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ABSTRACT 

 

 

Data analysis is receiving considerable attention with the design of new graphics 

processing units (GPUs). Our study focuses on geostatistical data analysis, which is 

currently applied in diverse disciplines such as meteorology, oceanography, geography, 

forestry, environmental control, and agriculture. While geostatistical analysis 

algorithms are applied in varied branches, those analyses can be accelerated by 

applying parallel computing using modern GPUs. The highly parallel structure makes 

modern GPUs more effective than general-purpose CPUs for algorithms where 

processing of large blocks of data is done in parallel.  

 

In our study, we compared the performance between serial and parallel 

computation on four texture features, including average local variance (ALV), angular 

second moment (ASM), entropy, and inverse difference moment (IDM). The later 

three features (ASM, Entropy and IDM) are features obtained using Gray Level 

Coocurrence Matrices (GLCM). We parallelized the computation by using multiple 

sliding windows on two-dimensional data concurrently. Our approach also includes, 

in addition to comparing to serial implementation, measuring the parallelized 

performance under different data sizes. As a result, parallel computation on 

geostatistical analyses using GPU can significantly increase the performance and 

efficiency. It has also demonstrated the possibility to provide solutions for specific 

needs by reducing the time of computation. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 GPU and CPU 

 

In this study, we are interested in comparing the execution time between serial 

and parallel approaches on processing geostatistical data. GPU computation has 

provided a huge edge over the CPU with respect to computation speed. Hence it is 

one of the most interesting areas of research in the field of modern industrial research 

and development [1]. The comparison of the CPU and GPU is shown in Figure 1 and 

Table 1. As we can see, the CPU is more efficient for handling different tasks of the 

Operating systems such as job scheduling and memory management while the GPU’s 

forte is the floating point operations.  

 

 

1.2 CUDA 

 

The evolution of GPU over the years has been towards a better floating point 

performance. NVIDIA introduced its massively parallel architecture called “CUDA” 

in 2006-2007. The CUDA programming model provides a straightforward means of 

describing inherently parallel computations, and NVIDIA's Tesla GPU architecture 

delivers high computational throughput on massively parallel problems [2].   

 

CUDA allows the programming of GPUs for parallel computation without any 

graphics knowledge [3][4]. A GPU is presented as a set of multiprocessors, each with 

its own stream processors and shared memory (user-managed cache). The stream 

processors are fully capable of executing integer and single precision floating point 

arithmetic, with additional cores used for double-precision. All multiprocessors have 

access to global device memory, which is not cached by the hardware. Memory 

latency is hidden by executing thousands of threads concurrently. Register and shared 
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memory resources are partitioned among the currently executing threads. There are 

two major differences between CPU and GPU threads. First, context switching 

between threads is essentially free. State does not have to be stored/restored because 

GPU resources are partitioned. Second, while CPUs execute efficiently when the 

number of threads per core is small (often one or two), GPUs achieve high 

performance when thousands of threads execute concurrently. CUDA arranges threads 

into threadblocks. All threads in a threadblock can read and write any shared memory 

location assigned to that threadblock. Consequently, threads within a threadblock can 

communicate via shared memory, or use shared memory as a user-managed cache 

since shared memory latency is two orders of magnitude lower than that of global 

memory. A barrier primitive is provided so that all threads in a threadblock can 

synchronize their execution [5].  

 

A CUDA program consists of one or more phases that are executed on either the 

host (CPU) or a device such as a GPU. As shown in Figure 2 in host code no data 

parallelism phase is carried out. In some cases little data parallelism is carried out in 

host code. In device code phases which has high amount of data parallelism are 

carried out. A CUDA program is a unified source code encompassing both, host and 

device code.  

