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Abstract

Development of automatic text correction systems has a long history in natural language processing
research. This thesis considers the problem of correcting writing mistakes made by non-native
English speakers. We address several types of errors commonly exhibited by non-native English
writers — misuse of articles, prepositions, noun number, and verb properties — and build a robust,
state-of-the-art system that combines machine learning methods and linguistic knowledge.

The proposed approach is distinguished from other related work in several respects. First,
several machine learning methods are compared to determine which methods are most effective
for this problem. Earlier evaluations, because they are based on incomparable data sets, have
questionable conclusions. Our results reverse these conclusions and pave the way for the next
contribution.

Using the important observation that mistakes made by non-native writers are systematic, we
develop models that utilize knowledge about error regularities with minimal annotation costs. Our
approach differs from earlier ones that either built models that had no knowledge about error
regularities or required a lot of annotated data.

Next, we develop special strategies for correcting errors on open-class words. These errors,
while being very prevalent among non-native English speakers, are the least studied and are
not well-understood linguistically. The challenges that these mistakes present are addressed in
a linguistically-informed approach.

Finally, a novel global approach to error correction is proposed that considers grammatical
dependencies among error types and addresses these via joint learning and joint inference.

The systems and techniques described in this thesis are evaluated empirically and competitively
in the context of several shared tasks, where they have demonstrated superior performance. In
particular, our system ranked first in the most prestigious competition in the natural language
processing field, the CoNLL-2013 shared task on text correction. Based on the analysis of this
system, four design principles that are crucial for building a state-of-the-art error correction system

are identified.
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Chapter 1

Introduction

The task of text correction has been of interest to researchers in natural language processing and
machine learning for many years. Over the last several decades, as people rely increasingly on
computers for writing and editing, the need for automatic systems that can identify and correct
errors not typically targeted by standard text correction tools has grown even more.

Recently, the task of text correction has shifted focus to mistakes' made by English as a Second
Language (ESL) writers. ESL error correction is an important problem, since today the majority
of people who write in English are not native English speakers (Gamon, 2011).

The increased interest in the field of correcting non-native writing in English can be observed
not only from the number of papers published on the topic but also in that three competitions
devoted to grammatical error correction for non-native writers have recently taken place: HOO-
2011 (Dale and Kilgarriff, 2011), HOO-2012 (Dale et al., 2012), and the CoNLL-2013 shared task
(Ng et al., 2013). These shared tasks have demonstrated that we are far from solving the problem
even with the availability of annotated ESL data sets, large native corpora, and various natural
language processing resources.

The most recent and also most prominent among these, the CoNLL-2013 shared task, cov-
ers several common ESL errors including article and preposition usage mistakes, mistakes in noun
number, and various verb errors. These are illustrated in Figure 1.1, where the words containing an
error are marked with an asterisk and @ denotes a missing word. Seventeen teams that participated
in the task built a wide array of both statistical approaches — which include discriminative classi-
fiers, language models, and statistical machine translation systems — and “knowledge”-engineered
modules. Many of the systems also made use of linguistic resources, augmented training with ad-

ditional annotated learner corpora, and defined high-level features that take into account syntactic

'The words mistake and error are used interchangeably throughout this thesis.



Nowadays *phone/phones *has/have many functionalities, *in-

cluded/including *@/a camera and *@/a Wi-Fi receiver.

Figure 1.1: Examples of representative ESL errors.

and semantic knowledge. In spite of the fact that the submitted systems incorporated similar re-
sources and employed sophisticated models, there was a wide variation among the scores obtained
by the teams, which suggests that there is not enough understanding of what works best and what
elements are essential for building a state-of-the-art error correction system.

Furthermore, in all three shared tasks on ESL error correction, the participating systems per-
formed at a level that is considered extremely low compared to performance obtained in other
areas of NLP: even the best systems attained F1 scores in the range of 20-30 points. Note that the
shared tasks targeted learners of various first language backgrounds, different proficiency levels and
focused on different types of writing (essay writing or scientific writing). Compare these results
to those from the task of co-reference resolution, arguably a very difficult high-level NLP problem
that requires deep understanding of text, where systems typically obtain F1 scores in the range of

60-70 points (Pradhan et al., 2012).

1.1 Why Text Correction Is a Difficult Problem

The key reason that text correction is a difficult task is that even for non-native English speakers,
the accuracy of the writing is very high, as errors are very sparse. Even for some of the most
common types of errors such as article and preposition usage the majority of the words in these
categories (over 90%) are used correctly. Because errors are so sparse, it is more difficult for a system
to identify a mistake accurately and without introducing many false alarms. More specifically, to
improve over the learner writing, an automatic system must perform at an accuracy level higher
than 90%. Today, there are very few NLP tasks where systems attain this level of performance.
To understand why it is difficult to develop a system that can improve over learner text, note
that the majority of ESL errors result in valid English words. Identifying and correcting such errors
thus requires considering the context around the potentially erroneous word. Characterizing the

surrounding context is not trivial as it may depend on various linguistic dimensions such as the



surface forms of the neighboring words, their parts of speech, syntactic functions in the sentence,
and so on. These contextual cues are highly variable and thus are difficult to encode via rules.
For this reason, the dominant approach to ESL error correction is to use statistical models. These
models typically learn the correct usage of a specific language phenomenon from large corpora of
correct native data.

Because automatic systems determine the presence of mistakes based on the contextual cues
around the target word, the context in the text to be corrected should be as similar as possible
to the training data from which the system learns correct usage. However, learner data is noisy.
The noise is manifested both in the presence of multiple mistakes, as errors tend to co-occur (see
Figure 1.1), and in the presence of unusual word combinations: even when learner writing does
not contain obvious infelicities, it commonly exhibits expressions and constructions that, while
acceptable to native English speakers, are not likely to be produced by native speakers. In sum,
the contextual cues present in the learner data are distinct from those found in correct native data
and are therefore misleading. This observation is supported by the finding that word n-grams
extracted from writings by ESL learners on average occur 2—3 times less frequently in native
English corpora than word n-grams obtained from a native English corpus (Rozovskaya and Roth,
2011).

When people start thinking about the problem of error correction, language models are the first
intuitive solution that comes to mind. In fact, it is commonly believed that the majority of mistakes
can be easily identified with a language model. In this thesis, it is shown that language models, even
when they are built using very large corpora of native English data, have very limited performance.
Noisy context is one reason why language modeling is not good enough for this problem: most of
the relevant contextual cues simply do not occur even in very large English corpora.

In many NLP applications, including text correction, we wish to generalize beyond surface word
information, but even for the most basic pre-processing tasks, such as part-of-speech (POS) tagging
and shallow parsing, performance on native data is below the level of the accuracy of non-native
text. Note that on ESL data pre-processing tools tend to do even worse because of the noisy
data problem alluded to above (Nagata et al., 2011). This implies that the context representation

generated using even the most accurate NLP tools is going to be noisier than the text the system



is trying to correct.
It is clear that automatic error correction must go beyond the standard approaches of automat-

ically inferring rules from correct native data.

1.2 Building a State-of-the-Art Text Correction System

In this thesis, we show that the ESL error correction task can be addressed through a combination
of machine learning techniques and linguistic knowledge. We identify and investigate several key
issues in ESL error correction that were not previously considered by researchers in this area, with
a focus on several types of prominent mistakes both on closed- and open-class words that ESL
learners exhibit. The proposed approaches result in superior error correction systems; in fact, the
systems that implement these approaches won several error correction competitions.

The first question addressed in this thesis is that of the choice of a machine learning algorithm
for ESL error correction: using two types of prominent ESL errors — in article and preposition
usage — we compare several state-of-the-art machine learning approaches that have been applied to
ESL correction tasks and determine which methods are most effective for this problem, and under
what conditions. These experiments are motivated by previous studies that compared models of
different training sizes and features (e.g., Gamon, 2010) and thus had questionable conclusions.

The second question that we address is motivated by the observation that ESL mistakes are not
random but systematic. For example, errors may depend on the writer’s first language. Previous
research either trains error correction models on native English data or on annotated ESL data.
Native-trained models do not take into account the specific types of errors that non-native speakers
make, while models trained on annotated learner data require expensive annotation. To address
this problem, this dissertation offers the idea of model adaptation to learner errors: the adaptation
approach allows models trained on native English data to utilize knowledge about error regulari-
ties without incurring expensive annotation costs. Adapted models combine a lot of native data
and small amounts of annotated learner data in training. Learner data is used only to estimate
parameters relating to specific error patterns — thus requiring minimal annotation of ESL data
— while most of the model parameters are estimated from native data that is readily available.

The adaptation approach combines the advantages of training on native and annotated data and



demonstrably improves error correction.

To date, research on correcting ESL mistakes has used models that assume a closed set of
triggers — e.g. the set of all prepositions, or the set of determiners — but open-class words such
as nouns and verbs do not fit this paradigm. To correct open-class words, the approach must be
extended to identify the relevant words, and to do so in text with additional errors of other types.
Verb errors in English are also more complex linguistically than mistakes on other parts of speech
due to the multiple functions verbs fulfill in a sentence. These additional complexities may explain
why mistakes on open-class words have received so little attention, despite the fact that some of
these errors are more frequent than the errors studied in previous work; the existing work (e.g.,
Lee and Seneff, 2008b; Gamon et al., 2009) focuses on special cases of open-class errors and does
not address the challenges outlined above.

In this thesis, we focus on two groups of open-class words — nouns and verbs — and address several
grammar and usage errors commonly associated with these parts of speech. General techniques to
correct mistakes on open-class words are described and evaluated. To account for the complexity
exhibited by verb errors, we propose a linguistically-motivated approach that makes use of the
notion of verb finiteness to identify types of verb mistakes, before using a statistical machine
learning approach to correct these errors.

The approaches proposed in this thesis led up to building state-of-the-art models in error correc-
tion that demonstrated superior performance in three error correction competitions. Specifically,
the system developed for the HOO-2011 shared task placed first in that competition; the system
that was built to participate in the HOO-2012 ranked first and second on different metrics; finally,
the system developed for the CoNLL-2013 competition outperformed the other 16 teams by a large
margin. Chapter 8 describes a complete error correction system that participated in the CoNLL-
2013 shared task and implements many of the ideas proposed in this dissertation. We analyze
the system and compare it against implementations by other teams in order to understand why
this system is doing so much better. As a result, four design dimensions are identified that are
crucial for building a robust error correction model and which are closely aligned with the methods
proposed in this thesis.

Finally, the last question that we address is the interplay of various linguistic phenomena as



they relate to error correction. Consider the example in Figure 1.1, where replacing the singular
phone with the plural phones requires also changing the agreement marker on the verb. Standard
models make decisions about each word independently, thereby ignoring these linguistic interactions
altogether, and tend either to make inconsistent predictions or simply fail to identify such errors.

We address such interactions in a model that considers the phenomena jointly.

1.3 Contributions

In spite of the growing interest in the field, research on automatic text correction is in the beginning
stages. This dissertation identifies and addresses several fundamental questions that establish

promising research directions in this area.

1.3.1 Choice of the Learning Algorithm

The first contribution of this thesis is an extensive, fair comparison of four state-of-the-art machine
learning methods for error correction tasks. The results of this comparison clear up problems and
contradictory conclusions from earlier evaluations that performed comparisons using incomparable
data sets. Our results do not support earlier conclusions with respect to the performance of count-
based models (Bergsma et al., 2009) and language models (Gamon, 2010), where no attention was
paid to the size of the training set when comparing different learning algorithms. We demonstrate
that the language modeling approach does not perform as well as other machine learning techniques.
Furthermore, we show that discriminative classifiers are superior models for ESL correction tasks.
In particular, it is shown that language models require five times more training data to achieve
the performance of a discriminative classifier. The findings in this part pave the way for the next

contribution and play a key role in later chapters where we build a complete error correction model.

1.3.2 Adaptation to Learner Errors

The second contribution of this thesis makes use of the well-known fact that learners make mistakes
in a systematic manner and concerns the problem of adapting models to learner mistakes. We show

that taking into account the specific types of errors that non-native speakers make can really help.



To expose models to error patterns, we introduce adaptation methods that allow us to build models
that utilize knowledge about learner errors minimal annotation costs.

The adaptation idea is based on the key observation that estimating parameters relating to error
regularities does not require a lot of annotation and can be done with a small annotation sample
from the representative group of learners. Given these error statistics estimated from minimal
amounts of annotated ESL data, the question is how to “inject” this knowledge into a learned
model. We describe two such methods for two state-of-the-art machine learning algorithms that
are identified to be superior for ESL correction tasks in the algorithm comparison experiments: one

method applies to generative models, while the other approach applies to discriminative models.

1.3.3 Correcting Errors on Open-Class Words

Our contribution here is that we develop strategies for addressing the specific challenges of building
models for correcting errors on open-class words. Specifically, methods for identifying nouns and
verbs in noisy learner text are developed that take into account pre-processing errors. Furthermore,
an end-to-end linguistically-motivated framework for the problem of correcting grammatical verb
mistakes is proposed. This framework draws on the linguistic analysis of verbs: first, the type of
verb error is determined using the notion of verb finiteness, and then the model proceeds to correct
it. This is a departure from prior research that assumed that the type of verb error to be corrected
is known in advance. Comparison of these techniques against other approaches, including those
adopted by other systems in the CoNLL-2013 task, reveals that the proposed methods considerably
outperform other techniques. This demonstrates that resolving these issues is key to building a

successful error correction system for errors on open-class words.

1.3.4 Key Principles for Building a State-of-the-Art Error Correction System

This dissertation also contributes four design principles crucial for building a state-of-the-art error
correction model. These principles are identified based on the analysis of the system developed
for the CoNLL-2013 competition and closely correspond to the methods proposed in this work:
choice of the learning algorithm; choice of training data (native or annotated learner data); model

adaptation to the specific types of errors made by writers; and the use of linguistic knowledge.



1.3.5 Joint Learning and Inference

Finally, the proposed joint approaches that address errors occurring in interacting grammatical
structures constitute an important contribution of this thesis. Specifically, we identify two pairs of
interacting phenomena, and, crucially, show how to reliably recognize these structures in noisy ESL
data, thereby facilitating the joint correction of these phenomena. Linguistic structures with inter-
acting grammatical properties are then addressed via joint inference and joint learning. The joint
inference approach is implemented on top of individually learned models using an integer linear
programming formulation (Roth and Yih, 2004a). The joint learning model learns each pair of these
phenomena jointly. Both of these approaches solve the challenges encountered by models that oper-
ate at the word level: the joint methods correct incoherent predictions that independently-trained
classifiers tend to produce. Furthermore, because the joint learning model considers interacting
phenomena during training, it is able to identify mistakes that require making multiple changes
simultaneously and that standard approaches miss. Overall, the joint model significantly outper-
forms the system developed for the CoNLL-2013 shared task and that consists of a collection of
independent classifiers. The joint models mark the first successful approach to jointly resolving

grammatical errors.

1.3.6 Features and Resources

In addition to the primary contributions outlined above, as part of this work, specific techniques
and resources for treating common ESL mistakes are developed. These constitute an important

contribution of the thesis.

e We develop state-of-the-art features for article and preposition error correction (Chapter 5).
The models that implement these features exhibited superior performance in several compe-

titions (Rozovskaya et al., 2011, 2012, 2013).

e As we develop a linguistically-motivated approach to verb error correction based on verb
finiteness, we generate annotation for verb finiteness for a subset of one of the learner corpora

(Chapter 7).



1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2, we present the machine learning background.
Related work in text correction is presented in Chapter 3. Chapter 4 describes the learner corpora
and the native English data sets that are used in this thesis, and the evaluation metrics. Next, in
Chapter 5 we present experiments on the comparison of learning algorithms. In Chapter 6, we study
closely the adaptation techniques for ESL error correction tasks. Chapter 7 describes methods for
addressing errors on open-class words. Based on the work in these chapters, we present an end-
to-end error correction model that focuses on five types of errors, which is described in Chapter 8.
Chapter 9 focuses on developing models that address mistakes in interacting structures. Chapter 10

concludes with a discussion of directions for future work.



Chapter 2

Machine Learning Background

The approaches developed in this thesis rely on statistical and machine learning techniques. This
chapter provides the necessary machine learning background and introduces the key machine learn-

ing concepts used throughout this thesis. Table 2.1 lists all the relevant machine learning notation.

2.1 Motivating Example

Machine learning studies algorithms for building systems that can learn from data. As an example,
consider the task of word sense disambiguation: given an ambiguous word such as bass, predict its

sense in the specific context. Examples below illustrate the two senses:
1. “The bass guitar is a stringed instrument played with the fingers or thumb.”
2. “Fishing tips for striped bass.”

Given the above two sentences, the goal is to build a model that learns to classify the occurrences

of the word bass in text into two classes that correspond to the two senses of this word. Specifically,

Notation Description

X Input example

Yy Output (binary/multiclass)

y = (v %, ..., y™M) | Output (structure)

d(x) Feature generating function (binary /multiclass): takes input elements from
X and maps them to d-dimensional feature vector. Often {0, 1}¢

o (x,y) Feature generating function (structure): defined jointly over input and
output

w € R? Weight vector

V(x;) The set of possible structures for input x;

Table 2.1: Machine Learning Notation.
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the learned model should assign the “music” sense to the first occurrence of the word and the “fish”
sense to the second one.

To develop such a system, one can make use of a large collection of texts (corpus) and use a
machine learning algorithm to learn the typical contexts that correspond to each of the senses. To
this end, each occurrence of the word bass in the corpus is represented as a vector of features that
characterize the context of the target word. Based on these features, a machine learning algorithm
learns a function h that distinguishes between the two senses. Then the learned model can be
used to classify new unseen instances of the word bass by assigning them to one of the two classes

—“fish” or “music”.

2.2 Learning Protocols

To build a machine learning system, such as the one for the word sense disambiguation example
above, we assume an existence of a training corpus from which the system will learn function
h. Learning protocol specifies the format of the training data. In this thesis, we use supervised
learning protocols. In supervised learning, the training data is labeled, i.e. all occurrences of the
word bass are specified for the correct sense. In contrast, in semi-supervised or unsupervised
learning protocols, the training data may have no labels or may be only partially annotated.
Formally, given an input space X (sentences containing the word bass) and output space ) that

consists of the label set (e.g., {fish, music}), the task is to find a function from X to Y:

h: X —=).

In supervised learning, the input to the learner is the training set Sirain {(x1,y1),- .-, (Tn,yn)}-
We also assume a feature generating function ® that maps each training example to a feature
vector. An example of a feature generating function for the word sense disambiguation problem
is a function that represents the context around the target word by defining a Boolean feature for
each word x,, whose value is 1 if and only if z,, occurs in the sentence, and 0 otherwise. This maps
a sentence containing the word bass to a boolean feature vector.

In the training stage, the learner produces function h that maps input x € X to output y € Y

11



based on the training samples.
In the prediction stage, given a test set Siest, {(Tnt1,Yn+1)s- -+ (Tntm, Yn+m)} of unseen exam-
ples, the learned function is used to classify them, i.e. to assign an unobserved output value y € Y

based on an observed input vector x.

2.3 Linear Models

Given the input and output space and a feature generating function, a machine learning algorithm
is applied to learn function h from a set of all possible functions that can be used to represent the
input. The set of functions from which h is selected is called a hypothesis space and denoted H.
The choice of the function is important, as more expressive functions are able to separate the data
into classes better but require more training data. Typically, the hypothesis space is restricted
in some way. The most common approach in many NLP tasks is to restrict the hypothesis space
to linear functions. Machine learning algorithms that assume that the input can be expressed by
a linear function are called linear models and can be defined by a weight vector w € R? that
corresponds to the feature vector, and the score of instance x can be expressed as a weighted sum

of the elements in the feature vector:

g(w,x) = sz‘@z‘(x) = wld(x).

In the training stage, the goal is to learn a weight vector w using the training data. In the
prediction stage, the learned weight vector is used to score all possible outputs and to select the
highest-scoring output y. The actual prediction functions are presented in the following sections
that define specific learning scenarios.

Linear models encompass a large family of machine learning algorithms, both discriminative

and generative (see Section 2.5).

2.4 Binary and Multiclass Classification

Binary prediction is a classification task where the output space ) contains two classes. Binary

classification can be formalized as a linear threshold function w’-®(x) > 0. The prediction function
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of a binary classifier is defined as follows:

y* = sgn(wl ®(x)).

That is, the model will predict the example as positive if and only if w’ ®(x) > 0.

Most NLP problems, including the task of text correction, are cases that require classification
into more than just two classes. Several strategies exist for extending the binary classification
approach to multiclass cases. In this thesis, we make use of multiclass classification using the one-
versus-all (OvA) decomposition, which makes the assumption that each class can be separated from
the rest using a binary classifier. In this method, given m labels, m independent binary classifiers
hy(x) are trained, corresponding to each of the m classes, where example (x, y) is considered positive
for classifier y and negative for all other classifiers. Prediction is then performed by applying each
binary classifier and choosing the label y, for which the corresponding classifier produces the highest

confidence score:

y* = argmax hy(x).
y

2.5 Discriminative and Generative Classifiers

The choice of a machine learning model is important and is one of the central questions addressed in
this thesis. Depending on how a decision on unseen examples is made, a distinction is drawn between
discriminative and generative models. Discriminative algorithms model P(Y|X) = P(Y|X,w).
Generative or probabilistic algorithms, on the other hand, learn a model of the joint probability
P(X,Y) = P(),X|w), ie. finding w that best matches P(X,)) on the training data. Two of
the most widely used discriminative algorithms are the Perceptron algorithm (Rosenblatt, 1958)
and Support Vector Machine (SVM) (Boser et al., 1992). In the generative family, one of the most
well-known algorithms is the Naive Bayes learning algorithm. We study representatives of each

family of these algorithms in more detail in Chapter 5.
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2.6 Structure Prediction

In the previous section, we considered a classification problem where prediction for each example is
made independently of other examples. In many NLP problems, however, predicting a label for a
given instance depends on decisions for other instances. Consider, for example, the Part-of-Speech
(POS) tagging task that is concerned with assigning POS tags to a sequence of words. Even though
tags need to be assigned to individual words, it is clear that the tags assigned to words in the same
sentence are not independent of one another. In structure prediction problems, predictions are
made for structures, where the decisions made on the elements of the structure are interdependent.
In the POS tagging example, a structure corresponds to a sequence of POS tags for a sentence.
Classifiers that we considered in the previous sections make predictions independently and are
called local models, while models that learn the best sequence of labels for a structure are referred
to as global predictors. We will use y to refer to the sequence of labels assigned to a structure;
y consists of multiple decisions assigned to the elements of the structure and can be expressed as

follows:

I’

y="vy™)
where 3 denotes the decision for the i** element of the structure and M is the total number of

elements in the structure.

2.6.1 Learning and Inference

In structure prediction, there are generally constraints imposed on the sequence of labels that
comprise the structure, which restrict the set of all possible sequences. For instance, in the POS
tagging example, the tag sequences should satisfy linguistic constraints imposed by the language.
In English, constraints could be enforced that exclude sequences containing multiple consecutive
determiners or clauses that do not have a predicate.

Finding the best assignment y* to a sequence of output variables y is called inference. Several
learning algorithms for modeling inference exist; these can be categorized into two frameworks.
One approach models the dependencies among the output variables in the learning process. Exam-

ples include Hidden Markov Models (HMMs), Markov Random Fields (MRFs), and Conditional
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Random Fields (CRFs, Lafferty et al., 2001).

The other solution is to decompose the model into two stages: learning and inference. In this
framework, learning is performed by local models, and in the learning stage, output structure is
completely ignored. The coherent assignment that satisfies the constraints on the label sequence is
imposed at decision time based on the scoring functions produced by individual classifiers (Roth
and Yih, 2004b, 2007). The main question in this framework is how to optimize the global solution
given the output produced by individual classifiers. Formally, the inference objective can be stated

as follows:

y* = argmax w! ®(x;,y).
yEV(xi)

The set Y(x;) represents all possible structures that can be generated for example x;. Note that,
unlike the feature generating function for local models ®(x), in structure prediction problems, the
feature function is defined jointly over the input and output space ®(x,y) and expresses depen-
dencies between decisions for instances that belong to the same structures.

Since not all possible assignments to the structure output y are allowed, we need a method
that allows us to solve the inference problem in the presence of constraints enforced on the output
sequence. Roth and Yih (2004b) formalize the inference problem as a constrained optimization
problem solved via the Integer Linear Programming (ILP) framework. This approach allows for
combining the output produced by individually-trained classifiers at inference stage, thereby gen-
erating consistent predictions that satisfy structural and linguistic constraints. This approach
provides a framework for an easy incorporation of linguistic or other structural knowledge into the
model in an elegant way.

ILP has been widely used in many NLP tasks, such as semantic role labeling (Punyakanok and
Roth, 2005); entity and relation recognition (Roth and Yih, 2004a); dependency parsing (Riedel
and Clarke, 2006); and event extraction (Riedel and McCallum, 2011).

Note that while no polynomial-time algorithms exist for ILP and many approaches for inference
have been used in the NLP literature, e.g. the cutting plane method (Sontag and Jaakkola, 2007), in
this thesis the ILP instances are relatively simple and do not require complex solutions. The reason

is that we decompose the problem and define ILP instances over linguistic structures (Chapter 9).
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Chapter 3

Background on Text Correction

This chapter gives an overview of prior research on text correction and ESL error correction. The
related work is clustered based on the problems that are identified and addressed in this dissertation.
Section 3.1 reviews research research on text correction with a special focus on approaches to
context-sensitive spelling correction, a problem that is very related to ESL correction and that
has had a significant impact on the ESL error correction field. Section 3.2 presents related work
in the area of correcting errors made by non-native writers of English, most of which was carried
out on two error types — articles and prepositions. We justify the choice of the machine learning
approach to ESL error correction adopted in this thesis, and, based on the prior work, identify
two key issues in the standard application of this approach to ESL error correction tasks — the
choice of the learning algorithm and the development of an appropriate training paradigm for
error correction tasks. Section 3.3 reviews studies on other, less-researched errors involving open-
class words, and uncovers the special challenges of addressing these errors. Section 3.4 studies the

problem of correcting errors in the presence of interacting linguistic phenomena.

3.1 Text Correction

Both native and non-native speakers make a variety of errors that are not always easy to detect.
Consider, for example, the problem of context-sensitive spelling correction (Golding and Roth,
1996; Carlson et al., 2001; Golding and Roth, 1999; Carlson and Fette, 2007; Banko and Brill,
2001).  The context-sensitive spelling correction task involves correcting spelling mistakes that
result in legitimate words, such as confusing peace and piece. Identifying context-sensitive mistakes
is more difficult than identifying errors that result in non-words, which can be identified by simply

checking whether the target word is a valid word in the dictionary. Detecting context-sensitive
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mistakes, on the other hand, requires taking into account the surrounding context. In this respect,
this task is similar to the word sense disambiguation problem alluded to in Chapter 2.

To identify and correct context-sensitive errors, a system must be able to characterize the
linguistic context in which the different words, such as peace and piece, tend to occur. These
linguistic characteristics are highly variable, and the choice of a specific word in a given context
may depend on the parts of speech of the neighboring words, the presence of lexical items in the
vicinity of the target, and so on. It is thus difficult to develop knowledge-engineering methods to
correct such errors.

Approaches to context-sensitive spelling correction can be classified into two main categories:
semantic methods that primarily rely on human-made linguistic resources and methods that address
the spelling problem via statistical and machine learning techniques.

An example of a semantic method is Hirst and Budanitsky (2005) that makes use of semantic
distance measures in WordNet (Fellbaum, 1998) to detect words that are anomalous (or seman-
tically distinct from nearby words) in context. This approach is based on the observation that
the correct word is generally semantically related to the words occurring in its immediate context,
but a context-sensitive mistake is not. Note that because the semantics-based techniques rely on
characterizing words via semantic relatedness, these approaches cannot handle well mistakes that
involve confusing words that do not carry a lot of semantic content or that are semantically similar
(Hirst and Budanitsky, 2005).

The machine learning approaches to the context-sensitive spelling problem are considered in

more detail, as they also represent the dominant paradigm in ESL correction tasks.

3.1.1 Machine Learning Approaches to Context-Sensitive Spelling Correction

The machine learning line of research investigating context-sensitive spelling correction views the
problem as the task of word disambiguation or word selection (Roth, 1998). Existing works typically
follow the supervised learning protocol and rely on pre-defined confusion sets for specifying the
label space.

A confusion set or a candidate set (Golding and Roth, 1996) specifies the list of words that

are frequently confused or used instead of one another in writing. Examples of confusion sets for
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context-sensitive spelling correction are {sight, site, cite} and {piece, peace}.

Given a confusion set, the context-sensitive spelling task can be treated as a word disambigua-
tion problem over members of the confusion set. The problem is cast as a multiclass classification
task, with a classifier trained on native English data that is assumed to be error-free. Each oc-
currence of a confusable word in text is represented as a wvector of features derived from a context
window around the target.

The machine learning paradigm offers two important advantages. First, unlike the semantics-
based methods, it is not restricted to a specific type of confusions and can handle mistakes on both
semantically-related and function words. Most of the ESL errors belong in one of these categories.
Second, this supervised training setting allows for training models on a lot of data without the
annotation effort that is usually needed to generate labels for training examples. The reason is
that given a corpus of native English data from a reliable source that is assumed to have no spelling
mistakes, each target word occurrence in text (e.g., peace) is treated as a positive training example
for the corresponding word class, while negative examples can be inferred by substituting words in
the confusion set for the correct word. Given text to correct, for each word in text that belongs to
the confusion set, the classifier predicts the most likely candidate in the confusion set.

Different machine learning methods within this general paradigm have been applied to the
context-sensitive spelling problem (e.g., Mays et al., 1991; Gale et al., 1993; Yarowsky, 1994;
Golding, 1995; Golding and Schabes, 1996; Golding and Roth, 1999; Banko and Brill, 2001; Carlson
et al., 2001; Liu and Curran, 2006; Carlson and Fette, 2007).

3.2 Approaches to Correcting ESL Errors

ESL error correction has recently become the focus of considerable interest in the NLP field,
generating many publications and resulting in three recent shared tasks (Dale and Kilgarriff, 2011;
Dale et al., 2012; Ng et al., 2013). A large proportion of this research has focused on correcting
mistakes in article and preposition usage (Izumi et al., 2003; Han et al., 2006; Felice and Pulman,
2008; Gamon et al., 2008; Tetreault and Chodorow, 2008b; Gamon, 2010; Tetreault et al., 2010;
Dahlmeier and Ng, 2011), although several selected studies also consider verb-related and noun-

related errors (Lee and Seneff, 2008a; Gamon et al., 2008; Dahlmeier and Ng, 2012).
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With the exception that learners and native writers exhibit errors of different types, most of
the grammar and usage mistakes made by non-native speakers of English also fall into the category
of context-sensitive errors, since they result in valid English words being confused. For instance,
preposition and article confusions are some of the most common grammar and usage errors for ESL
writers (Dalgish, 1985; Bitchener et al., 2005; Leacock et al., 2010). An additional challenge of ESL
error correction is the noisy context that is manifest both in the presence of multiple mistakes, as
errors tend to co-occur, and in the tendency of non-native writers to use constructions that may
sound unnatural to native speakers, even when a native speaker finds the sentence to be acceptable.

Several ideas in this thesis are developed using article and preposition usage errors. We illustrate
these below and, in parallel, introduce concepts and terminology related to error correction that are
used throughout the thesis. The error correction terminology is summarized in Table 3.1. Chapter

4 provides more detail on all error types considered in this work.

1. “They listen to *@/the lecture carefully.”
2. “Laziness is the engine of *the/@ progress.”

3. “He is an engineer with a passion *to/for what he does.”

In the above sentences, the source word (the word chosen by the ESL writer) and the label (the
correct choice, as specified by a native English speaker) are emphasized. Incorrectly used words
are marked with an asterisk, and @ denotes an error that involves an incorrectly omitted word (1)
or a superfluous word (2). In (1), the definite article is incorrectly omitted. (2) is an example of
an unnecessary article. In (3), the writer uses an incorrect preposition.

