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ABSTRACT

FFT implementations today generally fall into two categories: Library gen-

erators (such as FFTW and Spiral) and specialized FFTs (such as prime95).

Specialized FFTs have the obvious limitation of being specialized. However

they are hand-tuned and generally offer superior performance. Library gen-

erators are generic and easier to port. But their performance is generally

suboptimal.

We describe in this paper an FFT library that was built while paying

special attention to locality. The library achieves significantly better perfor-

mance than FFTW, for long vectors. Unlike FFTW or Spiral, the recursive

decomposition of the FFT is not created by a library generator; it is created

by macro expansion that has a few selectable parameters. This provides an

interface that can be more easily modified by users.
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CHAPTER 1

INTRODUCTION

Fourier Transforms (FT) are core to many scientific applications; they con-

sume a significant fraction of the cycles dedicated to such applications. There-

fore, there have been significant efforts to develop efficient Fast Fourier Trans-

form (FFT) libraries. Vendors, such as Intel or IBM provide FFT libraries

hand-tuned to their platforms, as part of their scientific library offerings [1, 2];

more efficient, domain-specific libraries have been developed for applications

such as infinite precision integer arithmetic [3]. More recently, library gener-

ators have been used to develop FFT libraries tuned to particular sizes and

to particular platforms [4, 5].

Specialized FFT libraries have the obvious limitation of being specialized.

Hand-tuned code is hard to port and maintain, hence vendor libraries often

lag in performance. While library generators could be expected to generate

well-tuned FFT libraries, they do often produce code with poor performance,

for reasons we discuss in the next section.

A library generator, such as FFTW, has two components: A compo-

nent that generates highly tuned, platform-specific “codelets” – specialized

straight-line FFT codes for small input sizes (genfft); and a component that

recursively decompose a large FFT into smaller ones, using the codelets as

the base of the recursion (planner). As we shall show, FFTW is efficient for

small size FFTs, but inefficient at larger sizes: It produces codelets of good

quality but bad plans. The reason seems to be that library generators have a

hard time taking into account locality, for reasons we detail later. However,

locality is key to performance for large FFTs.

We describe, in this paper, an FFT library that achieves significantly better

performance than FFTW, for large FFTs. The library is designed by care-

fully hand-tuning small FFTs and building, recursively, larger FTTs. The

recursion is done by macro expansion, driven by a few carefully selected con-

trol parameters. In the work presented here, the values of these parameters
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were hand-tuned.

Our work shows that there still is significant scope for improving the per-

formance of FFT libraries. It shows the efficiency of new techniques for

improving the locality of FFT codes. It is debatable whether these new

techniques can be incorporated in current FFT library generators.
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CHAPTER 2

FFT LIBRARIES

Because of the importance of Fourier Transforms, significant efforts have been

devoted to the optimization of FFT libraries. Traditionally, such libraries

have been developed by vendors and carefully hand-tuned to a specific archi-

tectures; the Intel Math Kernel Library (MKL) [1] and the IBM Engineering

and Scientific Subroutine Library (ESSL) [2] are two such examples. There

is little public information on these libraries: They seem to be written in

low-level languages (C and/or assembly) and to be updated with each major

architectural change.

2.1 Library Generators

More recently, several groups have developed FFT library generators to gen-

erate automatically libraries that are optimized for a particular processor

architecture and for a particular FFT size.

The FFT generators use algebraic identities to transform an FFT formu-

lation into an equivalent one that is more efficient (e.g., has fewer opera-

tions). This algebraic formulation is then “compiled” into source code. An

auto-tuner can, in addition, use measurements from actual runs to guide the

transformations. FFTW [4] and Spiral [5] are two visible examples of this

approach. FFT transforms generated by such systems are widely used.

Libraries generated by FFTW perform better than MKL or ESSL in some

cases, worse in other cases. The code generated by FFT library generators

is often far from optimal, for several reasons:
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2.1.1 Hard to Express Computation Costs

In earlier days, operation count was the dominant factor in performance.

Therefore minimizing the number of operations (adds/subtracts/multiplies)

would produce the fastest FFTs. Since it is easy to determine the operation

count of algebraic expressions, it was easy to predict performance for a spe-

cific approach. Thus producing an optimal performance FFT consisted little

more than a branch-and-bound search of different algebraic reductions.

Today, performance is much more difficult to predict. This is due to the

ever-increasing complexity of modern hardware. In particular, computation

costs are no longer additive: The total cost of an operation is no longer the

sum of the individual costs of all the sub-operations. If the sub-operations

overlap, then the total cost may be lower. Conversely, if there is overhead

for switching between sub-operations, the total cost may be higher.

Instruction Level Complexity At the instruction-level, processor fea-

tures such as superscalar and out-of-order execution make estimating com-

putation costs nearly impossible. Instructions can be executed in parallel

subject to dependencies and resource availability. The result is that a set

of operations can run at drastically different speeds depending on just the

order of the instructions.

Brent’s theorem[6] can be used to bound the run-time to:

max(
Work

Throughput
, Crit.Path) < RunTime <

Work

Throughput
+ Crit.Path

However, this bounds is too large to be useful for auto-tuning. It’s worth

noting that FFT butterflies have dependency graphs of logarithmic critical-

paths and linear work parallelism. So theoretically the run time should be

close to Work
Throughput

. However, due to limited register size and complications

with memory associativity, large butterflies are not feasible on current hard-

ware.

Therefore FFTs are stuck in the ”middle-ground”, therefore Brent’s theo-

rem remains of little use.

Communication Costs Communication costs such as cache and memory

accesses can be difficult to model in modern hardware.
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Due to the high latencies of cache misses, modern hardware is typically

designed to overlap them as much as possible. This by itself is a very large

non-additive effect that is difficult to model without detailed knowledge of

the target (often proprietary) hardware. To make matters worse, effects such

as data-alignment and cache associativity can cause unexpected performance

anomalies that may be dependent on run-time environments.

As with instruction complexity, upper-bounds on performance can be ob-

tained for communication costs in much the same way. But the gap between

actual performance and theoretical performance is typically even wider and

more volatile than for instructions complexity.

Auto-tuning Since static modeling of performance is largely futile due to

the reasons discussed above, modern libraries turn to auto-tuning. Instead of

using static models, actual performance measurements are made of different

decompositions of the task and the best is chosen.