 

The GPU we used is a NVIDIA Tesla c2050 (CUDA capability 2.0), which 

contains 448 CUDA processors with 384-bit bus width and 3072 Mb memory size. 
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1.3 Figures and Tables 

 

 

Figure 1: Core comparison between CPU and GPU 

 

 

 

 

Figure 2: Flow of execution of GPU [6] 
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CPU GPU 

Fast caches for data reuse Many math units 

Good branching granularity Fast access to onboard memory 

Run a program on different 

processes/threads 

Run a program on different 

fragment/vertex 

Good performance on single thread 

execution 

High throughput on parallel execution 

Good for task parallelism Good for data parallelism 

High performance on sequential codes High performance on parallel codes 

Table 1: Comparison between CPU and GPU 
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CHAPTER 2: METHODS 

 

 

Texture and spatial pattern are important attributes of images and can be used as 

features in image classification. Texture metrics measure properties such as 

roughness/smoothness and regularity. In order to be clinically useful, a texture metric 

should be robust to changes in image acquisition and digitization. It should be a 

multi-scale technique and be scale invariant (i.e., independent of magnification). If it 

is not invariant to transformations in gray scale (i.e., independent of image brightness 

and contrast), images will need to be histogram equalized prior to computation of the 

metric. Computational tractability would be an advantage. Other properties may also 

be desirable. For instance, for computed tomography and MRI images it would be an 

advantage if the texture metrics were reasonably independent of slice thickness, 

system noise and reconstruction and post-processing algorithms [7]. The best texture 

metric for a particular application will combine specific advantages with sufficient 

sensitivity to be able to discriminate between normal and pathological conditions. 

 

 

2.1 Average Local Variance 

 

 

2.1.1 Concepts of ALV 

 

There are a variety of different approaches to characterizing and quantifying 

stationary texture. They can be divided into two broad categories: either the pattern is 

analyzed in the spatial domain, or it is analyzed in the spatial frequency domain. Both 

approaches are complementary and give essentially the same information, although 

one or the other may be more convenient for a particular type of pattern. A basic tool 

in the spatial domain is to compute the local variance of pixel values in a square 

window of given size (say, 𝑁 ×  𝑁 ) around each pixel. Variance measures 
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distribution about the mean. Low values of local variance indicate smoothness, high 

values characterize roughness. The process is repeated at different scales to deliver a 

multiscale measure of texture.  

 

In 1987 the concept of local variance analysis was introduced by Woodcock and 

Strahler [8]. Graphs of local variance in images as a function of spatial resolution 

were used to measure spatial structure in images. Construction of these graphs was 

achieved by degrading the image under study to successively more coarse spatial 

resolutions, while measuring the local variance value at each of these resolutions.  

 

 

2.1.2 Methods of ALV 

 

    In the average local variance (ALV) method that we used, the local variance of 

each pixel value is computed for an 𝑁 ×  𝑁 (for example 2 ×  2) window and the 

average of all local variances is taken for the image. We can repeat the process at 

different levels of spatial resolution by successively aggregating neighboring pixels; 

there is no need to change the window size. The window operates either (i) by moving 

over the image by one pixel at a time (“moving” window) or (ii) by slicing the image 

into the size of the window (“jumping” window) to cover the whole image. A plot of 

ALV values against spatial resolution constitutes the ALV plot [7]. In previous study, 

researchers have shown that the plots using jumping windows are more jagged than 

those using overlapping moving windows, as expected. The results using moving 

window sampling are essentially low-passfiltered (by a moving average filter) 

compared to the results using jumping window sampling [7].  

 

    This paper reports on work done to explore the speedup for calculating the ALV 

in parallel using CUDA comparing to serial implementation based on characteristics 

of the various forms of the ALV function. The work was conducted using 

synthetically generated image data with the use of 2 by 2 “moving” window.  
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2.1.3 Calculation of ALV 

 

    For a specific window of size 𝑁 ×  𝑁, we calculate the sum of all elements in 

the current window and obtain the mean value of this window:  

 

            𝑀𝑒𝑎𝑛𝑖𝑗 = 
∑ ∑ 𝑎𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁2
 ,  

 

where 𝑎𝑖𝑗 is the element at row 𝑖, column 𝑗. 