It is clear that the errors exemplified above do not lend themselves well to “knowledge”-
engineering approaches. Indeed, prior research showed that rule-based systems cannot generalize
well and are thus extremely limited in the types of mistakes that they can handle. Gamon et al.
(2009) developed rules that address misuse of English irregular verbs. In the CoNLL-2013 shared
task, selected teams enhanced their systems with rule-based modules but these dealt only with a
small subsets of errors in the data, such as choosing an appropriate verb form in a restricted set of
contexts or correcting number errors on nouns that belong to special categories (Xing et al., 2013).

Because it was obvious that rule-based approaches are not appropriate for ESL error correction,

machine learning methods have become the dominant framework in the field.
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Concept name Description

Target word A word in text that is selected as input to a classifier

Candidates The words that are selected as input to a classifier
The set of words that are likely to be misused in place of
one another, e.g., the set of prepositions

Confusion set (candidate set)

The original word appearing in text, as chosen by the

Source .
writer
Label The correct word, as judged by the annotator
Context features Features that characterize the context of the target word

Table 3.1: Error Correction Terminology.

3.2.1 Standard Machine Learning Approach to ESL Error Correction

The standard machine learning approach to correcting ESL mistakes follows the methodology
of the context-sensitive spelling correction task. In the application of this training approach to
ESL correction tasks, a model is tailored toward one specific mistake type, e.g. errors involving
preposition usage, and is trained on well-formed native English text with features defined based on
the surrounding context. Confusion sets are formed for each task. For instance, in preposition error
correction, it is common to include the top n most frequent English prepositions. All occurrences
of the top n prepositions in text are selected as input to the classifier. These input words are called
candidates. In preposition systems, candidates can be identified in text based on a closed set of
prepositions pre-defined in the confusion set. The features are generally based on the surface form,
part-of-speech information and syntactic function of words in the immediate context around the
potentially erroneous word. The classifier is then applied to non-native text to select the most
appropriate candidate from the confusion set in context.

Based on this standard approach to ESL error correction that trains a machine learning model

on native English data, we identify two key questions that are addressed in subsequent chapters:

e What is the right way to train a model for correction tasks (Chapter 6)?

e How does the choice of a machine-learning algorithm affect the performance of an error

correction system (Chapter 5)?

We expand on these questions below.
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3.2.2 Selection Training Paradigm for ESL Correction Tasks

In the approach described above, a machine learning algorithm is used to train a model on native
English data. The model is then applied to non-native text to select the most appropriate candidate
from the confusion set (e.g., article or preposition). We call this approach to ESL error correction a
selection paradigm, because the candidate is selected based solely on the context around the target
word, while the author’s word choice is not used.

A number of works in ESL error correction follow the selection training paradigm. Izumi
et al. (2003) used a maximum entropy model to detect 13 types of errors, including preposition
and article usage errors, in essays written by Japanese learners of English. Han et al. (2006)
trained a maximum entropy model to correct article mistakes. Chodorow et al. (2007), Tetreault
and Chodorow (2008b), and Felice and Pulman (2008), Tetreault et al. (2010) trained maximum
entropy models, and Felice and Pulman (2007) trained a voted perceptron algorithm using various
word-n-gram, part-of-speech and parse features to correct preposition errors. Gamon et al. (2008)
trained a decision tree model and a language model to correct errors in article and preposition
usage. Yi et al. (2008) proposed a web count-based system to correct determiner errors. Bergsma
et al. (2009) applied frequency-based algorithms with web-scale n-grams as features to preposition
selection and context-sensitive spelling correction.

While the above systems followed different machine learning frameworks and had slight dif-
ferences in the exact choice of features used, all of them adopted the selection paradigm outlined

above.

3.2.3 Selection and Correction Training Paradigms

The key reason that the selection approach has been popular in error correction is that it does
not require annotated data for training. Native data (from a “trustworthy” source, and therefore
presumed to be correct) is used for training the system; it is cheap and is available in large quantities.

It is clear, though, that there is a problem with this standard approach of training on native
data, as it ignores a key feature of the error correction problem that distinguishes it from the typical
word disambiguation problem: in error correction tasks, we also have the word used by the author.

Depending on whether the author’s word choice is used as a feature in training, we distinguish

21



The source feature is not used
in this model.

Selection paradigm

He is an engineer with a passion what he does.

\\
X
B ~—

Context features
w,B=passion, w;A=what,
w,Bw, B=a-passion, ...

Correction paradigm

He is an engineer with a passion to what he does.

_—

Context features

w,B=passion, w,;A=what,
w,Bw, B=a-passion, ...,

N source=to J

label=for J source=to ]

Figure 3.1: Two training paradigms for error correction tasks. In the selection training
paradigm, models use only contextual information around the target word both in training and
when making a prediction. In the correction paradigm, the author’s word (the source word) is also
used as a feature.

between two training paradigms for ESL correction tasks. In the standard selection paradigm, the
decision of the classifier depends only on the context around the author’s word, and the author’s
word itself is not taken into consideration in training. In the correction training paradigm, the
source word is also used as a feature. The two training paradigms and the information available to
the models in training and at prediction time in each case are illustrated in Figure 3.1.

The source word is an important piece of information. To begin with, even for ESL learners
over 90% of their article and preposition usage is correct (Chapter 4); this is higher than the
performance of the state-of-the-art classifiers for article and preposition word selection, (e.g., Han
et al., 2006). Consequently, not using the writer’s word, when making a prediction, may result in
a system that adds more mistakes than there are in the data.

Furthermore, non-native English speakers make mistakes in a consistent manner, which is re-
flected in specific error patterns (see Chapters 4 and 6). These error patterns may be individual to
a specific learner, first-language dependent, or prominent across multiple first languages.

One way in which error regularities are manifested is the error rates — i.e. the percentage of
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incorrectly used words — characteristic for ESL tasks. While generally error rates are low (see Table

5.7 in Section 6.4.2), more proficient learners will make fewer mistakes than beginners.

First-Language Influence
It is well known that the native language of the learner makes a significant impact on the use of
English. To illustrate how error regularities may result from first-language influence, consider, for

7

instance, a Chinese learner of English who might say “congratulations to this achievement” instead
of “congratulations on this achievement”, while a Russian speaker might say “congratulations with
this achievement”.

The effect of “language transfer” — that is applying knowledge from the native language, when
learning a foreign language — has been studied for a long time in the second language acquisition
literature. Language transfer can occur in grammar, pronunciation, vocabulary, discourse, and
reading (Rod, 2008). Studies on cross-linguistic influence have clearly shown that the use of a
foreign language is affected by the grammar of the first language, including phonology, the use
of syntactic constructions and word order, morphosyntactic properties, lexical word choice, and
so on (Odlin, 1989; Gass and Selinker, 1992; Ionin et al., 2008; Montrul and Slabakova, 2002;
Montrul, 2000; Oh and Zubizaretta, 2003). The study of Ringbom (1978) provides evidence that
the vocabulary of the native language affects the word choice in the second language. A number of
studies consider the acquisition of collocations and how the collocations in the first language affect
the acquisition and production of collocations in the second language (Biskup, 1992; Nesselhauf,
2003).

Article usage is another classic example of first-language influence. Article usage in English is
known to be notoriously difficult even for very advanced ESL speakers (Ionin and Montrul, 2009),
and the misuse of English articles by ESL learners is a topic that attracted a considerable amount
of interest in second language acquisition research. Languages vary in whether they have articles
(English, German, French do, but Chinese, Russian, and Korean do not). Moreover, languages that
have articles differ also with respect to how articles are used. For instance, French and Spanish
mark plural nouns that have generic references with the definite article, while English does not.
Thus, the misuse of English articles by language learners reflects the use of articles in their native

language and is manifested in how speakers of another language interpret and produce articles in
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English. These findings as well as first-language-dependent regularities related to other mistake
types are clearly supported by error statistics from learner corpora (Dalgish, 1985; Lee and Seneff,
2008a). For example, speakers of article-less languages such as Russian tend to make considerably

more article mistakes in English than speakers whose first language has articles (see Chapter 4).

Regularities Across First-Language Backgrounds
In addition to first-language influence, some types of confusions are much more likely to occur than
others across multiple first languages. For example, regardless of the first language, ESL writers

are 70 times more likely to incorrectly use in in place of on than to use from (see Chapter 6).

Using the Source Word In Error Correction

Because ESL mistakes are regular, knowing the original word of the ESL writer provides information
about which word was intended. Therefore, in addition to the surrounding context used in selection
tasks, in error correction tasks, the choice of the right candidate should also depend on the original
word chosen by the author.

The system can consider the word used by the writer at evaluation time, by proposing a cor-
rection only when the confidence of the classifier is high enough, but the source word cannot be
used in training if the classifier is trained on error-free native English data. Ideally, we would like
to train using annotated learner text. In that case, the original word of the writer can be used as
a feature for the classifier, and the correct word, as judged by the annotator, will be viewed as the
label.

Indeed, models trained on error-annotated data, even when trained on smaller amounts of data,
perform significantly better than models trained on native English data, as they learn about the
error patterns of the ESL writers (Gamon, 2010; Han et al., 2010; Dahlmeier and Ng, 2011). Han
et al. (2010) trained a model on partially annotated Korean learner data. Gamon (2010) proposed
a hybrid system for preposition and article correction, where two classifiers, trained on native and
ESL data, are combined into a meta-classifier. Dahlmeier and Ng (2011) proposed an approach to
correcting article and preposition mistakes using the Alternating Structure Optimization algorithm,
which also combined learner and non-learner text for training. But note that while training on

annotated ESL data offers the possibility of improved models, this approach requires large amounts
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of annotated ESL data (Gamon, 2010).

3.2.4 'What is the Right Way to Train for Correction Tasks?

Training on native versus annotated learner data raises the question of the trade-off between the
availability of expensive supervision in the form of annotated ESL data and the quality of the
learned models. In Chapter 6, we address the question of what is the most appropriate way to
train for correction tasks, given the limitations and advantages of each data source. In particular,
Chapter 6 explores the advantages of training on native versus annotated learner data and proposes
an approach to building models that incorporate the best of both modes: it will train on native texts
to facilitate the possibility of training from large amounts of data without the need for annotation,
but use the correction mode with a modest amount of annotated ESL data so that it can adapt to
writers’ errors.

However, before addressing the problem of the appropriate training paradigm for correction
tasks, in Chapter 5 we look into algorithm comparison experiments based on the standard selection
paradigm of training on native data: these experiments also provide insight into the error correction

problem because we can learn which algorithms work better for the task.

3.3 Correcting Errors on Open-Class Words

Most of the effort in ESL error correction so far has been on article and preposition usage errors, as
these are some of the most common mistakes among non-native English speakers of various first-
language backgrounds. In addition, these errors lend themselves especially well to the machine
learning approach outlined above: the confusion sets can be formed in a relatively simple way, and
each of these phenomena can be addressed by building one classifier.

Mistakes on open-class words have attracted significantly less attention in the NLP literature,
even though some of these errors are just as prevalent among non-native speakers of English.
Notably, as shown in previous studies (Izumi et al., 2003; Lee and Seneff, 2008b) and Section 7.2,
grammatical misuse of verbs is more common than determiner and preposition usage mistakes
in several learner corpora. The acquisition of noun number in English is notoriously difficult for

learners whose first language does not mark singular/plural on nouns, such as Chinese or Japanese
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(see Chapter 4). As an illustration of grammar errors on nouns and verbs, consider the sentences

below:

1. “Some countries are having difficulties in managing a place to live for their *citizen/ citizens

as they tend to get overpopulated.”
“We *discusses/discuss this every time.”

“T will be lucky if T *{will find}/find something that fits.”

“They wanted to visit many places without *spend/spending a lot of money.”

ovok N

“They arrived early to *organized/organize everything”.

The first sentence shows an example of a mistake in noun number. The remaining examples
illustrate various mistakes on verbs. Grammar errors on nouns and verbs are less understood
linguistically and more difficult to treat. The reason is that correcting noun and verb errors
requires a new paradigm that incorporates the specific components for correcting errors on open-
class words. In particular, identifying the relevant words in text cannot be done using a closed
list of words. Furthermore, because verbs fulfill multiple grammatical functions in a sentence, verb
errors are sub-categorized into several groups, depending on the role of the verb in the sentence
and the grammatical properties that correspond to its function.

For the above reasons, verb errors, while being more prevalent than article and preposition
errors, are some of the least studied. With a few exceptions, there has been little work on verb
errors. Moreover, because verb mistakes are so complex linguistically, the little earlier work done
on verb errors only considered subsets of these errors and assumed the error sub-type is known
in advance. Gamon et al. (2008) developed rules for detecting gerund/infinitive confusions. Lee
and Seneff (2008b) proposed an approach based on pattern matching on parse trees combined
with word n-gram counts for correcting agreement misuse and some types of verb form errors.
However, tense mistakes are excluded in this study, even though tense errors constitute the most
common category of verb errors for ESL learners and account for 40% of all grammatical verb
errors (see Section 7.2.1). Tajiri et al. (2012) considered only tense mistakes. In all these studies,
it was assumed that the type of mistake that needs to be corrected is known, and irrelevant verb
errors were excluded (e.g., Tajiri et al. (2012) addressed only tense mistakes and excluded from

the evaluation other kinds of verb errors). In other words, it was assumed that part of the task is
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solved. But note that, unlike in article and preposition error correction where the type of mistake
is known based on the surface form of the word, in verb error correction, it is not obvious.

Work on noun errors is even more scarce; several published systems implement noun number
correction modules either without describing it (Dahlmeier and Ng, 2012) or without carefully
studying its components (Kao et al., 2013; Xiang et al., 2013). As a result, many challenges that
are specific to correcting mistakes on open-class words have not been previously addressed.

In Chapter 7, we discuss the specific challenges of addressing mistakes on open-class words: noun
number errors and most prominent mistakes on verbs. It is shown that addressing these challenges
via a linguistically-informed machine learning approach is crucial for developing a state-of-the-art

system that targets these errors.

3.4 Global Approaches to Error Correction

Most of the work in the area of ESL error correction has addressed the task by building statistical
models that specialize in correcting a specific type of mistake. The predictions made by individual
models are then applied independently (Rozovskaya et al., 2011) or pipelined (Dahlmeier and Ng,
2012).

The standard approach of training individual classifiers considers each word independently and
thus assumes that there are no interactions between errors and between grammatical phenomena.
But an ESL writer may make multiple mistakes in a single sentence, and these result in misleading

local cues given to individual classifiers. Consider the example below:
e “In supermarket *monitor/monitors *is/are needed because we have to track thieves.”

The agreement error on the verb is interacts with the noun number error: a correction system
that takes into account the context may infer, because of the word monitor, that the verb number
is correct. For this reason, a system that considers noun and agreement errors separately will
fail to identify and correct the interacting errors. Furthermore, it may also produce inconsistent
predictions.

Clearly, a successful error correction system needs to go beyond the approaches that train inde-

pendent classifiers: it must consider the task at the sentence level. Approaches to error correction
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that go beyond individual linguistic phenomena can be broken down into those systems that are
agnostic to the type of error they are trying to correct and those that attempt to combine the
output of individual classifiers to find a global solution.

Park and Levy (2011) apply a noisy-channel model (Shannon, 1948) that is not confined to a
specific error type but they find that the model has serious limitations, since in many instances the
decisions are based on a bigram language model, even though language models are not as powerful
as other learning methods for this task (Chapter 5). Gamon (2011) is another work that considers
error correction beyond word-level phenomena by proposing a higher-order sequence model that is
not restricted in the set of corrections. However, it is found that the method is not competitive
with the traditional methods that target errors independently and restrict the set of potential
corrections.

At the level of combining error-specific classifiers, Brockett et al. (2006) applied machine-
translation techniques to correct noun number errors on mass nouns and article usage but their
application was restricted to a small set of constructions. Dahlmeier and Ng (2012) proposed a
decoder model that focuses on combining the output produced by individual classifiers for several
types of mistakes by finding an optimal sequence in which the corrections are applied. The key
idea is that by applying the models in order, one can solve the problem of noisy data and the
presence of multiple corrections in context, since the subsequent classifiers will receive cleaner con-
text. The problem, however, is that each of the models introduces more errors than it corrects.
Incidentally, this problem was encountered by other systems that attempted to pipeline the output
in the CoNLL-2013 shared task (Ng et al., 2013). Furthermore, because the decoder still corrected
mistakes in a pipeline fashion, one at a time, it is unlikely that it could deal with cases that require
simultaneous changes. Finally, in parallel to the work presented here, Wu and Ng (2013) attempted
the ILP-based approach of Roth and Yih (2004b) in this domain but were not able to show any
improvement because of the nature of the corpus they used and, most importantly, because the
joint inference applied constraints in an indiscriminate manner.

In Chapter 9, we describe the first successful approach that addresses the problem of interacting

linguistic phenomena by modeling these using joint inference and joint learning.
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3.5 Summary

This chapter reviews prior work on text correction in general and related work on ESL error
correction in particular. The standard approach to ESL error correction that adopts the machine
learning paradigm developed for addressing context-sensitive spelling mistakes is presented. The
key concepts and ideas that are important to have in mind reading the rest of the thesis are
discussed: the distinction between the selection and correction paradigms based on whether the
author’s word is used in training and the motivation for this distinction; the lack of treatment in
the literature of open-class words; the fact that errors interact, intuitively requiring a joint model

as solution, but which raises problems of accurately modeling the relevant linguistic structure.
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Chapter 4

Data Sets and Evaluation Metrics

This chapter introduces the data sets used to perform experiments in this dissertation and explains
evaluation metrics commonly employed in error correction tasks. Section 4.1 introduces the types
of learner errors addressed in this work. In Section 4.2, we describe the learner data sets. Next, we
provide details on the annotation of one these data sets, the Illinois corpus. Section 4.4 presents
the native corpora, and Section 4.5 describes the evaluation metrics. Section 4.6 summarizes the

chapter.

4.1 Learner Errors

In this dissertation, we focus on errors made by learners of English as a Second Language and
consider several grammar and usage mistakes that are most prominent among non-native English
speakers: article, preposition, noun number, and several types of verb errors. These are illustrated
in Table 4.1.1 These errors reflect misuse of linguistic properties that are associated with the
most frequent parts of speech, and represent some of the most common mistakes among non-native
speakers.

There are some interesting properties that characterize some of these errors but not others.
For instance, preposition mistakes are common across many first-language backgrounds, article
mistakes are most often exhibited by learners whose first language does not have articles, while
noun number errors are more strongly correlated with speakers of select first languages but less
widespread among learners in general. Verb errors can be viewed as a special class of mistakes,

since even though they are as common as article or preposition mistakes, they are less homogeneous

We refer to these errors as grammar and usage mistakes, as not all of these mistakes are strictly grammar, even
though some researchers denote all of these as grammatical mistakes. Lexical choice errors are not the focus of this
work.
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Error type Examples

Article “Laziness is the engine of *the/& progress.”

Preposition “He is an engineer with a passion *to/for what he does.”

“Some countries are having difficulties in managing a place to live for their
*citizen / citizens as they tend to get overpopulated.”

“Science is surviving by overcoming the mistakes not by uttering the
*truths /truth.”

Verb (Agreement) | “We *discusses/discuss this every time.”

“Please check if the kids still keep throwing toys into the toy box in the

Noun number

Verb (Tense) backyard. I *remove/removed some things but it *is/{will be} full again
very soon.”
“They wanted to visit many places without *spend/spending a lot of

money.”
“It was not *surprised / surprising to observe an increasing need for a con-
venient and cost effective platform.”

Verb (Form)

Table 4.1: Errors addressed in this thesis. Note that only the errors exemplifying the relevant
phenomena are marked in the table; the sentences may contain other mistakes.

and include misuses that exemplify multiple grammatical properties, e.g. agreement, tense, voice,
non-finite form. .

Because of these distinctions, the choice of the learner data set in the experiments is motivated
in part by the type of error being addressed. For instance, to evaluate methods for noun number
errors, it is essential to obtain data from a specific group of learners. Since verb errors are not

homogeneous, one needs a larger learner corpus for developing a robust system.

4.2 Learner Data Sets

We use three corpora of annotated learner texts. All of them contain essays written by ESL learners,
but they vary with respect to the annotation schema, proficiency level, and the first language of
the learners. The methods proposed in this thesis are applied to multiple data sets and error types
to demonstrate their robustness but experiments in the following chapters make use of different

corpora, depending on the goal of the experiments.
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4.2.1 The Illinois Data Set

The Illinois data set is a collection of essays written by ESL learners and annotated? by native
English speakers (Rozovskaya and Roth, 2010a). The data set contains 63,000 words and includes
data from speakers of nine first languages. The Illinois corpus is unique in containing data from
speakers of multiple first-language backgrounds and, importantly, includes alternative corrections.
Article and preposition data from the Illinois corpus is used in the algorithm comparison experi-
ments in Chapter 5; the experiments use data from writers belonging to five language groups, as
their writing contains a significant number of the relevant errors: Chinese, Czech, Italian, Russian,

and Spanish. Section 4.3 provides details on the annotation of this corpus.

4.2.2 The FCE Data Set

The FCE data set (Yannakoudakis et al., 2011) contains 1244 student essays produced by learners
of upper-intermediate proficiency level (1244 distinct learners) of 16 first-language backgrounds.
The data set contains about 500,000 words of learner text and is corrected and error tagged using a
detailed error classification schema of 88 error tags. Similar to the Illinois collection, FCE contains
data by several first-language backgrounds and is annotated by native speakers but it is significantly
larger. The data set, however, does not specify alternative corrections and is not evaluated with
respect to inter-annotator agreement. We use the corpus in article and preposition experiments

(Chapters 5 and 6) and in the verb experiments (Chapter 7).

4.2.3 The CoNLL Data Set

The techniques developed in this thesis resulted in superior error correction models developed for
three text correction competitions, including the recent CoNLL-2013 shared task, where our system
was ranked first among 17 participating teams. In Chapter 8, we describe and analyze this system
along several dimensions that are aligned with the key contributions of this thesis. In addition,
this corpus contains a good number of noun errors, and it is used in the experiments that address
this error type (Chapter 7). Finally, in Chapter 9 we use the CoNLL data set to develop a model

that applies joint learning and inference to account for linguistic interactions among errors.

2The annotation of the Illinois corpus is available at http://cogcomp.cs.illinois.edu.
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Data set Experiments Errors Size (words)

Illinois Algorithms (Chp. 5) Articles, preps. 63,000

FCE Algorithms (Chp. 5); Adaptation (Chp. 6); Articles, preps., 500,000
Open-class errors (Chp. 7) verbs

CoNLL (Train) | Open-class errors (Chp. 7); Illinois system at | Articles, preps., 1,200,000

CoNLL(Test) CoNLL (Chp. 8); Joint approaches (Chp. 9) | nouns, verbs 29,000

Table 4.2: Sizes of the ESL data sets.

The CoNLL-2013 shared task released training and test data, and we denote these as CoNLL
train and CoNLL test, respectively. The training data of the shared task is the NUCLE learner
corpus (Dahlmeier et al., 2013). The corpus contains essays written by learners of English as a for-
eign language at the National University of Singapore and is corrected by English instructors. The
test data for the task consists of an additional set of 50 student essays from the same first-language

background. The training and the test data contain 1.2 million and 29,000 words, respectively.

4.2.4 FError Statistics and Error Rates

Table 4.2 lists the size of each data set (total number of words) and the experiments in which each
of the data sets participates. Chapters 5 and 6 that address learning algorithm comparison and
adaptation to learner errors, respectively, focus on article and preposition mistakes. The Illinois
data set is used in Chapter 5, while the FCE corpus is used in Chapters 5 and 6. The FCE corpus
is also used in verb error correction experiments (Chapter 7). The size of the Illinois data set is not
large enough for the adaptation experiments and does not have a sufficient number of verb mistakes.
In Chapter 8 we build a state-of-the-art error correction system by applying the methods proposed
in the earlier chapters to the CoNLL corpus. The CoNLL data set is also an appropriate corpus
for evaluating methods that address noun number errors (Chapter 7) and interacting mistakes
(Chapter 9).

Table 4.3 shows the number of relevant errors in each corpus. Note that while the corpora
contain other mistakes, we only show statistics for those errors that are used in the experiments.
For the Illinois data, only statistics on preposition and article errors for speakers of five first-
language groups are shown. The verb experiments on the FCE corpus cover three types of verb
errors: agreement, non-finite verb form, and tense. The CoNLL data set excludes tense errors

from evaluation but it includes other verb errors in the form category: verb form errors in the
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Data set Number of errors and error rates
Article Prep. Noun Verb
Agr. | Tense Form
Illinois 352 (8.4%) 418 (8.8%) - - - -
FCE 3,679 (4.8%) | 2,609 (6.7%) - 3,995 (4.8%)
CoNLL (Train) | 6,658 (2.4%) | 2,404 (2.0%) | 3,779 (1.6%) | 1,527 (2.0%) - | 1,453 (0.8%)
CoNLL (Test) 690 (10.0%) | 311 (10.7%) 396 (6.0%) 124 (5.2%) - 122 (2.5%)

Table 4.3: Statistics on errors in the ESL data sets. Percentage denotes the error rates, i.e.
the number of erroneous instances with respect to the total number of relevant instances in the
data. For example, 10.7% of prepositions in the test data are used incorrectly and 10% of noun
phrases in the CoNLL test data have determiner errors.

CoNLL corpus are defined differently and are not restricted to mistakes on non-finite verb forms
(Chapter 8).

Table 4.3 also lists the error rates, i.e. the number of erroneous instances with respect to the
total number of relevant instances in the data. For example, 10.7% of prepositions in the CoNLL
test data are used incorrectly. Error rates differ by the corpus, e.g. article errors occur twice as
often in the Illinois corpus than in the FCE corpus. Error rates also differ by error type: in the
CoNLL test set, 10% of noun phrases (NPs) have article errors but only 6% of nouns have mistakes
in noun number.

The CoNLL task made available two sets of annotations for the test partition: original and
revised. Revised annotations include additional corrections missed in the initial stage. Since the
revised version is based on the input from the participating teams and their systems, the revised
corrections may be biased (Ng et al., 2013). In this thesis, we thus use the original version of the
test data. Table 4.3 lists the number of errors in the original test set. The numbers in the revised
version are slightly higher.

We observe that in the CoNLL train partition, the error rates for all of the phenomena are on
average four to five times lower than the error rates in the CoNLL test, even though the linguistic
profiles of the writers are similar. We noticed that quite a few errors in the training data set are
missed in the annotation, and we believe that this is the key reason for the discrepancies in the
error rates.

Finally, Table 4.4 shows the distributions of these errors across the three corpora and the cover-

age attained by considering these errors. Mistakes that involve misuse of determiners,® prepositions,

3 Article errors constitute the majority of determiner errors. We refer the reader to Section 5.2.2 for more detail.
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Data set Rel. freq. of error type (%) | Cumul.
Art. | Prep. Noun | Verb (%)

number
Illinois 12.5 17.1 3.0 5.2 37.8
FCE 8.9 9.4 2.4 11.7 32.4
CoNLL (train) | 14.8 5.3 8.4 6.6 35.1
CoNLL (test) | 19.9| 9.0 14| 7.1 A7.4

Table 4.4: Relative frequencies of the errors that involve misuse of determiners, prepo-
sitions, noun number, and grammatical properties on verbs. Percentage denotes the
relative frequency of the error with respect to all errors in the data set. The last column shows the
cumulative distribution.

and grammatical properties of verbs represent some of the most common types of errors in all of
the corpora. Noun number errors are very common for the writers of the CoNLL corpus, but are
considerably less prominent for speakers of many other languages as the statistics on the Illinois
and the FCE corpora indicate. Overall, the errors that involve the linguistic phenomena that are
considered in this dissertation account for 32.4% to 47.4% of all the errors depending on the learner
Corpus.

Two prominent error categories that are out of the scope of this thesis are word choice errors
and spelling mistakes. While it is difficult to accurately estimate the frequency of word choice errors
across different corpora due to the differences in the annotation schemas, it is possible to obtain
an approximate estimate for the Illinois and FCE corpora. It is clear that word choice mistakes
are very prominent for ESL writers and form the largest error category in both of these data sets:
in the Illinois data set, word choice errors constitute 28% of all mistakes (Table 4.6), while in the
FCE corpus, these account for about 20% of all errors. Spelling mistakes make up about 6.5% and
5.0% in the Illinois and FCE corpora, respectively. Estimating error frequencies for other error
types is more difficult, as they depend on the annotation schema. Section 4.3 provides more detail
on the error distributions in the Illinois corpus.

It is also interesting to compare the relative frequencies of error types across the corpora. Noun
number errors in the CoNLL data set, for instance, are three to four times more common than
in the FCE and Illinois corpora. While FCE and Illinois have writings produces by speakers of
multiple first-language backgrounds, the CoNLL data set contains data from a more homogeneous

group of learners. We believe that there is a higher proportion of Chinese speakers among the
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CoNLL ESL speakers; and the Chinese language does not mark singular/plural on nouns. This
strongly suggests that for the group of speakers in the CoNLL data set noun number mistakes are
more common than for non-native writers in general. Although there are also differences for the

other types of mistakes, they are less striking.*

4.3 Annotating Learner Mistakes

Learner corpora annotated for errors are essential for the development and evaluation of an error
correction system. Such corpora are also very expensive to create, since annotation for mistakes is
time-consuming, especially because errors are very sparse since over 90% of the instances are used
correctly. Thus, acquiring annotation for a reasonable number of mistakes requires tagging at least
10 times more data. In this section, we describe how learner corpora are annotated and provide
more detail on the annotation of the Illinois corpus.

The three learner corpora presented above follow different annotation guidelines and utilize
different error taxonomies. The FCE corpus has 88 error tags; the NUCLE tagset size is 27; the
Illinois annotation schema specifies nine error categories. Thus for some types of errors, the error
tags do not always correspond to the same mistakes both because of different granularity levels
and because of how errors are defined. For instance, the Illinois corpus annotates all grammatical
verb errors with one tag, while the FCE corpus uses seven different tags; verb errors that involve
wrong tense formation such as “has wrote” are tagged as form errors in the CoNLL corpus and as
tense errors in the FCE corpus. With regard to annotation guidelines, the Illinois corpus specifies
alternative and optional corrections, while the other corpora do not. The importance of providing

alternative corrections is discussed in Section 4.3.1.

4.3.1 Annotation of the Illinois Data Set

The Illinois data set (Rozovskaya and Roth, 2010a)® contains essays written by learners of English

of nine first-language backgrounds: Bulgarian, Chinese, Czech, French, German, Italian, Polish,

4Some differences may also be due to differences in annotation schema. Also, in the Illinois data set, the preposition
errors have higher error rates, because a portion of sentences for annotation was selected to maximize the occurrence
of preposition errors (Rozovskaya and Roth, 2010a).

5The material in this section is part of the Master’s thesis by the author and is included here only for completeness,
since this data is used in the dissertation.
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Russian, and Spanish. With the exception of the Chinese sub-corpus, all of the data for annotation
was extracted from the International Corpus of Learner English (ICLE, Granger et al., 2002),
which is a collection of essays written by European speakers of advanced level of proficiency. The
Chinese data is a part of the Chinese Learners of English corpus (CLEC, Gui and Yang, 2003),
which contains essays written by students of all levels of proficiency. The annotators annotated
about 2,600 sentences (63,000 words). The average annotation rate for the three annotators varied

between 30 and 40 sentences per hour.

Annotation Procedure

The annotation of the Illinois corpus is performed at the sentence level: the annotators corrected
all mistakes in the sentence and classified them using the specified error schema. The annotation
was performed by three native speakers of North American English — one undergraduate and two
graduate students — specializing in foreign languages and Linguistics, with previous experience in
natural language annotation. A sentence was presented to the annotator in the context of the essay
from which it was extracted. Essay context is necessary as some words may seem acceptable in the

context of a sentence but are incorrect in the context of the essay.