However, the complexity of current architectures result into an exponen-

tially large search space, and a badly formed integer optimization problem

that is highly non-linear, has many local minima and has narrow local op-

tima [7]. Exhaustive search is not feasible, and search heuristics can often

be ineffective.

2.1.2 Hard to Express Transformations

Some code transformations that have significant impact on performance are

hard to express as mathematical transformations in a formal system.

A short list of examples include:

• Cache Optimizations: blocking, padding schemes to improve efficiency

and break alignment

• High-Radix Reductions: Formula size is exponential to the depth of a

reduction.

Both of such optimizations/transformations play a major part in perfor-

mance. But without a way to feasibly express them in mathematical trans-

formations, they cannot be easily applied to the current generation of formula

generators that take formulas as input.
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Figure 2.1: Since convolution is oblivious to the order of the frequency
domain, it can be implemented without bit-reversals.

2.1.3 Compiler and Architectural Limitations

Algebraic transformations can result in very long straight-line code. Many

compilers have a hard time compiling machine generated code . Further-

more, the generated code can overflow the instruction cache – yet another

performance factor that is hard to express in a mathematical framework.

2.2 Specialized FFTs

Improved FFT performance can be achieved by taking advantage of specific

properties of the application domain.

For example, complex FFTs can also be specialized and optimized when

inputs are real numbers, or when many inputs are known to be zero (e.g.,

objects in 2D or 3D that do not fill a full square or cube).

2.2.1 General Performance Optimizations

In addition to specialization, specialized FFTs often gain just as much (if

not more) speedup from hand-optimizations. In many cases, hand-optimized

C or assembly from a capable programmer will easily outperform a modern

compiler compiling unoptimized source code. Furthermore, it is known that
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compilers are poor at optimizing machine generated source code — which is

a problem that the developers of FFTW and Spiral admit themselves [5].

2.2.2 Bit-Reversed Transforms

FFT algorithms based on Cooley-Tukey [8] require that either the input or

the output be in bit-reversed order (the entry with index a1 . . . an is stored at

location an . . . a1). In order to obtain an in-order output, a bit-reverse copy

is needed to shuffle the data at some part of the algorithm.

However, bit-reversal copies are not trivial and can consume a significant

fraction of the transform time. This allows for an opportunity for specializa-

tion — since in many cases, the FFT output is used for a convolution, and

the order of the entries is immaterial. One can perform the convolution in

bit-reversed order, and input the result to the backward FFT in bit-reversed

order, so that the final result is correctly ordered. No expensive bit-reversal

copy is ever needed.

FFT libraries do not normally provide this functionality. We show later

that out-of-order FFTs are significantly faster than regular FFTs. Infinite

precision packages often use this optimization to quickly multiply large num-

bers. The Prime95 [3, 9] from the Great Internet Mersenne Prime Search

(GIMPS) code is one such example [10].

But for applications that require in-order FFT output, the bit-reverse copy

is unavoidable. Typical implementations for in-order FFTs are quite straight-

forward: A standard bit-reversed FFT followed by a bit-reverse copy. Some

implementations do tricks like merging the bit-reversed copy in the FFT

computation to reduce the cost. But fundamentally, the bit-reversal still

needs to be done at some point.

The trouble with bit reversals is that bit-reversing an index is expensive

without hardware support. Even worse, is that bit-reversed data-access ex-

hibits extremely poor memory access.

A common näıve implementation is to bit-reverse an index and then pro-

ceed to access the memory. However, this runs into the following problems:

• There will likely be a near 100% cache miss rate if the data does not

fit into cache.
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• For every cache line that is brought in, only a single word is used. The

rest is wasted.

• The cost of bit-reversing an integer is non-trivial. On x86 (which lacks

hardware support), bit-reversing an integer requires more than 20 in-

structions.

Better implementations involve in-place sorts that resemble some of the

standard O(nlog(n)) sorting algorithms. The best bit reversal implementa-

tions are O(n), but require very hardware specific cache line and prefetching

tricks to avoid the cache misses that are encountered in the näıve imple-

mentation. Our implementation is based on this latter approach and will be

discussed later.

In most cases, this data reordering is a non-trivial task that can often be

more expensive than the FFT computation itself! So it is useful to consider

the possibility of completely omitting the data-reordering step for applica-

tions that oblivious to the order of either the time or frequency domain.

These are called bit-reversed FFTs, or in a more generalized case, out-of-

order FFTs1.

1We will use the term out-of-order instead of bit-reversed due to the fact that there
exists even faster FFT algorithms that produce worse-than-bit-reversed time or frequency
domains. Such algorithms will be discussed later.
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CHAPTER 3

OUR IMPLEMENTATION

Our FFT library, like many others, is built by implementing and carefully

tuning small FFTs, then implementing larger FFTs recursively, using these

building blocks. For the basic building blocks, we pay attention to CPU

effects: register allocation, instruction scheduling, etc. For the recursive

decomposition, we pay attention to locality issues. The goal is to ensure

one does not loose the efficiency of the basic building blocks. As for FFTW,

the base building blocks are carefully hand-tuned. Our implementation has

fully inlined base case sizes up to 64-point FFTs - all of which are optimized

using micro-optimization techniques that we will discuss later. The recursive

decomposition is implemented by a parameterized code. An efficient FFT

is obtained by properly selecting the parameter values. This can be done

manually or, as for FFTW, through an empirical search. The relatively

small number of parameters ensures the search is feasible. Rather than using

a program generator, we use macro expansion. This results in a code that

is easier to understand and to maintain. Therefore, the fully automated

configuration search performed by systems such as FFTW and Spiral can

be replaced by a human-guided search that is more flexible and can often

achieve better performance than a fully automated system.

The final step is to build whatever wrappers are needed to implement the

specific functionality that are needed. This includes the bit-reversals and

SIMD packing code.

