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ABSTRACT 

 

 This dissertation explores the application of production theory to architectural firms.  The 

basis of production theory, upon which all else depends and emerges from, is the production 

function.  The production function is simultaneously a mathematical representation of the 

arrangements of inputs necessary to the production of goods and services of a firm, and a 

conceptualization of the underlying production process.  The key benefit of understanding and 

utilizing production functions stems from its centrality in cost minimizing and output 

maximizing techniques.  Through the adoption of these optimization techniques architectural 

firms are afforded the means of improving their economic performance.  In this dissertation the 

focus is upon the identification of the n-input single-output production function best suitable for 

empirical study of architecture firms and subsequent use in minimizing costs and maximizing 

output as pathways to improving economic performance. 

 The maturation of production theory is largely a 20
th
 century phenomena although its 

antecedents date from the 18
th
 century.  The historical development of production theory begins 

with Jacques Turgot and is advanced by such luminaries as Johann Heinreich von Thunen, 

Antoine Augustin Cournot, Herman Heinrich Gossen, William Stanley Jevons, John Bates Clark, 

and John Gustav Knut Wicksell among many others.  The early historical period is brought to an 

end and the contemporary period born with the publication of A Theory of Production by Charles 

Cobb and Paul Douglas in which the production function bearing their names first appears.  This 

dissertation provides a brief history of the early period and a more detailed account of the 

development of production functions, of the n-input single-output variety, as it played out in the 

balance of the 20
th

 century.  In the process, over 50 production functions and their variations are 

identified and characterized.  A winnowing process was developed and applied that reduced this 
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list to five candidate production functions.  An abbreviated case study performed a statistical 

examination each of these forms concluding that the Cobb-Douglas and Leontief production 

functions presented the most viable choices for empirical study of architectural firms. 
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CHAPTER 1 

 

INTRODUCTION 

…architects have not yet found the key to the dilemma of 

maintaining their high standards of professional service at 

satisfactory levels of personal earnings and firm profitability… 

                                                                         Case and Company, The Economics of Architectural Practice
1
 

 

Background 

 By the autumn of 1966 the American Institute of Architects (AIA) had become 

sufficiently concerned about the business environment in which architectural firms operated to 

commission a study by the consulting firm of Case and Company into the nature of operating 

costs of member firms.
2
  The passage quoted above appears in the final report under a section 

entitled ‘Diagnosis of the Architect’s Dilemma’ and summarizes the effects of many of the 

shortcomings and difficulties in managing an architectural firm that were uncovered by the study 

group.
3
  The ‘Architect’s Dilemma’ remains largely unresolved nearly a half century later.  The 

Case and Company study exposed the extent to which the architectural industry was failing to 

achieve financial success and laid much of the blame on the industry’s inability to understand the 

basic costs of providing design services.  The basic premise of this dissertation is that an 

important distinction exists between ‘accounting for the cost of design services’ and 

understanding the fundamental nature of the cost structure of the design firm as revealed through 

cost analysis.  The former is a bookkeeping function that results in financial reports and 

performance parameters (e.g. billing rates, direct and indirect costs, and a range of performance 

ratios), the latter consists of detailed analysis of costs to determine their behavior – the why and 

                                                
1 Case and Company Inc., The Economics of Architectural Practice  (Washington, D.C.: American Institute of 

Architects, 1968). 63. 
2 Ibid., 1. 
3 Ibid., 63. 
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how of their variation.  In this introductory chapter several related and fundamental issues are 

addressed – has the financial health of the architectural profession changed much over the last 

half century, how did this situation come to exist, and what action we may now undertake to 

better understand the costs of design services.  The genesis of this dissertation emerged from this 

need to find better methods of determining and understanding the fundamental cost structure of 

architectural design.   

 The evidence that the conclusions articulated in the Case Company’s study remain valid 

still today is both anecdotal and quantitative.  Anecdotally, stories regarding the poor 

performance of the architecture industry abound; architects tell these stories, other architects and 

architecture students alike listen to them – they are the fodder of cocktail parties.  But are they 

merely apocryphal?  Does the available quantitative data suggest a problem?  Yes.  Reports 

commissioned by the AIA, most notably various editions of the Business of Architecture, 

combined with census data and Bureau of Labor studies and analyses provide ample 

substantiation that little has changed in the financial picture of individual architects and 

architectural firms.  The compensation of individual architects has chronically lagged below that 

offered their colleagues in related industries and financial performance by firms, particularly 

small firms, remains problematic.   Although a number of factors may be cited to explain how 

these conditions developed and why they persist, the industry should seriously consider a new 

approach to understanding the cost structure of design and its impact on firm profitability.  The 

industry must undertake a comprehensive reexamination of ‘how do we know what our services 

cost us’ and ‘how can that information help us be more profitable’.  This dissertation focuses on 

the methods of understanding the cost structure of design work, the drivers of those costs, and on 

means and methods the industry can employ to utilize that knowledge.   
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 A literature review of publications prescribing management ‘best practices’ disclosed a 

disturbing inadequacy in their collective approach to the subject of understanding the cost of 

design services.  The advice offered through a variety of sources, including some authored or 

published by the AIA, simply fail to adequately address the problem of a full and accurate 

accounting of the true cost of doing business.  These publications do not provide architects sound 

advice concerning effective cost control or managerial accounting.  Accordingly, architects lack 

the ability to accurately determine the underlying cost structure of their firms.  The common 

thread among the ‘best practices’ approaches is the reliance upon financial reporting - balance 

sheets and income statements - for managerial decision-making.  Financial reports are effective 

and reliable tools in understanding the overall financial position of the firm; however, they are 

not effective tools in understanding why the costs of that firm behave as they do. 

 The problem of not understanding the costs of production did not emerge within the 

architectural design industry separate and independent from similar concerns in the general 

business community nor did the prevailing methods of accounting for the costs of design services 

evolve outside of the general framework established by the accounting community.  It is 

unreasonable to expect that the architectural profession might separately and independently 

develop methods of accounting for costs or for reporting financial information markedly 

different than those used by the general business community.  In deed the opposite proved true.  

Architects relied upon the accounting industry for standardized accounting techniques and 

standard financial reporting procedures and report formats (e.g. balance sheets and income 

statements).  Historians of the accounting profession have concluded that over reliance on these 

types of reports and analysis based upon them are the root causes of many faulty decisions.  As 

outlined later in this chapter the architectural industry suffered along with many in the general 
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business community as the accounting industry’s emphasis shifted in the early part of the 20
th
 

century away from managerial accounting and toward financial reporting.  Architects have yet to 

recover from this turn of events. 

 The narrative history of managerial accounting and the lessons-learned derived from 

those experiences contained in the pages of Relevance Lost: The Rise and Fall of Management 

Accounting, by Robert S. Kaplan and H. Thomas Johnson, describes clearly the detrimental 

impact on managerial decision-making brought about by the switch from managerial to financial 

accounting in the early part of the 20
th
 century.

4
   The timing of that transition negatively 

impacted the architecture profession.  At just the precise moment the architecture profession first 

considered establishing standards for managerial accounting, the trend away from managerial 

accounting and toward financial reporting was well underway.  Thus during the 1930’s an 

opportunity to right the ship and get managerial accounting in the architectural industry moving 

in the right direction slipped by.  However, other opportunities coming out of the field of 

economics were just emerging. 

 A review of the extensive body of literature concerning production economics reveals 

missed opportunities to develop cost analysis techniques in the professional service arena.  

Among architects the mistaken belief that architectural firms operated, or could operate, on an 

accounting and billing system similar to that employed by accountants, lawyers, and other 

professional service organizations forestalled efforts that might have led to a better 

understanding of the underlying cost structure of architecture firms.  The use of percentages (i.e. 

percentage of construction cost) as the basis for a fee structure served only to commoditize 

architectural services.  Under these circumstances the challenge to architects becomes how to 

                                                
4 Robert S. Kaplan and H. Thomas Johnson, Relevance Lost:  The Rise and Fall of Management Accounting  

(Boston, Massachusetts: Harvard Business School Press, 1987). 
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complete a design and make a profit while operating within the constraint of a fixed budget.  

 Meanwhile, as early as the period between World Wars I and II, economists had 

developed methods both to analyze the movement of fixed and variable costs in accordance with 

levels of output for manufacturing enterprises and to calculate least cost optimization conditions.  

However, the architectural industry failed to consider applying these techniques to the 

production of designs. 

 Four central themes emerged from a synthesis of literature reviews in architectural 

practice, accounting, and economics.  First, as architects sought to implement modern accounting 

standards in the early part of the 20
th
 century they naturally adopted the prevailing standard, that 

of ‘financial reporting’, and in doing so missed an opportunity, along with the general business 

community, to continue the use of effective managerial accounting methods throughout the 

balance of the 20
th

 century that existed in the latter part of the 19
th
 and early part of the 20

th
 

century.  Second, among many other culprits, ineffective cost accounting greatly contributes to 

the dismal financial performance of individual architects and architecture firms.  Third, adoption 

of effective cost accounting methods is a necessary first step in any program aimed at improving 

the dismal financial condition of the architecture profession.  And fourth, in that various methods 

for effective cost accounting exist, the profession ought to explore their efficacy and applicability 

to the daily operations of firms and should adopt the most useful.  The balance of this 

dissertation is dedicated to the examination of one such method – economic analysis. 

 Exploration of economic analysis, in particular use of the production function, commands 

our attention in this dissertation.  Although its antecedents date to the early part of the 18
th
 

century, production economics emerged alongside and as an integral part of the nascent field of 

neo-classical economics as it developed in the latter part of the 19
th
 and early 20

th
 century.  In its 
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contemporary form production economics encompasses a number of specialty fields focused 

upon various theories regarding production, cost, revenue, and pricing behavior affecting the 

decision-making of firms.  Production theory is concerned with the manner in which firms 

employ resources (inputs) to produce the firm’s products or services (outputs) with emphasis 

upon the efficient use of inputs with the objective of optimizing the combination of these inputs 

so as to minimize costs or maximize production under the condition of constrained resources, 

and to maximize profits.
5
  Production economics provides the theoretical basis of our enquiry 

into the potential role of the production function as a management tool.   

 

Objective 

 The objective of this dissertation is to determine which production function(s) are best 

suited for empirical analysis of the cost structure in architectural firms.  A supporting objective is 

the demonstration of techniques involved in optimizing performance.   

 A review of the relevant literature on the economics of production reveals a rich tapestry 

of thoughts, ideas, and theories regarding the general field of production economics and 

specifically the use of production functions.  The fragmented body of literature dating from the 

18
th
 to the early part of the 20

th
 century reflects the disjointed nature of the early development of 

the broader body of neo-classical economic thought as well as that of the specialized field of 

production economics.  Publication in 1928 of A Theory of Production by Charles Cobb and Paul 

Douglas, in which the Cobb-Douglas production function first appeared
6
, in conjunction with the 

                                                
5 James L. Pappas and Eugene F. Brigham, Managerial Economics, Third ed. (Hinsdale, Illinois: The Dryden Press, 

1979). 201.  
6 Charles W. Cobb and Paul H. Douglas, "A Theory of Production," The American Economic Review 18, no. 1 

(1928). 
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publication in 1947 of Foundations of Economic Analysis by Paul Samuelson
7
 ushered in the 

contemporary period of developments in production economics.  Correspondingly the volume of 

literature about production economics steadily increased during the middle and latter part of the 

20
th
 century and continues today.  One consequence of the growth in economic thought about 

production economics is the proliferation of mathematical forms of the n-input single-output 

production function, standing today at more than 50 forms and variations.  Mindful of the desire 

that architects adopt the production function as a means of economic analysis of the cost of 

design, a method of winnowing the list to a manageable few is critical.  This journey begins with 

a survey of the historical development of production functions, then proceeds through a summary 

of the nature and characteristics of production functions, an example of optimization techniques 

applicable to daily decision-making, a review of the contemporary development of production 

functions, establishment of an evaluation methodology to construct the final short-list of useful 

forms, and concludes with an analysis of these forms utilizing a sample of data obtained from a 

functioning architectural firm.   

 

Chapter Outline 

 A good story needs a beginning, middle and an end.  This introductory chapter provides 

the beginning and includes a brief history of managerial accounting and the issues that arise from 

our knowledge of that history, a brief comment on the financial condition and stability of the 

architecture profession which provides background on the gravity of the need for change, and a 

discussion of the concept of ‘cost structure’ which provides a basis and context for many of the 

topics covered later in this dissertation.  While production economics remains the primary focus 

                                                
7 Paul A. Samuelson, Foundations of Economic Analysis  (New York, New York: Atheneum, 1947). 
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of this dissertation it is not the only method of costing a production process.  Ergo, a brief 

discussion of two other methods follows next in order for two important reasons.  First, these 

other methods, in concert with production economics, provide insight into all the aspects of the 

costs incurred by architects in the design of buildings, whereas one standing alone will not.  

Second, these other methods deserve consideration as viable costing methodologies and research 

into their application should be given equal importance as that given production economics in 

this dissertation.  Following that discussion we turn to an introduction to production economics.  

This chapter concludes with a comment on the structure of the balance of the dissertation.  We 

turn now to a brief history of managerial accounting. 

 

Relevancy Lost; Opportunities Missed 

 Relevance Lost: The Rise and Fall of Management Accounting, aptly chronicles the 

ascendancy of managerial accounting during the 19
th
 century and its eventual decline into 

irrelevance during the early part of the 20
th
 century.

8
   Accounting methods and techniques 

developed over a period of close to one hundred years fell into disuse replaced by a new set of 

metrics, mostly ratios.  The architecture profession would fall subject to these same forces 

impacting the general business community and much like the general business community has 

yet to fully recover.   

 Prior to the industrial revolution the demands on the accounting function were simple, 

reflecting the uncomplicated nature of business transactions of the day.  These transactions 

occurred between owner-entrepreneurs and the market – exchanges involving raw material 

suppliers, laborers, and customers.  Because these transactions occurred in the market the 

                                                
8 Kaplan and Johnson, Relevance Lost:  The Rise and Fall of Management Accounting. 
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measures of success were easily obtained.  The proprietor required only enough cash from sales 

to cover the expenses of labor and raw materials, with some left over for profit.  Because there 

were no ‘layers of management’ sophisticated managerial accounting was unnecessary.
 9

  The 

industrial revolution would, however, change the face of business and accounting. 

 The industrial revolution radically changed the business environment introducing 

economies of scale and a complexity in business operations previously unheralded; the effect 

was to create new requirements of accounting systems.  Businesses became more complex 

hierarchical enterprises consisting of many layers and a multitude of internal conversion 

processes within the same organization.  These internal conversion processes gradually replaced 

external transactions previously conducted in the market.  The firm made intermediate products 

or used supply sources embedded within their organization rather than buy them through the 

market in an organizational scheme referred to as vertical integration.  A demand therefore arose 

for information about the ‘price’ of these internal outputs.  Consequently, internal transactions 

became as important as market transactions.  Early efforts of accounting systems focused on 

determining these conversion prices and calculating other parameters such as cost-per-hour or 

cost-per-unit.  In doing so accounting systems measured the cost of labor and material and made 

an allocation of overhead to each process. The goal became to identify costs for intermediate and 

final products of the firm in order to provide benchmarks and standards for use by decision-

makers.  When the cost of a manufacturing process varied beyond acceptable norms managers 

could then take steps to identify and correct inefficiencies.   Through the emerging management 

accounting systems owners and managers at all levels found the data necessary to support timely 

daily decision-making thus ensuring maximum efficiency and profitability.  Early success stories 

                                                
9 Ibid., 6-7. 
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of this approach abound in the textile mills founded in the early part of the 19
th
 century, the 

railroads formed around mid-century, and the steel mills of the second half of the century.
10

 

  Advances in transportation and communication during the second half of the 19
th
 century 

created opportunities for large retail organizations in addition to the existing manufacturing 

enterprises.  Retail chains such as Marshall Fields, Sears, and Woolworth began to flourish.  

Their measures of efficiency differed from those of the manufacturing sector.  Gross margins and 

inventory turnover among others became the measures of effectiveness and efficiency in 

purchasing, pricing and retail activities.  Still, very much like their manufacturing cousins these 

organizations focused on the efficient operation of internal processes.  If each process worked 

efficiently then so did the whole enterprise.  Management accounting systems came into being to 

promote efficiency in key operations of the organization.
11

 

 The trend toward ever more complex diversified multi-activity organizations continued 

into the early part of the 20
th
 century as exemplified by the Du Pont Powder Company, itself a 

product of the merging of several family-owned and independently operated companies, and the 

newly reorganized General Motors.  Faced with coordinating the diverse activities of a far flung 

vertically integrated manufacturing and marketing organizations the managers of Du Pont had to 

decide how to allocate capital.  Their most enduring contributions to managerial accounting 

included operating budgets, capital budgets and the return of investment or ROI parameter.  

Faced with a diversity of product lines and an inability to coordinate corporate level functions 

such as marketing, purchasing and finance across product lines General Motors decentralized 

these functional operations and made department managers responsible for the efficiency and 

profitability of their segments of the company.  The allocation of capital went to those whose 

                                                
10 Ibid., 7-8. 
11 Ibid., 8-9. 
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return on capital investment was the greatest.  Thus the ROI played a key role in capital 

investment decisions within the corporation.   By 1925 common accounting functions well 

known today had been fully developed; cost accounts, budgets, sales forecasts, standard costs, 

variance analysis, and divisional performance measures.  However, at this point the evolution of 

management accounting systems stalled.
12

 

 The continued evolution toward more complex processes and organizations should have 

spawned a similar development in management accounting systems but failed to do so for three 

reasons.  First, the state of data collection and analysis existing in the period from 1925 to the 

late 1970’s made it increasingly difficult to efficiently perform analysis of critical information 

regarding internal operations and provide that analysis in a timely fashion to decision-makers.  

Before the data could be collected and analyzed the situation that data was meant to describe had 

changed.  Management information systems, not yet widely computerized, were simply not 

capable of keeping pace with the speed of internal operations.  Second, the decline can be 

attributed to the growing dominance of the use of external financial accounting statements and 

the collection of data to support their creation.  Creditors, security exchanges, regulators, 

shareowners, and the government became voracious consumers of financial reports, in particular 

the balance sheet, income statement, and earnings’ reports, and a plethora of performance 

measures; generally ratios of one aspect of performance to another such as price-to-earnings 

ratio.  Given the effort required to produce these reports it may simply have been too onerous 

and too resource intense for companies to maintain two separate accounting systems.
13

  Third, 

university researchers and academics failed to notice or call attention to the deteriorating position 

of managerial accounting.  Accounting academics became enamored with the simplified 

                                                
12 Ibid., 10-12. 
13 Ibid., 12-14. 
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economic model of the one-product one-production-process firm.  They found little of value in 

complicated systems of cost assignments and overhead allocation systems.  The literature of the 

period advocated for a system of separating costs into fixed and variable elements yet were never 

able to explain how fixed costs were driven by production or how and why fixed or variable 

costs changed with levels of production. The metrics calculated for managerial decision-makers 

began to take second seat to performance ratios.
 14

 

 The demise of managerial accounting lies at the feet of financial accounting and 

reporting.  Financial reporting grew in importance as a consequence of the need on the part of 

capital investors for measures of the cost and profit picture of firms seeking both equity and 

long-term capital debt.  Consequentially the accounting profession focused on creating methods, 

techniques and standards in support of the burgeoning field of financial reporting.  This came at 

the expense of managerial accounting methods and techniques.  As financial reporting consumed 

the efforts of accountants both in and out of industry, managerial accounting fell out of favor.  

Mangers still needed information with which to make daily decisions regarding production but 

increasing had to rely on financial reporting in place of managerial accounting data.    

 Three important consequences come out of this decline in managerial accounting.  First, 

reporting under financial accounting proved of little aid to a manger’s attempt to control costs 

and improve productivity.  Second, such reports failed to accurately show the true costs of 

production.  And third, the short-term focus of financial reporting, which matches period costs 

with period revenue, failed to recognize the long-term additions to value creation resulting from 

those same period costs.
15

  Kaplan and Johnson conclude that for managerial accounting to 

regain relevancy it must perform four critical functions:  provide the means to allocate costs for 

                                                
14 Ibid., 14-15. 
15 Ibid., 1-2. 
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periodic financial statements, facilitate process control, compute product costs, and support 

special studies.
16

 

 Against the backdrop of the ascendancy of financial reporting the American Institute of 

Architects established its first set of accounting standards in 1935.
 17

  The legacy of managerial 

accounting was not yet dead, however.  The bibliography of the 1935 edition listed no fewer than 

nine titles dealing with the subject of cost accounting although none dealing specifically with 

managerial accounting.  Recognizing the importance of cost accounting the 1935 edition notes: 

“The business that desires to operate at the greatest efficiency and with the least waste of 

time and money will ascertain the cost of each specification and of each individual sheet of 

drawings it produces.  An accurate knowledge of these detailed costs is essential if the 

business is to work under a budget for a job, for a job budget wherein the drawings, sheet 

by sheet, are not predetermined and a cost fixed for each such sheet will be of little effect, 

economically.  The manufacturing business that does not know the cost of the smallest 

product produced by it can hardly survive competition, and the architect’s business does 

not differ from a manufacturing business in this particular.  The architect who does not 

know whether a sheet of details or a floor plan of a known character should cost him one 

hundred, or three hundred, or a thousand dollars, and who does not know why, if a sheet 

cost him four hundred on one job, a similar sheet containing similar information should 

cost five or six hundred on another job, will not attain the financial success that an 

architect who does know those things exactly, and acts on that knowledge, will attain.”
18

 

 

Unfortunately the promise contained in the foregoing statement was not fully realized within the 

pages of the 1935 edition.  For while the authors dwell in excruciating detail on the proper 

manner of collecting such data they failed to provide instructions regarding the means or 

methods of analysis and interpretation, despite their continued use of the term ‘analysis’.  By the 

1949 publication of the Instructions: Standardized Accounting for Architects cost accounting had 

become job cost accounting and the emphasis reduced to the following statement: “The 

importance of Job Cost Records cannot be over emphasized.  Only through their use is it possible 

                                                
16 Ibid., 228. 
17 American Institute of Architects, Manual of Accounting for Architects  (Los Angeles, California: Parker, Stone & 

Baird Co., 1935). 
18 Ibid., 102-03. Italics added. 
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to determine whether or not certain classes of work and type of service are profitable.”
19

  The 

emphasis upon detailed record keeping remained while focus of analysis turned to financial 

ratios of direct expenses to indirect expenses among others.  Their directions were clear “The 

Indirect Expense Factor is determined by dividing the total indirect expenses for the year to 

date by the total number of direct man hours for the year to date on all jobs.”
20

  Implementation 

of the indirect expense factor concept moved even further away from the original intent with 

“The Indirect Expense to be charged to each job is then computed by multiplying the number of 

direct man hours on the job for the year to date by the Indirect Expense Factor.”
21

  Any thought 

of computing cost of individual products such as sheets of drawings or amount of specifications 

was lost to the history books.  Thus the ascendancy of financial reporting overtook good sound 

managerial accounting even within the architecture profession.   

 In the intervening sixty plus years AIA has changed little regarding what it recommends 

for proper accounting methods for the architecture profession despite numerous revisions of the 

instructions for accounting standards published in the same time period.  Accounting methods 

recommended by the 14
th

 edition of The Architect’s Handbook of professional Practice
22

 and 

found in Financial Management for the Design Professional
23

 by Lowell Getz continue favoring 

the use of performance ratios.  The use of ratios, such as the indirect expense ratio, the direct 

personnel expense multiplier, and utilization rates, in preparation of profit plans, annual firm 

budgets and job budgets are direct descendants and consequences of the use of financial 

reporting system metrics.  Admonitions to use these metrics as the basis for daily decision-

                                                
19 ———, Instructions: Standard Accounting for Architects  (Washington, D.C.: American Institute of Architects, 

1949). Chapter 20. 
20 Ibid., Chapter 26. Bold type original. 
21 Ibid. 
22 ———, The Architect's Handbook of Professional Practice, Fourteenth ed. (Washington, D.C.: John Wiley & 

Sons, Inc., 2008). 
23 Lowell Getz and Frank Stasiowski, Financial Management for the Design Professional a Handbook for 

Architects, Engineers, and Interior Designers  (New York, New York: Whitney Library of Design, 1984). 
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making in production, personnel management, or budgeting are misguided.  Only those cost 

accounting methods and techniques that seek answers to the difficult questions of why and by 

how much does the cost of production vary can mangers hope to have the managerial data they 

require in their daily decision-making. 

 The linkage between the decline in the use of sound managerial accounting and that of 

the financial performance of architectural firms has yet to be fully established.  Much research 

lies ahead for anyone wishing to substantiate such a linkage.  Nevertheless it is interesting to 

ponder what contribution the absence of sound managerial accounting makes to the dismal 

performance of many architectural firms.  In the following section a small sample of the financial 

performance of architectural firms is drawn from the reporting of the American Institute of 

Architects and other sources. 

 

Financial Health of the Architectural Industry 

 This section provides a snap-shot of the financial health of the architectural profession.  At 

best it’s a brief exploratory view taken through a narrow opening, but enlightening all the same.   

The view is disturbing; the unwholesome financial health of the industry should be a matter of 

great concern.  A more thorough examination of the financial condition of architecture and the 

underlying and contributory forces and factors creating this condition commands our attention; 

however, limited time and resources preclude such an examination within these pages and at this 

time.  What we can say is that the conventional wisdom that the economic fortunes of 

architectural firms are directly correlated to the overall national economy and to building cycles 

does not fully explain the fragile and disappointing economic condition of the industry.  Among 

the other myriad causes, ranging from ineffective marketing to unprofitable compensation 
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schemes, we must be willing to address our inability to properly determine the cost structure of 

design.  These statements may seem overly bold and perhaps somewhat inflammatory.  Before 

we are too quick to judge let us consider some facts regarding the overall financial condition of 

the industry as reported by the American Institute of Architects, as contained in the 2000 census 

data, from the Bureau of Labor Statistics, and finally anecdotal comments of practicing 

architects. 

 Profitability, as a measure of the surplus of revenues over expenses, affords us a basic metric 

to consider financial performance.  2005 is the last year for which the AIA posted profitability 

data as contained in The Business of Architecture dated 2006.
24

  While 57% of firms reported 

double digit profits 12% reported no profit while another 17% reported profits of less than 5%.
25

  

For firms with more than 50% of their billings coming from the commercial and industrial 

sectors the numbers are 15% with no profit, 16% with a profit less than 5% - a collective 31% 

with a profit of 5% profit or less.
26

  This is not a phenomenon of current economic conditions 

alone however.  The report of the Case study conducted forty years earlier notes that fully 1 in 4 

projects failed to generate a profit and that 1 in 12 firms failed to make a profit in 1966.
27

  Profits 

are, however, also a function of revenue generation. 

 Generating profits, never an easy achievement, becomes more difficult when increases in 

revenue levels exhibit inconsistencies.  Billings-per-employee provides one measure of revenue 

generation useful in comparing firms of various sizes.  Revenue generation during the period 

1995 to 2008 varied both by year and by size of firm.  The greatest fluctuation in billings-per-

employee occurred in firms of one to ten employees during the period.  Billings for single person 

                                                
24 American Institute of Architects, The Business of Architecture  (Washington, D.C.: American Institute of 

Architects, 2006). 
25 Ibid., 60. 
26 Ibid. 
27 Case and Company Inc., The Economics of Architectural Practice: 3. 
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firms rose from $85,000/employee initially to $96,000 at the midpoint of the period then fell to 

$87,000 by the end of the period.  Billings for 2-4 person and 5-9 person firms saw a drop from 

the beginning of the period where billings were $93,000 and $87,000 per/employee respectively 

to $70,000 and $74,000 respectively at the midpoint then rebounding by the end of the period to 

$82,000 and $92,000 respectively.  In contrast to small firms, the situation for firms of 10-19 and 

50 or more persons exhibited more stability with a net gain of $26,000 and $33,000 per 

employee respectively.  The biggest winner was the firm of 20-49 persons with a net gain of 

$46,000 per employee over the period.  However, when inflation is considered the picture 

appears bleaker.  Against a decade which saw the consumer price index rise annually by an 

average of 2.9 percent the lack of growth in billings for small firms is particularly alarming.  For 

80% of firms (those with 9 or fewer employees) the increase in billings per employee failed to 

keep pace with the annual rise in inflation between 1995 and 2008.  Those firms of 10-19 and 

50+ employees barely managed to keep pace with inflation.  Only firms of 20-49 employees 

experienced a gain against inflation showing a 4.4% annual gain against 2.9% annual increase in 

inflation.   In a time period of rising costs, as measured by increases in the CPI, and stagnant 

earnings levels the general picture of a flailing and ailing economic condition emerges.
28

  If firms 

are struggling what is the condition of individual architects? 

 Wage data from both the 2000 Census and 2009 Bureau of Labor Statistics reporting indicate 

that individual architects are negatively impacted by this economic condition.  The 2000 Census 

presents data showing the median annual wage of architects trailing that of electrical engineers 

by 7.5%, civil engineers by 10% and mechanical engineers by 12%.  The Bureau of Labor 

Statistics reported in 2009 that the medium annual wage of architects trailing that of electrical 

                                                
28 Billings per employee and firm data is contained in the American Institute of Architects periodically published 

information and data about the architectural industry.  The three most recent publications are the “AIA Firm Survey 

2000/2002”, “The Business of Architecture” released in 2006, and “The Business of Architecture” released in 2009. 
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engineers by 8.5%, that of civil engineers by 3% and mechanical engineers by 2.2%.
29

  This data 

shows the wages of individual architects trailing across the board some of the most common 

consultants used by architectural firms.  The consultants are better off than the architects. 

 Finally, we turn to the anecdotal musings of architects themselves.  Roger K. Lewis, a 

professor of architecture at the University of Maryland and noted architectural columnist for the 

Washington Post, comments in his widely read book Architect?: A Candid Guide to the 

Profession, “It is possible to achieve substantial wealth as an architect – and no doubt some 

architects pursue this as a primary personal goal – but it is improbable.  Instead, most architects 

earn comfortable or modest livings, enjoying reasonable but limited economic stability and 

prosperity.”
30

  Regarding wages and compensation the general theme of his book is that 

architects too eagerly forego an adequate salary or sufficient compensation for a project due to 

the pressures of competition from other architects.  Lewis further opines that architects defend 

and justify their actions on aesthetic grounds.  If one appeals to the lofty goals of aesthetic beauty 

and promoting the health, welfare and safety of the general public, as common goals of 

architects, then surely a warm and fuzzy feeling makes up for a slightly lower paycheck.  Jim 

Morgan in his book on managing small firms, Management for the Small Design Firm, tells the 

story of two architects at a party.
31

  One asks the other what he would do with a million bucks.  

To which his friend responds, “Why, I guess I’d just keep on practicing until it was all gone.”
32

 

Thomas Fisher, writing in the final issue of the journal Progressive Architecture, pens an exposé 

                                                
29

 Data for the salaries is contained in the 2000 Census Report, Earnings by Occupation and Education, 

http://www.census.gov/hhes/www/income/data/earnings/call2usboth.html 
30 Roger K. Lewis, Architect?: A Candid Guide to the Profession  (Cambridge, Massachusetts: The MIT Press, 

1998). 1. Italics added 
31 Jim Morgan, Management for the Small Design Firm: Handling Your Practice, Personnel, Finances, and Projects  

(New York, New York: Whitney Library of Design, 1998). 
32 Ibid., 45. 
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on the compensation of architects titled Who Makes What and How We Might All Make More.
33

  

Fisher points out that an architect’s sense of compensation includes the pure gratification of the 

work, as one architect related to him “Face it, architecture is a lot of fun.”  Fisher goes on by 

noting the disparity between starting salaries among architecture and engineering students.  In 

1995 dollars architecture students made an average of $22,125 versus $35,350 for engineering 

graduates.
34

  Granted his data is now 15 years out of date it none-the-less demonstrates the 

enduring iniquity between the professions.  The words of Roger Lewis echo again “Be an 

architect for many other reasons but not to get rich.”
35

 

 One would be hard pressed to reach a definitive judgment regarding the nature of the 

economic condition of the architecture industry from the foregoing limited sample of data and 

observations.  Nor, given limited time and resources, was that the intent of these few paragraphs.  

But it should be sufficient to suggest strongly that all is not well either.  Among the many 

possible factors undermining a sound economic foundation we should at least consider the 

manner in which we understand, calculate, and express the cost of design.  If we cannot, or will 

not, our efforts to improve profitability are forestalled before they begin.   

 

Cost Structure 

 An understanding of what constitutes the ‘cost structure’ of an architectural firm plays a 

critical role in the discussions that follow yet we are hampered by the fact that no single 

commonly accepted or conventional definition of ‘cost structure’ exists.  We are obliged to 

                                                
33 Thomas Fisher, "Who Makes What and How We Might All Make More," Progressive Architecture, no. Dec 

(1995). 
34 Ibid., 50. 
35 Lewis, Architect?: A Candid Guide to the Profession: 23. 
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formulate one suitable for our purposes.  We begin with an examination of different perspectives 

about what constitutes cost. 

 Catherine J. Morrison Paul provides the economists perspective in her book Cost 

Structure and the Measurement of Economic Performance.
36

  She employs basic production 

theory whereby the total cost of the firm’s production is the weighted sum of all the inputs and 

their respective costs (wages or rents).  Utilizing the production function one can ascertain the 

relationship between inputs and outputs, and determine how changes in output levels affect those 

relationships.  Employing this knowledge and the mathematical power of production functions 

cost minimization, output maximization or profit maximization points can be calculated, and 

input demand schedules constructed.   

 Warren, Fess and Reeve, in their book Accounting offer us the accountant’s perspective.
37

  

They employ the terms fixed and variable costs to describe those costs that do not vary according 

to output levels and those that do vary, respectively, while mixed costs are defined as exhibiting 

characteristic of both types, fixed and variable.
38

  These concepts are employed in cost-volume-

profit analysis to determine break-even points and to conduct analysis of the impacts of changes 

in fixed or variable costs.
39

  Alternatively costs may be assigned to a cost object – defined as a 

particular aspect of production.  In this instance costs are designated as direct or indirect 

according to whether the cost can be assigned directly to the cost object or not.
40

  This approach 

is the most common in architectural firms.  Another useful approach is found in absorption and 

variable costing with absorption costing being defined as the total of direct (labor and material) 

                                                
36

 Catherine J. Morrison-Paul, Cost Structure and the Measurement of Economic Performance  (Boston, 

Massachusetts: Kluwer Academic Publishers, 1999). 
37 Carl S. Warren, Philip E. Fess, and James M. Reeve, Accounting, 18th ed. (Cincinnati, Ohio: South-Western 

College Publishing, 1996). 
38 Ibid., 777-81. 
39 Ibid., 786-86. 
40 Ibid., 672. 
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costs plus indirect costs while variable costing subtracts a portion of indirect cost not assignable 

to a cost object (i.e. certain overhead costs).
41

  We may also view costs through prime vs. 

conversion costs or product vs. period costs.  Prime costs are composed of direct material and 

labor costs while conversion costs are composed of labor and overhead costs related to the item 

produced.  Product costs are the sum of direct labor and material plus overhead costs related to 

the product produced while period costs are general, sales, and administrative costs.
42

  The final 

perspective of the accountant centers on cost behavior and cost variance analysis based on 

standard costs.  Cost behavior, defined as the manner in which a cost varies with levels of 

production, examines the direction and magnitude of cost changes.
43

  Cost variance analysis 

determines direction and magnitude of cost changes against a cost standard, defined as the 

computed normal cost (often a statistical average).
44

  Clearly the accountant is adept at slicing 

and dicing costs to meet the manager’s decision-making requirements. 

