
© 2013 Deepanshu Aggarwal

INCOHERENT SCATTER MODELING OF JICAMARCA RADAR SPECTRA

BY

DEEPANSHU AGGARWAL

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Erhan Kudeki

ABSTRACT

This thesis describes a project on the modeling of spectral characteristics of electron

density irregularities of the topside equatorial ionosphere probed by the Jicamarca In-

coherent Scatter Radar (ISR) located near Lima, Peru. The topside equatorial iono-

sphere is a multi-ion plasma and the spectrum of its electron density irregularities can

be modeled by extending the single-ion spectral model developed by Kudeki and Milla

(2011) for a collisional equatorial F-region ionosphere. This single-ion model of Kudeki

and Milla captures the essential physics of the equatorial F-region ionosphere where ran-

dom displacements of the dominant oxygen ions are characterized as a Brownian-motion

process, while electron displacements are non-Brownian and described in terms of a nu-

merical library (constructed using a Monte-Carlo approach) of single-electron ACFs (auto-

correlation functions) parametrized by five state parameters of the F-region consisting of

ionospheric electron density, geomagnetic flux density, electron and ion temperatures, and

the deviation angle of the radar boresight direction from the plane perpendicular to the

geomagnetic field, the so-called magnetic aspect angle. While the extension of the model

to the multi-ion case is straightforward, the discrete nature of the numerical electron ACF

library defined over a grid of input parameters precludes the evaluation of the extended

model with arbitrary and continuously varying input parameters. To overcome this dif-

ficulty a machine learning (ML) based interpolation procedure is developed. The thesis

describes the ML algorithm, the associated training and testing steps, and finally presents

a suite of examples of multi-ion IS spectra obtained with the extended model.

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Erhan Kudeki for his assistance in the preparation

of this thesis and his guidance throughout my research. Many thanks go to graduate

student Pablo Reyes for his technical support during my research. I also thank all the

professors who taught me various courses and helped me develop a solid background in the

field of electrical engineering. In addition, I would also like to thank my family for their

constant support and motivation which made it possible for me to pursue higher education

in the United States. Finally, I would like to thank all my friends at the University of

Illinois for believing in me and supporting me at every step.

iii

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION . 1
1.1 Overview of Past Ionospheric Experiments 2
1.2 Outline . 3

CHAPTER 2 INCOHERENT SCATTER THEORY 5
2.1 Thomson Scattering and IS Signal Spectrum 5
2.2 Incoherent Scatter Spectral Model: Ionospheric Applications 10
2.3 Single and Multiple Ion(s) ACFs Plots . 14

CHAPTER 3 MACHINE LEARNING APPLICATION 22
3.1 Machine Learning: Introduction . 22
3.2 Machine Learning: Regression Algorithm . 23

3.2.1 Regression Data Set . 23
3.2.2 Description of KNN Algorithm . 24

3.3 Performance Analysis of Weighting Functions 25
3.4 Application of Machine Learning on Radar Data 27

3.4.1 Tools Used . 27
3.4.2 Application of KNN . 28
3.4.3 Regressor Object and Run-Time . 30

CHAPTER 4 RESULTS, CONCLUSIONS AND FUTURE WORK . . . 32
4.1 Multi-Ion ISR Spectra and ACF . 32
4.2 Conclusions . 37
4.3 Future Work . 37

APPENDIX A SOURCE CODE: INCOHERENT SCATTERING 38

APPENDIX B SOURCE CODE: REGRESSION TOOL 47

REFERENCES . 63

iv

CHAPTER 1

INTRODUCTION

This thesis describes a project on the modeling of spectral characteristics of electron

density irregularities of the topside equatorial ionosphere probed by the Jicamarca Inco-

herent Scatter Radar (ISR) located near Lima, Peru. The topside equatorial ionosphere is

a multi-ion plasma and the spectrum of its electron density irregularities can be modeled

by extending the single-ion spectral model developed by [1] and [2] for a collisional equato-

rial F-region ionosphere. This single-ion model of [1] and [2] captures the essential physics

of the equatorial F-region ionosphere where random displacements of the dominant oxy-

gen ions are characterized as a Brownian-motion process, while electron displacements are

non-Brownian and described in terms of a numerical library (constructed using a Monte-

Carlo approach) of single-electron ACFs (auto-correlation functions) parametrized by five

state parameters of the F-region consisting of ionospheric electron density, geomagnetic

flux density, electron and ion temperatures, and the deviation angle of the radar boresight

direction from the plane perpendicular to the geomagnetic field, the so-called magnetic

aspect angle. While the extension of the model to the multi-ion case is straightforward,

the discrete nature of the numerical electron ACF library defined over a grid of the input

parameters precludes the evaluation of the extended model with arbitrary and continu-

ously varying input parameters. To overcome this difficulty a machine learning (ML) based

interpolation procedure is developed. The thesis describes the ML algorithm, the associ-

ated training and testing steps, and finally presents a suite of examples of the multi-ion IS

spectra obtained with the extended model.

1

1.1 Overview of Past Ionospheric Experiments

The ionosphere is an ionized layer of the upper atmosphere extending from about 60 km

altitude to beyond 600 km. Studies of this layer using radar scattering techniques are mo-

tivated by its impact on radio and satellite communications utilizing trans-ionospheric

paths and links. Solar radiation provides the energy input for the ionization of major

neutral species of the atmosphere to generate the ionosphere. The process creates elec-

trical conductivity in the ionized atmosphere which affects the propagation of the radio

waves used for communications and radar scatter applications. Thomson scattering refers

to re-radiation of electromagnetic waves by oscillating electrons, and the term “incoherent

scatter” applies to Thomson scattering of electromagnetic radar pulses from collections of

ionospheric free electrons in thermal equilibrium. Thomson scattered signal power can be

shown to be related to the variance of the spatial Fourier transform of the electron density

fluctuations at the Bragg wave vector having a magnitude twice the wavenumber of the

radar carrier and a direction coinciding with the propagation direction of the backscat-

tered electromagnetic wave. The scattered power spectrum depends on electron and ion

densities, temperatures, the drift velocity, and the collision frequencies between plasma

particles. Radar measurements of the backscattered signal spectra provide a means of

estimating these parameters and studying the physics of the ionosphere.

The incoherent scatter radar located at the Jicamarca Radio Observatory near Lima,

Peru, is extensively used for the studies of the equatorial ionosphere. The radar is capable

of obtaining high-resolution and high-accuracy F-region plasma drift measurements by

pointing its antenna perpendicular to Earth’s magnetic field B. Such measurements can

be made on “a pulse-to-pulse basis” because the bandwidth of the ISR spectrum narrows

considerably at small magnetic aspect angles [2], which is the offset angle of the radar beam

direction from the plane perpendicular to the geomagnetic field. Incoherent scatter spectral

models for collisional and magnetized F-region plasmas at all magnetic aspect angles were

developed based on a general framework described in [1] and [2]. The model in [2] is

derived in terms of single particle ACFs of the electrons and ions comprising the collisional

and magnetized F-region plasma. These ACFs correspond to the characteristic functions

2

〈ej
~k·∆~r〉 of random particle (electron, ion) displacements ∆~r. While ion displacements in

the F-region plasma are described by a Brownian motion process leading to an analytic

ACF expression, electron displacements are a Gauss-Markov process and were described

in [2] in terms of a numerical ACF library constructed by Monte-Carlo simulations. While

the numerical library was originally constructed for a single-ion plasma, it can also be used

in the multi-ion case in combination with Brownian ion ACF functions. ISR spectra are

constructed from a linear combination of one-sided Fourier transforms of the ACFs known

as Gordeyev integrals. The discretized ACFs in the numerical electron library can be

viewed as vectors or tuples Y = (y1, y2, · · · , yd) defined over a time-delay variable τ , each

tuple being a mapping of an ionospheric state-parameter tuple X ≡ (Ne, B, Te, Ti, α),

where Ne is the electron density, B is the magnetic flux density, Te and Ti are electron

and ion temperatures, and α is the magnetic aspect angle. In the library provided by [2]

tuples Y exist only for tuples X defined over a discrete grid.

1.2 Outline

The thesis is organized into four chapters.

Chapter 2 covers the theory of incoherent scatter process, the experimental setup of

Jicamarca incoherent scatter measurements, and a summary of research of Kudeki and

Milla reported in [1] and [2]. The chapter starts with a description of Thomson scattering

and how that is utilized in ionospheric research. Next, it provides a short description of

incoherent scatter spectral models for ionospheric F-region plasmas with O+ ions. Finally,

a generalization of the single-ion spectral model to the multi-ion case, suitable for topside

F-region studies, is described — this amounts to including the effect of hydrogen and

helium ions in the formulation. Sample ISR spectra for the topside plasma are presented

corresponding to states Xi available in the discretized electron ACF library of [1] and [2].

Chapter 3 describes a machine learning (ML) approach to interpolate the electron ACFs

Yi corresponding to discrete grid states Xi, i ∈ [1, n] available in the numerical library

of [2] to arbitrary Y (X) for X in a five-dimensional space spanned by the available Xi.

3

The approach includes training and testing steps and the use of a trained data object to

obtain Y (X) interpolants. An ML strategy known as k-nearest neighbor (KNN) regression

was utilized in Y (X) computations. KNN was implemented using the Python ML tool-kit

“scikit-learn” [3]. The chapter ends with examples of ISR spectra computed using the

interpolated electron ACF’s Y (X) obtained with the KNN method.

Chapter 4 provides the results, conclusion and the suggestions for future research that

builds on the work presented in this thesis.

4

CHAPTER 2

INCOHERENT SCATTER THEORY

The main content for this chapter is extracted from the papers by Kudeki and Milla

[1] and Milla and Kudeki [2]. It starts with a brief description of Thomson-scatter-based

incoherent scatter radar (ISR) technique. Next, a general framework of incoherent scatter

spectral theories expressed in terms of the characteristics functions of charged particle

displacements in thermal equilibrium is presented. Ionospheric applications of the general

framework are covered with a focus on single-ion O+ plasmas dominant at F-region heights.

Finally, the description of how the framework can be used to develop multiple-ion spectral

models by modifying the single-ion case is presented.

2.1 Thomson Scattering and IS Signal Spectrum

Ionospheric radar scattering from a collection of free electrons can be modeled by using

the Thomson-scattering result of a single free electron. When a free electron is exposed to

a time-harmonic TEM wave, it accelerates and radiates a scattered TEM wave [1]. This

oscillating electron acts effectively as a Hertzian dipole. Its radiation field can be obtained

from the result for Hertzian dipole as

Er(r) = θ̂ sin θ
re
r
Eie

−jkr, (2.1)

where re =
e2

4πǫomc2 ≈ 2.81×10−15 m is electron radius, θ̂ is the unit vector in the direction

of increasing θ, and Ei is the incident field phasor.

5

Next, consider the case when a radar antenna is radiating from the origin and the

target free electron is located at some radar range r. Taking the origin as phase reference

and using the radiation field (2.1), the backscattered field phasor from the electron back

to the origin is expressed as

Es = −
re
r
Eie

−jkor = −
re
r
Eo(r)e

−j2kor, (2.2)

where ko = ωo/c is the incident wave number at the radar wave frequency ωo and Eo(r) is

a slowly varying incident field amplitude illuminating the electron with Ei = Eo(r)e
−jkor

[1].

Figure 2.1 – (a) Radar scattering volume defined by the antenna (b) Geometry of a
subvolume ∆V of the scattering volume

Utilizing the single electron model developed above, a model for ionospheric radar

scattering from a collection of free electrons is built next. The backscattered field phasor

from a subvolume ∆V as depicted in Figure 2.1 (b) is calculated by superposing the field

contributions of the form (2.2) from each electron in ∆V . Thus, the backscattered signal

6

from the entire ∆V is

Es = −

No∆V
∑

p=1

re
rp
Eope

−j2korp
≈ −

re
r
Eo

No∆V
∑

p=1

e−jk·rp , (2.3)

where rp is the radar range of each electron, Eop is the incident field amplitude at each

electron location. The right side expression in (2.3) is the paraxial approximation valid for

r > 4∆V 2/3/λo (far-field condition) for an antenna of size ∆V 1/3 and operating wavelength

λ = λo/2 [1]. Also, k = −2kor̂ denotes the Bragg vector and No is the average density of

the electrons in the subvolume [1].

