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ABSTRACT 

Traditionally, feedlot cattle have been fed corn grain; however, recent competition for corn grain 

for fuel has made it an expensive feed option for cattle producers. Therefore, alternative feeds, 

like corn co-products, are being considered as energy sources for cattle. Two such co-products 

are corn stover (CS) and modified wet distillers grains with solubles (MWDGS). These co-

products are less expensive and less digestible than corn grain. Chemically treating corn co-

products may increase their feeding value for feedlot cattle by increasing fiber digestibility. This 

may occur through two mechanisms: 1) altering the composition and structure of the cell wall 

component of forages through delignification, and 2) buffering ruminal acidity. It is currently not 

known if these mechanisms can be accomplished simultaneously with the use of calcium oxide 

(CaO) in CS and MWDGS-based diets, nor has the magnitude of the response of CaO in these 

types of diets been investigated. Therefore, three experiments were conducted. The objective of 

these experiments was to determine the effects of feeding CaO-treated MWDGS or CS, and corn 

silage to cattle during the finishing phase on growth, feed efficiency, and carcass characteristics; 

and on ruminal metabolism and in situ dry matter disappearance using fistulated cattle. Exp. 1: 

Steers (n = 162) were fed for ad libitum intakes one of three treatments: (1) 20% corn stover, 

untreated (UCS), (2) 20% corn stover, treated with 5% CaO (TCS), and (3) 40% MWDGS, 

treated with 2.5% CaO (TDG). Calcium oxide treatment of both MWDGS and CS reduced (P ≤ 

0.03) DMI and final BW when compared to feeding UCS. Steers fed TCS had slower (P = 0.03) 

ADG than steers fed UCS; steers fed TDG were intermediate. Backfat (BF) was decreased (P < 

0.01) in steers fed TCS and TDG compared to those fed UCS. Exp. 2: Heifers (n = 138) were fed 

for ad libitum intakes one of three treatments: (1) UCS, 2) TCS, and (3) 40% corn silage (SIL). 

Feeding TCS to heifers reduced (P < 0.01) DMI, final BW, yield grade, and BF when compared 
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to feeding UCS and SIL. Heifers fed UCS had the same (P ≤ 0.02) ADG, DMI, marbling score, 

and BF as heifers fed SIL, although final BW and G:F were decreased. Exp. 3: Fistulated steers 

(n = 5) were fed for ad libitum intakes in a 5 x 5 Latin square design. Diets were: (1) UCS, (2) 

TCS, (3) TDG, (4) SIL, and (5) control, 50% cracked corn (CON).  Ruminal pH tended to be 

reduced (P = 0.06) when steers were fed TCS compared to UCS. Steers fed TCS had the greatest 

(P ≤ 0.05) concentrations of acetate and total VFA. Apparent dry matter digestibility was 

affected (P = 0.02) by treatment. When steers were fed UCS, dry matter digestibility was 

reduced, but it did not differ when steers were fed TCS, CON, and SIL diets; those fed TDG 

were intermediate. Neutral detergent fiber digestibility tended (P = 0.06) to follow apparent 

digestibility. Feeding TCS increased (P = 0.01) apparent ADF digestibility in steers compared to 

feeding UCS and TDG, and was similar to feeding SIL and CON. In situ DM and NDF 

disappearance increased over time with treated corn stover compared to untreated corn stover, 

and disappearance tended to plateau around 48h. Feeding cattle TCS decreased DMI and reduced 

ADG although it increased DM and ADF apparent total tract digestibility when compared to 

feeding UCS. However, cattle fed TDG had decreased DMI and reduced ADG and no 

improvement in digestibility. Contrary to our hypothesis, feeding cattle CaO-treated corn stover 

tended to reduce, rather than increase, ruminal pH (P = 0.06). This was most likely caused by 

increased ruminal fermentation of fiber that increased VFA concentrations (P < 0.01). Cattle fed 

UCS had better performance than those fed TCS or TDG, and performed similarly to cattle fed 

SIL, even though the UCS was not as digestible. These data suggest that treating CS and 

MWDGS with CaO prior to feeding was not effective in enhancing growth performance.   
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CHAPTER 1: LITERATURE REVIEW 

INTRODUCTION 

 Rising ethanol production in the U.S. has resulted in an increased demand for corn. In 

2012, U.S. bio-refineries consumed 121 billion kg of corn yielding 50 billion liters of ethanol 

and 33.3 million metric tons of distillers grains (Renewable Fuels Association, 2013). As a result 

of this demand, corn prices will continue to remain elevated for the foreseeable future. This has 

economic implications for traditional, corn-based feedlot diets and creates incentive to develop 

corn replacement diets for finishing beef cattle.  

 Corn stover is one reduced cost option for corn replacement that may be able to partially 

replace corn without significantly reducing ADG and carcass traits (Bartle et al., 1994). Corn 

stover is the biomass residue left on the field after the corn harvest and is one of the most 

abundant crop residues in the U.S. (Glassner et al., 1998). Because corn stover is only the fibrous 

portion of the corn plant after the corn grain harvest, it does not compete with ethanol production 

from corn grain.  

Feeding corn stover does present some challenges. Corn stover contains little protein or 

energy in comparison to corn or even other better quality roughages, such as alfalfa haylage or 

corn silage (NRC, 1996). This means that feeding corn stover may necessitate protein 

supplementation as well as methods to increase its energy availability for the animal. One 

technique that has been used is the alkaline treatment of corn stover to increase its digestibility. 

The first methodology for treating poor quality forages was developed by Beckmann (1921) and 

improved by Wilson and Pigden (1964). This involved a NaOH application to moistened 

roughages prior to feeding. Other studies have found that Ca(OH)2 or CaO is nearly as effective 
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as NaOH, is lower in cost, and is safer to apply in comparison (Rounds and Klopfenstein, 1974; 

Chaudhry, 1999). 

Increased corn prices and the abundance of corn stover have renewed interest in the 

alkaline treatment of corn stover to improve its feeding value. Recent work has been focused on 

evaluating feeding CaO-treated corn stover with distillers grains with solubles (DGS) as a 

replacement for corn in feedlot diets (Russell et al., 2011; Shreck et al., 2011; Shreck et al., 

2012a; Shreck et al., 2012b). Distillers grains are a co-product of the ethanol industry (Stock et 

al., 2000). They are nutrient-dense when compared to corn, with a nearly 3-fold increase in fat, 

fiber, and protein (Stock et al., 2000), and have an increased energy value (Larson et al., 1993).  

Distillers grains with solubles have traditionally been fed at approximately 6 to 15% of 

diet DM as a protein supplement due to their increased concentration of CP (NRC, 1996). 

However, when fed at greater dietary inclusions, DGS can be an energy source replacing corn 

(Klopfenstein, 2001). Several studies have established 40% (DM basis) as the optimal dietary 

inclusion rate for DGS as a corn replacement (Ham et al., 1994; Vander Pol et al., 2006; Bremer 

et al., 2011). 

Increasing DGS inclusion in diets has some drawbacks. One is the increased S 

concentration (Vanness et al., 2009) and reduced ruminal pH (Leupp et al., 2009; Felix et al., 

2012), both of which can lead to an increased risk of polioencephalomalacia (PEM; Gould, 

1998). Furthermore, reduced ruminal pH impedes fiber digestibility (Mould and Orskov, 1983; 

Hoover, 1986). One potential strategy to mitigate this decrease in ruminal pH when feeding 

increasing inclusion rates of DGS is to treat the DGS with alkaline compounds in an attempt to 

buffer acidity in the rumen. Felix et al. (2012) found that feeding cattle DDGS that had been 

treated with 2% NaOH prior to feeding increased ruminal pH compared to cattle fed untreated 
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DDGS. Work still remains to be done to determine the optimal type and inclusion of alkaline 

treatment to mitigate the inherent acidity of DGS-based diets.  

 

CORN STOVER 

Approximately 35 million ha of corn were harvested in 2012 in the United States (USDA, 

2013). Corn stover is the residue left on the field after the corn grain has been harvested and 

consists of the stalks, leaves, and residual cobs. It is the largest single source of biomass residue 

in the United States (Glassner et al., 1998). One report estimated that between 170 and 232 

million metric tons are produced annually depending on yield and tillage (Perlack et al., 2005). 

With increasing amounts of corn grain being used to produce ethanol, the residual bio-mass of 

the corn plant is a co-product, rather than competitor, of ethanol production. This is in contrast to 

other forages such as corn silage that compete with corn grain for acreage. This is because 

making silage uses the whole corn plant, while making corn stover uses only the residue after the 

grain has been harvested. The same plant provides grain for ethanol production and residue for 

corn stover production. 

