parameter per-

turbations are shown by recovery index.

Reconstruction with the SLPSR technique also seems to produce qualita-

tively reasonable frequency-sparse reconstructions of this data. The recov-

ered magnitudes match well with the transmitters observed in the spectro-

gram. The recovered parameter perturbations appear to place the transmit-

ters at the correct frequencies. What is especially interesting is that this is

achieved without a highly oversampled signal dictionary.

This result demonstrates that the SLPSR technique can represent frequency-

sparse, real-world data without the need to generate highly oversampled dic-

tionaries. Another observation is that the SLPSR technique appears to use

fewer elements to describe each transmitter. It is possible that the SLPSR

technique is actually recovering a sparser solution than the oversampled

BPDN solution.

The contrast between recovery with BPDN and SLPSR can be seen more

clearly when examining the magnitude plots in detail. Figure 4.4 shows a

magnified version of the plots for BPDN recovery with two- and four-times

oversampled dictionaries. From the magnified plots, it is clear that each

transmitter is reconstructed using several frequency elements. The elements
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(a) Coefficient Magnitude of sparse recovery using SLPSR, no over-
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Figure 4.3: Example sparse recovery of RF data with the SLPSR technique.
Reconstructions are done with length-64, non-overlapping segments of data.
This corresponds exactly to the time domain data used to generate the
spectrogram in Figure 4.1. Magnitude plots are generated by plotting the
recovered coefficient magnitude for each frame using a dense grid of
frequencies. Parameter perturbations are shown for each recovery index.
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(b) Coefficient Magnitude of sparse recovery with BPDN, four-times over-
sampled dictionary, magnified

Figure 4.4: Example sparse recovery of RF data with BPDN. These plots
show a magnified version of Figure 4.2 around data frames 250 to 300.
BPDN recovery depends on the oversampling and uses several elements to
describe each transmitter.
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used vary from frame to frame. This problem still arises in the four-times

oversampled dictionary. Although the BPDN solution seems qualitatively

close to the underlying data, the solution is dependent on the initial sampling

of the parameter space and is not necessarily the sparsest solution.

Figure 4.5 shows the magnified magnitude plot for the SLPSR technique.

Here it appears that one large element is used to describe the transmitters.

The frequency estimate varies somewhat from frame to frame, but seems

quite consistent. This solution appears to explain the data as well as the

BPDN solution while producing a sparser solution. A numerical comparison

of performance using these two methods can help elucidate the differences

between them.
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Figure 4.5: Coefficient magnitude recovered by the SLPSR method. This
plot is a magnification of frames 250 to 300 of Figure 4.3. The SLPSR
recovery seems to produce very sparse solutions that estimate the
transmitters in the data.

To help quantitatively compare the two methods, a short segment of the

radio frequency data was isolated. This short segment of data appears to

have only two distinct transmitters, one of which ends transmission midway
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through the data segment. For this example, length-16 windows were used

to allow for reconstruction with many different oversampling factors and

parameter values. The spectrogram of this data is shown in Figure 4.6 with

length-16 Hann windows with a 50% overlap. The two transmitters can be

identified with this window length, but have quite broad main peaks due to

the short window size.
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Figure 4.6: Magnitude Spectrogram of a short example section of RF
spectral data containing two transmitters. The spectrogram is formed with
length-16 Hann windows with a 50% overlap.

BPDN and SLPSR solutions were obtained using length-16 segments of

this data with no overlap. The parameter ε was varied from ten to twenty

percent of the total norm of each data segment. The parameter λ was varied

as described above.

Figures 4.7 and 4.8 show the recovery of this data using SLPSR and BPDN

for the same value for ε. The BPDN recovery is shown with a four-times

oversampled dictionary, and the SLPSR solution for a dictionary without

oversampling. Both solution methods seem to produce sensible estimates
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of the transmitters, but the SLPSR solution uses fewer elements per trans-

mitter. In this simple example, it is possible to estimate the properties of

the transmitters using long data windows and quantitatively compare the

recovery using the two methods.
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Figure 4.7: Example sparse recovery of a short segment of RF data with
BPDN. Reconstructions are done with length-16, non-overlapping segments
of data using a four-times oversampled dictionary. This corresponds exactly
to the time domain data used to generate the spectrogram in Figure 4.6.
The BPDN seems to provide a reasonable sparse recovery of this data,
however several frequency elements are used to describe each transmitter.