Next, considering rp(t) as the trajectories of the individual electrons, the backscattered

signal (2.3) can be written as

Es(t) = −
re
r
Ei

No∆V
∑

p=1

e−jk·rp(t− r
c
) ≡ −

re
r
Eine(k, t−

r

c
), (2.4)

where r
c is the propagation delay from the center of ∆V to the radar antenna and ne(k, t) =

∑No∆V
p=1 e−jk·rp(t) is the electron density denoting the 3-D spatial Fourier transform of

ne(r, t) [1]. Here, Equation (2.4) denotes that the scattered field amplitude from ∆V

varying in time is a scaled and delayed replica of the 3-D spatial Fourier transform of

the electron density. This will help to find the relationship between the electron density

variations on the region probed by the radar and the radar signal statistics [1].

The density function ne(r, t) and its Fourier transform ne(k, t) should be modeled

as random processes since individual particle trajectories rp(t) are unpredictable. The

radar signals will then depend on the normalized variance 1
∆V

〈

|ne(k, t)|
2
〉

and normalized

autocorrelation function (ACF) 1
∆V

〈n∗
e(k, t)ne(k, t+ τ)〉. Also, normalized ACF can be

Fourier transformed to obtain the space-time or k − ω spectrum of ne(r, t) as

〈

|ne(k, ω)|
2
〉

≡

ˆ

dτe−jωτ 1

∆V
×

〈

n∗
e(k, t−

r

c
)ne(k, t−

r

c
+ τ)

〉

. (2.5)

7

Next, following [1], the k − ω spectrum (2.5) can be expanded as

〈

|ne(k, ω)|
2
〉

≡

ˆ

dτe−jωτ 1

∆V
×

No∆V
∑

p=1

No∆V
∑

q=1

〈

e−jk·rp(t− r
c
)e−jk·rq(t− r

c
+τ)

〉

. (2.6)

Here, assuming that the individual electrons in ∆V follow independent random trajectories,

so that Equation (2.6) is zero for q = p, leads to

〈

|ne(k, ω)|
2
〉

≡ No

ˆ

dτe−jωτ
〈

ejk·∆r
〉

≡
〈

|nte(k, ω)|
2
〉

, (2.7)

where ∆r ≡ rp(t−
r
c + τ)− rp(t−

r
c) is the random displacement vector of the electrons.

Next, the description of collective interaction effects on ionospheric backscatter is pre-

sented. Ionospheric plasmas consist of charged particles with random motions of thermal

origin [1]. Including the space-charge imbalances that perturb the trajectories of the elec-

tron motion, the electron density in the volume ∆V can be written as

ne(r, t) = nte(r, t) + δne(r, t), (2.8)

and similarly the positive ion density within ∆V can be written as

ni(r, t) = nti(r, t) + δni(r, t), (2.9)

where δne(r, t) and δni(r, t) account for the density charges caused by macroscopic forces,

also called collective interactions.

Next, it is shown that the spectrum of electron density fluctuations is a weighted

superposition of electron density spectrum and ion density spectrum in the absence of

the collective interactions. Following [1], implementing the electrical circuit model for

ionospheric plasma in terms of ne and ni as well as their associated currents, and applying

Kirchhoff’s current law to the circuit, the electron density fluctuation amplitude can be

found using

ne(k, ω) =
(jωǫo + σi)nte(k, ω) + σenti(k, ω)

jωǫo + σe + σi
. (2.10)

8

By squaring and averaging the electron density fluctuation (2.10), the electron density

spectrum can be written as

〈

|ne(k, ω)|
2
〉

=
|jωǫo + σi|

2
〈

|nte(k, ω)|
2
〉

|jωǫo + σe + σi|
2 +

|σe|
2
〈

|nti(k, ω)|
2
〉

|jωǫo + σe + σi|
2 . (2.11)

The electron density spectrum (2.11) is a sum of electron and ion-line components propor-

tional to
〈

|nte(k, ω)|
2
〉

and
〈

|nti(k, ω)|
2
〉

respectively. It is a very important result which

is used in [1] and [2] to generate spectrum plots for single ion O+. The electron density

spectrum (2.11) can be modified to obtain multi-ion case which is covered in Section 2.3.

To use the electron density spectrum (2.11) for calculations, the conductivity expression

σe,i(k, ω) has to be known. This expression can be derived by analyzing the links between

σe,i(k, ω) and ejk·∆r statistics of the plasma particles.

As mentioned in [1], there are three relationships that play crucial roles in forming the

density spectra
〈

|nte,ti(k, ω)|
2
〉

. The relationships are:

• Nyquist noise theorem

• Fluctuation-dissipation theorem

• Kramers-Kronig

The Nyquist theorem describes the thermal noise and its spectrum. The fluctuation-

dissipation theorem generalizes the Nyquist noise theorem to all dissipative systems in

terms of their equivalent circuit models [1]. Specifically it requires that ionospheric current

fluctuations must have two-sided spectra

ω2

k2
e2

〈

|nte,i(k, ω)|
2
〉

= 2KTe,iRe {σe,i(k, ω)} (2.12)

per unit bandwidth and per species. The two-sided spectra (2.12) show that by knowing
〈

|nte,i(k, ω)|
2
〉

, i.e.
〈

ejk·∆re,i

〉

using the k − ω spectrum (2.7), the real part of conduc-

tivities Re {σe,i(k, ω)} can be calculated. Finally, Kramers-Kronig relations show that the

9

imaginary part of conductivities Im {σe,i(k, ω)} can be calculated by taking the Hilbert

transform of Re {σe,i(k, ω)}. Hence, once
〈

|nte,i(k, ω)|
2
〉

and Re {σe,i(k, ω)} are known,

σe,i(k, ω) can be calculated.

So, to compute the electron density fluctuation spectrum, it is sufficient to find the char-

acteristic function
〈

ejk·∆re,i

〉

of particle displacement ∆re,i in the absence of collective

interaction. From now on, these functions will be called single-particle ACFs (autocorre-

lation functions) as ejk·re represent backscattered radar signal from an electron.

The characteristic function of a particle s (e or i) can be used to define an expression

called the Gordeyev integral:

Js(ω) =

ˆ ∞

0
dτe−jωτ

〈

ejk·∆rs

〉

, (2.13)

and following [1], we have

〈

|nts(k, ω)|
2
〉

No
= 2Re

{
ˆ ∞

0
dτe−jωτ

〈

ejk·∆rs

〉

}

= 2Re {Js(ωs)} (2.14)

σs(k, ω)

jωǫo
=

1− jωsJs(ωs)

k2h2s
, (2.15)

where ωs is a Doppler-shifted frequency in the radar frame of species s, hs ≡
√

ǫoKTs/Noe2

is the Debye length. The electron density spectrum expression (2.11) together with (2.13)

- (2.15) constitutes the general framework of ISR spectral models. The Gordeyev integral

J(ω) mentioned above is calculated by numerical integration. Specifically, the technique

of chirp-z transform can be used here with the ACFs [1].

2.2 Incoherent Scatter Spectral Model: Ionospheric

Applications

The ionospheric applications of the general framework developed in Section 2.1 are

presented in this section. The single particle ACF
〈

ejk·∆r
〉

discussed in the previous

10

section can be computed by knowing either the pdf f(∆r) or the set of realizations of ∆r

for a given time delay τ . The f(∆r) and ∆r tell us the dynamics of the random particle

motions in the ionosphere.

There are different types of ionospheric plasmas considered in [1]. We will see how

the general framework developed in Section 2.1 can be used to develop different spectral

models. The different kinds of ionospheric plasma are

• Collisionless non-magnetized plasma

• Collisional non-magnetized plasma

• Magnetized plasma

In collisionless non-magnetized plasma, the charge particles will travel along a straight line

with random velocities (let us denote it with v) giving rise to displacement vectors τ

∆r = vτ (2.16)

over the interval τ . In a Maxwellian plasma this will lead to Gaussian distributed displace-

ments ∆r with pdf f(∆r) as

f(∆r) =
e

−∆r
2

2〈∆r
2〉

√

2π
〈

∆r2
〉

(2.17)

and a variance
〈

∆r2
〉

=
〈

v2
〉

τ2 = C2τ2, (2.18)

where C =
√

KT/m is the thermal speed of the charge carrier. This gives us the single

particle ACF as
〈

ejk·∆r
〉

=

ˆ

ejk·∆rf(∆r)d(∆r) = e−
1

2
k2C2τ2 . (2.19)

The single particle ACF (2.19) is the most basic incoherent scatter spectral model [1].

Now, moving towards a more realistic plasma model, consider a collisional non-magnetized

11

plasma. Consider two cases: one where collision frequency ν ≪ kC and the other where

ν ≫ kC. The expression (2.19) should also be valid for collisional non-magnetized plasmas

as long as ν ≪ kC. Long-range Coulomb collisions between electrons and ions are modeled

as a Brownian motion process [1], which is given by Gaussian f(∆r) with a variance

〈

∆r2
〉

=
2C2

ν2
(ντ − 1 + e−ντ). (2.20)

Based on variance (2.20), the ACF is given by

〈

ejk·∆r
〉

= e−
kC2

ν2
(ντ−1+e−ντ) (2.21)

for ν ≪ kC and
〈

ejk·∆r
〉

= e−
kC2

ν
τ (2.22)

for ν ≫ kC. In case of ν ≪ kC, the average particle moves a distance of many wavelengths

in between successive collisions, whereas when ν ≫ kC, the average particle moves across

only a small fraction of a wavelength between successive collisions.

Binary collisions of charge carriers with atoms and molecules can be modeled as a

Poisson process. As discussed in [1], the collisional spectra will exhibit minor differences

between binary and Coulomb collisions except in the case when ν ≫ kC and ν ≪ kC.

12

Figure 2.2 – Backscattering in magnetized ionosphere

Now, following [1] introduce the effect of an ambient magnetic field ~B. Express the

Bragg wave vector as k = b̂k‖ + p̂k⊥, where b̂ and p̂ are orthogonal vectors on the k-B

plane (parallel and perpendicular to B) as shown in Figure 2.2. The single particle ACF

in this case can be expressed as

〈

ejk·∆r
〉

=
〈

ejk‖∆l × ejk⊥∆p
〉

, (2.23)

where ∆l and ∆p are particle displacements along unit vectors b̂ and p̂. Following [1], in

case of collisionless ionosphere,
〈

∆l2
〉

= C2τ2, (2.24)

〈

∆p2
〉

=
4C2

Ω2
sin2(Ωτ/2) (2.25)

and using Equations (2.24) and (2.25), the single-particle ACF for electrons and ions will

be
〈

ejk·∆r
〉

= e
− 1

2
k2
‖
C2τ2

× e−
2k2⊥C2

Ω2
sin2(Ωτ/2), (2.26)

13

where Ω = qB/m is the particle gyrofrequency.