 The advocates of activity-based-costing (ABC) provide a third perspective.  ABC finds 

its antecedents in the previous referenced work of Robert Kaplan, Relevance Lost:  The Rise and 

Fall of Management Accounting, and his primer on ABC titled Cost and Effect.
45

  In describing 

the logic of ABC Douglas T. Hicks states the following:  “The concept is simple… Costs are 

either assigned directly to a job, product, or service, or they are assigned to the various activities 

performed by the organization”.
46

  Those costs assigned to the organization’s activities are 

eventually assigned to its jobs, products, or services as the cost of the various activities are 

associated with jobs, products or services that made them necessary.”  Let us take two examples 

                                                
41 Ibid., 797-80. 
42

 Ibid., 674-75. 
43 Ibid., 866. 
44 Ibid., 863. 
45 Robert S. Kaplan and Robin Cooper, Cost & Effect: Using Integrated Cost Systems to Drive Profitability and 

Performance  (Boston, Massachusetts: Harvard Business School Press, 1998). 
46 Douglas T. Hicks, Activity-Based Costing: Making it Work for Small and Mid-sized Companies, Second ed. (New 

York, New York: John Wiley & Sons, Inc., 1999). 50-51. 
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applicable to an architectural firm.  The man-hours consumed directly in the production of a 

design are direct costs and are assigned directly to the project at hand.  That part of the marketing 

or human resource activity associated with a particular category of building typography is 

assigned the indirect or support activity cost consumed by the support activity’s action for that 

building category.  In other words, if the marketing department expends resources promoting a 

given category, perhaps office buildings or K-12 educational facilities, then that cost is allocated 

to that building category and then allocated to specific projects within the category.  In this 

manner the proponents of ABC argue, that as managers need more accurate information about 

the costs of processes, products, and customers than obtainable from the system used for external 

financial reporting, ABC meets that need by enabling indirect and support expenses to be driven, 

first to activities and processes, and then to products, services, and customers, thus giving 

managers a clearer picture of the economics of their operations.
47

  This process is critical as 

overhead or fixed expenses are not fixed but rather ‘super variable’ and often discretionary thus 

direct costing strategies are incapable of accurately allocating these costs.
48

  Moreover ABC cost 

systems avoid the period cost matching problem.  Under GAAP (Generally Accepted 

Accounting Practice) period costs are matched with period revenues in the determination of 

profit, however, the impact of costs incurred by an activity during one period may not be felt for 

several future periods.  Take the marketing example again.  The marketing effort spread over 

several prior reporting periods may just now bear fruit with increasing design commissions even 

as the marketing expense levels off or declines in the current reporting period.  ABC affords a 

system that looks out over multiple reporting periods to obtain a more realistic sense of the cost 

structure of the firm.  This is possible because ABC identifies the activities and processes 

                                                
47 Kaplan and Cooper, Cost & Effect: Using Integrated Cost Systems to Drive Profitability and Performance: 3. 
48 Ibid. 



23 

 

required in the operation of the business, tracks what resources and how many resources are 

consumed in those activities and processes, and how much of each activity is required by each 

product, service or customer,
49

 

 In light of the foregoing we now consider the perspective of architectural firms.  First, we 

should consider what resources are consumed in the process of producing a building design or 

any of its constituent parts and separate functions and/or deliverables.  Here architectural firms 

are unique even among professional service firms.  Beyond the dollars normally associated with 

costing strategies architects must be concerned with the consumption of time and specialized 

talents.  Time itself consists of two components namely the time in man-hours required to 

complete a project or deliverable and the time-span required to produce that project or 

deliverable.  In manufacturing circumstances production is consider instantaneous, not so with 

the design of building projects that may take weeks or months to complete.  Architects must also 

consider specialized human talents or knowledge.  Not every employee is capable of writing 

specifications, analyzing structural systems, or performing other highly specialized tasks.  The 

architectural manager must balance each of these resources to successfully complete a design.  

Most importantly we should keep in mind the admonition of the 1935 standard of accounting 

practices mentioned earlier namely that an architectural firm should “ascertain the cost of each 

specification and of each individual sheet of drawings it produces.”, and that “The architect who 

does not know whether a sheet of details or a floor plan of a known character should cost him 

one hundred, or three hundred, or a thousand dollars, and who does not know why, if a sheet cost 

him four hundred on one job, a similar sheet containing similar information should cost five or 

                                                
49 Ibid., 79. 
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six hundred on another job will not attain the financial success that an architect who does know 

those things exactly, and acts on that knowledge, will attain.”
50

 

 What then constitutes the ‘cost structure’ of an architectural firm?  First it, must 

recognize the various types of resources consumed in the operations of a firm, namely that the 

costs are monetary (dollars), time (man-hours and project completion duration), and utilization of 

specialized knowledge or talents as represented by uniquely skilled or trained employees.  

Second, it must compute the direct costs of the provision of products or services and make 

appropriate allocations of indirect costs associated with support activities and general overhead 

expenses.  Third, it must recognize cost variances, their magnitude and direction, and give an 

understanding of the underlying cause and effect.  Fourth, it must provide information useful in 

wide-ranging managerial decision-making contexts, including but not limited to, production 

optimization, man-power acquisition and retention, composition and sizing of the workforce, 

performance evaluation of supporting activities, project bidding and budgeting, operating 

budgets, and future business development.  Overall, the cost structure must articulate the cost, in 

terms of consumption of resources, to complete projects, account for the contribution and 

performance of supporting activities, explain variances in economic performance and permit 

realistic project bidding and budgeting.  Estimating the actual cost, whether in dollars, time, or 

human knowledge requires a robust toolbox of techniques and methods for any one technique or 

method may prove insufficient.  In this dissertation production economics receives our prime 

attention but we would be remiss not to briefly explore two other methods as important tools in 

our toolbox and to give credence to efforts to further explore their application in architectural 

practice.  

                                                
50 American Institute of Architects, Manual of Accounting for Architects: 102-03. Italics added 
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Alternative Methodologies for Computing Cost Structure 

 Three methods of computing various aspects of the cost structure of architectural firms 

avail themselves.  The first, production economics, is the prime focus of this dissertation.  

Because it is dealt with extensively elsewhere in these pages the other two methods receive our 

attention here.  The accounting method and a statistical method are briefly developed simply to 

indicate their potential as computational aids and in the hope that further research into their 

application to architectural firms may soon be undertaken. 

 

Accounting Analysis 

 Activity based costing (ABC) forms the basis of the accounting analytical methodology 

and was briefly introduced earlier.  Robert S. Kaplan and Robin Cooper have pioneered the latest 

and most modern approaches to cost accounting.  Their most recent publication Cost and Effect 

represents their current thinking on activity based costing and its implementation.
51

  The concept 

of activity based costing began in the 1980’s and grew out of a need to better understand how 

various functions and processes contributed to cost, profits, and overall efficiency in business.
52

  

In seeking answers to the prevailing economic questions facing architectural firm managers, 

ABC provides valuable insights into accurate measurement of the costs of various activities of 

the design production process and affords a superior methodology for assignment of indirect or 

overhead costs.
53

 

 Implementation of an ABC analysis entails a four step process involving activity 

definition, activity costing, allocation of costs to products, and selection of cost drivers.  

Essentially, organizations spend money on discrete activities which when linked in a logical 

                                                
51 Kaplan and Cooper, Cost & Effect: Using Integrated Cost Systems to Drive Profitability and Performance. 
52 Ibid., 3. 
53 Ibid., vii. 
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order or process result in the production of the company’s product.  ABC seeks to understand 

what activities are occurring, how much money or resources are spent on those activities, how 

these activities relate to the finished product, and how to allocate the costs of these activities to 

the final product.
54

 

 The first step in the process is developing the activity dictionary.  The objective is a set of 

interconnected activity labels describing both activities directly associated with production and a 

set of indirect activity labels supporting the overall function of the firm.  These activity labels are 

action oriented and describe a discernible result or tangible product.  Generally the labels include 

action verbs and the desired result of that action.  Develop marketing brochure, contact new 

customers, hire new employees are examples of such labels and are preferred over labels such as 

marketing, customer relations, or human resource department.  Direct production activities might 

include produce site analysis, prepare specifications, or design foundation system.  The resulting 

set of interrelated direct and indirect activity labels constitutes the activity dictionary.
55

 

 The second step in implementing ABC involves identifying the costs associated with 

each item in the activity dictionary.  The first phase of this step typically requires allocating costs 

of salaries, material, and overhead expenses related directly to each activity.  Overhead costs 

include fair share of such items as rent, utilities, equipment, etc.
56

  the chart depicted below 

shows how the typical categorical groupings shift from expense categories to activities 

performed. 
57

 

 

 

                                                
54 Ibid., 79-85. 
55 Ibid., 85-86. 
56 Ibid., 86. 
57 Ibid., 87.  This is the author’s reproduction of the chart appearing on page 87 of Chapter 6. 
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Shifting from expenses to 

activities alters perspective 

 

Activity 

Salaries 

and 

Fringes 

Occupancy Equipment 

and 

Technology 

Materials 

and 

Supplies 

Total 

Salaries and 

Fringes 

$313,000 

 Process Customer Orders $31,000 $5,300 $12,600 $800 $49,700 

 Purchase Material 34,000 6,900 8,800 1,500 51,200 

 Schedule Production Orders 22,000 1,200 18,400 300 41,900 

Occupancy 

$111,000 

 Move Materials 13,000 2,100 22,300 3,600 41,000 

 Set Up Machines 42,000 700 4,800 200 47,700 

Equipment and 

Technology 

$146,000 

 Inspect Items 19,000 13,000 19,700 800 52,500 

 
Maintain Product 

Information 

36,000 2,800 14,500 400 53,700 

 Perform Engineering Changes 49,000 3,200 26,900 2,400 110,300 

Materials and 

Supplies 

$30,000 

 Expedite Orders 14,000 900 700 500 16,100 

 Introduce New Products 35,000 44,000 16,100 18,700 113,800 

 Resolve Quality Problems 18,000 2,100 1,200 800 22,100 

Total $600,000  Total $313,000 $111,000 $146,000 $30,000 $600,000 

Figure 1, Allocation of Costs to Activities 

 In the second phase of step two the activities are given a set of attributes.  One attribute is 

the position the activity holds in the hierarchy of activities within the organization.  Additional 

attributes include but are not limited to characterization of the variability of the cost of that 

activity, personnel associated with the activity, and its economic performance.
58

   

 In step three the ultimate beneficiary of the hierarchy of activities namely the products, 

services and customers are identified and linked to the activities creating or supporting them.  In 

this manner the cost of products or services can compared with the revenues they generate.  

Whether the supporting activities are worthy of their place in the hierarchy can be assessed.
59

   

                                                
58 Ibid., 92-94. 
59 Ibid., 94-95. 
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 The final step of implementation is determining the appropriate cost driver for each 

activity.  For some activities within the architectural firm the task, transaction, or square feet may 

be appropriate, while others may be tracked on some other basis.  For example, the costs of some 

design functions vary directly with the amount of square feet being designed.  For other activities 

such as site analysis costs are less sensitive to the amount of square feet of the design as their 

costs are functions of other characteristics of the task.  When hiring employees to meet general 

operating requirements, such as a secretary/receptionist, and the cost of hiring them should be 

broadly allocated.  However, for those hired for specific projects the cost of hiring them should 

be allocated to those projects.  Thus the activity driver becomes a means of understanding the 

cost of the activity and how it should be allocated.
60

 

 When complete the ABC analysis provides a means of understanding the internal linkage 

of activities, their costs, how they relate to the finished product and customer served.   

 

Statistical Analysis  

 The second analytical methodology is derived from the property valuation methodology 

common to the real estate industry.  Property appraisers have a rich literature describing three 

broad systems for property valuation.  His book Real Estate Valuation: Principles and 

Applications Kenneth M. Lusht describes these methods as the sales comparison, replacement 

cost, and income generating approaches.
 61

  Lusht describes the sales comparison approach as 

consisting of the direct sales approach, a basic statistical approach, and a multiple regression 

                                                
60 Ibid., 95-99. 
61 Kenneth M. Lusht, Real Estate Valuation: Principles and Applications  (State College, PA: KML Publishing, 

2001). 
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approach.  The statistical analysis approach advocated here is a derivative of the multiple 

regression analysis approach from his book.
62

   

 The real estate industry uses multiple regression analysis in determining property values 

by regressing known characteristics of a group of properties against their selling prices or value.  

Appraisers begin with a list of characteristics describing a group of properties.  These attributes 

are believed to have a cause and effect relationship with the value of the property.  In residential 

property for example, the size of the house in square feet, the number of bedrooms, number of 

baths, and whether the house has a garage or fireplace are among a long list of possible 

characteristics that likely effect the selling price of a house.  The relationship can be expressed in 

functional notation setting the selling price V as a function of the characteristics of the house 

(size, # of rooms, etc.) or  characteristics of the propertyV f .  In regression notation the basic 

function is symbolized 1 1 2 2 ... n nV x x x          , where the xi’s are the characteristics of 

the house, the βi’s are the coefficients of regression, α is the intercept and ε is the error term.  

Once standard ordinary least squares analysis is performed on the data set the standard error of 

the coefficient and its associated t value are examined to determine if one or more independent 

variables should be removed from the overall model.  Researchers make the final decision as to 

which variables to include or exclude such that the statistical model makes sense as a 

mathematical representation of the real world.  In some cases removal of an independent variable 

would make the resulting formula less convincing as an explanatory tool of what is occurring in 

the real world indicating that it should be retained in the regression formula.   

 The adaption utilized here is to substitute the cost of design, time expended, or unique 

resource consumed, for the house value and a list of building characteristics upon which the 

                                                
62 Ibid., 139-66.  The discussion which follows is a synopsis of Chapter 8, Sales Comparison Using Regression 
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design is developed, for the original building characteristics.  Rather than number of rooms, etc., 

as used in the house example, the design considerations of total square feet, ratio of gross to net 

square feet, type of foundation or enclosure system employed, or presence of an atrium or 

courtyard are among a long list of possible characteristics used, depending upon the building 

type.  The statistical analysis process remains the same as for the house example while yielding a 

great deal of information regarding the causes of variation in each of the architect’s cost areas.    

This type of analysis should produce usable results at various levels of resolution ranging from 

the project level down to the phase, task or sub-task level.  As we move from among levels of 

analysis – project, phase, or task – the mix of statistically valid characteristics likely changes 

also.  Still each separate analysis may yield valuable information useful in constructing budgets, 

developing a bid, or in managing the project or firm.  In this manner either the time consumed or 

cost of design may be studied and aid greatly in managing the firm. 

 

A General Note on Methodology 

 This note is to answer the question “how should we proceed?”  In appearance, production 

functions look like ordinary multivariate functions and as such it is reasonable to expect them to 

be revealed through multivariate regression analysis and standard model building techniques.  

That analysis would set the output of the architectural firm as the dependent variable with the 

various factors of production, mostly labor in the instance of an architectural firm, as the 

independent variables.  However, two problems present themselves.  The production function is 

simultaneously a conceptualization of the economic relationship between inputs and outputs in a 

production process and a mathematical construct.  As a mathematical construct the production 

function must behave in an acceptable manner and observe certain restrictions, which we shall 
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encounter in chapter 3.  For example it must exhibit convex isoquants.  Given that we cannot 

guarantee an equation developed through multiple regression analysis would behave in an 

acceptable manner we are left with the task of extensively proving its characteristics and 

modifying it if and when it fails to meet requirements.  Alternatively we have the option of 

surveying those production functions already developed and proven by economists over the last 

75 plus years.  We will see in chapter 4 that over 50 plus such production functions and their 

variations already exist; perhaps we are better off taking advantage of them rather than 

reinventing the wheel.  The second problem centers on the conceptualization issue.  The 

production function should possess some power to describe how and why certain relationships 

exist between inputs and outputs and reflect the entrepreneurs understanding of the production 

process.  That is it should have a basis in production theory.  An extensive literature espousing 

production theory and the production function already exists and it seems a more logical starting 

point in determining the appropriate form of the production function that relying upon a pure 

statistical strategy.  Confronted with a choice among a great many production functions we 

encounter a second “How do we proceed?” question.  

 Our direction is suggested by the work of Dhammika Sharmapala and Michael McAleer 

in, Econometric Methodology and the Philosophy of Science
63

, and that of Spiro Stefanou and 

Kristiaan Kerstens to summarize the preceding body of work in, Applied Production Analysis 

Unveiled in Open Peer Review: Introductory Remarks.
64

  Three approaches to econometric 

analysis are posited; traditional, instrumentalist, and falsificationist approaches.  In the traditional 

or Cowles Commission approach the researcher accepts existing economic theory as a priori 

                                                
63 Dhammika Dharmapala and Michael McAleer, "Econometric Methodology and the Philosophy of Science," 

Journal of Statistical Planning and Inference 49, no. 1 (1996). 
64 Sprio E. Stefanou and Kristiaan Kerstens, "Applied Production Analysis Unveiled in Open Peer Review: 

Introductory Remarks," Journal of Productivity Analysis 30, no. 1 (2008). 
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true.  The role of the econometrician then is that of simply estimating the value of the known 

parameters.  No attempt is made to pass judgment on the validity of the underlying theory.  The 

instrumentalist approach treats theory as an approximation of the real world, a false but 

convenient fiction.  The role of the econometrician is to determine the validity of the theory 

through its power to predict events and outcomes.  The resulting theory may still be a convenient 

fiction but one whose predictive powers are useful in explaining the real world.  The 

falsificationist approach attempts to refute established theory and uses that refutation as the 

building block for developing new or refining existing theory.  The econometrician’s role is that 

of testing theory.  Which to choose? 

 The approach adopted here is a combination of the traditional and instrumental.  While 

production theory readily admits to the convenient fictional characterization of production 

functions, our task is the discrimination amongst numerous competing production functions 

rather than rendering a judgment on theory.  The question then becomes “How to select from 

among numerous production functions?”  A two prong approach is employed in this paper.  In 

the first, utilizing criteria established by Melvyn Fuss in Production Economics: A Dual 

Approach to Theory and Applications,
65

 the number of candidate production functions is 

winnowed to a manageable few suitable for empirical study of architectural firms.  The final 

selection is likely to be highly firm specific based upon their unique business circumstances and 

process model.  In chapter 6 an analysis of one mid-west firm is presented in which the goodness 

of fit and standard error are the main characteristics of the production function under evaluation. 

  

                                                
65 Melvyn Fuss and Daniel McFadden, Production Economics: A Dual Approach to Theory and Applications, Vol I 

and II  (New York, New York: North-Holland Publishing Company, 1978). 
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Plan of This Dissertation 

 Here in chapter one the background to this dissertation was established along with the 

objective of the research.  The concept of the cost structure of architectural design was 

introduced and mention was made to two competing alternative methodologies for establishing 

the exact nature of that cost structure.  The focus none-the-less is upon production economics 

and the n-input single-output production function. 

 Chapter 2 is devoted to an early history of production economics and through that history 

an introduction to important concepts developed prior to the early portion of the 20
th
 century is 

presented.  Chapter 3 presents the essential basics of production economics as developed 

throughout the 20
th
 century with emphasis on the production function and its use in n-input 

single-output scenarios.  Chapter 4 presents the development of the production function in 

contemporary times enumerating and characterizing more than 50 functions and their variations.  

Chapter 5 develops a winnowing methodology.  By employing this methodology this large 

number of candidate production functions is reduced to a small number suitable for statistical 

analysis.  Chapter six presents a short case study utilizing data from a mid-west firm to 

demonstrate how the final selection may be made.  The final chapter, chapter 7, provides a 

summary of this dissertation, presents the conclusions drawn from it, and discusses various 

avenues for additional research. 
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CHAPTER 2 

 

HISTORY OF PRODUCTION THEORY 

Discovery consists of looking at the same thing as 

everyone else and thinking something different. 

                                Albert Szent-Györgyi de Nagyrápolt
66

 

 

Introduction 

 The economic literature regarding production functions commonly, yet unfortunately, 

overlooks, ignores or disregards the contributions of numerous early economists, and those non-

economists, who, over a period of nearly two centuries, brought the development of production 

economics to the threshold of the modern era.  The purpose of this section is give credit where it 

is due, to explain the origins of the concepts utilized later in this paper as a way of promoting a 

more thorough understanding of this material, and establish a historical context for what follows 

in chapters 3 and 4.  In this regard we trace the work of Jacques Turgot in the mid to late 18
th
 

century up to the works of Charles Cobb & Paul Douglas in 1928, and that of Paul Samuelson in 

1947.  Several excellent accounts provide details of this period in the development of economic 

thought, including production economics but extending beyond it also, and I do not propose to 

replicate in its entirety that history here.
67

  However, a short treatment of the salient points 

pertinent to production economics is appropriate. 

Background 

 Following the end of World War II the 21
st
 century witnessed a grand profusion of ideas 

as the field of production economics blossomed.  Following the scheme set out by Jacob Oser 

                                                
66 Nobel Media AB,  http://nobelprize.org/nobel_prizes/medicine/laureates/. The Nobel Prize in Physiology or 

Medicine 1937 was awarded to Albert Szent-Györgyi "for his discoveries in connection with the biological 

combustion processes, with special reference to vitamin C and the catalysis of fumaric acid". 
67 See Bibliography for more detailed accounts of relevant historical events.  
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and Stanley L. Brue in The Evolution of Economic Thought the preceding historical period is 

divided into thirds.
68

  The first period is comprised of the works of the forerunners of the 

marginalist school, Jacques Turgot (1727-1781), Johann Heinreich von Thunen (1783-1850), 

Antoine Augustin Cournot (1801-1877), and Herman Heinrich Gossen (1810-1858).  The second 

period highlights the work of the marginalist school, William Stanley Jevons (1835-1882), 

Francis Y. Edgeworth (1845-1926), Leon Walras (1834-1910), and John Bates Clark (1847-

1938).  The concluding period highlights the work of the early neoclassical economists, John 

Gustav Knut Wicksell (1851-1926), and Alfred Marshall (1842-1924).  The modern era overlaps 

the early developmental period as its beginning is marked by the publication of A Theory of 

Production by Charles Cobb and Paul Douglas in which the production function bearing their 

names first appears.
69

  The modern era, however, would not take off until after the hostilities of 

World War II ended and the publication of Samuelson’s Foundations of Economic Analysis.
70

  

Today we enjoy a rich body of literature on production economics and the field itself has grown 

to embrace more than just theories of production functions.  It is to the early pioneers that a 

largely unpaid debt is owed.  The following short summarization of that work pays homage to 

their efforts. 

Nascent Neoclassical Economics 

 The history of the emergence of production theory as a gradual coalescence of the 

thoughts and deliberations of great minds of the 18
th
, 19

th
 and early 20

th
 century plays out in the 

shadow of the broader ascension of neoclassical economics over classical political economy.  

                                                
68 Jacob Oser and Stanley L. Brue, The Evolution of Economic Thought, Fourth ed. (SanDiego, California: Harcourt 

Brace Jovanovich, Inc, 1988). 
69 Cobb and Douglas, "A Theory of Production." 
70 Samuelson, Foundations of Economic Analysis. 
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The publication of the Wealth of Nations 
71

in 1776 by Adam Smith (1723-1790) represents the 

pinnacle of classical political economic thought and held sway throughout most of the 18
th
 and 

19
th
 century, yet the landscape of economics was changing.

72
  The early stages of the industrial 

revolution had a transformative effect on national economies.  The focus shifted from what the 

king acquired in wealth to what the nation could produce.  Classical economists such as Smith 

were moral philosophers attempting to explain the workings of this new economic system in 

which men lived through observation of facts and deductions regarding the underlying cause and 

effect relationships.  They concerned themselves with the production, distribution, exchange and 

consumption of national wealth with focus on how and why it changed over time – they thus 

constituted the first group of macroeconomists.  What began with Jacques Turgot in the later part 

of the 18
th
 century was bearing fruit and beginning to emerge as a coherent body of theories 

throughout the later part of the 19
th
 century and into the 20

th
 century.  Nascent neoclassical 

thinkers turned their focus away from the larger questions of wealth accumulation over time and 

toward systems that explained consumer and producer behavior.  The key question became how 

to allocate scarce resources through a market system so as to maximize satisfaction of 

consumers, efficient allocation of resources, and profits of producers.  The neoclassical shift was 

from the aggregate of national systems to the acts and actions of individuals within the national 

economy.  The goal was to find the equilibrium point or optimum allocation of resources.  The 

methods grew evermore mathematical in nature and moved away from the moral philosophy of 

classical political economy.  In this way the neoclassical economist became the first of the micro 

                                                
71 Adam Smith, An Inquiry into the Nature and Causes of the Wealth of Nations  (London, England: Strahan and 

Cadell, 1776). 
72 Jurg Niehans, A History of Economic Theory: Classic Contributions, 1720-1980  (Baltimore, Maryland: The 

Johns Hopkins University Press, 1990). 60-72. 
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economists.
73

  Before neoclassical economists were known by that term, before the marginalists 

that preceded them and gave us mathematical economics came the first to sow the seeds of 

eventual neoclassical thought the forerunners of the marginalist school. 

 

Forerunners of the Marginalist School 

 Jacques Turgot (1727-1781) born in Paris, he aspired to enter the clergy but entered 

instead into government service where he served as chief administrator of Limoges under Louis 

XV and minister of finance under Louis XVI.
74

  Turgot was the first to articulate the ‘law of 

returns’ what we today refer to as the ‘law of diminishing returns’ and thus laid the foundation 

for the concept of marginal productivity.  In his ‘Observations on a Paper by Saint-Peravy’ 

(1767) Turgot describes the effect on agricultural production of increasing preparation of the 

field (e.g. tilling and fertilizing).
75

  In effect he states that as increases in the preparation of the 

field occur the output of the field initially increases at an increasing rate until some level of 

preparation takes place such that output continues to increase but at a decreasing rate, then 

finally total output actually decreases with additional preparation.  Turgot’s rudimentary 

explanation sufficed until expanded upon by Thunen and the advent of production functions.
76

   

Turgot’s life as a government administrator afforded him little time for research and original 

writing thus he never expressed his concept in a workable mathematical formulation.
77

  The 

world of economic thought would wait a half a century for the work of Antoine Cournot to 

remedy the situation.   

                                                
73 William Stanley Jevons, The Theory of Political Economy  (Harmondsworth, Middlesex, England: Penguin Books 
Ltd., 1871).  This paragraph is a summary of that provided in the Introduction by R. D. Collison Black on pages 8-9 
74 Niehans, A History of Economic Theory: Classic Contributions, 1720-1980: 73. 
75 Ibid., 75. 
76 Ibid., 76. 
77 Ibid. 
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 The man most deserving of the title ‘father of production economics’ and one of the 

leading theorists of the pre-marginalist period was Johann Heinreich von Thunen (1783-1850).
78

  

Thunen’s theories and observations arose from his work on his estate near Mecklenburg in 

Germany.  Although born on his father’s estate he grew up living in a small coastal town 

following his father’s death.  Facing the prospect of managing one of his father’s two estates he 

undertook a farming apprenticeship.  Disliking the hard manual labor he turned to a study of 

agriculture, mathematics and economics at a college near Hamburg then at Celle and later at the 

University of Gottingen.   While at Celle he studied under Albrecht Thaer the leading proponent 

of rational agriculture which focused upon soil characteristics and fertility, and upon the proper 

method for crop rotation as the means of achieving maximum efficiency in agricultural 

production.  Thunen was critical of this approach as it lack an economic explanation of 

efficiency.  Thunen’s conclusion held that relative prices of the inputs to agricultural production 

were the key to determining the optimal production mix.
79

  Here then we see the seeds of what 

will eventually become the strategies of cost minimization.  Based upon his observation of 

agricultural outputs he was the first to give algebraic expression to the production function.  

Thunen’s production function found in Volume II of his work The Isolated State, is
np hq ; 

where output per workerp  , a constant of productionh  , capital per workerq  , and

a fraction between zero and onen  .
80

  Since total output capital ‘P’ is the product of production 

per worker times the number of workers or pl and q is capital ‘C’ per worker or /C L  we can 

                                                
78 Ibid., 164-65. 
79 Ibid. 
80 Johann Heinrich Von Thunen, Von Thunen's Isolated State, trans. Carla M. Wartenberg (Oxford, England: 

Pergamon Press, 1966). 
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rewrite Thunen’s equation as   1/
n n nP pL hL C L hL C   .

81
  This is the Cobb-Douglas 

production function written almost a century before the now famous article which gives it the 

name by which it is most widely known.  Thunen’s other important contribution came in the 

concept of marginal productivity.  Although he failed to use the term ‘marginal productivity’, he 

nonetheless described the phenomena of optimizing the output of several inputs by stating that 

optimization occurs “where the incremental output of the last worker is absorbed by the wage 

that he receives”.
82

  By extension this implies that the marginal product produced by the last 

increment of all inputs must equal the ratio of the wages of the input to the prices of those 

outputs.   The precise calculus required to calculate the least cost point would have to wait for 

Herman Amstein whom we encounter shortly.
83

  Through his contribution of the earliest 

production function and the concept of marginal productivity Thunen’s place as the father of 

production economics is secure. 

 Antoine Augustin Cournot (1801-1877) was born in the small town of Gray in France.
84

  

In 1821 he was admitted to the Ecole Normale Superieure and began his initial study of 

mathematics but soon the school closed and he transferred to the Sorbonne where he obtained his 

degree in mathematics in 1823.
85

  In the early years of Cournot’s career he served as the private 

secretary of a French Marshal assisting in writing the memoirs of his campaigns of 1812-1813 

and tutoring the his son.  In 1834 he became a mathematics professor at Lyons, and then later 

served as the Rector of the Academy at Grenoble, Inspecteur General des Etudes, and Rector of 

                                                
81

 Thomas M. Humphrey, "Algebraic Production Functions and Their Uses Before Cobb-Douglas," Economic 

Quarterly 83, no. 1 (1997): 63-64. 
82 Niehans, A History of Economic Theory: Classic Contributions, 1720-1980: 170. 
83 Humphrey, "Algebraic Production Functions and Their Uses Before Cobb-Douglas," 66-68. 
84 Takashi Negishi, History of Economic Theory  (Amsterdam, The Netherlands: Elsevier Science Publishers B.V., 

1989). 243. 
85 Niehans, A History of Economic Theory: Classic Contributions, 1720-1980: 176. 
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the Academy at Dijon.
 86

 During his career he published several works on differential calculus, 

algebra, geometry and probability.
87

  When his attention turned to economics he used differential 

calculus to describe the various workings of monopoly and duopoly.  In his most noteworthy 

publication, Researches into the Mathematical Principles of the Theory of Wealth (1838) he 

utilized calculus to fully describe what we today would call marginal revenue and marginal 

cost.
88

  Jurg Niehans notes “Inasmuch as marginalist economics can be interpreted as a rewriting 

of classical theory in terms of calculus, Cournot provided the keynote for a century of economic 

theory.”
89

  Thus Cournot became the first economist to apply calculus to economic analysis and 

in doing so introduced mathematical economics to the world.
90

 

 Herman Heinrich Gossen (1810-1858), born near Cologne, Germany studied law and 

public administration at the Universities of Bonn and Berlin but his government service was 

unrewarding.  He retired from public life in 1847 and devoted his time to writing and publishing 

The Laws of Human Relations and the Rules of Human Action Derived Therefrom,
 91

 in 1854.
92 

 

Gossen provides an indirect contribution to production economics through his depiction of the 

equilibrium point of marginal utility.  This equilibrium point is described as that point where the 

last unit of money spent on one ‘good’ gives the same satisfaction as the last unit of money spent 

on another ‘good’.  Expressed symbolically that is when / /x x y yMU P MU P ; where xMU and 

yMU are the respective marginal utility of commodities x and y; xP and yP are their respective 

                                                
86 Negishi, History of Economic Theory: 241. 
87

 Niehans, A History of Economic Theory: Classic Contributions, 1720-1980: 177. 
88 Oser and Brue, The Evolution of Economic Thought: 216. 
89 Niehans, A History of Economic Theory: Classic Contributions, 1720-1980: 177. 
90 Oser and Brue, The Evolution of Economic Thought: 216. 
91 Hermann Heinrich Gossen, The Laws of Human Relations and the Rules of Human Action Derived Therefrom, 

trans. Rudopph C. Blitz (Cambridge, Massachusetts: The MIT Press, 1983). 
92 Negishi, History of Economic Theory: 319-20. 
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prices.
93

  This formulation anticipates the condition in cost minimization where the marginal 

productivity of one input divided by its price must equal the marginal productivity of other 

inputs divided by their respective prices which we will encounter implicitly in the work of 

Walrus and explicitly in the work of Samuelson.  

 

Marginalist School 

 William Stanley Jevons (1835-1882) was born in Liverpool, England and educated at 

University College, London.  His contribution comes from The Theory of Political Economy first 

published in 1871.
94

  Previous economists contended that the value of a ‘good’ lies in the labor 

required in its production; Jevons held that value depended entirely upon utility.
95

  Jevons 

advanced the concept of marginal utility through his theory of the law of diminishing marginal 

utility.  He claimed that while it is not possible to directly measure utility a single individual can 

compare marginal utilities of several goods.  If a person receives satisfaction from consumption 

of a given ‘good’ total satisfaction grows as consumption increases.  However, as total 

satisfaction grows each additional unit of consumption produces a smaller increase in total 

satisfaction.  The change in total consumption from one level to the next is marginal utility, or as 

Jevons called it, the final utility.  This diminishing marginal utility concept clearly antecedes 

what will become the law of diminishing returns. 

 Francis Y. Edgeworth (1845-1926), born in Edgeworthstown, Ireland studied at both 

Trinity College in Dublin, and Oxford University in England.  His contributions to production 

economics are found in Mathematical Psychics: An Essay on the Application of Mathematics to 

                                                
93 Oser and Brue, The Evolution of Economic Thought: 224-26. 
94 Jevons, The Theory of Political Economy. 
95 Ibid., 77. 
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the Moral Sciences published in 1881.
96

  In Edgeworth’s first contribution he introduced the idea 

that ‘curves of indifference’, what we today call indifference curves, represent a set of points on 

a graph yielding equal value or utility between various combinations of goods.
97

  Today we draw 

these curves as convex to the origin.  Any point along the curve, while presenting different 

combinations of goods – for example 2 units of good ‘A’ and 4 unit of ‘B’ or 1 unit of ‘A’ and 5 

units of ‘B’ – that all points along the curve have the same utility.  The concepts of isocost and 

isoquant curves are direct descendants of Edgeworth’s indifference curves.  In his second 

contribution Edgeworth was the first to explicitly distinguish the differences between average 

and marginal products and provide us with the graphs of the curves of total, average and 

marginal production and thus show their interrelationships in production functions characterized 

by variable proportions of inputs.
98

   

 John Bates Clark (1847-1938) represents America’s participation in the marginalist 

revolution.  Born in Rhode Island he studied at Amherst and abroad in Germany.  His salient 

publication was The Distribution of Wealth published in 1899.
99

  He is credited with inventing 

the term marginal productivity and providing the best explanation of the marginal productivity 

theory of distribution based upon the law of diminishing returns as applied to all factors of 

production.  Up to this point the law of diminishing returns had only been applied to agricultural 

settings, Clark generalized this idea to include all factors and in all manufacturing circumstances.  