Corn Stover as a Corn Replacement 

With rising corn prices, replacing corn with a roughage equivalent becomes more of an 

attractive option. The availability and abundance of corn stover suggests that it may have 

tremendous potential as a cost effective corn replacement ingredient as ethanol production from 

corn continues to expand. However, there are challenges associated with feeding corn stover in 

beef feedlot diets. According to the NRC (1996), corn stover has a net energy value for 

maintenance of 1.50 Mcal/kg and corn grain, 2.18 Mcal/kg. The decreased energy value of corn 

stover compared to some other common roughages like corn silage (1.79 Mcal/kg; NRC, 1996) 
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could reduce animal performance. Bartle et al. (1994) found that alfalfa and soybean hulls could 

replace concentrates in beef cattle diets at 20% DM inclusion rates without negatively affecting 

ADG or carcass characteristics, despite the reduced energy density of 20% roughage diets. 

However, Russell et al. (2011) replaced corn with corn stover at 20% of the diet DM and 

reported a reduction in cattle weight gain when compared to cattle fed the control diets 

containing only 5% corn stover. Cattle intakes in that trial were reduced; therefore, cattle fed 

stover had the same feed efficiency as cattle fed corn. Another challenge is the protein content of 

corn stover (6.5% CP) in comparison to other roughages such as ryegrass or timothy grass hay 

(8.6% and 9.7% CP, respectively; NRC, 1996). Feedlot cattle require approximately 14% CP in 

their diet; therefore, replacing corn (9.8% CP) with corn stover will increase the need for protein 

supplementation in the diet to meet the animal’s requirements.  

The primary challenge of feeding corn stover, however, is the maturity of the corn plant 

at time of harvest. Stage of maturity at time of harvest affects the feeding value of forages. As 

plants mature, the feeding value decreases (Moxon et al., 1951). Russell (1986) reported that 

IVDMD decreased as fiber concentration increased with maturity of corn silage. This is due to a 

5% increased portion of lignin in the NDF component of the mature corn plant compared to a 

less mature corn plant like corn silage (NRC, 1996). Kamstra et al. (1958) determined that 

increasing lignin content correlated directly with decreased cellulose digestibility. They 

concluded that lignin had an inhibitory effect on cellulose digestion and, therefore, fiber 

digestibility. As the plant matures, not only does the NDF portion of total DM increase, but the 

cellulose and lignin increase while the hemicellulose proportion decreases, causing the greater 

quantity of NDF to be even less digestible. Jung and Vogel (1986) reported that lignin had a 

curvilinear inhibitory effect on cellulose and hemicellulose digestibility with increasing 
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concentrations in the plant cell wall. Furthermore, they concluded that this would reduce corn 

stover DM and fiber digestibility when compared to corn silage, which is harvested at an earlier 

stage of maturity than stover, and as a result, has reduced lignin content (Jung and Vogel, 1986). 

According to the NRC (1996), corn silage contains just 41% NDF with 7% lignin, whereas corn 

stover contains 65% NDF with 10% lignin. 

As a result of its poor digestibility, corn stover has traditionally been used as bedding for 

animals or left in the field to decompose and has not been extensively used as livestock feed 

(Glassner et al., 1998). With rising corn prices, including corn stover in beef cattle diets may be 

an economically feasible option for beef producers. However, there is a critical need to improve 

the feeding value of corn stover. One approach to increase feeding value is to improve 

digestibility of poor quality forage by chemical treatment. 

Alkaline Treatment of Corn Stover  

 Poor quality forages can be defined as roughages that are less than 55% digestible and 

deficient in protein (< 8% CP; Leng, 1990). Much work has been done to improve the 

digestibility and, therefore, feeding value of poor quality forages such as corn stover (Beckmann, 

1921; Wilson and Pigden, 1964; Chaudhry, 1999; Russell et al., 2011). Studies have reported 

that treating poor quality forages with a combination of NaOH and Ca(OH)2 improved 

production performance when compared to NaOH alone (Kormishchikov, 1969; Rounds and 

Klopfenstein, 1974). Substituting Ca(OH)2 for NaOH reduces the cost of treatment while 

reducing Na intake and increasing Ca intake, thereby potentially reducing the need for further Ca 

supplementation (Rounds and Klopfenstein, 1974). Waller and Klopfenstein (1975) reported that 

a combination of Ca(OH)2 and NaOH treatment resulted in equal or improved ADG and 

efficiency compared to either Ca(OH)2 or NaOH alone. A 1978 review of chemical treatment of 
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poor quality forages found that 3 to 5% inclusion levels on a DM basis seemed to be the 

optimum chemical treatment to improve digestibility and growth performance (Klopfenstein, 

1978).   

Research has shown that one way lignin acts is as a natural protective barrier to microbial 

attack, enclosing the largely crystalline cellulose microfibrils and amorphous hemicellulose 

polymers, and preventing microbial access for enzymatic hydrolysis of the cellulose (Mansfield 

et al., 1999). Chemical treatment is thought to remove the lignin crust, allowing for dissolution 

of hydrogen bonds and swelling of cellulose microfibrils, which serves to partially break off and 

solubilize the hemicellulose polymers. This increases the surface area of cellulose and the 

accessibility to hemicelluloses for increased hydrolysis of both by rumen microbial cellulases 

(Kahar, 2013).  Lignin is reported to inhibit cellulose hydrolysis by irreversibly adsorbing the 

cellulase enzymes. As a result, separation of the lignin from the cellulose/hemicellulose complex 

not only increases substrate availability, but also increases cellulase enzymatic activity (Lee, 

1994). It has been reported that chemical treatment may remove acetyl groups on lignin that may 

have a structurally inhibitory effect on hemicellulose digestion and, therefore, may increase the 

potential rate or extent of digestion of the hemicellulose component (Bacon and Gordon, 1980).  

Beckmann (1921) developed a method for treating wheat straw with NaOH to remove the 

lignin barrier from the cellulose and hemicelluloses to reduce the inhibitory effect of lignin on 

digestibility. This methodology, however, required large amounts of water to wash out unreacted 

alkali, which also had the effect of washing out soluble nutrients, including hemicelluloses. 

Wilson and Pigden (1964) developed a “dry” method that involved grinding wheat straw and 

then mixing up to 15 g of NaOH in 30 ml of H2O per 100 g of wheat straw. NaOH is sprayed on 

and the moist forage is fed to animals without being washed. This study reported that alkali 



7 
 

treatments of up to 9% NaOH resulted in significant increases in IVDMD, with further additions 

of NaOH having little or no significant effect. This method was more pratical than Beckmann’s 

(1921) method because it did not wash out the soluble nutrients. Klopfenstein et al. (1967) 

studied the effects of treating alfalfa stems and corn cobs wetted to 50% moisture with NaOH or 

Na2O2. They reported that treatment of corn cobs resulted in a greater magnitude of increase than 

did treatment of alfalfa stems. This increased response to the treatment of corn cobs was 

attributed to delignification having a greater impact on digestibility due to treatment reducing the 

lignin content of the cobs and not affecting the lignin content of the alfalfa. It was concluded that 

since the differing chemical treatments produced little variation in growth performance, the 

NaOH had greater practical implications, due to its relative cost, than Na2O2.  

Ololade et al. (1975) investigated the combined effects of duration, temperature, and 

concentration of NaOH treatment of poor quality forages on IVDMD. Klopfenstein et al. (1976) 

corroborated these findings in showing an increase in IVDMD for all treated diets, with the 

greatest increase affecting barley straw and the least increase for alfalfa stems. Like Ololade et 

al. (1975), Klopfenstein et al. (1976) reported a diminishment of returns at inclusionary levels 

greater than 8%. They also reported that temperature seemed to speed up the rate of treatment 

effect on digestibility, but only resulted in significant gains at the uppermost NaOH 

concentrations. Ololade et al. (1975) reported no net decrease in lignin, suggesting that the lignin 

may not be solubilized by treatment, but rather physically separated from the cellulose and 

hemicelluloses without being dissolved. Other studies have reported a large variation in actual 

solubilization of lignin based on substrate, type of chemical used, intensity of chemical 

treatment, and other physical factors such as washing of treated forage (Chandra and Jackson 
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1971; Fernandez and Greenhalgh, 1972). It appears that alkaline treatment solubilizes 

hemicelluloses, can solubilize lignin, and presumably does solubilize cellulose.  

 

CALCIUM OXIDE AS A FORAGE TREATMENT 

 One alkaline treatment that has not been extensiviely researched but that is gaining 

popularity is calcium oxide, CaO. Chaudhry (1999) compared the effects of CaO, NaOH, and 

alkaline hydrogen peroxide (AHP) treatments on the rate and extent of disappearance of wheat 

straw in sheep. Calcium oxide is the dehydrated, powdered form of Ca(OH)2 and was used to 

treat the wheat straw in the dry form rather than as a wet solution  Although AHP was the most 

effective treatment for improving ruminal degradation of wheat straw, it was the most costly and 

least practical. Chaudhry (1999) ultimately found that CaO was effective in modifying NDF 

composition of wheat straw to improve ruminal digestion of wheat straw. While CaO was 

slightly less effective at improving ruminal digestion of wheat straw than NaOH, CaO was the 

more desirable treatment option to these authors due to it’s reduced cost, ease of handling, 

relative ease of storage and application, as well as fewer safety concerns when compared to 

NaOH (Chaudhry, 1999). 

