

PARALLEL COMPUTING ON GEOSTATISTICAL DATA

 USING CUDA

BY

FENG SHAN

THESIS

Submitted in partial fulfillment of the requirements

 for the degree of Master of Science in Computer Science

 in the Graduate College of the

University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Advisor:

Professor John Hart

ABSTRACT

Data analysis is receiving considerable attention with the design of new graphics

processing units (GPUs). Our study focuses on geostatistical data analysis, which is

currently applied in diverse disciplines such as meteorology, oceanography, geography,

forestry, environmental control, and agriculture. While geostatistical analysis

algorithms are applied in varied branches, those analyses can be accelerated by

applying parallel computing using modern GPUs. The highly parallel structure makes

modern GPUs more effective than general-purpose CPUs for algorithms where

processing of large blocks of data is done in parallel.

In our study, we compared the performance between serial and parallel

computation on four texture features, including average local variance (ALV), angular

second moment (ASM), entropy, and inverse difference moment (IDM). The later

three features (ASM, Entropy and IDM) are features obtained using Gray Level

Coocurrence Matrices (GLCM). We parallelized the computation by using multiple

sliding windows on two-dimensional data concurrently. Our approach also includes,

in addition to comparing to serial implementation, measuring the parallelized

performance under different data sizes. As a result, parallel computation on

geostatistical analyses using GPU can significantly increase the performance and

efficiency. It has also demonstrated the possibility to provide solutions for specific

needs by reducing the time of computation.

ii

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Professor John Hart for agreeing to

work with this thesis project. In addition, special thanks to Dr. Eric Shaffer and

Donald Keefer for their assistance in the preparation of this manuscript. Their words

of encouragement for continually learning and growing inspired this study.

Having coming so far, my academic research progress could not be achieved

without my friends who cared me so much in my five year journey. I hereby thank to

my “family” in Urbana-Champaign, Yanshu Guo, Weikun Xiao, Dongjin Wang,

Zekun Liu, Simeng Yin, Xuewei Zhang, Xi Wu, Sidi Li, Yingjie Lin, Yueming Zhao.

In addition, I would also like to thank my friends all over the world who encouraged

my so much, Chen Zhao, Fangqing Xie, Wei Du, Chenlong Zhang, Yifeng Yuan, Chen

Wang, Luchun Li, Luyao Ma, Cong Sun, George Petukhov, Xinke Zhang, Yi Song,

Yifei Li and Landi Zhang. All of you have helped me through the process of earning

my Master’s Degree.

Special thanks to my aunt Yanni Shan, hope you rest in peace in heaven. You

raised me up and made me strong. Last but not least, I sincerely thank to my family in

Beijing, Wei Shan, Ping Yang, Rong He, Jinying Wei, Changqi Shan, Haipeng Zhang,

Hongbin Zhao and Jiansong He.

iii

TABLE OF CONTENTS

Chapter 1: Introduction………………………………………….1

1.1 GPU and CPU………………………………………...1

1.2 CUDA……………………………………………...1

1.3 Figures and Tables……………………………………...3

Chapter 2: Methods…………………………………………….5

2.1 Average Local Variance…………………………………..5

2.2 Texture Features From Gray Level Co-occurrence Matrices…………7

2.3 Figures……………………………………………..12

Chapter 3: Software Implementation…………………………...…...13

 3.1 Data……………………………………………… 13

3.2 ALV Implementation…………………………………...13

 3.3 ASM, Entropy and IDM Implementation……………………..14

Chapter 4: Results……………………………………………. 16

 4.1 ALV…………………………………………….... 16

 4.2 ASM………………………………………………16

 4.3 Entropy…………………………………………….16

 4.4 IDM……………………………………………… 17

 4.5 Figures and Tables……………………………………. 18

Chapter 5: Discussion…………………………………………. 20

Chapter 6: Conclusion………………………………………….22

References………………………………………………….23

iv

1

CHAPTER 1: INTRODUCTION

1.1 GPU and CPU

In this study, we are interested in comparing the execution time between serial

and parallel approaches on processing geostatistical data. GPU computation has

provided a huge edge over the CPU with respect to computation speed. Hence it is

one of the most interesting areas of research in the field of modern industrial research

and development [1]. The comparison of the CPU and GPU is shown in Figure 1 and

Table 1. As we can see, the CPU is more efficient for handling different tasks of the

Operating systems such as job scheduling and memory management while the GPU’s

forte is the floating point operations.