Finally, consider the effect of Coulomb collisions in a magnetized ionosphere. The

Coulomb collision model was developed by Kudeki, Bhattacharyya and Woodman [4] using

Fokker-Planck kinetic equation that is consistent with the Brownian motion process. The

model leads to independent and Gaussian particle displacements given by

〈

∆l2
〉

=
2C2

ν2
(ντ − 1 + e−ντ) (2.27)

〈

∆p2
〉

=
2C2

ν2 +Ω2
(cos(2γ) + ντ − e−ντ cos(Ωτ − 2γ)) (2.28)

where γ = tan−1 ν/Ω. Applying these variances in Equation (2.23) assuming independent

Gaussian random variables, it follows that

〈

ejk·∆r
〉

→ exp

[

−
k2C2

Ω2 + ν2
(cos(2γ) + ντ − e−ντ cos(Ωτ − 2γ))

]

. (2.29)

2.3 Single and Multiple Ion(s) ACFs Plots

The incoherent scatter radar at Jicamarca used to study the F-region ionospheric

plasma above the equator is a 50-MHz radar system. Jicamarca plasma drift measurements

are conducted using antenna beams pointed almost perpendicularly to Earth’s magnetic

field. Theory presented [1] and [2] shows how to model the spectrum of incoherent scat-

tered radar signal detected from the collisional, magnetized, and single-ion (ionized oxygen

atoms) F-region plasma at small magnetic aspect angles. The application of the model in

the topside ionosphere containing ionized hydrogen and helium atoms requires the follow-

ing steps:

• Compute the Gordeyev integral (2.13) for electron, hydrogen, helium and oxygen.

• Replace the Gordeyev integral in [1] and [2] with a weighted sum of the oxygen,

14

helium, and hydrogen Gordeyev integrals to get the spectrum. The multi-ion ISR

spectrum can be written as

〈

|ne(k, ω)|
2

〉

=
|jωǫo +

∑

σi|
2

〈

|nte(k, ω)|
2

〉

|jωǫo + σe +
∑

σi|
2

+
|σe|

2

〈

|
∑

nti(k, ω)|
2

〉

|jωǫo + σe +
∑

σi|
2
, (2.30)

where i ∈ [1, 2, 3] is for ions oxygen, hydrogen and helium. The Gordeyev integral for

species s (electrons or ions) is a one-sided Fourier transform of the species single-particle

ACF which in turn is dependent on Coulomb collision frequencies νs/e with electrons and

νs/i with ions. The Coulomb collision of species s with species p is calculated by defining

species and plasma Debye lengths [2]

hs =

√

ǫoKTs

Nsq2s
(2.31)

and

hD =
1

√

∑

s h
−2
s

, (2.32)

and a minimum impact parameter

bmin,s/p =
qsqp

12πǫomspC2
sp

, (2.33)

where msp =
msmp

ms+mp
is a reduced mass and C2

sp = C2
s + C2

p , and logarithm of plasma

parameter

loge
(

Λs/p

)

= loge

(

hD
bmin,s/p

)

. (2.34)

With these inputs, the Coulomb collision frequency is calculated as [5]

νs/p =
Npq

2
sq

2
p loge

(

Λs/p

)

3(2π)
3

2 ǫ2omsmspC3
sp

. (2.35)

Once the collision frequencies νe/p are available, the electron friction coefficients ν‖ and

ν⊥ in the direction parallel and perpendicular to B can be calculated using Equations (49)

15

and (50) of [2], namely ν‖ = νe/O+νe/He
+νe/H and ν⊥ = ν‖+νe/e. The Coulomb collision

frequency for ionic species s is given by νs =
∑

x νs/x, where x is the set of all the elements

including electrons and species s.

Following [2], the autocorrelation function in a magnetized and collisional plasma is

calculated as
〈

ejk·∆r
〉

= e
− 1

2
k2 sin2 α

〈

∆r2
‖

〉

× e−
1

2
k2 cos2 α〈∆r2⊥〉, (2.36)

where

〈

∆r2‖

〉

=
2C2

ν2‖

(

ν‖τ − 1 + e−ν‖τ
)

(2.37)

〈

∆r2⊥
〉

=
2C2

ν2⊥ +Ω2

(

cos (2γ) + ν⊥τ − e−ν⊥τ cos (Ωτ − 2γ)
)

in terms of parameters already obtained earlier in this section, and the Gordeyev integral

(2.13) can be obtained by taking the chirp-z transform [6] of the autocorrelation function.

Figures 2.3 - 2.6 show the electron and ion Gordeyev integral plots, the overall ISR

spectrum, and the corresponding ACF for a particular ionospheric state Xi from the nu-

merical ACF library, as specified in the captions of Figures 2.7 and 2.8. Figure 2.7 shows

the (k − ω) spectrum of electron density fluctuations obtained with the ISR autocorre-

lation function according to the electron density spectrum (2.30). To calculate the ISR

autocorrelation function shown in Figure 2.8, we take the chirp-z transform [6] of the ISR

ion-line spectrum.

The numerical electron ACF library used above was created with a high sampling rate

that generated 131072 time samples for the ACF data. A comparison of electron Gordeyev

integral with a downsampling (DS) of 0, 100, 1000 and 10000 is performed. Figures 2.9

- 2.12 correspond to DS rate of 0, 100, 1000 and 10000, and show that using fewer time

samples would not affect the ACF plots up to a certain level of DS. It can be clearly

seen that with a DS of 10000, the ACF plot became sharp at the edges; i.e., it lost its

smoothness.

Given the above results, it was decided that it is useful to produce a 1:1000 downsam-

pled version of the numerical ACF library. The total size of this new library on the disk

16

is 110 MB as compared to 93 GB for the original library. The library is saved on the disk

using a Python’s module called pickle. The library can be loaded whenever needed using

the same module. This new library will be utilized in the machine learning tool presented

in Chapter 3 and 4.

Figure 2.3 – Electron Gordeyev integral (Ge, GB)

17

Figure 2.4 – Hydrogen Gordeyev integral (GH)

Figure 2.5 – Helium Gordeyev integral (G4)

18

Figure 2.6 – Oxygen Gordeyev integral (GO)

Figure 2.7 – ISR ion-line spectrum

19

Figure 2.8 – ISR ACF

Figure 2.9 – Electron Gordeyev integral with DS = 0

20

Figure 2.10 – Electron Gordeyev integral with DS = 100

Figure 2.11 – Electron Gordeyev integral with DS = 1000

Figure 2.12 – Electron Gordeyev integral with DS = 10000

21

CHAPTER 3

MACHINE LEARNING APPLICATION

In this chapter a machine learning (ML) procedure is presented to interpolate the

electron ACF Yi corresponding to discrete grid states Xi, i ∈ [1, n] available in the nu-

merical library of [2] to arbitrary Y (X) for X in a five-dimensional space spanned by the

available Xi. As mentioned in Chapter 1, tuples Y = (y1, y, · · · , yd) are defined over a

time-delay variable τ , where each tuple is a mapping of an ionospheric state-parameter

tuple X ≡ (Ne, B, Te, Ti, α). Among possible ML algorithms, one strategy, known as

k-nearest neighbor (KNN), is examined in this chapter. Using a standard procedure in the

area of ML, the algorithm is analyzed by performing training and testing steps involving

a trained data object to obtain Y (X) interpolants. KNN is implemented using Python’s

ML tool-kit “scikit-learn”. The chapter ends with examples of interpolated electron ACF’s

Y (X) obtained with the KNN method.

3.1 Machine Learning: Introduction

Machine learning (ML) is a technique of learning the underlying properties of a data set

and applying them to produce new data. There are various well-known algorithms under

ML including Linear Regression (LR), Support Vector Machines (SVM), Gaussian Classi-

fication and Regression (GC and GR), k-Nearest Neighbors Classification and Regression

(KNN). The ML algorithm utilized in this work is the KNN regression.

In section 3.2, the input data set and the KNN algorithm are described. Section 3.3

covers the performance comparison of different weighting functions, and Section 3.4 shows

22

application usage of KNN method.

3.2 Machine Learning: Regression Algorithm

As mentioned in Chapter 2, the dataset for the ML task is stored on the disk as a

new numerical library. The k-nearest neighbor (KNN) algorithm utilized in this work is

applied to this numerical library in order to perform the prediction of ACF for a new set

of ionospheric input parameters.

3.2.1 Regression Data Set

Regression data set consist of input tuple X and output tuple Y :

• Input tuple X consists of five parameters (Ne, B, Te, Ti, α) where

Ne ∈
[

1011.0, 1011.5, 1012.0, 1012.5
]

m−3 ≡ G0

B ∈ [20000, 25000, 30000] nT ≡ G1

Te ∈ [600, 800, 1000, · · · , 3000]K ≡ G2 (3.1)

Ti ∈ [800, 1000, · · · , 1600]K ≡ G3

αs ∈ [0.0, 0.001, · · · , 1.0] ◦ ≡ G4s

αl ∈ [0.5, 0.6, · · · , 90.0] ◦ ≡ G4l

where αs is for small aspect angles and αl is for large aspect angles.

• Output tuple Y consists of correction factor time-series defined by ACFn − ACFb,

where ACFn is autocorrelation function from the numerical ACF library and ACFb

is Brownian motion calculated using autocorrelation function (2.36).

23

The size of Xi and Yi vectors for the small angle sets is described by i ∈ [1, 2, 3, · · · , 22620]

and by i ∈ [1, 2, 3, · · · , 15600] for large angle sets.

3.2.2 Description of KNN Algorithm

Let

X = (x1, x2, · · · , xp) (3.2)

and

Y = (y1, y2, · · · , yd) (3.3)

denote the independent and dependent variables in KNN regression. In KNN, a weighted

average of the Y ’s of the k nearest neighbors of X is presented as an estimate of Y (X). The

weights are chosen so that nearer neighbors contribute more to the average than distant

ones. Usually, a weight function is used to specify the weights. This function depends on

the Euclidean distance of the new input X from its neighbors. A step by step description

of the KNN process to get the interpolated Y for a given X is as follows:

1. The Euclidean distances from the new input X = (x0, x1, x2, x3, x4) to its neighbors

on the grid are calculated as

d =
√

(l0 − i0) + (l1 − i1)2 + · · ·+ (l4 − i4)2, (3.4)

where ij , j ∈ [0, 1, 2, 3, 4] denote the index of the neighbors in the grid defined by

Gj vectors in (3.1) — for instance, i0 = 0 for Ne = 11.0 and i2 = 2 for Te = 1000K,

etc. — and

lj =
xj − x̃j,m−1

x̃j,m − x̃j,m−1
+ (mj − 1), (3.5)

where x̃j,m is the smallest element of vector Gj with index m such that x̃j,m ≥ xj.

Clearly, this distance definition utilized in our implementation of KNN is based on

the relative locations of the data within the discrete grid using the natural units of

24

the grid expressed in terms of grid indices. The definition is not influenced by the

physical units and scalings of the input parameters.

2. Rank the distances d calculated for all neighbors of X and select the nearest k in

terms of d.

3. The output Y corresponding to input X is obtained as the weighted average of

k-nearest neighbor outputs Yi,

Y =

∑

YiWi
∑

Wi
, (3.6)

where i ∈ [1, 2, 3, · · · , k] and Wi represent weight coefficients chosen such that they

decay rapidly with increasing distance from the new input location [7]. The weight

coefficients are defined as

Wi = f (di) , (3.7)

where i ∈ [1, 2, 3, · · · , k], di represents the Euclidean distances and f (di) is a suit-

able weight function. Section 3.3 examines the performance of f (di) = 1
di

and

f (di) = e−d2i (inverse distance and Gaussian weight function).

Python’s machine-learning library “scikit-learn” provides a module called KNeighborsRe-

gressor for implementing the KNN regression steps described above.

3.3 Performance Analysis of Weighting Functions

The KNN algorithm uses a weighting function to weigh the nearest neighbors when

calculating the weighted-average to generate Y (X). Two weighting functions, inverse

distance and Gaussian kernel, are compared in this section. The analysis is done by

separating the input data set into training and testing sets. Then the Y (X) interpolants

25

are generated for testing tuples and compared with the true Y (X) from the numerical

library. The comparison is done by calculating the percentage error (PE)

PE =

√

√

√

√

√

∑

(

Ytrue − Ypred

)2

∑

(Ytrue)
2 × 100 (3.8)

between the true and the predicted values of the ACF. This analysis is performed 10 times

after reshuffling Xi and Yi sets for each test run. Also, the testing is done with k = 16.

This is because for smaller values of k, the inverse and Gaussian weighting functions show

the same results. Table 3.1 compares these two weighting functions.