 Calcium oxide, or quicklime, is an efficient means of alkaline treatment in terms of cost 

and labor. It is cheaper and safer than NaOH. It is also easier to apply than eiter NaOH or 

Ca(OH)2 since it can be added dry to moistened corn stover in a mixer wagon and does not 

require a special apparatus for application. Additionally, it may provide a supplemental source of 

calcium in the diet (Rounds and Klopfenstein, 1974; Waller and Klopfenstein, 1975). Thus, more 

recent research has evaluated the effects of CaO treatment of corn stover on ADG, feed 

efficiency, carcass characteristics, and ruminal metabolism. 
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Effects on growth performance and mode of action 

 Russell et al. (2011) conducted studies during the growing and finishing phases of feedlot 

cattle production, along with a lamb metabolism trial, to evaluate the effects of CaO-treated 

MWDGS and CaO-treated corn stover silage (wetted to 50% DM) fed as corn replacement diets 

on production characteristics, ruminal metabolism, and profitability. They concluded that CaO-

treated stover can be fed at 20% of the diet in combination with MWDGS without adversely 

affecting ADG or feed efficiency. However, marbling scores were decreased in cattle fed CaO-

treated corn stover when compared to cattle fed a corn-based control diet. Russell et al. (2011) 

also concluded that feeding the CaO-treated corn stover diets could be economically competitive 

with the traditional corn-based diets if the price of corn is above $4.00 per bushel.  

 Shreck et al. (2011) concluded that feeding cattle 5% CaO-treated corn stover at 20% of 

the diet DM improved IVDMD when compared with feeding an untreated corn stover control. 

Furthermore, they stated that the optimal means of storing treated corn stover was by wetting to 

50% moisture prior to treatment, and storing anaerobically for 7 d. A follow-up study compared 

5% CaO treatment of corn stover to that of 5% CaO-treated corn cobs and wheat straw (Shreck 

et al., 2012a). They reported that feeding CaO-treated corn stover and straw to cattle resulted in 

increased final BW, ADG, and feed efficiency when compared to feeding untreated corn stover 

and straw, while treating corn cobs was not effective. Furthermore, in a follow-up study, Shreck 

et al. (2012b) reported that reducing the particle size of ground corn stover from 7.62 to 2.54 cm 

prior to feeding increased feed efficiency.  

 One possible mechanism to explain the aforementioned improvement in feed efficiency 

may be increased microbial attachment, due to a greater surface area, and increased digestibility. 

Shreck et al. (2013) compared the effects of feeding of CaO-treated corn cobs, corn stover, and 
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wheat straw at 25% of the diet DM, to replace corn, on ruminal metabolism and digestibility. 

They reported that no differences were found in DM or OM digestibility between cattle fed the 

treated corn stover diets or those fed a corn-based control when feeding 40% WDGS on a DM 

basis; however, feeding treated corn stover increased NDF digestibility by cattle when compared 

to feeding corn. They also noted ruminal that pH increased when feeding treated stover but 

decreased when feeding treated straw, compared to their respective untreated counterparts, while 

pH remained the same when treated corn cobs were fed. Feeding corn stover, regardless of 

whether it was treated or untreated, did not affect ruminal pH when compared to cattle fed the 

control diet. No difference was observed in acetate to propionate ratios when feeding the treated 

stover compared to the control. They concluded that due to the increased fiber solubility and 

NDF digestibility with chemical treatment, the treated forages resulted in a similar nutrient 

supply to the animal when substituted for grain. Most of the aforementioned digestibility work 

was done comparing corn-based diets to corn stover and DGS diets. A direct comparison of 

wetted, untreated corn stover and wetted, CaO-treated corn stover has not yet been done. 

Furthermore, most of the work with treating poor quality forages has been done with the premise 

of improving digestibility similar to increased quality, immature forages. However, it is currently 

not known whether feeding CaO-treatment of corn stover will result in the same production and 

digestibility increases as feeding immature corn silage. 

 

 

MODIFIED WET DISTILLERS GRAINS AS A PROTEIN AND ENERGY SOURCE 

Distilllers grains with solubles are one dietary ingredient that has become common in 

recent years (Lardy, 2007). Distillers grains with solubles are a co-product derived from the 
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fermentation and distillation process to convert cornstarch to ethanol. The coarse grains from the 

stillage are separated from the liquid fraction and the liquid fraction is condensed and added back 

to the grains to produce wet distillers grains with solubles (WDGS). This combination can also 

be dried to produce dried to distillers grains with solubles (DDGS; Stock et al., 2000).  

Distillers grains are easier to use in the dry form due to transportation and storage 

options. However, drying WDGS to DDGS may account for a large increase in energy cost for 

the plant (Perrin et al., 2009), which increases the cost of DDGS for producers and may reduce 

nutritional quality (Van Soest, 1989; Weis et al., 1989). Wet distillers grains with solubles are 

approximately 30 to 35% DM. However, due to increased spoilage in the wet product, WDGS 

have a shelf life of approximately one week (Dooley et al., 2008). Therefore, shipping is limited 

by distance and must be fed rapidly, making them feasible, typically, only for large production 

operations within an average radius of 100 km from the co-product source (Dooley et al., 2008). 

Dried distillers grains with solubles are dried to approximately 90% DM, greatly increasing 

shipping radius and increasing storage options for the producer which comes at greater cost 

(Dooley et al., 2008). Modified wet distillers grains with solubles (MWDGS) are WDGS dried 

to approximately 42 to 50% DM as a compromise between transportability, storage convenience, 

and cost (Dooley et al., 2008). A study comparing MWDGS to WDGS and DDGS found that 

moisture level of DGS did not affect ADG or carcass characteristics (Nuttelman et al., 2011). 

However, they reported that feeding cattle MWDGS and DDGS tended to increase feed intake, 

resulting in reduced efficiency when compared to cattle fed WDGS.  

Because the ethanol fermentation process consumes the starch that makes up 

approximately two-thirds of the original grain, the remaining fat, protein, and fiber are 

concentrated nearly 3 times (Stock et al., 2000). Traditionally, DGS have been used as a 
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supplementary protein source due to their increased protein content (NRC, 1996), but have 

become attractive as an energy source for cattle producers due to rising corn prices. Larson et al. 

(1993) reported that wet distillers byproducts contained on average 1.3 to 1.6 times more energy 

for gain (NEg, Mcal/kg) than corn at different stages of growth. This was partially attributed to a 

3-fold increase in fat and an increased concentration of highly digestible corn fiber (DeHaan, 

1983). According to the NRC (1996), DGS contain 46% NDF, 29.5% CP, and 10.3% fat on a 

DM basis.. Distillers grains with solubles become a more attractive option as a corn replacement 

as corn prices increase. They are nutrient dense and are increasing in availability as ethanol 

production continues to increase. 

Dietary inclusion of MWDGS 

Traditionally, DGS have been fed at 6 to 15% DM inclusion rates as a source of 

supplemental protein. This is largely because they are an excellent source of bypass protein with 

approximately 70% of the CP fraction being rumen undegradable intake protein (UIP; NRC, 

1996). However, due to their high nutrient density, when fed at greater dietary inclusion rates, 

they can be used as an energy source to replace corn in the diet (Klopfenstein, 2001). Ham et al. 

(1994) reported that cattle fed WDGS that were fed at a 40% DM inclusion rate resulted in an 

average of 39% more NEg than dry rolled corn. Also, cattle fed WDG had decreased DMI and 

increased feed efficiency compared to cattle fed DDGS. This study also reported that WDG 

contained approximately 4 times the NDF and 3 times the protein and fat when compared to dry 

rolled corn. Vander Pol et al. (2006a) reported that WDGS fed from 10 to 50% of the diet DM 

resulted in a greater energy value relative to corn. However, ADG and DMI increased 

quadratically as dietary WDGS inclusion increased. Therefore, they concluded that 40% 

inclusion was optimal since ADG and G:F were the greatest when WDGS was fed at 40% of the 
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diet DM. Furthermore, they reported that replacing corn with WDGS did not alter carcass 

characteristics.  

Leupp et al. (2009) studied the effects of increasing inclusion of DDGS from 0 to 60% 

DM basis on DMI and ruminal metabolism. They reported an increase in OM intake from 0 to 

15% followed by a linear decrease as the dietary inclusion of DDGS increased to 60%. This is in 

contrast to other studies that found that feeding 30% was the optimum inclusion to maximize 

DMI in WDGS (Vander Pol et al., 2006a) and DDGS (Buckner et al., 2007). Leupp et al. (2009) 

also reported decreased ruminal digestibility as DDGS inclusion increased to 60% of the diet 

DM; however, this resulted in increased post-ruminal digestibility with little net effect on total 

tract digestibility. Ultimately, they concluded that 45% inclusion of DDGS on a DM basis would 

maximize digestibility and ruminal fermentation when fed to growing steers. Rich et al. (2011) 

evaluated feeding WDGS at levels ranging from 40 to 85% DM basis with varying ranges of 

forage inclusion. They concluded that WDGS could be fed at up to 85% dietary DM inclusion 

when at least 8% forage was fed in the diet, but production performance and profitability were 

optimized at the 40% inclusion level. Furthermore, Vander Pol (2006b) determined that the 

optimal profitability resulted from feeding WDGS at the 40% inclusion level. 