1.2 CUDA

The evolution of GPU over the years has been towards a better floating point

performance. NVIDIA introduced its massively parallel architecture called “CUDA”

in 2006-2007. The CUDA programming model provides a straightforward means of

describing inherently parallel computations, and NVIDIA's Tesla GPU architecture

delivers high computational throughput on massively parallel problems [2].

CUDA allows the programming of GPUs for parallel computation without any

graphics knowledge [3][4]. A GPU is presented as a set of multiprocessors, each with

its own stream processors and shared memory (user-managed cache). The stream

processors are fully capable of executing integer and single precision floating point

arithmetic, with additional cores used for double-precision. All multiprocessors have

access to global device memory, which is not cached by the hardware. Memory

latency is hidden by executing thousands of threads concurrently. Register and shared

2

memory resources are partitioned among the currently executing threads. There are

two major differences between CPU and GPU threads. First, context switching

between threads is essentially free. State does not have to be stored/restored because

GPU resources are partitioned. Second, while CPUs execute efficiently when the

number of threads per core is small (often one or two), GPUs achieve high

performance when thousands of threads execute concurrently. CUDA arranges threads

into threadblocks. All threads in a threadblock can read and write any shared memory

location assigned to that threadblock. Consequently, threads within a threadblock can

communicate via shared memory, or use shared memory as a user-managed cache

since shared memory latency is two orders of magnitude lower than that of global

memory. A barrier primitive is provided so that all threads in a threadblock can

synchronize their execution [5].

A CUDA program consists of one or more phases that are executed on either the

host (CPU) or a device such as a GPU. As shown in Figure 2 in host code no data

parallelism phase is carried out. In some cases little data parallelism is carried out in

host code. In device code phases which has high amount of data parallelism are

carried out. A CUDA program is a unified source code encompassing both, host and

device code.

The GPU we used is a NVIDIA Tesla c2050 (CUDA capability 2.0), which

contains 448 CUDA processors with 384-bit bus width and 3072 Mb memory size.

3

1.3 Figures and Tables

Figure 1: Core comparison between CPU and GPU

Figure 2: Flow of execution of GPU [6]

4

CPU GPU

Fast caches for data reuse Many math units

Good branching granularity Fast access to onboard memory

Run a program on different

processes/threads

Run a program on different

fragment/vertex

Good performance on single thread

execution

High throughput on parallel execution

Good for task parallelism Good for data parallelism

High performance on sequential codes High performance on parallel codes

Table 1: Comparison between CPU and GPU

5

CHAPTER 2: METHODS

Texture and spatial pattern are important attributes of images and can be used as

features in image classification. Texture metrics measure properties such as

roughness/smoothness and regularity. In order to be clinically useful, a texture metric

should be robust to changes in image acquisition and digitization. It should be a

multi-scale technique and be scale invariant (i.e., independent of magnification). If it

is not invariant to transformations in gray scale (i.e., independent of image brightness

and contrast), images will need to be histogram equalized prior to computation of the

metric. Computational tractability would be an advantage. Other properties may also

be desirable. For instance, for computed tomography and MRI images it would be an

advantage if the texture metrics were reasonably independent of slice thickness,

system noise and reconstruction and post-processing algorithms [7]. The best texture

metric for a particular application will combine specific advantages with sufficient

sensitivity to be able to discriminate between normal and pathological conditions.