 

We calculate local variance of a specific window of size N x N using the 

formula: 

 

            𝐿𝑜𝑐𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑗 = 
∑ ∑ 𝑎𝑖𝑗−𝑀𝑒𝑎𝑛𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁2
 . 

 

Finally, we obtain the ALV value by calculating the average value of all local 

variances: 

 

                     𝐴𝐿𝑉 = 
∑ ∑ 𝐿𝑜𝑐𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑗

𝑛𝐶𝑜𝑙𝑠−𝑁+1
𝑗=0

𝑛𝑅𝑜𝑤𝑠−𝑁+1
𝑖=0

(𝑛𝑅𝑜𝑤𝑠−𝑁+1)×(𝑛𝐶𝑜𝑙𝑠−𝑁+1)
 ,  

 

where 𝑛𝑅𝑜𝑤𝑠 is the total number of rows and 𝑛𝐶𝑜𝑙𝑠 is the total number of columns. 

 

 

2.2 Texture Features From Gray Level Co-occurrence Matrices 

 

2.2.1 Concepts of ASM, Entropy and IDM 

 

    Angular second moment (ASM) is a measure of local homogeneity and the 

opposite of entropy [9]. High values of ASM occur when the pixels in the current 
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window are very similar. Low values of ASM occur when the pixels are different 

from each other. ASM is also called Uniformity and its square root is also used as a 

texture measure which is called Energy. But for this study, we will stay focused on 

ASM itself. 

 

    Entropy is a quantity which is used to describe the “randomness” of pixels in the 

current window, i.e. the amount of information which must be coded for by a 

compression algorithm. Low entropy window, such as those containing a lot of black 

pixels, have very little contrast and large runs of pixels with the same or similar 

values. For example, an image that is perfectly flat will have entropy of zero. 

Consequently, it can be compressed to a relatively small size. On the other hand, high 

entropy windows such as an image of heavily cratered areas on the moon have a great 

deal of contrast from one pixel to the next and consequently cannot be compressed as 

much as low entropy windows.  

 

    Inverse difference moment (IDM) is a measure of local uniformity present in the 

current window. It can be seen as the inverse of contrast feature which is a measure of 

local variation [9]. IDM is high for windows having low contrast and low for 

windows with high contrast.  

 

 

2.2.2 Methods for ASM, Entropy and IDM 

 

    We used the Gray Level Co-occurrence Matrices (GLCM) to calculate the three 

texture features [10]. A GLCM is a matrix where the number of rows and columns is 

equal to the number of gray levels, 𝐺 , in the image. The matrix element 

𝑃(𝑖, 𝑗 | ∆𝑥, ∆𝑦) is the relative frequency with which two pixels, separated by a pixel 

distance (∆𝑥, ∆𝑦), occur within a given neighborhood, one with intensity 𝑖 and the 

other with intensity 𝑗 . One may also say that the matrix element 𝑃(𝑖, 𝑗 | 𝑑, 𝜃) 

contains the second order statistical probability values for changes between gray 
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levels 𝑖 and 𝑗 at a particular displacement distance 𝑑 and at a particular angle 𝜃.  

 

    Given an 𝑀 ×  𝑁 neighborhood of an input image containing G gray levels 

from 0 to G − 1, let 𝑓(𝑚, 𝑛) be the intensity at sample m, line n of the neighborhood. 

Then 

          𝑃(𝑖, 𝑗 | ∆𝑥, ∆𝑦)  =  𝑊 𝑄(𝑖, 𝑗 | ∆𝑥, ∆𝑦)                      

 

where 

          𝑊 =  
1

(𝑀 − ∆𝑥)(𝑁 − ∆𝑦)
   

 

          𝑄(𝑖, 𝑗 | ∆𝑥, ∆𝑦)  = ∑ ∑ 𝐴𝑀−∆x
𝑚=1

𝑁−∆y
𝑛=1  

and  

𝐴 =  1 𝑖𝑓 𝑓(𝑚, 𝑛)  =  𝑖 𝑎𝑛𝑑 𝑓(𝑚 +  ∆𝑥, 𝑛 +  ∆𝑦)  =  𝑗,  

𝐴 =  0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 

Using a large number of intensity levels G implies storing a lot of temporary data, 

i.e. a 𝐺 ×  𝐺 matrix for each combination of (∆𝑥, ∆𝑦) or (𝑑, 𝜃). One sometimes 

has the paradoxical situation that the matrices from which the texture features are 

extracted are more voluminous than the original images from which they are derived. 