Table 3.1 – Comparison of Inverse Distance and Gaussian Kernel Weighting

Test Run Inverse Distance (PE) Gaussian Weight (PE)

1 23.7 31.5

2 39.2 41.8

3 36.2 39.2

4 28.8 29.9

5 36.9 38.9

6 26.5 28.7

7 32.6 33.4

8 29.4 31.2

9 35.8 36.6

10 28.3 29.1

Results shown in Table 3.1 indicate that inverse distance and Gaussian weightings

perform similarly, with the inverse distance giving slightly better results. We will use

inverse distance in the interpolations from here on.

26

3.4 Application of Machine Learning on Radar Data

This section describes the tools used for KNN algorithm, application of regression

analysis on the numerical library, information about regressor object and the run-time to

generate a Y (X) for a new input tuple.

3.4.1 Tools Used

The tasks of reading data from the numerical library and creating the data set for

regression analysis are done using the Python programming language. The KNN regression

algorithm is implemented using Python’s machine learning library “scikit-learn”. This

library provides a module called KNeighborsRegressor that has several input parameters

used to define a regressor object. These parameters are passed when creating the regressor

object and they govern how the module will perform. The object can be saved on the disk

and loaded back when needed. The main parameters that can be passed to the module

are: Number of nearest neighbors (n_neighbors), Weight function (weights), Algorithm

used to compute the nearest neighbors (algorithm), Power parameter for the Minkowski

metric (p). The values of these four parameters used in this work are:

• n_neighbors - Number of neighbors to use for KNN regression. Depends on the

number of dimensions D outside the model grid.

• weights - Weight function used in prediction. It takes a string uniform, distance or a

callback function. The callback function is a user-defined function which accepts an

array of distances and returns an array of the same shape containing the weights. A

callback function that returns inverse-distance weights is implemented in this work.

• algorithm - Algorithm used to compute the nearest neighbors. It takes a string

ball_tree, kd_tree, brute or auto. The string auto that is used in this work attempts

to decide the most appropriate algorithm based on the values passed to “fit” method,

that fits the model to the training data (X, Y).

27

• p - The value of 2 provides Euclidean distance metric.

3.4.2 Application of KNN

Consider the following set of input tuples:

X1 = (1011.0, 2.0× 10−5, 1000, 800, 0.0) (3.9)

X2 = (1011.1, 2.0× 10−5, 1000, 800, 0.0)

X3 = (1011.2, 2.0× 10−5, 1000, 800, 0.0)

X4 = (1011.3, 2.0× 10−5, 1000, 800, 0.0)

X5 = (1011.4, 2.0× 10−5, 1000, 800, 0.0)

X6 = (1011.5, 2.0× 10−5, 1000, 800, 0.0)

Here, X1 and X6 exist in the numerical library, but the ACFs for X2, X3, X4, X5 will

be generated by adding the KNN interpolated correction factor (as described in Section

3.2.2) to the exact Brownian motion ACF. In these tuples, only the first dimension Ne has

an off-grid value (varying from 1011.1 to 1011.4) and therefore D = 1. We used the KNN

algorithm with k = 2D = 2. The expected result is that ACFs corresponding to X2, X3,

X4, X5 should be bracketed between X1 and X6. For each of X2, X3, X4, X5, the KNN

algorithm returned two nearest neighbor tuples X1 and X6.

Figure 3.1 – ACF plots with the dimension Ne varying from 1011.0 to 1011.5 m−3

28

Figure 3.1 shows the results, where the blue and green curves lying on the two extremes

correspond to the ACF for X1 and X6 respectively. The curves for X2, X3, X4, X5 nicely

sit between them.

Consider a next set of input tuples:

X7 = (1011.0, 2.5× 10−5, 1000, 800, 0.0)

X8 = (1011.0, 2.0× 10−5, 1000, 800, 0.0)

X9 = (1011.25, 2.25 × 10−5, 1000, 800, 0.0) (3.10)

X10 = (1011.5, 2.5× 10−5, 1000, 800, 0.0)

X11 = (1011.5, 2.0× 10−5, 1000, 800, 0.0)

Here, X7, X8, X10 and X11 exist in the numerical library, but the ACF for X9 will

be generated by KNN interpolation. In these tuples, Ne and B have off-grid values and

therefore D = 2. We used the KNN algorithm with k = 2D = 4. The expected result

is that ACF corresponding to X9 should be bracketed between X7, X8, X10 and X11.

Figure 3.2 shows the interpolation results, where the four nearest neighbors are shown in

blue, green, black and red curves. The cyan curve represents X9, which nicely sits between

the neighbors.

Figure 3.2 – ACF plots with the dimensions Ne and B varying

Consider a final set of input tuples:

X12 = (1011.0, 2.0× 10−5, 1000, 800, 0.001) (3.11)

29

X13 = (1011.0, 2.0× 10−5, 1000, 800, 0.0016)

X14 = (1011.0, 2.0× 10−5, 1000, 800, 0.002)

Here, X12 and X13 exist in the numerical library, but the ACF for X13 will be generated

by KNN interpolation. In these tuples, α has off-grid value and therefore D = 1. We used

the KNN algorithm with k = 2D = 2. The expected result is that ACF corresponding to

X13 should be bracketed between X12 and X14. Figure 3.3 shows the interpolation results,

where the two nearest neighbors are shown in blue and red curves. The green-colored curve

represents X13, which nicely sits between the two neighbors.

Figure 3.3 – ACF plots with the dimension α varying

3.4.3 Regressor Object and Run-Time

The regressor object returned by scikit-learn’s module KNeighborsRegressor contains

all the information needed to perform KNN regression for a given input tuple X. An

example code-snippet (code provided in appendix B) to generate regressor object is

from sklearn.neighbors import KNeighborsRegressor
k = 5 #Number of nearest neighbors
neigh = KNeighborsRegressor(n_neighbors=k,algorithm=’auto’,

weights=returnWeightsID)
neigh.fit(Xn[:,:],Y[:,:])

where the object name is “neigh”. Here, first the KNeighborsRegressor module is imported

from the scikit-learn library; then the regressor object is created by passing the desired

30

values of parameters described in Section 3.4.1. Finally, the “fit” method is called on by

the object that fits the model to the input data set. Python’s built-in function dir() can

be called on by this object to see the parameters contained within it. These parameters

together help the process of KNN regression whenever a new input tuple is supplied to the

regressor object.

The input X has five dimensions, where each of the dimensions can be off-grid, giving

the possible values of D ∈ [1, 2, 3, 4, 5]. This gives five different regressor object for each

of k ∈ [2, 4, 8, 16, 32]. The size of the regressor object for different values of k is 67 MB

for small-aspect angles data set, and 60 MB for large-aspect angles data set.

Next an analysis of run-time to generate the ACF plot for a new X is done with the

new downsampled numerical library described at the end of Chapter 2. Table 3.2 shows

that on an average it takes 0.115 seconds to generate the ACF plot.

Table 3.2 – Run-Time to Generate ACF for a New Input X

Test Run-time (in seconds)

1 0.113

2 0.112

3 0.121

4 0.110

5 0.123

Average 0.115

31

CHAPTER 4

RESULTS, CONCLUSIONS AND FUTURE

WORK

Chapter 3 presented our ML based interpolation procedure to utilize the numerical

electron ACF library described in Chapter 2. Here, we will apply the procedure to calculate

multi-ion ISR spectra and ACFs by utilizing input data that is “off-grid” in terms of the

available numerical library. The examples will include new inputs X which have Ne, B,

Te, Ti and α lying off-grid in an incremental manner.

4.1 Multi-Ion ISR Spectra and ACF

First, a comparison of ISR spectra and ISR ACF for Ne = 1011.25 m−3 and Ne =

1011.5 m−3 is shown in Figures 4.1 and 4.2. Here, the ion composition is a 70%-20%-10%

mix of hydrogen-oxygen-helium, α = 2.0◦ and Te = Ti = 1000 K.

Let X1 ≡ (1011.25, 2.0 × 10−5, 1000, 1000, 2.0). Next, Figures 4.3 - 4.6 show the ISR

spectra and ACF for new input tuples

X2 = (1011.25, 2.25 × 10−5, 1000, 1000, 2.0)

X3 = (1011.25, 2.25 × 10−5, 1100, 1000, 2.0) (4.1)

X4 = (1011.25, 2.25 × 10−5, 1100, 1100, 2.0)

X5 = (1011.25, 2.25 × 10−5, 1100, 1100, 2.5)

where D = 2, 3, 4, 5, respectively, and k = 4, 8, 16, 32. The same set of ISR spectra and

32

ACFs are overplotted in Figures 4.7 and 4.8 for comparison.

From Figures 4.7 and 4.8, it can be seen that the red curve corresponding to X1 is quite

different from the curves for X2, X3, X4 and X5. This is because X2, X3, X4 and X5 vary

along the Te, Ti and α dimensions with respect to each other, whereas the transition from

X1 to X2 is in the B dimension. Since the magnetic field plays a significant role in the

shape of ISR spectra and ACF as compared to aspect angle and electron-ion temperatures,

the red curve clearly shows this fact.

Figure 4.1 – Comparison of ISR spectra for Ne = 1011.25 m−3 and Ne = 1011.5 m−3

33

Figure 4.2 – Comparison of ISR ACF for Ne = 1011.25 m−3 and Ne = 1011.5 m−3

Figure 4.3 – ISR spectra and ACF for (1011.25, 2.25×10−5, 1000, 1000, 2.0) with k = 4

34

Figure 4.4 – ISR spectra and ACF for (1011.25, 2.25×10−5, 1100, 1000, 2.0) with k = 8

Figure 4.5 – ISR spectra and ACF for (1011.25, 2.25 × 10−5, 1100, 1100, 2.0) with
k = 16

Figure 4.6 – ISR spectra and ACF for (1011.25, 2.25 × 10−5, 1100, 1100, 2.5) with
k = 32

35

Figure 4.7 – ISR spectra for X1, X2, X3, X4 and X5

Figure 4.8 – ISR ACF for X1, X2, X3, X4 and X5

36

4.2 Conclusions

This thesis covered a number of physical principles that are used in the derivation of

incoherent scatter spectral models. The previous study in [1] and [2] focused on a single-

ion model of the ionosphere, whereas this thesis showed the incoherent spectral results for

a multi-ion ionosphere. The multi-ion case is easily derived from the single-ion case by

taking into account the Coulomb collision frequencies between different ion species.

The K-Nearest Neighbor (KNN) regression tool was implemented and helped to gen-

erate and study the multi-ion IS spectra obtained with the extended model. A closer look

at the original numerical ACF library revealed two important aspects. First, the ACF

time-series data was created with a very high sampling rate, which is not needed; a down-

sampled ACF time-series would suffice. Second, the values of five ionospheric parameters

in tuple X = (Ne, B, Te, Ti, α) have different measurement scales, and hence needed to

be rescaled to perform the KNN algorithm. Keeping these two aspects in mind, a new nu-

merical library was created and saved on the disk. The performance analysis with inverse

distance and Gaussian weighting functions showed that inverse distance performs better

than Gaussian weighting.

4.3 Future Work

The machine learning (ML) procedure presented in this thesis utilized a numerical

library which is defined over a discrete grid. A new numerical library with the ionospheric

parameters (Ne, B, Te, Ti, α) spread over a denser and random grid can be generated for

future work. In that case, a training and testing procedure to find the optimum value of

k would be needed [8]. Also, having a denser and random input data set will help the

interpolation procedure. We tried linear regression (LR), but it failed to show positive

results. In future work, an ML algorithm based on polynomial regression (PR) can be

explored. This ML procedure can also be applied to other ionospheric related input data.