3.1 Generalized Bailey’s 4-step Algorithm

On modern systems, memory bandwidth is usually the limiting factor for

performance of FFTs. So it is important to consider the amount of mem-

ory access that is needed for a particular FFT algorithm. In the classic
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FFT Size Datasize Reduction Radix Traversals Memory Access

230 16 GB 2 12 384 GB
230 16 GB 4 7 224 GB
230 16 GB 8 5 160 GB
230 16 GB 215 (Bailey’s 4-step) 2 60 GB

Table 3.1: Dataset traversals and memory access for various reduction sizes
assuming fully associative 8 MB cache.

approaches of using a fixed radix reduction, the entire dataset is traversed

once at each radix until the transform sizes fit into cache. Assuming perfect

cache, the number of dataset traversals is:

traversals = dlogradix(
datasize

cachesize
)e+ 1

Where the +1 is the pass needed to perform the sub-transforms that fit into

cache. If the writes are streamed and do not require reading from memory,

then the amount of memory access becomes:

bytes = 2 ∗ datasize ∗ dlogradix(
datasize

cachesize
)e+ 1

For FFTs that are significantly larger than the cache, many traversals will

be needed. For larger radices, fewer traversals will be needed. When taken

to the extreme, this becomes equivalent to Bailey’s 4-step algorithm.

3.1.1 Bailey’s 4-step Algorithm

This 4-step algorithm by Bailey [11] is a cache-oblivious FFT algorithm that

performs an FFT of length N = n ∗m as the following 4 steps:

1. Perform n FFTs of size m.

2. Multiply by twiddle factors.

3. Transpose the dataset.

4. Perform m FFTs of size n.

In the case of the DIF (Decimation-in-Frequency) transforms, steps 1 and

2 together form a radix reduction of size m and step 4 is the sub-transforms.
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Figure 3.1: 4-Step FFT Algorithm: FFTs on columns, then on rows.

In our implementation, steps 1 and 2 are combined into a single pass. The

FFTs in step 1 are done with strided memory access and the FFTs in step 4

are sequential. This eliminates the need for the transpose.

Therefore, when both an FFT of size n and an FFT of size m can be done

entirely in cache, Baileys 4-step algorithm requires only 2 passes over the

dataset. Therefore, n and m are often chosen to be close to
√
N .

Figure 3.1 illustrates our in-place implementation of Bailey’s 4-step algo-

rithm. FFTs are first performed on the columns. (the radix-reduction pass)

Then FFTs are performed on the rows. (the recursive sub-transforms)

3.1.2 Generalized Approach

In our implementation, the 4-step algorithm is applied recursively to the

FFTs in steps 1 and 4. This serves two purposes: To efficiently handle the

case when a
√
N size FFT cannot be done in cache and to optimize for the

different levels of cache.

For situations where a
√
N size FFT cannot be done in cache, we choose

m to be the largest size such that a size m FFT fits into cache. This at least

allows step 1 to be done with only 1 traversal. Step 4, while requiring more

than 1 traversal, is handled recursively using the 4-step algorithm.

Recursive use of the 4-step algorithm is cache-oblivious optimal. It can

be also used to optimize for the different levels of cache. Therefore, our

implementation is fully recursive for both step 1 and step 4 FFTs — where

a radix-selector is used to choose the values n and m. This radix-selection

function is tunable and can be customized for different target machines.

In our implementation, the recursions for the step 1 transforms are termi-

nated when the transform lengths drop to 2 or 4. The recursions for the step

11



4 transforms are terminated when they drop down to 2 or 4x of the block

size which will be discussed in the next section.

3.2 Blocking/Data Padding

In our implementation, the step 1 FFTs the Bailey’s 4-step algorithm are

heavily strided and suffer from conflict cache misses and poor usage of cache

lines. To solve this issue, combine the 4-step algorithm with data blocking

and padding. Without blocking and padding, our code is much slower than

the fixed radix approach.

3.2.1 Data Blocking

To achieve CPU efficiency, points are grouped into blocks of b consecutive

points. This block size b is a tunable parameter, usually with a value of 32 or

64. The entire FFT algorithm is then reformulated in terms of a shorter FFT

acting on vectors. For example, a 230 point FFT with a 16-byte point (two

doubles) can be reformulated as a 224 point FFT with a 1024-byte point.

The generalized 4-step method is then used to compute this reformulated

FFT. Due to the blocking, all accesses to memory are in chunks of the block

size as opposed to 16 bytes. This maximizes the use of cache lines and

improves the usefulness of the hardware prefetcher.

Our code supports FFT sizes that are a product of a small odd number and

a large power-of-two. In our implementation, the odd factor is “absorbed”

into the block size thus preserving the reformulated FFT as a power-of-two

length. For an FFT of size 3∗227, the block size is chosen to be 48 which gives

the reformulated FFT a length of 223. By keeping the reformulated FFT a

power-of-two length, this allows nearly all the source code to be reused.

The drawback of blocking is that it reduces the size of the largest radix

reduction that can be done. For a 230 point FFT, the maximum radix re-

duction is 215. When blocked with a size of 64, the reformulated FFT has

length 224 and the maximum radix reduction reduces to 212. Furthermore,

the amount of memory needed to perform the FFTs in step 1 of the 4-step

algorithm increases, which decreases the maximum radix reduction that can

be done without spilling cache. The result is that even moderately sized

12



(a) Without blocking, strided access makes horrible use of cache and SIMD. The perfor-
mance is far worse than the small fixed-radix algorithms.

(b) Blocking maximizes SIMD and CPU efficiency at the cost of a larger working size.

Figure 3.2: Straight-forward vs. Blocked approaches to in-place Bailey’s
4-step algorithm.
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Figure 3.3: Multiple levels of padding are needed to break conflict cache
misses for very large FFTs.

FFTs cannot be done in 2 traversals. However, 3 traversals usually suffices

to handle nearly all FFTs of realistic size.

3.2.2 Data Padding

To reduce the number of conflict cache misses due to associative cache, we

use padding. This is implemented on the reformulated FFT with block-

granularity.

The padding that we implement is done by inserting n bytes after every m

blocks. Assume an 32 Kbyte 4-way associative cache with 64 byte cache lines.

Addresses that are congruent modulo 213 map to the same associativity set.

Now we wish to perform a double-precision complex FFT of size 212 using

radix 8. Accesses in the first step will have a stride of 213 bytes (or 29

points). The 8 points needed to compute one “butterfly” will all fall in the

same (4-entry) associativity set, causing multiple cache misses.

To solve this issue, we can insert 64 bytes after every 512 points (or 213

bytes).

For extremely large FFTs, a single layer of padding is insufficient. Using

the same example, but with an FFT of size 225, accesses in step 1 have a

stride of 222 points, or 213 ∗ (213 + 64) bytes, using the same padding. This

14



stride is divisible by 213, therefore the 8 points in a butterfly will still fall

into the same associativity set. To mitigate this, we insert a second level of

padding after every 222 points (or 226 bytes).