2.1 Average Local Variance

2.1.1 Concepts of ALV

There are a variety of different approaches to characterizing and quantifying

stationary texture. They can be divided into two broad categories: either the pattern is

analyzed in the spatial domain, or it is analyzed in the spatial frequency domain. Both

approaches are complementary and give essentially the same information, although

one or the other may be more convenient for a particular type of pattern. A basic tool

in the spatial domain is to compute the local variance of pixel values in a square

window of given size (say, 𝑁 × 𝑁) around each pixel. Variance measures

6

distribution about the mean. Low values of local variance indicate smoothness, high

values characterize roughness. The process is repeated at different scales to deliver a

multiscale measure of texture.

In 1987 the concept of local variance analysis was introduced by Woodcock and

Strahler [8]. Graphs of local variance in images as a function of spatial resolution

were used to measure spatial structure in images. Construction of these graphs was

achieved by degrading the image under study to successively more coarse spatial

resolutions, while measuring the local variance value at each of these resolutions.

2.1.2 Methods of ALV

 In the average local variance (ALV) method that we used, the local variance of

each pixel value is computed for an 𝑁 × 𝑁 (for example 2 × 2) window and the

average of all local variances is taken for the image. We can repeat the process at

different levels of spatial resolution by successively aggregating neighboring pixels;

there is no need to change the window size. The window operates either (i) by moving

over the image by one pixel at a time (“moving” window) or (ii) by slicing the image

into the size of the window (“jumping” window) to cover the whole image. A plot of

ALV values against spatial resolution constitutes the ALV plot [7]. In previous study,

researchers have shown that the plots using jumping windows are more jagged than

those using overlapping moving windows, as expected. The results using moving

window sampling are essentially low-passfiltered (by a moving average filter)

compared to the results using jumping window sampling [7].

 This paper reports on work done to explore the speedup for calculating the ALV

in parallel using CUDA comparing to serial implementation based on characteristics

of the various forms of the ALV function. The work was conducted using

synthetically generated image data with the use of 2 by 2 “moving” window.

7

2.1.3 Calculation of ALV

 For a specific window of size 𝑁 × 𝑁, we calculate the sum of all elements in

the current window and obtain the mean value of this window:

 𝑀𝑒𝑎𝑛𝑖𝑗 =
∑ ∑ 𝑎𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁2
 ,

where 𝑎𝑖𝑗 is the element at row 𝑖, column 𝑗.

We calculate local variance of a specific window of size N x N using the

formula:

 𝐿𝑜𝑐𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑗 =
∑ ∑ 𝑎𝑖𝑗−𝑀𝑒𝑎𝑛𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁2
 .

Finally, we obtain the ALV value by calculating the average value of all local

variances:

 𝐴𝐿𝑉 =
∑ ∑ 𝐿𝑜𝑐𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑗

𝑛𝐶𝑜𝑙𝑠−𝑁+1
𝑗=0

𝑛𝑅𝑜𝑤𝑠−𝑁+1
𝑖=0

(𝑛𝑅𝑜𝑤𝑠−𝑁+1)×(𝑛𝐶𝑜𝑙𝑠−𝑁+1)
 ,

where 𝑛𝑅𝑜𝑤𝑠 is the total number of rows and 𝑛𝐶𝑜𝑙𝑠 is the total number of columns.

2.2 Texture Features From Gray Level Co-occurrence Matrices

2.2.1 Concepts of ASM, Entropy and IDM

 Angular second moment (ASM) is a measure of local homogeneity and the

opposite of entropy [9]. High values of ASM occur when the pixels in the current

8

window are very similar. Low values of ASM occur when the pixels are different

from each other. ASM is also called Uniformity and its square root is also used as a

texture measure which is called Energy. But for this study, we will stay focused on

ASM itself.

 Entropy is a quantity which is used to describe the “randomness” of pixels in the

current window, i.e. the amount of information which must be coded for by a

compression algorithm. Low entropy window, such as those containing a lot of black

pixels, have very little contrast and large runs of pixels with the same or similar

values. For example, an image that is perfectly flat will have entropy of zero.