37

APPENDIX A

SOURCE CODE: INCOHERENT SCATTERING

To calculate Chirp-z transform:

def chirpz(g,n,dt,dw):
"""transforms g(t) into G(w)
g(t) is n-point array and output G(w) is (n/2)-points.
dt and dw, sampling intervals of g(t) and G(w), are
prescribed externally in an idependent manner
--- see Li, Franke, Liu [1991]"""
g[0] = (3./8.)*g[0]
g[1] = (7./6.)*g[1]
g[2] = (23./24.)*g[2]
W = exp(-1j*dw*dt*arange(n)**2/2.)
x = g*W; y = conj(W)
x[n/2:] = 0.; y[n/2:] = y[0:n/2][::-1] # treat 2nd half

of x and y specially
xi = fft.fft(x); yi = fft.fft(y); G = dt*W*fft.ifft(xi*

yi) #in MATLAB use ifft then fft (EK)
return G[0:n/2]

To calculate Coulomb collision frequencies for multi-ion case:

Ionospheric State
Ne=1.0e11.5 #Electron density (1/m^3)
#B=18.0e-6 #Magnetic Field (T)
B=2.0e-5

Ion Composition
NH,N4,NO=0.70*Ne,0.10*Ne,0.20*Ne
Te,TH,T4,TO=1000,1000,1000,1000

Physical Paramters (MKS):

38

me = 9.1093826e-31 # Electron mass in kg
mH,m4,mO = 1836*me,1836*4*me,1836*16*me # Ion mass

qe = 1.60217653e-19 # C (Electron charge)
K = 1.3806505e-23 # Boltzmann constant m^2*kg/(s^2*K);
eps0 = 8.854187817e-12 # F/m (Free-space permittivity)
c = 299.792458e6 # m/s (Speed of light)
re = 2.817940325e-15 # Electron radius

Ce,CH,C4,CO=sqrt(K*Te/me),sqrt(K*TH/mH),sqrt(K*T4/m4),sqrt(K

*TO/mO) # Thermal speeds (m/s)
Omge,OmgH,Omg4,OmgO = qe*B/me,qe*B/mH,qe*B/m4,qe*B/mO # Gyro

-frequencies

Debye Lengths
debe,debH,deb4,debO = sqrt(eps0*K*Te/(Ne*qe**2)),sqrt(eps0*K

*TH/(NH*qe**2)),sqrt(eps0*K*T4/(N4*qe**2)),sqrt(eps0*K*TO
/(NO*qe**2))

debp = 1./sqrt(1./debe/debe+1./debH/debH+1./deb4/deb4+1./
debO/debO) # Plasma Debye Length

The following pseudocode is for Coulomb collision of
species s with species p

#Csp=sqrt(Cs**2+Cp**2) #most probable interaction speed of s
={e,H,O} with p={e,H,O}

#msp=ms*mp/(ms+mp) #reduced mass for s and p
#bm_sp=qs*qp/(12*pi*eps0)/msp/Csp**2 #bmin for s and p
#log_sp=log(debp/bm_sp) #coulomb logarithm for s and p
#nusp=Np*qs**2*qp**2*log_sp/(3*(2*pi)**(3/2.)*ms*msp*Csp**3)

collision freq of s with p --- 2.104 Callen 2003

electron-electron
Cee=sqrt(Ce**2+Ce**2)
mee=me*me/(me+me)
bm_ee=qe*qe/(12*pi*eps0)/mee/Cee**2
log_ee=log(debp/bm_ee)
nuee=Ne*qe**2*qe**2*log_ee/(3*(2*pi)**(3/2.)*eps0**2*me*mee*

Cee**3)
electron-hydrogen
CeH=sqrt(Ce**2+CH**2)
meH=me*mH/(me+mH)
bm_eH=qe*qe/(12*pi*eps0)/meH/CeH**2
log_eH=log(debp/bm_eH)
nueH=NH*qe**2*qe**2*log_eH/(3*(2*pi)**(3/2.)*eps0**2*me*meH*

CeH**3)
electron-helium
Ce4=sqrt(Ce**2+C4**2)

39

me4=me*m4/(me+m4)
bm_e4=qe*qe/(12*pi*eps0)/me4/Ce4**2
log_e4=log(debp/bm_e4)
nue4=N4*qe**2*qe**2*log_e4/(3*(2*pi)**(3/2.)*eps0**2*me*me4*

Ce4**3)
electron-oxygen
CeO=sqrt(Ce**2+CO**2)
meO=me*mO/(me+mO)
bm_eO=qe*qe/(12*pi*eps0)/meO/CeO**2
log_eO=log(debp/bm_eO)
nueO=NO*qe**2*qe**2*log_eO/(3*(2*pi)**(3/2.)*eps0**2*me*meO*

CeO**3)
electron Coulomb collision frequency
nue=nuee+nueH+nue4+nueO
nuel=nueH+nue4+nueO
nuep=nuel+nuee

hydrogen-electron
CHe=sqrt(CH**2+Ce**2)
mHe=mH*me/(mH+me)
bm_He=qe*qe/(12*pi*eps0)/mHe/CHe**2
log_He=log(debp/bm_He)
nuHe=Ne*qe**2*qe**2*log_He/(3*(2*pi)**(3/2.)*eps0**2*mH*mHe*

CHe**3)
hydrogen-hydrogen
CHH=sqrt(CH**2+CH**2)
mHH=mH*mH/(mH+mH)
bm_HH=qe*qe/(12*pi*eps0)/mHH/CHH**2
log_HH=log(debp/bm_HH)
nuHH=NH*qe**2*qe**2*log_HH/(3*(2*pi)**(3/2.)*eps0**2*mH*mHH*

CHH**3)
hydrogen-helium
CH4=sqrt(CH**2+C4**2)
mH4=mH*m4/(mH+m4)
bm_H4=qe*qe/(12*pi*eps0)/mH4/CH4**2
log_H4=log(debp/bm_H4)
nuH4=N4*qe**2*qe**2*log_H4/(3*(2*pi)**(3/2.)*eps0**2*mH*mH4*

CH4**3)
hydrogen-oxygen
CHO=sqrt(CH**2+CO**2)
mHO=mH*mO/(mH+mO)
bm_HO=qe*qe/(12*pi*eps0)/mHO/CHO**2
log_HO=log(debp/bm_HO)
nuHO=NO*qe**2*qe**2*log_HO/(3*(2*pi)**(3/2.)*eps0**2*mH*mHO*

CHO**3)
hydrogen Coulomb collision frequency
nuH=nuHe+nuHH+nuH4+nuHO

40

helium-electron
C4e=sqrt(C4**2+Ce**2)
m4e=m4*me/(m4+me)
bm_4e=qe*qe/(12*pi*eps0)/m4e/C4e**2
log_4e=log(debp/bm_4e)
nu4e=Ne*qe**2*qe**2*log_4e/(3*(2*pi)**(3/2.)*eps0**2*m4*m4e*

C4e**3)
helium-hydrogen
C4H=sqrt(C4**2+CH**2)
m4H=m4*mH/(m4+mH)
bm_4H=qe*qe/(12*pi*eps0)/m4H/C4H**2
log_4H=log(debp/bm_4H)
nu4H=NH*qe**2*qe**2*log_4H/(3*(2*pi)**(3/2.)*eps0**2*m4*m4H*

C4H**3)
helium-helium
C44=sqrt(C4**2+C4**2)
m44=m4*m4/(m4+m4)
bm_44=qe*qe/(12*pi*eps0)/m44/C44**2
log_44=log(debp/bm_44)
nu44=N4*qe**2*qe**2*log_44/(3*(2*pi)**(3/2.)*eps0**2*m4*m44*

C44**3)
helium-oxygen
C4O=sqrt(C4**2+CO**2)
m4O=m4*mO/(m4+mO)
bm_4O=qe*qe/(12*pi*eps0)/m4O/C4O**2
log_4O=log(debp/bm_4O)
nu4O=NO*qe**2*qe**2*log_4O/(3*(2*pi)**(3/2.)*eps0**2*m4*m4O*

C4O**3)
helium Coulomb collision frequency
nu4=nu4e+nu4H+nu44+nu4O

oxygen-electron
COe=sqrt(CO**2+Ce**2)
mOe=mO*me/(mO+me)
bm_Oe=qe*qe/(12*pi*eps0)/mOe/COe**2
log_Oe=log(debp/bm_Oe)
nuOe=Ne*qe**2*qe**2*log_Oe/(3*(2*pi)**(3/2.)*eps0**2*mO*mOe*

COe**3)
oxygen-hydrogen
COH=sqrt(CO**2+CH**2)
mOH=mO*mH/(mO+mH)
bm_OH=qe*qe/(12*pi*eps0)/mOH/COH**2
log_OH=log(debp/bm_OH)
nuOH=NH*qe**2*qe**2*log_OH/(3*(2*pi)**(3/2.)*eps0**2*mO*mOH*

COH**3)
oxygen-helium

41

CO4=sqrt(CO**2+C4**2)
mO4=mO*m4/(mO+m4)
bm_O4=qe*qe/(12*pi*eps0)/mO4/CO4**2
log_O4=log(debp/bm_O4)
nuO4=N4*qe**2*qe**2*log_O4/(3*(2*pi)**(3/2.)*eps0**2*mO*mO4*

CO4**3)
oxygen-osxygen
COO=sqrt(CO**2+CO**2)
mOO=mO*mO/(mO+mO)
bm_OO=qe*qe/(12*pi*eps0)/mOO/COO**2
log_OO=log(debp/bm_OO)
nuOO=NO*qe**2*qe**2*log_OO/(3*(2*pi)**(3/2.)*eps0**2*mO*mOO*

COO**3)
oxygen Coulomb collision frequency
nuO=nuOe+nuOH+nuO4+nuOO

Loading example files from Marco’s numerical library:

Path to the Marco’s numerical library
basepath = ’/raid_b/IS_spc_model/JE-ACF-Library/’

Full path to the specific file that user wants to
investigate

file1 = ’/raid_b/IS_spc_model/JE-ACF-Library/LN110/
LN110Bm20Ti10/config_LN110TE10TI10M20.eh5’ # Te=Ti=1000
K and B=2.0e-5T

file2 = ’/raid_b/IS_spc_model/JE-ACF-Library/LN110/
LN110Bm20Ti10/proc_LN110TE10TI10M20L1.eh5’ # Large
angles file

file3 = ’/raid_b/IS_spc_model/JE-ACF-Library/LN110/
LN110Bm20Ti10/proc_LN110TE10TI10M20S1.eh5’ # Small
angles file

import h5py
fconf = h5py.File(file1,’r’)
fL1 = h5py.File(file2,’r’)
fS1 = h5py.File(file3,’r’)

N=131072 # comes from Marco library
dt=0.1e-6 # sampling time provided by the library (units of

seconds)
#dt=10.0e-6 # sampling time provided by the library (units

of seconds)
T=N*dt # total data dength in seconds

42

fmax=5000. # Hz units (I choose this)
df=fmax/(N/2) # in Hz units
dw=2*pi*df
w=arange(N/2)*dw

fradar=50.0e6 # Radar Frequency (Hz)
kB = 2*pi*(fradar/(c/2)) # Bragg wavenumber kB = 2*ko
aspect= 2*pi/180. # Aspect angle (rad) with 0 perp to Bs
#aspect= 0.5*pi/180. # Aspect angle (rad) with 0 perp to Bs

Gordeyev’s Integral calculation:

Electron Gordeyev from Marco library or interpolated ACF
using KNN

Ge = chirpz(fL1[’Correlations’][’acf’][6,:],N,dt,dw)
#Ge = chirpz(correctedBM,N,dt,dw)

Brownian electron Gordeyev
dtB=dt
tB = arange(N)*dtB #adjust dt such that full range of acfi

is covered by range t
varil=((2.*Ce**2)/nuel**2)*(nuel*tB-1+exp(-nuel*tB)) # page

-337 in ppr-II equa-43
gam=arctan(nuep/Omge)
varip=((2.*Ce**2)/(nuep**2+Omge**2))*(cos(2*gam)+nuep*tB-exp