For this case, the transmitter center frequencies were estimated using the

peaks of the DFT of the signal taken over the entire window over which

both transmitters were active. These estimates were then taken as the true

frequency parameters for the length-16 reconstructions. The frame in which

one transmitter appears to have turned off was omitted from the comparison,

giving twenty-nine frames.

Using the SLPSR and BPDN algorithms with the same parameters used
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(a) Coefficient Magnitude of sparse recovery using SLPSR, no
oversampling
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(b) Parameter perturbations recovered using SLPSR, no over-
sampling

Figure 4.8: Example sparse recovery of a short segment of Radio Frequency
data with the SLPSR technique. Reconstructions are done with length-16,
non-overlapping segments of data. This corresponds exactly to the time
domain data used to generate the spectrogram in Figure 4.6. Magnitude
plots are generated by plotting the recovered coefficient magnitude at each
recovered parameter value. Parameter perturbations are shown for each
recovery index.
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to generate Figures 4.7 and 4.8, several metrics were calculated and averaged

over twenty-nine frames. This was repeated for different oversampling factors

ranging from one to eight. First was the `1 norm of the recovered sparse co-

efficients x. Second was the parameter estimation error from the transmitter

frequencies. This was found by taking the closest parameter corresponding

to a nonzero element of x and computing the absolute difference to the fre-

quency parameters derived from the data. Finally, the number of elements of

x above a threshold of 0.01 was computed for each frame. These were then

averaged over all frames and displayed as a function of the oversampling

factor.

Figure 4.9 compares the recovery of this segment of data with BPDN and

SLPSR. For higher oversampling factors, the BPDN and SLPSR solutions

coincide; the SLPSR solution does not differ significantly from the BPDN

solution. What is more interesting is the behavior at lower oversampling fac-

tors. The SLPSR solution has almost the same average `1 norm for all over-

sampling factors. The sparsest solution of all conditions tested corresponds

to the SLPSR solution with no oversampling, using approximately 1.5 fewer

elements on average than the BPDN solution with eight-times oversampling.

This configuration also produces parameter estimation error on par with the

oversampled BPDN solution. The SLPSR solution is much less dependent

on the amount of oversampling than the BPDN solution and in fact produces

sparser solutions with no frequency oversampling.

Overall, sparse recovery techniques are a reasonable approach to repre-

sent frequency-sparse RF data. Both the BPDN approach and the SLPSR

solutions produce sharp estimates of the parameters peaks. True recovery

error will still, of course, be bound by the statistical limits of the problem.

The proposed SLPSR technique seems to offer two main advantages over the

BPDN sparse recovery approach. First, the SLPSR recovery does not re-

quire a high oversampling factor in the initial parameter sampling. Second,

SLPSR recovery with coarse parameter sampling produces sparser solutions

while still providing recovery error on par with the oversampled BPDN re-

covery. These reconstruction results demonstrate the recovery of real-world

sparse signals and parameter perturbations using a parameterized measure-

ment model. Moreover, this model can be extended to better reconstruct

the signal when the assumption of frequency-sparse signals is violated by the

time dynamics of the signal.
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Figure 4.9: Quantitative comparison of the recovered `1 norm, parameter
estimation error, and number of nonzero components using SLPSR and
BPDN on frequency-sparse RF data. The reconstructions were done with
non-overlapping, length-16 segments of the data shown in Figure 4.6. The
results are plotted against the oversampling factor used to generate the
initial parameter sampling.

4.2 Improving Modeling Using Transition Elements

In the real-world RF data studied in this section, the signal is block-wise

frequency-sparse. The transmitters, however, are broadcasting Morse code,

which necessitates the transmitter turning on and off. These transition peri-

ods are not frequency sparse. To create a truly sparse representation of this

RF data, these on-transition and off-transition events must be modeled as

dictionary elements.

This observation raises a much more general problem for sparse recovery

in real signal processing applications. Many signals are not frequency-sparse,
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but composed of complex time-frequency events. This section demonstrates

how a sparse recovery problem can be formulated by generating a parameter-

ized measurement model for these events. Although different parameterized

models will be required for different applications, this technique has impact

in a wide set of applications including radar, acoustics, and biomedical signal

processing.