It is also clear that because of their large dimensionality, the GLCM’s are very 

sensitive to the size of the texture samples on which they are estimated. Thus, the 

number of gray levels is often reduced. 

 

In our study, quantization into 4 gray levels is sufficient for discrimination or 

degmentation of textures. Even if we can increase the number of gray levels, but since 

few levels is equivalent to viewing the image on a coarse scale, whereas more levels 

give an image with more detail. However, the performance of a given GLCM-based 

feature, as well as the ranking of the features, may depend on the number of gray 

levels used. So in order to effectively test on large data sets, we minimize the 
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computation using 4 gray levels with a window size of 3 ×  3.  

 

Because a 𝐺 ×  𝐺 matrix (or histogram array) must be accumulated for each 

sub-image/window and for each separation parameter set (𝑑, 𝜃) , it is usually 

computationally necessary to restrict the (𝑑, 𝜃)-values to be tested to a limited 

number of values. Figure 3 shows the geometrical relationship of GLCM 

measurement made for four angles 𝜃 = 0o
, 45

o
, 90

o
 and 135

o
 [10]. Figure 4 illustrates 

the construction of the four directional spatial co-occurrence matrices for a 3 ×  3 

window from an example image which is normalized to four gray levels. Pairs of 

adjacent pixels are considered in orientation, and the normalized value of those pixels 

forms the index for incrementing an entry of the co-occurrence matrix. The final 

matrix for a given point location in the image contains the number of times each 

possible pair of pixel values occurred in the selected orientation [11].  

 

 

2.2.3 Calculation of ASM, Entropy and IDM 

 

    We use the following notation for the calculation: 

 

𝑃 is the spatial co-occurrence matrix. 

𝑅 is the frequency normalization constant for the selected orientation. 

 

             𝐴𝑆𝑀 = ∑ ∑ (
𝑃(𝑖,𝑗)

𝑅
)2

𝑗𝑖  

 

ASM is a measure of homogeneity of an image. A homogeneous scene will contain 

only a few gray levels, giving a GLCM with only a few but relatively high values of 

𝑃(𝑖, 𝑗). Thus, the sum of squares will be high [10][11][12]. 

 

              𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ (
𝑃(𝑖,𝑗)

𝑅
)𝑙𝑜𝑔(

𝑃(𝑖,𝑗)

𝑅
)𝑗𝑖  
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Inhomogeneous scenes have low first order entropy, while a homogeneous scene has a 

high entropy [10][11]. 

 

              𝐼𝐷𝑀 = ∑ ∑
1

1+(𝑖−𝑗)2
(

𝑃(𝑖,𝑗)

𝑅
)𝑗𝑖  

 

IDM is also influenced by the homogeneity of the image. Because of the weighting 

factor (1 + (𝑖 − 𝑗)2)−1 IDM will get small contributions from inhomogeneous areas. 

The result is a low IDM value for inhomogeneous images, and a relatively higher 

value for homogeneous images [10][11][12]. 
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2.3 Figures 

 

 

Figure 3: the geometrical relationship of GLCM measurement made for 

 four angles 𝜽 = 0o
, 45

o
, 90

o
 and 135

o
 [10] 

 

 

 

 

(a) [
1 2 3
1 1 2
0 1 2

]                      (b) [

#(0,0) #(0,1) #(0,2) #(0,3)

#(1,0) #(1,1) #(1,2) #(1,3)

#(2,0) #(2,1) #(2,2) #(2,3)

#(3,0) #(3,1) #(3,2) #(3,3)

] 