(-nuep*tB)*cos(Omge*tB-2*gam)) # page-337 in ppr-II equa
-44

acfB=exp(-((kB*sin(aspect))**2)*varil/2.)*exp(-((kB*cos(
aspect))**2)*varip/2.) # page-337 in ppr-II equa-42

GB = chirpz(acfB,N,dtB,dw) # Brownian electron Gordeyev
Integral

plot(w/kB,real(GB), label=’Real part’)
legend()
plot(w/kB,imag(GB), label=’Imag part’)
legend()
xlabel(’Doppler Velocity (m/s)’)
ylabel(’E Gordeyev’)
title(’Brownian Electron Gordeyev Integral’)
subplots_adjust(left=0.1, bottom=0.1, right=2, top=2.2,

wspace=0.2, hspace=0.4)
savefig("electronGordeyev.png",bbox_inches=’tight’) # save

as png

43

Hydrogen Gordeyev
dtH = (1./fmax)/16
tH = arange(N)*dtH #adjust dt such that full range of acfi

is covered by range t
varil=((2.*CH**2)/nuH**2)*(nuH*tH-1+exp(-nuH*tH)) # page-337

in ppr-II equa-43
gam=arctan(nuH/OmgH)
varip=((2.*CH**2)/(nuH**2+OmgH**2))*(cos(2*gam)+nuH*tH-exp(-

nuH*tH)*cos(OmgH*tH-2*gam)) # page-337 in ppr-II equa-44
acfH=exp(-((kB*sin(aspect))**2)*varil/2.)*exp(-((kB*cos(

aspect))**2)*varip/2.) # page-337 in ppr-II equa-42
GH = chirpz(acfH,N,dtH,dw) # Ion Gordeyev Integral
plot(w/kB,real(GH), label=’Real part’)
legend()
plot(w/kB,imag(GH), label=’Imag part’)
legend()
xlabel(’Doppler Velocity (m/s)’)
ylabel(’H+ Gordeyev’)
title(’Brownian Hydrogen Gordeyev Integral’)
subplots_adjust(left=0.1, bottom=0.1, right=2, top=2.2,

wspace=0.2, hspace=0.4)
savefig("hydrogenGordeyev.png",bbox_inches=’tight’) # save

as png

Helium Gordeyev
dt4 = (1./fmax)/16
t4 = arange(N)*dt4 #adjust dt such that full range of acfi

is covered by range t
varil=((2.*C4**2)/nu4**2)*(nu4*t4-1+exp(-nu4*t4)) # page-337

in ppr-II equa-43
gam=arctan(nu4/Omg4)
varip=((2.*C4**2)/(nu4**2+Omg4**2))*(cos(2*gam)+nu4*t4-exp(-

nu4*t4)*cos(Omg4*t4-2*gam)) # page-337 in ppr-II equa-44
acf4=exp(-((kB*sin(aspect))**2)*varil/2.)*exp(-((kB*cos(

aspect))**2)*varip/2.) # page-337 in ppr-II equa-42
G4 = chirpz(acf4,N,dt4,dw) # Ion Gordeyev Integral
plot(w/kB,real(G4), label=’Real part’)
legend()
plot(w/kB,imag(G4), label=’Imag part’)
legend()
xlabel(’Doppler Velocity (m/s)’)
ylabel(’He+ Gordeyev’)
title(’Brownian Helium Gordeyev Integral’)
subplots_adjust(left=0.1, bottom=0.1, right=2, top=2.2,

wspace=0.2, hspace=0.4)

44

savefig("heliumGordeyev.png",bbox_inches=’tight’) # save as
png

Oxygen Gordeyev
dtO = (1./fmax)/16
tO = arange(N)*dtO #adjust dt such that full range of acfi

is covered by range t
varil=((2.*CO**2)/nuO**2)*(nuO*tO-1+exp(-nuO*tO)) # page-337

in ppr-II equa-43
gam=arctan(nuO/OmgO)
varip=((2.*CO**2)/(nuO**2+OmgO**2))*(cos(2*gam)+nuO*tO-exp(-

nuO*tO)*cos(OmgO*tO-2*gam)) # page-337 in ppr-II equa-44
acfO=exp(-((kB*sin(aspect))**2)*varil/2.)*exp(-((kB*cos(

aspect))**2)*varip/2.) # page-337 in ppr-II equa-42
GO = chirpz(acfO,N,dtO,dw) # Ion Gordeyev Integral
plot(w/kB,real(GO), label=’Real part’)
legend()
plot(w/kB,imag(GO), label=’Imag part’)
legend()
xlabel(’Doppler Velocity (m/s)’)
ylabel(’O+ Gordeyev’)
title(’Brownian Oxygen Gordeyev Integral’)
subplots_adjust(left=0.1, bottom=0.1, right=2, top=2.2,

wspace=0.2, hspace=0.4)
savefig("oxygenGordeyev.png",bbox_inches=’tight’) # save as

png

ISR spectrum calculation:

Admittances
yO=(1-1j*w*GO)/(kB**2*debO**2) # oxygen admittance
y4=(1-1j*w*G4)/(kB**2*deb4**2) # helium admittance
yH=(1-1j*w*GH)/(kB**2*debH**2) # hydrogen admittance
ye=(1-1j*w*Ge)/(kB**2*debe**2) # electron admittance
yB=(1-1j*w*GB)/(kB**2*debe**2) # Brownian electron

admittance

ISR spectrum
subplot(121)
spec=real(Ne*2*Ge)*abs((1+yH+y4+yO)/(1+ye+yH+y4+yO))**2 +

real(NH*2*GH+N4*2*G4+NO*2*GO)*abs((ye)/(1+ye+yH+y4+yO))

**2
plot(w/kB,spec)

45

xlabel(’Doppler Velocity (m/s)’)
ylabel(’ISR Ion-Line Spectrum’)
degree = unichr(176)
title(r’α = %s%s, Te=1000K, B=2.0e-5T ’ %((aspect/pi)

*180.,degree))

subplot(122)
acf=chirpz(spec,N/2,dw,4*dt)
lag=arange(N/4)*4*dt*1000
plot(lag,0.5*acf/acf[0])
xlabel(’Time Lag (ms)’)
ylabel(’ISR-ACF’)
degree = unichr(176)
title(r’α = %s%s, Te=1000K, B=2.0e-5T ’ %((aspect/pi)

*180.,degree))
subplots_adjust(left=0.1, bottom=0.1, right=2, top=1,wspace

=0.2, hspace=0.8)

ISR spectrum with Brownian electron
subplot(121)
spec=real(Ne*GB)*abs((1+yH+y4+yO)/(yB+yH+y4+yO))**2 + real(

NH*2*GH+N4*2*G4+NO*2*GO)*abs((yB)/(yB+yH+y4+yO))**2
plot(w/kB,spec)
xlabel(’Doppler Velocity (m/s)’)
ylabel(’ISR Ion-Line Spectrum’)
degree = unichr(176)
title(r’α = %s%s, Te=1000K, B=2.0e-5T ’ %((aspect/pi)

*180.,degree))

subplot(122)
acf=chirpz(spec,N/2,dw,4*dt)
lag=arange(N/4)*4*dt*1000
plot(lag,0.5*acf/acf[0])
xlabel(’Time Lag (ms)’)
ylabel(’ISR-ACF’)
degree = unichr(176)
title(r’α = %s%s, Te=1000K, B=2.0e-5T ’ %((aspect/pi)

*180.,degree))
subplots_adjust(left=0.1, bottom=0.1, right=2, top=1,wspace

=0.2, hspace=0.8)
savefig("isrIonLineSpectrumAndACF.png",bbox_inches=’tight’)

save as png

46

APPENDIX B

SOURCE CODE: REGRESSION TOOL

To calculate Coulomb collision frequencies for single-ion case:

For Machine-Learning tool, we only considered Oxygen ion (
F-region)

def parameters(Ne, B, Te, Ti):
Ionospheric State
Ne=Ne # Electron density (1/m^3)
B=B # Magnetic Field (T)

Ion Composition
NO=Ne
Te,TO=Te,Ti

Physical Parameters (MKS):
me = 9.1093826e-31 # Electron mass in kg
mO = 1836*16*me # Ion mass

qe = 1.60217653e-19 # C (Electron charge)
K = 1.3806505e-23 # Boltzmann constant m^2*kg/(s^2*K);
eps0 = 8.854187817e-12 # F/m (Free-space permittivity)
c = 299.792458e6 # m/s (Speed of light)
re = 2.817940325e-15 # Electron radius

Ce,CO=sqrt(K*Te/me),sqrt(K*TO/mO) # Thermal speeds (m/s)
Omge,OmgO = qe*B/me,qe*B/mO # Gyro-frequencies

Debye Lengths
debe,debO = sqrt(eps0*K*Te/(Ne*qe**2)),sqrt(eps0*K*TO/(

NO*qe**2))
debp = 1./sqrt(1./debe/debe+1./debO/debO) # Plasma Debye

Length

the following pseudocode is for Coulomb collision of
species s with species p

47

#Csp=sqrt(Cs**2+Cp**2) #most probable interaction speed
of s={e,H,O} with p={e,H,O}

#msp=ms*mp/(ms+mp) #reduced mass for s and p
#bm_sp=qs*qp/(12*pi*eps0)/msp/Csp**2 #bmin for s and p
#log_sp=log(debp/bm_sp) #coulomb logarithm for s and p
#nusp=Np*qs**2*qp**2*log_sp/(3*(2*pi)**(3/2.)*ms*msp*Csp

**3) # collision freq of s with p --- 2.104 Callen
2003

electron-electron
Cee=sqrt(Ce**2+Ce**2)
mee=me*me/(me+me)
bm_ee=qe*qe/(12*pi*eps0)/mee/Cee**2
log_ee=log(debp/bm_ee)
nuee=Ne*qe**2*qe**2*log_ee/(3*(2*pi)**(3/2.)*eps0**2*me*

mee*Cee**3)

electron-oxygen
CeO=sqrt(Ce**2+CO**2)
meO=me*mO/(me+mO)
bm_eO=qe*qe/(12*pi*eps0)/meO/CeO**2
log_eO=log(debp/bm_eO)
nueO=NO*qe**2*qe**2*log_eO/(3*(2*pi)**(3/2.)*eps0**2*me*

meO*CeO**3)

electron Coulomb collision frequency
nue=nuee+nueO
nuel=nueO
nuep=nuel+nuee

oxygen-electron
COe=sqrt(CO**2+Ce**2)
mOe=mO*me/(mO+me)
bm_Oe=qe*qe/(12*pi*eps0)/mOe/COe**2
log_Oe=log(debp/bm_Oe)
nuOe=Ne*qe**2*qe**2*log_Oe/(3*(2*pi)**(3/2.)*eps0**2*mO*

mOe*COe**3)
oxygen-oxygen
COO=sqrt(CO**2+CO**2)
mOO=mO*mO/(mO+mO)
bm_OO=qe*qe/(12*pi*eps0)/mOO/COO**2
log_OO=log(debp/bm_OO)
nuOO=NO*qe**2*qe**2*log_OO/(3*(2*pi)**(3/2.)*eps0**2*mO*

mOO*COO**3)
oxygen Coulomb collision frequency
nuO=nuOe+nuOO

48

return [nuel,nuep,Ce,Omge,c]

To generate learning data for regression analysis (small-angles):

#Regression Analysis - Small Angles

""" To generate training data by reading from the files in
JE-ACF-Library
This generates training data for Small-Angles files (

only for Ti = 800K and 1200K).
Output:

X = Samples (States) Format: [Ne, B, Te,
Ti, alpha]