In the example RF data, it appears that only on-transition and off-transition

events are of interest. This approach, however, could be generalized to other

time-frequency events.
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Figure 4.10: DFT magnitude spectrogram using the same segment of data
in Figure 4.6 with length-64 Hann windows and 50% overlap. A ringing
effect is noticeable when the transmitter turns off. This effect is not
frequency-sparse.

Figure 4.10 shows the effect of transitions for a simple segment of data

containing two transmitters. This figure shows the magnitude spectrogram

for a length-64 window with 50% overlap. One of the transmitters turns off

partway through this data. There is a noticeable ringing effect here due to

this time event. At this frame, the data is not a frequency-sparse signal as
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defined in Section 3.2. A new formulation is needed to capture this dynamic.

To apply the SLPSR algorithm to such events, a differentiable, param-

eterized model is required. By choosing a sigmoid ramp function for this

data, it is possible to define a differentiable element representing on and off

frequency events. This ramp function transitions from zero to one around a

center frequency, with the ramp smoothness controlled by a slope parameter.

The sigmoid ramp is parameterized by the transition time ti, slope parameter

ki, and frequency ωi. Dictionary elements modeling transitions from the off

to on state (on-transition) can be defined as

aon(ωi, ki, ti) =



1√
M
∗ 1 ∗ 1

1+exp(−ki∗(0−ti))
1√
M
∗ exp(ı ∗ ωi ∗ 1) ∗ 1

1+exp(−ki∗(1−ti))
1√
M
∗ exp(ı ∗ ωi ∗ 2) ∗ 1

1+exp(−ki∗(2−ti))

. . .
1√
M
∗ exp(ı ∗ ωi ∗ (M − 1)) ∗ 1

1+exp(−ki∗((M−1)−ti))


(4.1)

where M is the length of the measurement vector. Similarly, transitions from

the on to off state (off-transition) can be modeled as

aoff (ωi, ki, ti) =



1√
M
∗ 1 ∗ 1

1+exp(ki∗(0−ti))
1√
M
∗ exp(ı ∗ ωi ∗ 1) ∗ 1

1+exp(−ki∗(1−ti))
1√
M
∗ exp(ı ∗ ωi ∗ 2) ∗ 1

1+exp(ki∗(2−ti))

. . .
1√
M
∗ exp(ı ∗ ωi ∗ (M − 1)) ∗ 1

1+exp(ki∗((M−1)−ti))


(4.2)

These dictionary events can be added to augment the signal dictionary

defined in Section 3.2. An initial sampling of center times and slope param-

eters must be chosen. This generates an augmented dictionary capable of

capturing transition events.

To apply the SLPSR algorithm, one would like to recover a set of pa-

rameter perturbations to correct for the initial sampling. This requires the

definition of the Jacobian for this problem. Defining the Jacobian requires

the definition of several functions capturing how the model changes with the
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new parameters. For on-transition events, define ∂aωi,on as

∂aωi,on(ωi, ki, ti) =



0
ı√
M

exp(ı ∗ ωi ∗ 1) 1
1+exp(−ki∗(1−ti))

2ı√
M

exp(ı ∗ ωi ∗ 2) 1
1+exp(−ki∗(2−ti))

. . .
(M−1)ı√

M
exp(ı ∗ ωi ∗ (M − 1)) 1

1+exp(−ki∗((M−1)−ti))


(4.3)

define ∂aki,on as

∂aki,on(ωi, ki, ti) =



1√
M
∗ 1 ∗ (0−ti) exp(−ki(0−ti))

(1+exp(−ki(0−ti)))2
1√
M

exp(ı ∗ ωi ∗ 1) (1−ti) exp(−ki(1−ti))
(1+exp(−ki(1−ti)))2

1√
M

exp(ı ∗ ωi ∗ 2) (2−ti) exp(−ki(2−ti))
(1+exp(−ki(2−ti)))2

. . .
exp(ı∗ωi∗(M−1))√

M

((M−1)−ti) exp(−ki((M−1)−ti))
(1+exp(−ki((M−1)−ti)))2


(4.4)

and define ∂ati,on as

∂ati,on(ωi, ki, ti) =



1√
M
∗ 1 ∗ (−ki) exp(−ki(0−ti))

(1+exp(−ki(0−ti)))2
1√
M

exp(ı ∗ ωi ∗ 1) (−ki) exp(−ki(1−ti))
(1+exp(−ki(1−ti)))2

1√
M

exp(ı ∗ ωi ∗ 2) (−ki) exp(−ki(2−ti))
(1+exp(−ki(2−ti)))2

. . .
exp(ı∗ωi∗(M−1))√

M

(−ki) exp(−ki((M−1)−ti))
(1+exp(−ki((M−1)−ti)))2


(4.5)

A similar set of equations can be defined for the off-transition events.