Providing alternative and optional corrections
An important distinction of the Illinois data set from the other learner corpora presented in this
chapter is that it specifies alternative and optional corrections: the annotators were encouraged to
propose more than one correction and to mark corrections that are optional, i.e. where the original
text was acceptable but a better alternative existed. Providing alternative corrections is essential
for this task; judging grammaticality is very difficult even for native speakers, as the agreement
on what constitutes a mistake even among native English speakers can be pretty low (Madnani
et al., 2011): while some errors are clear cut, others may be regarded by some native speakers
as acceptable usage. It is thus important for a robust evaluation of an error correction system
to include alternative and optional corrections. Then the system is not penalized as long as its
suggestion is one of the possible labels.

Schiitze (1996) addresses the question of obtaining reliable linguistic judgments and in doing

so identifies factors that influence the judgment process and that have to be controlled for when
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Error type Description Examples
Article Any error involving an article “Laziness is the engine of *the/ progress.”

7 S e - - —
Preposition Any error involving a preposition He is an engineer with a passion *fo/for what

he does.”

Noun number

Errors involving plural/singular
confusion of a noun

“Science is surviving by overcoming the mis-
takes not by uttering the *truths/truth.”

Errors in verb tense and verb in-

Verb . “We *discusses/discuss this every time.”
flections
“It i *s1 ) ki fessional
Word form Correct lexeme, but wrong suffix arfnlj ,,n ot *simply/simple to make professiona
Spelling Error in spelling “...if someone *commited / committed a crime...”

Word insertion,
deletion, or re-

Other corrections that do not fall
into any of the above categories;

“There is a *probability / possibility that today’s
fantasies will not be fantasies tomorrow.”

placement mostly lexical choice errors

Table 4.5: Error classification used in the annotation of the Illinois data set.

collecting linguistic data. It would be interesting to see whether his ideas can be applied to improve
agreement on what constitutes acceptable usage in error annotation but this question is out of the

scope of this dissertation.

Annotation Schema

The annotation schema of the Illinois corpus includes specifications for the following types of
mistakes: articles, prepositions, noun number, spelling, verb, word form, word replacement, word
deletion, and word insertion. The majority of errors in the last three categories constitute word

choice mistakes. Table 4.5 provides a description of each error type.

Annotation Statistics

Table 4.6 shows statistics for the annotated sentences by language group and error type. Because the
sub-corpora differ in size, we show the number of errors per hundred words. Category punctuation
was not specified in the annotation, but can be easily identified and includes insertion, deletion, and
replacement of punctuation marks. The largest error category is word replacement; it combines
mistakes involving deleted and inserted words, and word substitutions. This is followed by the
punctuation category, which comprises 22% of all corrections. About 12% of all errors involve
articles, and preposition errors comprise 17% of all mistakes (a portion of sentences containing
preposition errors was selected on purpose by looking for constructions likely to contain such

errors, thus the relative frequency of preposition mistakes is slightly higher compared to the other
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Source | Total Total Errors Corrections by Error Type (%)
lang. sent. words | per 100 | Art. | Prep. | Verb | Word | Noun | Word | Spell. | Word | Punc.
words form num. order repl.

Bulg. 244 6,197 11.9 10.3 12.1 3.5 3.1 3.0 2.0 5.0 46.7 14.2
Chin. 468 9,327 15.1 12.7 27.2 7.9 3.1 4.6 1.4 5.4 26.2 11.3
Czech 296 6,570 12.9 16.3 10.8 5.2 3.4 2.7 3.2 8.3 32.5 17.5
French 238 5,656 5.8 6.7 17.4 2.1 4.0 4.6 3.1 9.8 12.5 39.8
German 198 5,086 11.4 4.0 13.0 4.3 2.8 1.9 2.9 4.7 15.4 51.0
Ital. 243 6,843 10.6 5.9 16.6 6.4 1.4 3.0 2.4 4.6 20.5 39.3
Polish 198 4,642 10.1 15.1 16.3 4.0 1.3 1.3 2.3 2.1 12.3 45.2
Russian 464 10,844 13.0 19.2 17.8 3.7 2.5 2.5 2.1 5.0 28.3 18.8
Spanish 296 7,760 15.0 11.5 14.2 6.0 3.8 2.6 1.6 11.9 37.7 10.7
All 2,645 | 62,925 12.2 | 12.5 17.1 5.2 2.9 3.0 2.2 6.5 28.2 22.5

Table 4.6: Error statistics on the annotated data by source language and error type.

corpora). Two other common categories are spelling and verb errors.

Based on the error statistics in Table 4.6, we can make observations regarding differences in
errors based on the first language. Consider the top two error categories, other than punctuation
and word substitution errors: articles and prepositions. It can be observed from the table that there
is a significantly smaller proportion of article errors for the speakers of languages that have articles,
e.g. French and German, although speakers of those language also make article mistakes. These
statistics support the the widely established view in the area of second language acquisition that
article usage depends on whether the native tongue has articles and how articles are used in the
native language of the learner (Ionin and Montrul, 2009). Preposition mistakes, on the other hand,
are more evenly distributed across speakers of various first-language backgrounds. This behavior
with respect to article and preposition mistakes has been similarly observed by other researchers

(Dalgish, 1985).

Inter-Annotator Agreement

Correcting and annotating non-native text is challenging and requires a number of decisions on
the part of the annotator. Human language allows for many ways to express the same idea.
Furthermore, it is possible that the corrected sentence, even when it does not contain clear mistakes,
still does not sound like a sentence produced by a native speaker. The latter is complicated by the
fact that native speakers differ widely with respect to what constitutes acceptable usage (Madnani
et al., 2011).

To date, a common approach to annotating non-native text has been to use one rater (Izumi
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Agreement set Rater Judged | Judged
correct | incorrect
Agreement set 1 Eig ig g; ?S
Agreement set 2 EZEEE i; ;g ;;
Agreement set 3 EZ‘EZE i; ii ;?7)

Table 4.7: Inter-annotator agreement by category (correct, incorrect) on the Illinois
corpus. The number next to the agreement set denotes the annotator who corrected the sentences
on the first pass. Judged correct denotes the proportion of sentences in the agreement set that the
second rater did not change. Judged incorrect denotes the proportion of sentences, in which the
second rater made corrections.

et al., 2004; Han et al., 2006; Nagata et al., 2006; Gamon et al., 2008; Yannakoudakis et al.,
2011).% The output of human annotation is viewed as the gold standard when evaluating an error
correction system. The question of reliability of using one rater for preposition errors has been
raised by Tetreault and Chodorow (2008a) who show that native speakers do not always agree on
whether a specific preposition constitutes acceptable usage.

Since the annotation of the Illinois corpus is performed at the sentence level and includes
multiple language phenomena, measuring agreement at the word level is problematic. The solution
that we adopt here is to ask an annotator whether a sentence previously corrected by another
rater is correct. After all, the goal of the annotation is to make the sentence grammatical, without
enforcing that errors are corrected in the same way. To compute agreement, one hundred sentences
annotated by each rater were selected and the corrections were applied. This corrected set was
mixed with new sentences and given to the other two annotators. In this manner, each annotator
received two hundred sentences corrected by the other two annotators.

For each pair of the annotators, agreement is computed based on the 100 sentences on which
they did a second pass after the initial corrections by the third rater. To compute agreement at
the sentence level, the annotated sentences are classified into the categories correct or incorrect.
7

A sentence is considered correct if a rater did not make any corrections in it on the second pass.

Table 4.7 shows for each agreement set the number of sentences that were corrected on the second

5With the exception of the corpus used in the HOO-2011 shared task (Dale and Kilgarriff, 2011), but it is quite
small.
"Punctuation errors are ignored.
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Agreement set | Agreement (%) | kappa
Agreement set 1 56 0.16
Agreement set 2 78 0.40
Agreement set 3 60 0.23

Table 4.8: Inter-annotator agreement at the sentence level (Illinois corpus). Agreement
shows how many sentences in each agreement set were assigned to the same category (correct,
incorrect) for each of the two raters.

pass. On average, 40.8% of the agreement set sentences belong to the incorrect category, but the
proportion of incorrect sentences varies across annotators.

We also compute agreement on the two categories, correct and incorrect. The inter-annotator
agreement and the kappa values are shown in Table 4.8. Agreement on the sentences corrected
on the second pass varies between 56% to 78% with kappa values ranging from 0.16 to 0.40. The
low numbers reflect the difficulty of the task and the variability of the native speakers’ judgments
about acceptable usage. In fact, since the annotation requires looking at several phenomena, we can
expect a lower agreement when compared to agreement rate on one language phenomenon. Suppose
rater A disagrees with rater B on a given phenomenon with probability 1/4, then, when there are
two phenomena, the probability that he will disagree with at least one of them is 1 —9/16 = 7/16.

And the probability goes down with the number of phenomena.

Inter-Annotator Agreement on Article and Preposition Mistakes
It should be stressed that the inter-annotator agreement numbers above are computed at the
sentence level: two annotators are considered to disagree, if the second rater makes at least one
correction in the sentence on the second pass. While these numbers are low, what they actually
reveal is that native speakers disagree widely on what constitutes acceptable usage. These numbers,
however, do not set an upper bound on the performance of an automated system, where the
performance is typically evaluated with respect to a specific error type.

To determine agreement at the level of individual phenomena, we also compute inter-annotator
agreement on preposition and determiner errors — the two common errors that we look at in this

corpus — and find that it is quite high: between 91% to 96% depending on the raters.
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Data set | Experiments Size (words)

WikiNYT | Algorithms (Chp. 5); Adaptation (Chp. 6) 300 million

Algorithms (Chp. 5); Adaptation (Chp. 6); Open-class errors (Chp. 7);

Nlinois system at CoNLL (Chp. 8); Joint approaches (Chp. 9) I trillion

Google

Table 4.9: Statistics on the native English corpora.

4.4 Corpora of Native English Data

In addition to the learner corpora, some of the experiments in this thesis also make use of corpora
of native English data. We briefly introduce them here. The first corpus, WikiNYT, is a selection
of texts from English Wikipedia and the New York Times section of the Gigaword corpus and
contains a total of 300 million words.

To experiment with larger data sets, we use the Google Web1T 5-gram corpus (Brants and
Franz, 2006), which consists of frequency counts for bigrams, trigrams, 4-grams, and 5-grams,
extracted from one trillion words of English Web text. We refer to this corpus as Google. The
Google corpus is more than 3,000 times larger than the WikiNYT data set. Table 5.6 shows the
sizes of the two native data sets and the experiments in which they are used. It should be stressed
that the sizes of the native corpora are orders of magnitude larger than the sizes of the annotated
learner data sets. Notably, the WikiNYT and the Google data sets are 250 and 800,000 times larger,
respectively, than the CoNLL corpus, the largest among the learner data sets. This advantage of

native English corpora is explored in Chapters 6 and 8.

4.5 Evaluation Metrics

This section presents the evaluation metrics employed in error correction tasks.

4.5.1 F1 Score

The standard metric of Precision, Recall, and F1 score has been widely used for ESL error correction
tasks since it has an intuitive appeal. This measure was adopted in the three shared tasks on error
correction (Dale and Kilgarriff, 2011; Dale et al., 2012; Ng et al., 2013) and was also used by other
researchers (e.g., Gamon, 2010; Tajiri et al., 2012). Below is the definition of Precision and Recall,

as they are used in the error correction domain.
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Definition 4.5.1. Let Error denote the total number of errors in the gold test data. Let Pre-
dicted denote the number of instances that the system flagged as errors. Then Precision and

Recall of the system on the gold data are defined as follows:

Precisi Predicted( Error
recision =
! Predicted
P ; E
Recall — redicted () Error
Error

Precision indicates the fraction of predicted mistakes that are true errors in gold annotation. Recall
computes the fraction of gold errors that the system identifies. Note that we can also distinguish
between precision and recall on detection and correction. In detection, an error needs to be identified
by the system, while in correction, the suggestion proposed by the system in place of the original
word also needs to match the gold correction.® Thus, evaluation for correction is stricter than
evaluation for detection. In this thesis, we evaluate the systems with respect to correction, unless

otherwise noted.

Definition 4.5.2. Given precision and recall, F1 score can be computed, which is the harmonic

mean of precision and recall and is defined as follows:

Precision -
Fl—o recision - Recall

" Precision + Recall

The trade-off between precision and recall can be calibrated via a decision threshold imposed on the
confidence of the classifier (Carlson et al., 2001). Given a threshold value, the correction proposed
by the system will be accepted only when the score that the model assigns to the correction exceeds
the threshold. A higher precision and a lower recall are obtained when the decision threshold is
high, and vice versa. Thresholding allows for the system to be adapted to the needs of the user.
By varying the threshold value, one can also obtain an optimal point where F'1 is maximized. Since

the F1 score is the evaluation metric used in the CoNLL-2013 competition, the Illinois system at

8These definitions of detection and correction differ slightly from the definitions in Dale and Kilgarriff (2011) who
also distinguish between error detection and error identification depending on whether the boundaries of the mistake
are correctly identified. We ignore these distinctions, as they are not directly relevant to the problem setting in this
work.

43



CoNLL, presented in Chapter 8, is optimized for this metric.

Precision/Recall Curves

By varying the decision threshold, it is possible to measure precision at multiple recall points
and generate a graph that describes the behavior of the system in more detail. We believe that
Precision/Recall curves provide a better picture on the performance than the F1 measure, which
just reports performance at one point. Thus, for many experiments, Precision/Recall curves are

shown.

4.5.2 AAUC

Average Area Under Curve (AAUC, Hanley and McNeil, 1983) is a measure commonly used to
generate a summary statistic, computed as an average precision value over a range of n recall

points and is another method of measuring system performance along the threshold continuum:

1 o
AAUC = . Z Precision(1)

i=1
The advantage of the AAUC metric is that it provides an average precision over multiple recall

points, as opposed to one point reflected in the F1 score. On the other hand, as a summary, it is

more compact than Precision/Recall curves.

4.5.3 Accuracy: Measuring Success in Error Correction Tasks

The measures described above do not address one important characteristic that an error correction
system should possess. As shown in Table 4.3, only a small percentage of words in each category
have mistakes, while over 90% are used correctly. The low error rates are the key reason the error
correction task is so difficult: it is quite challenging for a system to improve over a writer that
already performs at the level of over 90%. Indeed, very few NLP tasks already have systems that
perform at that level, even when the data is not as noisy as ESL data is.

To guarantee that the overall quality of the corrected text is not reduced, practical error correc-
tion systems should be tuned to minimize recall. Indeed, error sparsity makes it very challenging

to identify mistakes accurately. In the CoNLL-2013 shared task, for example, no system attains
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a precision over 50%. Note that once precision drops below 50%, the system introduces more
mistakes than it identifies.

Accuracy Clearly, optimizing for the F1 measure does not ensure that the system improves the
quality of the text. In Rozovskaya and Roth (2010c), we proposed a different evaluation metric
based on the accuracy of the data before and after running the system. The accuracy of the data
before running the system is the percentage of correct instances. Based on the error rates in Table
4.3, the error rate on article errors in the Illinois data set is 8.4%, thus the accuracy of the data,
or the baseline, is 91.6%. Given precision, recall, and F1 values, we can show how performance

translates to accuracy.

Precision/Recall and Accuracy Conversion Using the definitions of precision and recall and
the task baseline, we can relate the resulting accuracy of the classifier to the precision and recall
on an error correction task as follows: Let Precision and Recall denote the precision and recall,
respectively, of the system on an error correction task, and ErrorRateLearner denote the fraction
of errors in the data. Then the task baseline (i.e. the accuracy of the data before running the
system) is:

Baseline = 1 — ErrorRateLearner
It can be shown that the error rate after running the classifier is:

ErrorRateLearner - (Precision + Recall — 2 - Recall - Precision)

ErrorRateSystem = —
Precision

It follows that the accuracy of the system on the task is 1 — ErrorRateSystem.

4.6 Summary

This chapter presents the errors addressed in the thesis, the learner corpora, and statistics on the
types of errors contained in these data sets. We also discuss the annotation process and provide
detail on the annotation of one of the learner corpora, the Illinois data set, which was corrected and
annotated for errors within the framework of this project. Finally, we describe the native English

corpora that are used in this thesis and present the evaluation metrics.
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Chapter 5

Correcting Closed-Class Errors:
Algorithmic Perspectives

This dissertation views the problem of error correction from a machine learning perspective, which,
as argued in Chapter 3, is the most suitable approach for this task. In this chapter, we consider an
important issue at the core of the machine learning approach, the choice of the learning algorithm for
ESL correction tasks. Following the standard method of training a classifier on native English data,
we compare several state-of-the-art machine learning algorithms applied to two types of closed-class
errors — articles and prepositions. These experiments shed light on which algorithms work better
for the task. In particular, we show that there are significant differences in the performance
of these algorithms. Importantly, our results reverse conclusions from earlier evaluations, where

comparisons were performed between incomparable data sets.

5.1 Introduction

A variety of learning algorithms have been applied to correct ESL mistakes. Although the choice of
a particular learning algorithm differs, with the exception of decision trees (Gamon et al., 2008), all
algorithms used in ESL error correction are linear learning algorithms: some discriminative (e.g.,
Han et al., 2006; Felice and Pulman, 2008; Tetreault and Chodorow, 2008b; Tetreault et al., 2010),
some probabilistic (Gamon et al., 2008; Gamon, 2010), or “count-based” (Bergsma et al., 2009).
While model comparison has not been the goal of the earlier studies, it is quite common to
compare systems, even when they are trained on different data sets and use different features.
Several conclusions have been made when comparing systems developed for ESL correction tasks.
A language model was found to outperform a mazimum entropy classifier (Gamon, 2010). However,
the language model was trained on the Gigaword corpus (Linguistic Data Consortium, 2003), a

corpus several orders of magnitude larger than the corpus used to train the maximum entropy
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classifier. Similarly, web-based models built on Google Web 1T 5-gram Corpus (Bergsma et al.,
2009) were found to achieve better results when compared to a maximum entropy model that uses
a corpus 10,000 times smaller (Chodorow et al., 2007).1

To investigate the effect of the choice of the learning algorithm, we select two ESL correction
tasks that received a significant amount of attention in the error correction literature — article and
preposition usage errors — and compare four popular learning methods applied to the problem of
correcting these mistakes: two probabilistic approaches — Naive Bayes and language modeling; a
discriminative algorithm — Awveraged Perceptron; and a count-based method — SumLM (Bergsma
et al., 2009), which, as we show, is very similar to Naive Bayes, but with a different free coefficient.
We train our models on native data from several sources, varying training sizes and feature sets,

and show that there are significant differences in the performance of these algorithms.

Contributions

The main contribution of this chapter is an extensive, fair comparison of four state-of-the-art
learning methods for the task of error correction that clears up problems and contradictory results
from earlier evaluations. Contrary to previous results (Bergsma et al., 2009; Gamon, 2010), we
find that when trained on the same data with the same features, Averaged Perceptron achieves the
best performance, followed by Naive Bayes, then the language model, and, finally, the count-based
approach. In fact, we show that Averaged Perceptron performs better than SumLM when SumLM
is trained with a 10 times larger corpus; better than a language model that uses 5 times more
data; and comparably to NB trained with a corpus 2 times larger. The results that we obtain,
which hold for different training sets, genres, and feature sets, contradict conclusions from earlier
evaluations that were not made on comparable data sets.

The remainder of this chapter is structured as follows. Section 5.2 presents the task setting.
Section 5.3 introduces all linear learning algorithms from a unified perspective. We then compare
the four algorithms using word n-gram features on the Illinois data set (5.5.1) and using both word
n-gram and more sophisticated features on the FCE data set (5.5.2). Section 5.6 concludes the

chapter.

I These two models also use different features.
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5.2 Task Setting and Features

As this chapter focuses on article and preposition usage errors, we consider these mistakes in more
detail. Examples of these errors can also be found in Table 4.1 but we illustrate them here for

convenience:

1. “They listen to *@/the lecture carefully.”
2. “Laziness is the engine of *the/@ progress.”

3. “He is an engineer with a passion *to/for what he does.”

In (1), the definite article is incorrectly omitted. (2) is an example of an unnecessary article.

In (3), the writer uses an incorrect preposition.

5.2.1 Pre-processing

Both the article and the preposition models take as input the corpus documents pre-processed with
a part-of-speech tagger? and shallow parser? (Punyakanok and Roth, 2001). The error modules
rely on the pre-processing information for feature generation and for candidate generation, e.g. to

identify missing article contexts.

5.2.2 Confusion Sets and Candidates

Preposition Errors
We distinguish three types of preposition mistakes: choosing an incorrect preposition; using a su-
perfluous preposition; and omitting a preposition. For learners of many first-language backgrounds,
the majority of the preposition errors are replacements, i.e., where the author correctly recognized
the need for a preposition, but chose the wrong one to use. Table 5.1 shows the distribution of the
three types of preposition errors in the FCE corpus.

Based on the error distribution, the preposition model targets only preposition replacement
mistakes, which is a strategy followed in previous studies (e.g., Gamon, 2010). It is common in

preposition error correction to include the top n most frequent English prepositions. The confusion

Zhttp://cogcomp.cs.illinois.edu/page/software_view/P0S
3http://cogcomp.cs.illinois.edu/page/software_view/Chunker
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Error type | Example
Replacement 57.9% | “I can see *at/on the list a lot of interesting sports.”
Omission 24.0% | “I will be waiting *@/for your call.”
Unnecessary 18.1% | “Despite *of /& being tiring , it was rewarding.”

Table 5.1: Distribution of preposition errors in the FCE corpus.

Error type | Example
Replacement 15.7% | “Can you send me *the/a letter back writing what happened to you.”
Omission 57.5% | “Nowadays *@/the Internet makes us closer and closer.”
Unnecessary 26.8% | “One of my hobbies is *the/@ photography.”

Table 5.2: Distribution of determiner errors in the FCE corpus.

set for prepositions includes the top ten prepositions, which accounts for 82% of all preposition

errors (Leacock et al., 2010): {on, from, for, of, about, to, at, in, with, by}.

Determiner Errors

Similar to preposition mistakes, there are three types of determiner error: omitting a determiner;
choosing an incorrect determiner; and adding a spurious determiner. Table 5.2 shows the dis-
tribution of determiner errors in the FCE corpus. In contrast to preposition mistakes, most of
the determiner errors are omissions and insertions (over 80% of all determiner errors). Although
the majority of determiner errors involve article mistakes, about 14% of these errors also involve
personal and possessive pronouns? (Rozovskaya et al., 2012).

The system that we develop in this thesis focuses on article errors, with the confusion set defined
as follows: {a, the, @}; an and a are collapsed into one class and can be disambiguated later using
simple rules.® Article candidates include all articles and contexts, where an article is likely to be
omitted.

Because the majority of article errors are missing articles, it is essential to design techniques
for targeting these errors. Specifically, detecting missing article errors requires the identification of
contexts where an article might have been incorrectly omitted. On the one hand, we wish to include
as many such contexts as possible, since otherwise we have no chance of correcting such an error.
Therefore, one possibility is to include every space as a potential article insertion point. However,

this method is likely to produce a lot of noise, which will negatively affect the performance of the

‘e.g., “Pat apologized to me for not keeping the* /my secrets.”
5We thank Josh Gioja for the code that performs phonetic disambiguation of the indefinite article.
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system. It is thus customary to filter the contexts using pre-processing tools (e.g., Han et al., 2006).
In this work, missing article contexts include spaces at the beginning of a noun phrase as well as
spaces that follow a preposition or a verb. Noun-phrase-initial contexts are identified with the help
of the part-of-speech tagger and shallow parser. Spaces following a preposition or a verb are added
as likely contexts for omitted articles even when such contexts are not identified by the shallow
parser as noun-phrase-initial, to offset the poor performance of the pre-processing tools on ESL
data (Nagata et al., 2011). The problem of the pre-processing errors is addressed in more detail in

Chapters 7 and 8.

5.2.3 Features

We use two groups of features for each task: (1) word n-gram (surface) features only and (2) more
sophisticated features that also include POS and syntactic information. The word n-gram features
are defined in the same way for all of the models; the higher-level features are task-specific. In the
first part of the experiments in Section 5.5.1, we only use word surface features, in order to have
a fair comparison with language models. In Section 5.5.2, we experiment with more sophisticated
features. These enhanced features were used successfully in the systems developed for three text
correction shared tasks, where our models achieved state-of-the-art results (Rozovskaya et al., 2011,

2012, 2013).

5.2.3.1 Word N-gram Features

As an example for the process of feature extraction, consider the target preposition to in the
following sentence: “He is an engineer with a passion to what he does.” (target articles are handled
in a similar way). Let preposition context denote the preposition and the window around it. “A
passion to what he” is a context for window size 2. We define three feature sets, varying window
size from 2 to 4 words on each side (see Table 5.3). We use p to refer to a candidate preposition
from the confusion set. All feature sets consist of word n-grams of various lengths spanning p and

k

are of the form s *pst™, where s7* and st denote k words before and m words after p; we show

two 3-gram features for illustration:
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Feature set Preposition context N-gram lengths
Window?2 a passion [to] what he 2,3,4
Window3 with a passion [to] what he does 2,34
Window4 | engineer with a passion [to] what he does . 2,3,4,5

Table 5.3: Description

of the three feature sets based on word n-grams. All feature sets

consist of word n-grams of various lengths spanning the preposition (article) and vary by n-gram

length and window size.

Feature| Feature group Features
type
‘Word wB, weB, w3B, wA, wsA, wsA, wBwA, wyBwB, wAw:A, wsBwsBwB, wsBwBwA,
n-gram wBwAw2 A, wAwsAwsA, w4 BwsBweBwB, wsws BwBwA, wsBwBwAw2A, wBwAwsAwsA,
wAws Awzwy A
POS pB, paB, p3B, pA, pyA, p3A, pBpA, pyBpB, pAp, A, pBwB, pAwA, pyBwzB, pyAwsA,
Py BpBpA, pBpApy A, pApy Aps A
NP, headWord, npWords, NC, adj&headWord, adjTag&headWord, adj& NC, adjTag& NC,
np Tags&head Word, npTags& NC
NP, head Word&headPOS, head Number
Chunk wordsAfterNP head Word&wordAfter NP, np Words& wordAfter NP, head Word& 2wordsAfter NP,
np Words& 2wordsAfterNP, head Word& SwordsAfter NP, np Words& SwordsAfterNP
wordBeforeNP wB&f; Vi € NP;
Verb verb, verb& f; ¥i € NPy
Preposition prep& f; Vi € NP

Table 5.4: Features used in the article error correction system. wB and wA denote the
word immediately before and after the target, respectively; and pB and pA denote the POS tag
before and after the target. head Word denotes the head of the NP complement. NC stands for
noun compound and is active if second to last word in the NP is tagged as a noun. Verb features
are active if the NP is the direct object of a verb. Preposition features are active if the NP is
immediately preceded by a preposition. Adj feature is active if the first word (or the second word
preceded by an adverb) in the NP is an adjective. NpWords and npTags denote all words (POS
tags) in the NP.

1. a passion p

2. passion p what

5.2.3.2 Enhanced Features

The enhanced feature sets include features that use POS and shallow parser information. The

article features are listed in Table 5.4. Table 5.5 lists the preposition features.

5.3 Datasets

All of the models in the algorithm comparison experiments are trained on native English data and

evaluated on learner data.
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Feature Type Description
wB, w2B, w3B, wA, w2A, wsA, wBwA, w2BwB, wAwsA, wsBwsBwB,

Word n-ngram wo BwBwA, wBwAwsA, wAw2AwsA, wyqBwsBwsBwB, wswe:BwBwA,
wo BwuBwAws A, wBwAwe Awsz A, wAws Awzwg A
Preposition complement compHead, wB& compHead, wa BwB& compHead

Table 5.5: Features used in the preposition error correction system. wB and wA denote the
word immediately before and after the target, respectively; the other features are defined similarly.
compHead denotes the head of the preposition complement. wB& compHead, wy BwB& compHead
are feature conjunctions of compHead with wB and weBwB, respectively.

5.3.1 Training Data

Using the corpora of native English data presented in Section 4.4, we generate training data of
several sizes. The size of the data set for a specific classifier denotes the total number of candidate
words that are input to the classifier (i.e. articles or prepositions) selected as described above.
From the WikiNYT dataset, training corpora of several sizes are generated, with the largest
comprising 10 million training examples. To experiment with larger data sets, we use the Google
corpus. This corpus is used in the preposition models only. Table 5.6 shows the number of training

examples in the two native data sets.

5.3.2 Test Data

The algorithm comparison experiments are evaluated on the Illinois and the FCE datasets presented
in Chapter 4. Because the FCE corpus is also used in the next chapter, where part of it is used in
training, we divide the FCE data into training and test according to the split used in the HOO-2012
shared task (Dale et al., 2012): in this split, 1,000 files of the FCE corpus are reserved as training
data, and the remaining 244 documents — for testing. The performance on the FCE dataset is
reported on the test part of the data both in this chapter and in Chapter 6. Table 5.7 shows the
sizes of the two ESL datasets. The number of examples denotes the total number of prepositions
and articles in each corpus. We also show the number of errors and the error rate (the percentage

of mistakes with respect to the total number of examples).

52



Data set Total examples
Articles | Prepositions
1M
WikiNYT 3M 5M
10M
Google - 26,000M

Table 5.6: Training data sizes for the native English corpora in the algorithm compar-
ison experiments. Each entry indicates the number of preposition/article instances.

Data set Total examples Errors/Error rate
Art. Prep. Art. Prep.
Illinois 4,185 4,731 352 (8.41%) 418 (8.84%)

FCE (Train) | 60,743 | 31,274 | 2,802 (4.76%) | 2,113 (6.76%)
FCE (Test) | 15,398 7673 | 787 (5.11%) | 496 (6.46%)

Table 5.7: Statistics on articles and prepositions in the ESL data sets. Error rate denotes
the percentage of examples (articles or prepositions in the data) that are mistakes.

5.4 The Models

We study four linear learning models: the discriminative method Averaged Perceptron (AP); two
probabilistic methods — a language model (LM) and Naive Bayes (NB); and a “count-based”
method, SumLM (Bergsma et al., 2009).

Each model produces a score for a candidate in the confusion set. Since all of the models are
linear, the hypotheses generated by the algorithms differ only in the weights they assign to the
features (Roth, 1998, 1999). Thus a score computed by each of the models for a preposition p in

the context S can be expressed as follows:

g(Svp) = C(p) + Z wa(f)v (5'1)

fer(S,p)

where F'(S, p) is the set of features active in context S relative to preposition p, w,(f) is the weight
algorithm a assigns to feature f € F(S,p), and C(p) is a free coefficient. Predictions are made using
the winner-take-all approach: p* = argmax, g(S,p). The algorithms make use of the same feature
set F'(C,p) and differ only by how the weights w,(f) and C(p) are computed. Below we explain

how the weights are determined in each method. Table 5.8 summarizes the four approaches.
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Method | Free Coefficient Feature weights
AP bias parameter mistake-driven

LM A - prior(p) Zvlovr Ao, - log(P(ulv,))
NB log(prior(p)) log(P(f|p))
SumLM | |F(S, p)| - log(C(p)) log(P(flp))

Table 5.8: Summary of the learning methods. C(p) denotes the number of times preposition
p occurred in training. F(S,p) is the set of features active in context S relative to preposition p.
A is a smoothing parameter, u is the rightmost token in f, v; o v, denotes all concatenations of left
token substring v; and right token substring v, of feature f without w.

5.4.1 Averaged Perceptron

Discriminative classifiers represent the most common learning paradigm in error correction. AP
(Freund and Schapire, 1999) is a discriminative mistake-driven online learning algorithm, a slight
variation of the standard Perceptron. Perceptron maintains a vector of feature weights w and
processes one training example at a time, updating w if the current weight assignment makes a
mistake on the training example. The C(p) coefficient is the bias parameter (see Table 5.8).