Bremer et al. (2011) conducted a DGS meta-analysis of 28 finishing studies that 

evaluated feeding increasing levels of WDGS, MWDGS, and DDGS as a corn replacement in 

diets. The DM inclusions analyzed were 0 to 40% replacement of corn in the diet with DGS. 

When WDGS and MWDGS were fed, feeding value compared to corn was greatest at the 10% 

inclusion level (150 and 128%, respectively) and decreased linearly up to the 40% inclusion 

level (to 130 and 117%, respectively). The feeding value of DDGS compared to corn remained at 

a steady 112% with no change seen with increasing dietary inclusion rates. Nuttelman et al. 
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(2011) compared feeding WDGS, MWDGS, and DDGS in the same trial at 3 dietary levels of 

corn replacement (20, 30, and 40%, DM basis) to determine the effects of moisture level and 

inclusion rate on feeding value. They reported that moisture did not have an effect on ADG, 

although feeding WDGS decreased DMI. Cattle fed MWDGS were less efficient than those fed 

WDGS but more efficient than those fed DDGS. To summarize, all types of DGS at all levels of 

inclusion resulted in a feeding value greater than corn. The optimal dietary inclusion to feed 

MWDGS were reported as 30% for ADG and 40% for G:F. For WDGS, feeding at 30% 

inclusion was reported as optimal for ADG and 40% for G:F; and for DDGS, feeding 40% 

inclusion was optimal for ADG, with G:F remaining the same across inclusion levels.  

Klopfenstein et al. (2008) asserted that due to the protein content of DGS, cheaper, 

poorer quality forages with less digestibility and less protein could be fed in combination with 

increasing dietary inclusions of WDGS. Benton et al. (2007) demonstrated that cattle fed corn 

stover performed as well as cattle fed alfalfa and corn silage when fed diets containing 30% 

WDGS on a DMB. Feeding poor quality forages with DGS based diets may be optimal given the 

potentially cheaper cost compared to good quality forage. 

Problems with increased DGS inclusion 

 Increasing dietary inclusions of DGS is not without some drawbacks. Issues with feeding 

greater amounts of DGS include fat (Zinn, 1993; Zinn et al., 2000; Vander Pol, 2009), protein 

(Klopfenstein et al., 2008; Gunn et al., 2009), and S (Gould, 1998, Felix et al., 2012). Fat and 

protein issues are discussed at length in the previously mentioned reports; therefore, the focus in 

this report will be the S and resulting acid present in DGS.  

 Sulfuric acid (H2SO4) is used during ethanol production for cleaning and pH regulation 

during fermentation (Snider, 2004). Residual H2SO4 can remain in DGS (Vanness et al., 2009). 
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This may increase S concentration (Vanness et al., 2009) and increase acidity of the DGS (Felix 

and Loerch, 2011). Increasing dietary S concentrations can decrease DMI and increase the 

incidence and risk of Polioencephalomalacia (PEM) in cattle (Gould, 1998). Sulfur-induced 

PEM results from the reduction of dietary sulfates to hydrogen sulfide gas (H2S) that then builds 

up in the rumen. This H2S is eructated and then inhaled by the animal (Gould, 1998), disrupting 

metabolic pathways in the brain and inducing PEM symptoms. Feeding increasing 

concentrations of DGS also reduces ruminal pH (Vander Pol et al., 2009; Leupp et al., 2009; 

Felix and Loerch, 2011, Felix et al., 2012). Therefore, PEM is exacerbated in cattle fed DGS-

based diets because they provide available hydrogen ions to reduce the sulfates to H2S. As a 

result, greater inclusions of DGS may result in a synergistic increase in PEM risk from elevated 

S concentrations and decreased ruminal pH combined. 

 Several studies have reported a decrease in ruminal pH as a result of feeding DGS 

(Vander Pol et al., 2009; Leupp et al., 2009; Felix and Loerch, 2011, Felix et al., 2012). 

Reductions in ruminal pH decrease DMI (Owens, 1998) and have an inhibitory effect on the 

growth of ruminal cellulolytic microbial populations and fiber digestibility (Mould and Orskov, 

1983). Traditionally, the most common cause of acidic ruminal pH is increased intake of starch, 

or other rapidly fermentable carbohydrate sources, which rapidly increases lactic acid 

concentrations resulting in an acidic pH (Allen and Mertens, 1987). Reduced ruminal pH can 

lead to ruminal acidosis. Historically, ruminal acidosis was caused by lactic acid (Owens, 1998) 

Lactic acid is a stronger acid (pKa = 3.9) than the VFA (pKa = 4.8) and, therefore, has a greater 

effect on reducing ruminal pH (Van Soest, 1994). Lactic acid accumulation in the rumen is 

determined by a balance of lactic acid “producers” and lactic acid “users”. Lactic acid users tend 

to be less sensitive to acidic pH than lactic acid producers. When ruminal pH decreases, lactic 
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acid users decrease and results in lactic acid accumulation (Owens et al., 1998). Similarly, VFA 

are typically readily absorbed from the rumen and do not accumulate at sufficient concentrations 

to affect pH significantly, but when the rate of acid accumulation outpaces the rate of acid 

absorption, VFAs accumulate and can decrease pH as well (Owens et al., 1998). In comparison, 

the pKa of H2SO4 is 1.9. Therefore, H2SO4 is an even stronger acid than lactic acid with the 

potential to impact ruminal pH even more. Additionally, diets with more concentrates, like DGS, 

and less roughages can decrease rumination, thereby decreasing saliva production and potential 

buffering in the rumen (Church, 1988; Felix and Loerch, 2011).  

 According to Stock et al. (2000), most of the starch in corn is converted to ethanol 

through microbial fermentation. Therefore, there is little starch left in DGS and the acidic 

ruminal pH from feeding distillers grains is more likely a result of residual H2SO4 in the grain 

rather than lactic acid production in the rumen (Felix et al., 2012). Felix and Loerch (2011) 

measured the pH of DDGS at 3.76 compared to 5.8 for corn. They hypothesized that DDGS may 

actually increase the acid load in the rumen due to residual H2SO4 rather than decreasing the acid 

load by replacing rapidly fermentable starch with NDF as previously believed (Klopfenstein et 

al., 2008).  

It is well documented that reduced ruminal pH has a major inhibitory impact on fiber 

digestion (Hoover, 1986). According to Mould and Orskov (1983), fiber digestibility by sheep 

was reduced as ruminal pH decreased from 6.6 to 6.2 and below pH 6.0 it was almost completely 

inhibited. Mould and Orskov (1983) concluded that this was because cellulolytic microbes 

necessary for fiber digestion were inhibited and eventually destroyed when ruminal pH was less 

than 6.1. The moderate decreases in fiber digestion associated with a pH of around 6.0 may also 

be partially due to inhibition of the ability of cellulolytic bacteria to tightly adhere to plant cell 
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walls at decreased pH (Cheng et al., 1984; Shriver et al., 1986). As stated previously, DGS 

contain nearly 46% NDF (NRC, 1996); therefore, a decrease in fiber fermentation in the rumen 

could have detrimental impacts on DGS digestibility. Strategies, then, are necessary to control 

pH when greater inclusions of DGS are fed to cattle. One such strategy is to increase roughage 

inclusion in the diet to stimulate salivary buffering (Owens et al., 1998; Church, 1988), Felix and 

Loerch (2011) evaluated feeding of additional forage to manage ruminal pH in 60% DDGS-

based diets by supplementing diets with up to 10% alfalfa haylage. They reported that 10% 

haylage supplementation increased DMI by 19% and ADG by 9%, and increased ruminal pH as 

expected. However, reduced acetate concentrations, despite elevated dietary NDF and ADF 

concentrations, suggest that fiber fermentation was still negatively affected at 60% DDGS 

inclusion. This study concluded that inclusion of 60% DDGS may result in substantial decreases 

in ruminal pH but that increased roughage supplementation could mitigate the effects of reduced 

pH. However, Felix and Loerch (2011) noted that increasing dietary roughage alone was not 

sufficient to buffer all of the increased acidity from DDGS.  

Another approach to controlling ruminal pH is to buffer the acidity of the rumen using 

alkali treatment. However, results have been highly variable as regards the effects of chemical 

treatment on ruminal pH. Coombe (1979) reported no change in ruminal pH when barley straw 

was treated with NaOH and fed to steers. Some studies found a decrease in pH with NaOH 

treatment (Koers et al., 1970; Ololade and Mowat, 1975), and in the case of Ololade and Mowat 

(1975), pH decrease corresponded with an increase in total VFA concentration, suggesting VFA  

as weak organic acids were reducing ruminal pH. Shreck et al. (2013) reported a decrease in 

ruminal pH when treating wheat straw with 5% CaO and an increase when treating corn stover. 