Clark explained that if all inputs are held constant save one and that additional units of that 

variable input are added to total output that ultimately average and marginal productivity fall 

even though total output may continue to increase.  This occurs not because the quality of the 

                                                
96 Negishi, History of Economic Theory: 330-31. 
97 Oser and Brue, The Evolution of Economic Thought: 252-53. 
98 Ibid., 257-59. 
99 John Bates Clark, The Distribution of Wealth: A Theory of Wages, Interest and Profits  (New York: Macmillan, 

1899). 
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variable input declines but as a function of the overuse of the fixed inputs by the growing 

amounts of the variable input.
100

  By implication if each input is paid a price/wage equivalent to 

its marginal product then the maximum amount of output would result for any given level or 

combination of inputs, a condition we know today as the maximum production for a given 

minimum cost.  This in turn implies that production is constant in terms of returns; if inputs are 

doubled then output doubles.  A debate soon erupted, the consequence of which was a clearer 

understanding of returns to scale.  When returns were proportional to increases in inputs then 

constant returns to scale were said to exist, but if an increase in inputs resulted in greater than 

proportional increase in production then increasing returns to scale existed and correspondingly 

if an increase in input resulted in a smaller proportional increase in output then decreasing 

returns to scale existed.
101

  Knut Wicksell would later extend this concept one more level of 

complexity. 

 Leon Walras (1834-1910) born in Evreux, France and educated at the Ecole des Mines is 

considered a leading member of the Marginalist School.  His principle contribution of a theory of 

general equilibrium comes to us from Elements of Pure Economics
102

 published originally in 

1874.
103

  In this theory Walras extended the partial equilibrium model of one or two commodities 

to a general theory of equilibrium of n-commodities.  This theory consisted of a framework of 

basic price and output interrelationships of an entire economy which included both commodities 

and factors of production.  Its purpose was to demonstrate mathematically the linkage between 

prices and quantities of goods produced and how an adjustment or change in one generates a new 

equilibrium via changes in the prices and quantities of all other goods.  What is of interest in this 

                                                
100 Oser and Brue, The Evolution of Economic Thought: 260-61. 
101 Ibid., 267. 
102 Leon Walras, Elements of Pure Economics, trans. Willian Jaffe (The American Economic Association and The 

Royal Economic Society by Richard D. Irwin, Inc., 1926). 
103 Oser and Brue, The Evolution of Economic Thought: 340. 



44 

 

discussion is that the mathematical model led Walras to consider the coefficients of the factors of 

production to be fixed.  It is this analysis around which Wassily Leontief would later generate his 

fixed coefficient production function bearing his name.
104

  Walras would later consider the case 

of variable coefficients of the factors of production but his limited command of advanced 

mathematics proved a great hindrance in the development of a general theory of marginal 

productivity.  In correspondence with Hermann Amstein he posed the problem of solving the set 

of simultaneous questions contained within his general equilibrium theory and received back 

from Amstein a brief tutorial in the application of the LaGrange multiplier and use of partial 

derivatives to obtain a minimum or maximum solution.  Both gentlemen had, however, missed 

the essential but missing element namely a statement of quantity of production necessary to 

complete a statement of marginal productivity theory.
105

   

 

Neoclassical School 

 John Gustav Knut Wicksell (1851-1926) born in Stockholm, Sweden and studied 

mathematics, physics, economics, and law at the University of Uppsala.
106

  His major 

contributions to production theory concern the exhaustion problem and an observation on returns 

to scale.  Wicksell along with many of his colleagues were concerned with the problem of 

exhausting resources in production.  The problem has two faces, one, how are we assured that 

maximum production is obtained from a given set of resources, and two, how do we establish the 

optimum set of resources to achieve a given output level.  This follows from the general 

                                                
104 Ibid., 341-46. 
105 William J. Baumol and Stephen M. Goldfeld, "Precursors in Mathematical Economics: An Anthology,"  

(London, England: The London School of Economics and Political Science (University of London), 1968).  As 

found in the selection titled “Walras, Amstein and Marginal Productivity Theory” with credit to Professor Willian 

Jaffe, pages 309-312 
106 Oser and Brue, The Evolution of Economic Thought: 296. 
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equilibrium theory of Walras where he successfully showed a system of production of several 

products to be in balance yet had not satisfactorily arrived at how to coordinate the use of 

resources, what today we call optimal allocation of resources.  Wicksell observed that “...we 

must approach the subject from the standpoint of the differential calculus.”  In this regard he 

stated “If the total output of production is interpreted as a real function of the cooperating 

factors, …then efficiency clearly requires that each factor be used to such an extent that the loss 

of a small portion of it reduces the resulting output by just so much as the share of output going 

to that portion.  …that the output shares of the various of the various productive factors must be 

proportional to the partial derivatives of the said function with respect to the factor in question as 

a variable.”
107

  In light of Walras theory of general equilibrium and Amstein’s application of the 

LaGrange multiplier we see that we are only missing the objective equation of minimizing cost 

to complete the necessary tools to perform cost minimization analysis.  In Samuelson’s 

codification in Foundations of Economic Analysis we find the complete cost minimization 

calculations.  In his second contribution Wicksell moved beyond the exhaustion question and 

cost minimization issues to observe that a typical firm would likely experience variable returns to 

scale.  Early in the process of adding additional resources the increases in production would 

demonstrate increasing returns to scale while at some future point in adding resources the 

production would exhibit constant returns to scale and later still with more resources would 

experience decreasing returns to scale.
108

 

 Alfred Marshall (1842-1924) born in London, England was educated at Cambridge where 

he studied mathematics, physics, and later, economics.  Ultimately he rebelled against his 

tyrannical father, who in Alfred’s youth is said to have overworked him at his studies, forbid his 
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playing chess as it was a waste of time and greatly discouraged his interest in mathematics, to 

become one of the most acclaimed economists of his time and accomplished mathematician.  

Marshall’s greatest contribution to economics came in his publication Principles of Economics 

first published in 1890
109

 in which he codified the principles of economics as embodied in the 

field of neoclassical economics.  Subjects covered ranged from marginal utility to taxes and 

subsidies, consumer choice, distribution of wealth, production costs, and, to the bane of every 

student of introductory economics, the laws of supply and demand.  His discourse on production 

theory provide the most thorough treatment of production economics to date but given his 

predisposition toward mathematics it is devoid of nearly all useful mathematical formulations.  

He attitude, expressed in his own words, indicates why this was so. 

“(I had) a growing feeling in the later years of my work at the subject that a 

good mathematical theorem dealing with economic hypotheses was very 

unlikely to be good economics: and I went more and more on the rules- 

 (1)  Use mathematics as a shorthand language, rather than as an engine of 

inquiry. 

 (2)  Keep to them till you have done.  

 (3)  Translate into English. 

 (4)  Then illustrate by examples that are important in real life. 

 (5)  Burn the mathematics. 

 (6)  If you can’t succeed in (4), burn (3).  This last I did often.
110

 

His disdain for the application of mathematical formulas in economic discourse precluded him 

from developing the techniques of optimization revealed by Amstein they would not reappear 

until Samuelson.  Marshall’s contribution comes then in the collection of various definitions and 

concepts in one place, the Principles of Economics, in which he provides greater exposition and 

discussion but no unique contribution beyond the collection itself.
111

 

                                                
109 Alfred Marshall, Principles of Economics, vol. 1 (Cambridge, England: Cambridge University Press, 1890).  
Currently available edition is ———, Principles of Economics, Reprint of the Eighth ed. (Amherst, New York: 

Prometheus Books, 1997). 
110 Oser and Brue, The Evolution of Economic Thought: 273.  The original quotation is from the Memorials of Alfred 
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Production Economics 

 Neoclassical economics emerged as the dominant body of economic theories with the 

publication of Principles of Economics by Alfred Marshall but the specialized field of production 

economics would not fully materialize until Paul Samuelson’s book Foundations of Economic 

Analysis.  As with all fields, in the social and physical sciences new advances in theory, 

procedures, and application occur continuously.  Chapter 3 presents a summary of production 

economic analysis, with focus solely upon the n-input single-output production function.  Yet the 

field of production economics has not been and is not static.  What began with production 

functions expanded quickly to considerations of cost, revenue and profit functions leading to the 

theory of duality as espoused by Ronald Shepard in 1953.
112

  To handle such difficult modeling 

problems as the passage of time Loftsguard and Heady utilized dynamic linear programming in 

1959.
113

  In a challenge of the assumption that production functions represent the best 

technological arrangements of the factors of production economists are exploring frontier 

production functions
114

, data envelope analysis
115

, and stochastic frontier analysis.
116

  Work 

abounds attempting to develop new applications and to apply current analysis to new areas in 

both the macro-economic and micro-economic world in which we live.  Mindful that the field of 

production economic has grown and continues to grow, it remains necessary to limit the scope of 

                                                
112 Ronald W. Shephard, Cost and Production Functions  (Princeton, New Jersey: Princetion University Press, 

1953). 
113

 Laurel D. Loftsguard and Earl O. Heady, "Application of Dynamic Programming Models for Optimum Farm and 

Home Plans," Journal of Farm Economics 41(1959). 
114 Chauncey T. K. Ching and John F. Yanagida, Production Economics: Mathematical Development and 

Applications  (New Brunswick, New Jersey: Transaction Books, 1985). 
115 M. J. Farrell, "The Measurement of Productive Efficiency," Journal of the Royal Statistical Society 120(1957). 
116 D. J. Aigner, C. A. K. Lovell, and P Schmidt, "Formulation and Estimation of Stochastic Frontier Production 

Functions," Journal of Econometrics 6(1977). 
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this extant exploration to the application of production functions of the n-input single-output 

model to practicing architectural firms. 

 

Overview of Applied Production Economics 

 The rise of neoclassical economics transformed the thinking and focus of economists.  

While still concerned with many of the same issues with which classical political economists 

struggled, neoclassical economists turned much of their attention upon the actions of individual 

consumers, giving rise to consumer theory, and that of individual businesses or firms, giving rise 

to production theory.  Concurrent with this increased focus on individual consumers and the 

firm, their analysis became much more mathematical with calculus and marginal productivity 

analysis taking center stage.  The proponents of production theory sought then to use these new 

tools to explain the behavior of entrepreneurs.  Behavior in this context is the manifestation of 

the various decisions made by managers as they go about the task of producing their various 

goods and services.  In studying the underlying economics the scope of production economics 

expanded to encompasses cost, revenue and profit functions, the issue of duality, and 

investigations into efficiency frontiers.  Production function theory extended its reach to embrace 

not only single product production processes but also joint products from a single process, and 

multiple products from multiple inputs sets.  What began as a relatively restricted field of study 

has grown vastly more complex and broad in scope.  The balance of this dissertation discusses 

only a single product production process utilizing n-inputs.  The examples utilized here build 

from a single input model to a model of two inputs and finally progresses to the more applicable 

n-input model.  In the exposition that follows the essence of the firm and its production process, 
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and that of marginal productivity theory share center stage.  Upon this foundation other concepts 

of production theory and applied production economics depend.   

 Managing a firm involves a series of important decisions many of which pose dire 

economic consequences to the firm.  Production economics is a decision science that studies the 

fundamental aspects of the economic dimension of these decision-making processes and 

provides a means of rationalizing decision-making.  Such decisions or choices would not be 

necessary if we lived in a world of plenty.  Scarcity arises when the competition for resources 

from alternative uses creates a demand that exceeds the available supply.  Allocation of scarce 

resources against relatively unlimited wants and needs sits at the core of all economic studies.  

However, some resources are abundant and therefore lack economic value and do not play in the 

decision-making process.  Their exclusion does not mean that they are unnecessary in the 

production process nor does it invalidate economic analysis.  It simply means that the availability 

of those resources have no impact on economic decision-making.  Many of the factors of 

production, however, are in scarce supply and because of this scarcity decisions regarding their 

allocation are worthy of economic analysis.
117

   

                                                
117 John P. Doll and Frank Orazem, Production Economics: Theory with Applications  (New York, New York: Joh 

Wiley & Sons, 1984). 
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CHAPTER 3 

 

 PRODUCTION THEORY 

Facts which at first seem improbable will, even on 

scant explanation, drop the cloak which has hidden 

them and stand forth in naked and simple beauty. 

                                                                       Galileo Galilei (1564-1642)
118

  

Introduction 

 This chapter presents a brief statement of production theory focusing upon the n-input 

single-output production process.  Although the body of production economics theory is much 

broader than merely the n-input single-output model discussed herein, its selection as the focus 

of this effort is not arbitrary.  The two alternatives, the single-input single-output model and the 

n-input m-output model, were not selected as they are either not appropriate, as in the case of the 

single-input single-output model, or more complex than can be supported by a preliminary 

exploration into the application of production functions to architectural firms such as the present 

effort.  As noted elsewhere in this dissertation such subjects as duality theory, frontier analysis, 

and non-parametric production functions also are beyond the scope of this effort.  By the study 

of production functions and production theories relating to the n-input single-output model we 

may discern their application to architectural enterprises.  Thus we may find ways to better 

understand economic efficiency in architectural firms and begin constructing the concept of their 

underlying cost structure.  Subsequent research into areas such as the n-input m-output model 

and duality theory, among others, may expand further our understanding of the cost structure of 

architectural firms.  Such efforts must await more time and resources than can be devoted here. 

                                                
118 John Bartlett, Familiar Quotations: A Collection of Passages, Phrases and Proverbs Traced to Their Sources in 

Ancient and Modern Literature  (Boston, Massachusetts: Little, Brown and Company, 1980). 183. 
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 Chapter two began this discourse by introducing a number of key concepts of the theory 

of production and by placing them in their historical context to form an introduction to this 

important field of economics.  The present chapter extends and expands that discourse with a 

four-fold objective.  An exposition of the theory of production as it relates to the n-input single-

output production scenario is the primary objective of this chapter, as previously noted.  

Demonstrating that with only minor modifications of the definitions and principles that 

production economics may be equally applied to the general field of the professional service firm 

and specifically to the architectural firm stands as the second objective.  As noted in the 

introductory chapter the overall objective of this dissertation is the identification of the 

production function(s) appropriate for detailed research into the production dynamics of the 

architectural firm.  As such establishing a foundation in production economics sufficient to 

support the detailed discussion of production functions developed in the latter two-thirds of the 

20
th
 century, as presented and discussed in chapter 4, constitutes the third objective.  Readers not 

familiar with production theory should find this chapter essential reading and a handy reference 

when reading the next chapter.  Bridging the divide between pure theory and practical 

application constitutes the fourth objective of this chapter.  Therein the reader may find the best 

rationale for why production theory bears relevancy to architectural firms and their managers.   

 All businesses share a common defining characteristic; namely, that they transform or 

convert scarce resources (inputs) into the products and services (outputs) they provide to other 

firms and consumers through what is commonly referred to as the production process.  

Production processes vary greatly ranging from those that mine or harvest natural resources 

(forestry, mining and agriculture), to those producing intermediate or final products 

(manufacturing), and extending to those providing a range of services.  Most employ multiple 
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resources in creating multiple products in a process which production economists label the n-

input m-output model.   Other production processes utilize only a single input to produce a single 

product; the single-input single-output model.  A third category consists of production processes 

employing multiple inputs to create a single product; the n-input single-output model; the model 

upon which this chapter focuses.   

 The selection of the n-input single-output model is not made arbitrarily.  Many business 

operations are complex undertakings utilizing many and various inputs to produce a range or 

variety of products, good and services; architectural firms are no exception.  Often, however, 

even the most complex operation can be disaggregated into constituent parts and those parts 

analyzed separately.  Obviously there exits, in the context of the architectural firm, potential 

benefit in studying the n-input m-output model where all the inputs of the firm are used to 

produce more than one output.  The choice made here is to study the simpler case while 

reserving the more complex analysis for future research.  

 This chapter spotlights the basics of n-input single-output production theory as developed 

by early neoclassical economists and refined in concept and exposition throughout the 20
th
 and 

into the 21
st
 century.   Marginal productivity remains the central concept in production theory 

just as its development played a central role in the early history of production theory.   Now, 

however, its story is encapsulated within a more comprehensive treatment of production 

economics.  The section detailing the theory of production begins with an exploration of the 

production function, its definition, nature, characteristics and constraints.   Next follows an 

examination of marginal productivity, marginal technical rate of substitution, production 

surfaces, isoquants, isoclines, ridgelines; returns to scale and size; factor interdependence, 

separability and elasticity; stages of production, elasticity and coefficient of production; and 
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issues of convexity and concavity.  However, before launching fully into the theoretical aspects 

of production theory we should pause and consider the nature of the firm and establish the 

characteristics of the production process to form a suitable foundation and bridge to the balance 

of this chapter.   

 The first section of the chapter therefore sets out the basics of the theory of the firm, first 

developed by the eminent economist Ronald Coase.  The second section explores in detail the 

production process; first by defining the concept then proceeding to an examination of the nature 

of inputs and outputs, the role of technology, various input-output scenarios, and finally a review 

of the Thompson classification scheme for production processes.  Based on this foundation an 

exposition of the theory of production for the n-input single-output scenario then consumes the 

preponderance of this chapter.  The final section discusses optimization, the practical application 

of production theory. 

 

Theory of the Firm 

 The 21
st
 century understanding of the nature, characteristics and properties of the firm 

dates from the 1937 publication of the article The Nature of the Firm by Ronald H. Coase.
119

  

Dissatisfied with prevailing explanations for the existence of firms Coase reasoned that their 

existence was due to the ability of entrepreneurs to obtain and organize the various factors of 

production more cheaply and effectively than those same input factors could be obtained from or 

organized by the market.  Following Marshall’s lead neoclassical economists considered the 

market price of goods and services to be determined by the forces of supply and demand 

coordinated through the price mechanism.  They argued that the price mechanism was a 

                                                
119Ronald H. Coase, "The Nature of the Firm," Economica 4, no. 16 (1937).  For a lifetime’s work in economics and 

in recognition of his contribution to the understanding of the theory of the firm Professor Coase was awarded the 

Noble Prize in Economics in 1991. (Nobel Media AB.) 
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sufficient force in the directing or coordinating the distribution of resources.  Coase disagreed 

arguing,  

…that the operation of a market costs something and that, by forming an organization 

and allowing some authority (an entrepreneur) to direct the resources, certain marketing 

costs are saved.  The entrepreneur has to carry out his function at less cost, taking into 

account the fact that he may get factors of production at a lower price than the market 

transaction which he supersedes…
120

 

 

 If we consider an alternative to the firm structure his point is easily understood.  Imagine 

a scenario in which someone building an automobile must repeatedly shop at the local market for 

material and labor.  Initially he buys a frame then returns to purchase successively the wheels, 

engine, transmission, and so on.  Between each acquisition he goes to the labor market and hires 

temporary labor, first to assemble the wheels on the frame and then later hires more labor to 

mount the engine, still later more to install doors, windows, etc.  This is an extremely inefficient 

and costly system because of the transaction costs of repetitive visits to the market.   Add to this 

situation consideration of the cost to efficiency incurred because of the need to train or retrain a 

labor force that turns over with such rapidity we can understand Coase’s objection.   The rise of 

the firm is then attributed to this key difference between the transaction costs of obtaining 

resources in the market and organizing those same resources within the company.  If by such an 

organization the entrepreneur provides his product to the market at a cheaper price than the 

competition, or the market, and thereby increases the profit the firm generates we can understand 

the motivation behind the drive to create and operate a firm.  Using Coase’s definition of the firm 

we can then say that a firm “…consists of the system of relationships which comes into existence 

                                                
120 Coase, "The Nature of the Firm," 392.  Here the term ‘marketing’ takes on a different meaning than in 

conventional usage, it refers to the costs borne by the company to ascertain the market price and transaction costs of 

obtaining resources from the market. 
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when the direction of resources is dependent on an entrepreneur.”
121

   The directing of resources 

that Coase refers to is what we call the production process, which we turn to now and examine. 

 

Production Process 

 Arthur Thompson in Economics of the Firm: Theory and Practice defines the production 

process as “…a series of activities by which resource inputs (raw material labor, capital, land 

utilization, and managerial talents) are transformed over some period of time into outputs of 

goods or services.”
122

  This definition covers a broad range of economic activities that create 

value irrespective of whether the process is goods-oriented or service-oriented, or whether the 

enterprise is a not-for-profit or profit making organization.
123

  This section details the 

characteristics, conditions, and assumptions made about the production process.  Topics include 

the nature and characteristics of, and assumptions about, inputs and outputs; the role of technical 

knowledge; an enumeration of various scenarios coupling inputs with outputs; and lastly, a 

schema for classifying production.  We begin with inputs and outputs.  

 

Inputs and outputs 

 Inputs and outputs lie at the core of the production process.  Inputs are any good or 

service which make a positive contribution to the production process.
124

  For an input to hold 

relevance or have meaning in an economic analysis of production the input must be scarce and 

essential to the production process.  Inputs are considered essential if the production process 

                                                
121 Ibid., 394. 
122 Arthur A. Thompson, Economics of the Fiirm: Theory and Practice, Third ed. (Englewood Cliffs, New Jersey: 

Prentice-Hall, 1981). 154-55. 
123 Ibid. 
124 James M. Henderson and Richard E. Quandt, Microeconomic Theory: A Mathematical Approach, Third ed. (New 

York, New York: McGraw-Hill Book Company, 1980). 64. 
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requires some positive amount of the corresponding inputs such that all inputs are required in the 

production process and exist in non-negative quantities.  Scarcity exists when inputs are in 

limited supply such that they have a price greater than zero.  Essential but non-scarce inputs, 

such as sunshine or rainfall, are not included in economic analyses.
125

  Finally, scarce but non-

essential inputs are likewise eliminated from consideration.   

 The quantity of inputs utilized in a production process is a function of the underlying 

technology and the time horizon used in the analysis of that process.  Economists consider two 

time-frames in the analysis of production, the short-run when quantities of some inputs vary 

according to the technology and level of output while others remain constant or fixed regardless 

of those same output levels and the long-run when all inputs are considered variable. 
126

  C. T. K. 

Ching in Production Economics elaborates on the concept of the time-frame used in economic 

analysis, “A unit of time is said to be short enough so that the entrepreneur cannot alter the 

quantities of the fixed factors.  The unit of time is also assumed to be short enough so that 

technology does not change the shape of (the) production function.  Finally, the time period is 

assumed to be long enough so that the technical production processes can be completed.  Thus, 

the unit time concept is not specific but general.”
127

   

 Inputs and outputs must be measurable and homogeneous.  In empirical studies care must 

be exercised in determining the unit of measure for inputs and outputs as they impact the ease or 

practicality of making measurements and calculations.
128

  Inputs and outputs are assumed to be 

                                                
125 Sune Carlson, A Study on the Pure Theory of Production  (New York, New York: Augustus M. Kelly, 1965). 12. 
126 Thompson, Economics of the Fiirm: Theory and Practice: 177-78. 
127 Ching and Yanagida, Production Economics: Mathematical Development and Applications: 89. 
128 Carlson, A Study on the Pure Theory of Production: 12. 
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homogeneous in that no quality difference exists between successive units of inputs, nor does 

differentiation exist between successive units of output.
129

   

 People are the essential, scarce and variable resource for architectural firms.  Their labor 

contributes directly to the production of architectural products and services but is also essential 

in a variety of overhead functions such as marketing.  In the latter case the cost of their labor 

should be added to other overhead costs to become the firm’s fixed cost.  In the former case the 

labor constitutes a variable cost applicable to the end product or service and is represented in 

production functions as the independent input factors.  The variable nature of direct labor stems 

from the ability of the firm to rapidly add to or subject from the total work force as well as 

allocating people to or removing them from individual projects.  The requirement that inputs be 

homogeneous would at first glance prove problematic for architectural firms but need not be the 

case.  By acknowledging that the skills and years of experience of individual employees vary 

greatly we have a clue as to how to differentiate them into homogeneous categories.  By 

exercising care and sound judgment firm managers should be able to establish sub-categories for 

their technical and support staffs that are relatively homogeneous within each category.  The 

issue of homogeneity of output can be resolved in a similar manner.  Architectural products and 

services possessing similar characteristics should be grouped into individual categories and 

analyzed separately.  While the analysis of each output category can be accomplished utilizing 

the n-input single-output model which is our focus here, the basis for eventually considering the 

n-input m-output model derives from this homogeneous in output issue. 

 

                                                
129 David N. Hyman, Modern Microeconomics: Analysis and Applications  (St. Louis, Missouri: Times 

Mirror/Mosby College Publishing, 1986). 5.  Beattie allows that in some theoretical and empirical studies this 

requirement can be relaxed. 
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Technical Knowledge  

 Production processes are organized and inputs combined in a manner determined by the 

entrepreneur.  A basic assumption of production theory is that the entrepreneur has discovered, 

either through trial and error or through research and development, the most efficient 

arrangements of the factors of production based upon the entrepreneur’s technical knowledge.  

Sune Carlson writes, “If production is defined as a quantitative process of combining certain 

given productive services, it is the knowledge of these different possible combinations that we 

call technical knowledge.”
130

  Later when we state that the production function reflects the 

underlying technology we explicitly are referring to the design of the production process based 

upon the entrepreneur’s technical knowledge.  The design or organization of the production 

process may vary according to the level of output, i.e. two production lines versus one, but we 

assume that the underlying technology remains unchanged.
131

  Sune Carlson writes “A change in 

the technical organization of the productive services which accompanies a change in the output 

must not, of course, be confused with a change in the technical knowledge.  A change in the 

former is a reversible process; a change in the latter is not. … for every service combination, 

there exists one and only one optimal organization and only one maximum output.  A change in 

technical knowledge, on the other hand, implies that the optimal organization and maximum 

output from the same service combination have changed. ”
132

  Hal Varian suggests two 

additional properties of technology in Intermediate Microeconomics: A Modern Approach that of 

monotonicity and convexity.
133

  In a monotonic technology if at least one input is increased, it 

should be possible to produce at least the same output as produced originally.  In a convex 

                                                
130 Carlson, A Study on the Pure Theory of Production: 7. 
131 Ibid., 14-15. 
132 Ibid., 15-16. 
133 Hal R. Varian, Intermediated Microeconomics: A Modern Approach, Seventh ed. (New York, New York: W. W. 

Norton & Company, 2006). 
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technology it may be possible to create the same output with different combinations of inputs but 

the weighted average of two such sets must be able to produce at least the amount of the original 

output if not more.
134

  For the purpose of this dissertation we will assume that the underlying 

technology remains unchanging, that it is monotonic and convex.  We will return to these last 

two properties later.   

 

Input-output scenarios 

 The complexity of the production process dictates the internal organization of the firm.  

A firm may produce a single product from a single process utilizing a single unique input set; 

this is the classical n-input single-output scenario.  Some production processes produce more 

than one output, termed joint production, from the same input set; examples include meat 

processing where more than one cut of meat is produced from the same animal.  When multiple 

outputs are obtained from multiple input sets we have the n-input, m-output scenario.  A firm 

might employ only one single-product single-input set production process to produce a single or 

joint final output, or many single-product single-input set production processes operating in 

series or parallel to produce a number of single or joint final products.  In complex production 

operations single or joint production processes may feed their intermediate product (which might 

also be a final product) to other production processes in a series of processes to complete the 

final product.  These various conditions or scenarios reduce to only four combinations for 

analysis purposes.  First is the single-input single-output process.  Second, we have the n-input 

single-output problem.  Third, we have the n-input joint-output problem.  And lastly, we have the 

more general n-input m-output problem.  In this dissertation we will restrict our investigation to 

the single product n-input case recognizing that multiple parallel processes likely exist within the 

                                                
134 Ibid., 326. 
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firm and that future research may reveal that application of the n-input m-output model to 

architectural firms is appropriate.   

 

Thompson Production Classification Scheme 

 The Thompson scheme for classifying production processes consists of four categories: 

Unique product production, rigid mass production, flexible mass production, and process 

production.
135

 In unique product production the output is made to a unique set of specifications.  

Production begins with the receipt of an order and output volume is generally low.   The 

resulting product is relatively unique or special.  The process is labor intensive requiring 

employees that possess high technical skills.  By contrast, rigid mass production utilizes and 

produces highly standardized products in high volume.  Employee skill levels vary from high for 

design and maintenance functions to low or moderate for labor skills used in the actual 

production line.  Flexible mass production utilizes standard products but assembles them in a 

variety of ways to create diverse products.  The skill sets required are similar to those used in 

rigid mass production.  Process production is a continuous activity utilizing a steady flow of 

resources and converts them into an equally constant flow of outputs.  These processes are often 

highly automated and capital intensive but requiring smaller amounts of labor than the other 

types of production.  The production process employed by architectural firms, and more 

generally by professional service firms, is the unique product production scheme.  Because of the 

uniqueness of individual projects researchers and analysts applying production theory to 

architectural production processes must exercise care in grouping similar, yet to a degree 

divergent, designs or products into narrowly defined product categories.  The use of highly 

                                                
135 Thompson, Economics of the Fiirm: Theory and Practice: 156-58. 
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skilled employees proficient in various functions within the production process supports our use 

of multiple categories for labor as opposed to aggregating labor in a single category. 

 

Production Theory 

 Production economists study the production processes of firms to develop an 

understanding of the technical and economic characteristics of production systems employed in 

transforming inputs into goods and services demanded by consumers or other firms.
136

  

Production theory assumes the optimizing behavior of rational producers as seeking to maximize 

profit, minimize cost, or achieve optimal allocation of resources under constrained conditions.  

Thus production theory is about choice among alternatives and how the technical and economic 

characteristics of the production system influence choices.
137

  At the heart of production theory is 

the production function.  The following section defines the term production function and 

provides a detailed discussion of its various characteristics including productivity properties, 

production curves and surfaces, stages of production, returns to scale, factor substitution, and 

isoquant analysis among other topics.  The section that concludes this chapter is devoted to 

various optimizing situations and their supporting calculations.  No discussion of production 

theory can precede without first a thorough examination of what is meant by the term production 

function.   

 

Definition of production function 

 Bruce R. Beattie and C. Robert Taylor in The Economics of Production define a 

production function, “A production function is a quantitative or mathematical description of the 

                                                
136 Pappas and Brigham, Managerial Economics: 201. 
137 Bruce R. Beattie and C. Robert Taylor, The Economics of Production  (New York, New York: John Wiley & 

Sons, 1985). 1. 
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various technical production possibilities faced by a firm.  The production function gives the 

maximum output(s) in physical terms for each level of the inputs in physical terms.”
138

  While 

this is a suitably succinct definition for most purposes it also requires considerable elaboration 

for consideration in this dissertation.   

 The first part of the definition ‘a quantitative or mathematical description’ requires the 

production function to take an explicit functional form.  However, the ultimate usefulness of the 

formulation depends upon its adherence to a set of mathematical restrictions.  Thus not all 

functional forms prove useful in production economics.  For n-inputs the general form of the 

production function is represented:  

    1 2 1, ,..., ,...,i i ny f x f x x x x x   , (3.1) 

where y  is the output of the function, 1 2, ,..., ix x x  represent the variable inputs and 1,...,i nx x  

represent the fixed inputs.  Commonly the expression for the production function omits the fixed 

inputs and is represented as: 

    1 2, ,..., ny f x f x x x  . (3.2) 

A great many specific forms of the production function exist and these forms are discussed in 

chapter 4.  For immediate illustrative purposes four commonly encountered functional forms are 

introduced here.  The most classical form is the Cobb-Douglas production function, 

 i

n

i

i

y A x


  , (3.3) 

or as more commonly represented,
 139

 

                                                
138 Ibid., 3. 
139 A conscious effort is made in this dissertation to utilize a consist methodology in the use of symbols.  See 

Appendix B Mathematical Notations for a complete list of notations used in this dissertation.  Many functional 

forms appear different here than in their original published works.  Readers of technical papers are no doubt familiar 

with the great variety of symbols and notations used by a vast group of writers and are somewhat frustrated by the 
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 y AK L  . (3.4) 

The other functions are the linear production function, 

 
n

i i

i

y x , (3.5) 

the Leontief production function, 

  1 1 2 2min , , , n ny x x x   , (3.6) 

and the ACMS constant elasticity production function, 

 1 1 2 2

r

y A x x   


     . (3.7) 

 These forms are introduced now so that they may later aid in explaining some of the 

concepts of this chapter or, as in the case of the Leontief production function, demonstrate an 

exception to the general rule.  In addition to taking an explicit form, production functions must 

adhere to a set of mathematical restrictions which are discussed next. 

 In Applied Production Analysis Robert Chambers gives six assumed properties for 

production functions.
140

   

  1.  Production functions are quasi-monotonic or strict-monotonic.  Under these 

conditions the addition of any input cannot decrease the level of output.  This is equivalent to 

saying that all marginal products are greater than zero.  Later in this chapter when the stages of 

production are introduced it will be necessary to revisit this property as one characteristic of 

producing in stage three is the presence of negative marginal products. 

                                                                                                                                                       

lack of consistency.  Here is a case in point.  Normally the Cobb-Douglas function is written, y AK L   clearly 

the notation used above is an equivalent form. 
140 Robert G. Chambers, Applied Production Analysis  (Cambridge, England: Cambridge University Press, 1988). 8-

18. 
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  2.  Production functions are concave and their input set is convex.
141

 Concavity is 

the necessary condition for the production function to exhibit diminishing marginal productivity.  

A convex input set implies that if input 1x  and 2x combine to produce a given output then any 

weighted average of the two inputs must also produce at least that level of output.  Also a convex 

input set is necessary for the validity of the law of the diminishing marginal rate of technical 

substitution (MRTS). 

  3.  All inputs are strictly essential.  In addition to the earlier stated condition that 

only those inputs to the production process that are also scarce are of interest in economics, the 

requirement of strict essentiality requires that the quantity of each input must be greater than 

zero.  Restated, it is not possible to produce a positive level of output without the commitment of 

each scarce resource.  Conversely, a positive output level cannot be obtained without the 

consumption of a strictly positive amount of each input. 

  4.  The input set is closed and non-empty for 0y  .  This condition implies that a 

positive output can always be produced and that discontinuities in the input set are not allowed. 

  5.   f x is finite, nonnegative, real valued, and single valued for all nonnegative 

and finite inputs. 

  6.   f x  is everywhere continuous and everywhere twice-continuously 

differentiable. 