We use the regularized version of AP in Learning Based Java® (LBJ, Rizzolo and Roth, 2007).
While classical Perceptron comes with a generalization bound related to the margin of the data,
Averaged Perceptron also comes with a PAC-like” generalization bound (Freund and Schapire,
1999). This linear learning algorithm is known, both theoretically and experimentally, to be among
the best linear learning approaches and is competitive with SVM and Logistic Regression, while
being more efficient in training. It also has been shown to produce state-of-the-art results on many

natural language applications, (e.g., Punyakanok et al., 2008).

5.4.2 Language Modeling

Given a feature f = s *pst™, let u denote the rightmost token in f and v; o v, denote all possible
concatenations of left token substring v; and right token substring v, of feature f without u. The
language model computes several probabilities of the form P(u|v,). If f =“with a passion p what”,
then v =“what”, and v, € {“with a passion p”, “a passion p”, “passion p”, “p” }. In practice,
these probabilities are smoothed and replaced with their corresponding log values, and the total

weight contribution of f to the scoring function of pis 3, ., Av, - log(P(ulvy)).

SLBJ can be downloaded from http:cogcomp.cs.illinois.edu/page/software_view/LBJ.
"PAC stands for probably approzimately correct. The framework was introduced by Valiant (1984).
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In addition, this scoring function has a coefficient that only depends on p: C(p) = X - prior(p)

(see Table 5.8). The prior probability of a candidate p is:

Cp)
qgeConfSet C(q) 7

prior(p) = 5

where C(p) and C(q) denote the number of times p and ¢ occurred in the training data.

We implement a count-based LM with Jelinek-Mercer linear interpolation as a smoothing
method® (Chen and Goodman, 1996), where each n-gram length, from 1 to n, is associated with
an interpolation smoothing weight A. Weights are optimized on a held-out set of ESL sentences.

Window2 and Window3 feature sets correspond to 4-gram LMs and Win4d to 5-gram LMs.
Language models are trained with SRILM (Stolcke, 2002).

5.4.3 Naive Bayes

NB is another linear model and is often competitive with more sophisticated approaches. NB
architecture is also particularly well-suited for adapting the model to learner errors (Section 6.2.3).
Weights in NB are determined, similarly to LM, by the conditional feature counts and the prior
probability of each candidate p (Eq. (5.2)). For each candidate p, NB computes the joint probability
of p and the feature space F. Assuming that the features are conditionally independent given p,

this results in:

9(S,p) = log{prior(p)- [ P(fIp)}

fEF(S,p)
= log(prior(p)) +

+ ) log(P(flp)) (5.3)

FEF(S,p)

NB’s weights and its free coefficient are also summarized in Table 5.8.

Training Naive Bayes for Deletions and Insertions

There is one key issue that needs to be addressed and that concerns training NB on the Google

8Unlike other LM methods, this approach allows us to train LMs on very large data sets. Although we found
that backoff LMs may perform slightly better, they still maintain the same hierarchy in the order of algorithm
performance.
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corpus for mistakes that involve word deletions and insertions. Since the Google corpus contains
only n-gram counts, training NB using the counts presents a problem when errors that involve
omissions or insertions are being addressed (and the majority of article mistakes are of this type).
The reason is that it is difficult to accurately estimate the prior counts for @ article when we do

9 We solve this problem by treating the article

not have complete text but only n-gram counts.
and the word following it as one target. Then, in the case of deletions, the following word alone
acts as the target. This approach solves the problem of estimating the count of the @ article. This
method can also be applied to other problems with deleted or inserted words. In particular, in

addition to article errors, we also use this method, when training NB for errors involving extraneous

prepositions (Chapter 8).

5.4.4 SumLM

For candidate p, SumLM (Bergsma et al., 2009)'° produces a score by summing over the logs of

all feature counts:

g(S,p) = D log(C(f))

fEF(Sp)
= Y log(P(fIp)C(p))
FEF(S,p)
= |F(S,pICp)+ Y log(P(flp))

fEF(S,p)

where C(f) denotes the number of times n-gram feature f was observed with p in training. It
should be clear from equation 5.3 that SumLM is very similar to NB, with a different free coefficient

(Table 5.8).

9When we have access to complete sentences, we apply a shallow parser and estimate the prior of @ by counting
the number of NPs with & article.

10SumILM is one of several related methods proposed in this work; its accuracy on the preposition selection task
on native English data nearly matches the best model, SuperLM (73.7% versus 75.4%), while being much simpler to
implement.
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5.5 Comparison of Algorithms

Using the two native corpora — WikiNYT and Google — we build models of several training sizes.
Note that the Google corpus does not contain complete sentences, but only n-gram counts. Thus
we can use this data set with two limitations. First, we can only make use of word n-gram features,
since we cannot pre-process it with a POS tagger or a chunker. Second, when training on the
Google corpus, the simplest approach given the type of its data is to train an LM or NB (if we
train a discriminative model such as AP we have to restrict the context features to the window of
two words around the target). The other three models can be evaluated with the n-gram counts
available. For example, we compute NB scores by obtaining the count of each feature independently,
e.g. the count for left context 5-gram “engineer with a passion p” and right context 5-gram “p
what he does .”, due to the conditional independence assumption that NB makes. On Google, we

train NB, SumLM, and LM with three feature sets: Window2, Window3, and Window4.

5.5.1 Algorithm Comparison Results

Key Results The key results of the fair comparison of the four algorithms are shown in Figure 5.1
and summarized in Table 5.9. The table shows that AP trained on 5 million prepositions performs
as well as NB trained with twice as much data; the performance of LM trained on 10 million
examples is better than that of AP trained with 10 times less data (1 million), but not as good as
that of AP trained with half as much data (5 million); AP outperforms SumLM when the latter
uses 10 times more data. Figure 5.1 demonstrates the performance results reported in Table 5.9; it
shows the behavior of different systems with respect to precision and recall on the error correction
task. We generate the curves by varying the decision threshold on the confidence of the classifier

(Carlson et al., 2001) (see Section 4.5 for a description of evaluation metrics).

Performance for Various Features, Data, and Training Sizes

We now show results for different window sizes, training data and training sizes. Figure 5.2 com-
pares the models trained on WikiNYT-10M corpus for Window4. AP is the superior model, followed
by NB, then LM, and finally SumLM.

Results for other training sizes and feature set configurations show similar behavior and are
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Algorithm Comparison: Key results
AP > NB > LM > SumLM

AP ~2-NB

5.-AP>10-LM > AP

AP > 10 SumLM

Table 5.9: Key results on the comparison of algorithms. 2 - NB refers to NB trained
with twice as much data as AP; 10 - LM refers to LM trained with 10 times more data as AP;
10 - SumLM refers to SumLM trained with 10 times more data as AP. These results are also
shown in Figure 5.1. Results are on the Illinois data set.

Training corpus | Training size | Feature set Performance (F1)
AP NB LM | SumLM
WikiNYT 5M Window3 20.16 | 18.93 | 18.50 16.78
WikiNYT 10M Window4 23.00 | 20.97 | 19.30 17.83
Google 26,000M Window4, - 28.60 | 27.46 23.96
Google 26,000M Window?2 - 24.23 | 24.93 20.84
| WikiNYT (Article) | 3M | Window3 |34.87 ] 31.82 | - [ 32.92

Table 5.10: Performance comparison of the four algorithms on the Illinois data set
for different training data, training sizes, and window sizes. Each row shows results for
training data of the same size. The last row shows performance on the article correction task. All
other results are for prepositions.

reported in Table 5.10, which provides model comparison in terms of best F1 obtained by each
model. F1 is optimized using a decision threshold. The table also shows results on the article
correction task. We do not evaluate the LM approach on the article correction task here, but
the LM performance on articles in Chapter 8 exhibits similar behavior with respect to the other

learning models.

5.5.2 Experiments with Enriched Features

We showed in the previous section that AP significantly outperforms the other models, and that
NB is the second best model. In order to include LM in the comparison and keep the feature set
identical across the models, the feature sets consisted only of word n-grams. Other algorithms,
though, can make use of richer features that are not restricted to word n-grams. In Section 5.2.3,
we defined additional features separately for articles and prepositions that make use of POS and
shallow parser information. We denote them here Window4-enhanced, as they include all word

n-gram features in that window. The next experiment shows that models indeed gain from using
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Figure 5.1: Prepositions: algorithm
comparison across different train-
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AP (1 million training examples) out-
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trained with 10 times more data; AP
also outperforms LM when the latter is
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quires at least twice as much data to
achieve the performance of AP. Results
are on the Illinois data set.
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Task Training size | Feature set Performance (F1)

AP NB | LM | SumLM
Articles 3M Window/ 22,77 | 24.75 - 17.64
Prepositions 5M Window/ 20.44 | 18.24 | 15.08 15.83

Table 5.11: Algorithm comparison on the FCE data set. All models are trained on WikiNYT
with word n-gram features.

Task Training size Feature set Performance (F1)
AP NB
. Window/ 22.77 24.75
Articles M Windowj-enhanced | 30.76 25.04
.. Window4 20.44 18.24
Prepositions M Window4-enhanced | 24.32 20.45

Table 5.12: Algorithm comparison for AP and NB on the FCE data set. Window4-
enhanced features use information beyond word n-grams. All models are trained on WikiNYT.

richer feature sets. Moreover, as we enhance the features with more knowledge, performance of the
models improves and the gap between AP and NB grows.

Because these features are also used in the adaptation experiments in Chapter 6, we evaluate
them on the FCE data set. Table 5.11 compares the four algorithms on the FCFE test data for
feature set Window/. Table 5.12 compares the performance of AP and NB models trained with
Windowj and Window4-enhanced features on the two tasks. These experiments confirm the earlier
results about the relative performance of the four models; the only exception is that the NB model
that uses word n-gram features has a better result on articles than the AP model. However, we find

that with better features AP improves significantly and increases its performance gap compared to

NB.

5.6 Summary

In this chapter, we conduct a fair comparison of four state-of-the-art machine learning approaches on
article and preposition error correction tasks, using the selection training paradigm. We show that
there are significant differences in the performance of these algorithms. In particular, discriminative
classifiers outperform other machine learning methods on this task. Moreover, while a language
modeling approach may seem like a natural choice when it comes to error correction, we find

that, under the same conditions, language models are not as effective as other machine learning
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techniques, such as discriminative classifiers and Naive Bayes. The results reverse conclusions from
earlier evaluations that showed that language models outperform discriminative classifiers. These
findings pave the way for the development of models that utilize knowledge about error regularities,

presented in the next chapter.
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Chapter 6

Adaptation to Learner Errors

We now move to the question of developing an appropriate training paradigm for error correction
tasks. In particular, this chapter will focus on developing models that utilize knowledge about error
regularities with minimal annotation costs. The proposed solution is based on the key observation
that parameters relating to error regularities are simple. This observation motivates a two-stage
approach that first extracts statistics on error patterns from learner data and then “injects” these
into a model trained on native data. We describe a general method of obtaining error patterns from
a small sample of annotated learner data. Next, building on the results of the experiments in the
preceding chapter, we describe methods that allow us to incorporate these error statistics within
the frameworks of the two top-performing learning algorithms, thereby providing these models with

knowledge about error regularities.

6.1 Introduction

In the previous chapter, we compared four state-of-the-art learning methods trained in the selection
training paradigm. An important advantage offered by the selection paradigm is that classifiers
can be learned from large data sets with no need for annotation. The problem is that the selection
training paradigm produces models that have no knowledge of the types of errors learners make
since it does not use the source word in prediction. We argued in Section 3.2.3 that learner errors
are systematic and that using the source word in prediction is better than just using the context.
A straightforward way to use the source word is to train on annotated learner data, but generally
we have a very limited amounts of the latter. We thus wish to develop models that can be trained
on native data but will utilize knowledge about the types of errors learners make. We address the

following question:
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e Suppose we have a small amount of annotated learner data. Is there a way to develop models
trained on native English data that can utilize ESL data in prediction even when very little

of it is available?

We describe an approach that does this by exploiting large amounts of native data, in addition
to small amounts of ESL data. We call this approach adaptation to learner errors. The rest of this

chapter describes the adaptation algorithms that we develop for this purpose.

Contributions
We propose an approach that “injects” knowledge about error regularities into the model trained
on native data without expensive data annotation that would be required to train on annotated

data alone:

e To obtain knowledge about error patterns, error statistics are collected over a sample of
annotated ESL data. Importantly, the error statistics are very simple, and thus we only need

a small annotated set to estimate them.

e To incorporate these error statistics into training, we propose adaptation methods for the
two top-performing learning approaches identified in the previous chapter: the discriminative
method AP and the NB algorithm. This allows us to train in the same way as when training
on annotated data, using the source word as a feature, which, in turn, provides the models

with knowledge about typical mistakes.

Section 6.2 presents the general method of extracting error patterns from a small annotated
sample and describes the two adaptation algorithms. Section 6.3 presents results for the key
experiments that show that the adapted models are superior to models trained in the selection
paradigm. Section 6.4 presents analysis of the adaptation methods. Advantages of each of the

adaptation algorithms are discussed in Section 6.5. Section 6.6 summarizes the chapter.

6.2 Adaptation with Small Amount of Annotation

Our goal is to utilize learner data to obtain a distribution of labels that reflect the types of errors

learners make. Unlike when training on native data, where the distribution of the labels reflects

63



Label Sources
a 1] the
(6,681) (32,825) (15,055)
a (7,118) | 0.890 0.094 0.016
@ (32,239) | 0.007 0.972 0.021
the (15,204) | 0.008 0.054 0.938

Table 6.1: Sample confusion matrix for article errors. Based on the training data from the
FCE corpus (Section 5.3). The left column shows the correct article. Each row shows the author’s
article choices for that label and Prob(source|label). The numbers next to the targets show the
count of the label (or source) in the data set.

the relative frequencies of the words, we would like it to be realistic; that is, we are interested in

the bias of the labels as a function of the word chosen by the writer.

6.2.1 Obtaining Error Statistics from Annotated Data

Given a specific task, we collect all source/label pairs, where both the source and the label be-
long to the confusion set, and generate two confusion matrices: one where each cell represents
Prob(source=s|label=l) (used in the artificial errors method in Section 6.2.2), and the other — in-
verse matrix — where each cell shows Prob(label=l|source=s), which is used by the priors adaptation
method for NB in Section 6.2.3.

Tables 6.1 and 6.2 show sample confusion matrices of the first type for article and preposition
mistakes based on the FCE data set (see Section 4.2.2). Consider, for example, the preposition ma-
trix: it contains 10 rows and columns — one for each preposition — and each entry shows Prob(p;|p;),
the probability that the author chose preposition p; given that the correct preposition is p;. The
matrix also shows the preposition count for each source and label in the data set.

Given the matrix and the counts, it is possible to generate the matrix in the other direction
and obtain Prob(p;|p;), the probability that the correct preposition is p; given that the author’s
preposition is p;.

The confusion matrices reveal that the distribution of alternatives for each source preposition
is very different from that of the others. This strongly suggests that errors are systematic. Addi-
tionally, most articles and prepositions are used correctly, so the error rate is very low (the error
rate can be estimated by looking at the matrix diagonals in the tables); for example, the error rate

for the preposition about is lower than for on, since 94.7% of the occurrences of the label about are
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Label Sources
on about from for of to at in with by
(1,897) (1,952) (1,468) (3,995) (5,945) (3,897) (2,726) (6,367) (2,011) (625)
on (1,829) 0.852 0.003 0.005 0.020 0.014 0.008 0.012 0.076 0.008 0.002
about (1,946) 0.003 0.947 0.005 0.017 0.017 0.001 - 0.004 0.006 -
from (1,450) 0.002 0.002 0.961 0.005 0.010 0.001 0.003 0.010 0.002 0.004
for (4,034) 0.002 0.010 0.002 0.939 0.019 0.018 0.001 0.007 0.001 0.001
of (5,795) 0.002 0.004 0.002 0.004 0.974 0.001 0.001 0.009 0.002 0.001
o (3,990) 0.004 0.001 0.001 0.015 0.010 0.936 0.007 0.018 0.008 -
at (2,898) 0.011 0.001 0.002 0.002 0.007 0.009 0.889 0.076 0.002 0.001
n (
(

6,274) 0.040 0.002 0.001 0.003 0.011 0.003 0.013 0.924 0.002 0.001
w1th 2,046) 0.002 0.010 0.003 0.008 0.009 0.009 0.002 0.015 0.933 0.009
by (621) 0.008 0.003 0.016 0.010 0.011 - 0.002 0.008 0.008 0.934

Table 6.2: Sample confusion matrix for preposition errors. Based on the training data from
the FCE corpus. The left column shows the correct preposition. Each row shows the author’s
preposition choices for that label and Prob(source|label). The numbers next to the targets show
the count of the label (or source) in the data set.

correct, but only 85.2% of the label on are correct.

We now show how to incorporate these error statistics into models trained on native data. Two
methods are described: the artificial errors method and the priors method. The first method is a
general adaptation technique applicable to any discriminative model and implemented here within
the AP algorithm; the second method is a special adaptation technique for NB. Sections 6.2.2 and

6.2.3 show how to modify the two learning algorithms to use these statistics.

6.2.2 Adaptation for a Discriminative Model

In this section, we propose an adaptation technique for the model that demonstrated the best
performance in the algorithm comparison experiments in Chapter 5, the AP algorithm. In the
selection paradigm, training examples are generated from native data by extracting all words
that are members in the confusion set; this is an arbitrary distribution that merely depends on
which sentences are chosen, and it dictates the distribution of examples presented to the training
algorithm. Instead, here we show how to present examples in a way that reflects ESL error patterns.
The method, which we call artificial errors, uses error statistics described above (Tables 6.1 and
6.2) to generate artificial errors in correct native English training data.

We proposed and evaluated the original version of the artificial errors approach in Rozovskaya
and Roth (2010c). However, it suffers from the low recall problem, as discussed below. In this
chapter, we describe a more general approach that improves over the original method by solving

the low recall problem; the original method is a special case of the approach proposed here. First,
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we describe how artificial errors are generated in the original method.

6.2.2.1 Generating Artificial Errors with Error Statistics

Consider Tables 6.1 and 6.2. The top row of Table 6.2 shows the probabilities of a non-native writer
incorrectly choosing each of the ten prepositions when the intended preposition should be on. For
example, label on corresponds to source on in 85.2% of the cases and corresponds to source in in
7.6% of the cases. In other words, in 7.6% of the cases when the preposition on should have been
used, the writer instead used in.

These probabilities are used to generate artificial errors in the training data. Thus, for each
example in the training data (which are from native text and therefore assumed to be correct),
with probability 7.6% we flip on in the training data to in. Then in the sense of the types of errors
and the candidate distributions, the resulting text looks more like ESL text, because the native
training examples now behave analogously to ESL data — the prepositions will now be incorrect
with the same frequency and distribution as those from the corresponding target ESL user.

Note that when the artificial errors are generated, the labels of these examples are not changed,
only the surface forms are replaced. We refer to the replacement as source, and it can be used
as a feature, which we call the source feature. In other words, source denotes the form that the
classifier sees as a feature (which could be an error) and label denotes the correct word. For ESL
data, the source corresponds to the word chosen by the author, while for native data, the source

corresponds to the artificially produced (and possibly erroneous) surface form.

Error Sparsity and Low Recall

The artificial errors approach described above generates errors with the frequency of naturally-
occurring mistakes. This approach creates a low-recall model that tends to abstain rather than
flag a possible error and thus does not identify many errors. This happens because of the low error
rates in the learner data. The values of the source feature thus tend to have a very skewed label
distribution, i.e. most of the time the source feature value corresponds to the label. The system
will learn that in the majority of cases the source feature corresponds to the label, and will tend
to over-predict it, which will result in very few mistakes being flagged. Note that the low recall

problem is also observed when models are trained on annotated learner data (Section 6.4), for the
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same reason that is due to error sparsity.

The Error Inflation Method

So far, we have seen two extreme choices for training error correction models: (1) training without
the source word feature (the selection paradigm) or (2) training with this feature, where the model
relies on it too much and thus suffers from extremely low recall.

While maintaining strong precision is important, we wish to have the flexibility of increasing
the recall. To this end, we reduce the confidence that the system has in the source word, while
preserving the knowledge the model has about likely confusions (typical errors). This is achieved
by decreasing the proportion of correct examples (where the source feature and the label are the
same) and distributing the extra probability mass among the typical errors in an appropriate
proportion by generating additional error examples. This inflates the proportion of artificial errors
in the training data and, hence, the error rate, while keeping the probability distribution among
likely corrections the same. Increasing the error rate improves the recall, while the typical error
knowledge ensures that high precision is maintained. As we show in Section 6.5, this method causes
the classifier to rely on the source feature less and increases the contribution of the features based
on context. The learning algorithm therefore finds a more optimal balance between the source
feature and the context features.

Algorithm 1 shows the pseudo-code for generating artificial errors in training data; it takes
as input training examples, the confusion matrix C'M, as shown in Tables 6.1 and 6.2, and the
inflation constant C. The inflation constant specifies the proportion of correct instances that remain
in training compared to the number of correct instances in data with naturally-occurring errors
(e.g., 0.9 indicates that after artificial errors with the original error rate have been added, only 90%
of the correct instances remain in the data, while 10% of those are converted to additional artificial
mistakes). An inflation constant value of 1.0 corresponds to the original adaptation method that
simulates learner mistakes without inflation, using the error rates of naturally-occurring mistakes.
Table 6.3 shows the proportion of artificial errors created in training using the inflation method for

different inflation values.
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Inflation constant
1.0 (Original) 0.9 0.8 0.7 0.6 0.5
7.20% 16.48% 25.76% 35.04% 44.32% 53.60%

Table 6.3: Artificial errors: proportion of generated artificial preposition errors in
training using the inflation method for various inflation values.

Algorithm 1 Data Generation with Inflation
Input: Training examples F with correct sources, confusion matrix C'M, inflation constant C
Output: Training examples E with artificial errors
for Example e in E do

Initialize lab < e.label, e.source < e.label
Randomize targets € CM[lab]
Initialize flag < False
for target t in targets do
if flag equals True then
Break
end if
if t equals lab then
Prob(t) = CM]lab][t] - C
else
Prob(t) = 405 Catonia - CM]lab][t]
end if
x < Random|0, 1]
if x < Prob(t) then
e.source <t
flag < True
end if
end for
end for
return E

6.2.3 Naive Bayes Adaptation

We now describe another adaptation approach, also based on error statistics, for the second best
performing model, NB. While NB does not perform as well as a discriminative classifier, the
algorithm has advantages in several training scenarios. In particular, it is easy to train NB on the
Google corpus (see Section 6.5.1). The adaptation for NB is also simpler to implement compared
to the artificial errors method. Specifically, with the artificial errors approach, a separate classifier
needs to be re-trained when adapting to a different group of learners. The NB adaptation presented
here does not require re-training the model to adapt to different error statistics; it only requires

changing one parameter for each classifier.
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The method relies on the observation that error regularities can be viewed as a distribution
on priors over the correction candidates. Consider the preposition correction task as an example.
Given a preposition s in text, the prior for candidate p is the probability that p is the correct
preposition for s. If a model is trained on native data without adaptation to learner mistakes,
candidate priors correspond to the relative frequencies of the candidates in the native training
data. More importantly, these priors remain the same regardless of the preposition used in text.
From the model’s perspective, it means that a correction candidate, for example to, is equally likely
given that the author’s preposition is for or from. This is clearly incorrect and disagrees with the
error statistics, which show that not all confusions are equally likely.

We use annotated ESL data and define adapted candidate priors that are dependent on the

1

author’s preposition.” Let s be a preposition appearing in text, and p a correction candidate.

Then the adapted prior of p given s is:

prior(p.) = Plp.sls) = G2

where C(s) denotes the number of times s appeared in the ESL data, and C(s,p) denotes the
number of times p was the correct preposition when s was used.

Using the information from Table 6.1, we compute adapted priors, i.e Prob(label|source), for
article mistakes. They are shown in Table 6.4. Similarly, adapted priors for preposition errors can
be generated from Table 6.2. Table 6.5 shows sample adapted candidate priors for two author’s
choices — when an ESL writer used on and by.

A key distinction of the adapted priors is the high probability assigned to the author’s prepo-
sition: the new prior for on given that it is also the preposition found in text is 0.817, versus the
0.07 prior based on native data. The adapted prior of preposition p, when p is used, is always
high, because the majority of prepositions are used correctly. Furthermore, higher probabilities
are also assigned to those candidates that are most often observed as corrections for the author’s
preposition. For example, the adapted prior for in when the writer chose on is 0.139, since on is
frequently incorrectly chosen instead of in. Similarly, the most likely confusion for the source by is

with. Note also how the distribution of adapted priors differs from that of the source-independent

!Note that the priors can also depend on the author’s first language or the author’s specific error patterns
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Label Sources

a 1] the
a (0.130) | 0.948 0.020 0.008
2 (0.591) | 0.033 0.955 0.045

the (0.279) | 0.019 0.025 0.947

Table 6.4: Inverse confusion matrix for article errors. Based on the training data from the
FCE corpus. The left column shows the correct article. Each row shows the author’s article choices
for that label and Prob(label|source). The numbers next to the labels show the relative frequency
of that label in the data set. Note this matrix can also be constructed from the one shown in Table
6.1.

priors based on native data: the most likely candidate, according to the native priors is of; it is
four times more likely than with. However, now we generate a distinct family of priors for each
source preposition. To summarize, source-independent priors correspond to the relative frequencies
of the prepositions in native training data; adapted priors, on the other hand, reflect error rates
and how the likelihood of each preposition confusion.

To determine a mechanism to inject the adapted priors into a model, we note that the NB
algorithm makes use of two types of conditional probabilities: probability of a feature f given the
label (correct preposition, or article) and the priors (Section 5.4.3). The first family of probabilities
does not change and can be computed from native data. The second type is what we are changing
here: rather than having a uniform source-independent prior that depends on the probability of
observing a label, we now split it to multiple classifiers, and compute the prior as the probability for
a label to appear when a specific source appears. We thus train NB in a traditional way, on native
data, and then replace the prior component in Eq. (5.3) with the adapted preposition-dependent

prior to get the score for p of the NB-adapted model:

9(S,p) = log{prior(p,s)- [[ P(fIp)}.
JEF(Sp)

We stress that in the new method there is no need to re-train the model to adapt to a different
set of error statistics, as is the case with the artificial errors approach. Only one model is trained,

and only at decision time do we change the prior probabilities of the model.
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Candidate | Source-indep. Adapted prior
prior author’s | prior | author’s | prior
choice choice

of 0.25 0.005 0.003
to 0.22 0.007 0.001
in 0.15 0.139 0.013
for 0.10 0.005 0.005
on 0.07 0.817 0.006
by 0.06 on 0.003 by 0.928
with 0.06 0.002 0.028
at 0.04 0.017 0.006
from 0.04 0.002 0.010
about 0.01 0.003 0.000

Table 6.5: Examples of adapted candidate priors (Prob(label|source)) for two author’s
choices — on and by — based on preposition errors in the FCE training data. Source-
independent prior or native prior denotes the probability of the candidate in the standard model
and is based on the relative frequency of the candidate in native training data. Adapted priors are
dependent on the author’s preposition. Adapted priors for the author’s choice are very high. Other
candidates are allocated more probability mass if they often appear as corrections for the author’s
choice.

6.3 Adaptation Experiments

The main goal of the experiments is to evaluate the adaptation methods proposed in Section 6.2. We
described two adaptation methods that depend on the choice of the learning model (discriminative
classifier or NB), both of which allow the models trained on native data to use the author’s word
as a feature.

The goal of the experiments is to evaluate the adapted models and compare them with models
trained on native data in the standard selection paradigm. The main research question is the

following:

e [s it possible to improve error correction models trained on native data by using a little bit

of ESL annotation (6.3.2)7

6.3.1 Experimental Setup
We train three types of models in the experiments:

e Native-trained models — trained on native data in the selection paradigm; the weights for all

features are estimated on native data.
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o ESL-trained models — trained on ESL training data in the correction paradigm; the weights

for all features are estimated on ESL data.

o Adapted models — trained on native data and adapted using a little bit of ESL data; the weights
for context features are estimated on native data, while the source feature parameters are

learned on learner data.

Native training data To train AP and NB models in the selection paradigm and with adaptation,
we use the native corpora presented in Section 4.4. For articles and prepositions, models are trained
on the WikiNYT corpus, and the training size is fixed to 3 million examples for articles and to 5
million for prepositions, with the exception of those experiments that compare models trained on
native data of different sizes. For the preposition models, we also train NB on the Google corpus
(26,000 million preposition examples).

ESL training data The FCE training partition (Table 5.7) in Section 5.3.2 is denoted as ESL
training data. The ESL training data is also used to adapt native-trained models. In the key
experiments, we adapt models trained on native data with 10% of the ESL training data; this
portion contains about 6,000 and 3,000 article and preposition examples, respectively. The entire
ESL training data contains 60,743 articles and 31,274 prepositions (Table 5.7).

Features As was shown in Section 5.5.2, enhancing features with POS tags and the shallow parser
output improves the performance of the models. Thus, for the adaptation experiments, we use the
enhanced feature sets for all models except for the models trained on Google; the Google models
are trained on the word n-gram features Window4, i.e. word n-grams in the 4-word window around
the target word.

Parameter tuning Part of the training data (10% of the files) is reserved for development. The
results on the test partition of the FCE corpus use parameters optimized on the development data.
The following parameters are optimized: the inflation constant for the AP-adapted models (0.8
for articles and 0.8 for prepositions), and the smoothing parameter for NB (—15 for the WikiNYT
models and —21 for the Google models). The results on the development set are presented in
Section 6.4.1.

Note on evaluation Results are reported using F1, which is optimized via a decision threshold

(see Section 4.5). All models, with the exception of AP-adapted models, use a decision threshold.
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Model Training size Infl. Performance
Native | ESL | constant P R F1
Native-trained (AP) 3M - - 28.57 | 33.33 | 30.76
Adapted (AP) 3M 6K 0.8 29.71 | 34.96 | 32.11
Native-trained (NB) 3M - - 20.17 | 33.03 | 25.04
Adapted (NB) 3M 6K - 22.84 | 30.08 | 25.96

Table 6.6: Articles: Key adaptation experiments. All models are trained on WikiNYT data.
Adaptation uses 100 files (10%) of the FCE training data for error statistics. Inflation constant
is optimized on the development set. All differences are statistically significant (McNemar’s test,

p < 0.0001).

Model Training size Infl. Performance
Native | ESL | constant P R F1i

Native-trained (AP) 5M - - 26.07 | 22.80 | 24.32
Adapted (AP) 5M | 3K 0.8 31.27 | 22.27 | 26.01
Native-trained (NB) 5M - - 17.75 | 24.13 | 20.45
Adapted (NB) 5M | 3K - 21.22 | 27.47 | 23.93
Native-trained (NB, Google) | 26,000M - - 28.47 | 27.87 | 28.16
Adapted (NB, Google) 26,000M | 3K - 31.42 | 30.00 | 30.69

Table 6.7: Prepositions: Key adaptation experiments. Models are trained on WikiNYT
data or Google. Adaptation uses 100 files (10%) of the FCE training data for error statistics.
Inflation constant is optimized on the development set. All differences are statistically significant
(McNemar’s test, p < 0.0001).

The AP-adapted models do not use a threshold, since the inflation parameter functions as a “knob”

that controls recall.

6.3.2 Key Adaptation Results

Tables 6.6 and 6.7 compare the AP and NB selection models with AP-adapted and NB-adapted
models for articles and prepositions, respectively, on the FCE test data. Adapted models always
improve F1 compared to their selection counterparts.