Consequently, it can be compressed to a relatively small size. On the other hand, high

entropy windows such as an image of heavily cratered areas on the moon have a great

deal of contrast from one pixel to the next and consequently cannot be compressed as

much as low entropy windows.

 Inverse difference moment (IDM) is a measure of local uniformity present in the

current window. It can be seen as the inverse of contrast feature which is a measure of

local variation [9]. IDM is high for windows having low contrast and low for

windows with high contrast.

2.2.2 Methods for ASM, Entropy and IDM

 We used the Gray Level Co-occurrence Matrices (GLCM) to calculate the three

texture features [10]. A GLCM is a matrix where the number of rows and columns is

equal to the number of gray levels, 𝐺 , in the image. The matrix element

𝑃(𝑖, 𝑗 | ∆𝑥, ∆𝑦) is the relative frequency with which two pixels, separated by a pixel

distance (∆𝑥, ∆𝑦), occur within a given neighborhood, one with intensity 𝑖 and the

other with intensity 𝑗 . One may also say that the matrix element 𝑃(𝑖, 𝑗 | 𝑑, 𝜃)

contains the second order statistical probability values for changes between gray

9

levels 𝑖 and 𝑗 at a particular displacement distance 𝑑 and at a particular angle 𝜃.

 Given an 𝑀 × 𝑁 neighborhood of an input image containing G gray levels

from 0 to G − 1, let 𝑓(𝑚, 𝑛) be the intensity at sample m, line n of the neighborhood.

Then

 𝑃(𝑖, 𝑗 | ∆𝑥, ∆𝑦) = 𝑊 𝑄(𝑖, 𝑗 | ∆𝑥, ∆𝑦)

where

 𝑊 =
1

(𝑀 − ∆𝑥)(𝑁 − ∆𝑦)

 𝑄(𝑖, 𝑗 | ∆𝑥, ∆𝑦) = ∑ ∑ 𝐴𝑀−∆x
𝑚=1

𝑁−∆y
𝑛=1

and

𝐴 = 1 𝑖𝑓 𝑓(𝑚, 𝑛) = 𝑖 𝑎𝑛𝑑 𝑓(𝑚 + ∆𝑥, 𝑛 + ∆𝑦) = 𝑗,

𝐴 = 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

Using a large number of intensity levels G implies storing a lot of temporary data,

i.e. a 𝐺 × 𝐺 matrix for each combination of (∆𝑥, ∆𝑦) or (𝑑, 𝜃). One sometimes

has the paradoxical situation that the matrices from which the texture features are

extracted are more voluminous than the original images from which they are derived.

It is also clear that because of their large dimensionality, the GLCM’s are very

sensitive to the size of the texture samples on which they are estimated. Thus, the

number of gray levels is often reduced.

In our study, quantization into 4 gray levels is sufficient for discrimination or

degmentation of textures. Even if we can increase the number of gray levels, but since

few levels is equivalent to viewing the image on a coarse scale, whereas more levels

give an image with more detail. However, the performance of a given GLCM-based

feature, as well as the ranking of the features, may depend on the number of gray

levels used. So in order to effectively test on large data sets, we minimize the

10

computation using 4 gray levels with a window size of 3 × 3.

Because a 𝐺 × 𝐺 matrix (or histogram array) must be accumulated for each

sub-image/window and for each separation parameter set (𝑑, 𝜃) , it is usually

computationally necessary to restrict the (𝑑, 𝜃)-values to be tested to a limited

number of values. Figure 3 shows the geometrical relationship of GLCM

measurement made for four angles 𝜃 = 0o
, 45

o
, 90

o
 and 135

o
 [10]. Figure 4 illustrates

the construction of the four directional spatial co-occurrence matrices for a 3 × 3

window from an example image which is normalized to four gray levels. Pairs of

adjacent pixels are considered in orientation, and the normalized value of those pixels

forms the index for incrementing an entry of the co-occurrence matrix. The final

matrix for a given point location in the image contains the number of times each

possible pair of pixel values occurred in the selected orientation [11].