In some extreme cases, 3 or more levels of padding are needed. Naturally,

this destroys the regular layout of the FFT so the blocks need to be addressed

by index with an address generator to convert the index to a pointer.

Given the index of a block, its address is computed as:

block address = base address + index ∗ (bytes per block)

+n0 ∗
index

m0

+ n1 ∗
index

m1

+ ... + nL−1 ∗
index

mL−1

Where L is the number of levels of padding. To keep the cost of address

generation low, we restrict all mi values to a power of two so that the divisions

reduce to shifts. Furthermore, all ni values needs to be a multiple of the

SIMD vector size to maintain data alignment. The cost of generating an

address is paid every time a block needs to be accessed. If this method is

applied directly to an FFT without blocking, the cost is paid every time a

point is accessed and would surely dominate the total computational cost.

Therefore, blocking a sufficiently large number of points becomes necessary

for this padding scheme to be feasible.

3.3 Fast Bit-Reversal

Using the aforementioned methods we implemented an efficient bit-reversed

FFT. In order to produce the full in-order FFT we implemented a fast out-

of-place bit-reversal copy. Our implementation uses a single pass over the

dataset, and thus is O(n). To make this efficient, we will use a combination

of blocking and cache-aligning.

The fundamental problem with a single-pass bit-reversal is that either the

reads or the writes are non-sequential, leading to bad spatial locality. The

solution is to reorder the accesses so that both reads and writes access full

cache lines, by blocking both reads and writes in a consistent way.

Consider the set Sa1...ak of 22j points with indices x1 . . . xja1 . . . aky1 . . . yj,

for fixed values a1, . . . , ak. The bit-reversal permutation maps this set onto

itself. The set can be bit-reversed by reading 2j blocks of consisting of 2j
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adjacent points, and writing 2j blocks of 2j points. Both read and writes will

move full cache lines, provided that

• 2j points occupy one or multiple cache lines;

• 22j points fit in cache; and

• The array of points is cache line aligned

Figure 3.4 shows how a 16-point bit-reversal can be performed using 2-

way blocking. At each step, two strides of memory are read and written.

Furthermore, all memory accesses are in 2-point chunks.

In our implementation, we choose 2j to be the number of points in one

cache line, i.e., 4, for complex double precision points and 64 byte cache

lines. Therefore, our bit-reversal implementation uses 4-way strided access

with 4-point chunks. This forces all memory accesses to be exactly one cache-

line wide. Combining this with proper alignment ensures that all memory

accesses are full cache-lines.

The final part is that we choose to iterate the reads sequentially, and

the writes non-sequentially. This allows for 4 sequential read streams which

works well with the hardware prefetcher. The writes are left non-sequential,

but are done using SSE2 streaming writes. Since all the writes are aligned

to the cache-line and are in cache-line chunks, no read-modify-write traffic is

generated and all writes go directly to memory.

3.4 Vector Instructions

Most current processors have vector units that can achieve a higher floating-

point throughput than their scale units. An FFT lends itself very well to

vectorization. Since the butterflies in a radix reduction are all completely

independent. Indeed, vectorization is already extensively used in libraries

such as FFTW and Spiral. Compilers today are very poor at automatic

vectorization, so it must be done manually, to get the best performance.

We support vector instructions for both x86 and Power7. On x86 we sup-

port SSE3 and AVX instructions. On Power7 we support AltiVec. Support

for FMA instructions on x86 is slated for the future when the appropriate

hardware becomes available.
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Figure 3.4: Fast Bit-reversal
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Figure 3.5: Data Packing: Array-of-Structs (top) vs. Struct-of-Arrays
(bottom)

3.4.1 Array-of-Structs vs. Struct-of-Arrays

Our approach to vectorizing the FFT is slightly different than the standard

approach. The usual packing of data is that real and imaginary parts of the

same point are stored together in adjacent memory locations and thus packed

together into the same vector, in an array-of-struct layout. Although this

works well with additions and subtractions, it complicates multiplications

due to need to cross multiply across vector elements. This results in extra

instructions to perform data shuffling and negation. The SSE3 instruction

set for x86-64 attempts to mitigate this issue by introducing the addsubpd

instruction that eliminates the negation, but it does nothing to reduce the

data shuffling.

To get around this issue, our implementation uses a struct-of-arrays pack-

ing where the real and imaginary parts are stored in different vectors. Using

this packing, nearly all data shuffles can be eliminated since all arithmetic is

completely vertical (i.e., involves aligned operands in two distinct vectors).

There are no cross element operations until the final steps in the FFT where

there are data dependencies between adjacent points. The drawback of this

method is that the added register pressure from having to perform 2 but-

terflies at the same time (4 for AVX). On x86 this packing results in very

little speedup due the additional register spills. On x64, there are plenty of

registers, so the new packing results in 30% speedup.

Since Power7 has even more registers than x64, we did not attempt a

array-of-structs implementation for it. So we cannot say how much faster
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struct-of-arrays is.

3.4.2 Portability Considerations: Type-Generic Macros

The use of SIMD instructions is not portable: Different architectures have

different instruction sets (x86 and Power7) and different generations of the

same architecture have different vector sizes (SSE3 and AVX). We handle

these differences without generating different source code versions; instead

we we implement the inner-most loops of our FFT using polymorphic macros.

These macros work completely independently of the vector size, the names

of the intrinsics, and the types of instructions that are needed. An example

is shown in figure 3.6. A typical polymorphic macro takes parameters such

as:

• The datatype. (ex. m128d)

• Add, Subtract, and Multiply intrinsics. (ex. mm add pd)

• Fused Multiply-Add intrinsics. (ex. mm256 macc pd)

• Source and destination operands.

These macros are used by passing the appropriate parameters from the

target ISA. When no such instruction exists, it is made by combining the

necessary instructions as is the case with FMA instructions on all x86 pro-

cessors up to and including AVX.

Such macros are used for loops such as the radix 2 and radix 4 butterflies.

They are all fully optimized using the other micro-optimizations that we will

discuss later. Furthermore, multiple versions of the same macro are usually

implemented and will differ in aspects such as:

• The order of the instructions.

• The number of temporary variables used.

• The number of iterations unrolled.