 The second part of the definition of production functions, ‘various technical production 

possibilities’, refers to the underlying technology of the firm.  At issue is the difference between 

technical efficiency and allocative efficiency.  Given a range of possible technologies economists 

assume that entrepreneurs always choose a technology that produces maximum output and 

                                                
141 See Appendix C, Concavity and Convexity for a description of the test for concavity or convexity 
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achieves maximum efficient use of available inputs.
142

   However, within the limits imposed by 

the technology and given the continuous nature of the production function, infinite combinations 

of inputs can produce a given level of output.
143

  The selection of a specific input combination 

depends upon the relative prices of inputs and outputs.
 144

  Therefore, the critical consideration is 

one of allocative efficiency over technical efficiency as the underlying technology is assumed to 

be the most technically efficient.
 145

   

 The third part of our definition, ‘gives the maximum output’, sets a limitation and a 

restriction.  As a limit it establishes the maximum output that a given set of inputs can produce.  

As a restriction it implies that although a larger input set could produce the same output as a 

smaller set, the entrepreneur always selects the smaller set as it is the most efficient. 

 Abstraction is an issue not normally addressed by economists.  Production functions are 

abstractions or models of the real world.  Economists often use models or abstractions to 

simplify their analysis or as aids in explaining theory.  The level of abstraction derives directly 

from the intended use of the model.  Production functions used in higher macro level analysis of 

economies of nations or states often employ aggregated inputs of capital and labor.  Similar 

application of production functions in analysis of the behavior of the firm calls for more 

disaggregation of capital and labor, or other inputs, into smaller more discrete inputs and that 

intermediate processes be explicitly represented.  Therefore, in addition to the requirements 

noted above we now must add that the level of abstraction contained in the production function 

                                                
142 Ching and Yanagida, Production Economics: Mathematical Development and Applications: 88-89. 
143 The Leontief production function is an exception to this rule. 
144 Henderson and Quandt, Microeconomic Theory: A Mathematical Approach: 66. 
145 Harvey Leibenstein, "Allocative Efficiency vs. 'X-Efficiency," The American Economic Review 56, no. 3 (1966): 

392. 
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accurately represents the economic activity under investigation and that the level of abstraction 

be appropriate for statistical estimation and practical analysis.
146

 

 Moving beyond the technical definition of production functions we can now explore 

various characteristics of production processes represented by or embedded within the 

production function beginning with the its productivity properties. 

 

Productivity Properties 

 The theory of marginal diminishing returns can now be told by illustration of the 

marginal, average and total product concepts and graphs therein derived.  Marginal productivity 

theory states, “…as the amount of a variable input is increased by equal increments and 

combined with a specified amount of fixed inputs, a point will be reached (sometimes more 

quickly and sometimes less quickly) where the resulting increases in the quantity of output will 

get smaller and smaller.”
147

  This point, corresponding to input level 0

1x in figure 2 below, is the 

point of diminishing return.  As the variable input is increased from 0 to 0

1x for each additional 

unit of variable input output increases by a greater amount than was obtained by adding the 

previous unit of input.  Beyond the point of diminishing returns, but short of diminishing total 

output, each additional unit of input increases total output, however, the increase from each 

succeeding unit of input is less than from what was obtained by adding the previous unit of input.  

At the point of diminishing total output, 1

1x  in figure 2, the increase in total output from the last 

additional unit of input equals zero.  Beyond 1

1x total output decreases.  These relationships are 

more easily seen in the total product curve shown below in Figure 2.  

                                                
146 More about this requirement is contained in the section on estimation. 
147 Thompson, Economics of the Fiirm: Theory and Practice: 183. 
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Figure 2, Total Product Curve 

 

Between 0 and 0

1x the application of additional units of the variable input increases total 

output and does so at an increasing rate.  From 0

1x  to 1

1x  additional units of the variable input 

continue to increase total output but now does so at a decreasing rate.  After the point 1

1x  an 

addition of a unit of the variable input results in a decline in total output.  The Leontief 

production function, equation(3.6), denies these phenomena by claiming both a constant returns 

to scale and that the property of diminishing returns does not apply. 

 

Marginal Product 

 Marginal product is the amount of change in total output for each additional unit of 

variable input.  For the single variable input case of the type    1y f x f x   the first 

derivative of the function, denoted as f  , gives the marginal product.  For the n-input case,

   1 2, , , ny f x f x x x  , the marginal product for each variable input is given as  i=1 to if n , 

where if  is the first partial derivative of  f x  with respect to the ith input.  In figure 3 below, 
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the marginal product is positive and increasing in the range 0 to 0

1x , between 0

1x and 1

1x  it remains 

positive but is declining, and after 1

1x  becomes negative.   

  

Figure 3, Average, Marginal, and Total Product Curves 

 

Average Product   

The average product is given by 
 f x

AP
x

 for the single input case and by 

 
 for i=1 to 

i

f x
AP n

x
 for the n-input case.  A graphic representation of the relationship 

between marginal product (MP) and average product (AP) is found in Figure 3, above.  We see 

that until the level of the variable input reaches 0

1x  that marginal product and average product 

increase.  The point of diminishing marginal returns exists at the points A and A′.  From variable 

input level 0

1x  to 1x  the marginal product begins to decrease while average product continues 

increasing.  At the points B and B′ average product peaks then begins to decline, this is the point 

of diminishing average product.  Between variable input levels 1x  and 1

1x  both average product 
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and marginal product decline but remain positive.  At the point C and C′ total product peaks and 

thereafter declines; this is the point of diminishing total product.  After this point average product 

and marginal product decline with marginal product becoming negative. 

 

Production Surface 

 By extending the single variable example used in graphing total production, as depicted 

in figures 2 and 3, to a two variable input example we can graph the production surface as shown 

in figure 4 below, with the variable input x1 and x2 plotted on the horizontal plane and output on 

the vertical axis.   

 

Figure 4, Production Surface  

 

The curve DC represents the production curve of x1 when x2 is held fixed and conversely 

the curve BC represents the production curve of x2 when x1 is held constant.  By allowing both to 

vary a production surface ABCD is revealed.  The slope of curves BC and DC are the marginal 

products of their respective inputs.  In plotting specific values of 0 0

1 2/x x  or 1 1

1 2/x x  the output 

levels Y1 / Y1 ′ and Y2 /Y2 ′ respectively are revealed.  In the n-input case the production surface 
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cannot be directly constructed; however, by constructing a series of graphs of related pairs of 

inputs their relationship may be discerned and an overall characterization of the production 

function be arrived at and prove useful.
148

   

 

Isoquants 

 The output levels (Y1, Y2, etc.) depicted in figure 4 are termed isoquants.  An isoquant 

depicts the locus of all combinations of any two inputs, i.e. x1 and x2, that produce a specified 

output level; it is analogous to the consumer’s indifference curve.
149

  Flattening the graph in 

figure 4 produces the family of isoquants curves shown in Figure 5.  Each isoquant represents a 

different level of output with the smallest output closest to the origin while each isoquant moving 

away from the origin represents higher levels of output such that 1 2 3 4y y y y   .  

  

Figure 5, Isoquants 

                                                
148 Carlson, A Study on the Pure Theory of Production: 18-19. 
149 Henderson and Quandt, Microeconomic Theory: A Mathematical Approach: 70. 
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 In Intermediate Microeconomic Theory David Kamerschen provides 5 characteristics that 

isoquants must exhibit. 
150

  

  1.  Isoquants are continuous and everywhere dense.  This condition is necessary to 

provide for substitution between inputs.   

  2.  Isoquants are negatively sloping.  The segment of the isoquant curve of 

economic interest must exhibit a positive marginal product.  While mathematically an isoquant 

curve potentially displays both positive and negative marginal products we are only interested in 

the viable economic region where the marginal product is positive. 

  3.  Isoquants are convex to the origin.  Similar to the requirement that the isoquant 

be negatively sloped, convexity is necessary to maintain the validity of the law of diminishing 

marginal rate of technical substitution in the viable economic region. 

  4.  Isoquants are non-intersecting.   

  5.  Isoquants do not cut the axis of an essential input. 

 The formula for the isoquant derives from the production function.  In the two input case 

the production function is given as, 

  1 2,y f x x . (3.8) 

To find the equation for the isoquant we take the inverse of the function with respect to 2x , 

preferring that 1x remains on the horizontal axis, and obtain, 

  2 1,x f x y . (3.9) 

Using the Cobb-Douglas production of the form, 

 1 2

1 2y Ax x
 

 , (3.10) 

                                                
150 David R. Kamerschen and Lloyd M. Valentine, Intermediate Microeconomic Theory  (Cincinnati, Ohio: South-

Western Publishing, 1977). 192-94.  
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 we find the inverse to be, 

 
1

2 2 2

1 1

2 1x A x y


  


 . (3.11) 

Thus given the parameters 1 2,  ,  A   we can, for a specified output y, vary 1x and find the 

appropriate value for 2x .  To find additional isoquants we need only further vary the specified 

output level.  The usefulness of isoquants is not limited to a simple depiction of output levels as 

the next section illustrates. 

 

Isoquant Analysis 

 Isoquant analysis supports economic analysis of the firm as it reveals a number of useful 

characteristics of a production function and the underlying technology.  Through analysis of the 

slope, shape, and spacing of isoquants we are able to discern the relationship between the various 

inputs and their impact on output levels.  This analysis reveals the marginal rate of technical 

substitution; provides a means to confirm the convexity of isoquants; exposes the degree of 

substitution inherent in the underlying technology; and graphically represents the type of returns 

to scale.    

 

Marginal Rate of Technical Substitution
151

 

 The marginal rate of technical substitution (MRTS) describes the manner in which two 

inputs substitute for each other and is the slope of the isoquant.  Simply stated the MRTS shows 

the amount of one factor that must be sacrificed per incremental increase in the other factor.  

Thus the MRTS is the ratio of the change in both input factors; 

                                                
151 Beattie and Taylor, The Economics of Production: 23-24. 
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 2

1

MRTS
dx

dx
 . (3.12) 

Using the total differential of the production function we can derive a formula for the value of 

the MRTS.  The total differential of the production function in the two input case is, 

 1 1 2 2dy f dx f dx  . (3.13) 

As the change in output along an isoquant is zero the total differential becomes, 

 1 1 2 20 f dx f dx  . (3.14)     

By simplification of terms we obtain, 

 2 1

1 2

dx f

dx f
  . (3.15) 

Thus the MRTS is the ratio of the first partial derivatives of 1x and 2x .  In the n-input case it is 

necessary to examine the inputs in a pair wise fashion to determine all relevant MRTS’s.  

Economists generally drop the negative sign and merely refer to the MRTS as the ratio 1

2

f

f
.   

 

Convexity in Isoquants
152

 

 Confirmation of the convexity of the isoquant is arrived at by taking the second 

derivative of the MRTS, where in all cases if is the first partial derivative of the production 

function with respect to input i and ijf is the cross partial derivative with respect to inputs i and j, 

and 2

if is the square of the first partial derivative of input i.   

 The second derivative of the total differential is, 

                                                
152 Ibid., 24-25. 



74 

 

 

1 1

2 22
1 2

1 1 2

f f

f fdx
d dx dx

dx x x

   
      

       
  

. (3.16) 

 

Dividing both sides by dx1 we obtain, 

 

2 1 1

2
1 2 22 2

2

1 1 1 2 1

dx f f
d

dx f fd x dx

dx dx x x dx

     
        

       
 

. (3.17) 

Wishing to hold the output y constant we need to substitute 1

2

f

f
  for 2

1

dx

dx
, and by using the 

quotient rule for partial derivatives we obtain, 

 
2

2 2 11 1 21 2 12 1 22 1

2 2 2

1 2 2 2

d x f f f f f f f f f

dx f f f

  
    

 
. (3.18) 

By multiplying the first term by 2

2

f

f
and completing the multiplication of the second term we 

obtain, 

 
2 2 2

2 2 11 1 2 21 1 2 12 1 22

2 3

1 2

d x f f f f f f f f f f

dx f

   
 , (3.19) 

and by collecting terms arrive finally at, 

 
2 2 2

2 2 11 1 2 21 1 22

2 3

1 2

2d x f f f f f f f

dx f

  
 . (3.20) 

The isoquants of the production function are convex provided the sign of this second derivative 

is positive.   

 Some production functions exhibit the unique characteristic of possessing positive and 

negative marginal products thus creating isoquants with areas of convexity and concavity as 

shown in Figure 6.  Only in area I of figure 6 are the marginal products all positive and the 
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isoquant convex.  In area II the isoquants are positively sloped and convex with respect to the 

vertical axis.  The isoquants in area III are concave to the origin.  Lastly in area IV the isoquants 

are positively sloped and convex with the horizontal axis.  Due to this variability in isoquant 

behavior it is necessary to restrict the function to area I.  This is consistent with the view that a 

rational entrepreneur will only operate where marginal products are positive and isoquants are 

convex to the origin.  The areas in figure 6 lying outside of area I represent irrational choices for 

any output produced by input combinations lying on the isoquant in those areas could easily be 

produced by fewer inputs if produced by combinations laying on the isoquant in area I.
153

 

 

 

Figure 6, Convexity and Concavity of Isoquants 

 

                                                
153 Ibid., 26-29. 

II

I

III

IV



76 

 

Factor Substitution 

 Factor substitution and its converse factor separability are essential characteristics of 

production functions.  Factor substitution describes the degree or manner in which one input or 

factor can be exchanged for another factor.  Elasticity of factor substitution is the customary 

measure of factor substitution; however, isoquants can be used to graphically depict the degree 

of substitution.   

 

Elasticity of Factor Substitution 

 Elasticity measures the proportional change in one quantity resulting from a change in 

another quantity.  In factor substitution the elasticity of factor substitution (σ) measures the rate 

at which substitution takes place.  σ measures the change in the input ratio divided by the 

proportionate change in the marginal technical rate of substitution and is given by,
154

 

 
 

 
1 2 1 1 2 2

2 2

1 2 12 1 2 1 22 2 112

f f f x f x

x x f f f f f f f





 
. (3.21) 

σ can take a value between zero and infinity, 0   .  When the elasticity of substitution 

equals zero the inputs are not substitutes for another and must be used in strict fixed proportions.  

The Leontief production function, equation(3.6), is an example of a production function that 

utilizes inputs in a fixed proportion or recipe fashion.  When the elasticity of substitution equals 

infinity the inputs of the production function are perfect substitutes for one another.  The linear 

production function of equation (3.5) is an example of a production function with perfect 

substitution.  Most production functions exhibit imperfect substitution, a situation where inputs 

compete for their use in the production process.  Under imperfect substitution the elasticity will 

                                                
154 See Appendix D for the derivation of the elasticity of substitution. 
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vary between zero and infinity.  The Cobb-Douglas production function, equation(3.3), is an 

example of a production function exhibiting imperfect substitution.
155

 

 

Factor Substitution Graphically 

 The shape of the isoquant curve can also reveal the nature of factor substitution.  

Isoquants taking the shape of those depicted in graph A of figure 7 below are representative of 

production functions producing standard isoquants associated with imperfect competition 

between inputs.  The Cobb-Douglas production function, equation(3.3), is an example one such 

production function.  Graph B in figure 7 depicts the straight line isoquants produced by 

production functions exhibiting perfect substitutability.  The linear production function, 

equation(3.5), exhibits perfect substitution.  Graph C of figure 7 illustrates the bent isoquants 

associated with complementary inputs or the no substitution scenario.  The Leontief production 

function, equation(3.6), is an example of this type of production function.
156

 

 

 

Figure 7, Shapes of Isoquants 

 

                                                
155 Beattie and Taylor, The Economics of Production: 29-31. 
156 Ibid. 
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Stages of Production 

 Economists find it convenient to break the total product curve into three stages of 

production based upon the changing nature of both the average and marginal products.  As 

shown in figure 8 below stage one is characterized by an increasing average product curve with 

an initially increasing marginal product curve that begins to decline beyond the point of 

diminishing marginal return.  Stage one ends at the point where marginal product equals average 

product.  Stage two is characterized by declining average and marginal product curves with both 

exhibiting positive values.  Stage two ends at the point of diminishing total product; while it 

exhibits a positive average product, marginal product has declined to zero.  In stage three 

marginal, average, and total product curves decline with marginal product becoming negative.  

Absent knowledge of the prices of inputs or outputs the rational entrepreneur would prefer to 

operate where the greatest technological efficiency exists which is at the threshold of stage one 

and two if the variable input is the scarcest.  Should the fixed input be the scarcest then the 

threshold moves to the boundary of stage two and three.  Given knowledge of prices 

entrepreneurs will operate somewhere within stage two.
157

   

 

                                                
157 Ching and Yanagida, Production Economics: Mathematical Development and Applications: 103-05. 
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Figure 8, Stages of Production 

 

Isoclines and Ridgelines 

 Isoclines are special features of the isoquant map that locate and display points of equal 

slope of a family of isoquants.  Two special cases of isoclines are ridgelines and the expansion 

path.  For ordinary isoclines the slope of interest is the marginal technical rate of substitution.  

The formula for the isocline is derived from the MRTS which for the two input case is 1

2

f

f
.   By 

setting this expression equal to a constant value of the MRTS we obtained the formula 1

2

f
K

f
 .  

Given that 1f and 2f are both functions of x1 and x2 we can express the formula in terms of x2 and 

by varying x1 obtain the graph of the isocline.  By selecting various values for K a family of 

isoclines is obtained.  Likewise for the n-input case we need only select pairs of xi’s and repeat 

the process to obtain a family of isoquants and associated isoclines.  Figure 9 shows a family of 
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isoclines, ridgelines, and an expansion path.  All the lines A-F in figure 9 are isoclines; we can 

see that isoclines may be straight (C), curved (A, B, D, E) or wavy (f).  Ridgelines are a special 

type of isocline as the associated slope is either zero or undefined (i.e. the MRTS is zero or 

undefined).  Ridgelines, lines A and E in figure 9, effectively graph the boundaries of the area of 

stage II production where the marginal products are all positive.  A second special case of the 

isocline is the expansion path.  Entrepreneurs are interested in knowing the least-cost resource 

combinations for several potential output levels.  Given knowledge of the ratio of input prices 

and setting that value as the slope K in our isocline formula the resultant isocline is called the 

expansion path.  Thus the expansion path, line F in figure 9, locates the various input 

combinations for different levels of output provided we know the relevant input prices.  The 

expansion path may be wavy as in line F of figure 9, straight as in line C, or curved as in lines B 

and D.
158

   

 

 

Figure 9, Isoclines, Ridgelines, and Expansion Path 

 

                                                
158 Beattie and Taylor, The Economics of Production: 31-32. 
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Elasticity of Production 

 As noted earlier elasticity measures change.  In output levels the elasticity of production 

measures the proportional change in output resulting from a proportional change in a given 

factor, holding the level of other inputs constant.  The formula for the elasticity of production is 

given by the ratio of the marginal product of the ith input to its average product, 

 
 

i i i
i

i

f f x
E

yf x

x

 
 
 
 

. (3.22) 

 

Stages of Production Redux 

 We can now return to the stages of production and provide an alternative explanation of 

the boundaries of the stages of production.  Figure 10 below is the same as figure 8 except that 

now we use values of the elasticity of production for x1 noting that input levels for x2 are held 

constant.  Stage one production exists in the region of the graph between o and 0

1x where E1>1 or 

the condition when marginal product is greater than average product.  The boundary between 

stage one and two production exists where E1=1, or the condition that marginal product equals 

average product.  Stage two exists in the region of the graph where E1 lies between zero and one 

or when the condition when average product is greater than marginal product and marginal 

product remains positive.  The boundary between stage two and three exists where E1=0 or the 

condition that marginal product equals zero.  Stage three exists in the region where E1<0 or the 

condition that marginal product is negative.
159

 

 

                                                
159 Ibid., 36-38. 
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Figure 10, Stages of Production 

 

Coefficient of Production 

 By contrast to the elasticity of production where the level of one input is allowed to vary 

while holding the other inputs constant, the function coefficient measures the change in output 

given an equal increase in all inputs.  Thus the function coefficient reveals the returns to scale of 

the production process.  For the two-input case the function coefficient is given by the formula, 

 1 1 2 2f x f x

y y
   . (3.23) 

From equation (3.22) we see that for the two-input case equation (3.23) can be replaced by, 

 1 2E E   . (3.24) 

Thus the function coefficient is equal to the sum of the individual elasticities of production.  

Expanding the formula to the n-input case then the function coefficient is given by, 

 
1

n

iE  . (3.25) 

When ε is less than one the production process exhibits declining returns to scale, when ε equals 

one it exhibits constant returns to scale, and when greater than one the process exhibits 
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increasing returns to scale.  Some production functions demonstrate only one type of return to 

scale and are referred to as fixed return to scale production functions, while others have 

characteristic of all three types of return to scale and are referred to as variable return to scale 

production functions.
160

 

 

Isoquants and Return to Scale 

 Isoquants can graphically demonstrate returns to scale.  In figure 11 below the spacing of 

the isoquants reflect the three types of returns to scale.  In graph (a) we have increasing returns to 

scale.  Because a unit increase in all inputs generates more than a unit increase in output the 

isoquants spread out as output grows.  Graph (b) shows constant returns to scale.  In constant 

returns to scale a unit increase in all inputs results in a unit increase in output thus the isoquants 

are equally spaced.  Graph (c) show the isoquants associated with decreasing returns to scale.  

Each unit increase in inputs results in less than a unit increase in output thus the isoquants grow 

increasing bunched as output grows. 

 

Figure 11, Isoquants and Returns to Scale 

 

                                                
160 Ibid., 40-48. 
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Factor Interdependence 

 Factor interdependence expresses a technical relationship between two factors.  Two 

factors are independent of one another if an increase in the quantity used of one factor does not 

change the marginal product of the other factor.  Three technical interdependence states exist; 

complementary, independent, and competitive.  The test for interdependence utilizes the cross 

partial derivative of the production function with respect to the two inputs in question, or
ijf .  

When 
ijf is greater than one, the inputs are technically complementary.  In the complementary 

case the marginal product of one input is enhanced as the quantity of the other input is increased 

in the production process.  Inputs are independent if 
ijf equals zero.  In the case of independence 

the marginal products of both inputs are not affected by changes in the quantity used of the other.  

In the third case inputs are technically competitive when 
ijf is less than zero.  Under competitive 

conditions the marginal product of one input is reduced when the other input level is 

increased.
161

  Figure 12 below graphically shows these three relationships. 

 

 

Figure 12, Factor Interdependence 

 

                                                
161 Ibid., 32-36. 
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The importance of factor interdependence is manifest in applied studies.  In model specification 

selection of functional form becomes critical.  The form selected should match the factor 

interdependence inherent in the production process being model rather than imposing a different 

type of factor interdependence.
162

 

 

Factor Separability 

 Factor separability represents a third type of technical relationship between factor inputs, 

with elasticity of substitution being the first and factor interdependence the second type.  The 

question at issue here is whether an intermediate process and resultant product can be identified 

and separated from the main process.  If an intermediate process can be identified then that 

process can be represented by its own production function and the inputs of the intermediate 

process can be aggregated into a single input for the overarching or primal production function.  

Thus the question to aggregate inputs or disaggregate inputs in the primal production function is 

raised.  Aggregate inputs are often used in the analysis of industrial sectors and national 

economies.
163

  A group of inputs (one or more inputs) are said to be separable from the other 

inputs if the marginal rate of technical substitution between the group and the remaining inputs 

are independent.
164

  The test for separability utilizes the partial and cross partial differential of 

the production function.  A pair of inputs ij is separable from input k if and only if the following 

condition holds, 

 
ij jk

i j

f f

f f
 . (3.26) 

                                                
162 Ibid. 
163 Charles Blackorby, Daniel Primont, and R. Robert Russell, Duality, Separability, and Functional Structure: 

Theory and Economic Applications  (New York, New York: Elsevier North-Holland, 1978). 5. 
164 Ibid., 1. 
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In cases where equation (3.26) holds then researchers can specify a functional form for the 

production function that incorporates this condition. 

 

Production Theory in Use 

 In concluding this section on production theory we are left with the question of how to 

put this information to use.  The answer is three-fold.  First of all this brief statement of 

production theory conceptualizes production in a manner not existing outside of the field of 

economics.  This understanding permits detailed mathematical analysis of production in 

architectural firms not previous attempted.  The dynamics and intricacies of production revealed 

here inexorably alter future discourses about issues arising about production processes within the 

firm.  Second, this understanding of production theory permits the more thorough discussion of 

production functions found in the next chapter and furthers our understanding that it’s the very 

complexity of production that spawns the proliferation of production functions seen in the 21
st
 

century.  Thirdly, production theory provides managers the tools to answer key questions in their 

quest to optimize their production operations as we shall see in the following section. 

 

Optimization 

 The preceding section presented the fundamental elements of production theory focusing 

on the two-input and n-input single-output production models thus serving as a prelude to an 

exploration of the practical application of that theory.  That entrepreneur’s exhibit optimizing 

behavior as an everyday aspect of their management of the firm is perhaps the most fundamental 

assumption that economists hold true.  Such optimizing behavior attempts to answer the 

questions of ‘how do I minimize the costs of a given level of output?’ and ‘how do I maximize 
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output for a given level of costs?’  Thus the two most common optimizing questions involve 

minimizing cost for a given level of production (constrained cost minimization) and maximizing 

production for a given budget constraint (constrained output maximization).  Given knowledge 

of input and output prices, that is the price of production factors and the market price of goods 

and services produced, an entrepreneur armed with production theory can answer these important 

questions.   

 In introducing the concepts of optimizing Charles Beightler in Foundations of 

Optimization comments that the goal is that of finding the best solution.
165

  When the analysis is 

one of mathematics, particularly the attempt to find the maximum or minimum value of a 

function of many variables constrained by an objective function, the solution derived is highly 

precise, often to several decimal places.  Such precision is false and misleading and thus a note 

of caution should be sounded.  While the general form of a production function suggests its own 

high level precision, the values of all parameters in a specified form are derived from statistical 

estimation methods.  All parameters (constants, coefficients and exponents) represent point 

estimates of their true value.  While these estimates are often expressed to several decimal places 

each have attached to them their own standard error reflecting the likelihood that the real value 

exists with a given number of standard deviations from the predicted value.  From these standard 

errors confidence intervals may be constructed to better give the researcher a sense of the true 

value and probability of an event occurring outside the confidence interval.  Therefore a 

completed statistical analysis of the form of a production function must be viewed with some 

circumspection.  The errors inherent in the production function carry over into optimization 

calculations and taint their conclusions.  The entrepreneur must therefore consider that a solution 

                                                
165 Charles S. Beightler, Don T. Phillips, and Douglass J. Wilde, Foundation of Optimization, Second ed. 

(Englewood Cliffs, New Jersey: Prentice-Hall, 1979). 1. 
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calling for 1000 units of input ix or an output of 1000 units or that a given input bundle has a 

total cost of $1,000, has a natural variance from that predicted value and that variance must be 

taken into account when implementing any solution.  Thus the best solution sought by Beightler 

is at best a little fuzzy; caution is called for. 

 Caution must be exercised in employing decision-making that relies upon optimizing 

techniques, particularly mathematical optimization.  Beightler offers these words of guidance, 

“Deciding how to design, build, regulate, or operate a physical or economics system ideally 

involves three steps: First, one should know accurately and quantitatively, how the system 

variables interact.  Second, one needs a single measure of system effectiveness expressible in 

terms of the system variable.  Finally, one should choose those values of the system variables 

that yield optimum effectiveness.  Thus optimization and choice are closely related.”
166

  Ergo 

improving our fuzzy solution requires a little hard work.  Let us briefly explore each of these 

aspects of optimization before proceeding to the technical aspects of this section.   

 In Beightler’s scheme the first requirement – knowledge of the system – is of paramount 

importance.
167

  In the present context two requirements arise, that of knowledge of production 

theory including economic optimization and knowledge of the specific production system of the 

architectural firm.  The preceding section on production theory provides us the requisite 

knowledge of the production theory while the balance of this section details optimization 

techniques.  What we must supply next is our specific knowledge of how productive factors 

interrelate in a given production process.  This knowledge manifests itself in model specification 

and data acquisition; subjects we will deal with later.   

                                                
166 Ibid., 2. 
167 Ibid., 3. 
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 Identifying system effectiveness measures is Beightler’s second step.  He further suggests 

that such measures may vary from trivially simple to practically impossible.
168

  For the 

architectural firm the immediate measures of effectiveness are those naturally proceeding from 

the analysis of cost minimization and production maximization.  Cost minimization identifies the 

optimal expenditure conditions (total cost plus ratio of input factors) for a given output.  From 

this benchmark the firm can judge the efficiency in design or other services by comparison of the 

actual cost with that of the optimal cost and associated variances.  One application of the result 

of such analysis directly informs decisions regarding sizing and composition of the project team 

necessary in achieving maximum economic efficiency.  By setting the output equal to that of 

projects the firm is bidding upon an estimate of labor cost broken down into the various labor 

categories is possible and may prove useful as part of the bidding process.  Also the future size 

and composition of the work force may be determined through that analysis by setting the output 

equal to an annual plan of work.  Production optimization produces another benchmark for the 

firm.  Through comparison with actual production (e.g. annual production) with the optimal level 

the firm may directly assess its level of productivity.  In a similar fashion the size and 

composition of a proposed or future work force may be tested to determine if it can meet 

anticipated future output levels.  While the principal focus remains understanding the cost of 

design, or other architectural services, clearly much insight and information of value to the firm 

is obtainable through these optimization techniques.  

 Choice is the third of Beightler’s three steps in optimization.  Rational decision making 

on the part of entrepreneurs remains a leading assumption of economists.  Beightler asserts that 

such rational behavior is consistent with optimizing and in fact should be based upon solutions 

suggested by optimizing techniques as they narrow the number of possible solutions down to the 

                                                
168 Ibid. 
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best one.
169

  Additionally he notes, “Moreover, it often yields information about the sensitivity of 

optimum conditions to fluctuations and uncertainties in the original system description.”
170

  In 

the two optimization techniques described in the balance of this section we find the key to 

answers of many of the decisions managers face. 

 

Optimizing Behavior 

 The search for optimality is an effort to find a singular point where the cost function, 

represented by isocost curves, and production functions, represented by isoquant curves, yield 

the best solution for the optimization question at hand.  The optimal point exists where the 

isocost line and the isoquant curve are tangent thus establishing a point of minimum cost for a 

fixed output or maximum output for a given cost.  The isoquant curves introduced earlier 

represent various input combinations yielding a fixed output as depicted in figure 5.   Isocost 

lines depict various combinations of inputs having the same total cost as shown in figure 13.  The 

formula for total cost of a two input system is, 

 0 1 1 2 2c w x w x FC   , (3.27) 

where 0c is the total cost, w is the wage rate, and FC represents fixed costs.
171

  For the n-input 

case the cost formula is generalized to, 

 0

1

n

i i

i

c w x FC


 
  
 
 . (3.28)  

By solving for 1x in equation (3.27) we obtain the following formula, 

 0 2
1 2

1 1

c FC w
x x

w w


  . (3.29) 

                                                
169 Ibid. 
170 Ibid. 
171 Henderson and Quandt, Microeconomic Theory: A Mathematical Approach: 74. 
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The slope of the isocost line is 2

1

w

w
 which is the negative of the ratio of the input prices, while 

0

1

c FC

w


is the intercept on the 1x axis.

172
  In figure 12 we see three isocost lines, 1c , 2c  and 3c , 

each line consisting of various input bundle combinations that have the same total cost such that 

the total cost for 1 2 3c c c  .   

 

 

Figure 13, Isocost Lines 

 

The optimal point exists where an isocost line and isoquant curve are tangent.   In figure 14 the 

points A, B, and C show the point of tangency between isocost lines 1 2 3,  ,  and c c c and isoquants 

1 2 3,   and y y y respectively.  These optimal points can be arrived at mathematically through use of 

the Lagrangian formulation which we explore next.   

 

                                                
172 Ibid. 
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Figure 14, Isocost Lines and Isoquant Curves 

   

Constrained Cost Minimization
173

 

 One question faced by entrepreneurs is how to minimize the cost of producing at a given 

production level.  This optimization problem is termed constrained cost minimization.  For the 

two input case we seek to minimize the cost function in equation (3.27) subject to the production 

function.  For the two-input case we begin by forming the Lagrangian function, 

   1 1 2 2 0 1 2,L w x w x FC y f x x      (3.30) 

Next we must determine the first order conditions of the minimization problem.  Recall that in 

univariate calculus the minimum is found by setting the first derivative equal to zero and solving 

for x.  Here the process is similar only we have three variables 1 2,  ,  and x x  , and we are dealing 

with partial derivatives of the Lagrangian function,  f L .  Thus to establish the first order 

conditions begin by setting the partial derivatives of L with respect to 1 2, , and x x  equal to zero 

and obtain, 

                                                
173 Ibid., 76-78.  This entire section is based on the explanation contained in these pages. 
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1 1

1

0
L

w f
x




  


 (3.31) 

 
2 2

2

0
L

w f
x




  


 (3.32) 

  0 1 2, 0
L

y f x x



  


. (3.33) 

Next solve for the variables in equations (3.31) and (3.32) to obtain, 

 1 1w f  (3.34) 

 2 2w f . (3.35) 

The  term in equation (3.30) becomes 1 with differentiation thus yielding, 

  0 1 2,y f x x . (3.36) 

By dividing equation (3.34) by (3.35) we find, 

 1 1

2 2

w f

w f
 . (3.37) 

Recalling from earlier that 1

2

f

f
equals the marginal rate of technical substitution we now conclude 

that the first order conditions require that the ratio of the prices of the factors of production equal 

the MRTS.   

 The second order conditions require that the determinant of the bordered Hessian matrix 

to be positive.  For the two input case the following must be true to ensure a valid optimal 

condition. 

 

11 12 1

12 22 2

1 2

0

0

f f w

f f w

w w

 
 

 
 
   

. (3.38) 
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 The procedure for the n-input case is very similar.  The Lagrangian formulation is, 

   0 1 2

1

, , ,
n

i i n

i

L w x FC y f x x x


 
    
 
 . (3.39) 

Solving the Lagrangian function for the first order conditions we obtain n functions for the 

variables 1 nx x similar to equations (3.31) and (3.32), plus a function for  similar to equation 

(3.33).  The second order conditions are also similar only with an expanded bordered Hessian 

matrix of the following type, 

 

11 12 1 1

12 22 2 2

1 2

1 2

0

0

n

n

n n nn n

n

f f f w

f f f w

f f f w

w w w

 
 


 
  
 

 
    

. (3.40) 

 Appendix E presents an example of the two input case demonstrating the techniques to 

reach a final solution of the constrained cost minimization problem. 

 

Constrained Output Maximization 

 The second most frequently asked question by managers is how to produce the maximum 

output given a predetermined budget.  This optimization problem is termed constrained output 

maximization.  For the two input case we seek to maximize output given the constraint of a 

predetermined budget limit.  The procedure is similar to the constrained cost minimization 

problem.  We start with the Lagrangian formula, 

    1 2 1 1 2 2, oL f x x C w x w x FC     . (3.41) 

The first order conditions are obtained by differentiating the Lagrangian function with respect to 

each variable and setting them equal to zero, 
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1 1

1

0
L

f w
x




  


 (3.42) 

 
2 2

2

0
L

f w
x




  


 (3.43) 

 0 1 1 2 2 0
L

C w x w x FC



    


. (3.44) 

Next solve for the variables in equations (3.43) and (3.44) to obtain, 

 1

1

f

w
   (3.45) 

 2

2

f

w
  . (3.46) 

In differentiating the function L with respect to  the  term becomes 1 once again thus yielding, 

 0 1 1 2 2C w x w x FC   , (3.47) 

which is the definition of the cost curve.  As the left hand term in both equations (3.45) and 

(3.46) is   we can rewrite those equations as: 

 1 2

1 2

f f

w w
  (3.48) 

and by simple algebra obtain, 

 1 1

2 2

f w

f w
  (3.49) 

thus demonstrating again that the first order conditions require the MRTS to equal the ratio of the 

input prices. 