Y = Labels (Correction factor) Format: ACF_Brownian
- ACF_Marco_Lib

"""

from jropack.jroread import *
import h5py
import sys, traceback

N=131072. #comes from Marco library
X = []
Y = []

for outer in [’LN110’,’LN120’,’LN115’,’LN125’]:

for inner in [’%s/LN%sBm20Ti08’ %(outer,outer[2:]),
’%s/LN%sBm25Ti08’ %(outer,outer[2:]),
’%s/LN%sBm30Ti08’ %(outer,outer[2:]),
’%s/LN%sBm20Ti12’ %(outer,outer[2:]),
’%s/LN%sBm25Ti12’ %(outer,outer[2:]),
’%s/LN%sBm30Ti12’ %(outer,outer[2:]),
’%s/LN%sBm20Ti14’ %(outer,outer[2:]),
’%s/LN%sBm25Ti14’ %(outer,outer[2:]),
’%s/LN%sBm30Ti14’ %(outer,outer[2:]),
’%s/LN%sBm20Ti16’ %(outer,outer[2:]),
’%s/LN%sBm25Ti16’ %(outer,outer[2:]),
’%s/LN%sBm30Ti16’ %(outer,outer[2:])]:

innerMost = [’/raid_b/IS_spc_model/JE-ACF-Library/%s
’ %(inner)]

for foldername in innerMost:
datafiles = glob.glob1(foldername,’*S1.eh5’)

49

datafiles.sort()
for filename in datafiles:

counter=0
f_S_L = h5py.File(’%s/%s’ %(foldername,

filename),’r’)
if (int(float(f_S_L[’Plasma’][’logNe’].value

)*10) == 115):
Ne = 1.0*10**(11.5)

elif (int(float(f_S_L[’Plasma’][’logNe’].
value)*10) == 125):
Ne = 1.0*10**(12.5)

elif (int(f_S_L[’Plasma’][’logNe’].value) ==
11):
Ne = 1.0e11

elif (int(f_S_L[’Plasma’][’logNe’].value) ==
12):
Ne = 1.0e12

[nuel,nuep,Ce,Omge,c] = parameters(Ne, float
(f_S_L[’Plasma’][’Bm’].value), int(f_S_L[
’Plasma’][’Te’].value), int(f_S_L[’Plasma
’][’Ti’].value))#(Ne, B, Te, Ti)

if filename[21:22] == ’S’:
angle_range = 29

else:
angle_range = 20

for asp in range(angle_range):
Generating state vector
X.append(float(f_S_L[’Plasma’][’logNe’].

value))
X.append(float(f_S_L[’Plasma’][’Bm’].

value))
X.append(int(f_S_L[’Plasma’][’Te’].value

))
X.append(int(f_S_L[’Plasma’][’Ti’].value

))
if filename[21:22] == ’S’:

X.append(f_S_L[’Correlations’][’
aspdegS’][asp])

else:
X.append(f_S_L[’Correlations’][’

aspdegL’][asp])

Marco’s Library
if filename[21:22] == ’S’:

aspect = (f_S_L[’Correlations’][’

50

aspdegS’][asp])
dt=10.0e-6 #sampling time provided

by the library (units of seconds)
; 10 microseconds S data

time_axis = arange(131072)*dt
tB = arange(N)*dt

else:
aspect = (f_S_L[’Correlations’][’

aspdegL’][asp])
dt=0.1e-6 #sampling time provided by

the library (units of seconds);
0.1 microseconds S data

time_axis = arange(131072)*dt
tB = arange(N)*dt

d = f_S_L[’Correlations’][’acf’][asp,:]

Brownian electron Gordeyev
fradar=50.0e6
kB = 2.0*pi*(fradar/(c/2))
aspect=aspect*pi/180.
varil=((2.*Ce**2)/nuel**2)*(nuel*tB-1+

exp(-nuel*tB))
gam=arctan(nuep/Omge)
varip=((2.*Ce**2)/(nuep**2+Omge**2))*(

cos(2*gam)+nuep*tB-exp(-nuep*tB)*cos(
Omge*tB-2.0*gam))

acfB=exp(-((kB*sin(aspect))**2)*varil
/2.)*exp(-((kB*cos(aspect))**2)*varip
/2.)

f = acfB

corr_factor = d-f
Y.append(corr_factor[0::1000])

#Reshape X to get: (number_of_samples, parameters)
samples = size(X)/5
X = reshape(X,(samples,5))
print ’shape(X) = ’, X.shape

#Reshape Y to get: (number_of_samples, length_of_time_axis)
Y = reshape(Y,(size(X,0),132))
print ’shape(Y) = ’, shape(Y)

#Create a scaled version of X
ne = [11.0, 11.5, 12.0, 12.5]
mag = [2.0e-05, 2.5e-05, 3.0e-05]

51

te = [600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200,
2400, 2600, 2800, 3000]

ti = [800, 1000, 1200, 1400, 1600]
alpha = f_S_L[’Correlations’][’aspdegS’][:]

from copy import copy, deepcopy
Xn = deepcopy(X) #We may need X later, so Xn is an extra

copy of X (as python by default performs shallow copy)
for i in range(4):

for j in range(X.shape[0]):
if X[j,0] == ne[i]:

Xn[j,0] = i

for i in range(3):
for j in range(X.shape[0]):

if X[j,1] == mag[i]:
Xn[j,1] = i

for i in range(13):
for j in range(X.shape[0]):

if X[j,2] == te[i]:
Xn[j,2] = i

for i in range(5):
for j in range(X.shape[0]):

if X[j,3] == ti[i]:
Xn[j,3] = i

for i in range(29):
for j in range(X.shape[0]):

if X[j,4] == alpha[i]:
Xn[j,4] = i

#Save all the necessary input data on the disk
import pickle
f=open(’X_dataS.pickle’, ’wb’)
pickle.dump(X, f)
f.close()

f=open(’Y_dataS.pickle’, ’wb’)
pickle.dump(Y, f)
f.close()

f=open(’Xn_dataS.pickle’, ’wb’)
pickle.dump(Xn, f)
f.close()

52

To generate learning data for regression analysis (large-angles):

#Regression Analysis - Large Angles

""" To generate training data by reading from the files in
JE-ACF-Library
This generates training data for Large-Angles files (

only for Ti = 800K and 1200K).
Output:

X = Samples (States) Format: [Ne, B, Te,
Ti, alpha]

Y = Labels (Correction factor) Format: ACF_Brownian
- ACF_Marco_Lib

"""

from jropack.jroread import *
import h5py
import sys, traceback

N=131072. #comes from Marco library
X = []
Y = []

for outer in [’LN110’,’LN120’,’LN115’,’LN125’]:

for inner in [’%s/LN%sBm20Ti08’ %(outer,outer[2:]),
’%s/LN%sBm25Ti08’ %(outer,outer[2:]),
’%s/LN%sBm30Ti08’ %(outer,outer[2:]),
’%s/LN%sBm20Ti12’ %(outer,outer[2:]),
’%s/LN%sBm25Ti12’ %(outer,outer[2:]),
’%s/LN%sBm30Ti12’ %(outer,outer[2:]),
’%s/LN%sBm20Ti14’ %(outer,outer[2:]),
’%s/LN%sBm25Ti14’ %(outer,outer[2:]),
’%s/LN%sBm30Ti14’ %(outer,outer[2:]),
’%s/LN%sBm20Ti16’ %(outer,outer[2:]),
’%s/LN%sBm25Ti16’ %(outer,outer[2:]),
’%s/LN%sBm30Ti16’ %(outer,outer[2:])]:

innerMost = [’/raid_b/IS_spc_model/JE-ACF-Library/%s
’ %(inner)]

for foldername in innerMost:
datafiles = glob.glob1(foldername,’*L1.eh5’)
datafiles.sort()
for filename in datafiles:

counter=0
f_S_L = h5py.File(’%s/%s’ %(foldername,

filename),’r’)

53

if (int(float(f_S_L[’Plasma’][’logNe’].value
)*10) == 115):
Ne = 1.0*10**(11.5)

elif (int(float(f_S_L[’Plasma’][’logNe’].
value)*10) == 125):
Ne = 1.0*10**(12.5)

elif (int(f_S_L[’Plasma’][’logNe’].value) ==
11):
Ne = 1.0e11

elif (int(f_S_L[’Plasma’][’logNe’].value) ==
12):
Ne = 1.0e12

[nuel,nuep,Ce,Omge,c] = parameters(Ne, float
(f_S_L[’Plasma’][’Bm’].value), int(f_S_L[
’Plasma’][’Te’].value), int(f_S_L[’Plasma
’][’Ti’].value))#(Ne, B, Te, Ti)

if filename[21:22] == ’S’:
angle_range = 29

else:
angle_range = 20

for asp in range(angle_range):
Generating state vector
X.append(float(f_S_L[’Plasma’][’logNe’].

value))
X.append(float(f_S_L[’Plasma’][’Bm’].

value))
X.append(int(f_S_L[’Plasma’][’Te’].value

))
X.append(int(f_S_L[’Plasma’][’Ti’].value

))
if filename[21:22] == ’S’:

X.append(f_S_L[’Correlations’][’
aspdegS’][asp])

else:
X.append(f_S_L[’Correlations’][’

aspdegL’][asp])

Marco’s Library
if filename[21:22] == ’S’:

aspect = (f_S_L[’Correlations’][’
aspdegS’][asp])

dt=10.0e-6 #sampling time provided
by the library (units of seconds)
; 10 microseconds S data

time_axis = arange(131072)*dt

54

tB = arange(N)*dt
else:

aspect = (f_S_L[’Correlations’][’
aspdegL’][asp])

dt=0.1e-6 #sampling time provided by
the library (units of seconds);

0.1 microseconds S data
time_axis = arange(131072)*dt
tB = arange(N)*dt

d = f_S_L[’Correlations’][’acf’][asp,:]

Brownian electron Gordeyev
fradar=50.0e6
kB = 2.0*pi*(fradar/(c/2))
aspect=aspect*pi/180.
varil=((2.*Ce**2)/nuel**2)*(nuel*tB-1+

exp(-nuel*tB))
gam=arctan(nuep/Omge)
varip=((2.*Ce**2)/(nuep**2+Omge**2))*(

cos(2*gam)+nuep*tB-exp(-nuep*tB)*cos(
Omge*tB-2.0*gam))

acfB=exp(-((kB*sin(aspect))**2)*varil
/2.)*exp(-((kB*cos(aspect))**2)*varip
/2.)

f = acfB

corr_factor = d-f
Y.append(corr_factor[0::1000])

#Reshape X to get: (number_of_samples, parameters)
samples = size(X)/5
X = reshape(X,(samples,5))
print ’shape(X) = ’, X.shape

#Reshape Y to get: (number_of_samples, length_of_time_axis)
Y = reshape(Y,(size(X,0),132))
print ’shape(Y) = ’, shape(Y)

#Create a scaled version of X
ne = [11.0, 11.5, 12.0, 12.5]
mag = [2.0e-05, 2.5e-05, 3.0e-05]
te = [600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200,

2400, 2600, 2800, 3000]
ti = [800, 1000, 1200, 1400, 1600]
alpha = f_S_L[’Correlations’][’aspdegL’][:]

from copy import copy, deepcopy

55

Xn = deepcopy(X) #We may need X later, so Xn is an extra
copy of X (as python by default performs shallow copy)

for i in range(4):
for j in range(X.shape[0]):

if X[j,0] == ne[i]:
Xn[j,0] = i

for i in range(3):
for j in range(X.shape[0]):

if X[j,1] == mag[i]:
Xn[j,1] = i

for i in range(13):
for j in range(X.shape[0]):

if X[j,2] == te[i]:
Xn[j,2] = i

for i in range(5):
for j in range(X.shape[0]):

if X[j,3] == ti[i]:
Xn[j,3] = i

for i in range(20):
for j in range(X.shape[0]):

if X[j,4] == alpha[i]:
Xn[j,4] = i

#Save all the necessary input data on the disk
import pickle
f=open(’X_dataL.pickle’, ’wb’)
pickle.dump(X, f)
f.close()

f=open(’Y_dataL.pickle’, ’wb’)
pickle.dump(Y, f)
f.close()

f=open(’Xn_dataL.pickle’, ’wb’)
pickle.dump(Xn, f)
f.close()

To perform regression analysis using KNN regressor object (small-angles):