A Two-Dimensional Summary of Adaptation Figure 6.1 displays a two-dimensional sum-
mary of the key adaptation results on the preposition correction task. The figure summarizes the
adaptation idea of combining large amounts of native data with small amounts of ESL data. We
can view adaptation to learner mistakes by considering a graph, with an x-axis representing the
amount of ESL data and the y-axis — the amount of native training data used in training (see

Figure 6.1). Each dot on the graph corresponds to a model, and the numbers in boxes show F1
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results. All dots on the x-axis indicate models that are trained exclusively on ESL data (different
amounts), and a dot on the y-axis represents a native-trained model in a selection paradigm. The
dots in the middle are adapted models that are trained on a lot of native data and adapted using
different amounts of ESL data. The x-axis is expensive, and the y-axis is cheap. The data sizes are
shown for each axis in log scale, since the sizes of the native data are several orders or magnitude
larger than the sizes of the ESL training data: the entire ESL data set contains 31,000 preposition
examples, and the 10% shown on the graph corresponds to 3,000 prepositions. The native data
size varies from 1 million to 13 million prepositions.

We can start by looking at models trained on ESL data: an ESL-trained model that uses 3,000
examples obtains an F1 score of 14.62. We can obtain an F1 of 26.73 if we use all of the ESL
training data available, 10 times more. However, this is still not a lot of data, and in most cases,
we will not have even this much annotated data available, so we really would like to train using
native data. A native-trained model that uses 1 million examples obtains an F1 score of 22.01, and
we can improve further, if we use 5 million and 13 million training examples. This demonstrates
the importance of using native data for learning weights for context features.

The main lesson that is learned from the graph is that increasing the amount of training data
is important, but one type of data is a lot more costly than that other. The adaptation methods
are shown to gain a lot from a small increase in the costly dimension: the key result (marked as
“1” on the graph and also shown in Table 6.7) is that a 5 million model adapted with 3,000 ESL
prepositions outperforms the model trained in a selection paradigm (26.01 versus 24.32 F1 points),
demonstrating that even a little bit of ESL data can make a big difference. This improvement is
consistent for adapted models that use 1 million and 13 million prepositions from native data.

The second comparison (marked as “2”) demonstrates the importance of using native data
for learning the weights of context features: an ESL-trained model that uses 3,000 prepositions
performs very poorly, since there is not enough evidence to learn the feature weights reliably. We
can improve significantly to 23.92 and 29.48 by adding 1 million and 13 million native examples,
respectively.

Finally, result marked as “3” shows that the model adapted with just 3,000 preposition instances

is very close to the performance of the model adapted with 10 times more data. This shows that
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Figure 6.1: Adaptation: a two-
dimensional summary. Increasing
the amount of training data is im-
portant, but one type of data is
a lot more costly than that other.
Adaptation methods are shown to
gain a lot from a small increase
in the costly dimension.The x-axis
shows the ESL data continuum as a per-
centage of the annotated training exam-
ples. The y-axis shows the native train-
ing data. The numbers in boxes show
F'1 results on the preposition correction
task. Note how the native data size is in
fact several orders of magnitude larger
than the ESL data.

by using just a small amount of annotated ESL data, it is possible to estimate the parameters

of the source feature reliably. Finally, we also note that the model trained on 5 million native

examples and adapted with 3,000 examples is close in performance to an ESL-trained model that

uses 10 times more data, while the model that uses more native data (13 million) outperforms the

ESL-trained model by almost 3 F1 points (from (26.73 to 29.48).

6.4 Analysis of the Adaptation Approaches

Along with the main question addressed in the previous section, we are also interested to answer

the following questions, as part of the analysis of the adaptation techniques:

1. Size of annotation. How much annotated data is needed for estimating error statistics ro-

bustly? Does the size depend on the error type and the size of the confusion set (Sec-
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tion 6.4.2)7

2. The error inflation method. Can the error inflation method be used to improve recall for

ESL-trained models (Section 6.4.3)?

3. How do adapted and ESL-trained models compare? In particular, if we have a reasonably
large annotated learner corpus (like FCE), is it still better to train on native data with

adaptation (Section 6.4.4)7

4. Genre. Is there a difference in the genres of the ESL and native data and what effect does

the genre have on the learned models (Section 6.4.5)7

Before this analysis, we consider adaptation experiments on the development data that led to the

key adaptation results in Section 6.3.2.

6.4.1 Adaptation Experiments on the Development Data

Tables 6.8 and 6.9 show the performance of AP and NB systems for articles and prepositions,
respectively. For the AP-adapted models, results with several values for the inflation parameter
are shown to examine how the parameter value affects the model behavior. Note that the AP-
adapted models with higher parameter values have lower recall, since the error rate in the training
data is lower. For example, models with value of 1.0 attain a recall of 10.47 and 8.74 for articles
and prepositions, respectively. We also note that any value between 0.9 and 0.5 will give a boost in
F1 compared to the rate of 1.0 that corresponds to the error rates of naturally-occurring mistakes.
Comparing the adaptation effect on AP and NB models, we find that AP-adapted models
exhibit very similar behavior on both tasks, while NB-adapted models on the article task show
only modest improvement. We believe that this is because the preposition problem has a larger

confusion set, and thus the models benefit more from learning about the error patterns.

6.4.2 How Much Annotation is Required for Estimating Error Statistics

In this section, we investigate how much annotated ESL data is needed to estimate error statistics
robustly and to improve performance over the native-trained models. We vary the ESL data size

used for error estimation between 0.5% to 100% of the ESL training data available.
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Model Training size Infl. Performance
Native | ESL | constant P R F1
Native-trained (AP) 3M - - 21.35 | 23.84 | 22.52
1.0 39.56 | 10.47 | 16.55
0.9 28.17 | 23.26 | 25.47
0.8 23.50 | 30.81 | 26.66
Adapted (AP) M) 6K 0.7 |20.13 | 34.88 | 25.53
0.6 19.22 | 40.12 | 25.98
0.5 16.86 | 41.86 | 24.04
Native-trained (NB) 3M - - 14.17 | 25.87 | 18.31
Adapted (NB) 3M 6K - 14.24 | 26.74 | 18.58

Table 6.8: Articles: adaptation for native-trained models on the development data. All
models are trained on WikiNYT data. Adaptation uses 100 files (10%) of the FCE training data

for error statistics.

Model Training size Infl. Performance
Native | ESL | constant P R Fi
Native-trained (AP) 5M - - 21.38 | 22.01 | 21.69
1.0 55.10 | 8.74 | 15.08
0.9 31.72 | 14.89 | 20.26
0.8 30.34 | 22.98 | 26.15
Adapted (AP) M| 3K 0.7 | 2442 | 23.95 | 24.18
0.6 20.80 | 26.86 | 23.43
0.5 18.50 | 29.45 | 22.72
Native-trained (NB) 5M - - 13.68 | 20.71 | 16.47
Adapted (NB) 5M | 3K - 20.88 | 22.98 | 21.87
Native-trained (NB, Google) | 26,000M - - 20.89 | 25.89 | 23.12
Adapted (NB, Google) 26,000M | 3K - 27.46 | 26.21 | 26.82

Table 6.9: Prepositions: adaptation for native-trained models on the development data.
Models are trained on WikiNYT or Google. Adaptation uses 100 files (10%) of the FCE training

data for error statistics.
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Model Training size Performance
Native | ESL P R Fi
Native-trained (AP) 3M - | 28.57 | 33.33 | 30.76
0.5% | 27.98 | 33.43 | 30.46
1% | 28.77 | 33.33 | 30.88*
5% | 30.13 | 34.45 | 32.14*
10% | 29.71 | 34.96 | 32.11*
50% | 30.09 | 35.57 | 32.60*
100% | 29.61 | 35.06 | 32.11*

Native-trained (NB) 3M -1 20.17 | 33.03 | 25.04
0.5% | 27.55 | 29.37 | 28.43*
1% | 27.22 | 29.88 | 28.48*
5% | 23.78 | 29.67 | 26.40*
10% | 22.84 | 30.08 | 25.96*
50% | 22.93 | 30.08 | 26.02*
100% | 22.99 | 30.28 | 26.14*

Adapted (AP) 3M

Adapted (NB) 3M

Table 6.10: Articles: varying the ESL data size for adaptation. All AP-adapted models
use a value of 0.80 for inflation. The adapted models that outperform the corresponding native-
trained model are marked with an asterisk. The size of the ESL data for adaptation is shown as a
percentage of the ESL training data (100% corresponds to 60,743 articles).

Table 6.10 shows the performance of AP and NB models for the article correction task where
the amount of annotation used for adaptation is varied. The adapted models that outperform the
corresponding native-trained models are marked with an asterisk. As we add more data for error
estimation, the performance improves. At 5% of the ESL data, we approach a saturation point,
after which the performance remains about the same. This point is highlighted in the table.

It is interesting to note that NB models adapted with the smallest amounts of data get the
best results. The reason for this behavior is that when 2% or less of the annotated data is used,
we do not get examples of some less common article errors,? specifically confusions between a and
the and vice versa, and these confusions thus get 0 probabilities in such a model. . We hypothesize
that NB benefits from not suggesting these corrections.

Table 6.11 shows the performance on preposition mistakes. We find that, in contrast to article
errors, more data is needed in order for the model to achieve a saturation point (10%). One reason
for this is that one needs about twice as much annotated data to obtain a comparable number of

examples for each preposition as we obtain for each article. With less than 2% of training data

2We refer the reader to Table 6.4 in Section 6.2.3 for statistics on article mistakes.
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Model Training size Performance
Native | ESL P R F1
Native-trained (AP) oM - | 26.07 | 22.80 | 24.32
0.5% | 20.65 | 10.13 | 13.59
1% | 24.19 | 10.00 | 14.15
5% | 31.62 | 19.73 | 24.30
Adapted (AP) M 10% | 3127 | 2227 | 26.017
50% | 31.03 | 22.13 | 25.83*
100% | 31.73 | 22.93 | 26.62*
Native-trained (NB) 5M - | 17.75 | 24.13 | 20.45
0.5% | 20.70 | 9.47 12.99
1% | 22.29 | 10.13 | 13.93
5% | 22.84 | 20.80 | 21.77*
Adapted (NB) SMA 10% | 21.22 | 2747 | 23.93"
50% | 21.96 | 28.40 | 24.76*
100% | 22.51 | 27.07 | 24.57*
Native-trained (NB, Google) | 26,000M - | 28.47 | 27.87 | 28.16
0.5% | 24.23 | 11.47 | 15.56
1% | 24.86 | 12.13 16.30
5% | 30.98 | 25.73 | 28.11
Adapted (NB, Google) 26,000M 10% | 31.42 | 30.00 | 30.69"
50% | 32.05 | 28.93 | 30.41*
100% | 31.33 | 29.20 | 30.22*

Table 6.11: Prepositions: Varying the ESL data size for adaptation. All AP-adapted
models use value of 0.80 for inflation. The adapted models that outperform the corresponding
native-trained model are marked with an asterisk. The size of the ESL data for adaptation is
shown as a percentage of the ESL training data (100% corresponds to 31,000 prepositions).

used for error estimation, the models perform very poorly, since many of the confusions are not

observed.

To summarize, the evaluation above suggests that we need about 3,000 examples to estimate
error statistics reliably (5% of the training data for articles, and 10% for prepositions). For prepo-
sitions, the performance continues to improve slightly with more data but for articles, it does not
change much. This is to be expected, since preposition errors have more parameters due to a larger

confusion set. This is also confirmed for systems that are trained entirely on ESL data (Gamon,

2010).
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Task Model Performance

P R | F1
Articles ESL-trained model (natural errors) | 73.42 | 16.86 | 27.42
Prepositions | ESL-trained model (natural errors) | 81.82 | 8.74 | 15.78

Table 6.12: Performance of ESL-trained AP models. All models are trained on 100% of ESL
training data with naturally-occurring mistakes.

Model Training size | Adapt. Performance
Native | ESL rate P R Fi
ESL-trained (natural errors) - 90% - 81.82 | 8.74 | 15.78

1.0 66.67 | 11.65 | 19.83
0.9 54.02 | 15.21 | 23.73
0.8 38.57 | 17.48 | 24.05
0.6 26.44 | 22.33 | 24.21

ESL-trained (inflation) - 90%

Table 6.13: Prepositions: AP Inflation experiments for ESL-trained models. All models
are trained on 90% of data and evaluated on the development data (10% of all the training data).

6.4.3 Error Inflation for ESL-trained Models

We now discuss another application of the error inflation algorithm proposed in Section 6.2.2. When
AP models are trained on annotated ESL data with naturally-occurring mistakes, they also suffer
from low recall due to error sparsity, (e.g., Dahlmeier and Ng, 2011; Xiang et al., 2013). Table 6.12
shows the performance of AP models trained on ESL data with naturally-occurring mistakes. The
recall of these models is very low — 16.86% for articles and 8.74%. The error inflation method can
also be applied to such models to boost recall. In this case, we generate artificial errors in training,
in addition to the naturally-occurring mistakes already in the data. Table 6.13 shows preposition
models trained on the ESL data with and without error inflation. The first row in the table shows
the results of training on natural errors. By inflating the error rate, we can boost the recall of the

models significantly, from 8.75% to over 20% on the preposition correction task.

6.4.4 Comparison of Adapted Models and ESL-trained Models

We now evaluate ESL-trained models that use various amounts of data and compare these to
adapted models. Table 6.14 compares adapted models that use 10% of all ESL training data
available and ESL-trained models that use different amounts of data. The table demonstrates

that due to adaptation we are able to train models that perform significantly better than ESL-

80



Task Model Training size Performance
Native | ESL P R Fi
Adapted 3M 10% | 29.71 | 34.96 | 32.11
- 10% | 26.75 | 13.21 | 17.68
Articles . - 20% | 31.52 | 17.68 | 22.65
ESL-trained | 50% | 33.81 | 21.54 | 26.31
- 100% | 36.81 | 25.81 | 30.34
Adapted 13M 10% | 31.27 | 22.27 | 29.48
- 10% | 20.63 | 11.33 | 14.62
Prepositions . - 20% | 27.89 | 14.80 | 19.33
ESL-trained | 50% | 28.97 | 19.20 | 23.09
- 100% | 32.33 | 22.80 | 26.73

Table 6.14: Comparison of adapted and ESL-trained models. Adapted models use 10%
of the ESL data (6,000 and 3,000 article and preposition examples) and are trained on WikiNYT
with the AP algorithm. Inflation parameter is optimized on the development set. For the adapted
models, we use 0.8 in all cases. For the ESL-trained models we use 0.9 and 0.7, for articles
and prepositions, respectively. 100% of the ESL data contains about 60,000 articles and 31,000
prepositions.

trained models. Adapted models perform much better than ESL-trained models that use the same
amounts of data: on the article correction task, the adapted model obtains an F1 of 32.11, while
the ESL-trained model obtains 17.68; similarly, for prepositions, the F1 results are 29.48 and 14.62,
respectively. Moreover, the adapted models require only a little bit of annotation and outperform
significantly ESL-trained models that use considerably more data. In fact, on both tasks, the
models adapted with 10% of the ESL data outperform ESL-trained models that use 10 times more
ESL data for training. This is because adapted models are better at estimating parameters that
do not depend on the source word but depend on the contextual information. Finally, note also
that one can easily increase the training size of the adapted models, without incurring additional

annotation costs.

6.4.5 Artificial Versus Naturally-Occurring Mistakes and the Genre Effect

As we showed in Section 6.4.4, the performance of adapted models that use several million examples
from native English data is better than that of ESL-trained models that are built using 100 times
less data (Table 6.14).

Even though we can significantly improve over ESL-trained models, this requires a lot of native

data. There might be two reasons for this behavior. First, there might be a difference between how
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Model Articles Prepositions
P R F1 P R | F1
ESL-trained (natural errors) 73.42 | 16.86 | 27.42 | 81.82 | 8.74 | 15.78
ESL-trained (corrected with artificial errors) | 60.00 | 5.23 | 9.62 | 82.61 | 6.15 | 11.44

Table 6.15: Natural versus artificial errors for ESL-trained models: Natural errors denotes
models that are trained on data with naturally-occurring mistakes. Corrected with artificial errors
denotes models that are trained on data where naturally-occurring errors are corrected and instead
artificial errors are introduced using error statistics of the naturally-occurring mistakes. All models
are trained on 100% of ESL training data.

Model Articles Prepositions

P R F1 P| R F1
ESL-trained (natural errors) 73.42 | 16.86 | 27.42 | 81.82 | 8.74 | 15.78
ESL-trained (corrected with artificial errors) | 60.00 | 5.23 | 9.62 | 82.61 | 6.15 | 11.44
Adapted 15.38 | 1.74 | 3.13 | 100.0 | 0.97 | 1.92

Table 6.16: Genre. Comparison of ESL-trained models and adapted models that use the same
number of training examples. Natural errors denotes ESL-trained models that are trained on data
with naturally-occurring mistakes. Corrected with artifical errors denotes ESL-trained models with
naturally-occurring errors corrected and artificial errors introduced instead. Adapted models are
trained on the same number of training examples from WikiNYT as the ESL-trained models (about
60,000 articles and 31,000 prepositions). Adapted models use 100% ESL training data for statistics.

naturally-occurring and artificial errors are distributed. Second, this ceiling in the performance of
the adapted models might also be caused by genre differences between native and non-native texts.

To determine whether there exists a difference between naturally-occurring and artificial errors,
we generate ESL training data, where all natural errors are corrected, and instead errors are added
artificially, using the artificial errors approach. We then train AP models on corrected ESL data.
Table 6.15 compares models trained on ESL data with naturally-occurring and artificial mistakes.
We find that there is indeed a difference between these models; both precision and recall drop,
for prepositions slightly, and more so for articles, when artificial errors are used instead of the
naturally-occurring ones. We conjecture that contexts containing natural mistakes may have other
cues that indicate the presence of an error: for example, many article errors have noun number
mistakes on neighboring words. However, while the performance of the corrected text models drops
slightly compared to the natural errors models, it remains quite good.

To investigate the genre effect, we control for the training size, when training on native and ESL

data (Table 6.16). Note that the performance of these models is very poor, since the native-trained
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models use only 31,000 and 60,000 training examples. It is clear from this result that genre is a

key factor affecting the performance of native-trained adapted models.

6.5 Discussion

We have presented two adaptation approaches based on error statistics: the artificial errors method,
applicable for any discriminative model; and the priors method, a special adaptation approach for
NB. We showed that the adaptation methods require significantly less annotation than training
on annotated data, since estimating the source features parameters requires much less annotated
data than learning all model parameters. Moreover, the training data size is not restricted by the
amount of the error-tagged data available. The source word of the writer can be used in training
as a feature, in the exact same way as with the models trained on error-tagged data.

We note that error regularities can be reflected at various levels, from specific authors, to
writers of specific first language, to more general patterns across several languages.  For first-
language adaptation, we refer the reader to Rozovskaya and Roth (2010c,b, 2011); for adaptation
to a small group of learners, see Rozovskaya et al. (2011).% Adaptation experiments in Chapter 8
can also be considered as first-language adaptation, as the majority of writers share the same
first language. In this chapter, we applied the adaptation idea to ESL writers across several first-
language backgrounds and showed that we only need a small ESL sample to estimate error statistics.
But one would expect that even fewer annotated examples will be needed to adapt on first-language
basis or to specific users, since writers make consistent mistakes. In fact, in Rozovskaya et al. (2011),
we show that when the adaptation techniques are applied based on writing samples from a small
group of learners, the improvements over the native-trained models are even more impressive, even

though the data required for error estimation is much smaller.*

3Experiments in Rozovskaya and Roth (2010c,b) and Rozovskaya and Roth (2011); Rozovskaya et al. (2011) are
not included in the thesis, as they are superseded by later works.

4Rozovskaya et al. (2011) describes the University of Illinois system in the HOO-2011 shared task. This system
ranked first among six participating teams.
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6.5.1 Advantages of the Two Adaptation Methods

In Chapter 5, we showed that NB and AP outperform both the language modeling approach and the
counting method SumLM on the article and preposition error correction tasks. We have also shown
that AP performs consistently better than NB with different feature sets on both tasks. Clearly, for
a robust system, one would want to train a discriminative model and adapt it using the artificial
errors approach. However, the NB adaptation has its own advantages. First, it does not require
generating new training data and re-training in order to adapt to a different error distribution.
One model is trained, and only at decision time are the prior parameters adapted. Second, in
certain scenarios, it is much easier to train a NB model. Specifically, the Google corpus contains
precomputed n-gram counts; these can be used directly to train NB; if we train a discriminative
model, such as AP, on the Google corpus, we have to restrict the context features to the window
of two words around the target. In Section 6.3 (Table 6.7) we showed that the Google model

outperforms the AP classifier, when the latter is trained on a smaller data set (WikiNYT).

6.5.2 Supporting a Range of Recall Values

In Chapter 3, we discussed two training paradigms for error correction distinguished by whether
the source word is used in training. Adaptation allows us to provide models with knowledge about
error regularities. Both the artificial errors method and the priors method improve over the native-
trained models; however, unlike with the NB adaptation method, the AP model adapted without
error inflation suffers from low recall (Section 6.2.2), which can be fixed by inflating the error rate
in the training data.

Supporting a range of recall values is important, since the desired recall may depend on the
application of the error correction system and on the proficiency of the user. For example, more
proficient users may be more interested in having more of their mistakes detected, since they will be
able to determine the correct usage once an error is flagged. While our experiments have presented
a large range of recall values for different inflation values, we believe that as recall is increased,
good precision should be maintained. However, as shown in this Chapter and in will be shown in
Chapter 8, models trained without error inflation exhibit very low recall. The inflation method

helps boost the recall, while maintaining good precision.
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Figure 6.2: Source inflation continuum for preposition errors (the FCE data set). The y axis
shows the best recall achieved by the model and the corresponding precision, when predictions are
done without thresholding them; this is the range available for a user to play with.

Analyzing the error inflation approach from the learning point of view, the method can be
viewed as a middle ground that provides a range of degrees of the employment of the source text.
In the selection model, the degree is 0, while in adaptation without inflation, the source text is
fully used. By varying the degree, we can adapt the model to the needs of users with different
proficiency levels. Figure 6.2(a) and Figure 6.2(b) illustrate how precision and recall change across
the continuum for the AP and NB models. The y axis shows the maximum recall achieved (when
predictions are done without thresholding — whenever the model suggests a replacement, we accept
it) and the precision corresponding to this recall. Note that the recall range for AP varies from 8%
to 35%.

Note also that the NB model is not severely affected by the low error rate — its recall ranges
between 26% and 35%. However, the NB classifier never achieves the good precision of the AP

classifier.
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6.6 Summary

This chapter develops methods that provide models trained on native English data with knowledge
about error regularities with minimal annotation costs. The proposed methods are based on error
statistics and allow for training models in the correction training paradigm using the source word
as a feature. The resulting adapted models combine large amounts of native English data (which is
cheap and can be used to learn parameters for context features) with small amounts of annotated
ESL data for estimating error patterns. This is possible because the parameters relating to error
patterns are very simple and thus do not require a lot of annotated data for estimation.

The adapted models outperform native-trained models that use the same amount of native
data for training. The adapted models also perform much better than ESL-trained models that
use the same amounts of data or even 10 times more annotated data for training. This is because,
unlike the source feature, context features have many more parameters and require a lot more data
for estimation. It is thus essential to use native data for learning the parameters of the context
features.

The implementations of the adapted models described in this chapter were part of the error
correction systems in three text correction competitions; these systems ranked first or second on
various metrics in the HOO-2012 shared task and ranked first on all metrics in the HOO-2011 and

the CoNLL-2013 shared tasks.
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Chapter 7

Errors on Open-Class Words: Nouns
and Verbs

In this chapter, we study mistakes on open-class words and focus on noun number misuse and
grammatical verb errors. Developing models for correcting errors that belong in the open-class
category introduces additional challenges that are not discussed by previous research. We develop
strategies for correcting these errors in a linguistically-motivated framework. It is demonstrated
that addressing these challenges in the right way is crucial to building a state-of-the-art system for

correcting these errors.

7.1 Introduction

Verb and noun errors are some of the most prevalent mistakes made by non-native writers of
English but the least studied. The reason is that dealing with open-class mistakes requires a new
paradigm; essentially all research done on correcting ESL errors assumes a closed set of triggers —
e.g., correcting the use of prepositions or articles — but identifying mistakes on open-class words
necessitates identifying potentially ambiguous triggers first: nouns and verbs cannot be identified
in text based on their surface forms, since many of them are ambiguous with respect to part of
speech. This is complicated by the fact that since ESL text is noisy, pre-processing tools tend to do
poorly on learner data (Nagata et al., 2011). Thus the candidate extraction procedures for errors
on open-class words need to address the problem of noisy data. Moreover, correcting verb errors
presents an additional challenge because verbs fulfill many grammatical functions and are marked
for different properties, which results in a variety of mistakes.

This chapter develops strategies for addressing mistakes on open-class words. The problem
is considered in the context of correcting several prominent grammar and usage errors on two

central parts of speech: nouns and verbs. For both verb and noun errors, we consider the problem
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of identifying the relevant candidates in noisy learner text. It is shown that a robust candidate
selection method must take into account the problem of the noisy input and poor performance of
the pre-processing tools.

Furthermore, we propose a linguistically-motivated approach to verb error correction that makes
use of the notion of verb finiteness to identify types of verb errors, before using a statistical ma-
chine learning approach to correct these mistakes. We show that the linguistically-informed model

significantly improves performance on correcting verb errors.

Contributions

e We evaluate several candidate identification methods for noun number errors, using the
CoNLL-2013 data set. Comparison of our method with other approaches used in the com-

peting systems reveals that the choice of the method is crucial for system performance.

e We present a holistic, linguistically-motivated framework to the problem of correcting gram-
matical verb mistakes; our approach “starts from scratch” without any knowledge on which
mistakes should be corrected or on the mistake type; in doing that we show that the specific
challenges of verb error correction are better addressed by first predicting the finiteness type

of the verb in the error identification stage.

1. Within the proposed model, we describe and evaluate several methods of selecting verb
candidates, an algorithm for determining the verb type, and a type-driven verb error

correction system.

2. We annotate a subset of the FCE data set with gold verb candidates and gold verb type.

The rest of this chapter is devoted to developing models for grammatical verb errors (Section 7.2)

and noun number mistakes (Section 7.3).

7.2 Correcting Grammatical Verb Errors

While verb errors occur more often than article and preposition mistakes, with a few exceptions
(Lee and Seneff, 2008b; Gamon et al., 2009; Tajiri et al., 2012), there has been little work on verbs.

There are two reasons why it is difficult to deal with verb mistakes. First, in contrast to articles
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and prepositions, verbs are more difficult to identify in text, as they can often be confused with
other parts of speech, and pre-processing tools are known to make more errors on noisy ESL data
(Nagata et al., 2011). Second, verbs are more complex linguistically: they fulfill several grammatical
functions, and these different roles imply different types of errors.

The linguistic complexity of verb errors has led all previous work on verb mistakes to assume
prior knowledge of the mistake type; however, identifying the specific category of a verb error is
nontrivial, since the surface form of the verb may be ambiguous, especially when that verb is used

incorrectly. Consider, for instance, the following examples of verb mistakes:

“We *discusses/discuss this every time.”
“T will be lucky if T *{will find}/find something that fits.”

“They wanted to visit many places without *spend/spending a lot of money.”

=W D=

“They arrived early to *organized/organize everything”.

These examples illustrate three grammatical verb properties — Agreement, Tense, and non-finite
Form choice — that encompass the most common grammatical verb problems for ESL learners. The
first two examples show mistakes on verbs that function as main verbs in a clause: sentence (1)
shows an example of subject-verb Agreement error; (2) is an example of a Tense mistake, where
the ambiguity is between {will find} (Future tense) and find (Present tense). Examples (3) and
(4) display Form mistakes: confusing the infinitive and gerund forms in (3) and incorrectly adding
an inflection on an infinitive verb in (4).

This section proposes a linguistically-informed approach to addressing the specific challenges
of verb error correction that have not been addressed previously — identifying verb candidates in
text and determining which class of errors is present, before proceeding to correct the error. The
experimental results show that our linguistically-motivated approach benefits verb error correction.
In particular, in order to determine the error type we build on the notion of verb type that distin-
guishes between finite and non-finite verbs (Quirk et al., 1985) and grammatical properties that
are associated with each group, i.e. Agreement and Tense (examples (1) and (2) above) and Form

choice (examples (3) and (4) above), respectively (see Section 7.2.1).
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Tag Error type Rel. freq. (%)
TV Tense (but see also Table 7.3) 40.0
FV Form 22.3
AGV | Verb-subject agreement 11.5
MV Missing verb 11.7
L0AY Unneccesary verb 7.3
v Inflection 5.4
DV Derivation 1.8
Total 6,640

Table 7.1: Grammatical verb errors in FCE.

7.2.1 Verb Errors in ESL Writing

We study verb errors using the FCE corpus (see Section 4.2.2). The corpus possesses several
desirable characteristics for studying verb errors: it is large (500,000 words) and has special error
tags for different error categories. Verb errors are more common in FCE than article and preposition
mistakes: 5,056 determiner errors, 5,347 preposition errors, and 6,640 grammatical verb mistakes,

marked using seven different tags (Table 7.1).

7.2.1.1 Classifying Verb Errors Using Verb Finiteness

There are many grammatical categories for which English verbs can be marked. The linguistic
notion of verb finiteness or verb type (Radford, 1988; Quirk et al., 1985) distinguishes between
verbs that function on their own in a clause as main verbs (finite) and those that do not (non-
finite). Grammatical properties associated with each group are mutually exclusive: tense and
agreement markers, for example, do not apply to non-finite verbs; non-finite verbs, on the other
hand, are not marked for many grammatical functions but may appear in several forms in English.

The most common verb problems for ESL learners — Tense, Agreement, non-finite Form — involve
verbs both in finite and non-finite roles, which is not surprising: the English verb tense system is
more complex compared to other languages, and the presence and distribution of non-finite forms
varies by language as well. Table 7.2 illustrates contexts that license finite and non-finite verb
types.

Our intuition is that knowledge of verb finiteness should benefit models that perform verb error

correction because properties associated with each verb type are mutually exclusive. An observed
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Verb type | Example Verb properties
Agreement Tense Form
Finite “He discussed this with me last week” - Past Simple -
“He discusses this with me every week.” 3rd pers., sing. | Present Simple | -
“He left without discussing it with me.” - - Gerund
Non-finite “They let him discuss this with me.” - - Infinitive
“To discuss this now would be ill-advised.” - - to-Infinitive

Table 7.2: Contexts that license finite and non-finite verbs and the corresponding active
properties.

verb error may be due to several grammatical phenomena, and knowing which phenomena are
active depends on the function of the verb in the current context. Indeed, as we show, using verb
type information is beneficial for verb error modeling. Note that Agreement, Tense, and Form
errors account for about 74% of all grammatical verb errors in Table 7.1, but in fact, the verb type

formulation is also relevant for the remaining mistakes but is out of the scope of this work.!

7.2.2 Annotation for Verb Type

In order to evaluate the quality of the algorithm for verb type assignment and the candidate selection
methods, we annotated all verb errors in the corpus and 10% of correct verbs with the information
about verb type. Correct verbs were annotated in a random set of 124 documents. We refer to
these 124 documents that have gold annotation for all verbs as gold subset.

The annotation was performed by two students with formal background in Linguistics. The

inter-annotator agreement is shown in Table 7.4 and is quite high.

Annotating Verb Errors

We collected all mistakes tagged as Tense (T'V'), Agreement (AGV'), and Form (FV) in the FCE
corpus (4864 mistakes). For each verb error, the annotators marked the type of the verb (finite or
non-finite) and the type of error (Tense, Agreement, or Form) (Table 7.3). Note that the annotation
was necessary because these error tags do not always correspond to the three error types we study
here; for example, the FV tag sometimes marks errors on finite verbs, e.g. tense. Overall, about
7% of all annotated verb errors have to do with phenomena different from the three verb properties

considered here, and we exclude them.