 The second order conditions are identical in both optimization problems with the 

determinant of the bordered Hessian matrix required to be greater than zero.  (See equation(3.38)

)  An example of the two input case is demonstrated in Appendix E. 
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 The n-input case for the constrained output maximization proceeds similar to the 

constrained cost minimization procedure noted above.   

 

 The foregoing chapter contains the exposition of production theory for the n-input single-

output model, a detailed examination of the production process and characteristics of production 

functions then concluded with a detailed explanation of two optimizing techniques.  With the 

foundation formed by these discussions we are now prepared to examine the vast array of 

production functions developed in the 20
th
 century to address the various production conditions 

discussed in this chapter.   
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CHAPTER 4 

 

 PRODUCTION FUNCTIONS 

Economics is extremely useful as a 

form of employment for economists. 

                                                                   John Kenneth Galbraith
174

 

 
 

Introduction 

 This chapter surveys production functions developed in the 20
th
 Century focusing upon 

those production functions that take explicit form and are of the n-input single-output variety.  

This survey enumerates these production functions, provides a brief history of their origin and 

salient characteristics.  The enumeration aspect of this survey provides a rough chronological 

order of development of production functions beginning with the Cobb-Douglas production 

function.  The enumeration deviates from a strict chronology where clarity suggests grouping 

developments in one place.  Otherwise the intent is to detail the development of production 

functions from the early part of the 20
th

 century up to the present.  While exhaustive this 

enumeration suffers the fate of most enumeration efforts.  As Melvyn Fuss and Daniel 

McFadden state the issue, “The diversity and extent of the subject of applied production theory 

makes a comprehensive survey impossible.”
175

  What follows in this chapter can, none-the-less, 

provide an acceptable start in the search for appropriate forms of production functions suitable 

for empirical research into the production processes employed by architectural firms. 

 As noted in chapter two, in the early 18
th

 Century works of economists one can find 

conceptualizations of production functions including the isolated appearance of actual 

mathematical formulations of production functions.  Unfortunately, much of that work was not 

widely published nor circulated.  That which was published, often in very small quantities, was 

                                                
174 Thinkexist.com, "Thinkexist.com,"  www.thinkexist.com/quotes/john_kenneth_galbraith. 
175 Fuss and McFadden, Production Economics: A Dual Approach to Theory and Applications, Vol I and II: 219. 
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not well known to a great many economists.  Differences in language and the distances between 

great centers of learning often hindered the sharing of knowledge.  Regrettably the early work of 

economists often failed to gain widespread acknowledgement or review.  A critiquing of that 

early work and the eventual acceptance of concepts articulated therein awaited their rediscovery 

many years after their original publication.  By the early part of the 20
th
 century much of the 

contemporary work on production economics became centered in the United States, in no small 

part due to the immigration of notable economists to American universities.  Improvements in 

communication technology meant that more of their scholarship could and would be shared and 

critiqued widely.  These developments set the stage for the wide spread exchange of ideas and 

acknowledgment of the contributions of a plethora of U.S. and international economists.  The 

work of such luminaries as Sune Carlson, Charles Cobb and Paul Douglas, Wassily Leontief, and 

Paul Samuelson, to name just a few, headlined the early effort of economists in America.  The 

salient event marking the beginning of this new contemporary period in economics was the 1928 

publication of The Theory of Production by Charles Cobb and Paul Douglas in which the Cobb-

Douglas production function was first revealed.
176

  In the main section of this chapter we take up 

the enumeration of production functions beginning there with Professors Cobb and Douglas and 

their famous function. 

 A simple enumeration of production functions does not fully forward our main objective 

in this dissertation, namely the identification production functions suitable for empirical research 

into the operations of architectural firms.  Accomplishing that goal requires an investigation into 

the origins, purpose, and characterization of explicit production functions of the n-input single-

output variety.  So in addition to the enumeration of each production function a short description 

of its salient features are provided.  These features include an account of the manner in which the 

                                                
176 Cobb and Douglas, "A Theory of Production." 
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production function handles the issues of factor separability and interaction, the measurement of 

returns to scale, the applications for which it was developed, and its generality and flexibility.  

These factors are discussed further in the first section of this chapter. 

 Readers unfamiliar with production economics will, no doubt, be astonish by the virtual 

cornucopia of functions surveyed here.  One may be tempted to ask why so many?  The balance 

of this chapter sheds considerable light upon the answer to this question without attempting to 

fully resolve it.  Economists were often critiquing or responding to ideas of earlier economists 

proposing their own solutions to old problems or presenting new issues as they identified them.  

Economists advanced differing treatments for issues ranging from input separability to returns to 

scale; the adaptation of production functions to a broader array of production circumstances; and 

factor substitutability to name only a few prominent issues.  Some economists focused upon the 

development of production functions for high level macroeconomic analysis, others focused 

upon functions for microeconomic applications, while still others sought to develop production 

functions with broader applications.  As the development of production functions continued the 

issues of generalizing the form of the function, and the development of flexible forms arose.  

Consequently we have today an extensive array of production functions designed to confront an 

equally broad array of conditions and circumstances.  Alongside the enumeration of production 

functions the intent in the next section is a brief comment upon the unique characteristics of 

each.  The purpose of this characterization is to aid in the eventual task of winnowing a large list 

of possibilities down to a manageable few worthy of use in empirical economic analysis of 

architectural firms.   
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General Characteristics of Production Functions 

Introduction  

 This section discusses the four principle means of classifying production functions used 

in the main section of this chapter.  These classifications are centered upon the issues of 

homogeneity; elasticity and general substitutability/interaction of inputs; the economic 

application for which it was developed; and the degree to which the form generalizes early 

forms, extends them to multiple inputs and provides for flexibility in empirical analysis. 

 

Homogeneity 

 The first characteristic of production functions that commands our attention is that of 

homogeneity.  The homogeneity of a production function immediately informs us of the nature 

of the returns to scale of that function.  In the discussion of returns to scale in chapter three it is 

noted that returns to scale of a production function may be increasing, decreasing or constant.  

Further, fixed return to scale production functions are those functions whose return to scale does 

not change over the relevant data range although that return to scale itself may be increasing, 

decreasing, or constant.  Variable returns to scale production functions refer to those functions 

whose return to scale do vary over the relevant data range.  In many production functions the 

return to scale is assumed to be fixed over the relevant economic range of data.  For instance the 

Cobb-Douglas production function may prove to be increasing, decreasing, or constant, but 

regardless of what the return to scale is determined empirically to be, it remains fixed over the 

relevant data range.  In other words once the returns to scale is determined empirically it remains 

invariable or fixed.  Variable returns to scale implies that over some range of inputs the 

production function may exhibit increasing returns to scale, such as when small amounts of 
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inputs are employed, then changes to a constant return to scale (or very nearly constant return to 

scale) as more inputs are applied, before ultimately exhibiting decreasing returns to scale.
177

  The 

homogeneity of the production function reveals the nature of the returns to scale with 

homogeneous production functions exhibiting fixed returns to scale (increasing, decreasing or 

constant), while non-homogeneous production functions exhibit variable returns to scale (e.g. 

changing from increasing to constant to decreasing).  For homogeneous functions the extent to 

which the function is increasing (or decreasing) may easily be determined and for non-

homogeneous functions the returns to scale must be determined for specified level of inputs. 

 A production function is defined as a homogeneous function if, when the amount of each 

input used is multiplied by a scalar,  , the output y changes by, k .
178

  Thus the function 

 1 2,y f x x is homogeneous in degree k  if  1 2,ky f x x   .
179

  If 1k  then the function is 

increasing in returns to scale and as the value of k increases the degree of expansion of y

increases proportionally.  If 2k  for example, then a doubling of inputs results in a four-fold 

increase in output.  If 1k  then the function exhibits a constant return to scale.  When 0 1k 

then the function exhibits decreasing returns to scale and as k decreases output decreases 

proportionally. A non-homogenous function is one that fails the test for homogeneity.  The 

returns to scale of such functions are typically variable.   

 

Factor Elasticity, Substitution, Separability, and Interaction 

 The second characteristic of production functions to command our attention is how does 

a specific function account for elasticity of factor substitution, factor independence, factor 

                                                
177 Henderson and Quandt, Microeconomic Theory: A Mathematical Approach: 105-06. 
178 Ching and Yanagida, Production Economics: Mathematical Development and Applications: 101. 
179 Henderson and Quandt, Microeconomic Theory: A Mathematical Approach: 106. 
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separability, and factor interaction.  As discussed in chapter three the measure of the elasticity of 

substitution of a production function describes the manner or degree in which inputs may be 

substituted one for another.  This ranges from perfect substitution when  where all inputs 

are fully substitutable for each other, to imperfect substitution when 0 1  where inputs are 

substitutable based upon the rate of technical substitution, to the condition of non-substitutability 

when 0  .  Similar to the discussion above regarding the returns to scale, the measure of factor 

substitution may be fixed in some production functions while held variable in others.   In 

modeling a production process the assumptions regarding the manner of substitution often prove 

critical. 

 

Economic Application 

 The third characteristic to command our attention concerns how production functions are 

employed in economic analysis.  The two areas we are concerned with here are macroeconomic 

and microeconomic applications.  Many production functions developed for use in studying 

national economies, industrial sectors, or aggregated production are not suitable for 

microeconomic applications.  In many instances they allow only the aggregation of capital and 

labor and cannot be extended to handle multiple inputs required in microeconomic analysis.  

Similarly some microeconomic analysis utilizes functions that account for sophisticated 

interactions among biological agents or general agricultural circumstances and thus may not be 

appropriate for certain manufacturing processes.  Of interest in this study are those production 

functions that can easily be extended to handle multiple inputs. 
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Generalized and Flexible Forms 

 The last characteristic to command our attention is the trend toward development of 

production functions that encompass a number of special treatments under one formulation.  The 

first such type of production function is the generalized functional form.  The generalized form 

extends a previously developed production function to include more inputs or to account for 

more variability than the original form.  Flexible forms are intended as ‘one size fits all’ forms.  

These are often nested functions in that as certain parameters tend toward zero, one, or infinity. 

Or are assigned a predetermined value, the flexible form resolves itself into one of the more 

specific functions encompassed within the flexible form.  Such a function might for example 

contain parameters that permit the flexible form to have contained within it other functions such 

as the Cobb-Douglas and Leontief functions simultaneously.  Only upon statistical estimation 

does one know which of the included functions emerges.  Flexible forms come with a cost in the 

estimating process.  These functions often cannot be estimated with ordinary least square 

methods thus requiring sophisticated techniques or complex software programs.  The added 

parameters serve not only to complicate the estimation process but increase the number of values 

that must be estimated along with their standard errors thus complicating interpretation of the 

results.  Finally, an increase in the number of parameters that must be estimated increases the 

minimum number of observations required for statistical validity.  As we shall see in the next 

chapter the simpler or more parsimonious function is greatly preferred when estimating the 

values of the production function. 

 



104 

 

Productions Functions 

Cobb-Douglas Production Function 

 In the spring of 1927 Paul Douglas
180

 began a study “to determine what relationships 

existed between the three factors of labor, capital, and product” in U.S. manufacturing.
181

  He 

turned to his colleague at Amherst College, Charles W. Cobb of the mathematics faculty, and 

asked “if he could devise a mathematical function which could be used to measure the 

comparative effect of each of the two factors upon the total product.”
182

  The result of this 

famous collaboration is the Cobb-Douglas production function
183

 of the form,
 184

 

 1 2

1 2 1 2 | 1y Ax x
      .

 
 (4.1) 

This original formulation requires the sum of the exponents 1 2 and   to equal one thus making 

the function homogeneous in degree one and thus a fixed constant return to scale function.  

Additionally the function exhibits imperfect substitution.  The optimal equilibrium point is found 

where the MRTS equals the ratio of the respective wage rates.  Thus the manner in which 

substitution of one input for another depends upon both the MRTS and prevailing wages.  

Originally devised as a macroeconomic analysis tool it has gained most of its noteworthiness as a 

microeconomic tool.  This is the first production function that introductory students of 

microeconomics gain exposure.  In microeconomic applications its more general form is often 

encountered, 

                                                
180 Murray Brown, ed. The Theory and Empirical Analysis of Production, vol. 31, Studies in Income and Wealth 

(New York, New York: National Bureau of Economic Research and Columbia University Press, 1967), 15. 
181 Cobb and Douglas, "A Theory of Production," 139. 
182 Brown, The Theory and Empirical Analysis of Production, 16. 
183 Cobb and Douglas, "A Theory of Production," 152. 
184 A conscious effort is made in this dissertation to utilize a consist methodology in the use of symbols.  See 

Appendix B Mathematical Notations for a complete list of notations used in this dissertation.  Many functional 

forms appear different here than in their original published works.  Readers of technical papers are no doubt familiar 

with the great variety of symbols and notations used by a vast group of writers and are somewhat frustrated by the 

lack of consistency.  Here is a case in point.  In the original the formulation appeared as 1k kP bL C  . 
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iy A x


  . (4.2) 

 In 1937 David Durand proposed a modification to the original formulation contending 

that the exponents need not sum to one.
185

  This removes the qualification in the original 

formulation for the exponents to equal one thus allowing for values greater or less than one.  

Under these conditions the Cobb-Douglas remains homogeneous but no longer only in degree 

one.  Now the degree of homogeneity can be greater than one, indicating increasing returns to 

scale, or less than one, indicating decreasing returns to scale, or remain one as in the original 

formulation.  Regardless of which type of returns to scale the formula takes upon estimation it is 

fixed over the relevant data range. 

 

Leontief Production Function 

 In 1942 Wassily Leontief derived a fundamentally different approach to the production 

function resulting from his work on input-output models of general equilibrium.  That work led 

him to believe that inputs were related in fixed proportions or recipe style arrangements.  Using 

the example of baking a cake this can be easily illustrated.  Baking a cake requires a minimum 

amount of each ingredient in a strict ratio to the other ingredients.  If this balance is upset the 

result is an inedible concoction.  A baker with half the required amount of flour may bake a 

smaller cake using the other ingredients in the proper proportions but cannot bake a regular size 

cake regardless of how much sugar or eggs she has on hand.  In this same way the Leontief 

production function assumes fixed proportions in the combination of inputs.  For a production 

process yielding one unit of output from a combination of one unit of input ‘A’ and 2 units of 

                                                
185 David Durand, "Some Thoughts on Marginal Productivity, with Special Reference to Professor Douglas' 

Analysis," Journal of Political Economy 45, no. 6 (1937): 755. 
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input ‘B’ an abundance of either, but not both, inputs still results in one unit of output.  Should 

that process have 6 units each of both ‘A’ and ‘B’ it can make only 3 units of output with 3 units 

of input ‘A’ left over.  The Leontief formulation takes the following form,
186

 

 1 1 2 2min( , )y x x  . (4.3) 

  The Leontief production function is homogeneous in degree one thus is a fixed constant 

return to scale function.  Substitution of inputs is not permitted as 0  .  In the cake baking 

example sugar cannot be substituted for flour.  While different types of flour can be utilized they 

presumably produce different types of cakes, not the original cake, and may be present in the mix 

in different proportions than the original recipe. In application the Leontief was originally 

devised for macroeconomic purposes but has been widely employed in microeconomic 

applications as well.  Like the Cobb-Douglas it is easily extended to accommodate multiple 

inputs as follows, 

  1 1 2 2min , , , n ny x x x   . (4.4) 

Later we will encounter attempts to generalize the original formulation and encompasses it in 

broader based flexible forms. 

 

Halter, Carter, and Hocking (HCH) Transcendental Production Function 

 In A Note on the Transcendental Production Function in 1957 A. N. Halter, H. O. Carter, 

and J. G. Hocking
187

 introduced the transcendental
188

 production function.  In the conclusion of 

                                                
186 Wassily W. Leontief, The Structure of American Economy, 1919-1929: An Empirical Application of Equilibrium  

(Cambridge, Massachusetts: Harvard University Press, 1941). 34-41. 
187 A. N. Halter, H. O. Carter, and J. G. Hocking, "A Note on the Transcendental Production Function," Journal of 

Farm Economics 39, no. 4 (1957). 
188Paul Erdos and Underwood Dudley, "Some Remarks and Problems in Number Theory Related to the Work of 

Euler," Mathematics Magazine 56, no. 5 (1983).  The term transcendental derives from the use of the transcendental 

number e , Euler is often credited with defining a transcendental number as one that is not the root of an algebraic 

expression. 
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their article they indicated the motivation behind its development “The function described and 

illustrated by the foregoing appears to be useful in describing data that show the three traditional 

phases of the marginal product curve …”
189

  The transcendental production function takes the 

form, 

 1 1 1 2 2 2

1 2
n n nxx x

ny Ax e x e x e
    

 . (4.5) 

In its general form that translates to, 

 1

1

n

i i

i

n x

iy A x e





  . (4.6) 

 The HCH transcendental production functions is a non-homogeneous function which, 

depending upon the values of the data and estimated parameters, may exhibit any or all types of 

returns to scale.  Due to its multiplicative nature (similar to the Cobb-Douglas production 

function) its elasticity of substitution ranges 0 1  thus exhibiting imperfect and variable 

elasticities of substitution between inputs.  Originally developed in response to agricultural 

settings the function is equally applicable to microeconomic applications as it can easily handle 

multiple inputs.  While the formulation appears messy estimating the parameters is rather straight 

forward given a log transformation and yields to ordinary least square estimation techniques.  

However, estimating this function for small data sets may prove problematic as the number of 

parameters to be estimated is 2 1p  , where p represents the number of inputs.  This is the first 

flexible production function we encounter for when all the ' 0i s  the function takes the form of 

the Cobb-Douglas production function, equation(4.2). 

 

                                                
189 Halter, Carter, and Hocking, "A Note on the Transcendental Production Function," 974. 
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Heady and Dillon (HD) Production Functions 

 The array of available production functions expanded significantly in 1961 with the 

publication of Agricultural Production Functions, by Earl Heady and John Dillon based upon 

their work on agricultural systems at Iowa State University.
190

  Incorporating the theory of 

production economics into their studies of agricultural production they developed an extensive 

collection of production functions.  The common characteristic of these formulations is their 

connection to agricultural growth studies.  Unlike industrial production functions noted above, 

the basis for substitution in these new production functions has to make allowance for non-linear 

interaction effects.  In the Cobb-Douglas substitution, an imperfect substitution scheme, some 

portion of the work producing the output is assumed by the input replacing or substituting for the 

initial input without an increase in product y .  A more complex interaction is assumed in the 

production functions to follow.  Take the simple example of adding nutrients ‘A’ and ‘B’ to the 

soil.  If the effects of these two nutrients are largely independent aside from their relative 

effectiveness in stimulating growth we are free to substitute, as in the Cobb-Douglas function, 

upon the combined effects of their individual influences and their relative costs.  If, however, a 

more complex interaction exists between the inputs a more complex formulation is needed.  Take 

the example again of nutrients ‘A’ and ‘B’.  How do we account for the case when even a small 

amount of either nutrient magnifies the impact of the other nutrient?  In the functions that follow 

these interactions are specifically allowed for in the formulation of the function.  It is not clear 

that such relationships occur or do not occur in labor intensive applications such as the 

architectural firm.  One case where such interaction might occur is in the relationship between 

mentor and intern where a small amount of supervision reaps large dividends. 

                                                
190 Earl O. Heady and John L. Dillon, Agricultural Production Functions  (Ames, Iowa: Iowa State University Press, 

1961). 
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 HD-“Quadratic” The form of the “quadratic” function is: 

 2 2

1 1 2 2 11 1 22 2 12 1 2 21 2 1y A x x x x x x x x             (4.7) 

In its extended form it becomes, 

 
1 1 1

n n n

i i ij i j

i i j

y A x x x 
  

    . (4.8) 

 HD-“Cubic” The form of the “cubic” function is, 

 2 2 3 3

1 1 2 2 1 1 2 2 1 1 2 2y A x x x x x x            . (4.9) 

In its extended form it becomes, 

 2 3

1 1 1

n n n

i i i i i i

i i i

y a x x x  
  

      . (4.10) 

 HD-“Square Root” The form of the “square root” function is, 

 .5 .5 .5 .5

1 1 2 2 1 1 2 2 12 1 2y A x x x x x x          . (4.11) 

In its extended form it becomes, 

 .5 .5 .5

1 1 1 1

.5
n n n n

i i i i ij i j

i i i j

y A x x x x  
   

      . (4.12) 

 HD-“One and a Half Power” The form of the “One and a Half Power” function is, 

 1.5 1.5

1 1 2 2 1 1 2 2 12 1 2y A x x x x x x          . (4.13) 

In its extended form it becomes, 

 1.5

1 1 1 1

.5
n n n n

i i i i ij i j

i i i j

y A x x x x  
   

      . (4.14) 

 HD-“Inverse” The form of the “Inverse” function is, 

 
1 1 1

1 1 2 2 12 1 2

1
y X x x x

A
        . (4.15) 

In its extended form it becomes, 
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 1 1

1 1 1

1
.5

n n n

i i ij i j

i i j

y x x x
A

  

  

     (4.16) 

All of the Heady-Dillon production functions are non-homogeneous and exhibit variable returns 

to scale.  Each employs a slightly different substitution scheme and recognizes a variety of 

interaction parameters.  Originally developed for agricultural and biological applications, their 

application in microeconomic analysis of the firm has not been established.  In modeling any of 

these functions an empirical researcher must be careful in understanding the dynamics of the 

workplace in order not to be misled by statistical results.  Additionally, the number of parameters 

that must be estimated expands rapidly as the number of inputs increases.  While statistical 

estimation may prove worthwhile with a small number of independent variables as that list grows 

the estimation process quickly becomes unmanageable.  

 

Newman-Read Production Function 

 Also appearing in 1961 is a generalized Cobb-Douglas production proposed by P. K. 

Newman and R. C. Read in Production Functions with Restricted Input Shares.
191

  Aggregation 

studies of national production have long held that the relative share of national product between 

capital and labor is virtually constant.
192

  The Newman-Read production function relaxes the 

requirement that relative input shares be held constant.  The two-input form of this function is, 

 3 1 21 2 ln ln

1 2

x x
y Ax x e

 
 . (4.17) 

The three-input formulation is rather messy and cumbersome to estimate, while the four-input is 

virtually impractical for modeling and estimation purposes.  The three-input form is 

                                                
191 P. K. Newman and R. C. Read, "Production Functions with Restricted Input Shares," International Economic 

Review 2, no. 1 (1961). 
192 C. E. Ferguson and Ralph W. Pfouts, "Aggregate Production functions and Relative Factor Shares," International 

Economic Review 3, no. 3 (1962): 328. 
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 12 1 2 13 1 3 23 2 3 123 1 2 331 2

ln ln ln ln ln ln ln ln ln

1 2 3

x x x x x x x x x
y Ax x x e

       
 . (4.18) 

 The Newman-Read production function is a non-homogeneous function whose return to 

scale factor is dependent upon the values of the respective inputs and parameters.  Developed as 

a generalized form of the Cobb-Douglas production function its primary application is in the 

realm of macroeconomic analysis of national aggregation studies.  It is a flexible form to the 

extent that when 3 0  in Equation (4.17) or all 
' 's, and 0ij s ijk   in Equation (4.18) the result is 

the standard Cobb-Douglas function. 

 

Arrow, Chenery, Minhas, Solow (ACMS) Production Function 

 The Newman-Read production function addressed the issue of input share constancy.  

The article titled Capital-Labor Substitution and Economic Efficiency
193

 authored by K. J. 

Arrow, H. B Chenery, B. S. Minhas and R. M. Solow extends that discussion by noting the 

unsatisfactory consequence of the two then prevailing assumptions regarding substitution, 

namely the constant input coefficients of the Leontief function and the unitary elasticity of 

substitution found in the original Cobb-Douglas function.
194

  Citing empirical evidence they 

established a case for values of  other than one and that this value varied among a range of 

products.  In response they developed the constant elasticity of substitution (CES) production 

function, or ACMS, whose form is,
195

 

   
1

1 21y A x x   


    . (4.19) 

                                                
193 Kenneth J. Arrow et al., "Capital-Labor Substitution and Economic Efficiency," The Review of Economics and 

Statistics 43, no. 3 (1961). 
194 Ibid., 225. 
195 The derivation of this production function can be found in Appendix F.  The general process demonstrated for the 

first time in deriving this production function has been employed since then by many economists. 
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The parameter A is an efficiency factor in that as A increases output increases proportionally; the 

 parameter is the distribution or factor share parameter; and the  parameter is the elasticity of 

substitution factor, its value determines the returns to scale factor of the function.  The 

permissible values of   are 1    as these values produce isoquants of the correct 

curvature.  As a homogeneous function the elasticity factor determines whether the function’s 

fixed return to scale represents increasing ( 1 0   ), constant ( 0  ) or decreasing (

0   ) returns to scale.  Developed utilizing aggregate capital and labor data the immediate 

application is one of macroeconomic analysis.  Shortly we will encounter adaptations of the 

basic CES function that permits microeconomic analysis.  The ACMS CES model is a flexible 

form in that as  the function reduces to the Leontief model, at 1    it becomes a linear 

model, and as 0  it becomes the CD production function.
196

 

 

Brown and De Cani (BD) Production Function 

 Working independently but in parallel with the efforts of Arrow-Chenery-Minhas-Solow, 

M. Brown and J. S. De Cani developed a CES production function nearly identical to the ACMS 

CES model but providing for variable returns to scale.
197

  The form of the BD production 

function is as follows, 

  1 2(1 )
v

y A x x   


    . (4.20) 

In this form the function is homogeneous in degree v  exhibiting increasing returns to scale when

1v  , constant returns when 1v  , and decreasing returns when 1v  .  Unlike the ACMS model 

                                                
196 Arrow et al., "Capital-Labor Substitution and Economic Efficiency," 230-31. 
197 Murray Brown and John S. De Cani, "Technological Change and the Distribution of Income," International 

Economic Review 4, no. 3 (1963). 
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the returns to scale of the BD production function varies across the range of data.  Like the 

ACMS model its origins lie in macroeconomic applications of aggregation studies.   

 

Uzawa-McFadden (UM) CES Production Function 

 In the ACMS and BD CES models, noted above, the elasticity of substitution   is a 

function of only two input factors.  Due to the symmetry of partial derivatives ( 1 2 2 1f f f f ), the 

  of a two input system is symmetrical (
ij ji  ).  In an n-input system the constancy of the 

elasticity of substitution between any pairs of inputs and the remaining inputs is questionable.  

That is, does 12 13 23    in a three-input example?  Working independently and upon slightly 

different lines of analysis Hirofumi Uzawa
198

, in 1962, and Daniel McFadden
199

, in 1963, 

demonstrated the constancy of partial elasticities and successfully extended the ACMS model 

from two inputs to an n-input model.  The form of the Uzawa-McFadden CES production 

function is, 

 
1

v
n

i i

i

y A x










 
  

 
 . (4.21) 

In this form the function is non-homogeneous with the parameter v describing the returns to scale 

in the normal fashion and  the elasticity of substitution which is constant.  With this extension 

to n-inputs the CES function can now be successfully utilized in n-input microeconomic analysis.   

 

                                                
198 Hirofumi Uzawa, "Production Functions with Constant Elasticities of Substitution," The Review of Economic 

Studies 29, no. 4 (1962). 
199 Daniel McFadden, "Constant Elasticity of Substitution Production Functions," The Review of Economic Studies 

30, no. 2 (1963). 
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Ferguson-Pfouts Production Function 

 In 1962 C. E. Ferguson and Ralph W. Pfouts extended the discussion regarding the 

constancy of relative shares, or constant elasticity of substitution, with a publication entitled 

Aggregate Production Functions and Relative Factor Shares
200

 wherein they proposed two 

variations on the CD function to account for changes in relative input shares.  These functions 

are, 

 1 1 2 11

1 2

x
y x x e

  
  (4.22) 

and 

 

3
1

2 2

1 2

x
y x x






 
 
  . (4.23) 

 Both of these formulations are non-homogeneous functions possessing the twin 

characteristics of variable elasticities of substitution and variable returns to scale.
201

  Developed 

for aggregation of national levels of capital and labor they are strongly macroeconomic in 

applications and to date have not been extended to allow for multiple inputs and therefore are of 

limited use is microeconomic analysis. 

 

Hildebrand-Liu-Bruno (HLB) Production Function 

 George Hildebrand and Dazhong Liu published Manufacturing Production Functions in 

the United States in 1965 based upon empirical studies they conducted circa 1962.
202

  This work 

led them to a regression equation pertaining to their research on manufacturing in the United 

                                                
200 Ferguson and Pfouts, "Aggregate Production functions and Relative Factor Shares." 
201 Aly A. Helmy, "A Family of Generalized Transcendental Production Functions" (Dissertation, University of 

Nore Dame, 1981), 55. 
202 George H. Hildebrand and Dazhong Liu, Manufacturing Production Functions in the United States, vol. 15, 

Cornell Studies in Industrial and Labor Relations (Ithaca, New York: New York State School of Industrial and 

Labor Relations, Cornell University, 1965). 
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States.  In an unpublished paper dated 1962 M. Bruno used the regression formula and converted 

in to the following production function,
203

 

     
1

1

1 1 2 21y A x x x
     


    (4.24) 

This formulation is a non-homogeneous function exhibiting variable rates of substitution and 

returns to scale.  Derived from economic studies of nationally aggregated data and not being 

suitable for extension to more than two inputs its application is limited in microeconomic 

analysis and is thus principally macroeconomic in nature. 

 

Mukerji Production Function 

 In a review of the work accomplished by Uzawa and McFadden, V. Mukerji noted that 

the form of equation (4.21)  results in constant and identical partial elasticities of substitution.
204

  

She viewed this as a defect in the formulation and proposed a correction with the following, 
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









 
  

 
  (4.25) 

This is a non-homogeneous function except under the condition when 
1

1
n

i

i




 .  Under this 

condition and when α tends to zero and 
1

0
n

i

i

B


 , the function reduces to the generalized Cobb-

Douglas form.  To evaluate the return to scale factor sum the 'si and compare that sum with the 

value of 0 , when they are equal then constant returns to scale exist, if the sum is greater in 

                                                
203Michael Bruno, A Note of the Implications of an Empirical Relationship Between Output per unit of Labor, The 

Wage Rate, and the Capital Labor Ratio  (Stanford, California: Stanford University, 1962). 
204 V Mukerji, "A Generalized S.M.A.C. function with Constant Ratios of Elasticity of Substitution," The Review of 

Economic Studies 30, no. 3 (1963). 
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represents increasing returns, and if small then decreasing returns exist.  This formulation is 

appropriate for microeconomic studies when the partial elasticities are assumed to be unequal. 

 

Ferguson Transcendental Production Function 

 In 1965 C. Ferguson proposed the following transcendental function to remedy a defect 

of the CD function, namely that its elasticity of substitution equals one on every point of the 

isoquant map,
205

   

 

1

21 2

1 2

x

x
y Ax x e


 

 
 
   (4.26) 

 The inclusion of the 1 2/x x term results in a more realistic treatment for the elasticity of 

substitution by allowing it to vary according to the ratio of the two inputs.  However, the inputs 

Ferguson referenced were aggregations of capital and labor, thus the best use of this function is 

for macroeconomic studies.   

 

Nerlove-Ringstad Production Function 

 In 1963 Marc Nerlove studied the returns to scale of the electrical industry of the United 

States.
206

  He presupposed that the underlying production function was of the Cobb-Douglas type 

without fully specifying that function.  Upon the data available he did, however, propose two 

                                                
205 C. E. Ferguson, "Capital-Labor Substitution and Technological Progress in the U.S.: Statistical Evidence from a 

Transcendental Production Function" (Memo, 1965). 
206Marc Nerlove, "Returns to Scale in Electricity Supply," in Measurement in Economics: Studies in Mathematical 

Economics and Econometrics in Memory of Yehuda Grunfeld, ed. Carl Christ (Standford, California: Stanford 

University Press, 1963). 
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different cost functions.
207

  In 1967 Vidar Ringstad derived the underlying production functions 

which take the forms,
208
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and  

 1
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y Ae





 
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 
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  (4.28) 

 Both equations (4.27) and (4.28) are non-homogeneous functions with variable returns to 

scale.  The extension to n-inputs lends their use to microeconomic analysis although originally 

used in macroeconomic analysis. 

 

Sato-CES Production Function 

 A new approach to factor substitution arose in 1967 with the Sato CES function.
209

   

Previously developed constant elasticity functions treated all pair-wise elasticities as equal.  The 

treatment in the Sato CES function assumes that factors of production may logically be separated 

into subsets.  These subsets have constant and equal elasticities among the factors constituting 

the subset, but each subset may exhibit a different elasticity.  Normally the production function is 

expressed as 1 2( ) ( , , , )ny F x F x x x  .  Under the condition of disaggregation of inputs and 

assuming that variable elasticities exist, the function can be constructed as a set of input bundles 

as 1 2( , , , )sy f N N N such that each input bundle consists of one or more of the original input 

                                                
207 Ibid. 
208 Vidar Ringstad, "Econometric Analyses Based on a Production Function with Neutrally Variable Scale-

Elasticity," Swedish Journal of Economics 69, no. 2 (1967): 117, 22. 
209K Sato, "A Two-Level Constant-Elasticity-of-Substitution Production Function," The Review of Economic Studies 

34, no. 2 (1967). 
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factors ix .  The production function can then be written as
         1 2

, ,
n

y f g x g x g x .  If 

we assume strong separability between the input bundles the function can be expressed in 

additive form as
         1 2 n

y f g x g x g x    .  Applying this formulation to the CES 

function we obtain, 

  
1 1

1

 
ss

s
s s

s s s i i

s i s

y xz z
 

 







 
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   (4.29) 

Equation (4.29) is a two-level CES function in that y is a CES function in sz and sz is a function 

of the 'i sx and the inter-class elasticity of substitution is constant.  This formulation is 

homogeneous in degree one and therefore exhibits a fixed constant returns to scale.  Concerned 

that equation (4.29) provided only for fixed constant returns to scale Sato introduced an 

additional parameter to give it a fixed variable return to scale as follows, 
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In an attempt to correct the constant inter-class elasticity of substitution Sato introduced 
s
 to 

allow for unequal inter-class elasticities as follows, 
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 Equations (4.30) and (4.31) are homogeneous of degree one with (4.30) exhibiting equal 

inter-class elasticities and (4.31) exhibiting unequal elasticities.  Despite the apparent 

unwieldiness of these functions they provide three variations of a two-level system of analysis 

that simultaneously evaluates the subsets and the global function.  Developed for analysis of 

aggregated national supply of electricity, and thus a macroeconomic application, its extendibility 
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to n-inputs make it suitable for microeconomic analysis, however, the complexity of the form 

make estimation problematic particularly as the number of inputs increases. 