(c) Horizontal 𝜽 = 0o
,   

 [

0 1 0 0
1 2 3 0
0 3 0 1
0 0 1 0

](d) Vertical 𝜽 = 90
o
,     [

0 1 0 0
1 4 1 0
0 1 2 1
0 0 1 0

] 

(e) Left Diagonal 𝜽 = 135
o
, [

0 0 0 0
0 4 1 0
0 1 2 0
0 0 0 0

](f) right diagonal 𝜽 = 45
o
, [

0 1 0 0
1 0 2 1
0 2 0 0
0 1 0 0

] 

Figure 4: (a) 3 by 3 window with gray tone range 0 to 3; (b) general form of any 

spatial co-occurrence matrix for window with gray tone range 0 to 3. #(𝒊, 𝒋) 

represents number of times gray tones 𝒊 and 𝒋 were neighbors. (c) to (f) spatial 

co-occurrence matrices derived for four angular orientations. 
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CHAPTER 3: SOFTWARE IMPLEMENTATION 

 

 

3.1 Data 

 

    Our study focuses on comparing the computation performance between serial 

and parallel geostatistical data analysis. In order to compare the computational cost, 

we generated data for arbitrary number of rows and columns in two dimensions. For 

example we generated 512 by 512, 1024 by 1024 and up to 8192 by 8192 floating 

point numbers in plain text. Although the program can execute any arbitrary size of 

data, we are more interested in the relation between number of computations and the 

time it takes.  

 

    For the three features using gray level co-occurrence matrix (GLCM), 

quantization into 4 gray levels is sufficient for discrimination of textures, namely 0, 1, 

2 and 3. Even if we can increase the number of gray levels, but since few levels is 

equivalent to viewing the image on a coarse scale, whereas more levels give an image 

with more detail. However, the performance of a given GLCM-based feature, as well 

as the ranking of the features, may depend on the number of gray levels used. So in 

order to effectively test on large data sets, we minimize the computation using 4 gray 

levels. 

 

 

3.2 ALV Implementation 

 

    In the program of serial implementation for average local variance (ALV), the 

local variance of each pixel value is computed for an N x N window. By adding up the 

local variances of all windows, we can obtain the average local variance by dividing 

the sum by the number of windows. Although the program works on arbitrary window 

size, we use 2 ×  2 window size [7].  
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    Because we are using a relatively small window size (2 ×  2) , the time 

complexity of this program is proportional to the size of data, since it has two 

for-loops for the two dimensional data. Suppose we have R rows and C columns of 

data, it takes 𝑂(4𝑅𝐶)  time. If it runs on 𝑁 ×  𝑁  window size, it will take 

𝑂(𝑁2𝑅𝐶) time because we use sliding window instead of jumping window.  

 

    In the parallel implementation, we parallelized the sliding windows using 

multiple threads. We parallelized the implementation by the row of the two 

dimensional data. We copied the two dimensional data on host side to one 

dimensional data on the device side. We set the block size to be 512 and we 

parallelized those sliding windows. We can easily locate the data for each window by 

using the block index and thread index.  

 

 

3.3 ASM, Entropy and IDM Implementation 

 

For angular second moment (ASM), Entropy and inverse difference moment 

(IDM), we construct the gray level co-occurrence matrix (GLCM) to obtain each of 

the features. In order to effectively test on large data sets, we minimize the 

computation using 4 gray levels. We increased the window size from 2 × 2 to 

3 ×  3. Because it is a more practical implementation of using GLCM by having the 

co-occurrence matrices in four directions [12].  

 

    In serial implementation, the program slides the window frame by frame in two 

dimensional loops. Then in each 3 ×  3 window, it calculates the co-occurrence 

matrices in all four directions by scanning all the 9 pixels and updates the matrices on 

each pixel. Finally, it calculates the ASM, entropy or IDM based on the co-occurrence 

matrix. For entropy, since the result of taking the logarithm on zero is infinity, we 

skipped the zero values when taking the logarithm.  