2.2.3 Calculation of ASM, Entropy and IDM

 We use the following notation for the calculation:

𝑃 is the spatial co-occurrence matrix.

𝑅 is the frequency normalization constant for the selected orientation.

 𝐴𝑆𝑀 = ∑ ∑ (
𝑃(𝑖,𝑗)

𝑅
)2

𝑗𝑖

ASM is a measure of homogeneity of an image. A homogeneous scene will contain

only a few gray levels, giving a GLCM with only a few but relatively high values of

𝑃(𝑖, 𝑗). Thus, the sum of squares will be high [10][11][12].

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ (
𝑃(𝑖,𝑗)

𝑅
)𝑙𝑜𝑔(

𝑃(𝑖,𝑗)

𝑅
)𝑗𝑖

11

Inhomogeneous scenes have low first order entropy, while a homogeneous scene has a

high entropy [10][11].

 𝐼𝐷𝑀 = ∑ ∑
1

1+(𝑖−𝑗)2
(

𝑃(𝑖,𝑗)

𝑅
)𝑗𝑖

IDM is also influenced by the homogeneity of the image. Because of the weighting

factor (1 + (𝑖 − 𝑗)2)−1 IDM will get small contributions from inhomogeneous areas.

The result is a low IDM value for inhomogeneous images, and a relatively higher

value for homogeneous images [10][11][12].

12

2.3 Figures

Figure 3: the geometrical relationship of GLCM measurement made for

 four angles 𝜽 = 0o
, 45

o
, 90

o
 and 135

o
 [10]

(a) [
1 2 3
1 1 2
0 1 2

] (b) [

#(0,0) #(0,1) #(0,2) #(0,3)

#(1,0) #(1,1) #(1,2) #(1,3)

#(2,0) #(2,1) #(2,2) #(2,3)

#(3,0) #(3,1) #(3,2) #(3,3)

]

(c) Horizontal 𝜽 = 0o
,

 [

0 1 0 0
1 2 3 0
0 3 0 1
0 0 1 0

](d) Vertical 𝜽 = 90
o
, [

0 1 0 0
1 4 1 0
0 1 2 1
0 0 1 0

]

(e) Left Diagonal 𝜽 = 135
o
, [

0 0 0 0
0 4 1 0
0 1 2 0
0 0 0 0

](f) right diagonal 𝜽 = 45
o
, [

0 1 0 0
1 0 2 1
0 2 0 0
0 1 0 0

]

Figure 4: (a) 3 by 3 window with gray tone range 0 to 3; (b) general form of any

spatial co-occurrence matrix for window with gray tone range 0 to 3. #(𝒊, 𝒋)

represents number of times gray tones 𝒊 and 𝒋 were neighbors. (c) to (f) spatial

co-occurrence matrices derived for four angular orientations.

13

CHAPTER 3: SOFTWARE IMPLEMENTATION

3.1 Data

 Our study focuses on comparing the computation performance between serial

and parallel geostatistical data analysis. In order to compare the computational cost,

we generated data for arbitrary number of rows and columns in two dimensions. For

example we generated 512 by 512, 1024 by 1024 and up to 8192 by 8192 floating

point numbers in plain text. Although the program can execute any arbitrary size of

data, we are more interested in the relation between number of computations and the

time it takes.

 For the three features using gray level co-occurrence matrix (GLCM),

quantization into 4 gray levels is sufficient for discrimination of textures, namely 0, 1,

2 and 3. Even if we can increase the number of gray levels, but since few levels is

equivalent to viewing the image on a coarse scale, whereas more levels give an image

with more detail. However, the performance of a given GLCM-based feature, as well

as the ranking of the features, may depend on the number of gray levels used. So in

order to effectively test on large data sets, we minimize the computation using 4 gray

levels.