 

Revankar Generalized Production Function 

 In his 1967 doctoral dissertation Nagesh Revankar presented a new production function 

that corrects for the constant elasticity of substitution and fixed returns to scale characteristics of 

the previous production functions.
210

  The resulting formulation is, 

 
    1

1 2 11y Ax x x





   , (4.32) 

where 1x and 2x are capital and labor inputs and ,    and  are parameters to be estimated.  

Thus the elasticity of substitution varies with the ratio of capital and labor.  Revankar proceeded 

to further generalize the VES production function to account for variable returns to scale with, 

 
    1

1 2 11
vv

y Ax x x





   , (4.33) 

thus converting it into a non-homogeneous function of degree v .  The Revankar production 

function generalizes the elasticity of substitution and returns to scale factors and is thus a more 

realistic representation.  However, its aggregation of capital and labor does not lend itself to 

extension to multiple inputs and therefore is unsuited for microeconomic analysis. 

 

Kmenta Production Function 

 In 1967 Jan Kmenta wrote On the Estimation of the CES Production Function
211

 in which 

he notes that restriction of the ACMS CES production function to a constant return to scale.  In 

his article he proposed a method of estimation for the more general case of variable returns to 

                                                
210Nagesh S. Revankar, "Production Functions with Variable Elasticity of Substitution and Variable Returns to 

Scale" (Dissertation, University of Wisconsin, 1967). 
211 Jan Kmenta, "On Estimation of the CES Production Function," International Economic Review 8, no. 2 (1967). 



120 

 

scale.
212

  Kmenta demonstrates that an approximation of the ACMS production function, 

equation(4.19), can be achieved first by a logarithmic transformation of the ACMS function, 

   1 2ln ln ln 1vy A x x  


     , (4.34) 

then by a Taylor expansion around the term 0  resulting in, 

     
2

1 2 1 2
1ln ln ln 1 ln 1 ln ln

2
y v x v x v x x           . (4.35) 

Equation (4.35) can be estimated using OLS methodology.  The underlying production function 

is, 

 
     

2
1 2 1 2.5 1 ln ln ln 1 lnv x x v x v x

y ae
        

 . (4.36) 

 Despite the complexity of this formulation the estimation by ordinary least squares is 

straight forward by means of a logarithmic transformation (precisely what Kmenta achieved).  

The function is homogenous in degree v thus exhibiting variable returns to scale.  However, this 

function is not suitable for multiple input microeconomic analyses. 

 In 1971, in Economies of Scale and the Form of the Production Function,
213

 Zvi 

Griliches and Vidar Ringstad, in a study of manufacturing in Norway, produced a nearly 

identical production function as that of Kmenta’s.  Using the same Taylor series expansion they 

reformulated Kmenta’s function as,  

 

2

2 2
0 1 1 2 3

1 1 1

ln ln ln ln
x xy

x
x x x

   
               

      
. (4.37) 

 Equations (4.35) and (4.37) are non-homogenous functions exhibiting variable returns to 

scale and can be estimated using OLS.  Both equations are used extensively in macroeconomic 

                                                
212 Ibid., 180. 
213 Zvi Griliches and Vidar Ringstad, Economies of Scale and the Form of the Production Function: An Econometric 

Study of Norwegian Manufacturing Establishment Data, ed. J. Johnston, D. W. Jorgenson, and J. Waelbroeck, vol. 

72, Contributions to Economic Analysis (Amsterdam, The Netherlands: North-Holland Publishing Company, 1971). 
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analysis but are not suitable for n-input microeconomic analysis.  The importance of these 

equations may well rest in their being the foundation of the Sargan’s Log-Quadratic production 

function discussed below. 

 

Bruno Constant Marginal Share (CMS) Production Function 

 In 1968, in an attempt to generalize the Cobb-Douglas production function under 

condition of labor and capital market disequilibrium Michael Bruno developed the following 

production function,
214

 

 1

1 2 1y Ax x mx   . (4.38) 

This formulation directly addresses the issue of the elasticity of substitution in a growing 

economy where prices of capital and labor vary with aggregated levels of national output and 

thus is strongly macroeconomic in character.  Application of the CMS production function in 

microeconomic analysis is limited to the 2-input case. 

 

Lu –Fletcher VES Production Function 

 In 1968 Yao-chi Lu and Lehman B. Fletcher introduce the production function bearing 

their names.
215

  In their article they argue that the CES production function is limiting in that it 

assumes a constant elasticity of substitution along an isoquant, though not necessarily of unity.  

Lu and Fletcher show that the value of the elasticity of substitution is sensitive to changes in the 

capital to labor ratio.  The production function they developed is as follows, 

                                                
214 Michael Bruno, "Estimation of Factor Contribution to Growth Under Structural Disequilibrium," International 

Economic Review 9, no. 1 (1968). 
215 Yao-chi Lu and Lehman B. Fletcher, "A Generalization of the CES Production Function," The Review of 

Economics and Statistics 50, no. 4 (1968). 
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 
1
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1
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2

(1 )
x

y A x x
x

  

   




 
  
     
   

. (4.39) 

Lu and Fletcher point out that their production function exhibits all the normal characteristics 

required of production functions.  In particular this function is homogenous in degree one and 

now exhibits variable elasticities of substitution along an isoquant.  In using only capital and 

labor as functional inputs, and in particular the use of the ratio of capital to labor, this function is, 

however, highly macroeconomic in application.  The authors further point out that this function 

is very difficult to extend to more than two inputs and that because the function is nonlinear in 

parameters it does not yield easily to estimation.  Their function does present a case of 

generalizing an earlier form in that when 0  it forces  to go to one and thus the function 

reverts to the original CES production function. 

 

Sato-Hoffman Family of VES Production Functions  

 Ryuzo Sato and Ronald F. Hoffman offered in their 1968 article Production Functions 

with Variable Elasticity of Factor Substitution: Some Analysis and Testing, three (VES) 

production functions.
216

  They found motivation for their work by challenging the prevailing 

notion of the constancy of the elasticity of substitution with the claim that “Once one drops the 

assumption of constancy and admits a variable elasticity of factor substitution (VES), the 

resultant production function depends on the assumptions involved in the elasticity of factor 

substitution function.”
217

  The first VES production function relies upon the condition that the 

                                                
216 Ryuzo Sato and Ronald F. Hoffman, "Production Functons with Variable Elasticity of Factor Substitution: Some 

Analysis and Testing," The Review of Economics and Statistics 50, no. 4 (1968). 
217 Ibid., 453. 
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elasticity of substitution is a function of the capital-labor ratio 2

1

x
k

x
 , where 2x is capital and 

1x is labor such that  k ak b   .  The resulting production function is given by, 

 
 2

12

1

x
xx

y A e
x


 

  
 

. (4.40) 

This function is variable in elasticity and exhibits constant returns to scale.  The second VES 

production function is based upon   being a linear function of k such that a bk   .  The 

resulting production function is given by, 

 
   1 1

1 2
2 1 11

x
y Ax x x




 



         

. (4.41) 

Equation (4.41) exhibits variable elasticity of substitution and variable returns to scale 

formulation, with the  term representing the returns to scale factor.  The last production 

function derived is based upon  as a function of time such that t    and is given by, 

 
 

 
   1 1 1

1 21y A x x


 

  
  

   
 

. (4.42) 

This formulation exhibits variable elasticity of substitution and constant returns to scale.  In these 

three production functions Sato and Hoffman demonstrated that the elasticity of substitution 

along an isoquant is variable under certain conditions.  Each of these production functions are 

strongly macroeconomic in nature due to their development being based upon aggregated 

national values of capital and labor. 

 

Sato’s CEDD Production Functions 

 Ryuzo Sato developed four new production functions in 1970 based upon the concept of 

‘constant elasticity of derived demand’.  These production functions appeared in The Estimation 
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of Biased Technical Progress and the Production Function.
218

 The following production 

functions were derived from the basic position that the elasticity of substitution  equals the 

product of the share of labor (share of capital) and the elasticity of derived demand for capital 

per unit of labor (for labor per unit of capital input) such that  and l k k lE E     .
219

  Based 

upon these relationships and by assuming  and 1l k    , and allowing 1x to represent labor and 

2x to represent capital, the following two production functions were derived,
220

 

 
 11
11

1 2 1 1
11

y x x x





    
 (4.43) 

and 

 
 22
12

2 1 2 2
21

y x x x





    
. (4.44) 

Equations (4.43) and (4.44) exhibit variable elasticities of substitution and constant return to 

scale.  Both are strongly macroeconomic in character.  When the assumption about  and l k  is 

changed to make both equal to one then the following two production functions are obtained,
221

 

 2
1 1 1 1

1

ln
x

y x x
x

 
 

  
 

 (4.45) 

and 

 1
2 2 2 2

2

ln
x

y x x
x

 
 

  
 

. (4.46) 

Equations (4.45) and (4.46) exhibit variable elasticities of substitution and variable return to 

scale.  Both are strongly macroeconomic in character. 

                                                
218 Ryuzo Sato, "The Estimation of Biased Technical Progress and the Production Function," International 

Economic Review 11, no. 2 (1970). 
219 Ibid., 188. 
220 Ibid., 189. 
221 Ibid., 190. 
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Chu, Aigner, and Frankel Log-Quadratic Production Function 

 In 1970, in On the Log-Quadratic Law of Production, S. F. Chu, D. J. Aigner and M. 

Frankel proposed a new production function designed to be non-homogeneous and exhibiting 

varying returns to scale and variable elasticity of substitution.
222

  Their production function is 

given by, 

 

   1 2
1 2

1 2

1 ln 1 ln
ln ln

1 2

1 2

x x
x xx x

y A
x x

 
    

   
          

   
, (4.47) 

where 1 2 1 2,  ,  ,  x ,  and xA   are parameters to be estimated.  This formulation exhibits both 

variable elasticities of substitution and variable returns to scale.  It is also highly macroeconomic 

in nature. 

 

Vazquez VES Production Functions 

 Appearing in Homogeneous Production Functions with Constant or Variable Elasticity of 

Substitution Andres Vazquez proposed three new VES production functions in 1971.
223

  His 

motivation was to develop new algebraic forms of the CES production function but with variable 

elasticities of substitution.  In order that he might obtain variable elasticities he relies upon the 

basic definition of homogeneous functions and rewrites the standard formula for  by 

introducing the degree of homogeneity term  to obtain
 

  21

f f xf

xf xff




 

 


  
.
224

  In the first 

VES production function   is conditioned by assuming a linear relationship between the 

                                                
222 S. F. Chu, D. J. Aigner, and M. Frankel, "On the Log-Quadratic Law of Production," Southern Economic Journal 

37, no. 1 (1970): 32. 
223 Andres Vazquez, "Homogeneous Production Functions with Constant or Variable Elasticity of Substitution," 

Journal of Institutional and Theoretical Economics 127, no. 1 (1971). 
224 Ibid., 13. 
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average product of labor, the marginal production of labor and the capital-labor ratio exist such 

that 2

1
1 1

xdyy
x dx x

     , where 1 2 and x x represent labor and capital respectively.  The 

resulting production function is given by, 

 
     

1 11

2 1 1 21
y X X X X   





  


. (4.48) 

Equation (4.48) reduces to the Cobb-Douglas function when 0 and 0    and to Bruno’s 

CMS function when 0  .  In the special case when 0  then Equation (4.48) reduces to, 
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Assuming that the ratio of the elasticities of the inputs and the capital-labor ratio are of the form

2
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 

Vazquez formulated his third production function as, 
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. (4.50) 

Whereas the first functions exhibited both variable elasticities of substitution and constant return 

to scale, this third function exhibits VES and VRTS.  All three functions are strongly 

macroeconomic in character. 
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Sargan Production Function 

 With the publication of Qualified Manpower and Economic Performance
225

 in 1971 the 

log-quadratic production function was popularized.  As part of a team studying the electrical 

engineering industry J. Denis Sargan used the following production function, 

 
1 1 1

1ln ln ln ln ln
2

n n n

i i ij i j

i i j

y A x x x 
  

    . (4.51) 

By inspection of this equation we note it permits n-inputs and exhibits both VES and VRTS 

characteristics.
226

  Although originally used as a macroeconomic tool to study the electrical 

engineering industry in England its application to microeconomic analysis is obvious.  The 

rapidly expanding number of parameter that must be estimated as the number of inputs increase 

makes estimation extremely problematic. 

 

Christensen, Jorgenson and Lau (CJL) Transcendental Logarithmic Production Function 

 The transcendental logarithmic production function, commonly referred to by the term 

‘translog’, first appeared in 1971, in a short two page note titled Conjugate Duality and the 

Transcendental Logarithmic Production Function.
227

  A more thorough and detailed treatment 

occurred in 1973 in The Translog Function and the Substitution of Equipment, Structures, and 

Labor in U.S. Manufacturing 1929-68.
228

  The CJL translog production function and Sargan’s 

production function are identical (see Equation(4.51)).  While each was developed independently 

of the other the translog nomenclature has received the most wide spread acknowledgement.  In 

                                                
225
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The Translog Production Function: Some Evidence from Establishment Data
229

 Vittorio Corbo 

notes the advantages of the translog production function.  Corbo begins by noting that the two 

most commonly used production functions – the Cobb-Douglas and CES production functions – 

impose restrictions on the properties of the underlying technology.  In the case of the Cobb-

Douglas production function it restricts all partial elasticities of substitution to equal one, and in 

the case of the CES production function it restricts the elasticities of substitution to be constant 

and equal (although not necessarily equal to one) for any pair of inputs for all points in input 

space; the translog production function does not impose these restrictions.
230

   

 The translog production function is a non-homogeneous function in its general form.  If 

the empirical researcher finds that the 
'ij s are not significantly different from zero the general 

form reduces to the Cobb-Douglas form which is homogenous in the degree of the sum of its 

exponents.  Also the translog exhibits variable elasticities of substitution.  Although initially used 

in the study of aggregated inputs in various industries its expansion to n-inputs makes it useful 

for microeconomic analysis, however, the rapidly increasing number of parameters that must be 

estimated as the number of inputs increase make it highly problematic particularly with small 

data sets. 

 

Diewert Generalized Leontief Production Function 

 Utilizing the Shepard Duality Theorem W. Erwin Diewert presented in An Application of 

the Shepard Duality Theorem: A Generalized Leontief Production Function
231

 a production 

function that generalized the two-input ACMS production function to n-inputs.  Diewert notes 

                                                
229 Vittorio Corbo and Patricio Meller, "The Translog Production Function," Journal of Econometrics 10, no. 2 

(1979). 
230 Ibid., 193-94. 
231 W. Erwin Diewert, "An Application of the Shepard Duality Theorem: A Generalized Leontief Production 

Function," The Journal of Political Economy 79, no. 3 (1971). 
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that when we ask for a production function that exhibits an arbitrary constant elasticity of 

substitution that such a function only exists for the two-input case which has been demonstrated 

as the ACMS production function discussed early in this dissertation.  Citing the impossibility 

theorem he states that it is not possible to extend a production function of arbitrary constant 

elasticity to the n-input case.  He takes as the task of his paper to show that a production function 

of n-inputs with non-constant elasticities between pair-wise inputs is possible.  The form he 

developed is, 

 1 2 1 2

1 1

n n

ij i j

i j

y x x
 

 . (4.52) 

 The generalized Leontief production function exhibits variable elasticities of substitution 

and constant returns to scale.  The expansion to accommodate n-inputs makes this production 

function particularly useful in microeconomic analysis with the caveat that the increasing 

number of parameters accompanying an increase in the number of inputs can make the 

estimating process problematic particularly with small data sets.  When the 
' 0 for ij s i j    this 

function reduces to a linear production function. 

 

Kadiyala Production Function 

 In 1972 Kadiyala presented a paper Production Functions and Elasticity of 

Substitution
232

 wherein he developed a production function in which the elasticity of substitution 

varied along an isoquant.  For the two-input case the production function takes the form, 

  0 01 22 2

11 1 12 1 2 22 22y A x x x x
       . (4.53) 
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He notes that the function is homogenous and that the elasticity of substitution varies with the 

input ratio along the isoquant from 0  on one end to   on the other end.
233

  Additionally 

this form reduces to the CES function when 12 0  , the Lu-Fletcher VES production function 

when 22 0  , and the Sato-Hoffman production function when 11 0  .
234

  The Kadiyala form 

contains within it the Cobb-Douglas form, Leontief form, and linear form under conditions.  

When 0 1 2 0     then the Kadiyala form reduces to the Cobb-Douglas form; when 

0 1 2      it reduces to the Leontief form, and when 0 1 2 1 2     and 12 0  it 

becomes a linear form.
235

  Kadiyala concludes his paper by noting that the two-input case can be 

extended to n-inputs as follows, 

 2

1

2
n n

ii i ij i j

i i j

y A x x x   
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 
  

 
  , (4.54) 

such that 0, , 1, ,ij i j n   and 
1

2 1
n n

ii ij

i i j

 
 

   .  Whereas Equation (4.53) is strongly 

macroeconomic in character the expansion to n-inputs in Equation (4.54) permits both macro and 

microeconomic analysis with the caveat that the increasing number of parameters accompanying 

an increase in the number of inputs can make the estimating process problematic particularly 

with small data sets. 

 

Vinod Production Function 

 In a study of the telecommunications industry for Bell Labs in 1972 Hrishikesh Vinod 

presented a new non-homogeneous production as found in Nonhomogeneous Production 
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Functions and Applications to Telecommunications.
236

 This production function is a 

modification of the Cobb-Douglas form allowing for an interaction term by the product of the 

logarithms of inputs as follows, 

 0 1 3 2 2ln

1 2

x
y e x x

   
 , (4.55) 

which can also be expressed,  

 0 1 1 2 2 3 1 2ln ln ln ln lny x x x x       .
237

 (4.56) 

Vinod notes that this expression is both VES and VRTS plus the form is linear in parameters 

thus lending itself to estimation with OLS.  The Vinod production function can be extended to n-

inputs as follows, 

 
0

1

ln ln ln ln
n n

i i ij i j

i i j

y x x x  
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    . (4.57) 

Both equations were developed for macroeconomic analysis of the telecommunications industry, 

however, the extension of Equation (4.57) to the n-input case makes it appropriate for 

microeconomic analysis as well, once again with the caveat that the increasing number of 

parameters accompanying an increase in the number of inputs can make the estimating process 

problematic particularly with small data sets. 

 

Lovell Production Functions 

 Concerned about perceived shortcomings of the CES and VES formulations popular at 

the time C. A. Knox Lovell proposed, in 1973, one CES and two VES production functions in 

                                                
236 Hrishikesh D. Vinod, "Nonhomogeneous Production Functions and Applications to Telecommunications," The 

Bell Journal of Economics and Management Science 3, no. 2 (1972). 
237 Ibid., 532. 



132 

 

Estimation and Prediction with CES and VES Production Functions.
238

  Lovell’s attempt at 

‘correcting’ the earlier formulation were based in a desire to estimate or evaluate all the 

dimensions of the production function including the possibility of technological change over 

time.  The first production function developed was of the CES variety with a technological 

change element added as follows, 

   
1

1 21ty Ae x x    


    , (4.58) 

where  measures technological change over time t.  Minus the te term we have the familiar 

ACMS CES formulation.  The second production function is of the VES variety generated from 

the side condition that k    and takes the form, 

   
1

1 1

1 2 21ty Ae x x x         . (4.59) 

His second VES formulation began with the side condition that 
1

1k
k


 

 
  

 
 and takes the 

form, 

 1

1 2

t ky Ae x x e     (4.60) 

 All three production functions are fixed returns to scale with the CES function having 

constant elasticities of substitution while the VES functions exhibit variable elasticities along the 

isoquant.  Each production function is highly macroeconomic in nature and thus not suitable for 

microeconomic analysis requiring multiple inputs. 
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Diewert “Generalized Cobb-Douglas” Production Function 

 In 1973 W. Erwin Diewert demonstrated a generalization of the Cobb-Douglas 

production function in Separability and a Generalization of the Cobb-Douglas Cost, Production 

and Indirect Utility Functions.
239

  The objective was a production function based upon the Cobb-

Douglas formulation that made no assumptions regarding the constancy of the partial elasticities 

of the input factors except that they should sum to one thus ensuring a constant return to scale 

formulation.  The resulting formulation is,
240

 

  1 1
2 2

1 1

ij
n n

i j

i j

y A x x


 

  , (4.61) 

such that 
1 1

1
n n

ij

i j


 

 .  This condition ensures that the function is a constant return to scale 

function.  Given a logarithmic transformation of Equation (4.61) it is possible to estimate the 

'ij s .  With the aid of modern computer based statistical models it is possible to set the side 

condition that 
1 1

1
n n

ij

i j


 

 and estimate the function.  However, it may be more important to run 

such a model without the side condition to determine if any of the 
'ij s are less than zero and 

whether the 'ij s sum to one.  If any of the 'ij s are less than zero it may be necessary to test of 

concavity of the function and convexity of the isoquants.  If the 'ij s do not sum to one then the 

function may be of the variable returns to scale type.  Overall we may say that this type of 

analysis gives us more information about the nature of the underlying production function. 

 Under the initial conditions set for the function it is a homogenous function of degree one 

and therefore constant return to scale formulation.  The extension to n-inputs makes it 

                                                
239 W. Erwin Diewert, "Separability and a Generalization of the Cobb-Douglas Cost, Production and Indirect Utility 

Functions," (Vancouver, British Columbia, Canada: Stanford University and University of British Columbia, 1973). 
240 Ibid., 21. 
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particularly appropriate for microeconomic analysis but once again with the caveat that the 

increasing number of parameters accompanying an increase in the number of inputs can make 

the estimating process problematic particularly with small data sets. 

 

Denny Generalized Quadratic Production Function 

 In 1974 Michael Denny wrote The Relationship Between Functional Forms for the 

Production System
241

 with the intent to demonstrate a new production function he termed the 

‘generalized quadratic’ production function.  His motivation was the desire to create a 

formulation that linked previous production functions in a way that permits empirical researchers 

to test for any of the included forms namely Diewert’s generalized Leontief, the CES, and Cobb-

Douglas forms.
242

  The necessity of this work, he felt, arose from the difficulty researchers found 

in selecting specific forms of the production function in their work.
243

  The form he developed is 

as follows,
244
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y x x
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 


 

 
  
 
 . (4.62) 

Setting 1
2

  and 0 for all ij i j   reduces Equation (4.62) to the Uzawa-McFadden CES 

production function, Equation(4.21).  Setting 1
2

  , 0 for all ij i j   and as  and 0  

Equation (4.62) reduces to the Cobb-Douglas production function, Equation(4.2).  The Diewert 

                                                
241 Michael G. S. Denny, "The Relationship Between Functional Forms for the Production System," The Canadian 

Journal of Economics 7, no. 1 (1974). 
242 Ibid., 21. 
243 Ibid., 22. 
244 Ibid., 29. 
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production function, Equation(4.52), is obtained when 1
2

  and 1  . 
245

   The capabilities of 

modern software modeling and statistical applications make the estimation of Equation (4.62) 

more straight forward than would have been possible when this article first appeared.  

Conducting such an analysis would easily permit a researcher to determine which form may best 

represent the case under study. 

 The flexibility of the generalized quadratic is most evident when considering that, 

depending upon the value the estimated parameters take, the function may be homogeneous or 

nonhomogeneous as well as permitting constant or variable elasticities of substitution and 

variable returns to scale.  The n-input nature of the function makes it excellent for 

microeconomic analysis with the same caveat as before that the increasing number of parameters 

accompanying an increase in the number of inputs can make the estimating process problematic 

particularly with small data sets. 

 

Helmy Generalized Transcendental Production Functions 

 In 1981 in his doctoral dissertation A Family of Transcendental Production Functions
246

 

Aly Helmy derived three productions based upon the HCH transcendental production and one 

based upon CJL trans-log function.  His aim was to develop transcendental production functions 

that allowed specifically for a factor of interaction between inputs.  He referred to the first three 

production functions as ‘generalized transcendental’ production functions and the fourth as the 

‘quadratic logarithmic’ production function.  GTPF(1) function is expressed as, 

                                                
245 Ibid., 24.  Each of the three preceding equations are derived here.  It is not clear why Denny chose to exclude the 

efficiency factor A from his production function for its inclusion would not change his other calculations. 
246 Helmy, "A Family of Generalized Transcendental Production Functions." 
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GTPF(2) is expressed, 
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GTPF(3) is expressed, 

 

1 1
1 2 2
2

1 1 1

1

n n n

i i ij i j

i i ji

x x xn

i

i

y A x e
 

   





 
  . (4.65) 

Equations (4.63) , (4.64) and (4.65) must also satisfy the restriction that 0ij ji   for 

,  and  1 to i j i j n  .  We may further specify that when 0ij  for all 
ij that these equations 

reduce to the transcendental production function.  In turn if we add the additional specification 

that when 0i  for all i these functions further reduce to the Cobb-Douglas production 

function. 

The Quadratic Logarithmic production function is expressed, 
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


  . (4.66) 

Equation (4.66) reduces to the Cobb-Douglas production function when 0i  for all i .  All of 

these production functions exhibit variable elasticities of substitution and variable returns to 

scale.  Additionally the three GTPF’s allow for interaction between the inputs.  Statistical 

estimation of all of the fore mentioned Helmy production functions is problematic due to the 

large number of parameters that must be estimated and is particularly troublesome with small 

data sets.  
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Summary 

 In this chapter 53 production functions were enumerated and their salient characteristics 

noted.  Appendix G provides a recapitulation of these production functions and their 

characteristics.  The task next turns to determining which of these production functions is 

suitable for empirical study in the context of architectural firms; that is the subject of Chapter 5, 

Choice of Functional Form.   
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CHAPTER 5 

 

CHOICE OF FUNCTIONAL FORM 

If all the economists were laid end to 

end, they would not reach a conclusion. 

                                                                        George Bernard Shaw
247

 

 

Introduction 

 The survey of production functions presented in chapter 4 enumerated and described the 

properties of 53 mathematical forms of the production function.  Such a large number of forms 

would prove daunting to an empirical researcher faced with estimating each function and all the 

associated parameters.  At the end of such a task the researcher certainly would feel that much 

time and effort had been wasted when it turned out that many of the candidate forms proved 

either inappropriate to the research at hand or proved statistically problematic.  Clearly a more 

focused smaller list of functions is called for.  It is to the winnowing of that list to a more 

manageable number for empirical work that this chapter is dedicated.  The first part of this 

chapter develops a winnowing methodology by which choice among alternatives may be made.  

The second part of this chapter applies that methodology and provides the final list of production 

function forms that will be used in chapter 6 to demonstrate the application of production theory 

to architectural firms. 

 

Methodology 

Introduction 

 The first part of this chapter formulates the criteria for selection (or elimination) of 

mathematical forms of production functions.  The broad outline of this methodology is laid out 

                                                
247 Michael Moncur, "The Quotation Page,"  www.quotationspage.com/quotes/George_Bernard_Shaw. 
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by Melvyn Fuss, Daniel McFadden and Yair Mundlak in Production Economics: A Dual 

Approach to Theory and Applications.
248

   Broadly speaking 6 criteria are proposed.  These 

criteria are 1) application and objective, 2) minimization of maintained hypotheses, 3) parsimony 

in parameters, 4) ease of interpretation, 5) computation ease, and 6) interpolative and 

extrapolative robustness. 

 

Application and Objective 

 As noted throughout chapter 4 the motivation for the construction of a specific 

production function stemmed from a variety of concerns or proposed uses for those forms.  

Therefore it should not be surprising that the intended application or research objective should 

favor one or more forms while forming the basis for elimination of others.  We may distinguish 

among the various applications of production functions and the intended purpose or objective of 

empirical research utilizing these forms by placing them into two categories.
249

  The first 

categorization situates the application or objective along the continuum of economic theory from 

greatest aggregation to least, that is, the distinction between macroeconomics as the study of 

large systems (national economies, industries, and sectors) against microeconomics as the study 

of individual and firms.  By stating that the objective in this study is the identification of 

production functions appropriate for the study of individual architectural firms and in particular 

those allowing n-inputs, where 2n  , then those production functions developed for 

macroeconomic analysis and not modified for use in microeconomic analysis may now be 

eliminated.  This alone eliminates 27 of the 53 forms surveyed in chapter 4. 

                                                
248 Fuss and McFadden, Production Economics: A Dual Approach to Theory and Applications, Vol I and II: 219-25. 
249 Ibid., 220. 
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 The second categorization distinguishes between those production functions useful in 

analytical studies and those used for predictions.
250

  The first group includes studies of the 

technical attributes of the production function in the context of a specific data set.  Such 

technical attributes include constancy of returns to scale, the constancy of the elasticity of 

substitution, and others.  The second group is used in a predictive or optimization context.  

Examples of this second group include predicting the level of use of certain resources such as 

energy or the optimization of the allocation of resources, which is the objective this study is most 

closely associated.  The difficulty one encounters in this second categorization is that not all 

production functions fall neatly in to one group and not the other.  This is particularly true with 

the group of production functions previous identified as generalized functions.  The generalized 

or nested functions are those functions which subsume other functions such that when estimated, 

one or more of their parameters approach certain extreme values (generally zero, one, or infinity) 

and take on the form of the lesser included model.  These functions may be used to test specific 

technical conditions but are also useful in distinguishing simpler forms from their more complex 

parent.  In the context of functional forms falling into this second general categorization some 

subjective judgment is applied in determining those of high potential and those with low 

potential as pertains to the objective of this study.   

 

Minimization of Maintained Hypotheses 

 Chapter 3 presents a discussion of the properties of production functions that economists 

believe are true hypotheses about the production function itself or the economic conditions in 

which they arise.
251

  These hypotheses are not generally tested as part of an economic analysis 

                                                
250 Ibid. 
251 Ibid., 222-24. 
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but are held to be true none-the-less.  These hypotheses may be grouped into four categories.  

The first category deals with the basic axioms of the nature of the technology.  Included in this 

group is whether the input set is closed, whether positive output exists in the absence of all inputs 

under study, whether output requires the presence of all inputs, etc.  The second group addresses 

hypotheses of technological and behavioral assumptions.  These are assumptions are not 

necessarily held widely as true but are credible in the context of the research at hand.  Included 

in this group is whether the production technology is a convex technology (as opposed to the 

production function outputs being convex for which we can test), the constancy of input and 

output prices, or whether the entrepreneur in reality is a cost minimizer or profits maximizer.  

The third group of hypotheses enables the statistical analysis of data.  These hypotheses are 

considered harmless approximations of reality and include that the errors are independent and 

normally distributed, variances are homoscedastic, and that intermediate inputs are separable 

from primary inputs.  The final group of hypotheses relate to the parametric form of the 

production function.  Here the analyst makes an assumption about the form that is accepted but 

not tested in their analysis.  Such assumptions may involve technical aspects of the form in 

relation to the assumed economic conditions.  One example would be assuming constant returns 

to scale without testing for variable returns.  The general principle that flows from consideration 

of these various maintained hypotheses is “that one should not attempt to test a hypothesis in the 

presence of maintained hypotheses that have less commonly accepted validity.”
252

  In 

consideration of these hypotheses (many of which apply to all production functions) the 

characteristics of generalized production functions enjoy favor over those that a priori assume 

certain conditions exist such as constant returns.    

 

                                                
252 Ibid., 223. 
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Parsimony in Parameters 

 An increase in the number of parameters utilized in a function form brings with it the 

potential for problems in the statistical analysis of the form.  Among these issues are the 

likelihood of multicollinearity, a loss of degrees of freedom, large standard errors, and the need 

for larger data sets to ensure statistically valid analysis.  Avoiding these issues, or at least 

reducing them to a minimum, requires employing the general principle “(a) functional form 

should contain no more parameters than are necessary for consistency with the maintained 

hypotheses.”
253

  Clearly the more generalized functional forms have more parameters than their 

simpler cousins but have the value, once the parameters are estimated, of indicating which, if 

any, of the simpler forms best approximates the true form.  These more complex forms raise the 

issue of the minimum size of the data set used in the estimation process.  In light of data sets 

composed of relatively large numbers of inputs and relatively small number of observations, 

which we will encountered in chapter 6, another 21 forms can now be eliminated for exhibiting a 

prohibitively large number of parameters.   

 

Ease of Interpretation 

 An increase in the complexity of a functional form is normally accompanied by an 

increase in the potential difficulty in interpreting the estimated model.  Assessing the elasticity of 

substitution, the separability of inputs, and interaction between inputs are examples of such 

problems.  The principle flowing from these concerns is “(I)t is better to choose functional forms 

in which the parameters have an intrinsic and intuitive economic interpretation, and in which 

functional structure is clear.”
254

  In this winnowing process a high rating (5) is used to denote 

                                                
253 Ibid., 224. 
254 Ibid. 
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ease of interpretation and low rating (1) used to denote difficulty in interpretation of functional 

form. 

 

Computation Ease 

 The measure of computation ease is inversely related to the degree of complexity found 

in the statistical analysis process required to estimate a given functional form.  Until the advent 

of the personal computer and sophisticated statistical software the most common and simplest 

method of estimating the parameters in a multiple regression was ordinary least squares or OLS.  

Using OLS requires that the parameters be linear.  In some circumstances the functional form 

may be transformable from its original non-linear form into one that is linear in parameters.  The 

Cobb-Douglas function is one such example.  However many of the functional forms enumerated 

in chapter 4 require the more complex and sophisticated statistical software available (e.g. SPSS, 

R, etc.) to successfully estimate their parameters.  The general principle employed is that of 

seeking a carefully considered balance between computational complexity and the thoroughness 

required in empirical analysis.
255

 In the winnowing process employed in this study a high rating 

equals highly easy to estimate, generally employing OLS, while a low rating equals difficult to 

estimate, generally employing a version of generalized least squares and requiring the  use of a 

computer and a powerful statistical software package. 

 

Interpolative and Extrapolative Robustness 

 Interpolative robustness requires that a functional be well-behaved within the range of 

observed data while extrapolative robustness requires the functional form to be well-behaved 

outside of the range of observed data.  In either case the functional form must be consistent with 

                                                
255 Ibid., 224-25. 
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the maintained hypotheses upon which it is based.   For interpolative robustness, should the 

consistency be in doubt, a numerical confirmation of behavior may become necessary in which 

case the functional form should permit convenient computation of relevant technical aspects of 

the form.
256

  Often certain hypotheses such as positive marginal products or convexity in 

isoquants are held true for a functional form.  Should doubt over the behavior in question ever 

arise the empirical researcher desires a functional form that permits easy verification.  

Extrapolative robustness is not easily confirmable as by definition the behavior in question lies 

outside the range of observed data.  However, in some circumstances it can be shown that certain 

technical aspects of functional forms are true over all positive values of inputs and outputs.  

Given the extensive body of peer reviewed literature regarding the functional forms found in 

chapter 4 and lacking any sense that one or more maintained hypotheses may be found untrue in 

any of these functional forms it is unlikely that interpolative or extrapolative robustness is an 

issue in this study and is not further considered.   

  

Winnowing the List 

 In this section the list is winnowed from the original 53 functional forms to a selection of 

five functional forms.  These selected forms are discussed and ranked below.  Two of the six 

criteria account for the elimination of 48 of the original 53 candidate forms.  The criteria of 

application and objective accounted for 27 of the 47 eliminations.  Under this criterion the basis 

for elimination of each of these forms stems from their exclusive use in macroeconomic analysis.  