 



15 
 

    Parallel implementation is similar to what we have done in ALV section. We 

parallelized the sliding windows using multiple threads. We parallelized the 

implementation by the row of the two dimensional data. We copied the two 

dimensional data on host side to one dimensional data on the device side. We set the 

block size to be 512 and we parallelized those sliding windows. We can easily locate 

the data for each window by using the block index and thread index.  
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CHAPTER 4: RESULTS 

 

 

4.1 ALV 

 

In Table 2, we recorded the average execution time of serial implementation of 

ALV and parallel implementation of ALV. We took the average from 10 independent 

executions. For 512 by 512 data, we can get 3.41 times of speedup on average. For 

8192 by 8192 data, we can obtain 16.06 times of speedup on average.  

 

 

4.2 ASM 

 

In Table 3, we recorded the average execution time of serial implementation of 

ASM and parallel implementation of ASM. We took the average from 10 independent 

executions. For 512 by 512 data, we can get 2.29 times of speedup on average. For 

8192 by 8192 data, we can obtain 5.48 times of speedup on average. The speedups are 

lower comparing to ALV, because in ALV calculation, we only took the average value 

of all local variances. But in ASM, Entropy and IDM, we need to write the result of 

each window into file. Writing to file takes more time and result in heavier overhead. 

 

 

4.3 Entropy 

 

In Table 4, we recorded the average execution time of serial implementation of 

Entropy and parallel implementation of Entropy. Again, we took the average from 10 

independent executions. For 512 by 512 data, we can get 2.05 times of speedup on 

average. For 8192 by 8192 data, we can obtain 4.73 times of speedup on average. The 

computation of Entropy is slightly more complicated comparing to ASM and IDM, so 

it took more time for both serial and parallel execution. 
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4.4 IDM 

 

In Table 5, we recorded the average execution time of serial implementation of 

Entropy and parallel implementation of Entropy. We took the average from 10 

independent executions. For 512 by 512 data, we can get 2.44 times of speedup on 

average. For 8192 by 8192 data, we can obtain 6.86 times of speedup on average. 

IDM computation is slightly less complicated comparing to ASM and Entropy. So it 

took less time for both serial and parallel execution. 

 

The ALV execution has higher speedup values because it only computes the 

average of all local variances and does not write each local variance into file. For 

ASM, Entropy and IDM, we are more interested in the value of each window so we 

need to write the result of each window into file. Writing to file takes more time and 

result in heavier overhead for the parallel implementation.  

 

For the ALV computation, the speedup curve is shown in Figure 5. For the three 

GLCM based computations, the speedup curves are shown in Figure 6. We can see for 

each of the curves, the slope decreases as the data size becomes larger as all threads 

are fully loaded.  
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4.5 Figures and Tables 

 

Data Size Execution Time 

(Serial) 

Execution Time 

(Parallel) 

SpeedUp 

512 x 512 0.638s 0.187s 3.41 

1024 x 1024 2.531s 0.302s 8.38 

2048 x 2048 10.157s 0.789s 12.87 

4096 x 4096 40.609s 2.651s 15.32 

8192 x 8192 161.225s 10.040s 16.06 

Table 2: ALV Execution time comparison and speedup 

 

  

 

Data Size Execution Time 

(Serial) 

Execution Time 

(Parallel) 

SpeedUp 

512 x 512 0.710s 0.305s 2.29 

1024 x 1024 2.817s 0.664s 4.24 

2048 x 2048 11.283s 2.220s 5.08 

4096 x 4096 45.561s 8.505s 5.35 

8192 x 8192 184.242s 33.641s 5.48 

Table 3: ASM Execution time comparison and speedup 

 

 

Data Size Execution Time 

(Serial) 

Execution Time 

(Parallel) 

SpeedUp 

512 x 512 0.725s 0.353s 2.05 

1024 x 1024 2.828s 0.848s 3.33 

2048 x 2048 11.993s 2.913s 4.12 

4096 x 4096 49.853s 11.128s 4.48 

8192 x 8192 208.716s 44.126s 4.73 

Table 4: Entropy Execution time comparison and speedup 

 