It is noteworthy that the decrease reported with treated wheat straw corresponded with a 
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numerical increase in total VFA, and the increase reported with treated corn stover corresponded 

with a decrease in total VFA.  

All of the previous reports have been based on treated forages. Little research has been 

done to determine the effects of buffering the acidity from DGS on growth performance or 

ruminal metabolism. Felix et al. (2012) studied the effects of treating DDGS with 2% NaOH on 

ruminal metabolism. They determined that neutralizing the acidity in DDGS with NaOH prior to 

feeding increased ruminal pH when compared to feeding untreated DDGS. Currently, the use of 

CaO to mitigate the effects of acidity from DGS has not been investigated. 

 

CONCLUSION 

 The rising price of corn may be mitigated by substituting DGS and treated crop residues 

as partial corn replacements in diets. Distillers grains with solubles are energy dense ingredients 

with greater feeding value than whole corn that are becoming more available as ethanol 

production increases. Although challenges exist to feeding DGS at elevated dietary inclusions, 

these challenges may be countered by increasing the proportion of forages in the diet, in tandem 

with DGS, as a replacement for corn. Corn stover is the most abundant crop residue in the United 

States, and treating it with CaO has been demonstrated to be a safe and effective method of 

increasing its digestibility and, thus, feeding value to the ruminant animal. Additionally, the 

increase of roughage in the diet to approximately 20% DM, along with alkali treatment, may 

increase ruminal buffering, thereby mitigating the inherent acidity of DGS and its effects on fiber 

digestion and ruminal metabolism. Therefore, the potential limitations of including DGS as a 

corn replacement, the abundance of corn crop residual biomass, and the capability to increase the 

digestibility of this crop residue has resulted in renewed interest in corn replacement diets that 
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are composed of DGS and CaO-treated corn stover. While initial investigations on treated corn 

stover show positive results on animal growth performance, effects on ruminal metabolism are 

lacking. It is currently unknown if the treatment of corn stover works in the DGS-based corn 

replacement diets solely by improving forage digestibility, or if there is ruminal buffering 

occurring that improves the DGS digestibility as well. These areas need to be investigated to 

fully understand the effects of a corn stover and DGS-based corn replacement feed on animal 

growth performance, carcass characteristics, and ruminal metabolism.  
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CHAPTER 2: EFFECTS OF FEEDING CAO TREATED MODIFIED WET DISTILLERS 

GRAINS WITH SOLUBLES OR TREATED CORN STOVER TO CATTLE ON 

PERFORMANCE, CARCASS CHARACTERISTICS, AND RUMINAL METABOLISM 

ABSTRACT 

Chemically treating corn alternatives, corn stover and modified wet distillers grains with 

solubles (MWDGS) may increase feeding value for feedlot cattle. The objectives of this study 

were to determine effects of feeding CaO treated MWDGS or treated corn stover to cattle during 

the finishing phase on growth, efficiency, and carcass characteristics, and on ruminal metabolism 

and in situ dry matter disappearance in fistulated cattle. Exp. 1: Steers (n = 162) were fed 1 of 3 

treatments: (1) 20% corn stover, untreated (UCS), (2) 20% corn stover treated with 5% CaO 

(TCS), or (3) 40% MWDGS, treated with 2.5% CaO (TDG). Exp. 2: Heifers (n = 138) were fed 

1 of 3 treatments: (1) UCS, (2) TCS, or (3) 40% corn silage (SIL). Exp. 3: fistulated steers (n = 

5) were fed in a 5x5 Latin square design. Diet treatments were: (1) UCS, (2) TCS, (3) TDG, (4) 

SIL, and (5) control, 50% cracked corn (CON). Exp 1: Feeding CaO-treated MWDGS or corn 

stover reduced (P ≤ 0.02) DMI, final BW, HCW, and back fat (BF) when compared to feeding 

UCS. Steers fed TCS had reduced (P =  0.03) ADG and yield grade (YG) when compared to 

steers fed UCS; steers fed TDG were intermediate.  Marbling score (MS), LM area, and G:F did 

not differ (P  ≥  0.08) by treatment. Exp 2: Feeding TCS to heifers reduced (P  <  0.01) DMI, 

final BW, YG, and BF when compared to feeding UCS and SIL. Heifers fed UCS had similar (P 

≤ 0.02) ADG, DMI, and MS, as heifers fed SIL; however final BW and G:F were reduced (P  ≤ 

0.04). Exp 3: Ruminal pH tended to decrease (P = 0.06) when steers were fed TCS compared to 

UCS. Steers fed TCS had the greatest (P ≤ 0.05) mean concentrations of acetate and total VFA. 

When steers were fed UCS, dry matter digestibility was reduced (P = 0.02), but it did not differ 
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when steers were fed TCS, CON, or SIL diets; those fed TDG were intermediate. Feeding TCS 

increased (P < 0.01) ADF digestibility compared to feeding UCS and TDG, and similar to 

feeding SIL and CON. After 48 h of ruminal fermentation, DM digestibility was increased by 

15.9% and NDF digestibility was increased by 16.7% in calves fed treated stover compared to 

those fed untreated. Treating corn stover with CaO was an effective means to increase 

digestibility; however, it did not improve cattle performance due to reduced DMI. Feeding 

untreated, ensiled corn stover resulted in performance comparable to corn silage.  

Key words: corn stover, distillers grains, calcium oxide, cattle 
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INTRODUCTION 

 Ethanol production has increased corn prices over the last decade. Therefore, alternatives 

to corn-based cattle diets are needed that will alleviate rising costs without reducing animal 

growth performance. Recently, corn stover (CS), in combination with modified wet distillers 

grains with solubles (MWDGS), has been suggested as a corn replacement feed (Lardy, 2007). 

However, dietary DM inclusion levels of MWDGS above 20 to 40% may negatively affect 

animal performance because of dietary S concentration and reduced pH caused by H2SO4 used in 

the ethanol production process (McAloon et al., 2000). Felix and Loerch (2011) discovered that 

cattle  consuming dry distillers grains with solubles (DDGS)-based diets have reduced ruminal 

pH compared to cattle fed corn diets. Mould and Orskov (1983) found that reduced ruminal pH 

may inhibit cellulolytic bacteria necessary for fiber digestion. Inhibition of cellulolytic bacteria 

could be problematic for corn replacement feeds containing high fiber co-products like CS and 

MWDGS (NRC, 1996).  

Calcium oxide increases the digestibility of poor quality forages, like CS (Kamstra, et al., 

1958; Rounds and Klopfenstein, 1974). Shreck et al. (2012a) found that treating CS with 5% 

CaO at 50% moisture improved digestibility. Felix et al. (2012) reported that neutralizing the 

acidity in DDGS could increase in situ fiber digestibility. There are currently no data on treating 

MWDGS with CaO. It is also unknown if CaO can improve digestibility of CS to that of an 

immature forage like corn silage.  

The objectives of this study were to determine the effects of feeding CaO-treated 

MWDGS or CS, and corn silage, to cattle during the finishing phase on growth, feed efficiency, 

and carcass characteristics, and on ruminal metabolism and in situ dry matter disappearance in 

fistulated cattle. We hypothesized that CaO would increase fiber digestibility and increase rumen 
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pH similarly whether applied to CS or MWDGS, with improvements being most similar to a 

corn silage diet.  

 

MATERIALS AND METHODS 

All animals used in these trials were managed according to guidelines recommended in 

the Guide for the Care and Use of Agriculture Animals in Agriculture Research and Teaching 

(FASS, 2010). All experimental procedures were approved by the University of Illinois 

Institutional Animal Care and Use Committee. 

Experiment 1 

Animals and Diets: 

Angus × Simmental steers (n = 162; initial BW = 436 ± 2.0 kg) were placed on trial at the 

Beef and Sheep Field Laboratory in Urbana, IL. Feedlot barns are constructed of wood frames 

with ribbed metal roofs, and siding on the north, west, and east sides. The south sides are 

covered with 1.27 cm × 1.27 cm wire mesh bird screen and have retractable curtains. Each pen 

has rubber-coated, slatted concrete floors and measures 4.9 m × 4.9 m. Steers were blocked by 

BW, stratified by sire, and allotted to 12 heavy block pens and 9 light block pens.      

Pens within block were randomly assigned to one of three treatments (Table 1): (1) 

untreated corn stover (UCS), (2) corn stover treated with 5% CaO (TCS), or (3) MWDGS with 

1% CaO added to the diet (TDG). All UCS diets contained 20% corn stover and 40% MWDGS. 

The CaO treated diets, TCS and TDG, were formulated to include 1% CaO on a DM basis. The 

remainder of the diets was corn and a vitamin/mineral supplement. Steers were adjusted to their 

feedlot diets over the course of 14 d. Diets were mixed in a mixer wagon (Knight Reel Auggie 

3130; Kuhn Agricultural Machinery, Brodhead, WI) and delivered to pens once daily. Steers 
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were fed for once daily ad libitum intakes. Samples of each dietary ingredient were collected 

every 21 d and were composited at the end the trial for nutrient analysis.  