#A callback function to get inverse-distance Weights

56

def returnWeightsID(distances):
weights = []
for i in range(len(distances)):

weights.append(1.0/(distances[i]))

return weights

from sklearn.neighbors import KNeighborsRegressor

#User Inputs
newInput = [11.25, 2.0e-05, 1000, 800, 0.0]
NN = 2 #Number of nearest-neighbors

#NN = 2^D, where D is the number of
#dimensions changed in newInput
#NN = {2,4,8,16,32}

#All the possible values of 5 parameters from numerical
library

ne = [11.0, 11.5, 12.0, 12.5]
mag = [2.0e-05, 2.5e-05, 3.0e-05]
te = [600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200,

2400, 2600, 2800, 3000]
ti = [800, 1000, 1200, 1400, 1600]
alpha = [0.0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006,

0.007, 0.008, 0.009, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,

0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0]

#Get the bracketing indices for Ne, B, Te, Ti, alpha
indNe, indB, indTe, indTi, indAlpha = [], [], [], [], []
for i in range(3):

if newInput[0] >= ne[i] and newInput[0] <= ne[i+1]:
indNe.append(i)
indNe.append(i+1)
break

for i in range(2):
if newInput[1] >= mag[i] and newInput[1] <= mag[i+1]:

indB.append(i)
indB.append(i+1)
break

for i in range(12):
if newInput[2] >= te[i] and newInput[2] <= te[i+1]:

indTe.append(i)
indTe.append(i+1)

57

break

for i in range(4):
if newInput[3] >= ti[i] and newInput[3] <= ti[i+1]:

indTi.append(i)
indTi.append(i+1)
break

for i in range(28):
if newInput[4] >= alpha[i] and newInput[4] <= alpha[i

+1]:
indAlpha.append(i)
indAlpha.append(i+1)
break

print indNe, indB, indTe, indTi, indAlpha

#Scale the newInput
newInputn = deepcopy(newInput)
newInputn[0] = float(newInputn[0] - ne[indNe[0]])/(ne[indNe

[1]] - ne[indNe[0]]) + indNe[0]
newInputn[1] = float(newInputn[1] - mag[indB[0]])/(mag[indB

[1]] - mag[indB[0]]) + indB[0]
newInputn[2] = float(newInputn[2] - te[indTe[0]])/(te[indTe

[1]] - te[indTe[0]]) + indTe[0]
newInputn[3] = float(newInputn[3] - ti[indTi[0]])/(ti[indTi

[1]] - ti[indTi[0]]) + indTi[0]
newInputn[4] = float(newInputn[4] - alpha[indAlpha[0]])/(

alpha[indAlpha[1]] - alpha[indAlpha[0]]) + indAlpha[0]
print "newInputn = ", newInputn

#Get the shortest-distance in 5-dimension between newInput
and the whole of input data set X

neigh = KNeighborsRegressor(n_neighbors=NN,algorithm=’auto’,
weights=returnWeightsID)

neigh.fit(Xn[:,:],Y[:,:])
NearestPoints = neigh.kneighbors(newInputn, n_neighbors=NN,

return_distance=True)
print NearestPoints
for i in range(NN):

print X[NearestPoints[1][0][i],:]

#Generate the ACF from Brownian-Motion (BM)
N=131072.
aspect=newInput[4]*pi/180.
dtB=10.0e-6 #10 microseconds for Small-angles data
[nuel,nuep,Ce,Omge,c] = parameters(1.0*10**newInput[0],

58

newInput[1], newInput[2], newInput[3]) #parameters(Ne, B,
Te, Ti):

tB = arange(N)*dtB
varil=((2.*Ce**2)/nuel**2)*(nuel*tB-1+exp(-nuel*tB))
gam=arctan(nuep/Omge)
varip=((2.*Ce**2)/(nuep**2+Omge**2))*(cos(2*gam)+nuep*tB-exp

(-nuep*tB)*cos(Omge*tB-2.0*gam))
acfB=exp(-((kB*sin(aspect))**2)*varil/2.)*exp(-((kB*cos(

aspect))**2)*varip/2.)
plot(acfB[0::1000], ’-r’, label=’BM’)
legend(loc=1)
hold(True)

#Correct the BM plot by applying predicted-correction-factor
correctedBM = neigh.predict(newInputn)[0]-acfB[0::1000]
plot(correctedBM ,’-g’, label=’BM Corrected’)
legend(loc=1)
xlabel(’Time (s)’)
ylabel(’k=%s’%(NN))
title(’ACF plot’)

#savefig("ACF_SmallAngle_newTuple.png",bbox_inches=’tight’)
#save as png

To perform regression analysis using KNN regressor object (large-angles):

#A callback function to get inverse-distance Weights
def returnWeightsID(distances):

weights = []
for i in range(len(distances)):

weights.append(1.0/(distances[i]))

return weights

from sklearn.neighbors import KNeighborsRegressor

#User Inputs
newInput = [11.25, 2.0e-05, 1000, 800, 45.0]
NN = 2 #Number of nearest-neighbors

#NN = 2^D, where D is the number of
#dimensions changed in newInput
#NN = {2,4,8,16,32}

#All the possible values of 5 parameters from numerical

59

library
ne = [11.0, 11.5, 12.0, 12.5]
mag = [2.0e-05, 2.5e-05, 3.0e-05]
te = [600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200,

2400, 2600, 2800, 3000]
ti = [800, 1000, 1200, 1400, 1600]
alpha = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0,

6.0, 7.0, 8.0, 9.0,
10.0, 15.0, 30.0, 45.0, 60.0, 90.0]

#Get the bracketing indices for Ne, B, Te, Ti, alpha
indNe, indB, indTe, indTi, indAlpha = [], [], [], [], []
for i in range(3):

if newInput[0] >= ne[i] and newInput[0] <= ne[i+1]:
indNe.append(i)
indNe.append(i+1)
break

for i in range(2):
if newInput[1] >= mag[i] and newInput[1] <= mag[i+1]:

indB.append(i)
indB.append(i+1)
break

for i in range(12):
if newInput[2] >= te[i] and newInput[2] <= te[i+1]:

indTe.append(i)
indTe.append(i+1)
break

for i in range(4):
if newInput[3] >= ti[i] and newInput[3] <= ti[i+1]:

indTi.append(i)
indTi.append(i+1)
break

for i in range(28):
if newInput[4] >= alpha[i] and newInput[4] <= alpha[i

+1]:
indAlpha.append(i)
indAlpha.append(i+1)
break

print indNe, indB, indTe, indTi, indAlpha

#Scale the newInput
newInputn = deepcopy(newInput)

60

newInputn[0] = float(newInputn[0] - ne[indNe[0]])/(ne[indNe
[1]] - ne[indNe[0]]) + indNe[0]

newInputn[1] = float(newInputn[1] - mag[indB[0]])/(mag[indB
[1]] - mag[indB[0]]) + indB[0]

newInputn[2] = float(newInputn[2] - te[indTe[0]])/(te[indTe
[1]] - te[indTe[0]]) + indTe[0]

newInputn[3] = float(newInputn[3] - ti[indTi[0]])/(ti[indTi
[1]] - ti[indTi[0]]) + indTi[0]

newInputn[4] = float(newInputn[4] - alpha[indAlpha[0]])/(
alpha[indAlpha[1]] - alpha[indAlpha[0]]) + indAlpha[0]

print "newInputn = ", newInputn

#Get the shortest-distance in 5-dimension between newInput
and the whole of input data set X

neigh = KNeighborsRegressor(n_neighbors=NN,algorithm=’auto’,
weights=returnWeightsID)

neigh.fit(Xn[:,:],Y[:,:])
NearestPoints = neigh.kneighbors(newInputn, n_neighbors=NN,

return_distance=True)
print NearestPoints
for i in range(NN):

print X[NearestPoints[1][0][i],:]

#Generate the ACF from Brownian-Motion (BM)
N=131072.
aspect=newInput[4]*pi/180.
dtB=0.1e-6 #0.1 microseconds for Large-angles data
[nuel,nuep,Ce,Omge,c] = parameters(1.0*10**newInput[0],

newInput[1], newInput[2], newInput[3]) #parameters(Ne, B,
Te, Ti):

tB = arange(N)*dtB
varil=((2.*Ce**2)/nuel**2)*(nuel*tB-1+exp(-nuel*tB))
gam=arctan(nuep/Omge)
varip=((2.*Ce**2)/(nuep**2+Omge**2))*(cos(2*gam)+nuep*tB-exp

(-nuep*tB)*cos(Omge*tB-2.0*gam))
acfB=exp(-((kB*sin(aspect))**2)*varil/2.)*exp(-((kB*cos(

aspect))**2)*varip/2.)
plot(acfB[0::1000], ’-r’, label=’BM’)
legend(loc=1)
hold(True)

#Correct the BM plot by applying predicted-correction-factor
correctedBM = neigh.predict(newInputn)[0]-acfB[0::1000]
plot(correctedBM ,’-g’, label=’BM Corrected’)
legend(loc=1)
xlabel(’Time (s)’)
ylabel(’k=%s’%(NN))

61

title(’ACF plot’)

#savefig("ACF_LargeAngle_newTuple.png",bbox_inches=’tight’)
#save as png

62

REFERENCES

[1] E. Kudeki and M. A. Milla, “Incoherent scatter spectral theories—Part I: A general
framework and results for small magnetic aspect angles,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 2, pp. 315-326, Feb. 2011.

[2] M. A. Milla and E. Kudeki, “Incoherent scatter spectral theories—Part II: Modeling
the spectrum for modes propagating perpendicular to B,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 2, pp. 329-344, Feb. 2011.

[3] http://scikit-learn.org/stable/

[4] E. Kudeki, S. Bhattacharyya, and R. F. Woodman, “A new approach in incoherent
scatter F region E × B drift measurements at Jicamarca,” J. Geophys. Res., vol. 104,
no. A12, pp. 28 145-28 162, Dec. 1999.

[5] J. D. Callen, Fundamentals of Plasma Physics, Chapter 2, Jul. 2006. [Online]. Available:
http://homepages.cae.wisc.edu/~callen/book.html

[6] Y. L. Li, C. H. Liu, and S. J. Franke, “Adaptive evaluation of the Sommerfeld-type
integral using the chirp z-transform,” IEEE Trans. Antennas Propag., vol. 39, no. 12,
pp. 1788-1791, Dec. 1991.

[7] K. Q. Weinberger and G. Gerald, Metric learning for kernel regression. [Online].
Available: http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS07_
WeinbergerT.pdf

[8] G. James, D. Witten, T. Hastie, and R. Tibshirani, “Statistical Learning," in An In-
troduction to Statistical Learning: With Applications in R, Springer Texts in Statistics,
vol. 103, New York: Springer, 2013, pp. 15-57.

63

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS07_WeinbergerT.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS07_WeinbergerT.pdf

	Title
	Abstract
	Acknowledgments
	Table of Contents
	Chapter 1 Introduction
	1.1 Overview of Past Ionospheric Experiments
	1.2 Outline

	Chapter 2 Incoherent Scatter Theory
	2.1 Thomson Scattering and IS Signal Spectrum
	2.2 Incoherent Scatter Spectral Model: Ionospheric Applications
	2.3 Single and Multiple Ion(s) ACFs Plots

	Chapter 3 Machine Learning Application
	3.1 Machine Learning: Introduction
	3.2 Machine Learning: Regression Algorithm
	3.2.1 Regression Data Set
	3.2.2 Description of KNN Algorithm

	3.3 Performance Analysis of Weighting Functions
	3.4 Application of Machine Learning on Radar Data
	3.4.1 Tools Used
	3.4.2 Application of KNN
	3.4.3 Regressor Object and Run-Time

	Chapter 4 Results, Conclusions and Future Work
	4.1 Multi-Ion ISR Spectra and ACF
	4.2 Conclusions
	4.3 Future Work

	Appendix A Source Code: Incoherent Scattering
	Appendix B Source Code: Regression Tool
	References