These functions can be used to form an augmented Jacobian, using a similar

method as with the frequency-sparse signals. For each parameter, the column

of the Jacobian is summed over all columns of the dictionary in which the

parameter appears. Now this augmented model can be used to recover a

wider range of signals than possible with the frequency-sparse dictionary.

The SLPSR solution using only the frequency-sparse dictionary has sig-

nificant error during transition elements. Figure 4.11 shows the recovered

SLPSR magnitudes. This recovery uses a length-64 window and a two-times

oversampled dictionary. At Frame 5 there is significant distortion due to the

transition event. This frame is shown in Figure 4.12. There is clear distor-

tion around the frequency that transitions from on to off. The augmented

dictionary may be able to more accurately model this signal.
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Figure 4.11: Magnitude of SLPSR recovery for length-64 segments of data
with a two-times oversampled dictionary. This is the same data as in Figure
4.10. At Frame 5 there is significant distortion due to the transition event.
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Figure 4.12: Recovered SLPSR coefficient magnitude for Frame 5 of the
reconstructed signal in Figure 4.11. Around the transmitter which
transitions from on to off there are significant distortion artifacts.

Now consider the case of SLPSR recovery using the augmented dictionary.

For this example, the transition time was set at 32 samples (of a 64 sample

window) for each frequency sample. The slope parameter was fixed at two for
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all frequencies. The frequency parameters were then perturbed to improve

recovery. Except for the parameter λ, the same settings were used as for

reconstruction using only the frequency-sparse dictionary. Figure 4.13 shows

the reconstructions using this data. The transition elements are only nonzero

at the transition point. For blocks where the data is frequency-sparse, the

transition elements are not used.
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(a) Magnitude of frequency-sparse co-
efficients, two-times oversampled
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(b) Magnitude of on-transition event
coefficients, two-times oversampled
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(c) Magnitude of off-transition event
coefficients, two-times oversampled

Figure 4.13: Recovery of data shown in Figure 4.10 using SLPSR with a
two-times oversampled dictionary. This dictionary includes on-transition
and off-transition events. Figure 4.13(a) shows the recovery for the
frequency elements. Figure 4.13(b) shows the recovery for the on-transition
elements. Figure 4.13(c) shows the recovery for the off-transition elements.

When there is a transition from on to off at Frame 5, the corresponding

element is used to reconstruct the signal. The transition frame, Frame 5,

is shown in Figure 4.14. Compared to the reconstruction with only the

frequency-sparse dictionary, the reconstruction uses fewer large elements.

There is still some distortion due to the transition event, but it is greatly

reduced. The elements corresponding to the transition event clearly indicate

77



that the transition has been captured in the recovery.
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(a) Coefficient magnitude of
frequency-sparse elements, Frame 5
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(b) Coefficient magnitude of on-
transition elements, Frame 5
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(c) Coefficient magnitude of off-
transition elements, Frame 5

Figure 4.14: Recovery of Frame 5 shown in Figure 4.13 using SLPSR with a
two-times oversampled dictionary. This dictionary includes on-transition
and off-transition events. Figure 4.14(a) shows the recovery for the
frequency-sparse elements. Figure 4.14(b) shows the recovery for the
on-transition elements. Figure 4.14(c) shows the recovery for the
off-transition elements.

Modeling the on-transition and off-transition events allows for the sparse

recovery of the continuous-wave Morse code signals studied in this chapter.

Capturing the transition events allows for sparse recovery even as transmit-

ters show simple time dynamics. More importantly, the same methodology

can be used to develop augmented dictionaries to match a wide range of pa-

rameterized time-frequency events. The SLPSR technique can then be used

to recover sparse coefficients and parameter perturbations from these signals.