For each ISA, a common header file contains preprocessor definitions that

specify which macros to use as well as mapping the names of the appro-

priate SIMD intrinsics to the ones used by the macros. An observation is
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Figure 3.6: Polymorphic Macros: By substituting the relevant types and
intrinsics, this radix-4 butterfly macro can be used on all architectures.
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that this method works well due to the Struct of Arrays packing. With this

packing, nearly all SIMD arithmetic is vertical, and it is generally safe to

assume that vector ISAs will support vertical instructions for all the com-

mon operations. With the Array of Structs packing, operations such as

data-shuffling and negation would need to be used, and support for these

operations are less standard across different ISAs. For example, x86 SSE3

supports the addsubpd instruction which Power7 does not have and Power7

supports a byte-granularity permute whereas x86 SSE only has a 32-bit gran-

ularity shuffle.

Porting our FFT to a new ISA is fairly simple. Since our FFT is completely

recursive, the only non-trivial work that is needed is to code the base-cases

where cross-element arithmetic is needed. This usually consumes about 90%

of the man hours needed for the port. Once completed, the rest of the FFT

usually falls into place and simply works. The only work left is to tune it by

running a series of benchmarks and picking out the best set of parameters.

Since most of the FFT code is completely reused for all ISAs, we are able

to support new ISAs in a timely manner. When the Intel Sandy bridge pro-

cessors (featuring the 256-bit AVX instruction set) were released in January

2011, we were able to produce a fully working and optimized FFT utilizing

AVX by early February - within 2 weeks of when we acquired the hardware.

By comparison, FFTW did not support AVX until June. We were also able

to add support for AltiVec in under 1 week from start to finish due to its

similarity to SSE2.

3.5 Micro-Optimizations: Loop Unrolling

In our implementation, we use loop unrolling to gain additional speedup.

Although compilers can perform loop unrolling, they tend to be too conser-

vative with larger loops for fear of bloating the code size. We have found

that we can always do better with manual unrolling.

Our method of loop-unrolling follows a three-step process.
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3.5.1 Step 1: Write Sequential Loop

The first step is to write a single iteration of the loop using as few variables

as possible. This process usually involves carefully designing the code to

minimize the number of variables and to reuse as many temporary variables

as possible. This step may introduce false dependencies into the code. So

there may be a trade-off between fewer variables and fewer dependencies.

However, modern processors have out-of-order execution which will break

false dependencies via register renaming. As a result, it is almost always

better to favor fewer variables.

3.5.2 Step 2: Unroll the Loop

The second step is to unroll the loop to as many iterations as possible while

keeping the total number of variables less than the number of logical registers

in the ISA. This ensures that there are no unexpected register spills that could

hurt performance.

To allow for the instruction interleaving in step 3, the variables for the

different iterations are all given new and distinct names. In many cases,

temporary variables can be shared by different iterations. This sometimes

allows the loop to be unrolled by an additional iteration.

Most loops are unrolled to 2 or 4 iterations so that they divide evenly into

the trip counts which have many factors of two. This eliminates the need for

cleanup code which increases code size and complicates branch prediction.

Some compilers, such as the Intel Compiler, will (unnecessarily) compute the

trip count of a loop at run-time for unknown reasons. When the amount of

unrolling is not a power-of-two, this results in an integer division. Although

the integer division is usually optimized as an invariant multiply, the multiply

is double-width and still adds significant overhead to the startup of the loop.

Since our code is written in C, we actually have no direct control of reg-

ister allocation. Modern compilers also tend to ignore the register keyword.

However, we have found that compilers will rarely introduce register spills

when the code satisfies the following conditions:

• The total number of register-sized variables is less than the number of

logical registers in the ISA.
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• Every C statement in the function can be implemented without addi-

tional registers. (Examples: a = a+ b, a = a ∗ b+ c. Counterexamples:

a = b ∗ c + a, function calls)

• There are no common sub-expressions. This includes multiple loads

from the same address.

Modern compilers generally use a graph coloring algorithm for register

allocation. When these 3 conditions hold, the resulting graph is colorable.

Although only the first condition is necessary for the graph to be colorable,

the latter two conditions are needed to prevent the compiler from generating

additional variables. The final issue is whether the compiler will be able to

find the solution to the resulting colorable graph as this problem is known

to be NP-complete. From our experience, the compilers we have tested are

almost always able to find the solution without spills — even for very large

sizes (> 1000 instructions).

3.5.3 Step 3: Schedule the Loop

The final step is to schedule the instructions in the unrolled loop. Since the

optimal scheduling is highly variable even for different processors with the

same ISA, we leave much of this task to the compiler. Optimal instruction

scheduling is NP-complete, and compilers can produce very poor code for

large basic blocks. This is especially the case when all good solutions require

a large number of instructions to be moved far from their initial positions.

Our solution is to manually interleave the independent iterations. Since steps

1 and 2 almost guarantee that there are no spills regardless of the instruction

ordering, there is no penalty for simultaneously running as many independent

dependency chains as possible. Therefore, the optimal scheduling is usually

very close to an interleaved order of all the independent iterations. Man-

ual interleaving moves the instructions to better starting positions, thereby

“helping” the compiler find a near-optimal scheduling even in the largest of

basic blocks. For some very large loops, this has been observed to produce a

speedup of more than 2x.

Overall, our method of avoiding register spills and interleaving instructions

only works well on RISC architectures. Complications arise for instructions
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that are bounded to specific registers such as some x86 integer instructions

as well as the x87 FPU. Fortunately, our FFT code uses only the x86 SIMD

registers, which are nearly RISC-like. For small loops and loop with long

dependency chains, loop-unrolling can provide more than 2 – 3x speedup.

However, for our FFT code, we only gain about 10−20% overall on x64. This

is because the bulk of the computation is spent performing radix 4 butterflies,

which are large and already have plenty of instruction level parallelism.

With the Struct-of-Arrays packing, radix 4 butterflies need more than 8

registers. This makes them difficult to unroll with only 16 SIMD registers.

By comparison, we gain about 50% on Power 7 due to the larger number

of registers and longer instruction latencies. Reverting to Array-of-Struct

packing cuts the register count in half, but the overhead of the resulting

data shuffles far outweighs any speedup gained from extra loop-unrolling.

3.6 Micro-Optimizations: Function Inlining

The final micro-optimization that we use is function inlining. To reduce the

overhead of recursion, we inline our base cases to very large sizes. In our

implementation, we terminate the FFT recursion at 32 and 64 points. Each

of these is implemented as a single function call with completely straight-

line code and no loops. As a result, these functions can be very large: 1600

instructions for 64-points using SSE3 instructions.