3.2 ALV Implementation

 In the program of serial implementation for average local variance (ALV), the

local variance of each pixel value is computed for an N x N window. By adding up the

local variances of all windows, we can obtain the average local variance by dividing

the sum by the number of windows. Although the program works on arbitrary window

size, we use 2 × 2 window size [7].

14

 Because we are using a relatively small window size (2 × 2) , the time

complexity of this program is proportional to the size of data, since it has two

for-loops for the two dimensional data. Suppose we have R rows and C columns of

data, it takes 𝑂(4𝑅𝐶) time. If it runs on 𝑁 × 𝑁 window size, it will take

𝑂(𝑁2𝑅𝐶) time because we use sliding window instead of jumping window.

 In the parallel implementation, we parallelized the sliding windows using

multiple threads. We parallelized the implementation by the row of the two

dimensional data. We copied the two dimensional data on host side to one

dimensional data on the device side. We set the block size to be 512 and we

parallelized those sliding windows. We can easily locate the data for each window by

using the block index and thread index.

3.3 ASM, Entropy and IDM Implementation

For angular second moment (ASM), Entropy and inverse difference moment

(IDM), we construct the gray level co-occurrence matrix (GLCM) to obtain each of

the features. In order to effectively test on large data sets, we minimize the

computation using 4 gray levels. We increased the window size from 2 × 2 to

3 × 3. Because it is a more practical implementation of using GLCM by having the

co-occurrence matrices in four directions [12].

 In serial implementation, the program slides the window frame by frame in two

dimensional loops. Then in each 3 × 3 window, it calculates the co-occurrence

matrices in all four directions by scanning all the 9 pixels and updates the matrices on

each pixel. Finally, it calculates the ASM, entropy or IDM based on the co-occurrence

matrix. For entropy, since the result of taking the logarithm on zero is infinity, we

skipped the zero values when taking the logarithm.

15

 Parallel implementation is similar to what we have done in ALV section. We

parallelized the sliding windows using multiple threads. We parallelized the

implementation by the row of the two dimensional data. We copied the two

dimensional data on host side to one dimensional data on the device side. We set the

block size to be 512 and we parallelized those sliding windows. We can easily locate

the data for each window by using the block index and thread index.

16

CHAPTER 4: RESULTS

4.1 ALV

In Table 2, we recorded the average execution time of serial implementation of

ALV and parallel implementation of ALV. We took the average from 10 independent

executions. For 512 by 512 data, we can get 3.41 times of speedup on average. For

8192 by 8192 data, we can obtain 16.06 times of speedup on average.

4.2 ASM

In Table 3, we recorded the average execution time of serial implementation of

ASM and parallel implementation of ASM. We took the average from 10 independent

executions. For 512 by 512 data, we can get 2.29 times of speedup on average. For

8192 by 8192 data, we can obtain 5.48 times of speedup on average. The speedups are

lower comparing to ALV, because in ALV calculation, we only took the average value

of all local variances. But in ASM, Entropy and IDM, we need to write the result of

each window into file. Writing to file takes more time and result in heavier overhead.

4.3 Entropy

In Table 4, we recorded the average execution time of serial implementation of

Entropy and parallel implementation of Entropy. Again, we took the average from 10

independent executions. For 512 by 512 data, we can get 2.05 times of speedup on

average. For 8192 by 8192 data, we can obtain 4.73 times of speedup on average. The

computation of Entropy is slightly more complicated comparing to ASM and IDM, so

it took more time for both serial and parallel execution.

17

4.4 IDM

In Table 5, we recorded the average execution time of serial implementation of

Entropy and parallel implementation of Entropy. We took the average from 10

independent executions. For 512 by 512 data, we can get 2.44 times of speedup on

average. For 8192 by 8192 data, we can obtain 6.86 times of speedup on average.

IDM computation is slightly less complicated comparing to ASM and Entropy. So it

took less time for both serial and parallel execution.