'For instance, the missing verb errors (MV, 11.7%) require an additional step for identifying contexts for missing
verbs, and then appropriate verb properties need to be determined based on the verb type. The additional step,
however, is orthogonal to the phenomena that we consider.
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Errors by Verb Type | Error type Example

Finite (67.7%) Agreement (20%) “We discusses*/discuss this every time.”
’ Tense (80%) “If you buy something, you {would be} */{will be} happy.”
“If one is famous he has to accept the disadvantages of be*/being fa-
Non-finite (25.3%) mous.” “I am very glad {for receiving} */{to receive} it.”

“They arrived early to organized*/organize everything.”

Passive/Active (42.3%) | “Our conference party {is included}*/includes dinner and dancing.”

« ] ) L o «
Other errors (7.0%) Compound (40.7%) a?;or/i:ik me for some informations*/information here they*/it
Other (16.8%) “Nobody {has to be} */{should be} late.”

Table 7.3: Verb error classification based on 4864 mistakes marked as TV, AGV, and FV errors
in the FCE corpus.

Category Agreement | Kappa | Random
Correct verbs 0.97 0.95 0.51
Erroneous verbs 0.88 0.81 0.41

Table 7.4: Inter-annotator agreement based on 250 verb errors and 250 correct verbs, randomly
selected.

Annotating Correct Verbs

The annotators were presented with an automatically-generated list of candidate verbs. Each verb
was shown in the context of the sentence. The candidates that were identified incorrectly due
to mistakes by the part-of-speech tagger were marked as invalid. For valid verbs, the annotators

specified the verb type.

7.2.3 The Computational Model for Verb Error Correction

The verb error correction problem is formulated as a classification task in the spirit of the machine
learning paradigm to error correction that was also used for article and preposition error correction
in Chapters 5 and 6, with the exception that the verb error correction model includes additional

components. The complete system consists of the following components:

Candidate selection (7.2.3.1)
Determining the verb type (7.2.3.2)
Feature generation (7.2.3.3)
Error identification (7.2.3.4)

Correction component (7.2.3.5)

PR o S

After verb candidates are selected, verb type is determined and features are generated for each

candidate. The wverb type prediction is used in the error identification component. Given the
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output of the error identification stage, the corresponding classifiers for each error type are invoked
to propose an appropriate correction.

We use the FCE data both for training and evaluation. We randomly split the documents of
the corpus into two equal parts, training on one part and evaluating on the other. Each component

is developed using the training data.

7.2.3.1 Candidate Selection

This stage selects the set of words that are presented as input to the classifier. This is a crucial
step for models that correct mistakes on open-class words, because it limits the performance of
any system: those errors that are missed at this stage have no chance of being detected by the
later stages. This is also a challenging step, as the class of verbs is open, with many English
verbs being easily confused with other parts of speech. We implement four candidate selection
methods. Method (1) extracts all verbs heading a verb phrase, as identified by a shallow parser
(Punyakanok and Roth, 2001). Method (2) expands this set to also include words tagged with one
of the verb tags {VB,VBN,VBG,VBD,VBP,VBZ}. However, generating candidates by selecting
only those tagged as verbs is not good enough, since the POS tagger performance on ESL data is
known to be suboptimal (Nagata et al., 2011). This especially concerns those verbs that contain
errors. For example, verbs lacking agreement markers are likely to be mistagged as nouns (Lee and
Seneff, 2008b). Erroneous verbs are exactly the cases that we wish to include. Methods (3) and (4)
address the problem of pre-processing errors. Method (3) adds words that are on the list of valid
English verb lemmas; the latter is compiled using a POS-tagged version of the NYT section of the
Gigaword corpus. Method (4) also includes words not tagged as verbs but whose lemmas are in
the list of valid verb lemmas. The difference between methods (3) and (4) is that (4) will also add
words with inflections; for example, the former will add shop but not shopping, but the latter will
add both.

Methods (3) and (4) require a procedure that given a possibly inflected verb can generate its
lemma. To this end, we develop a tool called verbMorph that performs morphological analysis on
verbs. Unlike lemmatizers, verbMorph both adds and removes morphological endings for a specific

morphological form. The module assumes (1) a list of valid verb lemmas and (2) a list of irregular
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Candidate identification method Error | Recall by error category
recall A T F

(1) All verb phrases 83.00 | 86.62 | 93.55 59.08

(2) + tokens tagged as verbs 91.96 | 90.30 | 94.33 87.79

(3) + tokens that are valid verb lemmas 95.50 | 95.99 | 96.46 93.23

(4) + tokens with inflections whose lemmas are valid | 96.09 | 96.32 | 96.62 94.84

verb lemmas

Table 7.5: Performance of the candidate selection methods on the FCE data set. Recall
denotes the percentage of gold errors identified by each method.

A verb is non-finite if any of the fol- | A verb is finite if any of the following hold: Accuracy on
lowing hold:

Correct | Incorrect

verbs verbs
All verbs identified by shallow parser
(1) [numTokens = 2] A [firstToken = to] can;could
numTokens = 1) A [pos € {VBD,VBP,VBZ}] 98.01 89.4

[
[numTokens = 2] A [firstToken! = to]
numT okens > 2

(3) [numTokens = 1] A [pos = V BG]

(1)
(2)
(2) firstToken = be 3)
(1)
5

Table 7.6: Algorithm for determining verb finiteness. numTokens denotes the number of
tokens in the verb instance, e.g. for the verb instance to go, numTokens = 2. Verbs not covered
by the rules are not assigned any verb type. The last column shows algorithm accuracy on the gold
subset separately for correct and incorrect verbs.

English verbs and their morphological variants. VerbMorph is also used to generate morphological
variants for verbs (see Section 8.4.3).

The quality of the identification methods is evaluated by verifying how many verbs that have
errors can be identified in text using each of the methods. Table 7.5 shows for each method its recall
on gold verb errors. The last two methods that address pre-processing mistakes are able to recover
more erroneous verb candidates in text. It is also interesting to note that across all methods, the
highest recall is obtained for tense errors. In fact, method (2) that relies on the POS tagger misses
10% of all agreement mistakes and over 12% of non-finite errors but less than 6% of tense mistakes.
This suggests that the POS tagger is more prone to failure due to errors in agreement and form.
This makes sense since we would not typically expect errors in tense to disrupt the structure of the
parse tree or the POS sequence. We stress that the evaluation in Table 7.5 shows the ability of each
method to select as part of its candidates erroneous verbs but it does not evaluate performance on
error detection and correction. In Section 7.2.4 we also evaluate the contribution of each method

to error identification.
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7.2.3.2 Automatic Prediction of Verb Type

Predicting verb finiteness is not trivial, as almost all English verbs can occur in both finite and
non-finite form, and the choice depends on the function of the verb in the sentence. Moreover, the
surface forms of a verb in finite and non-finite forms may be the same.

While we cannot learn verb type automatically due to lack of annotation, we show, however, that
it is possible to reliably predict verb finiteness for the majority of verbs using linguistic knowledge.
We implement a decision-list classifier that makes use of a small set of linguistically-motivated rules
(Table 7.6). The algorithm covers about 92% of all verb candidates, abstaining on the remaining
highly-ambiguous 8%.

The accuracy of the algorithm that predicts verb type is evaluated on the gold subset (shown
in the last column of Table 7.6). Accuracy is the percentage of verbs for which the automatic type
prediction is the same as gold. We note that despite its simplicity, overall, this method is highly
effective, which indicates that it is possible to make use of linguistic knowledge in a straightforward
way. The performance is better, however, for correct verbs than for verb errors, as errors downgrade

performance.

7.2.3.3 Features

We define features based on context around the target, where the target refers to the verb, including
its auxiliaries or the infinitive marker (e.g., found, will find, to find). The baseline features are word
n-grams in the 4-word window before and after the target defined in the same way as for article in
preposition error correction tasks in Section 5.2.3. Additional features are intended to characterize
a given error type: for Agreement and Form errors, we use a syntactic parser (Marneffe et al.,
2006) and define features that reveal relations between the target verb and the neighboring words.
We denote these features by syntax. Syntactic knowledge via tree patterns has been shown useful
for agreement mistakes (Lee and Seneff, 2008b).  Features for Tense include temporal adverbs
in the sentence and tenses of other verbs in the sentence and are similar to the features used in
other verb classification tasks (Reichart and Rappoport, 2010; Lee, 2011; Tajiri et al., 2012). The

features are shown in Table 7.7.
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Agreement Description

(1) | subjHead, subjPOS The surface form and the POS tag of the subject head

(2) | subjDet {those, this,..} Determiner of the subject phrase

(3) | subjDistance Distance between the verb and the subject head

(4) | subjNumber {Sing, Pl} Sing — singular pronouns and nouns; P! — plural pronouns and nouns

(5) | subjPerson {8rdSing, Not3rdSing, 1stS- | 3rdSing — she,he,it,singular nouns; Not3rdSing — we,you,they, plural
ing} nouns; 1stSing — “I”

(6) | conjunctions (1)&(3);(4)&(5)
Tense Description

verb lemma, negation, surface forms and POS tags of all words in the

verb phrase

tenses and lemmas of the finite verbs preceding and following the target

verb

(3) | temporal adverbs (2 features) temporal adverb before and after the target verb

(4) bag-of-words (BOW)(8 features) In.cludes the followi.ng words in the sentence: {if, when, since, then,
wish, hope, when, since, after}

) verb phrase (VP)

verbs in sentence (4 features)

Form Description

surface form, lemma, POS tag, and distance of the closest open-class
word to the left of the verb

(2) | governor surface form, POS tag and dependency type of the target

if the verb is preceded by a preposition: preposition itself and the sur-
face form, POS tag and dependency of the governor of the preposition
POS tag and lemma of the verb and their conjunctions with features
in (2) and (3) and word ngrams

closest word

preposition

target pos and lemma

Table 7.7: Features used, grouped by error type.

7.2.3.4 Modeling Error Identification

This section describes the error identification system that makes use of the components presented
above. The goal of this stage is to identify errors and for each error predict its type. The input to
the system is the list of candidate verbs (identified as described in Section 7.2.3.1). A multiclass
classifier is trained with the following label space: { Correct, Form, Agreement, Tense}.

To evaluate the contribution of verb type, we implement two error identification models: com-
bined and type-based. The combined model is agnostic to the type of the verb. It makes use of
all the features we have defined earlier for each verb. The type-based model, in contrast to the
combined, uses the type of the verb predicted by the verb type classifier.

There are two ways to use the information about verb type in the type-based model. A soft
way is to keep the same setting as the one used in the combined approach but add the predicted
verb type as a feature. The other — hard-decision approach — is to use only a subset of the features
depending on the predicted type: Agreement and Tense for the finite verbs, and Form features for

non-finite.
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7.2.3.5 Correction Component

The role of the correction component is to propose an appropriate correction for those verbs that
are identified as errors. The correction component consists of three classifiers, each corresponding
to one type of mistake. Given the output of the error identification model, an appropriate classifier
is run for each instance predicted to be a mistake.? The verb type predictor is used to select
finite instances for training the Agreement and Tense components and non-finite — for the Form
component. The label space for Tense specifies tense and aspect properties of the English verbs
(see Tajiri et al., 2012 for more detail); the Agreement component specifies the person and number
properties; while the Form component includes the commonly confusable non-finite English forms

(see Table 7.2). These components are trained as multiclass classifiers.

7.2.4 Experiments

The main goal of this study is to propose a unified framework for correcting verb mistakes. We
do not focus on features and on the specific learning algorithm but instead on how to model verb

error correction. Thus, our experimental study addresses the following research questions:

I. Linguistic questions:

(i) Candidate selection methods

(ii) Contribution of verb type to error identification
II. Computational Framework: Error identification versus correction
III. Gold annotation:

(i) Using gold candidates and gold verb type versus automatically predicted ones

(ii) Performance comparison by error type

All of the identification and correction models are trained using the discriminative learning
framework with the SVM learning algorithm (Chang et al., 2010). The choice of the model in favor

of a discriminative classifier is based on the results obtained in Chapter 5.

2We assume that each verb contains at most one mistake. The number of verbs that have both agreement and
tense errors is negligible, less than 1% of all errors.
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Candidate identification AAUC
method (error recall, %) | Combined | Type-based
(1) 83.00 73.38 79.49
(2) 91.96 80.36 86.48
(3) 95.50 81.39 87.05
(4) 96.09 81.27 86.81

Table 7.8: Comparison of candidate selection methods as performance on error identifi-
cation. The first column shows the percentage of gold errors selected by each method. Type-based
models are discussed in detail in Section 7.2.4.1.

Correct verbs | Erroneous verbs | Error rate (%)
Training 41,721 1,981 4.75
Test 41,836 2,014 4.81

Table 7.9: Number of verb candidates in training and test data. Examples are selected
using method (3).

Evaluation The key results are shown using Precision/Recall curves. For all other experiments,

AAUC is used as a summary statistic (Section 4.5). AAUC is computed over a range of 15 recall

points:
1 15
AAUC = I ZZ; Precision(i).

7.2.4.1 Linguistic Questions

Candidate Selection Methods To evaluate candidate selection, we compare models that per-
form error identification using the four candidate selection methods presented in Section 7.2.3.1.
Table 7.8 presents the results. Overall, better performance is achieved by methods with higher re-
call, with the exception of method (4). Although method (4) has the highest recall on gold errors,
it does not translate into better performance in verb error identification, due to the amount of noise
that is also added (the last method includes all candidates whose lemmas are valid English verbs).
Following these results, method (3) is used in the remainder of the verb experiments. Table 7.9
shows the number of verb instances in training and test selected using this method. The last col-
umn shows the error rate, or the percentage of erroneous verbs. The test data contains 2,014 errors
and has the error rate of 4.81%. 57.5% of the errors are Tense errors, 27.4% are Form, and 15.1%
are Agreement errors.

Contribution of Verb Type Here we address the following questions: does the information about
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Model AAUC
Combined 81.39
Type-based I (soft) 81.11
Type-based II (hard) | 87.05

Table 7.10: Verb type contribution with soft and hard verb-type decisions.

verb type improve verb error identification and what is the best way to incorporate this knowledge
into the system?

In order to demonstrate that verb finiteness is important, we compare the baseline combined
model to two type-based models on error identification. In Section 7.2.3.4, we described two ways
of adding verb type knowledge to the error identification system: adding the predicted verb type
as a feature in the combined model and selecting only the relevant features depending on the verb
type. Table 7.10 shows the results of adding verb type information in the error identification stage.
We find that the first approach does not provide improvement over the baseline combined model,
while the second method is very effective. We conjecture that because verb type prediction is quite
accurate, the hard-decision approach is preferred, as it provides knowledge in a direct way. One
immediate advantage of the second method is that since Agreement and Tense errors only occur on
finite verbs, it restricts the choice of labels for finite verbs to one of { Correct, Agreement, Tense};
similarly, the choice of labels for non-finite verbs is restricted to { Correct, Form}. Doing so reduces
ambiguity during training and prediction. A second advantage of this type-driven approach is that
the type-based model will use the appropriate features, which also facilitates learning. Henceforth,
we will use the hard-decision method in the type-based model.

Figure 7.1 evaluates the combined model and the hard-decision type-based model presented in
Table 7.10. Precision/Recall curves are generated by varying the threshold on the confidence of the
classifier. This graph provides more detail than the AAUC results, since it reveals the behavior of
the systems at multiple recall points: we observe that at every recall point the type-based classifier
has higher precision.

So far, the models used all features defined in Section 7.2.3.3. While features are not the focus
of this work, we show that the type-driven approach is applicable with different feature sets (Table
7.11). In fact, the type-based approach improves more with more sophisticated features, which is to

be expected, since more complex features are tailored toward relevant verb errors. Adding features
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Figure 7.1: Key result for verb type contribution. AAUC shown in Table 7.10. The combined
model uses no verb type information. In the hard-decision type-based model, verb type is assigned
with the verb type algorithm and each verb uses the features for its type. The differences are
statistically significant (McNemar’s test, p < 0.0001).

Feature set AAUC
Combined | Type-based
Baseline 46.62 49.72
All-Syntax 79.47 84.88
Full feature set 81.39 87.05

Table 7.11: Verb type contribution for different features.

specific to each error type significantly improves the performance over the baseline n-gram features.

The rest of the experiments use all features (denoted Full feature set).

7.2.4.2 Identification Versus Correction

After running the error identification component, we apply the appropriate correction models to
those instances identified as errors. The correction models are also multiclass classifiers trained on
the relevant verb instances (finite or non-finite), as predicted by the verb type classifier. The error-
identification model is a type-based hard-decision model. It is important to note that the correction
components are also type-aware models, as they are trained on the relevant verbs according to the
verb type prediction.

Correction components are evaluated by fixing a recall point in the error identification stage.
The corresponding results on error identification and error correction are shown in Table 7.12.3

We observe the low recall obtained by the models; it can be increased by modifying the decision

3The results on Agreement mistakes are identical for identification and correction, since Agreement errors are
always binary decisions, unlike Tense and Form mistakes.

100



Error type Correction Identification
P R F1 P R F1
Agreement | 90.62 | 9.70 | 17.52 | 90.62 | 9.70 | 17.52

Tense 60.51 | 7.47 | 13.31 | 86.62 | 10.70 | 19.05
Form 81.82 | 16.34 | 27.24 | 83.47 | 16.67 | 27.79
Total 71.94 | 10.24 | 17.94 | 85.81 | 12.22 | 21.20

Table 7.12: Performance of the complete model after the correction stage.

threshold but here we wish to ensure that a relatively high precision is maintained (see also verb
experiments in Chapter 8 where models are optimized for F1 and use a different decision threshold).
Note that the baseline (the percentage of correct verbs) for the verb error correction task is 95.19%
(Table 7.9). The performance shown in Table 7.12 corresponds to an accuracy of 95.60% on error
identification (error reduction of 8.7%) and 95.40% on correction (error reduction of 4.5%) over the

baseline of 95.19%.

7.2.4.3 Analysis on Gold Data

We further analyze our model on the gold subset of the data. The set contains 7,784 gold verbs,
including 464 errors, and we run experiments in 10-fold cross-validation, where on each run 90% of
the documents are used for training and the remaining 10% are used for evaluation. Using the gold
data we can show what the contribution of each module of the system is if the other components
do not produce errors. The gold annotation can be used in two system components: (1) candidate
selection and (2) verb type prediction.

Table 7.13 shows the performance on error identification when gold versus automatic settings
are used. As expected, using the gold verb type is more effective than using the automatic verb
type, both with automatic and gold candidate generation.

We also compare automatic and gold candidate selection. We find that 8.7% instances gen-
erated by the automatic candidate selection are noise, i.e. words that belong to other parts of
speech that are incorrectly selected. Using gold candidates instead of automatically-generated ones
demonstrably improves performance. The combined model improves by 14 AAUC points (from
55.90 to 69.86) when gold candidates are used. These results demonstrate that, while not an issue

in other error correction tasks, candidate selection is an important component of an error correction
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Candidate selection | Verb type prediction | AAUC
None 55.90

Automatic Automatic 74.72

Gold 89.45

None 69.86

Gold Automatic 90.89

Gold 96.42

Table 7.13: Verb type contribution on the gold subset. All models use the Full feature set.
Value None for verb type prediction denotes the combined model.

Error type | Combined | Type-based | Type-based
Automatic Gold
Agreement 86.80 88.43 89.21
Tense 18.07 25.62 26.87
Form 97.08 98.23 98.36

Table 7.14: AAUC results for verb type contribution by error type using gold subset.

system for open-class words.

Note that compared to the performance on the entire data set (Table 7.10), the performance of
the models shown here that use automatic components is lower, which is to be expected, since the
training sizes are different. On the other hand, because of the smaller training size, the gain due
to the type-based approach is larger on the gold subset (19 AAUC points (rows 1 and 2) versus 6
AAUC points).

Finally, we evaluate the contribution of verb type for each error type separately. Table 7.14
compares the performance of the combined model to two type-based models: one where the type
is predicted using the proposed verb type algorithm, and the other, where the gold type is used. It
is clear from the results that all errors benefit form verb type information, although it is difficult

to determine which error type benefits most, since performance varies by error type.

7.3 Correcting Errors in Noun Number

We now discuss mistakes in noun number. As shown in Table 4.4, frequency of noun number errors
strongly depends on the first-language background; these errors are the second most common error
type in the CoNLL corpus and account for 8.4% and 11.4% of all mistakes in the training and test

sets, respectively, while in the other two data sets they occur three to four times less frequently.
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Because the CoNLL data set has a large number of errors of this type, we make use of this data set
for developing a model for correcting mistakes in noun number. This also gives us an opportunity
to compare against approaches taken by other teams. Below we show an example of a noun number

error:

e “Some countries are having difficulties in managing a place to live for their *citizen/ citizens

as they tend to get overpopulated.”

Among the system dimensions studied in the previous section that are relevant for verb error
correction, here we address the problem of identifying noun candidates that are input to the
classifier. The model itself is a binary NB classifier trained on the Google corpus (we discuss

the choice of the training data and of the learning algorithm in Chapter 8).

7.3.1 Candidate Identification for Noun Number Mistakes

As discussed in Section 7.2, candidate identification is crucial for correcting mistakes on open-class
words but is rarely carefully studied or evaluated. Several participating systems in the CoNLL-
2013 competition mention how they identify noun candidates. Following these descriptions, we
implement and compare three methods of candidate identification and show that the choice of a
method has a considerable impact on error correction performance. The first method relies on the
shallow parser and POS tagger and includes all common nouns, i.e. those tagged as NN or NNS,
that head an NP. Two systems use the first method — Kao et al. (2013) and Xiang et al. (2013).
The second method includes all words tagged as NN and NNS and is used in several other systems
(e.g., Yoshimoto et al., 2013).

As is the case with the verb error correction system presented in Section 7.2, these procedures
do not have a perfect result on the identification of all nouns that contain noun mistakes. To this
end, we implement the third method that addresses the problem of pre-processing errors by adding
words that end in common noun suffixes, e.g. “ment”, “ments”, and “ist”.

The percentage of noun errors selected as candidates by each method and the impact of each
method on error correction performance are shown in Table 7.15. The last method that addresses

the problem of pre-processing mistakes recovers 50% and 43% of the candidates in training and
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Candidate F1 Error recall (%)

identification method Train | Test | Train Test
NP heads 21.79 | 40.47 | 85.81 87.72
All nouns 21.73 | 41.08 | 87.80 89.50
Nouns—+heuristics 23.06 | 42.60 | 93.00 92.84

Table 7.15: Nouns: effect of candidate identification methods on the error correction
performance. All models are trained using the NB algorithm. Error recall denotes the percentage
of noun errors that are identified in text by each method.

test data, respectively, missed by the first approach that only considers NP heads. Importantly,
the last method also has the best result in error correction performance, improving F1 scores by
over 1% absolute value on both training and test data. For noun number mistakes, performance is

reported using the F1 score, as this is the metric adopted in the CoNLL-2013 shared task.

7.4 Summary

This chapter addresses special challenges of correcting mistakes on open-class words with an em-
phasis on errors in noun number and grammatical verb mistakes. It is shown that verb and noun
errors are common for ESL writers but present additional challenges due to the fact that identifying
verbs and nouns in (noisy) text may itself be difficult. Moreover, building a system that corrects
verb errors is difficult due to the linguistic diversity of verb mistakes. We evaluate candidate iden-
tification methods for both types of mistakes and show that trigger identification must address
the problem of the noisy input. This is important, since most errors made by non-native speakers
cannot be identified by considering only closed classes (e.g., prepositions and articles), as most of
the previous research assumes.

Furthermore, for verb error correction, a linguistically-inspired approach is developed that first
identifies verb candidates, then makes use of the linguistic notion of verb type to characterize the
type of mistake, and then proceeds to correct it. This approach thus provides a first step in
considering more general algorithmic paradigms for correcting grammar and usage errors. Our
approach integrates a statistical machine learning model with a rule-based system that encodes
linguistic knowledge to yield the first general correction approach to verb errors (that is, one that
does not assume prior knowledge of which mistake was made and where). The robustness of this

approach is further validated in Chapter 8 within the framework of the CoNLL-2013 shared task.

104



Chapter 8

Building a State-of-the-Art Error
Correction Model

So far, we have covered several prominent categories of ESL mistakes: article and preposition usage
errors, and mistakes on nouns and verbs. This chapter describes a complete system that addresses
these errors using the techniques proposed in the previous chapters. The system — referred to as
1llinois — participated in the recent CoNLL-2013 shared task on grammatical error correction and
placed first among 17 teams, winning by a large margin over the other submissions.

Four design principles that are relevant for correcting all of these errors are identified. These
principles are closely aligned with the techniques presented in this thesis. Analysis of the system
along these dimensions reveals how each of these principles contributes to performance. As a result,

we also improve over the Illinois model.

8.1 Introduction

The recent growing interest in ESL error correction in the NLP community resulted in three error
correction competitions. The Helping Our Own (HOO-2011, Dale and Kilgarriff, 2011) focused on
correcting errors in papers published in NLP conferences and were authored by researchers who are
not native English speakers. Even though the participants were free to address all types of mistakes
present in the data set, all of the participating teams targeted only article and preposition usage
errors, in addition to punctuation and spelling errors.! The HOO-2012 competition (Dale et al.,
2012) focused on preposition and article mistakes in the FCE corpus. The CoNLIL-2013 shared task,
in addition to determiner and preposition usage errors, includes also mistakes in noun number, verb
agreement, and verb form. The phenomena included in the CoNLL-2013 shared task correspond

very closely to the mistakes considered in the previous chapters, with the exception of verb form

1Our system ranked first in the HOO-2011 competition (Rozovskaya et al., 2011) and ranked first on some of the
metrics and second on the other metrics in the HOO-2012 shared task (Rozovskaya et al., 2012).
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errors that are defined differently and do not correspond directly to mistakes on non-finite verbs
in Chapter 7.

Seventeen teams that participated in the task built a wide array of approaches that include
discriminative classifiers, language models, statistical machine translation systems, and rule-based
modules. Many of the systems also made use of linguistic resources such as additional annotated
learner corpora, and defined high-level features that take into account syntactic and semantic
knowledge. In spite of the fact that the submitted systems incorporated similar resources and
employed sophisticated models, the scores varied widely. The system presented in this chapter
(henceforth, the Illinois system; in the CoNLIL-2013 shared task overview paper it is referred to as
UI) obtained an F1 score of 31.20, while the second team scored only 25.01, and the median result
was 8.48 points. These results suggest that there is not enough understanding of what works best

and what elements are essential for building a state-of-the-art error correction system.

Contributions

By analyzing the Illinois system, we identify key design principles and show their importance
for building a robust error correction model. The following system dimensions are considered:
choice of the learning algorithm; choice of training data (native or annotated learner data); model
adaptation to typical mistakes; and the use of linguistic knowledge. For each dimension, several
implementations are compared, including approaches chosen by other teams that ranked among
the top five systems in the competition.

The rest of this chapter is structured as follows. Section 8.2 describes the model design principles
that will be examined in this chapter, and Section 8.3 presents the CoNLL-2013 task. Section 8.4
gives an overview of the Illinois system and describes its error-specific components. Section 8.5
presents an experimental analysis that focuses on the four dimensions, and Section 8.6 discusses the

results from the perspective of choosing an evaluation metric. Section 8.7 summarizes the chapter.

8.2 Model Dimensions

Based on the analysis of the Illinois system and comparing it with other participating teams, we

identify key principles for building a state-of-the-art error correction system:
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1. Learning algorithm: Most of the teams, including the Illinois team, built statistical models.
We show that the choice of the learning algorithm is very important and affects the performance
of the system. The results reinforce the findings in Chapter 5.

2. Adaptation to learner errors: Chapter 6 showed that adaptation, i.e. developing models that
utilize knowledge about error patterns of the non-native writers, is extremely important. Several
adaptation techniques proposed in Chapter 6 are examined and their impact on the performance
of the system is evaluated.

3. Linguistic knowledge: It is essential to use linguistic knowledge when developing error
correction modules, e.g. to identify which type of verb errors occurs in a given context, before the
appropriate correction module is employed. We describe and evaluate the contribution of these
components.

4. Training data: The question of whether to train on learner data (if available) or on native
English data is very important. The advantages of both approaches in the context of the shared

task and in broader context are discussed.

8.3 Task Description

The CoNLL-2013 shared task (Ng et al., 2013) focuses on the following five common mistakes made
by ESL writers: article/determiner; preposition; noun number; subject-verb agreement; verb form.
Errors outside this target group are annotated in the task corpora but are not evaluated.

The CoNLL data set is described in Section 4.2.3, but we briefly review it here. The training
data of the shared task is the NUCLE learner corpus (Dahlmeier et al., 2013) (we also refer to it
as learner data or shared task training data). The test data for the task consists of an additional
set of 50 student essays from the same first-language background. The training and the test data
contain 1.2 million and 29,000 words, respectively.

Table 8.1 illustrates the mistakes considered in the task. With the exception of verb form errors,
all other mistakes directly correspond to the phenomena considered in the preceding chapters.
Errors marked as verb form include multiple grammatical phenomena that may characterize verbs,
with the exception of agreement and tense error that are marked separately, and are not restricted

to errors on non-finite verbs discussed in Chapter 7. The number of errors in the CoNLL data
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Error type Examples

“It is also important to create *a /@ better material that can support *the/2 buildings
despite any natural disaster like earthquakes.”

“As the number of people grows, the need *of /for habitable environment is unques-
tionably essential.”

“Some countries are having difficulties in managing a place to live for their *citi-
zen/citizens as they tend to get overpopulated.”

Verb agreement | “Therefore, the equipments of biometric identification *tend /tends to be inexpensive.”
“...countries with a lot of deserts can terraform their desert to increase their habitable
land and *using/use irrigation.”

Verb form “It was not *surprised /surprising to observe an increasing need for a convenient and
cost effective platform.”

“With surveillance technology, terrorists could be more easily *identify/identified...”

Article

Preposition

Noun number

Table 8.1: Sample errors considered in the CoNLL-2013 shared task. Note that only the
errors exemplifying the relevant phenomena are marked in the table; the sentences may contain
other mistakes. Errors marked as wverb form include multiple grammatical phenomena that may
characterize verbs and are not restricted to errors on non-finite verbs discussed in Chapter 7.

Classifier
Article | Preposition | Noun number | Agreement | Form
Train | 254.0K 103.0K 240.0K 75.0K | 175.0K
Test 6.0K 2.5K 2.6K 2.4K 4.8K

Table 8.2: Number of candidate words by classifier type in training and test data.

set and the error rates are listed in Table 4.3. It should be noted that the test data contains a
much larger proportion of annotated mistakes. For example, while only 2.4% of noun phrases in

the training data have determiner errors, in the test data 10% of noun phrases have mistakes.

8.4 The Illinois System

The Illinois system consists of five machine-learning models, each specializing in correcting one of
the errors described above. Table 8.2 shows the total number of candidates for each classifier.
Pre-processing All components take as input the corpus documents pre-processed with a part-
of-speech tagger? and shallow parser® (Punyakanok and Roth, 2001). Note that the shared task
data contains comparable pre-processing information but we chose to run our own tools.
Learning In the Illinois submission, modules are trained somewhat differently and on different

data — for some, the learner data is used and for others, native data is used.

*http://cogcomp.cs.illinois.edu/page/software_view/P0S
3http://cogcomp.cs.illinois.edu/page/software_view/Chunker
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Post-processing The Illinois submission includes a post-processing step, where corrections that
always result in a false positive on the training data are ignored. In order to focus on the key char-
acteristics of the system, here the post-processing step is not included; removing post-processing
improves the result slightly from 31.20 to 31.43.

Below we describe the five error modules of the Illinois system.

8.4.1 Determiner Errors

Determiner errors in the CoNLL corpus are defined in the same way as described in Section 5.2.2
and involve all kinds of determiners: articles, and possessive and demonstrative pronouns. Most of
the determiner errors in the data set are article omissions and article insertions. This is consistent
with the error patterns observed in other learner corpora (see Chapter 4).