 

   

Data Size Execution Time 

(Serial) 

Execution Time 

(Parallel) 

SpeedUp 

512 x 512 0.708s 0.290s 2.44 

1024 x 1024 2.815s 0.551s 5.11 

2048 x 2048 11.279s 1.801s 6.26 

4096 x 4096 45.471s 6.773s 6.71 

8192 x 8192 183.751s 26.781s 6.86 

Table 5: IDM Execution time comparison and speedup 
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Figure 5: ALV Speedup on different data sizes 

 

   

 

 

 

Figure 6: ASM, Entropy, IDM Speedup on different data sizes 
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CHAPTER 5: DISCUSSION 

 

 

There are a total of (𝑅 − 𝑁 + 1)  × (𝐶 − 𝑁 + 1)  sliding windows in our 

implementations. If we switch to jumping windows, there will be 
𝑅𝐶

𝑁2
 windows in 

total. But it is found by geostatistical researchers that the plots using jumping 

windows are more jagged than those using sliding (overlapping) windows [7].  

 

We copied the two dimensional data on host side to one dimensional data on the 

device side. The access of data will not be consecutive any more. Because 

𝑔𝑟𝑖𝑑[𝑥][𝑦] became 𝑔𝑟𝑖𝑑[𝑥 ×  𝑛𝑐𝑜𝑙𝑠 +  𝑦]. The reason why we chose 2 x 2 window 

size is that the number of windows is proportional to the size of data. But the number 

of computations is exponential to the size of window, because we used sliding 

window instead of jumping window.  

 

In order to work with large size of data, we read in the data for the current 

window. But this would delay the execution time because if we use sliding window, 

we have to read in the data multiple times for the overlapping windows. The reason 

why we did not achieve as much speedup for angular second moment (ASM), Entropy 

and inverse difference moment (IDM) is because of the heavy overhead by 

constructing the gray level co-occurrence matrices (GLCM).  

 

For the three features using gray level co-occurrence matrix (GLCM), 

quantization into 4 gray levels is sufficient for discrimination of textures. Even if we 

can increase the number of gray levels, but since few levels is equivalent to viewing 

the image on a coarse scale, whereas more levels give an image with more detail. For 

the 4 gray levels implementation, we have a 4 by 4 matrix for each of the four 

directions. Suppose we have 16 gray levels to give more detailed expression of the 

image, we would need a 16 by 16 matrix for each direction. Having more directions 

would also give more detail, but in this case, parallelizing the implementation in 
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different directions would be a topic for future studies.  

 

The reason why geostatistical computation could take advantage of parallel 

computing using CUDA is that, there is no need to write the whole program using 

CUDA technology. If writing a large application, complete with a user interface, and 

many other functions, and then most of the code will be written in C++ or any other 

languages. When we really need to do large mathematical computations, we can 

simply write kernel call to call CUDA functions we have written. In this way instead 

of writing complete program you can use GPU for some portion of the code where we 

need huge mathematical computations.  

 

In order to obtain a statistically reliable estimate of the joint probability 

distribution, the matrix must contain a reasonably large average occupancy level. This 

can be achieved either by restricting the number of gray value quantization levels or 

by using a relatively large window. The former approach results in a loss of texture 

description accuracy in the analysis of low amplitude textures, while the latter causes 

uncertainty and error if the texture changes over the large window [10]. In our study 

on the GLCM based features, we only have 4 gray levels and 3 by 3 window sizes. 

Future studies could take consideration of more complex features and increase the 

number of gray levels and window sizes.  
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CHAPTER 6: CONCLUSION 

 

 

  The highly parallel structure makes modern GPUs more effective than 

general-purpose CPUs for algorithms where processing of large blocks of data is done 

in parallel. As a result, parallel computation on geostatistical analyses using GPU can 

significantly increase the performance and efficiency. Our study has also 

demonstrated the possibility to provide solutions for specific needs by reducing the 

time of computation. 
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