CaO Treatment for TCS and TDG diets: 

 Corn stover was ground through a 2.5 cm screen using a tub grinder (Haybuster Big Bite 

H-1000 series; Agricultural Products DuraTech Industries International, Inc., Jamestown, ND) . 

It was then added to the mixer (Knight Reel Auggie 3130; Kuhn Agricultural Machinery, 

Brodhead, WI) and wetted to 50% moisture. Untreated corn stover was bagged in an Ag-Bag (A. 

Miller-St. Nazianz, Inc. Company, St. Nazianz, WI). Treated corn stover underwent the same 

aforementioned process; however, after wetting, CaO was added at 5% (DM basis) total 

inclusion and allowed to mix in the wagon for 10 min. 907 kg of Treated corn stover was made 

at a time and placed in a covered feed bay and allowed to react for 7 d prior to feeding. For the 

TDG diet, CaO was added to corn for a 1% total dietary inclusion (DM basis). This corn was 

added to the remainder of the ingredients in the mixer. This process was followed to facilitate 

complete mixing of the CaO in the diet. Therefore, CaO in the TDG diet was simply part of the 

total ration and not a pretreatment. 

Growth Performance and Carcass Data Collection: 

 Steers were weighed on two consecutive days at the beginning and end of the trial to 

determine initial and final BW, respectively. The d 0 BW was used for allotment, and cattle were 

implanted with Component TE-S® (Elanco, Greenfield, IN) and allotted to trial pens on d 1. 

Interim BW were taken every 28 d. Individual BW was recorded using a Flying W hydraulic® 

squeeze chute system (Flying W Livestock Equipment, Watonga, OK). Individual intake data 

were recorded using the GrowSafe® feed intake measurement system (GrowSafe Systems Ltd., 
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Airdrie, AB Canada). Steers were weighed off of trial by BW block upon reaching an average 

final BW of approximately 590 kg, 56 and 96 d for the heavy and light blocks, respectively. 

Steers were slaughtered at a commercial abattoir in Joslin, IL. Steer HCW was recorded 

at slaughter and carcasses were chilled for 24 h at -4
o
 C. At approximately 24 h post-slaughter, 

the carcasses were ribbed between the 12
th

 and 13
th

 ribs and carcass data were collected via 

cameras including: 12
th

 rib back fat thickness (BF), kidney pelvic and heart fat (KPH), marbling 

score (MS), and LM area. USDA Yield Grade (YG) was calculated using the equation: 

YG = 2.5 + (6.35 x BF(cm)) + (0.2 x %KPH) + (0.0017 x HCW(kg)) - (2.06 x LM 

area(cm
2
)).   

Quality Grade was provided by USDA personnel at the plant. 

Sample Analysis: 

 Composited feed samples were freeze-dried (Labconco; FreeZone
12

,Kansas City, MO), 

and ground to 1 mm particle size using a Wiley mill (Arthur H. Thomas; Philadelphia, PA). 

Chemical composition was individually analyzed and used to calculate nutrient composition of 

diets. All samples were analyzed for DM (105
o 
C). All freeze dried samples were analyzed for 

ash (500
o
 C for 18 h, HotPack Muffle Oven Model; 770750, HotPack Corp., Philadelphia, PA), 

NDF and ADF (Ankom Technology method 6 and 5 respectively; Ankom
200

 Fiber Analyzer, 

Ankom Technology, Macedon, NY), fat (ether extract method; Ankom Technology), CP (Leco 

TruMac; LECO Corporation, St. Joseph, MI), and complete minerals by inductively couple 

plasma electrophoresis (ICP; OARDC STAR lab; Wooster, OH). Corn stover was analyzed for 

ADL using the method described by Van Soest et al. (1991) 
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Statistical Analysis: 

 The experimental design was a randomized complete block design. Treatments were 

randomly assigned to pens within blocks. Pen was the experimental unit. The MIXED procedure 

of SAS (SAS Institute; Cary, NC) was used for analysis of all production and carcass data. 

Differences were declared significant at P ≤ 0.05 and trends were discussed at 0.05 < P < 0.10. 

Experiment 2 

Animals and Diets: 

Angus × Simmental heifers (n = 138; initial BW = 406 ± 2 kg) were placed on trial at the 

Beef and Sheep Field Laboratory in Urbana, IL. Barn construction, floor space, and cattle 

management were identical to conditions used Experiment 1. Heifers were blocked by BW, 

stratified by sire, and allotted to 9 heavy block pens and 9 light block pens. Heifers were 

assigned to one of three treatments (Table 2): (1) untreated corn stover (UCS), (2) corn stover 

treated with 5% CaO (TCS), or (3) corn silage (SIL). The corn stover diets contained 20% corn 

stover and 40% WDGS.  The SIL diet consisted of 40% MWDGS and 40% corn silage. Silage 

was assumed to have 50% grain and was added at 40% to match the roughage inclusion from the 

corn stover. The remainder of the diets was corn and a vitamin/mineral supplement. Heifers were 

adjusted to their feedlot diets over the course of 14 d. Diets were mixed in a mixer wagon 

(Knight Reel Auggie 3130; Kuhn Agricultural Machinery, Brodhead, WI) and delivered to pens 

once daily. Heifers were fed once daily for ad libitum intakes. The same corn stover, treated and 

untreated, was used as was used in Experiment 1. 

Growth Performance and Carcass Data Collection: 
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 Heifers were implanted on d 1 of the trial with Component TE-H® (Elanco; Greenfield, 

Indiana). All other data collection, management procedures, and sample analysis were the same 

as for Experiment 1. 

Statistical Analysis: 

 The experimental design was a randomized complete block design. Treatments were 

randomly assigned to pens within blocks. Pen was the experimental unit. The MIXED procedure 

of SAS (SAS Institute; Cary, NC) was used for analysis of all production and carcass data. 

Differences were declared significant at P ≤ 0.05 and trends were discussed at 0.05 < P < 0.10. 

Experiment 3 

Animals and Diets: 

Angus × Simmental steers (n = 5; initial BW = 524 ± 69 kg) fitted with a rumen cannulae 

were used in a metabolism trial at the Beef and Sheep Field Laboratory in Urbana, IL. Steers 

were randomly allotted to one of five dietary treatments (Table 3): (1) untreated corn stover 

(UCS), (2) corn stover treated with 5% CaO (TCS), (3) MWDGS with 1% CaO added to the diet 

(TDG), (4) corn silage (SIL), or (5) corn control (CON). Diets 1 through 4 were described in the 

previous 2 experiments. Diet 5, CON, was added as a positive control to reflect a more typical 

feedlot diet and contained 15% corn silage, 25% MWDGS, 50% dry rolled corn, and 10% 

vitamin/mineral supplement. The aforementioned diets were fed for ad libitum intakes in a 5×5 

Latin square design. Diets were individually mixed daily and fed once daily at 0900. Dietary 

treatment sequences were assigned according to procedures described by Patterson and Lucas 

(1962) in order to ensure complete randomization of animal, treatment, and period.  
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Steers were housed in individual 1.5 m × 2.4 m metabolism stalls with rubber mat 

flooring. Stalls and mats were cleaned twice daily, once after the morning feeding and once in 

the afternoon.  

Sampling and Analysis: 

 Each period consisted of a dietary adaptation phase (14 d), a fecal collection phase to 

determine apparent digestibility (5 d), and a ruminal collection phase (1 d) for determination of 

VFA concentrations and ruminal pH.   

 To determine total tract apparent digestibility, 5 aluminum pans were weighed empty and 

placed behind stalls for total fecal collection. Pans were placed immediately after feeding on d 14 

for a 120 h fecal collection. Pans and feces were weighed back every 24h and 10% total fecal 

weight was sub-sampled and composited for later analysis. Individual intakes were recorded and 

averaged over this time period. Individual feed ingredients were sampled daily (50 g) and 

composited for later analysis. Orts were weighed back and a 10% sub-sample was saved each 

day of collection and composited for later analysis.  

Feed, fecal samples, and orts composite samples were freeze-dried (Labconco; 

FreeZone
12 

Kansas City, MO) and ground to 1 mm particle size using a Wiley mill (Arthur H. 

Thomas; Philadelphia, PA). Methods of proximate analysis were as described in Experiment 1. 

Orts and feces were analyzed for NDF, ADF, fat, and ash only. 

Ruminal fluid was collected at 0, 1.5, 3, 6, 9, 12, and 18 h post-feeding and strained 

through two layers of cheesecloth. Ruminal pH measurements were immediately recorded 

(Metler Toledo FE20; Metler Toledo Inc., Columbus, OH). At 0, 3, and 6 h post-feeding, 75 mL 

of ruminal fluid were acidified with 75 mL of a 2N HCl solution to be analyzed for VFA 

concentrations via gas chromatography (Model 5890A, Hewlett Packard). The acidified ruminal 
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fluid was refrigerated overnight and then centrifuged for 20 min at 20,000 × g. The supernatant 

was filtered through a 0.45 µ filter, then transferred to an intermediate tube to freeze overnight. 