The ALV execution has higher speedup values because it only computes the

average of all local variances and does not write each local variance into file. For

ASM, Entropy and IDM, we are more interested in the value of each window so we

need to write the result of each window into file. Writing to file takes more time and

result in heavier overhead for the parallel implementation.

For the ALV computation, the speedup curve is shown in Figure 5. For the three

GLCM based computations, the speedup curves are shown in Figure 6. We can see for

each of the curves, the slope decreases as the data size becomes larger as all threads

are fully loaded.

18

4.5 Figures and Tables

Data Size Execution Time

(Serial)

Execution Time

(Parallel)

SpeedUp

512 x 512 0.638s 0.187s 3.41

1024 x 1024 2.531s 0.302s 8.38

2048 x 2048 10.157s 0.789s 12.87

4096 x 4096 40.609s 2.651s 15.32

8192 x 8192 161.225s 10.040s 16.06

Table 2: ALV Execution time comparison and speedup

Data Size Execution Time

(Serial)

Execution Time

(Parallel)

SpeedUp

512 x 512 0.710s 0.305s 2.29

1024 x 1024 2.817s 0.664s 4.24

2048 x 2048 11.283s 2.220s 5.08

4096 x 4096 45.561s 8.505s 5.35

8192 x 8192 184.242s 33.641s 5.48

Table 3: ASM Execution time comparison and speedup

Data Size Execution Time

(Serial)

Execution Time

(Parallel)

SpeedUp

512 x 512 0.725s 0.353s 2.05

1024 x 1024 2.828s 0.848s 3.33

2048 x 2048 11.993s 2.913s 4.12

4096 x 4096 49.853s 11.128s 4.48

8192 x 8192 208.716s 44.126s 4.73

Table 4: Entropy Execution time comparison and speedup

Data Size Execution Time

(Serial)

Execution Time

(Parallel)

SpeedUp

512 x 512 0.708s 0.290s 2.44

1024 x 1024 2.815s 0.551s 5.11

2048 x 2048 11.279s 1.801s 6.26

4096 x 4096 45.471s 6.773s 6.71

8192 x 8192 183.751s 26.781s 6.86

Table 5: IDM Execution time comparison and speedup

19

Figure 5: ALV Speedup on different data sizes

Figure 6: ASM, Entropy, IDM Speedup on different data sizes

0

2

4

6

8

10

12

14

16

18

512 x 512 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192

ALV SpeedUp

ALV

0

1

2

3

4

5

6

7

8

512 x 512 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192

GLCM SpeedUp

ASM

Entropy

IDM

20

CHAPTER 5: DISCUSSION

There are a total of (𝑅 − 𝑁 + 1) × (𝐶 − 𝑁 + 1) sliding windows in our

implementations. If we switch to jumping windows, there will be
𝑅𝐶

𝑁2
 windows in

total. But it is found by geostatistical researchers that the plots using jumping

windows are more jagged than those using sliding (overlapping) windows [7].

We copied the two dimensional data on host side to one dimensional data on the

device side. The access of data will not be consecutive any more. Because

𝑔𝑟𝑖𝑑[𝑥][𝑦] became 𝑔𝑟𝑖𝑑[𝑥 × 𝑛𝑐𝑜𝑙𝑠 + 𝑦]. The reason why we chose 2 x 2 window

size is that the number of windows is proportional to the size of data. But the number

of computations is exponential to the size of window, because we used sliding

window instead of jumping window.

In order to work with large size of data, we read in the data for the current

window. But this would delay the execution time because if we use sliding window,

we have to read in the data multiple times for the overlapping windows. The reason

why we did not achieve as much speedup for angular second moment (ASM), Entropy

and inverse difference moment (IDM) is because of the heavy overhead by

constructing the gray level co-occurrence matrices (GLCM).