Due to the sizes of these, we do not actually write them entirely by hand.

Instead, they are implemented as a combination of small macros which are

put together without loops. For example, we first implement a 4-point FFT

in a macro. By combining this macro with the polymorphic macros for radix-

2 and radix-4 butterflies, we can easily build the 32-point and 64-point FFTs

using very little code and without loops or function calls. By nesting macros,

this method can be easily extended to build arbitrarily large FFTs that are

fully inlined. However, we stop at 64 points because larger sizes will run the

risk of overrunning the instruction cache.

The other places where we use inlining are the radix reductions and the

address generators for data padding. Radix reductions are typically imple-

mented as a loop inside a function which is called from the FFT recursion.

We implement both the radix conversions and address generation entirely us-
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ing macros so that they are inlined. This ensures that the only functions calls

in our FFT recursion are the recursive calls themselves all other function

calls are completely eliminated by means of inlining.
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CHAPTER 4

ISSUES

Along with the numerous low-level and high-level optimizations that we have

implemented in our FFT, there were also other optimizations and techniques

that did not prove as successful.

4.1 Explicit Cache Regions

A major problem with the FFT is the need for either data transposes or

strided memory accesses. In our implementation, we chose to use strided

memory accesses. But as mentioned before, it suffers heavily from cache

conflicts - which we attempted to solve with padding.

However, padding only solves one of two problems caused by strided access.

It eliminates the conflict miss latency within each butterfly, but there is a

second more subtle issue which is not solved. We will call this the reduced

effective cache size.

Suppose we have a directly mapped cache of 32k bytes. Now suppose a

function has memory access localized to two 16k blocks. Since the two 16k

blocks fit into the 32k cache, every access should be a cache hit. However,

now suppose that the 16k blocks have base address offset by 32k. The result

is that both blocks will map into the same cache locations. Since only half

the cache is usable, we call this 16k of usable cache thereduced effective cache

size. This example is a worst case, and in general, only a partial overlap will

occur. Higher associativity helps, but it only pushes the problem to when

there are more blocks than the cache associativity.

This type of strided access is unavoidable in a transpose-less implementa-

tion of Baileys 4-step algorithm. In order for step 1 of the algorithm to be

done with only one traversal over memory, all the step 1 butterflies need to

fit entirely into cache. But since they are strided, the effective cache size is
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Figure 4.1: Strided data is copied to a local cache before any work is
performed. This eliminates conflict cache misses since the data becomes
sequential.

typically much smaller than the physical cache size. Padding does not help

as it can only shift the base addresses by a small fixed amount.

The solution that we tried is to declare a specific region of memory to be

explicit cache. The idea is to copy data from memory into a region of memory

that is assumed to be in cache. Then all the computational work is done

within this cache region. If the cache region is contiguous and signficantly

smaller than the cache then we can almost guarantee that it will be kept in

the actual processor cache.

However, after implementing this approach and benchmarking the results,

we found that the overhead of the copies far exceeded the benefit of elimi-

nating the in-place strided access. We tried two different approaches:

• Straight-forward memcpy().

• Lazy copy. (with and without streaming load/store)

In our initial implementation, we used a straight-forward copy of the data

from memory into the cache region. Every time a step-1 FFT is called, all the

data is copied from memory into the explicit cache buffer. The computation

is performed and the data is copied back.
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The performance of this 3-phase approach was roughly 20% slower than

the baseline (blocking+padding). Commenting out the data copies reduced

the run-time to 70% of the baseline - thus confirming that the data movement

is indeed the bottleneck.

Our first attempt to solve this issue was to try a lazy-copy approach. The

problem with the 3-phase approach is that there is no possible overlap of

memory access and computation. Using a lazy approach where the memory

is pulled from memory only when needed, we can take advantage of prefetch-

ing to achieve this overlap. Thus we were able to squeeze out about 10%

performance gain.

The second optimization we did was to use SSE streaming writes. But

there was no noticable speedup. We decided to stop our efforts here.

While the explicit cache method has worked for other algorithms, the FFT

seems to have too little computation to benefit from it. The data locality

in FFT computation is too brief to get a net gain from moving it to faster

memory.
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CHAPTER 5

EVALUATION

To evaluate the performance of our FFT, we benchmarked both our in-order

and bit-reversed FFTs against FFTW version 3.3 and the specialized FFT

found in y-cruncher v0.5.5.

Figures 5.1, 5.2, and 5.3 show the performance of our FFT against FFTW

(a library generator) and y-cruncher (a specialized FFT). Performance is

measured in GFlops. (higher is better)

For each processor, we note the processor’s per-core GFlops peak as well

as the FFT theoretical peak. The processor’s per-core GFlops the maximum

throughput of the processor’s capability, while the FFT theoretical peak

is the maximum throughput that can possibily be obtained with perfect

utilization of the processor’s execution units.

The difference is due the fact that the processors we tested have seperate

addition and multiplication units. Each of them can sustain 1 add/subtract

and 1 multiply instruction per cycle. However, the FFT does not have this

1-to-1 ratio. There are more additions and subtractions than multiplications.

Therefore we adjusted the theoretical peak performance to reflect this. For

this we used the radix-4 FFT which has a roughly 11-to-6 ratio of addi-

tion/subtractions to multiplications.

5.1 Our FFT vs. FFTW

The first observation is that for the larger sizes, our in-order FFT code sig-

nificantly out-performs FFTW. (often by more than a factor of two) This can

be attributed to our optimizations for cache and memory. Although we beat

FFTW for all of the larger transform sizes, we note that FFTW is especially

slow for the non-power-of-two sizes. This suggests that FFTW’s handling of

non-power-of-two sizes is very inefficient.
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(a) In-order FFT vs. FFTW

(b) In-order vs. Bit-reversed vs. y-cruncher v0.5.5

Figure 5.1: Benchmarks on Intel Core i7 920 @ 3.5 GHz (Processor Peak:
14 GFlops, FFT Theoretical Peak: 10.82)
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(a) In-order FFT vs. FFTW

(b) In-order vs. Bit-reversed vs. y-cruncher v0.5.5

Figure 5.2: Benchmarks on Intel Core i7 2600k @ 4.2 GHz (Processor Peak:
33.6 GFlops, FFT Theoretical Peak: 25.96)
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(a) In-order FFT vs. FFTW

(b) In-order vs. Bit-reversed vs. y-cruncher v0.5.5

Figure 5.3: Benchmarks on AMD Opteron 8356 @ 2.31 GHz (Processor
Peak: 9.24 GFlops, FFT Theoretical Peak: 7.14)
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For the smaller sizes, our in-order FFT is roughly on par with FFTW.