The following day, the filtered sample was thawed and 1.0 mL of the filtered sample was 

pipetted into a GC vial with 0.1 mL of internal 2 ethyl-butyrate standard. The GC vials were 

stored at -20⁰C until analyzed by gas chromatography (Model 5890A, Hewlett Packard) for 

VFA.   

Statistical Analysis: 

 The experimental design was 5 × 5 Latin square. Repeated measures were used to 

analyze ruminal pH and VFA concentrations using the covariate structure for compound 

symmetry. Steer was the experimental unit. Data were analyzed via the MIXED procedure of 

SAS (SAS Institute; Cary, NC). Significance was declared at P ≤ 0.05. Trends were discussed at 

0.05 < P < 0.10. 

In Situ Collection: 

Upon completion of all periods, an in situ trial was conducted to evaluate in situ 

digestibility of untreated, ensiled corn stover compared to CaO treated (5% DM basis) corn 

stover. The procedures cited by Felix et al. (2012) were followed. Bags were removed at 12, 24, 

36, and 48 h post-incubation. Bags were composited by animal and hour, analyzed for DM and 

NDF, and corrected for wash-out of these components. 

 

RESULTS AND DISCUSSION 

Experiments 1 and 2: 

In Exp. 1, steers fed TCS gained 0.26 kg/day less (P < 0.03) than steers fed UCS; steers 

fed TDG had intermediate gains (Table 4). This caused steers fed TCS and TDG to finish at a 
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lighter final BW (P = 0.02) than steers fed UCS at the same number of days on feed. Similar 

results were observed in Exp. 2. Heifers fed TCS had reduced (P < 0.03) ADG when compared 

to heifers fed SIL, although there was no difference when compared to heifers fed UCS. Feeding 

heifers TCS resulted in a reduced (P < 0.01) final BW (Table 5) compared to heifers fed UCS 

and SIL. However, CaO treatment of corn stover or WDGS did not affect G:F in either trial. 

Decreased DMI caused decreased ADG in cattle fed CaO treated feed, without a reduction in 

G:F . Steers fed TCS and TDG in Exp. 1 had decreased (P < 0.01) DMI (8.78 kg/day and 8.59 

kg/day, respectively) compared to steers fed UCS. Likewise, in Exp. 2 heifers fed TCS had a 

1.56 kg/day reduction (P < 0.01) in DMI compared to heifers fed UCS. This decrease in ADG 

and final BW is contradictory to previous work that reported increased ADG and final BW in 

cattle fed treated corn stover (Russell et al., 2011; Shreck et al., 2012a; Shreck et al., 2012b).  

These studies (Russell et al., 2011; Shreck et al., 2012b) reported improvements in performance 

despite their decreased DMI when stover was treated with CaO compared to untreated stover that 

was similar to our results.  

In Exp. 2, heifers fed TCS had the decreased (P < 0.01) DMI while those fed SIL and 

UCS were similar. However, heifers fed SIL had the greatest (P < 0.01) ADG, while those fed 

TCS had the decreased ADG; heifers fed UCS were intermediate. These difference in DMI and 

ADG caused heifers fed SIL to have increased (P ≤ 0.04) final BW and G:F compared to those 

fed either TCS or UCS. The similar ADG and DMI between UCS and SIL is surprising as 

increasing maturity of the corn plant increases lignin content (NRC, 1996) and decreases 

digestibility and feeding value (Moxon et al., 1951; Kamstra et al., 1958). Therefore, we had 

hypothesized that TCS would result in similar production performance as SIL due to 

delignification of corn stover by modifying cell wall composition to increase ruminal 
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degradation (Chaudhry, 1999). Benton et al. (2007) reported that, despite the greater maturity, 

steers fed corn stover were comparable in production performance with those fed silage in diets 

consisting of 30% WDGS at an 8% roughage inclusion. The results of our study and those of 

Benton et al. (2007) imply that the elevated energy density and high protein of DGS may be 

compensating for the reduced feeding value and protein content of poor quality, mature forages. 

Previous studies reported that feeding untreated corn stover compared to treated corn stover 

reduced animal growth performance (Shreck 2012 a, b). However, in this study, cattle fed 

untreated corn stover received dry, ground stover. In the current study, the UCS was ground, 

wetted, and bagged to maintain similar consistency to the TCS.  In fact, the UCS in the current 

study was ensiled in the bag (pH = 4.91), which may have increased its palatability as seen by 

the increased DMI by calves fed UCS diets compared to those fed TCS. Steers fed TCS and 

TDG had a lighter (P = 0.05) HCW and reduced (P ≤ 0.01) backfat (BF) when compared to 

steers fed UCS in Exp. 1. Similarly, heifers fed TCS had a lighter (P < 0.01) HCW and reduced 

(P < 0.01) BF and YG when compared to those fed either UCS or SIL in Exp. 2. There were no 

differences (P ≥ 0.08) in Longissimus dorsi muscle (LM) area or marbling score (MS) for steers 

in Exp. 1. Due to the changes in HCW and BF, steers fed TCS had the decreased (P < 0.01) yield 

grade (YG), those fed UCS had the greatest, and those fed TDG were intermediate. Heifers had 

reduced MS (P = 0.02) when fed UCS compared to TCS; feeding SIL was intermediate for MS. 

LM area was unaffected by treatment (P = 0.54) in Exp 2. 

Carcass results from CaO treatment of corn stover in other studies correlated with their 

growth performance. Shreck et al. (2012a,b) reported an increase in HCW consistent with 

increased final BW. Russell et al. (2011) reported an increase in BF corresponding with an 

increased YG. The previously mentioned studies reported no change in LM area and MS. Benton 
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et al. (2007) reported that feeding 8% corn stover in place of 8% silage in a diet consisting of 

30% WDGS did not impact carcass characteristics. The difference noted in our results compared 

to the studies above are likely a reflection of the decreased performance we observed when TCS 

was fed at the increased level of corn stover included when compared to the Benton et al. (2007) 

study.  

Experiment 3:  

 Apparent DM digestibility increased (P = 0.02) when steers were fed TCS and SIL diets 

compared to when they were fed UCS, and they did not differ from the CON fed steers; apparent 

DM digestibility by steers fed TDG was intermediate (Table 6). NDF digestibility patterns 

tended to (P = 0.06) follow DM digestibility. Steers fed TCS diets had the greatest (P = 0.01) 

ADF digestibility, while steers fed UCS had the least; steers fed CON, SIL and TDG were 

intermediate. 

 Russell et al. (2011) reported an increase in apparent DM digestibility when feeding 

CaO-treated stover compared to untreated stover, similar to the current finding. They also 

observed a trend for increased NDF and ADF digestibility. Shreck et al. (2013) reported a very 

similar increase in both apparent NDF and DM digestibility as well. We hypothesized that 

feeding TDG would also increase fiber digestibility. Felix et al. (2012) reported a 50% increase 

in in situ fiber digestibility when cattle were fed dry distillers grains with solubles (DDGS) that 

had been treated with 2% NaOH. They theorized that this was due to increased ruminal pH 

improving cellulolytic activity because cellulolytic microbial activity necessary for the digestion 

of roughages begins to decline when ruminal pH drops below 6.1 (Mould and Orskov, 1983). 

To test this theory of improved ruminal digestibility, corn stover, treated and untreated, 

was placed in in situ bags to measure ruminal degradation of each source. In situ digestibility of 
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corn stover and CaO-treated corn stover was measured at 12, 24, 36, and 48 h (Table 7). Treating 

corn stover with CaO increased in situ DM disappearance at 12, 24, 36, and 48 h when compared 

to untreated stover. Similarly, treating corn stover increased in situ NDF disappearance at all but 

12h time points as well. These data support our findings that treating corn stover with 5% CaO 

increases both DM and fiber digestibility, and the increase in apparent total tract fiber 

digestibility is likely driven by increased ruminal fiber fermentation.  

 Surprisingly, ruminal pH did not increase with the increase in fiber digestibility as 

expected. There were no pH differences (P = 0.22) among treatments in the current study (Table 

8). In fact, there was a trend for decreased (P = 0.06) ruminal pH in steers fed TCS compared to 

those fed UCS. This is contrary to the increase in pH expected from the CaO treatment 

neutralizing the acidity in the rumen, as was reported in NaOH treatment of DDGS (Felix et al., 

2012) and CaO treatment of corn stover (Shreck et al., 2013). However, feeding steers TCS had 

increased (P ≤ 0.05) ruminal concentration of VFA (Table 9) which may explain the decrease in 

pH. The VFA are weak acids (pKa = 4.8) and can reduce ruminal pH after rapid and increased 

intake (Van Soest, 1994). In the current study, it was observed that the fiber mat of cattle fed 

TCS was frequently lacking during ruminal collections, suggesting a decreased rate of 

degradation of the TCS and increased rates of passage when compared to cattle fed UCS or SIL. 

Reduction in the fiber mat can decrease the stimulation of rumination, which decreases salivary 

buffering resulting in a more acidic rumen (Ruckebusch, 1988). 