In that none of these forms permits more than two inputs their unsuitability for use in 

microeconomic analysis is apparent.  A further 21 forms where eliminated by the criteria of 

                                                
256 Ibid., 225. 
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parsimony in parameters.  In each case the numbers of parameters to be estimated by statistical 

methods were excessively large.  The data sets of completed projects of architectural firms 

contain between 5-10 labor inputs and have 25 or fewer observations.  In each of the forms 

eliminated under this criterion the number of parameters to be estimated exceeds the number of 

observations present.  Analysis under such conditions is not possible.  Appendix H (Choice of 

Functional Form) displays a chart of all 53 functional forms along with an evaluation of their 

usefulness in this study.  The five remaining forms are listed below. 

 

Table 1. Final Candidate Production Functions. 
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Cobb-Douglas Production Function 

 The Cobb-Douglas production function was the first and is arguably the most popular 

production function ever developed.
257

  The advantages of the CD form are its computational 

ease, parsimony in parameters and the ease by which the results can be interpreted.  Estimating 

the parameters of the CD function are rather straight forward requiring only a logarithmic 

transformation of the basic equation which renders it linear-in-parameters and then application of 

the ordinary least squares (OLS) statistical estimation methodology.   The low parsimony in 

parameters, where the total number of parameters to be estimated is 2n+1, in conjunction with 

the use of OLS means that the CD function can be estimated using less sophisticated software 

such as Excel®.  The relatively simple mathematics of the CD form makes its use in 

optimization schemes straight forward and relatively easy.  The principle disadvantage of the CD 

form stems from the number and type of maintained hypotheses it exhibits.  The CD form 

assumes a fixed elasticity of substitution – permitting no variable elasticity of substitution among 

variables – a fixed return to scale, that all inputs are necessary in the production process, and that 

when one input level is zero that output is likewise zero.   

 

Leontief Production Function 

 The second most commonly encountered production function is the Leontief production 

function.  Advantages of the Leontief form are that it may be estimated using the OLS 

methodology, low parsimony in parameters with the number of parameters equaling the number 

of inputs,  and that the resulting parameters directly indicate the appropriate ratio of inputs, or 

recipe, inherent in the production process represented by this form.  Disadvantages inherent 

                                                
257 Alan Arthur Walters, "Production and Cost Functions: An Econometric Survey," Econometrica 31, no. 1/2 

(1963): 5. 
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include the fact that it admits no substitution between inputs, that it assumes a fixed constant 

return to scale, and that should any input be zero then the resulting output is also zero.  The fixed 

constant return to scale makes the form unsuitable for profit maximization calculations.  

Similarly, cost minimization or output maximization optimization routines become trivial.  Cost 

minimization is just the simple summation of the relevant input costs and their associated usage 

level represented as, 
1

n

i i

i

c w x


 .  Thus the cost minimization position is not sensitive to wage 

rates or changes in relative wage rates.  In a similar manner output maximization is just a 

function of the amount of the least available input.  The Leontief production function is most 

useful when the assignment of resources is known in advance to hold to a predetermined recipe. 

 

Uzawa-McFadden Production Function 

 The Uzawa-McFadden production function enjoys an advantage over the other CES 

production functions in that it permits both variable returns to scale and n-inputs while 

maintaining the other assumptions of the ACMS form.  The principal disadvantages rest in the 

complexity of the form, whose estimation requires highly sophisticated computer software 

programs such as SPSS, and the high degree of difficulty in its use in optimization routines.     

 

Mukerji Production Function 

 The advantage that the Mukerji formulation holds over the previous CES forms, namely 

that of permitting variable elasticities of substitution between inputs, is offset by the 

disadvantages in complexity of estimation due largely to the increase in the number of 

parameters that must be estimated which is 2n+2.  As with the Uzawa-McFadden form its 

interpretation and subsequent application in optimization schemes is highly problematic. 



148 

 

 

Nerlove-Ringstad Production Functions 

 The Nerlove-Ringstad formulation bears considerable similarity to the CD form upon 

which it is based and retains many of the assumptions, except permitting variable returns to 

scale, inherent in the CD form.  As with the two preceding forms the number of parameters and 

the mathematical form make interpretation, estimation, and application difficult. 

 

Summary 

 The winnowing process has reduced the list of candidate forms from 53 to the final 5 

noted above.  In chapter 6 each of these forms are further analyzed utilizing data obtained from 

industry in an attempt to find the best production function(s) for use in empirical research in the 

field of architecture. 
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CHAPTER 6 

CASE STUDY 

If you torture the data long enough it will confess. 

                                                                                            Ronald Coase
258

 

 
 

Introduction 

 This chapter presents a case study of a medium sized successful architectural firm located 

in the mid-west.  The objectives of the case study are twofold.  The primary purpose of this case 

study is the identification of those production functions, from the five candidates, that best 

represent the technologies employed by the firm and provides the soundest statistical basis for 

empirical study of other firms.  A secondary objective is the identification of issues relevant to 

the statistical estimation of these production functions with the aim of improving subsequent 

empirical analyses.   

 The firm selected for this study is an architectural firm of long standing located in the 

mid-west.  Its client base is broad including both public and private entities.  The firm provides a 

variety of pre-design, design, and post-design services over a broad range of building typologies. 

For the purpose of this study the firm graciously supplied project data for approximately 400 

projects completed over a period of several years.  As described below several sets of similar 

projects were grouped in separate data sets and subjected to statistical analysis using each of the 

candidate production forms.  Following a discussion of the results of the analysis the conclusions 

of this study are presented. 

                                                
258 Gordon Tullock, "A Plea to Economists Who Favor Liberty," Eastern Economic Journal 27, no. 2 (2001): 205.  

Tullock quoting Coase. 
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Data 

 The firm provided data for approximately 400 projects covering a multi-year period.  The 

data consisted of man-power data by labor category by project plus the dollar value of the 

contract of each project.  Organizing the data and creating the resulting data sets proceeded in 

five steps.   The master data base, as provided by the firm, contained erroneous entries, errors 

in coding, and missing data; a condition that had to be corrected before proceeding further.   A 

change in accounting systems, software upgrades, and deletion of certain records contributed to 

this situation.  Additionally, some non-design activities were coded as design projects which 

tainted the file.  The first step then became an exercise in identifying project records with 

missing or incomplete data elements and identification of non-design projects.  Those projects 

deemed to fall into this category were purged from the data base. 

 A second scrub of the data base revealed inconsistent coding identifying clients, building 

typology, or service provided.  Subsequently each project was examined to determine if these 

elements were correctly and consistently coded properly then corrections were applied to the 

data base as necessary. 

 The third scrub of the data base was made to parse the records into separate data sets 

based upon the coding of client, typology, and service provided.  An evaluation of these data sets 

revealed that several lacked the sufficient number of observations needed to permit valid 

statistical analysis.  These data sets were removed from further consideration. 

 An examination of the remaining projects revealed minor inconsistencies in coding labor 

categories.  For example, an employee at a given level of experience appeared in more than one 

labor category.  The category titles and the definitions of who fell into each one morphed over 

time as the data base evolved.  Correcting these inconsistencies required a fourth scrub of the 
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data base.  At this point the final data base was constructed by grouping similar labor groups into 

representative labor categories.  Category one consisted of junior architects while categories two 

and three were comprised of mid-level and senior architects respectively.  The final category 

consists of employees performing various support staff functions.  In addition to the manpower 

data the contractual value of the project was added to the data base to represent the output.  The 

final data base consisted of five separate project/client/service data sets.  As the statistical 

analysis began it soon was determined that two of data sets lacked the necessary number of 

observations and they also were removed from further consideration.  The three remaining data 

sets are simply identified as data sets, one, two and three (n=20, 14, and 14 respectively).
259

 

 

Analysis Methodology 

 Determining which production function(s) one, provides the best representation of the 

technologies employed by the firm and two, provides the soundest statistical basis for empirical 

study requires a two-pronged approach.  The first approach employs strictly a statistical analysis.  

The second approach acknowledges that production functions are conceptual constructs 

representing the nature of the underlying technology and attempts to evaluate the statistical 

results in that light.  In this manner both considerations of representation of technology and 

statistical viability are mutually considered in the final conclusion.  The statistical approach is 

considered first. 

 The objective of the statistical analysis is identification of that production function model 

which produces the best goodness of fit with each data set.  The procedure is to estimate the 

parameters of the five candidate production functions using each of the three project data sets 

                                                
259 This convention is adopted in accordance with the informed consent agreement signed between the firm and the 

research team to protect its identity. 
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and produce various measures of goodness of fit.  A total of 12 sets of calculations (4 functions * 

three data sets) were performed utilizing the non-linear multiple regression function of IBM’s 

SPSS
®

 statistical software package version 20.  SPSS employs two non-linear regression 

routines.  The sequential quadratic programming (SQP) method was employed for each run as it 

provides non-linear optimization solutions of twice continuously differentiable equations with 

constraints.
 260

 The non-linear option in SPSS was chosen for two reasons.  First, by using the 

same analytical process for each set of calculations a more valid and consistent comparison of 

similar measures of goodness of fit among all data sets is obtainable.  Second, the SQP method 

of non-linear regression allows constraints to be placed on the parameters consistent with the 

underlying constraints of the production function, (e.g. some parameters are restricted to positive 

values).  Normally ordinary least squares (OLS) linear regression estimations are sufficient for 

the Cobb-Douglas and Leontief production functions unless such analysis reveals coefficients or 

parameters that are less than zero.  In those circumstances it is necessary to constrain coefficients 

and parameters to be equal to or greater than zero as negative values have no inherent economic 

value or meaning.  Use of SQP, with parameters restricted to positive values, ensures that the 

results obtained retain an economic meaning.  OLS cannot be utilized to estimate non-linear 

regression models and it was necessary to employ the SQP methodology with constraints for the 

Uzawa, Mukerji and Nerlove production functions.  For consistency and to accommodate the 

need to constrain all coefficients and parameters the non-linear regression employing SQP was 

employed for these 12 runs.  The exception to this process occurred with the Leontief production 

function.  Lacking a priori information detailing the values of the coefficients of the various 

inputs in was necessary to estimate them.  SPSS was used to conduct a series of linear 

regressions for each coefficient in all three data bases.  Equipped with the values of the 

                                                
260 Paul T. Boggs and Jon W. Tolle, "Sequential Quadratic Programming," Acta Numerica 4(1995). 
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coefficients calculations were performed to yield the minimum output for each observation in 

each data set.  The resulting minimum outputs were then treated as predicted outputs and were 

regressed against the actual output to determine the appropriate R
2
.  

 The criteria for selection of the most statistically valid production function is a 

combination of the standard R
2
 goodness of fit and the size of the standard error of each 

parameter.  The principle goodness of fit criteria employed is the coefficient of determination, 

R
2
.  The nature of non-linear multiple regression analysis is such that R

2 
is not a consistently 

reliable criterion as the value of R2 is often undefined.  When R
2 

is undefined the best measure 

of goodness of fit between two models becomes a comparison of the estimated value of 

individual parameters and their respective standard error.   

  The procedure outlined above whereby competing models are compared departs from 

standard model building procedures.  It is common in most empirical research to test individual 

coefficients and parameters for significance using a standard t-test.  In standard model building 

various candidate predictors are incorporated into a regression equation.  The regression equation 

is then estimated using OLS or similar regression procedure.  Independent variables that fail the 

standard t-test for the level of significance desired are eliminated.  This process is continued until 

the highest R
2 

is obtained.  The revised model is then deemed the best model of behavior under 

study.  For production functions the independent variables are the inputs observed in the 

production process.  Removing variables (inputs) that fail a standard t-test from the production 

function effectively annuls the original production function and denies the validity of the original 

conceptualization of the underlying technology.  As noted earlier in chapter three inputs are 

considered essential to the production process and cannot be removed without violating a basic 
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premise of production economics.  Here we resort to an examination of R
2 
and when that proves 

insufficient the default becomes a comparison of the standard error of parameters. 

 The second approach is a conceptualization check.  Each of the five candidate production 

functions describe certain economic characteristics of the underlying technology such as returns 

to scale for example.  In the conceptualization check the question ‘What is lost in describing the 

underlying technology by elimination of each candidate production function?’   

 The final judgment about which production function best represents the technologies 

employed by the firm and provides the soundest statistical basis for empirical study of other 

firms is a subjective judgment taking both approaches into account. 

Analysis 

 Consistent with the procedures outlined above we begin with a statistical estimation and 

analysis of the candidate production functions.  Here is presented an analysis of the 15 computer 

runs comparing and contrasting the estimates of coefficients, parameters, and measures of 

goodness of fit.  The data is presented in the following five charts.  Each chart depicts the results 

of the regression of one of the candidate production functions against each of the data sets. 

 

Cobb-Douglas Production Function 

 The Cobb-Douglas production function is multiplicative in nature reflecting that an 

imperfect substitution condition exists.  The 'i sx represent one of the labor categories discussed 

above.  The A parameter is the scale parameter which describes the overall efficiency of the 

technology, the higher the value the more efficient the operation.  The  exponents are the 

partial elasticities of each input, when summed they yield the return to scale of the technology.  

As shown in figure 15 below, The Cobb-Douglas model produces excellent R
2
 values for data 
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sets 1 and 2.  The R
2
 for data set 2 is undefined but the standard errors (numbers in parentheses) 

lay between those of data sets 1 and 2 except for the value of 1 .  The value of the summation of 

the exponents, the return to scale, of 2.287, 1.729, and 1.46 for data sets 1-3 respectively indicate 

that the underlying technology for these building types reflect increasing returns to scale. 

 

Table 2. Results of Regression Using the Cobb-Douglas Production Function 

31 2 4

1 2 3 4

1

i

n

iy A x Ax x x x
   

   

Parameter/Data Set 1 2 3 

R
2
 .703 undef .746 

A 2.662 
(37.841) 

2.576 
(19.52) 

1.285 
(3.895) 

1  .690 
(1.0) 

1.425 
(1.362) 

.900 
(.523) 

2  .131 
(.959) 

.182 
(.192) 

.347 
(.233) 

3  1.313 
(1.021) 

.057 
(.330) 

.148 
(.212) 

4  .153 
(2.421) 

.065 
(.372) 

.065 
(.276) 

 

Leontief Production Function 

 The Leontief production function is additive in nature reflecting the recipe nature of the 

underlying technology.  The Leontief production function reflects a constant return to scale 

technology.  The  coefficients prescribe the fixed manner in which the inputs must be 

combined.  As shown in figure 16 below, the R
2
 for the first two data sets is moderately high 

while the R
2
 for data set three is very high indicating an overall moderate to strong goodness of 

fit. 
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Table 3. Results of Regression Using the Leontief Production Function 

 1 1 2 2 1 1 2 2 3 3 4 4min , , , , , ,n ny x x x x x x x         

Parameter/Data Set 1 2 3 

R
2
 .667 .652 .949 

1  306.372 
(129.810) 

120.913 
(21.961) 

119.395 
(8.996) 

2  365.275 
(90.956) 

223.460 
(42.040) 

1255.575 
(260.949) 

3  975.385 
(106.529) 

123.207 
(48.301) 

757.481 
(148.796) 

4  1731.027 
(301.538) 

629.329 
(163.559) 

457.869 
(73.897) 

 

 

Uzawa-McFadden CES Production Function 

 The Uzawa-McFadden CES production function is a complex representation of the 

underlying technology.  At the heart of the function the 's are the coefficients of the inputs 

represented by the 'sx while the  exponent is the elasticity of substitution which in this case is 

fixed and constant.  The A parameter is once again the efficiency scale factor and the v

parameter yields the return to scale.  As shown in figure  17 below, the R2 for data sets 1 and 2 

are very high while undefined for data set 2.  The standard errors for most of the parameters are 

extremely high for all three data sets indicative that the data lacks coherence.  The value of v , 

the returns to scale indicator, is problematic as the standard error is many times greater than the 

value of the parameter.  For this type of complex formulation one must be concerned regarding 

the number of observation required to adequately estimate all the parameters. 
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Table 4. Results of Regression Using the Uzawa-McFadden Function 

 1 1 2 2 3 3 4 4

1

v
n v

i i

i

y A x A x x x x


         




    



 
     

 
  

Parameter/Data Set 1 2 3 

R
2
 .823 undef .885 

A 1.125 
(14412548.87) 

1.245 
(30600509.54) 

8.074 
(34606586.15) 

1  .062 
(63251) 

.039 
(151531.396) 

.425 
(4179.136) 

2  .062 
(63251.026) 

.045 
(173006.55) 

.200 
(1972.218) 

3  .329 
(336914.577) 

.203 
(786040.111) 

.102 
(1003.423) 

4  .134 
(137292.904) 

.332 
(1282382.074) 

.267 
(2627.596) 

v  .091 
(1.048) 

.261 
(8.426) 

.003 
(.969) 

  1.143 
(.814) 

1.66 
(4.333) 

1.280 
(.296) 

 

 

Mukerji Production Function 

 The Mukerji production function is the culmination of the development in CES functions.  

Here the modification is to permit unequal partial elasticities of substitution represented by the

'si .  Interpretation is otherwise the same as for Uzawa-McFadden form except for the returns to 

scale determination.  When 0

1

n

i

i

 


 the return to scale is constant, when it is greater than 0

the returns are increasing, and when less than 0 returns are decreasing.  As shown in figure 18, 

the Mukerji production exhibits widely varying R
2
’s .  Additionally the estimates of all 

parameters vary greatly and their respective standard errors are extremely high.  In this 

formulation with only four inputs the number of parameters to be estimated is very high at 10.  

Any increase in the number of inputs makes estimating this model very problematic. 
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Table 5. Results of Regression Using the Mukerji Function 

 
0

31 2 4 0

1

1

1 1 2 2 3 3 4 4

1

i

n

i i

i

y A x A x x x x


        








 
     

 
  

Parameter/Data Set 1 2 3 

R
2
 .061 undef .793 

A 1.138 
(380715839.0) 

10.625 
(391489228.9) 

1.134 
(9637308.562) 

1  .258 
(30806460.24) 

4.236 
(195919144.6) 

.341 
(331900.015) 

1  .926 
(67.279) 

3.898 
(65065.232) 

.631 
(13.896) 

2  .250 
(29841706.24) 

.154 
(7095963.571) 

.228 
(221937.328) 

2  .907 
(68.009) 

2.953 
(91.336) 

.091 
(1.942) 

3  .283 
(33792491.95) 

.154 
(7088274.76) 

.088 
(85326.915) 

3  .855 
(37.376) 

2.289 
(113.465) 

.243 
(2.218) 

4  .252 
(30075771.56) 

.154 
(7114888.643) 

.307 
(298255.823) 

4  .911 
(338.087) 

2.189 
(81.614) 

.296 
(9.586) 

0  .357 
(24.768) 

1.252 
(43.192) 

.114 
(2.313) 

 

 

Nerlove-Ringstad Production Function 

 The Nerlove-Ringstad production function bears a striking resemblance to the Cobb-

Douglas production function with the salient difference appearing in the elasticity of scale factor

 
1

lnY 
.  Evaluation of this term yields the returns to scale factor.  Except for the return to 

scale factor interpretation of the Nerlove-Ringstad form is the same as for the Cobb-Douglas.  As 

shown in figure 19 below, the R
2
 values are relatively low for data sets 1 and 3 and undefined for 

data set 2.  All Standard errors are extremely large.  Given the complexity of this form its 

estimation and interpretation is problematic. 
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Table 6. Results of Regression Using the Nerlove-Ringstad Function 

   31 2 4

1

1ln
ln

1 2 3 4

1

i

n y
y

i

i

y A x Ax x x x
 

     






 
  
 
  

Parameter/Data Set 1 2 3 

R
2
 .048 Undef .535 

A 2.645 
(6622337.176) 

2.149 
(28.636) 

3.166 
(5182041.475) 

1  9.419 
(24244758.93) 

7.476 
(23431062.09) 

42.662 
(60613441.44) 

2  4.357 
(11214063.35) 

7.004 
(21951673.2) 

26.179 
(37194444.66) 

3  7.945 
(20452305.55) 

7.076 
(22177547.41) 

26.485 
(37628706.97) 

4  3.769 
(9701143.302) 

2.025 
(6345645.1) 

33.755 
(47958718.57) 

  8.377 
(21563461.75) 

1.579 
(4949190.096) 

4.622 
(6566458.981) 

  .173 
(444058.918) 

.951 
(2980779.46) 

4.665 
(6627922.026) 

  

 In summary, the three data sets and five production functions analyzed here vary greatly 

in the degree to which they permit the construction of precise estimates of variables and 

reasonably tight confidence levels.  In four of the five regressions data set two proved 

problematic returning undefined R
2
 values and medium to very large standard errors.  Only in 

case of the Leontief production function does data set two yield a defined R
2
, .652, and exhibits 

moderate standard errors.  Data sets one and three yield positive values for R
2
 in each of the five 

regression scenarios but rather extreme standard errors in the cases of the Uzawa-McFadden, 

Mukerji, and Nerlove-Ringstad production functions.  The most useful results obtain across all 

three data sets were for the regressions run under the Cobb-Douglas and Leontief production 

models. 

 The second requirement of the analysis is an assessment of which production function 

provides the best representation of the underlying technology.  In this effort, advantage is taken 

of the previous statistical analysis.  The Cobb-Douglas and Leontief production functions were 

clearly superior choices based upon the statistical analysis.  Elimination of the Uzawa-
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McFadden, Mukerji, and Nerlove-Ringstad production function is justified by the difficulties in 

their estimation and large standard errors.  The difficulties in their estimation and interpretation 

make them unreliable models of the underlying technology of architectural firms.  Retention of 

both the Cobb-Douglas and Leontief models is proposed as they represent two very different 

models of the underlying technology and thus provide the means of evaluating competing 

conceptualizations of the underlying technology of architectural firms.  Their relative ease in 

estimation and interpretation are further justification. 

 

Conclusion 

 Given the vicissitudes of the data used in this study and similar characteristics likely to be 

found in other data sets obtainable from functioning architectural firms the production functions 

best suitable for empirical analysis of architectural firms are the Cobb-Douglas and Leontief 

production functions.  The differing manner in which these two productions treat the substitution 

of inputs in the production process make them interesting compliments to one another and should 

prove powerful analytical tools for architectural firms.  Special note should be made of the 

difficulties in preparing a data base for statistical analysis.  Care must be taken in construction of 

the data base to ensure consistency in coding and completeness of the data.  When constructing 

final data sets for analysis all efforts must be made to ensure that only projects of similar 

characteristics are included in the data set.  In the current effort several initial data sets had to be 

divided based upon the differing characteristics of projects.  This serves to reduce the number of 

observations in each data set but results in model estimations with smaller errors. 
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CHAPTER 7  

SUMMARY, CONCLUSION AND EPILOGUE 

 

Summary 

 Concern over operating costs predates the first comprehensive study of their nature 

commission by AIA in 1966.  Forty five years later the industry has yet to come fully to terms 

with the necessity of understanding the true nature of operating costs or to develop adequate 

analytical tools to determine their behavior.  This dissertation introduced and developed the 

concept of ‘cost structure’ as it is applicable to architectural firms.  The components of that cost 

structure are the physical costs in dollars, time
2
 (manpower totals and time to completion), and 

scarce resources required to operate the firm but it also includes an understanding of cost 

behavior, the why and how costs vary according to building typology, services provided, client 

served, or level of design activity.  Industry recognition of the requirement of understanding 

operating costs and adoption of analytical methods useful in understanding the firm’s cost 

structure are vital to improving the financial picture of architectural firms.  Hopefully this 

dissertation serves as an opening salvo in an ongoing conversation leading to permanent changes 

in how architects view this important aspect of the business side of architectural practice. 

 In this dissertation three analytical methods were introduced each with the potential to 

inform architects about the true nature the real costs of operating a firm – cost accounting, 

statistical analysis, and production economics.  Two methods of analyzing costs, the cost 

accounting method, with emphasis on activity based accounting (ABC), and the statistical 

analysis method, with its emphasis on the creation of statistical measures of resource 



162 

 

consumption, were briefly described.  The main emphasis, however, remained focused on the use 

of production economics as the basis for an economic analysis of costs. 

 Production economics is about choice among alternatives, particularly choice that 

optimizes entrepreneur behavior be that behavior cost minimization or output maximization.  

The underlying premise is that the entrepreneur has discovered or developed the most efficient 

production technology possible.  In this context technology represents the manner in which the 

productive inputs are brought together.  Therefore the goal of production economics is about 

resource allocation, that is what inputs in what quantities minimizes the cost of operations for a 

given level of output, or maximizes output for a given cost or budget level.  The production 

function, a mathematical representation of the arrangements of inputs necessary to achieve an 

output, is the vehicle by which optimization is achieved.  The goal in this dissertation was to 

identify those production functions that best represented the technologies employed by an 

architectural firm while providing the soundest statistical basis for empirical study of other firms.   

 This dissertation enumerated and characterized production functions in a survey that 

spanned the period from 1928 and the introduction of the Cobb-Douglas production function to 

the end of the 20
th

 century.  In total 53 production functions and their variations were surveyed.   

Many of the forms were developed for macroeconomic applications and thus would prove 

unsuitable for our purposes.  A number of the remaining forms were heavily parameterized and 

would prove unwieldy to estimate and difficult to interpret.  Ultimately five production functions 

survived the winnowing process and were used in a case study of a mid-west architectural firm.  

Each of five production forms was estimated using three data sets supplied by the firm.  Thus a 

total of fifteen computer runs utilizing IBM’s SPSS
®
 software program were compiled.  The 

statistical results were then compared to determine if one or more production functions 
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performed the best in representing the underlying technology with proving reasonably easy to 

estimate.  Two production functions prove superior to the remaining three.  Those production 

functions are the Cobb-Douglas and Leontief production functions.  

 The Cobb-Douglas production function represents an underlying technology in which 

tradeoffs are made between inputs to achieve optimal efficiency and minimum costs.  The 

standard form of the Cobb-Douglas production is 
1

i

n

iy A x


  .  The scale factor A is a scalar 

measure of the efficiency of the technology useful when comparing similar but different 

technologies available to the entrepreneur.  The returns to scale factor can be calculated by 

summing the exponents associated with the inputs which when equal to one indicates a constant 

return to scale, when less than one it indicates decreasing returns to scale, and when greater than 

one it indicates increasing returns to scale.  The basic information contained in the Cobb-

Douglas formulation supports cost minimization or output maximization optimization routines.  

Cost minimization calculations support project budgeting and the bidding.  Output maximization 

calculations support annual projections of resource requirements and annual output forecasts.   

 The Leontief production function differs significantly from the Cobb-Douglas form.  The 

standard form of the Leontief production function is 1 1 2 2min( , )y x x  .  The Leontief 

presupposes that inputs are employed in a fixed ratio in the production of the final product.  The 

goal of statistical analysis is simplified to the discovery or conformation of that ratio (although 

that ratio may be different for each building typology, client, or service provided).  

Determination of resources required for a given project or for annual production goals or annual 

resource requirement reduce to a simple linear extrapolation of that ratio.  Cost minimization and 

out maximization have no relevance for technologies of the Leontief type. 
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Conclusion 

 The primary goal of this dissertation was the identification of those production functions   

that best represented the technologies employed by an architectural firm and provided the 

soundest statistical basis for empirical study of other firms.  By the identification of the Cobb-

Douglas and Leontief production function as those formulations suitable to these twin purposes 

the goal of this dissertation was achieved.   

 In the course of this investigation two unexpected conditions/issues were observed that 

warrant comment.  The examination of the data base of project data for the medium sized mid-

west based architectural firm used in this dissertation revealed interesting insight into the 

operations of architectural firms of that size.  The first observation regards the impact on 

statistical analysis given the diversity of their portfolio.  The firm undertook to design building, 

design modifications to existing building, and provide a diverse range of pre-design and post-

design services across a broad range of building typologies and clients (commercial, public, and 

private organizations and individuals).  The result of this diverse design portfolio is that some 

difficulty arose in classifying projects into discrete homogeneous data sets with the sufficiently 

large number of observations needed to support statistical analysis.  This alone suggests that the 

production functions selected should yield to the simplest statistical methods while retaining the 

power to fully describe the underlying technology of the firm.  As the portfolio of many medium 

sized firms is likely to exhibit a similar diversity then it is fair to assume that similar issues as 

found in our study firm exists also in the industry as well.  The consequence may be that some 

firms, particularly small firms, simply may not have enough projects of a coherent homogeneous 

character to support economic analysis as detailed in this dissertation. 
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 The second observation is more troubling yet promises a ray of good fortune.  The 

standard error encountered in this study, particularly in data set 2 suggest that something 

anomalous may exist in the underlying technology employed in the projects comprising data set 

2.  One of the most basic premises of production economics is that the entrepreneur has 

developed and employs the most efficient production process available to the firm.  Production 

economics then seeks to optimize the allocation of resources to achieve cost minimization or 

output maximization conditions.  This relies upon the entrepreneur to consistently employ an 

efficient technological scheme.  The large standard errors in data set 2 suggest that the 

underlying technology is not fully developed, not fully understood, or not consistently applied.  

One unanticipated outcome of an economic analysis of a given firm may well be to identify 

when these types of anomalous conditions exist and aid the entrepreneur in the discovery of a 

more efficient technology and point the way toward achieving a more profitable financial 

position. 

 

Epilogue 

 We are left now to answer the question ‘Where do we go now?’  Two broad avenues 

avail themselves.  The first leads to a pursuit of production economics issues.  The second leads 

to a pursuit of the alternative forms of analysis necessary to a full understanding of the cost 

structure of the architectural firm.   

 In the pursuit of further research into production economics applicable to architectural 

firms several paths present themselves.  The first path continues the basic research only just 

begun by this dissertation.  This research should be extended to more firms of varying sizes, 

varying typologies, disparate client types, and possibly very different technologies.   
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 A second path leads to the testing of a previous held assumption of production 

economics.  That often unvoiced premise of production economics is that any production process 

can be represented and analyzed through its precepts.  Key is the existence of an underlying 

technology.  But what if there is no underlying coherent technology?  What if whatever needs 

doing is done by whoever is available?  How does the technology change both from small to 

large firms but also from small to large projects?  Can the technology be captured by some 

analytical method and be fully described?  Research into the applicability of production 

economics to firms of along the entire continuum from single person firms to large design 

bureaus, as advocated above, would be necessary to resolve this question.   

 A third area of potential research involves those aspects intentional omitted from this 

dissertation.  Here the focus was upon the n-input single-output model when clearly the m-input 

multiple-output model presents an alternative analysis methodology.  This may prove a very 

interesting line of investigation for architectural firms.  Similarly, the application of frontier or 

data envelope analysis could prove very useful.  In these analyses the basic assumption that the 

underlying technology is the most efficient is relaxed in favor of the discovery of more efficient 

technology schemes.  Finally, application of duality theory may yield interesting insight into 

different forms of production functions applicable to architectural firms.  In duality theory the 

cost function is seen as an alternative view of production possibilities.  By reverse engineering 

the cost function the production function can be revealed.  It would be very interesting to see if 

this has application in architecture. 

 The second broad avenue of additional research is found in the potential application of 

the alternative methods previously mentioned, namely the accounting and statistical methods of 

analysis.  The accounting methodology may prove very insightful in the area of allocation of 
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overhead costs to production activities, products, and clients.  Similarly, the statistical analysis 

method holds great promise to provide insight into how and why changes in the characteristics of 

a building drive costs.  The cost to design a large building is not necessarily twice or three times 

the cost to design a small building just because they are two or three times taller, wider, or have 

two or three time the square footage.  A research project designed to investigate these potential 

goldmines of information may prove extremely profitable.   
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APPENDIX A 

GLOSSARY OF ABBREVIATIONS 

ABC Activity based costing 
AIA American Institute of Architects 
GAAP Generally accepted accounting procedures 
MRTS Marginal rate of technical substitution 
ROI Return on investment 
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APPENDIX B 

MATHEMATICAL NOTATIONS 

 

 

y:  Total output 

xi: Input factor i, i=1 to n 

xj: Input factor j, j=1 to n 

   1 2, ,..., ny f x f x x x  :  Long run production function, i.e. all inputs are treated as variable 

   1 2 3, ,... ny f x x x x x   : Short run production functions with x1 as the variable input 

df
f

dx
  : First derivative of a single variable function 

 
i

i i

f xy
f

x x



 
   : First partial derivative of the function  f x with respect to input ix  

 22

ij

i j i j

f xy
f

x x x x



   
   : Second partial derivative of the function  f x with respect to input

 and i jx x
 

idx = The change in value of the ix variable 

A = A scalar leading coefficient (example 1 2

1 2y Ax x
 

 ) 

 = exponent of an input (example 1 2

1 2y Ax x
 

 ) 

 = coefficient of an input (example 1 1 2 2y x x   ) 

  = elasticity of substitution 

e  = natural logarithm  

, , ,     = additional parameters  
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APPENDIX C 

CONCAVITY AND CONVEXITY 

 

Introduction 

 This appendix details the procedures for the tests of concavity and convexity for both the 

2-input case and the n-input case.  The test of convexity for the 2-input case is useful in 

determining the convexity of isoquants, whereas the more general n-input test for global 

concavity is useful in determine whether the underlying production function meets the criteria of 

concavity required of production functions.  

 

Concavity and convexity: the 2-input case
261

 

 For a twice differentiable production function with continuous partial derivatives of first 

and second order, concavity and convexity are determine by the sign of the second partial 

derivative of each variable input and the sign of the Hessian matrix of second partial derivatives 

as follows: 

 a.)   f x is concave provided that 11 220,  0f f  and 
11 12

21 22

0
f f

f f

  
  

  
 

 b.)   f x is convex provided that 11 220,  0f f  and 
11 12

21 22

0
f f

f f

  
  

  
 

 

                                                
261 Knut Sydsaeter and Peter J. Hammond, Mathematics for Economic Analysis  (Englewood Cliffs, New Jersey: 

Prentice Hall, 1995). 632. 
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Concavity and convexity: the n-input case
 262

 

 Given a twice differentiable continuous function of the form  1, , ny f x x  the 

concavity or convexity of the function can be determined by examination of the principal minors 

of the Hessian matrix of second partial derivatives.  The Hessian matrix is formed of all the 

partial second derivatives of the function  f x as follows: 

  

11 12 1

21 22 2

1 2

n

n

n n nn

f f f

f f f
H f x

f f f

 
 
 
 
 
 

  where 
 2

ij

i j

f x
f

x x



 
 , 1,...,i n , 1,...,j n  

 

The n principle minors of the Hessian matrix are: 

1 11H f  , 
11 12

2

21 22

f f
H

f f

 
  
 

 , 

11 12 13

3 21 22 23

31 32 33

f f f

H f f f

f f f

 , … , 

11 12 1

21 22 2

1 1

n

n

n

n n nn

f f f

f f f
H

f f f

  

 

The function  1, , ny f x x is said to be concave everywhere if 
1 0H  , 

2 0H  , 
3 0H  ,  

… ,  1 0
n

nH  , and is said to convex everywhere if 
1 0H  , 

2 0H  , 
3 0H  , … , 0nH 

 

 

 

                                                
262 Ibid., 637-38. 
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APPENDIX D 

ELASTICITY OF SUBSTITUTION 

 

Introduction 

 This appendix derives the formula for the elasticity of substitution and demonstrates the 

calculation of the elasticity of substitution for the Cobb-Douglas production function in the two 

input case where 1 2

1 2y Ax x
 

 .   