5.2 In-order vs. Bit-reversed vs. Specialized

Next we compare the performance of our in-order FFT and our bit-reversed

FFT against the specialized FFT used in the y-cruncher multi-threaded Pi-

program[12].

Overall, the results show that (as expected) the bit-reversed FFT is always

significantly faster than the in-order. This gives a glimpse of how expensive

the bit-reverse copy is. The interesting comparison is with y-cruncher’s FFT.

y-cruncher uses a worse-than-bit-reversed FFT that halves the number of

twiddle factor loads. We will discuss this optimization later.

We first note that on all three processors, our bit-reversed FFT beats y-

cruncher on the largest FFT sizes. This is because y-cruncher uses a flat

radix-4 FFT implementation and does not use the 4-step algorithm. There-

fore it suffers on the largest FFT sizes. Nevertheless, this performance is

sufficient because y-cruncher does not use large FFTs.

For the smaller sizes, the results are quite mixed. On the Core i7 920

(Nehalem), y-cruncher beats our bit-reversed FFT by a noticable margin.

On the Core i7 2600K (Sandy Bridge) and the Opteron 8356, our bit-reversed

FFT is about neck-and-neck with y-cruncher.

Figure 5.4 show the run-times of the various different bit-reverse copy im-

plementations relative to the bit-reversed FFT. The run-time for a memcpy()

of the entire dataset is included as a reference point and as an upper-bound on

performance since neither a bit-reversed copy nor a bit-reversed FFT should

be faster than a memcpy(). Aligned indicates that the dataset is aligned

to the cacheline, and stream indicates whether or not streaming stores were

used.

Due to the nature of our implementation of the bit-reversed copy, its per-

formance extremely sensitive to both the data alignment and whether or

more streaming stores are used. In the best case, the bit-reversed copy is

nearly as fast as a memcpy() — thus indicating near optimal performance.

However, in the worst cases, it can be much slower than the bit-reversed FFT

itself.

Overall, when the datasize fits into CPU cache, it is best to use normal
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(a) Bit-reversal performance on Core i7 920 @ 3.5 GHz.

(b) Bit-reversal performance on Core i7 2600k @ 4.6 GHz.

Figure 5.4: Comparison of various bit-reverse copy implementations relative
to our bit-reversed FFT.
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stores. When the datasize does not fit into cache, it is best to use streaming

stores. The cross-over point is very sharp in most cases, so optimal perfor-

mance for the bit-reversed copy requires a very carefully tuned threshold for

switching from normal to streaming stores.

In all cases, the data-alignment is crucial. The bit-reversed copy is hor-

ribly slow when the data is not aligned to the cache-line. Furthermore, our

implementation requires that the dataset be aligned to the SIMD vector to

run at all. Because of this sensitivity, our in-order FFT requires cache-line

alignment to achieve any significant gain in performance over FFTW.
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CHAPTER 6

FUTURE DIRECTIONS

6.1 Generalizations

Although we focus our efforts in optimizing the one-dimensional FFT, much

of the methods we use are fully applicable to other transforms.

6.1.1 Higher-Dimension FFTs

A close observation of higher dimension FFTs reveals that any N-dimensional

FFT has an identical data dependency graph as a 1-dimensional FFT of the

same size. Therefore, any N-D FFT exhibits an identical memory access

pattern as a 1-D FFT of the same size. The only difference is the twid-

dle factors that are used. This means that any N-dimensional FFT can be

implemented in an identical manner as a 1-D FFT using modified twiddle

factors. The implication of this is that all FFTs, regardless of dimension,

can be implemented using 2 traversals (assuming the cache is large enough).

For multi-node clusters and supercomputers, it allows any N-D FFT to

be performed using only one all-to-all communication transpose. This is of

interest for the case of multi-node 3D-FFTs.

Large multi-node 3-D FFTs are typically implemented in one of two ways:

• 2D decomposition: 1D FFT → transpose → 1D FFT → transpose →
1D FFT

• Slab decomposition: 1D FFT → transpose → 2D FFT

The 2D decomposition is the most natural approach because each dimen-

sion is handled separately, while the slab decomposition is more efficient

because it only has 1 transpose.
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3D FFT Alg. (size: N3) # of Transposes Max. Scalability (nodes)

2D Decomposition 2 N2

Slab Decomposition 1 N

1D + Baileys 4-step (2-pass alg.) 1
√
N3

1D + Bailey (3-pass alg.) 2 N2

1D + Bailey (4-pass alg.) 3 N
9
4

1D + Min. Radix Cooley-Tukey Ω(N3)1 N3

smallest prime factor of N

Table 6.1: Transpose counts and scalability limits of different
implementations of a multi-node 3D FFT

In both cases scalability is limited by the size of the dimensions. For an N3

3D FFT, the 2D decomposition will fail to scale beyond N2 nodes while the

slab decomposition will not scale past N nodes. This could cap performance

on larger supercomputers with many nodes.

By reformulating the 3D FFT as a 1D FFT with modified twiddle factors,

we can apply Baileys 4-step algorithm with radix
√
N3 on the resulting 1D

FFT with N3 points. This allows the 3D FFT to be scaled up to
√
N3 nodes

while still maintaining only 1 transpose. Further scaling is possible at the

cost of more transposes, but current and near-future supercomputers with

realistically sized 3D FFTs are unlikely to benefit from using more than
√
N3

nodes due to the cost of the all-to-all transposes.

6.1.2 Other Transforms

The methods we use are by no means restricted to floating-point FFTs and

are largely applicable to other types of DFTs. For example, the methods

we have discussed are mostly applicable to the Discrete Cosine Transform

(DCT) for compression. All our methods except for type-generic macros

are fully applicable to the Number-Theoretic Transform (NTT) for integer

convolution and multi-precision arithmetic.