This chapter has demonstrated that joint recovery of parameter pertur-

bations and sparse coefficients can improve reconstructions of real-world

frequency-sparse data. The frequency-sparse model can also be augmented
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to include transition events to capture the time dynamics of the signal. Over-

all, the proposed algorithm is able to recover sparser solutions than BPDN

while using a coarsely sampled dictionary.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

Recovery of signals from parameterized models is a common problem that

arises in a diverse range of applications. This thesis has developed a novel

sparse recovery formulation for parameterized signal models that aims to

jointly recover a sparse signal and a sparse set of parameter perturbations.

Given an initial sampling of the parameter space, this allows for the recovery

of a sparse signal and the correction of the initial parameter sampling. The

fundamental intuition is that the recovered signal is only truly sparse when

the underlying signal parameters are represented in the signal dictionary.

In order to solve the proposed problem, the SLPSR algorithm can be used

to find first-order critical points. As this recovery algorithm only guarantees

convergence to a first-order critical point, the SLPSR solution will depend

on the initialization of the sparse signal x and the initial parameter set.

Choosing the initial parameter set will depend on the parameterized model

used. For this thesis, the parameter set was chosen as an equally spaced grid

over the possible range of parameters.

Using simulated data of frequency-sparse signals, it was demonstrated that

the most accurate recovery of the unknown coefficients and parameters was

for a coarse sampling of the parameter space using the SLPSR algorithm.

With a coarse sampling, the proposed algorithm outperforms state-of-the-

art approaches in the recovery of the unknown signal coefficients, even when

other techniques use highly oversampled dictionaries. This suggests that, at

least for the frequency-sparse model, better recovery is possible with a dic-

tionary that samples the space less densely but contains less well-correlated

elements. This is an interesting alternative to many current approaches,

which simply rely on highly oversampling the parameter space.

A potential extension of this approach would be to consider model-based

sparsity. Model-based approaches have been used to allow for sparse recovery

when there is a relationship between the elements of the signal dictionary.
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This was applied in [13] to allow for reconstruction of frequency-sparse sig-

nals. The model restricted recovery of any solution containing two dictionary

elements that were too well correlated. The recovery guarantees of Model-

based CS may be used to determine when recovery is possible in a given

parameterized signal model.

The proposed technique was compared against the two most related state-

of-the-art sparse recovery techniques, STLS and Perturbed CS solved with

the AA-P-BPDN algorithm. The AA-P-BPDN is closely related to the pro-

posed sparse recovery problem, but assumes a strictly linear model. The

AA-P-BPDN algorithm also requires the parameter perturbations to be con-

strained by the `∞ norm. This linearized model can be implemented in the

formulation proposed in this thesis. By taking A(ω + dω) = A + B ∗ ∆

where ∆ is a diagonal matrix with entries given by dω, one can generate a

linearized model for SLPSR. The STLS technique allows for an unstructured

perturbation. This may be appropriate when the signal model is partially

unknown or not differentiable. Choosing an appropriate method to compen-

sate for unknown dictionaries will be highly problem dependent. Different

parameterized measurement models may benefit more from one method over

the others. This will need to be explored in the context of a specific model.

An issue that has not been addressed yet in this thesis is the computational

complexity of the proposed algorithms. The BPDN algorithm has proven to

be very popular partially because it can be efficiently solved using common

convex programming solvers. Algorithms which account for errors in the

signal dictionary, unfortunately, have a more complicated form. The STLS,

AA-P-BPDN, and SLPSR algorithms all attempt to solve nonlinear, non-

convex programming problems. All three of these methods remain tractable,

however, and all require approximately the same computational complexity.

This involves solving a standard convex programming problem followed by a

constrained least-squares problem. This is then iterated many times. A true

complexity analysis and runtime test of these algorithms is beyond the scope

of this thesis.

Another key issue is the fundamental limits for sparse recovery of sig-

nals with parameterized measurement models. Estimation theory can pro-

vide restrictions on how well parameters can be estimated in the presence

of noise, essentially providing lower-bounds to the variance of an estimator.

For frequency-sparse signals, a resolution analysis would naturally follow.
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Whether or not joint recovery of sparse signals and parameter perturbations

can achieve these bounds remains to be seen.