The Illinois system addresses only article errors. Candidates are identified using the method
described in Section 5.2.2. Following the results on the comparison of the learning algorithms
in Chapter 5, the article classifier is trained in a discriminative fashion, making use of the AP
algorithm (see Section 5.4) and is trained on the training data of the shared task with rich features.
The features, in addition to the surface form of the context around the target article, also encode
POS and chunk properties of the surrounding context and are described in Section 5.2.3 (see Table
5.4). The contribution of the features is evaluated in Section 8.5.3.

Because the article system is trained on learner data with naturally-occurring errors, the source
article can also be used as a feature. As discussed in Chapter 6, the source word is an important
piece of information, and using it as a feature improves the performance of an error correction
system. However, since learner errors are sparse, the source feature encourages the model to abstain
from flagging a mistake, which results in low recall. To address the low recall problem, the article
system implements an adaptation technique called “error inflation” presented in Section 6.2.2. The

contribution of the error inflation method is evaluated in Section 8.5.2.

8.4.2 Preposition Errors

In contrast to determiners, for learners of many first-language backgrounds, the majority of the

preposition errors are replacements (Section 5.2.3). However, learner errors heavily depend on the
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first-language background, and even though most of the preposition mistakes in the NUCLE corpus
(62%) are replacements, spurious prepositions are also quite common and occur more frequently
than in other learner corpora: in the NUCLE corpus, 29% of all preposition mistakes are spurious
errors, while both in the Illinois corpus and the FCE corpus spurious errors account for 18% of all
preposition mistakes (Table 5.1).

The preposition model is a NB classifier trained on the Google corpus. The preposition model,
as well as all other models trained on the Google corpus, uses word n-gram features in the 4-word
window around the target word. Since we wish to use the 4-word window context, we cannot train
a discriminative model on the Google corpus (see Section 5.5). The model is adapted to likely
preposition confusions using the NB adaptation method (see Section 8.5.2). The original Illinois
preposition model targets replacement errors of the twelve most common English prepositions.*
To improve coverage and to account for preposition errors that commonly occur in the CoNLL
corpus, in this chapter we augment the preposition model and also identify spurious prepositions.

Section 5.4.3 describes a procedure developed for training NB on the Google corpus for errors that

involve deletions and insertions.

8.4.3 Verb Errors

The CoNLL-2013 shared task includes verb errors that are marked as agreement and form. Form
errors are not limited to errors on verbs in non-finite form but cover all types of mistakes on verbs,
with the exception of agreement and tense errors that are marked separately (see Table 8.1).5
The verb modules are implemented in the spirit of the linguistically-motivated approach based
on verb finiteness proposed in Chapter 7. While Chapter 7 focuses on a high-level description of
the approach to verb error correction, here we give a more detailed description that also includes
the modifications that are due to how verb errors are defined in the CoNLL data set. The verb
modules consist of the following components: (1) candidate identification; (2) determining the set

of instances that should be handled by agreement and form modules based on verb type (verb

4The shared task includes mistakes that cover 36 prepositions but we found that once the confusion set becomes
too large the model performance drops, and thus chose the twelve most common prepositions. Also note that the
preposition models in Chapters 5 and 6 include replacements of the top ten prepositions. The CoNLL confusion set
is expanded to improve the coverage for the CoNLL corpus. The confusion set for prepositions is {on, from, for, of,
about, to, at, in, with, by, into, during}.

5The training data also marks some tense errors as a subset of form mistakes, while the test data does not.
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“Hence, the environmental factors also *contributes/contribute to various
difficulties, *included/including problems in nuclear technology.”

Error Confusion set
Agreement {INF=contribute, S=contributes}
Form {INF=include, ED=included, ING=including, S=includes}

Table 8.3: Confusion sets for agreement and form classifiers. Note that for irregular verbs,
the first candidate in the confusion set for Verb form is the past participle.

finiteness); (3) training two classifiers — for agreement and form error correction.

Generating Morphological Forms for Verbs

In contrast to the article and preposition systems, where the confusion sets consist of a closed list
of words, here the confusion set depends on the target word and includes its morphological variants.
Table 8.3 illustrates confusion sets for verbs. To generate morphological variants, we make use of
the tool called verbMorph that was developed as part of the verb error correction system introduced

in Chapter 7 and performs morphological analysis on verbs (see Section 7.2.3).

Candidate Identification

This stage selects the set of words that are presented as input to the classifier. As discussed in
Chapter 7, this is a crucial step for a system that corrects errors on open-class words. The candidate
identification procedure follows the method proposed in Section 7.2.3. Note that while in Chapter 7
verb instances correspond to verb phrases, here each verb instance corresponds to one token. If a
verb phrase contains multiple verb tokens (e.g., has gone), each of the tokens may be extracted as

a separate candidate.

Using Verb Finiteness to Correct Verb Errors

The Illinois system includes two verb classifiers — agreement and form — that are inspired by the
approach to verb error correction based on the linguistic notion of verb finiteness introduced in
Section 7.2. The idea is to process verbs that fulfill different grammatical functions and thus are
marked for different grammatical properties separately (see Section 8.5.3 for the contribution of

this method).

Verb Correction Modules The agreement and form modules are implemented as a binary
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and 4-class classifiers, respectively.® Note that while the form classifier does not specifically tar-
get tense errors, it considers confusions, such as contributed and contribute, that on the surface
might look like tense errors but could also be mistakes related to infinitives (e.g., “He may *con-
tributed / contribute.” ), so we specifically do not exclude these. Importantly, these do not represent
all confusions related to tense errors, which are not addressed here, as they are not part of the task.

The Illinois system trains both classifiers on the Google corpus but analysis in Section 8.5.4
reveals that it is possible to improve over this model by training instead on learner data with more

sophisticated syntax-based features developed in Chapter 7 and presented in Table 7.7.

8.4.4 Noun Errors

The Illinois noun number module is a NB classifier trained on the Google corpus with word n-
gram features. Similar to verbs, candidate identification is an important step in the noun classifier.
Our approach relies on POS information and heuristics that address the problem of pre-processing

errors. It is described and contrasted with methods used by competing systems in Section 7.3.

8.5 System Analysis

In this section, we analyze the Illinois model, compare its components to alternative configurations
implemented by other teams that ranked among the top five in the shared task, and present
additional experiments that provide insight into the key principles that should be considered when
developing a state-of-the-art system. In the experiments below, we focus on the following four
dimensions identified in Section 8.2: choice of the learning algorithm (Section 8.5.1); adaptation to
learner errors (Section 8.5.2); use of linguistic knowledge (Section 8.5.3); and choice of the training
data (Section 8.5.4).

The evaluation metric used in the shared task is F'1, therefore all of the modules are optimized
for F1. Performance on both the training and the test set is reported. The results on the training
set reflect performance of 5-fold cross-validation. The performance reported on the test data reflects

the system that makes use of the entire NUCLE training corpus. We note that the performance

5For the verb to be, the agreement distinction is ternary — {am,is,are} — but the form am is rarely misused, and
we ignore it.
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on the test data is significantly higher than on the training data. This behavior is exhibited by all
systems in the CoNLL-2013 shared task. It is due to the significantly lower error rates observed in
the training data. Recall that the error rates for all of the phenomena in the test data are several
times higher than in the training set (see Table 4.3 and discussion in Section 4.2.4).

The shared task made available two sets of test annotations: originally annotated data and with
additional revisions based on the input from the participants. We show results before revisions, as
the revised data may be biased (Ng et al., 2013).

Results by error type are generated based on the output of individual modules. Note that these
are not directly comparable to error-specific results in the CoNLL overview paper, since the latter
are approximated based on POS (Ng et al., 2013).

The complete system includes the union of corrections made by each of these modules, with
the corrections generated by the individual models applied in order. Since some of the candidates
for individual classifiers overlap (e.g., some verbs are processed by both the agreement and form
modules), ordering overlapping candidates might potentially affect the final output, when both
modules correctly identify an error but propose different corrections, but this does not happen in

practice.

8.5.1 Dimension 1: Learning Algorithm

In Chapter 5, it was shown that the choice of a machine learning algorithm is extremely important
and affects the performance of an error correction system. Following these results, the modules
trained on the NUCLE corpus use the discriminative approach AP. Most of the other teams that
train on the NUCLE corpus also use a discriminative method.

Our goal here is to compare learning models trained on the Google corpus. This is one of
the largest native data sets available, and it clearly benefits the systems. Several participating
teams make use of the Google corpus, either by training a language model (Xing et al., 2013) or a
count-based model (Kao et al., 2013).7

In Chapter 5, we study several algorithms trained on the Google corpus and observe that NB

performs better than other models, including LMs and count-based methods. Recall that training a

"For count-based methods, see Bergsma et al. (2009).
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discriminative model on the Google data would limit the surrounding context features to a two-word
window).

Our comparison of LM and NB models shows the impact of the algorithm choice in the context
of the shared task (we do not implement count-based methods since they fall behind even the
language modeling approach (see Chapter 5). Both NB and LM models use word n-grams spanning
the target word in the 4-word window. As in Chapter 5, we train LMs with SRILM (Stolcke, 2002)
using Jelinek-Mercer linear interpolation as a smoothing method (Chen and Goodman, 1996).
Interpolation weights are optimized on a held-out set of for the NUCLE training data. Table 8.4
compares LM and NB trained for several error types. On the training data, NB outperforms LM

on three error types, sometimes by a large margin (article errors), and on the test data — on all

errors.
F1
Error Model Train | Test
) LM 1146 | 21.11
Article NB | 18.28 | 32.45
... LM 13.49 | 12.09
Preposition

NB 09.03 | 14.04
LM 22.37 | 40.72
NB 23.06 | 42.60
LM 15.91 | 20.65
NB 16.72 | 26.46
LM 12.44 | 13.40
NB 11.93 | 14.50

Noun number

Agreement

Form

Table 8.4: Comparison of the learning models. All models are trained on the Google corpus
and use the same word n-gram features.

8.5.2 Dimension 2: Adaptation to Learner Errors

In the previous section, models were trained on native English data. These models have no notion
of the error patterns of the learners. The second question that we address is model adaptation to
learner errors. The adaptation idea is based on the observation that learners make mistakes in a
systematic manner and is studied in Chapter 6. Superfluous preposition usage and noun number
confusions, for instance, are mistakes that are typical for the writers of the CoNLL corpus (see

Section 8.4.2 and Table 4.4). In the shared task, both the training and the test data are produced
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by learners from the same linguistic background, and the adaptation techniques allow us to expose
the models to the types of errors common for these writers.

In Chapter 6, we study different adaptation methods that depend on the type of training data
(learner or native) and the choice of the learning model. The key application of adaptation is for
models trained on native English data. Adaptation is especially important in this case, because the
learned models do not know anything about the errors learners make. Adaptation techniques allow
the models trained on native data to use the source word as a feature and to propose a correction

based on what the author originally wrote.

Adapting the Naive Bayes Classifier

The first adaptation approach that we evaluate is the priors method (Section 6.2.3), which is a
special adaptation technique for a NB model trained on native English data, and is based on
changing the distribution of priors over the correction candidates. When a model is trained on
native data, candidate priors correspond to the relative frequencies of the candidates in the native
corpus and do not provide any information on the real distribution of mistakes and the dependence
of the correction on the word used by the author.

In the NB adaptation, candidate priors are changed using the error confusion matrix based
on the learner data that specifies how likely each confusion pair is to occur. As an illustration,
Table 8.5 shows the confusion matrix that is used to replace the native priors for verb form errors,
computed on the training data of the shared task. The new candidate priors are dependent on the
author’s original verb form used: the probability of candidate INF when the source form is ED, is
more than twice higher than when the source form is S.

Table 8.6 compares the performance of NB and NB-adapted models. We found that adaptation
always helps on the training data (except noun errors), but on the test data it only improves
performance on article and verb form errors. We conjecture that this is because the error rates of
the test data are quite different from those in the training data (see Table 4.3), and the adaptation
methods rely on similar error distributions. Indeed, when priors are estimated on the test data, the
performance improves significantly. For example, the preposition module attains an F1 of 18.05,

which is a 4-point improvement over the non-adapted NB model.
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Source Candidates

ED INF ING S
ED 0.99675 | 0.00192 | 0.00103 | 0.00030
INF 0.00177 | 0.99630 | 0.00168 | 0.00025
ING 0.00124 | 0.00447 | 0.99407 | 0.00022
S 0.00054 | 0.00544 | 0.00132 | 0.99269

Table 8.5: Priors confusion matrix for verb form errors used in NB adaptation. Each
entry shows Prob(candidate|source), where source denotes the verb form chosen by the author,
and each verb is mapped to its grammatical form. Based on the CoNLL training data.

F1
Error Model Train | Test
Article NB 18.28 | 32.45
NB-adapted | 19.18 | 34.49
Preposition NB 09.03 | 14.04
NB-adapted | 10.94 | 12.14
Notun number NB 23.06 | 42.60
NB-adapted | 22.89 | 42.31
Agreement NB 16.72 | 26.46
NB-adapted | 17.62 | 23.46
Form NB 11.93 | 14.50
NB-adapted | 14.63 | 18.35

Table 8.6: Model adaptation for NB. All models are trained on the Google corpus and use the
same word n-gram features.
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Adapting the Averaged Perceptron

The AP algorithm is used in models trained on the shared task data. AP models are online
models and do not use priors on the set of candidates. In order to reflect our estimate of the error
distribution, the AP algorithm is adapted differently, by introducing into the native data artificial
errors, in a rate that reflects the errors made by the ESL writers (Section 6.2.2).

The error inflation method (Section 6.2.2) takes the idea of artificial mistakes further and
can be used to improve the recall of discriminative models that are trained either on native data
or learner data with naturally-occurring mistakes. Here, the error inflation method is applied to
models trained on learner data. We note that although these models already have knowledge of
typical confusions, we consider the error inflation approach part of the adaptation paradigm since
it does not simply increase the error rates in the training data but in doing so it respects the error
distributions, i.e. the likely confusions.

Table 8.7 shows the results of adapting the AP classifier using the error inflation method. Noun

and form results are omitted, as these errors are better addressed using the Google corpus (Section
8.5.4).
Inflation Versus Sampling To further analyze the contribution of error inflation, we compare it
against sampling, an approach used by other teams, (e.g., Xiang et al., 2013), that improves recall
by removing correct examples in training. The article model by Xiang et al. (2013) is similar to
the Ilinois model but scored 3 F1 points below. Table 8.8 shows that the sampling approach falls
behind the inflation method, since it significantly reduces the training size to achieve similar error
rates. The proportion of errors in training in each row is identical: sampling achieves the error
rates by removing correct examples, whereas the inflation method converts some positive examples
to artificial mistakes. Recall that the inflation constant specifies the proportion of the correct
instances remaining in training; smaller values correspond to higher error rates; the sampling
approach, correspondingly, removes more positive examples. Note that the gap between error
inflation and sampling grows as the error rates increase, since the sampling approach shrinks the
training set.

To conclude discussion on adaptation, we stress that the adaptation approaches presented here

make use of all the training data available. In practice, however, a lot less annotated data will be
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F1

Error Model Train | Test
Article AP (natural errors) | 09.99 | 07.06
AP (infl. const. 0.9) | 16.90 | 24.61
Preposition AP (natural errors) 0.25 0.0
AP (infl. const. 0.7) | 11.17 | 07.37
AP (natural errors) 0.39 0.0
Agreement AP (

infl. const. 0.8) | 13.46 | 17.06

Table 8.7: Model adaptation for AP using error inflation. All models are trained on the
NUCLE corpus and use the same word n-gram features and the source word as a feature. Inflation
constant shows how many correct instances remain in training (e.g., 0.9 indicates that 90% of the
correct instances remain in the data, while 10% are converted to artificial mistakes.)

F1
Infl. constant | Sampling | Inflation
0.90 23.22 24.61
0.85 27.75 29.29
0.80 30.04 33.47
0.70 33.02 35.52
0.60 32.78 35.03

Table 8.8: Comparison of the inflation and sampling methods for boosting recall on
article errors. Results on the test data. In both the sampling and the adaptation methods, the
proportion of errors in training in each row is identical.

available, but these methods only require very little annotation for error statistics to be effective.
For instance, in the HOO-2011 shared task, where the Illinois system also placed first, article and
preposition models are adapted using only 4860 article instances and less than 2500 prepositions

(Rozovskaya et al., 2011).

8.5.3 Dimension 3: Linguistic Knowledge

The use of linguistic knowledge is important in several components of the error correction system:

candidate identification, features engineering, and special techniques for correcting verb errors.

Candidate Identification
In Section 7.3, we describe several candidate identification methods for noun number errors based
on the approaches followed by other teams and contrast these with the approach used in the Illinois

system. The Illinois candidate identification method addresses the problem of the pre-processing

118



F1
Error Features Train | Test
. n-gram 16.90 | 24.61
Article n-gram+POS+chunk | 19.24 | 33.50
n-gram 13.46 | 17.06
Agreement n-gram+POS 17.79 | 24.14
n-gram+POS+syntax | 22.22 | 27.93

Table 8.9: Feature evaluation for article and verb agreement models. All models are
trained on the NUCLE corpus and are optimized using the error inflation method.

mistakes. It is shown that developing strategies to address pre-processing errors in the candidate

selection method for mistakes on open-class words is important.

Features

Because of the format of the Google corpus, models trained on that data can make use of n-gram
features only but for the NUCLE corpus we have several layers of morphological and syntactic
annotation. Models for two error types — articles and agreement — especially benefit from training
with features that use morphology and syntax (Table 8.9). The article features are defined based
on the POS and shallow parser output and are presented in Table 5.4. The agreement features are

listed in Table 7.7.

Using Verb Finiteness to Correct Verb Errors
As shown in Table 8.3 (Section 8.4.3), the surface realizations that correspond to the two agree-
ment candidates are a subset of the four possible surface realizations of the form classifier. One
natural approach, thus, is to train one classifier to predict the correct surface form of the verb,
without considering the grammatical function of the verb in the sentence. However, as discussed
in Section 7.2, the same surface realization may correspond to multiple grammatical properties.
The verb models of the Illinois system address agreement and form errors separately based on
the verb finiteness approach proposed in Section 7.2. Using the verb-finiteness distinction, each
verb is directed to the appropriate verb classifier. The candidates for the agreement module are
the finite surface forms of the be-verbs (is, are, was, and were) and other finite verbs that have
explicit subjects and require agreement markers. The form candidates are all other verbs. Recall

that the verb form errors in the CoNLL data set include various types of grammatical verb misuse.
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. F1
Training method Train | Test
Combined classifier 15.37 | 16.43
Type-based training (I) 16.76 | 18.59
Type-based training (II) 17.10 | 21.08

Table 8.10: Improvement due to separate training based on verb finiteness. All models
are trained using the AP algorithm. When training separately we can take advantage of the fact
that different errors benefit from different types of features. Type-based training (I) uses exactly
the same POS features for agreement and form. Type-based training (II) optimizes POS features
for each classifier individually.

Table 8.10 compares the performance on verb errors (agreement and form) for two approaches:
when all verbs are handled together in a single classifier; and when verbs are processed separately
based on verb type. Both of the approaches are trained on the NUCLE data with the AP learning
algorithm. Note that when training separately we can take advantage of the fact that different
errors benefit from different types of features, which is not possible, when one model is trained: in
Table 8.10, classifier (I) uses exactly the same POS features for agreement and form; classifier (II)
optimizes the set features for each classifier individually. The results in Table 8.10 are on the AP
models but similar improvements due to separate training are observed for NB models trained on
the Google data. Interestingly, another team (Kao et al., 2013) also corrects all verb errors using a
model trained on the Google data but they handle all these errors together and score 8 F1 points
below the Illinois verb module (they also train a count-based model, while the Illinois system uses

NB classifiers).

8.5.4 Dimension 4: Training Data

The training data of the shared task is a large annotated corpus of learner essays that is of the
same genre as the test data and produced by learners of the same linguistic background. In many
scenarios, there is not going to be enough annotated learner data available for training the models
(for example, the HOO-2011 shared task released a small annotated development corpus, and the
participants had to train their systems on native data). However, the NUCLE corpus is relatively
large (1.2 million words). The learner training data also possesses other desirable characteristics:
it has multiple levels of annotations, which allows us to design richer features that reflect similar

distributions occurring in the test data; finally, we are not restricted in the choice of a learning
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algorithm. For the above reasons, training models on this corpus may seem a natural choice.
Indeed, many participating teams follow this approach and train the entire system on this data set
(e.g., Xiang et al., 2013). We also show here that a model trained on the NUCLE data is hard to
beat in many cases, even though the alternative model trained on native English data is orders of
magnitude larger than the size of the NUCLE data. But we also show that some errors especially
benefit from training on a larger corpus of native data.

Based on the analysis of the other model dimensions, in Table 8.11, we compare models trained
on NUCLE and Google data in their best configurations on the training data. We find that three
error types are especially affected by the choice of the training data: noun and form mistakes
benefit from training on native data, while verb agreement errors, on the other hand, benefit from
a model trained on the learner data with richer features. Specifically, when verb agreement models
are trained on learner data with n-gram features, they do not perform as well as the models trained
on the Google corpus. However, when using the learner data, we can add features that use POS
and syntactic knowledge. Adding these features is extremely helpful.

For noun number mistakes, on the other hand, there is an important boost in performance when
training on the native data as opposed to the learner data. This is because noun number usage
strongly depends on the surface form of the noun. For example, certain nouns in English tend to
be used exclusively in singular or plural form. Thus, a lot more data compared to other types of
mistakes is needed to learn the model parameters. For verb form errors we observe a smaller but
also a significant advantage to training on a lot of data; unlike agreement mistakes that are more
structural and thus benefit from using more expressive features, form errors, similar to noun errors,
benefit from training on more data.

To summarize, choice of the training data is an important consideration for building a robust
error correction system. Learner data possesses several desirable characteristics but it is expensive
and in many scenarios there will not be enough of it to train a robust model. Moreover, even when
there is a fair amount of learner data, some errors may still benefit from a model that is trained on
a native corpus whose size is orders of magnitude larger. Finally, adaptation methods described in

Chapter 6 can improve models trained on native data with just a small amount of annotation.
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F1

Error Model Features Train | Test
Article NB-adapted (Google) n-gram 19.18 | 34.49
AP-adapted with inflation (NUCLE) | +POS+chunk | 19.64 | 33.50
Preposition LM (Google) n-gram 13.49 | 12.09
AP-adapted with inflation (NUCLE) n-gram 11.17 | 10.26
Noun number NB (Goolge) n-gram 23.06 | 42.60
AP-adapted with inflation (NUCLE) +POS 11.03 | 19.22
NB-adapted (Google) n-gram 17.62 | 23.46

Agreement s .
AP-adapted with inflation (NUCLE) | +POS+syntax | 22.22 | 27.93
Form NB-adapted (Google) n-gram 14.63 | 18.35
AP-adapted with inflation (NUCLE) +POS 11.99 | 12.32

Table 8.11: Choice of training data: learner versus native. Best configuration of features
and adaptation for each data type is chosen.

8.6 Discussion

In the previous section, we analyzed the Illinois system along four dimensions. In Table 8.12,
we show the overall results and the performance of each of the components of the Illinois sys-
tem and the improved results that are based on the best modules for each error type. The best
modules are selected according to the performance on the training data (Table 8.11). The Illinois
system at CoNLL-2013 uses post-processing and obtains an F1 score of 31.20. Here, the Illinois
system performance is reported without the post-processing step for a fair comparison. The overall
performance on the test data is a 0.32% absolute improvement over the Illinois system without
the post-processing step, and a 0.55% improvement over the original system that includes post-
processing. The improvement is due to enhancing the preposition module to address spurious
mistakes; adding adaptation to the form classifier; and replacing the agreement module with a
model trained on learner data. The improved modules are emphasized in the table.

Note that in the CoNLL-2013 competition, systems were compared on F1 performance and,
consequently, this is the metric we optimize here. The F1 measure evaluates systems only at one
Precision/Recall point. Moreover, this evaluation metric does not ensure that the quality of the
text improves as a result of running the system (see Section 4.5), while in practical error correction
systems, recall is minimized to guarantee that the overall quality of the corrected text does not go
down.

To examine the behavior of the system at multiple recall points and to determine whether
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Error Illinois Illinois-improved
Model P R F1 Model P R F1

Art. AP-adapted (NUCLE) | 51.04 | 24.93 | 33.50 | AP-adapted (NUCLE) | 51.04 | 24.93 | 33.50
Prep. | NB-adapted (Google) | 23.64 | 04.18 | 07.10 | LM (Google) 2791 | 07.72 | 12.09
Noun | NB (Google) 48.24 | 38.13 | 42.60 | NB (Google) 48.24 | 38.13 | 42.60
Agr. | NB (Google) 44.23 | 18.55 | 26.14 | AP-adapted (NUCLE) | 31.63 | 29.00 | 27.93
Form | NB (Google) 13.57 | 15.57 | 14.50 | NB-adapted(Google) 20.83 | 16.39 | 18.35
All 45.15 | 24.10 | 31.43 45.61 | 24.35 | 31.75

Table 8.12: Results on Test of the Illinois system (without post-processing) and the
Illinois-improved system. For the improved system, the best modules for each error type are
selected according to the results on the training data obtained in Section 8.5 (see Table 8.11). The
Illinois system at CoNLL-2013 uses post-processing and obtains an F1 score of 31.20. Here, the
Illinois system performance is reported without the post-processing step for a fair comparison.

the quality of the text improves as a result of running the system, in Figure 8.1, we show Pre-
cision/Recall curves for individual classifiers that are part of the Illinois-improved system in Ta-
ble 8.12. We observe that performance varies widely by error type. The easiest are noun and article
usage errors: for nouns, we can do pretty well at the recall point 20% (with the corresponding pre-
cision of over 60%); for articles, the precision is also around 50% at the recall value of 20%. For
agreement errors, we can get a precision of 55% with a very high threshold (identifying only 5%
of mistakes). Finally, on two mistakes — preposition and verb form — the system never achieves a
precision over 50% and thus cannot improve the quality of the text for these errors.

It is also interesting to see by how much the quality of the text can be improved if the system
is tuned so that precision is sufficiently high. Using the definition of accuracy (Section 4.5), the
noun module, for instance, at the recall point 20% achieves a precision of 63.93%. This translates
into an accuracy of 94.46%, while the baseline on the noun errors (i.e. the accuracy of the data
before running the system) is 94.0%. This means that the system improves the quality of the
data. Importantly, once precision drops below 50%, the system introduces more mistakes than it
identifies.

On the other hand, it should be noted that the results above in fact underestimate the per-
formance of the system. This is because the original annotations do not provide alternative and
optional corrections. The after revisions set adds error annotations missed in the original stage.
Annotation errors make a big difference in this task, where the error rates are so low. Both the

recall and especially precision of the systems go up when evaluated on the after revisions data. The
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Figure 8.1: Precision/Recall curves by error type.

precision of the original Illinois system goes up from 46.45 to 62.19 on revised annotations. While
the revised annotations may be biased (Ng et al., 2013), they do demonstrate the importance of

providing alternative and optional corrections.

8.7 Summary

In this chapter, we build a complete error correction model that implements the techniques proposed
in this thesis. This is a state-of-the-art error correction model — referred to as Illinois — that placed
first in the CoNLL-2013 shared task. Through an analysis of the Illinois system and by comparing
its components to implementations by other teams, we identify key design principles for building a
state-of-the-art error correction system and show why it is doing so much better than the others.
The key dimensions are closely aligned with the methods proposed in this thesis and concern the
choice of a learning algorithm, adaptation to learner mistakes, use of linguistic knowledge, and
choice of the training data. It is shown that the decisions in each case depend both on the type of
mistake being targeted and the specific setting, e.g. how much annotated learner data is available.

As a result of the analysis, we also improve over the Illinois model.
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Chapter 9

Joint Learning and Inference for
Error Correction

The previous chapters focused on developing classifiers targeting a specific type of mistake. The
state-of-the-art Illinois system presented in Chapter 8 is based on a collection of these independently-
trained models. Such models ignore linguistic interactions at the sentence level and thus do poorly
on mistakes that involve grammatical dependencies among several words. In this chapter, we go
beyond error correction that operates at the word level: we identify linguistic structures with in-
teracting grammatical properties and propose to address such dependencies via joint inference and

joint learning.

9.1 Introduction

The Illinois system, which is a state-of-the-art system presented in the previous chapter, consists
of a collection of classifiers where each one specializes in correcting a specific error type. The final
model includes the union of the corrections proposed by the individual classifiers. This standard
approach considers each word in a sentence independently and thus assumes that there are no
interactions between errors and between grammatical phenomena. For this reason, such models
tend to make predictions that are inconsistent with the grammatical rules of the languages and,
moreover, fail to identify errors in contexts that require multiple changes to be done simultaneously.

Even though it is quite clear that grammatical errors interact, for various conceptual and
technical reasons, this issue has not been addressed in a significant way in the literature. We
believe that the reasons for this are three-fold: (1) Lack of data: until very recently we did not
have data that jointly annotates sufficiently many errors of interacting phenomena (see Section 9.2).
(2) Conceptual: correcting errors in interacting linguistic phenomena requires that one identifies

those phenomena and, more importantly, can recognize reliably the interacting components (e.g.,
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given a verb, identify the subject to allow agreement to be enforced). The perception has been
that this cannot be done reliably, but see Section 9.4. (3) Technical issues: the NLP community
has only recently begun to better understand joint learning and inference and apply it to various
phenomena (Roth and Yih, 2004a; Punyakanok et al., 2008; Martins et al., 2011; Clarke and Lapata,
2007; Sutton and McCallum, 2007) .

We show that it is possible to identify interactions well enough to facilitate a joint approach
and, consequently, that joint methods correct incoherent predictions that independently-trained
classifiers tend to produce. Furthermore, because the joint learning model considers interacting
phenomena during training, it is able to identify mistakes that require making multiple changes
simultaneously and that standard approaches miss. Overall, our joint model significantly outper-

forms the Illinois system, increasing the F1 score by 2 and 4 points in different evaluation settings.

Contributions

e We identify two pairs of interacting phenomena, subject-verb and article-NPhead agreements;
we show how to reliably identify these pairs in noisy ESL data, thereby facilitating the joint

correction of these phenomena.

e We propose two joint approaches: (1) a joint inference approach implemented on top of
individually learned models using an Integer Linear Programming formulation (Roth and
Yih, 2004a), and (2) a model that jointly learns each pair of these phenomena. We show that
each of these methods has its advantages, and that both solve the two challenges outlined
above: the joint models exclude inconsistent predictions that violate linguistic constraints.
The joint learning model exhibits superior performance, as it is also able to overcome the
problem of the noisy context encountered by the individual models and to identify errors in

contexts where multiple changes need to be applied at the same time.

The rest of this chapter is structured as follows. Section 9.2 motivates the choice of the data
set for this study, and Section 9.3 briefly presents the baseline system. Section 9.4 describes the
interacting structures. Section 9.5 presents the joint algorithms. Experiments demonstrating the
utility of the joint approaches are presented in Section 9.6. Section 9.7 discusses the results and

presents error analysis. Section 9.8 concludes the chapter.
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9.2 Choice of the Learner Data Set

To illustrate the utility of jointly addressing interacting grammatical phenomena, we consider the
corpus of the CoNLL-2013 shared task (see Section 4.2.3); this data set is particularly well-suited
for addressing interactions between grammatical phenomena. The shared task focuses on the
following five common mistakes made by ESL writers: article, preposition, noun number, subject-
verb agreement, and verb form (see Table 8.1 for examples of mistakes). Two pairs of grammatical
interactions that are relevant for the types of errors included in the task are addressed — article-
NPhead and subject-verb.