6.1.3 Micro-Optimization Techniques

Much of the micro-optimizations that we have used are easily generalized

to a wide variety of other applications. In particular, function inlining and

loop-unrolling are universally applicable techniques used by both compilers
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and high performance software developers. Our approach can enhance these

by avoiding register spills and improving instruction scheduling. Many highly

vectorizable applications can utilize type-generic macros to generate efficient

and portable code for all SIMD architectures regardless of the vector size and

syntax.

6.2 Other Optimizations

There are a number of optimizations that could be applied to further improve

the performance of our FFT:

6.2.1 Saving Twiddle Factor Loads

The djbfft FFT library [13] uses a subtle trick to reduce the number of twiddle

factor loads by up to a factor of two at the cost of further scrambling the

order of the output. (to worse than bit-reversed)

Bernstein observed that for a split-radix butterfly, one can change the ω3

twiddle factor to ω−1. The result is still a correct FFT output, but with the

order scrambled.

Now observe that ω−1 = ω̄ because ‖ω‖ = 1 for twiddle factors. This

means that applying this trick to a split-radix butterfly will change the twid-

dle factors from ω and ω3 to ω and ω̄. Explicitly, it is ω = a + bi and

ω = a− bi.

Since a and b are used in both twiddle factors, they can each be loaded once

and used twice. By comparison, the conventional approach of ω = a+ bi and

ω3 = c+di requires double the number of twiddle factor loads. No additional

arithmetic operations are needed since the negation can be optimized out via

sign-propagation.

While eliminating half of the twiddle factor loads may not be significant

in itself, it allows the twiddle factor table to be halved in size since there is

no longer a need to cache the ω3 factors. So not only does it reduce menory

usage, but it also reduces the demand on memory bandwidth — which is

increasingly the bottleneck in modern systems.

This ”Conjugate Twiddle” method generalizes to other butterflies. It can

be applied to the standard radix-4 butterfly in the same way as the split-

38



Figure 6.1: Conjugated twiddle factors for the standard split-radix 2/4,
radix-4, and radix-8 butterflies.
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radix butterfly which Bernstein originally used. For the standard radix-4

butterfly, the twiddle factors change from w2, w, and w3 to w2, w, and w−1

with a 33% reduction in twiddle factor loads.

Furthermore, it can be generalized to higher radices as well as higher order

split-radices. In general, the exponent of any twiddle factor can be “flipped”

using the following relation:

old twiddle− new twiddle = radix of butterfly

For a radix-8 butterfly, the w7 twiddle can be flipped to w−1 thereby reusing

the same load as the w1 twiddle. Similarly, the w5 twiddle can be flipped to

w−3 to reuse the same load as w3. For a radix N butterfly, N/2− 1 twiddle

factors can be conjugated and reused. Split-radix butterflies allow exactly

half the twiddle factors to be conjugated — thereby each twiddle factor load

is used exactly twice.

Currently we do not use this optimization because the order of the output

is no longer “mappable” and is dependent on the order in which the FFT

radix reductions are applied. For example, performing a conjugate twiddle

FFT using (radix-4 → radix-8) will produce a different output order from

(radix-8 → radix-4)! Inverting such an FFT requires that the same sequence

of radix reductions be performed in reverse. Furthermore, Baileys 4-step

algorithm is also partially incompatible with conjugated twiddles.

Some uses of the FFT will tolerate any order of the output as long as it

is possible to efficiently determine where a point is. This is the case for the

bit-reversed FFT, but not for the conjugate twiddle FFT since the radices

are chosen dynamically.

As a result, conjugate twiddle FFTs are only useful for applications that

strictly use FFTs for convolution. Most libraries give little attention to

bit-reversed FFTs let alone conjugate twiddle FFTs. Therefore, conjugate

twiddle FFTs have mostly remained only of academic interest. Nevertheless,

implementations do exist and are used by some highly specialized applica-

tions.

1Ω(n) is the big Omega function that counts the number of prime factors in n with
multiplicity.
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6.2.2 Fused Multiply-Add Algorithm

Most modern architectures have hardware support for Fused Multiply-Add

(FMA) operations. Examples include PowerPC, Sparc, ARM, and GPUs.

x86/64 is one of the last high-performance processors to support FMA.

AMD’s Bulldozer line was the first to support it in Q4 2011 followed by

Intel’s Haswell in Q2 2013. Therefore there is a growing interest to develop

FFT algorithms for FMA architectures.

The computational complexity of FFTs had been conventionally measured

by counting additions/subtractions and multiplications separately. However,

in FMA architectures, a single Fused Multiply-Add operation has the same

cost as a single multiply, thereby giving the extra addition or subtraction for

free.

The basic operation in complex FFT is the multiplication of two complex

numbers. A complex multiplication requires 4 multiplications and two addi-

tion/subtractions. Therefore, it would seem that the use of FMAs can reduce

arithmetic complexity by 1/3, at best (from 6 to 4). However, [14] has shown

that by “scaling” the FFT, it is possible to expose more multiplications to

be fused into FMAs. Although this approach increases the total number of

additions and multiplications, the total operation count is reduced to less

than the classic approach.

This scaled FFT algorithm will be given more attention in the future when

FMA is finally supported by x86/64.
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CHAPTER 7

CONCLUSION

We have shown in this paper several techniques for improving the locality of

FFT code, and for performing various micro-optimizations.

It is conceivable that FFT library generators, such as FFTW and Spiral,

could incorporate the optimizations discussed in this paper; indeed, such an

outcome would be highly desirable, as it would replace the manual search for

a good execution plan by an automated one. However, we suspect that such

a goal will require some significant changes in these library generators. Many

of the transformations we discussed do not have any obvious representation

in a tensor calculus, such as used by Spiral. Furthermore, as we argued

in Section 2, execution time is not additive: The time T (A;B)) to execute

codelet A, followed by codelet B, need not be equal to the sum T (A) +T (B)

of the times it takes to execute each codelet separately. This is so because

of cache effects: As a result of the preceding execution of A, B may incur

a smaller number of cold misses then it would incur otherwise. Therefore,

T (A;B) cannot be determined solely as a function of T (A) and T (B): As a

result, the dynamic programming approach used by the FFTW planner be-

comes much less effective: One either need to use very large codelets, so that

the effect of cold cache misses can be ignored; or use a much more complex

characterization of codelets that includes initial cache state. As locality be-

comes the dominant performance factor, performance tuning becomes harder,

since locality is not a “local” property of codelets, but a correlation between

codelets.
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