5.1 Conclusions and Future Work

This thesis has explored the problem of applying sparse recovery techniques

to signals with parameterized models. Parameterized measurement models

arise in large number of important applications such as imaging and array

processing. Improving reconstruction and recovery techniques could have

major impact on areas such as medical imaging, radar, and sonar. In these

applications, the desired signal is also often sparse, in the sense that very

few elements of the signal model are required to construct the signal. In

this case, sparse recovery techniques may provide important performance

improvement.

In such applications, it is desirable to apply sparse recovery techniques,

but the signal dictionary is not completely known. This is because the signal

parameters are unknown a priori. Generally, a highly oversampled dictionary

has been used for sparse recovery. Current approaches are limited in how to

adapt to unknown parameters.

This thesis introduced a new problem formulation to jointly recover sparse

signals and sparse parameter perturbations. The key intuition is that in order

to recover the sparse signal, the correct parameters must also be recovered.

A solution to this formulation can be found using an iterative algorithm that

solves a series of linearized subproblems. This recovery algorithm converges

to a first-order critical point of the problem.

This new algorithm produces a set of strictly feasible iterates that will

never increase the `1 norm of the recovered solution past the `1 norm of the

BPDN solution used for initialization. This recovery algorithm allows for a

wide variety of parametrized models, giving more flexibility than previous

sparse solution methods with perturbed sensing matrices.

This novel problem formulation was applied to the recovery of frequency-

sparse signals with both simulated and real-world measurements. Compared

to existing sparse recovery algorithms, the proposed algorithm was able to

achieve similar recovery error while producing sparser solutions. Interest-

ingly, the sparsest solutions with the proposed algorithm was for signal dic-
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tionaries with a coarse sampling. The proposed method is an interesting

alternative to attempting sparse recovery with highly oversampled dictionar-

ies. Of the sparse recovery methods tested on frequency-sparse signals, only

the proposed algorithm recovered the unknown signal weights and parame-

ters given noiseless measurements. All other methods demonstrated error,

even with 16-times oversampled dictionaries.

A major future direction will be applying the proposed method, along with

other sparse recovery methods, to a wide range of parameterized models. Im-

portant applications arise in array processing problems, such as beamforming.

Another set of applications is when a signal is composed of shifted versions

of a template waveform, as in echolocation or neural data processing. These

models can be easily parameterized and, in certain cases, may be represented

as a sparse signal.

There are also several interesting theoretical directions indicated by these

findings. One direction is the reconstruction of data in dynamic cases, where

the signal parameters change over time. Here, it may be possible to de-

rive iterative recovery algorithms where signal weights and parameters are

constrained by the previous solutions.

Another interesting theoretical direction arises from the observation that

the best recovery with the SLPSR algorithm occurs with coarse oversampling

factors. These dictionaries have less well-correlated elements. There may

be interesting implications and connections to the recovery guarantees in

CS, which are dependent on the correlation between dictionary elements. In

particular, the recent work studying Model-Based CS may provide important

tools to study recovery of sparse signals with parameterized dictionaries.

A further connection to explore is between sparse recovery algorithms and

traditional parameter estimation techniques. Comparing these techniques

will be necessary in order to understand the limits of parameter recovery

error and resolution of sparse recovery algorithms in parameterized models.

This thesis has investigated an important class of signals with parame-

terized measurement models arising in areas such as imaging, model-fitting,

and array signal processing. Given a set of measurements, one would like

to recover the unknown signal coefficients and parameters. Unfortunately,

a problem of this form typically has infinitely many solutions. Sparsity has

proven to be a powerful tool for regularizing such reconstructions; this in-

volves searching for a solution with as few nonzero elements as possible.
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However, typical sparse recovery algorithms require a fixed signal dictionary.

In previous work, this dictionary has been found by highly oversampling the

parameter space. This thesis proposed an alternative approach, recovery of

sparse signals and a set of sparse parameter perturbations to correct an initial

set of parameters. This formulation allows for the recovery of sparse signals

and the corresponding parameters without highly oversampled dictionaries.

Numerical experiments and reconstructions of real-world data confirm that

recovery is possible with coarsely sampled dictionaries, and, in fact, the pro-

posed method recovers sparser solutions than standard sparse recovery with

highly oversampled signal dictionaries. This may improve sparse recovery

in a wide variety of applications involving sparse signals with parameterized

measurement models, ranging from spectrum monitoring to echolocation.
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