We note that the CoNLL-2013 data set is the first annotated collection that makes a study
like ours feasible. The presence of a common test set that contains a good number of interacting
errors — article, noun, and verb agreement mistakes — makes the data set well-suited for studying
which approach works best for addressing interacting phenomena. The HOO 2012 competition
(Dale et al., 2012) only addresses article and preposition mistakes, while the HOO-2011 shared
task collection (Dale and Kilgarriff, 2011) contains a very small number of noun and agreement
errors (41 and 11 in test, respectively). Indeed, in parallel to the work presented here, Wu and Ng
(2013) attempted the ILP-based approach of Roth and Yih (2004b) on the HOO-2011 data set but
did not show any improvement because of the small number of interacting phenomena and because
they applied constraints in an indiscriminate manner. In contrast, we show how to identify the
interacting structures’ components in a reliable way, and this plays a key role in the joint modeling

improvements.

9.3 The Baseline System

The joint approaches are applied to a system that consists of independently-trained classifiers.
We take as the baseline the original Illinois system built in Chapter 8, as it is implemented in
the CoNLL-2013 shared task.! As discussed in Chapter 8, this is a state-of-the-art system that
ranked first in the CoNLL-2013 shared task. The Illinois system implements five machine-learning

independently-trained classifiers each targeting one specific type of mistake. For system descrip-

!The Tllinois system in the shared task also includes a post-processing step (Section 8.4).
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Example Predictions made by the Illinois system
“They believe that such situation must be avoided.” such situation — such a situations
“Nevertheless, electric cars s still regarded as a great
trial innovation.”

“Every students have appointments with the head of the
department.”

cars is — car are

No change

Table 9.1: Examples of predictions of the Illinois system that combines independently-
trained models.

tion, we refer the reader to Chapter 8.

In Chapter 8, it was also found that the Illinois system can be further improved by replacing
several of its components with alternative models. In particular, the agreement NB classifier trained
on the Google corpus is replaced with a classifier trained on the learner data that makes use of
syntactic features. The key experiments in this chapter are applied to the original Illinois system.
One reason for this is to make the comparison fair, since the joint learning component is trained on
the Google corpus, similar to the corresponding classifiers of the Illinois model, while the improved
system in Chapter 8 replaces the agreement classifier with a model trained on learner data. For

completeness, we also show joint inference results applied to the Illinois-improved model.

9.4 Interacting Mistakes

The approach of addressing each type of mistake individually is problematic when multiple phe-
nomena interact. Consider the examples in Table 9.1 and the predictions made by the Illinois
system. In the first and second sentences, there are two possible ways to correct the structures
“such situation” and “cars is”. In the former, either the article or the noun number should be
changed; in the latter, either the noun number or the verb agreement marker.? In these examples,
each of the independently-trained classifiers identifies the problem because each system makes a
decision using the second error as part of its contextual cues, and thus the individual systems
produce inconsistent predictions.

The second type of interaction concerns cases that require multiple simultaneous corrections

be made; the last example in Table 9.1 requires making changes both to the verb and the subject.

2Both of these solutions will result in grammatical output and the specific choice between the two depends on the
wider essay context.
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Since each of the independent classifiers (for nouns and for verb agreement) takes into account the
other word as part of its features, they both infer that the verb number is correct and that the
grammatical subject student should be plural. This results in missed errors.

We refer to the words whose grammatical properties interact as structures. The independently-
trained classifiers tend to fail to provide valid corrections in contexts where it is important to

consider both words of the structure together.

9.4.1 Structures for Joint Modeling

We address two linguistic structures that are relevant for the grammatical phenomena considered:
article-NPhead and subject-verb. In the article-NPhead structures, the interaction is between the
head of the noun phrase (NP) and the article that refers to the NP (first example in Table 9.1). In
particular, the model should take into account that the article ¢ cannot be combined with a noun
in plural form. For subject-verb agreement, the subject and the verb should agree in number.

We now need to identify all pairs of candidates that form the relevant structures. Article-
NPhead structures are pairs of words, such that the first word is a candidate of type article, while
the second word is a noun candidate. Given an article candidate, the head of its NP is determined
using the POS information (this information is obtained from the article feature vector because
the NP head is a feature used by the article system).> Subject-verb structures are pairs of noun-
agreement candidates. Given a verb, its subject is identified with a dependency parser (Marneffe
et al., 2006).

To evaluate the accuracy of subject and NP head predictions, a random sample of 500 structures
of each type from the training data was examined by a human annotator with formal training in
Linguistics. The human annotations were then compared against the automatic predictions. The
results of the evaluation for subject-verb and article-NPhead structures are shown in Tables 9.2
and 9.3, respectively. Although the overall accuracy is above 90% for both structures, the accuracy
varies by the distance between the structure components and drops significantly as the distance
increases. For article-NPhead structures, distance indicates the position of the NP head with

respect to the article, e.g. distance of 1 means that the head immediately follows the article. For

3Some heads are not identified or belong to a different part of speech.
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subject-verb structures, distance is shown with respect to the verb: a distance of —1 means that
the subject immediately precedes the verb. Although in most cases the subject is located to the
left of the verb, in some constructions, such as existential clauses and inversions, it occurs after the
verb.

Based on the accuracy results for identifying the structure components, we select those struc-
tures where the components are reliably identified. For article-NPhead, valid structures are those
where the distance is at most three words. For subject-verb, we consider as valid those structures
where the identified subject is located within two words to the left or three words to the right of
the verb.

The valid structures are selected as input to the joint model (Section 9.5). The joint learning
model considers only those valid structures whose components are adjacent. In adjacent structures
the NP head immediately follows the article, and the verb immediately follows the subject. Joint
inference is not restricted to adjacent structures.

The last column of Table 9.2 shows that valid subject-verb structures account for 67.5% of all
verbs whose subjects are common nouns (51.7% are cases where the words are adjacent). Verbs
whose subjects are common nouns account for 57.8% of all verbs that have subjects (verbs with
different types of subjects, most of which are personal pronouns, are not considered here, since
these subjects are not part of the noun classifier).

Valid article-NPhead structures account for 98.0% of all articles whose NP heads are common
nouns (47.5% of those are adjacent structures), as shown in the last column of Table 9.3. 71.0%
of articles in the training data belong to an NP whose head is a common noun; NPs whose heads
belong to different parts of speech are not considered.

Note also that because a noun may belong both to an article-NPhead and a subject-verb

structure, the structures contain an overlap.

9.5 The Joint Model

In this section, we present the joint inference and the joint learning approaches. In the joint
inference approach, we use the independently-learned models from the Illinois system, and the

interacting target words identified earlier are considered only at inference stage. In the joint
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Distance | Accuracy | % of all subj. | Cumul.
predictions

-1 97.6% 51.7% 51.7%

1,2,3 100.0% 8.9% 60.6%

-2 88.2% 6.9% 67.5%

Other 80.8% 32.5% | 100.0%

Table 9.2: Accuracy of subject identification on a random sample of subject-verb struc-
tures from the training data. The overall accuracy is 91.52%. For each distance, we show the
following statistics: accuracy based on comparison with human evaluation; the percentage of all
predictions that have this distance; the cumulative percentage.

Distance | Accuracy | % of all head | Cumul.
predictions

1 94.8% 47.5% 47.5%

2 94.4% 44.0% 91.5%

3 92.3% 6.5% 98.0%

Other 89.1% 2.0% 100%

Table 9.3: Accuracy of NP head identification on a random sample of article-NPhead
structures from training data. The overall accuracy is 94.45%. For each distance, we show the
following statistics: accuracy based on comparison with human evaluation; the percentage of all
predictions that have this distance; the cumulative percentage.

learning method, we jointly learn a model for the interacting phenomena.

The label space in the joint models corresponds to sequences of labels from the confusion sets
of the individual classifiers: {a-sing, a-pl, the-sing, the-pl, @-sing, @-pl} and {sing-sing, sing-pl,
pl-sing, pl-pl} for article-NPhead and subject-verb structures, respectively.? Invalid structures,
such as pl-sing are excluded via hard constraints (when we run joint inference) or via implicit soft

constraints (when we use joint learning).

9.5.1 Joint Inference

In the individual model approach, decisions are made for each word independently, ignoring the
interactions among linguistic phenomena. The purpose of joint inference is to include linguistic (i.e.
structural) knowledge, such as “plural nouns do not take an indefinite article”, and “agreement

consistency between the verb and the subject that controls it”. This knowledge should be useful

4sing and pl refer to the grammatical number of noun and verb agreement candidates. The candidates themselves
are the surface forms of specific words that realize these grammatical properties. Note that a subject in subject-verb
structures is always third person, since all subjects in subject-verb structures are common nouns; other subjects,
including pronouns, are excluded. Thus the agreement distinction is singular versus plural.
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for resolving inconsistencies produced by individual classifiers.

The inference approach we develop in this thesis follows the one proposed by Roth and Yih
(2004b) that combines individually-trained models at decision time via joint inference. The advan-
tage of this method is that it allows us to build upon any existing independently-learned models that
provide a distribution over the local outcomes and produce a coherent global output that respects
our declarative constraints. We formulate our component inference problems as ILP instances as
in Roth and Yih (2004b).

The inference takes as input the individual classifiers’ confidence scores for each prediction,

along with a list of constraints. The output is the optimal solution that maximizes the linear sum
of the confidence scores, subject to the constraints that encode the interactions. The joint model
thus selects a hypothesis that both obtains the best score according to the individual models and
satisfies the constraints that reflect the interactions among the grammatical phenomena at the level
of linguistic structures, as defined in Section 9.4.
Inference The joint inference is enforced at the level of structures, and each structure corresponds
to one ILP instance. All structures consist of two or three words: when an article-NPhead structure
and a subject-verb structure include the same noun, the structure input to the ILP consists of an
article-noun-verb triple. We formulate the inference problem as follows: given a structure s that
consists of n words, let w; correspond to the i** word in the structure. Let h denote a hypothesis
from the hypothesis space H for s, and g(w;, h, 1) denote the score assigned by the appropriate
error-specific model to w; under h for label [ from the confusion set of word w;. We denote by
ew, the Boolean variable that indicates whether the prediction on word w is assigned the value [
(ew,; =1) or not (e,,; = 0).

We assume that each independent classifier returns a score that corresponds to the likelihood
of word w; under h being labeled I¢. The softmax function (Bishop, 1995) is used to convert raw
activation scores to conditional probabilities for the discriminative article model. The NB scores are
also normalized and correspond to probabilities. Then the inference task is solved by maximizing
the overall score of a candidate assignment of labels [ to words w (this set of feasible assignments

is denoted H here) subject to the constraints C for the structure s:
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h = argmax g(h) =
heH

n
= arg max Z g(wi, h,1")ey,, i
hel =

subject to C(s).
Constraints In the {0, 1} linear programming formulation described above, we can encode linguis-
tic constraints that reflect the interactions among the linguistic phenomena. The inference enforces
the following structural and linguistic constraints:

1. The indefinite article a cannot refer to an NP headed by a plural noun.

2. Subject and verb must agree in number.

In addition, we encode “legitimacy” constraints, that make sure that each w is assigned a single

label. All constraints are encoded as hard constraints.

9.5.2 Joint Learning

We now describe how we learn the subject-verb and article-NPhead structures jointly. The joint
model is implemented as a NB classifier and is trained in the same way as the independent models
on the Google corpus with word n-gram features. Unlike the independent models, where the
target corresponds to one word, here the target corresponds to two words that are part of the
structure and the label space of the model is modified accordingly. Since we use features that can
be computed from the small windows in the Google corpus, the joint learning model handles only
adjacent structures (Section 9.4.1). Furthermore, because targets consist of two words and the
Google corpus contains counts for n-grams of length at most five, the features are collected in the
three word window around the target.’

In contrast to joint inference, the joint learning framework does not explicitly encode linguistic
constraints. One reason for this is that the NP head and subject predictions are not 100% accurate,
so input structures will have noise. However, the joint model learns these constraints through

evidence seen in training.

5Also note that when the article is @, the surface form of the structure corresponds to the NP head alone; this
does not present a problem because in the NB model the context counts are normalized with the prior counts.
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9.6 Experiments

In this section, we describe our experimental setup and evaluate the performance of the joint ap-
proach. In the joint approach, the joint components presented in Section 9.5 handle the interacting
structures described in Section 9.4. The individual classifiers of the Illinois system make predic-
tions for the remaining words. The research question addressed by the experiments is the following:
Given independently-trained systems for different types of errors, can we improve the performance
by considering the phenomena that interact jointly? To address this, we report the results in the
following settings:

1. Joint Inference: we compare the Illinois system that is a collection of individually-trained models
that are applied independently with a model that uses joint inference encoded as declarative con-
straints in the ILP formulation and show that using joint inference results in a strong performance
gain.

2. Joint Learning: we compare the Illinois system with a model that incorporates jointly-trained
components for the two linguistic structures that we described in Section 9.4. We show that joint
training produces an even stronger gain in performance compared to the Illinois model.

2. Joint Learning and Inference: we apply joint inference to the output of the joint learning system
to account for dependencies not covered by the joint learning model.

As in Chapter 8, we report F'1 performance on the original gold data.

9.6.1 Joint Inference Results

Table 9.4 shows the results of applying joint inference to the Illinois system. Both the article-
NPhead and the subject-verb constraints improve the performance. The results for the joint
inference are shown in two settings — adjacent structures and all structures — so that later we
can compare joint inference with the joint learning model that handles only adjacent structures.
It is also interesting to note that the key improvement comes from considering structures whose
components are adjacent. This is not surprising given that the accuracy of identifying structure
components drops as the distance increases.

To demonstrate the effect of the joint inference model, for subject-verb constraints, we also

implement a naive approach that looks for contradictions and changes either the verb or the subject
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if they do not satisfy the number agreement. These two heuristics are denoted as NaiveVerb and
NaiveNoun. The heuristics differ from the joint inference in that they enforce agreement by always
changing either the noun (NaiveNoun) or the verb (NaiveVerb), while the joint inference uses
the scores produced by the independent models to enforce consistency. In other words, the key
distinction is the objective function, while the components of the objective function are the same
in the heuristics and the joint inference. The results in Table 9.4 show that simply enforcing
agreement does not work well, while the ILP formulation is indeed effective and improves over the
independently-trained models in all cases.

Recall that valid structures include only those whose components can be identified in a reliable
way (Section 9.4.1). To evaluate the impact of that filtering, we perform two experiments with
subject-verb structures (long-distance dependencies are more common in those constructions than
in the article-NPhead structures): first, we apply joint inference to all subject-verb structures. We
obtain an F1 score of 31.61; this is significantly worse than the results on subject-verb structures
in Table 9.4 (31.97) and only slightly better than the baseline performance of the Illinois system.
Furthermore, when we apply joint inference to those structures which were excluded by filtering in
Section 9.4.1, we find that the performance degrades compared to the Illinois system, yielding an
F1 of 30.85. These results demonstrate that the joint inference improvements are due to structures
whose components can be identified with high accuracy and that identifying structure components
accurately is essential.

The experiments above apply joint inference to the Illinois model. Recall that in Chapter 8 we
found that it is possible to improve over the Illinois model by replacing some of its components.
Notably, it was found that agreement errors benefit from a richer model that takes into account
syntactic information. Table 9.5 shows the results of applying joint inference to this improved
model, denoted here as [llinois-improved. Recall also that several components of this model are
replaced, and the post-processing step is removed. For ease of comparison, joint inference results of
the Illinois system are also shown. These results reveal that adding joint inference over the improved
model that addresses agreement errors via a feature-rich classifier is also beneficial. We find that
the gap between the baseline systems that do not use inference and those that do is generally

the same in both case, with the exception of inference for adjacent subject-verb structures: the
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System F1

Adj. structures | All structures
Ilinois (no inference) 31.20 31.20
NaiveVerb 31.19 31.13
NaiveNoun 31.03 30.91

Joint inference over the Illinois system

Interacting structures F1

Adj. structures | All structures
Subject-verb 31.90 31.97
Article-NPhead 31.63 31.79
Subject-verb + article-NPhead 32.35 32.51

Table 9.4: Joint inference results. All results are on the CoNLL-2013 test data using the original
annotations. Adjacent denotes a setting, where the joint inference is applied to structures with
consecutive components (article-NPhead or subject-verb). All structures denotes a setting, where
the constraints are applied to all valid structures, as described in Section 9.4.1. Illinois denotes the
result obtained by the top CoNLL-2013 shared task system. In all cases, the candidates that are not
part of the structures are handled by the respective components of the Illinois system. Naive Verb
and NaiveNoun denote heuristics, where a verb or subject are changed to ensure agreement. All
improvements over the Illinois system are statistically significant (McNemar’s test, p < 0.01).

improvement due to the inference decreases slightly for the Illinois-improved model, which can be
attributed to the contribution of syntactic features in the Illinois-improved agreement classifier.
An important result of applying inference is that the predictions are coherent, which cannot be

achieved in a model that combines independently-trained modules.

9.6.2 Joint Learning Results

Now we show experimental results of the joint learning model (Table 9.6). Note that the joint
learning component considers only those structures where the words are adjacent. Because the
Illinois system makes use of a discriminative article model, while the joint model uses NB, we also
show results where the article model is replaced by a NB classifier trained on the Google corpus.

In all cases, joint learning demonstrates a strong performance gain.

9.6.3 Joint Learning and Inference Results

Finally, we apply joint inference to the output of the joint learning system in Section 9.6.2. Table
9.7 shows the results of the Illinois model, the model that applies joint inference and joint learning

separately, and both. Even though joint learning performs better than joint inference, the joint
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F1
No joint inference Illinois Illinois-improved
31.20 31.75
Joint inference
Interacting structures Ilinois (F1) Ilinois-improved (F1)
Adj. struct. | All struct. | Adj. struct. | All struct.

Subject-verb 31.90* 31.97* 31.97 32.35%
Article-NPhead 31.63* 31.79% 32.18* 32.35%
Subject-verb + article-NPhead 32.35%* 32.51%* 32.41%* 32.90%*

Table 9.5: Joint inference results for the improved Illinois system. All results are on the
CoNLL-2013 test data using the original gold annotations. Illinois-improved denotes the system
developed in Chapter 8. Adjacent denotes a setting, where the structure components are consecutive
(article-NPhead or subject-verb), as described in Section 9.4.1. Illinois denotes the result obtained
by the top CoNLL-2013 shared task system. In all cases, the candidates that are not part of
the structures are handled by the respective components of the systems. Statistically significant
improvements (McNemar’s test, p < 0.01) over the no-inference systems are marked with an asterisk

(*)-

F1
No joint learning Illinois system Illinois-NBArticle
31.20 \ 31.71
Interacting structures Joint learning (F1)
Subject-verb 32.64 33.09
Article-NPhead 33.89 33.16
Subject-verb + article-NPhead 35.12 34.41

Table 9.6: Joint learning results. All results are on the CoNLL-2013 test data using the original
annotations. Illinois-NBArticle denotes the Illinois system, where the discriminative article model
is replaced with a NB classifier. Adjacent denotes a setting, where the structure components are
consecutive (article-NPhead or subject-verb), as described in Section 9.4.1. Illinois denotes the
result obtained by the top CoNLL-2013 shared task system. In all cases, the candidates that are
not part of the structures are handled by the respective components of the Illinois system. All
improvements are statistically significant over the Illinois and Illinois-NBArticle systems that do
not use joint components (McNemar’s test, p < 0.01).

System F1

Ilinois 31.20
Joint inference 32.51
Joint learning 35.12
Joint learn. + inf. | 35.21

Table 9.7: Joint Learning and Inference. All results are on the CoNLL-2013 test data using
the original annotations. Results of the joint models that include the joint inference component
are shown for structures of all distances. Illinois denotes the result obtained in the CoNLL-2013
shared task. All joint systems demonstrate a statistically significant improvement over the Illinois
system; joint learning improvements are also statistically significant compared to the joint inference
results (McNemar’s test, p < 0.01).
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Example Illinois system JL and JI

“Moreover, the increased technologies help people to

overcome different natural disasters. No change technology helps

“At that time,... there are surveillances in everyone’s

.. . . there are* surveillance* | there is surveillance
heart and criminals are more difficult to hide.”

“In such situation, individuals will lose their basic pri- such a* situations™® such a situation
vacy.”

“In supermarket monitor is needed because we have to

. No change monitors are
track thieves.” g

Table 9.8: Examples of mistakes that are corrected by the joint model but not by the
Illinois model. Illinois denotes the result obtained by the top CoNLL-2013 shared task system
from the University of Illinois. JL and JI stand for joint learning and joint inference, respectively.
Inconsistent predictions are starred.

learning covers only adjacent structures. Furthermore, joint learning does not address overlapping
structures of triples that consist of article, subject, and verb (6% of all structures). Joint inference
allows us to ensure consistent predictions in cases not addressed by the joint learning model. Indeed,

we can get a small improvement by adding joint inference on top of the joint learning.

9.7 Discussion and Error Analysis

In the previous section, we evaluated the proposed joint inference and joint learning models that
handle interacting grammatical phenomena. We showed that the joint models produce significant
improvements over the state-of-the-art Illinois that consists of independently-trained classifiers: the
joint approaches increase the F1 score by 4 points (Table 9.7).

These results are interesting from the point of view of developing a practical error correction
system. However, recall that the errors in the interacting structures are only a subset of mistakes
in the CoNLL-2013 data set but the evaluation in Section 9.6 is performed with respect to all of
these errors. From a scientific point of view, it is interesting to evaluate the impact of the joint
models more precisely by considering the improvements on the relevant structures only. Table 9.9

shows how much the joint learning approach improves on the subset of relevant mistakes.

Error Analysis
To better understand where the joint models have an advantage over the independently-trained
classifiers, we analyze the output produced by each of the approaches. In Table 9.8 we show

examples of mistakes that the model that uses joint learning and inference is able to identify
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Structure Performance (F1)
Illinois | Joint Learning
Subject-verb 39.64 52.25
Article-NPhead | 30.65 35.90

Table 9.9: Evaluation of the joint learning performance on the subset of the data con-
taining interacting errors. All results are on the CoNLL-2013 test data using the original
annotations. Illinois denotes the result obtained by the top CoNLL-2013 shared task system. All
improvements are statistically significant over the Illinois system (McNemar’s test, p < 0.01).

correctly, along with the original predictions made by the Illinois system.

Joint Inference Versus Joint Learning

We wish to stress that the joint approaches do not simply perform better but also make coherent
decisions by disallowing illegitimate outputs. The joint inference approach does this by enforcing
linguistic constraints on the output. The joint learning model, while not explicitly encoding these
constraints, learns them from the distribution of the training data.

Joint inference is a less expensive model, since it uses the scores produced by the individual
classifiers and thus does not require additional training. Joint learning, on the other hand, is
superior to joint inference, since it is better at modeling interactions where multiple errors occur
simultaneously — it eliminates the noisy context present when learning the independent classifiers.
Consider the first example from Table 9.8, where both the noun and the agreement classifiers receive
noisy input: the verb help and the noun technologies act as part of input features for the noun and
agreement classifiers, respectively. The noisy features prevent both modules from identifying the
two errors.

Finally, an important distinction of the joint learning method is that it considers all possible
output sequences in training, and thus it is able to better identify errors that require multiple

changes, such as the last example in Table 9.8, where the Illinois system proposes no changes.

9.8 Summary

This chapter presents the first successful study that jointly corrects learner mistakes. Two pairs
of interacting phenomena are addressed: it is shown that it is possible to reliably identify their

components, thereby facilitating the joint approach.
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We describe two joint methods: a joint inference approach implemented via ILP and a joint
learning model. The joint inference enforces constraints using the scores produced by the independently-
trained models. The joint learning model learns the interacting phenomena as structures. The joint
methods produce a significant improvement over the state-of-the-art Illinois system that combines

independently-trained models. Importantly, the joint models produce linguistically-legitimate out-

put.
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Chapter 10

Conclusion

Despite growing interest in automatic text correction, research in this area is in its preliminary
stages. This dissertation identifies and investigates several fundamental questions that establish
promising directions for future research in this field.

In Chapter 5, several state-of-the-art machine learning algorithms were compared to determine
which models are superior for the task and under what conditions.

Chapter 6 addressed the question of adaptation, that is developing models that can utilize
knowledge about error regularities without expensive annotation. The key idea of adaptation is
that estimating error patterns does not require a lot of annotation and can be done by extracting
error statistics from a small set of writing samples. Taking into account specific error patterns
such as the native language of a foreign-language learner demonstrably improves error correction.
Figure 6.1 clearly demonstrated this empirically.

Chapter 7 discussed the challenges of addressing mistakes on open-class words and developed
specific strategies for correcting grammar and usage mistakes on two groups of open-class words:
nouns and verbs.

In Chapter 8, we described an end-to-end system that we built using the techniques proposed
in the previous chapters. This system addressed article, preposition, noun number, and most
commonly-occurring types of grammatical verb errors, and ranked first in the CoNLL-2013 shared
task on grammatical error correction. Through analysis of the system and comparing it with the
implementations by other teams, we identified four design dimensions that are closely aligned with
the methods proposed in this thesis and showed their importance for building a state-of-the-art
error correction system.

Finally, Chapter 9 proposed a global approach that goes beyond word level error correction

and considers linguistic phenomena at the sentence level via joint inference and joint learning. The
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proposed methods not only improve the state-of-the-art system in Chapter 8 but also produce more

coherent output that obeys linguistic constraints.

The Use of Linguistic Knowledge One feature that sets this work apart from other approaches
to the problem of ESL error correction is the use of linguistic knowledge and the demonstration
that it is crucial in the development of an error correction system. It is quite common in many
NLP tasks to focus on the machine learning side of the problem, but our results demonstrate that
the use of linguistic knowledge is essential.

It is well known that writers, both native and non-native, exhibit specific error patterns. The
adaptation idea utilizes the fact that learner mistakes are not random. In this thesis, error regu-
larities have been discussed at multiple levels — across multiple groups of learners, first-language
dependent, or even individual- and exposing models to error patterns through adaptation has been
shown to be extremely effective.

In Chapter 7, we showed that verb errors are linguistically complex, and building a model that
addresses verb properties in a linguistically-motivated approach is beneficial. These findings are
further supported by the performance of the verb modules in the complete system presented in
Chapter 8.

Moreover, the Illinois system at CoNLL makes use of linguistic knowledge in several of its
components. In addition to the linguistically-based approach to verbs, morphological and syntactic
knowledge is used both in features and trigger identification for open-class words. Analysis of the
Illinois system in Chapter 8 reveals the importance of using linguistic knowledge to build a successful

system.

10.1 Future Work

In this section, we consider directions for future research that stem from the work in this thesis.
Our findings raise a number of questions for further study. We consider future research from
several points of view. First, in Section 10.1.1, we discuss future work that is immediately related
to the problem of correcting ESL errors. Next, in Section 10.1.2, we discuss the application of the

proposed approaches to mistakes made by other types of writers. Finally, Section 10.1.3 discusses
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future research that is further afield from the focus of this dissertation but is an interesting and

compelling idea for future work.

10.1.1 Research Questions Relating to the Framework Studied in This

Dissertation

Expanding the Set of Errors This thesis addressed the problem of ESL error correction by
focusing on several prominent categories of grammar and usage errors. It is important to note that
although not all of the error types have been addressed directly in this dissertation, we considered
several fundamental questions pertaining to automatic error correction in general. One obvious
and fruitful direction for future work is to expand further the set of errors covered. Here, we wish
to point out two types of errors that are set apart from other mistakes made by learners: lexical
choice errors and mistakes in word order.

Word choice errors constitute one category that is out of the scope of this work. As discussed in
Section 4.2.4, word choice errors constitute 28% and 20% of all mistakes in the Illinois and FCE data
sets, respectively, and form the largest error category in both of the corpora. Building an automatic
system that could identify and correct word choice mistakes requires special considerations, such
as determining the set of candidate corrections. However, we believe that the ideas proposed in
this thesis will definitely benefit such a system. For example, taking into account the influence of
the first language for lexical mistakes is possible and should be extremely useful.

Another special category comprises errors in word order. These errors account for about 2% of
all mistakes in the Illinois and FCE data sets, but they are worth exploring and may present inter-
esting challenges. A system that could identify these mistakes might benefit from the knowledge
of the grammar of the first language of the writer, as well. Building such a system is an exciting
direction for future research.

Interacting mistakes and global approaches to error correction Chapter 9 discussed mis-
takes that occur in interacting linguistic structures and showed that joint approaches both make
coherent predictions and correct errors in contexts that require entertaining multiple changes si-
multaneously. There are several research directions in this area. The first direction concerns

extending the proposed joint approaches to other interacting structures. In Chapter 9, we consid-
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ered two types of interaction. Identifying other linguistic phenomena that would benefit from joint
processing is an obvious extension of the joint approach to error correction.

Furthermore, the joint learning approach proposed in this thesis directly addresses the problem
of multiple errors in the surrounding context of a target word as it is able to entertain hypotheses
that require multiple simultaneous changes. Mistakes that are present in the context, even when
they do not interact at the level of linguistic structures, nevertheless negatively affect the feature
representation for a target word; addressing the problem of the presence of multiple mistakes is
another application of the joint learning approach. Such an effort could substantially improve error

correction on mistakes that do not interact grammatically.

10.1.2 Correcting Mistakes Made by Native Speakers and Learners of
Languages Other Than English

One interesting direction for future work is applying the proposed techniques to errors made by
native speakers and learners of languages other than English. The approaches proposed in this
thesis are not language- or error-specific and therefore it would be easy to apply them to errors
made by native speakers and to mistakes made by learners of languages other than English.

Error patterns are exhibited by both native and non-native writers alike, and adaptation, which
in this thesis was proven extremely useful for correcting all types of ESL mistakes — both on closed-
and open-class words — should also improve models that target native speakers and learners of
languages other than English. Moreover, we believe that morphologically-rich languages could
especially benefit from the idea of adaptation: analysis of the adaptation approaches in Chapter 6
suggests that the larger the confusion sets, the more the model benefits from knowledge of typical
mistakes. It would thus be interesting to investigate adaptation methods in the context of correcting
errors in morphologically-complex languages. For example, these methods could be applied to noun
declination errors in languages like Russian or verb conjugation errors in Hebrew.

Joint approaches may be particularly useful for languages other than English, as morphologically-
complex languages exhibit more interacting structures, and addressing these phenomena jointly
should be beneficial. For example, constraints could encode the agreement between a noun and

its modifiers — determiners or adjectives, or the dependence of case markings on the relationship
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between the words that form a grammatical structure.

10.1.3 Second Language Teaching

Although the focus of this dissertation is automatic error correction, our findings have direct
and very interesting application in second language acquisition and teaching. Analysis of the
annotated learner corpora provides quantitative evidence of the specific error patterns and the
types of errors that are most commonly exhibited by ESL learners. As was shown, not all of
these mistakes are equally likely to occur either within the group of learners of the same linguistic
background or across different first languages. Furthermore, variation in error rates across different
types of errors suggests that some language phenomena are more difficult to master for some ESL
learners than for others. These findings can aid second language teaching, as knowledge about
error patterns and the relation of these errors to the native language of the learner can be applied
to target the mistakes made by non-native speakers as a way of quickly achieving the greatest
improvement by those speakers. For example, instruction could be individualized based on the
types of linguistic phenomena that are most difficult due to first-language influence or for learners in
general. In fact, the idea of individualizing second language instruction based on the writers’ native
language is considered in Dalgish (1985), where error patterns for speakers of multiple first-language
backgrounds are studied in the context of preposition and verb agreement mistakes. Determining
whether such an effort could substantially improve second language acquisition remains to be
seen. Moreover, the underlying idea behind the artificial errors approach could be directly used
in this context to develop teaching materials that focus on the parts of grammar that are most
challenging for the learner. Finally, an error correction system can also be integrated into second
language classroom to facilitate the learning process by providing feedback to language learners; it
can be further adapted to the areas that are particularly challenging to the learner.

Lastly, in Chapter 8, it was also shown that errors exhibit various difficulty levels for automated
tools. Determining whether the same properties are more challenging both for humans and ma-
chines is an interesting direction for future work at the intersection of natural language processing,
linguistics, and psychology.

It should stressed that, as discussed in Section 10.1.2, the research in this thesis is not restricted
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to ESL error correction. Therefore, these ideas can be also used to improve language teaching where

the second language is a language other than English.
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