For the three features using gray level co-occurrence matrix (GLCM),

quantization into 4 gray levels is sufficient for discrimination of textures. Even if we

can increase the number of gray levels, but since few levels is equivalent to viewing

the image on a coarse scale, whereas more levels give an image with more detail. For

the 4 gray levels implementation, we have a 4 by 4 matrix for each of the four

directions. Suppose we have 16 gray levels to give more detailed expression of the

image, we would need a 16 by 16 matrix for each direction. Having more directions

would also give more detail, but in this case, parallelizing the implementation in

21

different directions would be a topic for future studies.

The reason why geostatistical computation could take advantage of parallel

computing using CUDA is that, there is no need to write the whole program using

CUDA technology. If writing a large application, complete with a user interface, and

many other functions, and then most of the code will be written in C++ or any other

languages. When we really need to do large mathematical computations, we can

simply write kernel call to call CUDA functions we have written. In this way instead

of writing complete program you can use GPU for some portion of the code where we

need huge mathematical computations.

In order to obtain a statistically reliable estimate of the joint probability

distribution, the matrix must contain a reasonably large average occupancy level. This

can be achieved either by restricting the number of gray value quantization levels or

by using a relatively large window. The former approach results in a loss of texture

description accuracy in the analysis of low amplitude textures, while the latter causes

uncertainty and error if the texture changes over the large window [10]. In our study

on the GLCM based features, we only have 4 gray levels and 3 by 3 window sizes.

Future studies could take consideration of more complex features and increase the

number of gray levels and window sizes.

22

CHAPTER 6: CONCLUSION

 The highly parallel structure makes modern GPUs more effective than

general-purpose CPUs for algorithms where processing of large blocks of data is done

in parallel. As a result, parallel computation on geostatistical analyses using GPU can

significantly increase the performance and efficiency. Our study has also

demonstrated the possibility to provide solutions for specific needs by reducing the

time of computation.

23

REFERENCES

[1] Ghorpade, J. 2012. GPGPU Processing In CUDA Architecture. Advanced

Computing: An International Journal (ACIJ), Vol.3, No.1.

[2] Garland, M. Parallel Computing Experiences with CUDA. IEEE Micro 28, 4,

13-27.

[3] Lindholm, E., Nickolls, J., Oberman, S., Montrym, J. 2008. NVIDIA Tesla: A

Unified Graphics and Computing Architecture. IEEE Micro 28, 2, Mar. 2008, 39-55.

[4] Nickolls, J., Buck, I., Garland, M., and Skadron, K. 2008. Scalable Parallel

Programming with CUDA. Queue 6, 2, Mar. 2008, 40-53.

[5] Micikevicius, P. 3D Finite Difference Computation on GPUs using CUDA.

Proceeding. GPGPU-2 Proceedings of 2nd Workshop on General Purpose Processing

on Graphics Processing Units, 79-84.

[6] CUDASW++: optimizing Smith-Waterman sequence database searches for

CUDA-enabled graphics processing units.

(http://www.biomedcentral.com/1756-0500/2/73).

[7] Manikka-Baduge, D.C. and Dougherty, G. 2009. Texture analysis using lacunarity

and average local variance. Proc. SPIE 7259, Medical Imaging: Image Processing,

725953 (March 27, 2009).

[8] Bocher, P.K., McCloy, K.R. 2003. Analysis of spatial structure in images using

local variance. Geoinformation for European-wide Integration, Benes. 185-186.

[9] Haralick, R.M., K. Shanmugam, and I. Dinstein 1973. Textural features for image

classification. IEEE Transactions on Systems, Man, and Cybernetics,

SMC-3(6):610-621.

[10] Albregtsen, F. 1995 Statistical texture measures computed from gray level

coocurrence matrices. University of Oslo.

[11] Peddle, D.R. and Franklin, S.E. 1992. Image texture processing and data

integration for surface pattern discrimination. Photogrammetric Engineering and

Remote Sensing 57,

[12] Hall-Beyer, M. (2007). The GLCM Tutorial Home Page (Grey-Level

Co-occurrence Matrix texture measurements). University of Calgary, Canada

http://www.biomedcentral.com/1756-0500/2/73