Derivation of the formula for the Elasticity of Substitution
263

 

 The elasticity of substitution σ is defined as the proportionate rate of change of the input 

ratio divided by the proportionate rate of change in the MRTS, 

 

2 1

1 2

2 1

1 2

/

x f
d d

x f

x f

x f



      
      

      
    
       

    

 (D.1) 

By inverting the numerator and multiplying through we obtain, 

 

21

12

2 1

1 2

xf
d

xf

x f
d

x f



   
   

    
   
         

 (D.2) 

Proceed by first evaluating the total differential 2

1

x
d

x

 
 
 

, 

 

2 2

1 1

1 2

1 2

x x

x x
dx dx

x x

   
    
   
 

 (D.3) 

                                                
263 Nobel Media AB,  29-30.  The derivation here is the same as appearing on pages 29-30. 
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Next take the derivative, 

 2 1
1 22 2

1 1

x x
dx dx

x x

 
  (D.4) 

By collecting terms obtain, 

 2 1 1 2

2

1

x dx x dx

x

 
. (D.5) 

From the formula for the MRTS we know that 1
2 1

2

f
dx dx

f

 
  

 
and by substituting that into 

equation (E.5) obtain, 

 

1
2 1 1 1

2

2

1

f
x dx x dx

f

x

 
   

  . (D.6) 

By collecting terms obtain, 

 

1 1
2 1

2

2

1

x f
x dx

f

x

 
  
  . (D.7) 

 

Next consider the total differential 1

2

f
d

f

 
 
 

, 

 

1 1

2 2

1 2

1 2

f f

f f
dx dx

x x

   
    
   
 

. (D.8) 
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From the formula for the MRTS we know that 1
2 1

2

f
dx dx

f

 
  

 
and by substituting that into 

equation(D.8) obtain, 

 

1 1

2 2 1
1 1

1 2 2

f f

f f f
dx dx

x x f

   
    

    
 

. (D.9) 

By collecting terms obtain, 

 

1 1

2 1 2
1

1 2 2

f f

f f f
dx

x f x

 
   
   
   

  

. (D.10) 

By substituting equations (D.7) and (D.10) into equation(D.2) obtain, 

 

1 1
2 1

21

2

2 1

2 1 1

1 2 1 2
1

1 2 2

x f
x dx

ff

f x

x f f

x f f f
dx

x f x



 
  

   
    
   
   

               
    

    

. (D.11) 

By collecting and rearranging terms obtain first, 

 

11
2 1

22

2 2 1 1
1

1 2 21

2 2 1

ff
x x

ff

x f f
x

x f ff

x f x

  
   

  
      

       
        

  
 
 

 (D.12) 
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then, 

 
 1 1 1 2 2

1 1

2 2 21
2 1 2

2 2 1

f f x f x

f f

f ff
f x x

x f x



    
     

          
 
 

 (D.13) 

and finally, 

 
 1 1 1 2 2

1 1

2 2

2 1 2 1 2

2 1

f f x f x

f f

f f
f x x f f

x x



    
     
    

  
 
 

. (D.14) 

By evaluating the term in brackets in the denominator obtain, 

 2 12 1 22 2 11 1 21
1 22 2

2 2

f f f f f f f f
f f

f f

    
   

   
. (D.15) 

By expanding terms obtain, 

 
2 2

1 2 12 1 22 2 11 1 2 21

2

2

f f f f f f f f f f

f

  
. (D.16) 

By collecting terms obtain, 

 
2 2

1 2 12 1 22 2 11

2

2

2 f f f f f f f

f

 
. (D.17) 

By substituting equation(D.17) into the brackets in equation(D.14) and collecting terms obtain 

the final expression for the elasticity of substitution as, 

 
 

 
1 2 1 1 2 2

2 2

1 2 1 2 12 1 22 2 112

f f f x f x

x x f f f f f f f





 
. (D.18) 
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Elasticity of Substitution: Cobb-Douglas Production Function 

 The formula for the elasticity of substitution as derived above is,  

 
 

 
1 2 1 1 2 2

2 2

1 2 12 1 2 1 22 2 112

f f f x f x

x x f f f f f f f





 
.
264

 

  

Begin by taking the first, second, and cross-partial derivatives for the Cobb-Douglas production 

function given by, 

 1 2

1 2y Ax x
 

  (D.19) 

 1 21

1 1 1 2f Ax x  
  (D.20) 

 1 2 1

2 2 1 2f Ax x  
  (D.21) 

 1 22 2 22 2 2

1 1 1 2f A x x
  

  (D.22) 

 1 22 2 22 2 2

2 2 1 2f A x x
  

  (D.23) 

   1 22

11 1 1 1 21f Ax x   
   (D.24) 

 1 21 1

12 1 2 1 2f Ax x   
  (D.25) 

   1 2 2

22 2 2 1 21f Ax x   
 

.
 (D.26) 

Begin by evaluating the first two terms of the numerator 1 2f f , 

   1 2 1 21 1

1 2 1 1 2 2 1 2f f Ax x Ax x      . (D.27) 

Then by multiplying through, collecting terms, and substituting y from equation (D.19) where 

appropriate obtain, 

 
2 1 1

1 2 1 2y x x  
. (D.28) 

                                                
264 Ibid., 30. 
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Evaluating the last term in the numerator  1 1 2 2f x f x obtain, 

      1 2 1 21 1

1 1 2 1 2 1 2 2Ax x x Ax x x      . (D.29) 

By collecting terms and substituting y from equation (D.19) where appropriate obtain, 

 1 2y y  . (D.30) 

Combining terms from both equation (D.28) and (D.30) obtain the numerator, 

  2 1 1

1 2 1 2 1 2y x x y y     . (D.31) 

In evaluating the denominator start with the expression   2 2

12 1 2 1 22 2 112 f f f f f f f 
 
beginning 

with the first term, 

     1 2 1 2 1 21 1 1 1

12 1 2 1 2 1 2 1 1 2 2 1 22 2f f f Ax x Ax x Ax x           . (D.32) 

By collecting terms and substituting y from equation(D.19) as appropriate obtain, 

 
2 2 3 2 2

1 2 1 22 y x x   
. (D.33) 

Next evaluate the second term, 

     1 2 1 22 2 2 22 2 2

1 22 1 1 2 2 2 1 21f f A x x Ax x        . (D.34) 

By collecting terms and substituting y from equation(D.19) as appropriate obtain, 

  2 2 2 3 2 2

1 2 1 2 1 2y x x      . (D.35) 

Next evaluate the last term, 

     1 2 1 22 2 2 22 2 2

1 22 1 1 2 2 2 1 21f f A x x Ax x        . (D.36) 

And by collecting terms and substituting y from equation(D.19) as appropriate obtain, 
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  2 2 2 3 2 2

1 2 1 2 1 2y x x      . (D.37) 

 

 

The denominator is, 

  2 2

1 2 12 1 2 1 22 2 112x x f f f f f f f  . (D.38) 

By substituting equations (D.33), (D.35), and (D.37) obtain, 

     2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22x x y x x y x x y x x                          
. (D.39) 

By collecting terms and substituting y from equation(D.19) where appropriate obtain, 

  1 1 3

1 2 1 2 1 2x x y        . (D.40) 

Combining the numerator equation (D.31) and denominator equation(D.40) obtain, 

 
 

 

2 1 1

1 2 1 2 1 2

1 1 3

1 2 1 2 1 2

y x x y y

x x y

   

   

 

 



   

. (D.41) 

By collecting terms obtain, 

 
 

 

3 1 1

1 2 1 2 1 2

3 1 1

1 2 1 2 1 2

1
y x x

y x x

   

   

 

 





. (D.42) 

The demonstration above shows that the elasticity of substitution for the Cobb-Douglas 

production formula is equal to one. 
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APPENDIX E 

OPTIMIZATION EXAMPLES 

 

Introduction 

 This appendix presents demonstrations of cost minimization under constrained output and 

output maximization under constrained cost utilizing the Lagrangian optimization technique.  

Both examples employ the same production and cost functions.  For illustration purposes a 

hypothetical production function of .6 .4

1 210y x x and a cost function of 0 1 1 2 2C w x w x FC   , 

where 1 $10w  , 2 $15w  , and fixed costs of $25 are employed.   

 

Cost Minimization under Constrained Output Conditions 

 In this example the goal is minimizing cost given an output of 500 units.  Utilizing the 

Lagrangian method of optimization we begin by formulating the Lagrangian function as, 

  .6 .4

1 1 2 2 1 2500 10L w x w x FC x x     . (E.1) 

Begin by reformulating equation (E.1) by inserting the cost values and performing a logarithmic 

transformation of the production function obtaining, 

  1 2 1 210 15 25 6.2146 2.3026 .6ln .4lnL x x x x       . (E.2) 

Next, solve for the first order conditions yielding, 

 
1 1

.6
10 0

L

x x


  


, (E.3) 

 
2 2

.4
15 0

L

x x


  


, (E.4) 
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and  1 26.2146 2.3026 .6ln .4ln 0
L

x x



    


. (E.5) 

Solve equations (E.3) and (E.4) for  yielding, 

 116.6667x  , (E.6) 

and 237.5x  . (E.7) 

Use equations (E.6) and (E.7) to solve for 1x , 

 1 22.25x x . (E.8) 

Insert the value for 1x into equation(E.5), 

  2 26.2146 2.3026 .6ln 2.25 .4ln 0x x    . (E.9) 

Solve equation  (E.9) for 2x by first collecting the 2'sx on the left and the constants on the right to 

obtain, 

  2 2.6ln 2.25 .4ln 3.912x x    . (E.10) 

Multiple both sides of equation  (E.10) by -1 and perform an exponential transformation 

yielding, 

  
.6 .4

2 22.25 49.9988x x  . (E.11) 

Then in equation  (E.11) expand the term .6

2(2.25 )x , combine 2x terms and divide both sides by 

the constant 1.6267,  .62.25 1.6267 , to obtain, 

 1

2 30.7362x  . (E.12) 

Insert the value of 2x back into equation (E.8) to determine 1x , 

 1 22.25 2.25 30.7362 69.1565x x     (E.13) 
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The second order conditions require the determinant of the bordered Hessian matrix be 

greater than zero as follows, 

 

0.0064 0 10

0 0.01 15 2.44

10 15 0

H

  
 

   
 
   

 (E.14) 

 

Returning to the original production function and substituting the values for 1 2 and x x

calculated in equations (E.12) and (E.13) yielding, 

    
.6 .4

10 69.1565 30.7362 500y   , (E.15) 

thus demonstrating the correctness of the values of 1 2 and x x .  To obtain the minimum cost for 

producing 500 units substitute the values of 1 2 and x x back into the cost function yielding, 

    0 $10 69.1565 $15 30.7362 25 $1,177.61C     . (E.16) 

 

Output Maximization under Constrained Cost Conditions 

 In this example the goal is maximizing output given a budget of $1200.  Utilizing the 

Lagrangian method of optimization we begin by formulating the Lagrangian function as, 

  1 2 1 22.3026 .6ln .4ln 1200 10 15 25L x x x x       . (E.17) 

Begin by solving for the first order conditions which yields, 

 
1 1

.6
10 0

L

x x



  


, (E.18) 

 
2 2

.4
15 0

L

x x



  


, (E.19) 
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and 1 21200 10 15 25 0
L

x x



    


. (E.20) 

Solving equation (E.18) and (E.19) for  yields, 

 1

1.06x   (E.21) 

 1

2.0267x   (E.22) 

Given that both equations (E.21) and (E.22) are set equal to   the right side of each expression 

is equal to each other, restated that yields, 

 1 1

1 2.06 .0267x x  . (E.23) 

By solving for 1x we obtain, 

 1 22.2472x x . (E.24) 

Substituting this value for 1x into equation (E.20) yields, 

  2 21200 10 2.2472 15 25 0x x     (E.25) 

Solving for 2x yields, 

 2 31.3567x   (E.26) 

Substituting the value of x2 from equations (E.26) and solving equation (E.24) for 1x yields, 

 1 22.2472 2.2472(31.3567) 70.4648x x    (E.27) 

The second order conditions require the determinant of the bordered Hessian matrix be 

greater than zero as follows, 

 

0.00621 0 10

0 0.01 15 2.39725

10 15 0

H

  
 

   
 
   

. (E.28) 
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Solving equation (E.20) using the values of 1 2 and x x from equations (E.27) and (E.26) 

respectively we verify our solution, 

    1200 10 70.4648 15 31.3567 25 0     (E.29) 

 

Substituting the values calculated for 1 2 and x x into the production function we obtain the 

maximum output for a budget of $1200, 

    
.6 .4.6 .4

1 2 10 70.4648 31.3567 509.701 unitsy Ax x    (E.30) 
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APPENDIX F 

 DERIVATION OF THE ACMS CONSTANT ELASTICITY OF SUBSTITUION 

PRODUCTION FUNCTION 

 

Introduction 

 The purpose of this appendix is twofold.  The primary purpose is the presentation of a 

detailed step-by-step replication of the derivation of the ACMS Constant Elasticity of 

Substitution production function as it appears in Capital-Labor Substitution and Economic 

Efficiency
265

.  The original article omits or combines a number of intermediate steps.   The 

expanded derivation is an attempt to improve clarity and enhance the reader’s comprehension of 

the development of the ACMS production function.  The secondary purpose is to demonstrate 

the process whereby many theorist have begun with a regression model, converted it to a 

differential equation by some transformation and then proceeded to solve the differential 

equation to produce a new production function.  While this process was first employed by 

Kenneth Arrow and his colleagues it was later employed by other economists with considerable 

success.   

 

Development of the ACMS Production Function 

 Two widely held theories regarding the elasticity of substitution have already been 

mentioned in chapter four.  The Cobb-Douglas production function in its original form presents 

the first case, where the exponents sum to one or 1  .  The Leontief production function 

represents the second case where no substitution is permitted thus 0  .  Arrow notes that in 

                                                
265 Arrow et al., "Capital-Labor Substitution and Economic Efficiency." 
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turning to empirical evidence it is apparent that varying degrees of substitution exist.  The study 

leading to the development of the ACMS production function was an attempt to derive a 

mathematical function that reflected their observed production numbers and which had the 

following three properties: homogeneity, constant elasticity of substitution between capital and 

labor, and allowed for the possibility of varying elasticities between industries.   

 Arrow’s group collected and analyzed data from 19 counties, the number of industries in 

each country varied from a low of 2 industries and ranged up to a maximum of 24 industries.  

They tested two competing regression equations, 

 
V

c dW
L

    (F.1) 

and  

 log log log
V

a b W
L

   . (F.2) 

Such that,  : value added in thousand of U.S. dollarsV  

   : Labor input in man-yearsL  

and   : Money wage rate (total labor cost divided by L) in dollars per man-yearW . 

They concluded that while both regression equations gave good fits to observed data, the 

logarithmic form (F.2) performed somewhat better.  The derivation is as follows. 

 Given that the underlying production function may be written as, 

  ,V F K L , (F.3) 

 and assuming that the function is homogeneous of degree one, then the production function may 

be rewritten as, 

 ,1
V K

F
L L

 
  

 
. (F.4) 
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By substituting  for 
V

y
L

and  for 
K

x
L  

the production function may be rewritten again as, 

  y f x . (F.5) 

Correspondingly the marginal product of labor becomes, 

    f x xf x . (F.6) 

Under profit maximizing conditions and perfect competition, the wage rate must equal the 

marginal product of labor, 

    
dy

w f x xf x y x
dx

     . (F.7) 

 From equation (F.1) we see that y and w enjoy a functional relationship, 

  y g x  (F.8) 

Substituting equations (F.5) and the right hand side of equation (F.7) into (F.8) results in, 

 
dy

y g y x
dx

 
  

 
. (F.9) 

Therefore by substituting the right hand side of equation (F.7) into equation (F.2) we obtain the 

differential equation, 

 log log log
V dy

a b y x
L dx

 
   

 
. (F.10) 

Taking the antilogarithms of equation (F.10) we obtain, 

 

b
dy

y a y x
dx

 
  

 
. (F.11) 

By algebraic manipulation first divide through by a and take the log of both sides to obtain, 

 log log
y dy

b y x
a dx

   
    

   
, (F.12) 
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then multiple both sides by 
1

b
and take the antilogarithms of both sides to obtain, 

 

1

1

b

b

y dy
y x

dxa
  . (F.13) 

Subtracting y from both sides and multiplying both sides by 1 yields, 

 

1

1

b

b

y dy
y x

dxa
  . (F.14) 

Expressing the left hand side of equation (F.14) as a common fraction and divide both sides by x

yields, 

 

1 1

1

b b

b

a y y dy

dxa x


 . (F.15) 

Factoring out 
1

ba in the numerator of the left hand side yields, 

 
 

1 1 1

1

b b b

b

a y a y
dy

dxa x




 . (F.16) 

Cancelling out the term 
1

ba in both the numerator and denominator yields, 

 

1 1
b by a y dy

x dx




 . (F.17) 

Factoring out y in the numerator yields, 

 
 

1 1 1
1 b by a y

dy

x dx

 


 , (F.18) 

Substituting 
1

ba  and 
1

1
b

   into equation (F.18) yields, 

 
 1y y dy

x dx


 . (F.19) 
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Multiplying equation (F.19) by dx and 
 

1
1y y

yields, 

 
 1

dx dy

x y y



. (F.20) 

In the next several steps equation (F.20) is transformed into equation (F.31) by a partial-fraction 

expansion of the right hand side of equation (F.20) as follows.  Construct an equation using the 

right hand side of equation (F.20) and a separation of that expression into the sum of two 

fractions with unknown numerators  and A B as follows, 

 
   1 1

dy A B

yy y y  
 

 
. (F.21) 

Multiple both sides of equation (F.21) by the common lowest denominator yielding, 

  1dy A y By   . (F.22) 

The general procedure at this point is to solve this equation in terms of both  and A B thus 

constructing a new expression that is equivalent to the left hand side of equation(F.21).  By 

inspection of equation (F.21) it is reasonable to conclude that either  and/or A Bmust include the 

term dy .  For convenience begin by setting A dy then making the appropriate substitution and 

expansion of the term containing A to obtaining, 

    dy dy dy y By   . (F.23) 

We begin by subtracting the    dy dy y term from both sides and combining terms to 

obtain, 

  dy y By  . (F.24) 
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Dividing both sides by y yields, 

 
 dy y

B
y


 . (F.25) 

The equivalent of equation  (F.25) is, 

   1dy y B   . (F.26) 

Substituting the value of B from equation (F.26) into (F.22) obtaining, 

     11dy A y dy y y      . (F.27) 

Begin to solve for A by combining terms and subtracting  dy y from both sides yielding, 

    1dy dy y A y     . (F.28) 

Factor out a dy in the left hand side and divide both sides by  1 y obtaining, 

 
 

 

1

1

dy y
A dy

y










 


. (F.29) 

Thus confirming our original value for A .  Next substitute the values for  and A B into equation 

(F.21) obtaining, 

 
   

1

1 1

dy dy y dy

yy y y



 



 



 
 

 (F.30) 

  

The right hand side of (F.30) is the partial fraction decomposed equivalent of the left hand side. 

We may now rewrite equation (F.20) as, 

 
 

1

1

dx dy y dy

x y y











 


. (F.31) 
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Integration of equation (F.31) yields, 

  
1 1

log log log 1 logx y y 
 

    . (F.32) 

By taking the antilogarithms we obtain, 

 

 

1

1

1

y
x

y



 








. (F.33) 

Raising both sides by  yields, 

 
 1

y
x

y












. (F.34) 

In the next several steps we must first solve equation (F.34) for y then y in turn; we begin by 

isolating the y terms on the left hand side of equation (F.35) as follows, 

 
 1

y x

y

 

 



. (F.35) 

Factor y
out of the denominator of the left hand side of equation (F.35) obtaining, 

 
 

y x

y y

 

  



. (F.36) 

 Cancel the y
then invert the equation to obtain, 

  y
x






   . (F.37) 

Adding  to both sides yields, 

 y
x






   . (F.38) 
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Adding the fractions on the right hand side yields, 

 
x

y
x






  
 . (F.39) 

Taking the log of both sides yields, 

  log log logy x x       . (F.40) 

Multiplying both sides by 1


 yields, 

  1log log logy x x 


    . (F.41) 

Taking the antilogarithms of both sides yields, 

  
1

y x x  


  , (F.42) 

A more useful form of equation (F.42) is found as follows, by raising both sides by 

obtaining, 

  y x x      . (F.43) 

Multiplying through on the right hand side obtain, 

  y x     . (F.44) 

Raising both sides by 1


 yields, 

  
1

y x   


  . (F.45) 

To write out the full production function we substitute the original values of
V

y
L

 and
K

x
L

 to 

obtain, 

 

1

V K

L L

 

 


  

      

. (F.46) 
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Then multiple through by L to obtain, 

 

1

K
V L

L

 

 


  

      

. (F.47) 

Raising both sides by  yields, 

 
K

V L
L



   



 
  

      

. (F.48) 

Multiplying through the right hand side yields, 

  V K L       . (F.49) 

Raising both sides by 1


 yields the full production function, 

  
1

V K L   


   . (F.50) 

The authors have chosen to express this production function in a more symmetrical fashion by 

setting 
     and 

  which yields for 






 and for 

1 









 as follows, 

 





 



  . (F.51) 

Subtracting 





from both sides obtaining: 

 





 



  . (F.52) 

Set the right hand side to have a common fraction, 

 
1









 . (F.53) 
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To arrive at the final full production function, substitute the values for  and   into equation 

(F.50) to obtain, 

 

1

1
V K L


 

 

 

 



  
  
 

. (F.54) 

Raise both sides by  to obtain, 

 
1

V K L  

 

 

 

   
  
 

. (F.55) 

Next factor out the 
 term on the right hand side of (F.55) to obtain, 

   1V K L           . (F.56) 

Raising both sides by 1


 yields, 

   
1

1V K L    


    . (F.57) 

In most economic literature the ACMS production function utilizes y rather than V as the 

numéraire expressing equation (F.57) as follows, 

   
1

1y K L    


     (F.58) 
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APPENDIX G 

CHARACTERISTICS OF PRODUCTION FUNCTIONS 

 

 This appendix provides a recapitulation of the production functions noted in Chapter 4 

and indicates their salient characteristics. 

Table 7. Salient Characteristics of Production Functions 

Name Function 

Substitution RTS Application 
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n x

iy A x e
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

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y A x x x 
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Table 7 (cont.) 

Name Function 

Substitution RTS Application 
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Table 7 (cont.) 
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 σ
 =

 ∞
 

Im
p

er
fe

ct
 

0 
< 

σ 
< 

∞
 

N
o

ne
 σ

 =
 0

 

In
te

ra
ct

io
n/

 
Ye

s 
o

r 
N

o 

C
o

n
st

an
t/

V
ar

ia
b

le
 

M
ac

ro
ec

o
no

m
ic

 

M
ic

ro
ec

on
o

m
ic

 
Y=

 N
≥3

 

Revankar 
Generalized (1) 

    1

1 2 11y Ax x x





    V  ●  N C ●  

Revankar 
Generalized (2) 

    1

1 2 11
vv

y Ax x x





    V  ●  N V ●  

Kmenta      
2

1 2 1 2.5 1 ln ln ln 1 lnv x x v x v x
y ae

        
  C  ●  N V ●  

Bruno 
1

1 2 1y Ax x mx    C  ●  N C ●  

Lu-Fletcher 
 

1

1

1

1 2

2

(1 )
x

y A x x
x

 


 
  




 
  

  
  

  
 V  ●  N C ●  

Sato-Hoffman 
VES1 

 2

12

1

x
xx

y A e
x


 

  
 

 V  ●  N C ●  

Sato-Hoffman 
VES2 

    
 1 1

1 2

2 1 11

x
y Ax x x





 






 


 V  ●  N V ●  

Sato-Hoffman 
VES3 

 
 

    1 1 1

1 2
1y A x x


 

  
 

    V  ●  N C ●  

Sato CEDD (1) 
 11
11

1 2 1 1
11

y x x x





    
 V  ●  N C ●  

Sato CEDD (2) 
 22
12

2 1 2 2
21

y x x x





    
 V  ●  N C ●  

Sato CEDD (3) 2
1 1 1 1

1

ln
x

y x x
x

 
 

  
 

 V  ●  N V ●  

Sato CEDD (4) 1
2 2 2 2

2

ln
x

y x x
x

 
 

  
 

 V  ●  N V ●  

Chu, Aigner, and 
Frankel Log 
Quadratic 

 
  

 
  1 2

1 2

1 2

1 ln 1 ln

ln ln

1 2

1 2

x x

x xx x
y A

x x

 
 

  V  ●  N V ●  

Vazquez (1) 
     

1 11

2 1 1 21
y X X X X   





  


 V  ●  N C ●  

Vazquez (2)    1 11

2 1 2y X X X
  



   V  ●  N C ●  
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Table 7 (cont.) 

Name Function 

Substitution RTS Application 

C
o

n
st

an
t/

V
ar

ia
b

le
 

P
er

fe
ct

 σ
 =

 ∞
 

Im
p

er
fe

ct
 

0 
< 

σ 
< 

∞
 

N
o

ne
 σ

 =
 0

 

In
te

ra
ct

io
n/

 
Ye

s 
o

r 
N

o 

C
o

n
st

an
t/

V
ar

ia
b

le
 

M
ac

ro
ec

o
no

m
ic

 

M
ic

ro
ec

on
o

m
ic

 
Y=

 N
≥3

 

Vazquez (3)      

 1

21 1

1 2

1

1
x

y A x x

x



  

 

 

 


 

 

 

  
  

  
  

 V  ●  N V ●  

Sargan/CJL 
1

1 1

ln ln ln

1 ln ln
2

n

i i

i

n n

ij i j

i j

y A x

x x







 

 






 V  ●  N V ● y 

Diewert 
Generalized 
Leontief 

1 2 1 2

1 1

n n

ij i j

i j

y x x
 

  V  ●  N C ● y 

Kadiyala (1)  0 01 2
2 2

11 1 12 1 2 22 2
2y A x x x x

  
      V  ●  Y C ●  

Kadiyala (2) 
2

1

2
n n

ii i ij i j

i i j

y A x x x   
 

 
  

 
   V  ●  Y C ● y 

Vinod (1) 0 1 3 2 2ln

1 2

x
y e x x

   
  V  ●  Y V ●  

Vinod (2) 0

1

ln ln ln ln
n n

i i ij i j

i i j

y x x x  
 

     V  ●  Y V ● y 

Lovell (1)   
1

1 21ty Ae x x    


     C  ●  N C ●  

Lovell (2)   
1

1 1

1 2 21ty Ae x x x          V  ●  Y C ●  

Lovell (3) 
1

1 2

t ky Ae x x e     V  ●  N C ●  

Diewert 
Generalized 
Cobb-Douglas 

 1 1
2 2

1 1

ij
n n

i j

i j

y A x x


 

   V  ●  N C ● Y 

Denny 
Generalized 
Quadratic 

 1

1 1

n n

ij i j

i j

y x x




 


 

 
  
 
  

C
/
V 

 ●  Y C/V ● y 

Helmy  
GTPF (1) 

1
2

1 1 1

1

n n n

i i ij i j

i i ji

x x xn

i

i

y A x e
 

   





 
   V  ●  Y V ● y 

Helmy GTPF(2) 
1
2

1 1 1

ln ln

1

n n n

i i ij i j

i i ji

x x xn

i

i

y A x e
 

   





 
   V  ●  Y V ● Y 
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Table 7 (cont.) 

Name Function 

Substitution RTS Application 

C
o

n
st

an
t/

V
ar

ia
b

le
 

P
er

fe
ct

 σ
 =

 ∞
 

Im
p

er
fe

ct
 

0 
< 

σ 
< 

∞
 

N
o

ne
 σ

 =
 0

 

In
te

ra
ct

io
n/

 
Ye

s 
o

r 
N

o 

C
o

n
st

an
t/

V
ar

ia
b

le
 

M
ac

ro
ec

o
no

m
ic

 

M
ic

ro
ec

on
o

m
ic

 
Y=

 N
≥3

 

Helmy GTPF(3) 

1 1
1 2 2
2

1 1 1

1

n n n

i i ij i j

i i ji

x x xn

i

i

y A x e
 

   





 
   V  ●  Y V ● y 

Helmy Quadratic 
Logarithmic 

 
2

1

ln

1

n

i i

i i

n x

i

i

y A x e


 




   V  ●  Y V ● y 
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APPENDIX H 

CHOICE OF FUNCTIONAL FORM 

 

Table 8. Evaluation of Production Functions 

Name Function 

Selection Criteria 

A
p

p
lic

at
io

n 
&

 
O

b
je

ct
iv

e 

M
ai

n
ta

in
ed

 
H

yp
o

th
es

es
 

P
ar

si
m

o
n

y 
in

 
P

ar
am

et
er

s 

Ea
se

 o
f 

In
te

rp
re

ta
ti

o
n

 

C
o

m
p

u
ta

ti
on

al
 

Ea
se

 

Cobb-Douglas 
1

i

n

iy A x


   2 1 5 5 5 

Leontief  1 1 2 2min , , , n ny x x x    1 1 5 5 5 

Halter, Carter, 
Hocking 
Transcendental 

1

1

n

i i

i

n x

iy A x e





     E   

Heady-Dillon 
   Quadratic 

1 1 1

n n n

i i ij i j

i i j

y A x x x 
  

       E   

Heady-Dillon 
   Cubic 

2 3

1 1 1

n n n

i i i i i i

i i i

y a x x x  
  

         E   

Heady-Dillon 
   Square Root 

.5

1 1

.5 .5

1 1

         .5

n n

i i i i

i i

n n

ij i j

i j

y A x x

x x

 



 

 

  



 


   E   

Heady-Dillon 
   One and Half 
    Power 

1.5

1 1

1 1

         .5

n n

i i i i

i i

n n

ij i j

i j

y A x x

x x

 



 

 

  



 


   E   

Heady-Dillon 
   Inverse 

1 1

1 1 1

1
.5

n n n

i i ij i j

i i j

y x x x
A

  

  

       E   

Newman-Read 3 1 21 2 ln ln

1 2

x x
y Ax x e

 
  E     

Arrow, Chenery, 
Minhas, Solow 
(ACMS) 

  
1

1 21y A x x   


     E     

Brown-DeCani  1 2(1 )
v

y A x x   


     E     
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Table 8 (cont.) 

Name Function 

Selection Criteria 

A
p

p
lic

at
io

n 
&

 
O

b
je

ct
iv

e 

M
ai

n
ta

in
ed

 
H

yp
o

th
es

es
 

P
ar

si
m

o
n

y 
in

 
P

ar
am

et
er

s 

Ea
se

 o
f 

In
te

rp
re

ta
ti

o
n
 

C
o

m
p

u
ta

ti
on

al
 

Ea
se

 

Uzawa- 
McFadden 

1

v
n

i i

i

y A x










 
  

 
  3 3 4 5 1 

Ferguson-Pfouts 
(1) 

1 1 2 11

1 2

x
y x x e

  
  E     

Ferguson-Pfouts 
(2) 

3
1

2 2

1 2

x
y x x






 
 
   

E     

Hildebrand-Liu-
Bruno 

    
1

1

1 1 2 21y A x x x
     


    E     

Mukerji 0

1

1

i

n

i i

i

y A x










 
  

 
  3 4 3 4 1 

Ferguson 
Transcendental 

1

21 2

1 2

x

x
y Ax x e


 

 
 
   

E     

Nerlove-
Ringstad (1) 

1

ln

1

i

n y

i

i

y A x
 






 
  
 
  3 3 4 1 1 

Nerlove-
Ringstad (2) 1

n

i
i

i

a x

y Ae





 
 
 
 


  
  E   

Sato CES (1) 

 

1

1

1

 

ss

s

s s

s

s s

s i i

i s

y

x

z

z






















 
  
 

 
  
 





   E   

Sato CES (2) 

1

v
s

s s

s

y z










 
  
 
    E   

Sato CES (3) 

1

s

v
s

s s

s

y z











 
  
 
    E   

Revankar 
Generalized (1) 

    1

1 2 11y Ax x x





    E     

Revankar 
Generalized (2) 

    1

1 2 11
vv

y Ax x x





    E     

Kmenta      
2

1 2 1 2.5 1 ln ln ln 1 lnv x x v x v x
y ae

        
  E     
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Table 8 (cont.) 

Name Function 

Selection Criteria 

A
p

p
lic

at
io

n 
&

 
O

b
je

ct
iv

e 

M
ai

n
ta

in
ed

 
H

yp
o

th
es

es
 

P
ar

si
m

o
n

y 
in

 
P

ar
am

et
er

s 

Ea
se

 o
f 

In
te

rp
re

ta
ti

o
n

 

C
o

m
p

u
ta

ti
on

al
 

Ea
se

 

Bruno 1

1 2 1y Ax x mx    E     

Lu-Fletcher 
 

1

1

1

1 2

2

(1 )
x

y A x x
x

 


 
  




 
  

  
  

  
 E     

Sato-Hoffman 
VES1 

 2

12

1

x
xx

y A e
x


 

  
 

 E     

Sato-Hoffman 
VES2 

    
 1 1

1 2

2 1 11

x
y Ax x x





 






 


 E     

Sato-Hoffman 
VES3 

 
 

    1 1 1

1 2
1y A x x


 

  
 

    E     

Sato CEDD (1) 
 11
11

1 2 1 1
11

y x x x





    
 E     

Sato CEDD (2) 
 22
12

2 1 2 2
21

y x x x





    
 E     

Sato CEDD (3) 2
1 1 1 1

1

ln
x

y x x
x

 
 

  
 

 E     

Sato CEDD (4) 1
2 2 2 2

2

ln
x

y x x
x

 
 

  
 

 E     

Chu, Aigner, and 
Frankel Log 
Quadratic 

 
  

 
  1 2

1 2

1 2

1 ln 1 ln

ln ln

1 2

1 2

x x

x xx x
y A

x x

 
 

  E     

Vazquez (1) 
     

1 11

2 1 1 21
y X X X X   





  


 E     

Vazquez (2)    1 11

2 1 2y X X X
  



   E     

Vazquez (3)      

 1

21 1

1 2

1

1
x

y A x x

x



  

 

 

 


 

 

 

  
  

  
  

 E     
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Table 8 (cont.) 

Name Function 

Selection Criteria 

A
p

p
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at
io
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O

b
je

ct
iv

e 

M
ai

n
ta

in
ed

 
H

yp
o

th
es

es
 

P
ar

si
m

o
n

y 
in

 
P

ar
am

et
er

s 

Ea
se

 o
f 

In
te

rp
re

ta
ti

o
n

 

C
o

m
p

u
ta

ti
on

al
 

Ea
se

 

Sargan/CJL 
1 1 1

1ln ln ln ln ln
2

n n n

i i ij i j

i i j

y A x x x 
  
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