There were no diet × hour interactions (P ≥ 0.08) for any of the VFA measured in this 

experiment (Table 9). There was an effect of diet (P = 0.05) on acetate concentration. Steers fed 

TCS had the greatest mean acetate concentrations. Acetate concentrations are indicative of fiber 

fermentation (Van Soest, 1994) and suggest increased fiber fermentation. As previously 
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mentioned, fiber digestibility was increased in steers fed TCS compared to those fed UCS; 

therefore, the acetate response corroborates this evidence, further supporting increased ruminal 

fiber digestibility. The concentration of acetate in the rumen of steers fed TCS at the 0 h (52.84 

mM) versus 6 h (53.71 mM) time point is unusual as they did not greatly differ. Animals were 

collected at 0 h prior to feeding where VFA production is expected to be least and 6 h to 

represent peak fermentation and, therefore, peak VFA production. The reason for the lack of 

distinction between the 0 h and 6 h concentrations with acetate is unknown at this time. One 

possibility is that the CaO treatment is affecting intake patterns. These steers were fed for ad 

libitum intakes; therefore, they had access to feed all day and could have eaten directly prior to 

ruminal sampling at 0 h.  

 No dietary effect was observed for propionate (P = 0.43) or butyrate (P = 0.33); 

therefore, the total VFA concentrations mirrored the acetate response. Steers fed TCS had the 

greatest (P = 0.03) concentration of total VFA and steers fed UCS had the least. This increase in 

total VFA was largely driven by the increased acetate. However, this increase in acetate did not 

affect the acetate to propionate ratio (P ≥ 0.08) , due to the lack of change in propionate 

concentrations.  

 Contrary to our results, a recent ruminal metabolism study reported a decrease in 

propionate and no change in acetate or total VFA concentrations when cattle were fed 5% CaO-

treated stover compared to untreated stover (Shreck et al., 2013). They also reported an increase 

in ruminal pH when cattle were fed treated corn stover. These data support our theory that, in the 

current study, increased VFA production is counteracting any potential increase in ruminal pH 

resulting from the alkali treatment. 
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CONCLUSIONS 

Although treating corn stover with 5% CaO increased ruminal fiber fermentation, it did 

not increase production performance as would be expected with increased digestibility of a diet. 

This is largely due to decreased DMI. The decrease in intake may be due to decreased ruminal 

pH (Owens et al., 1998) or decreased palatability, which requires further study to confirm. 

However, treating corn stover did increase apparent total tract DM digestibility, fiber 

digestibility or resulted in greater acetate production. Treating corn stover reduced ruminal pH, 

even though this did not seem to affect fiber fermentation.  

The impact of adding CaO to an acidic diet, i.e. the TDG diets, had little impact on 

ruminal pH and fiber digestibility at the 1% inclusion level. Further studies at greater inclusion 

levels may be warranted. although feeding cattle TCS improved ruminal metabolism similar to 

that of SIL and CON diets, feeding ensiled UCS was comparable to feeding SIL as regards 

production performance. In the current study, bagging and ensiling corn stover prior to feeding 

improved animal performance when compared to feeding 5% CaO-treated corn stover.  
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TABLES 

 

Table 1. Composition of diets fed in Experiment 1.  

 

  

 Dietary treatment
1
 

Item, % DM basis   UCS   TCS   TDG 

Corn stover 

 

20.00 

 

- 

 

20.00 

Treated corn stover
2
 

 

- 

 

20.00 

 

- 

Corn silage 

 

- 

 

- 

 

- 

MWDGS
3
 

 

40.00 

 

40.00 

 

40.00 

Dry rolled corn 

 

30.00 

 

35.00 

 

34.00 

High Ca supplement
4
 

 

10.00 

 

- 

 

- 

Low Ca supplement
5
 

 

- 

 

5.00 

 

5.00 

CaO
6
 

 

- 

 

- 

 

1.00 

Analyzed composition 

      NDF  30.29  28.65  30.22 

  ADF  19.31  17.93  19.25 

  CP 

 

15.69 

 

16.19 

 

15.78 

  Fat 

 

6.39 

 

6.35 

 

6.47 

  Ca  0.99  0.83  1.10 

  P  0.37  0.38  0.38 

  S   0.29   0.29   0.27 
1 
UCS = Untreated corn stover, TCS = Treated corn stover, TDG = Treated 

distillers grains. 
2 
Corn stover brought to 50% moisture  and treated with 5% CaO ([71% Ca, 

MicroCal OF 200], Mississippi Lime Company [St. Louis, MO]) 
3 
MWDGS = Modified wet distillers grains with solubles. 

4 
High Calcium supplement included: 75% corn, 23% limestone, 0.91% TMS 

(20% CaCo3, 15.43% 4 ZINPRO, 14.17% KCl, 8.75% MgO, 8% MnSo4, 6.74% 

FeSO4, 6.54 Rice hulls mineral oil, 6.21% ZnSO4, 5.95% S prilled, 4.41% VIT E 

50%, 1.50% Se, 1.03% MgSO4, 0.88% CuSO4, 0.22% Vit A 1000, 0.13% Vit D3 

500 MS, 0.04% Ca(IO3)2 63.5% to yield 5% Mg, 10% S, 7.5% K, 2% Fe, 3% Zn, 

3% Mn, 5,000 mg/kg Cu, 250 mg/kg I, 40 mg/kg Co, 150 mg/kg Se, 2,204,634 

IU/kg Vitamin A, 7,275,293 IU/kg Vitamin D3, 22,046 IU/lb Vitamin E), 0.15% 

Rumensin 90, (Elanco; Greenfield, IN) 0.10% Tylan 40, (Elanco; Greenfield, 

IN), 0.77% fat. 
5 
Low Calcium

 
supplement included: 87% corn, 9% limestone, 1.8% TMS (20% 

CaCo3, 15.43% 4 ZINPRO, 14.17% KCl, 8.75% MgO, 8% MnSo4, 6.74% 

FeSO4, 6.54 Rice hulls mineral oil, 6.21% ZnSO4, 5.95% S prilled, 4.41% VIT E 

50%, 1.50% Se, 1.03% MgSO4, 0.88% CuSO4, 0.22% Vit A 1000, 0.13% Vit D3 

500 MS, 0.04% Ca(IO3)2 63.5% to yield5% Mg, 10% S, 7.5% K, 2% Fe, 3% Zn, 

3% Mn, 5,000 mg/kg Cu, 250 mg/kg I, 40 mg/kg Co, 150 mg/kg Se, 2,404,634 

IU/lb Vitamin A, 7,275,293 IU/lb Vitamin D3, 22,046 IU/lb Vitamin E) 0.304% 

Rumensin 90, (Elanco; Greenfield, IN), 0.197% Tylan 40, (Elanco; Greenfield, 

IN), 1.51% fat. 
6
CaO = Calcium Oxide 
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Table 2. Composition of diets fed in Experiment 2.  

 

  

 Dietary treatment
1
 

Item, % DM basis UCS   TCS   SIL 

Corn stover 20.00 

 

- 

 

- 

Treated corn stover
2
 - 

 

20.00 

 

- 

Corn silage - 

 

- 

 

40.00 

MWDGS
3
 

 

40.00 

 

40.00 

 

40.00 

Dry rolled corn 30.00 

 

35.00 

 

10.00 

High Ca supplement
4
 10.00 

 

- 

 

10.00 

Low Ca supplement
5
 - 

 

5.00 

 

- 

Analyzed composition 

     NDF  30.29  28.65  33.40 

  ADF  19.31  17.93  20.16 

  CP 

 

15.69 

 

16.19 

 

15.68 

  Fat 

 

6.39 

 

6.35 

 

7.20 

  Ca 

 

0.99 

 

0.83 

 

0.95 

  P 

 

0.37 

 

0.38 

 

0.36 

  S   0.29   0.29   0.29 
1 
UCS = Untreated corn stover, TCS = Treated corn stover, SIL = Silage. 

2 
Corn stover brought to 50% moisture  and treated with 5% CaO ([71% 

Ca, MicroCal OF 200], Mississippi Lime Company [St. Louis, MO]). 
3 
MWDGS = Modified wet distillers grains with solubles. 

4 
High Calcium supplement included: 75% corn, 23% limestone, 0.91% 

TMS (20% CaCo3, 15.43% 4 ZINPRO, 14.17% KCl, 8.75% MgO, 8% 

MnSo4, 6.74% FeSO4, 6.54 Rice hulls mineral oil, 6.21% ZnSO4, 5.95% S 

prilled, 4.41% VIT E 50%, 1.50% Se, 1.03% MgSO4, 0.88% CuSO4, 

0.22% Vit A 1000, 0.13% Vit D3 500 MS, 0.04% Ca(IO3)2 63.5% to 

yield5% Mg, 10% S, 7.5% K, 2% Fe, 3% Zn, 3% Mn, 5,000 mg/kg Cu, 

250 mg/kg I, 40 mg/kg Co, 150 mg/kg Se, 2,204,634 IU/kg Vitamin A, 

7,275,293 IU/kg Vitamin D3, 22,046 IU/lb Vitamin E), 0.15% Rumensin 

90, (Elanco; Greenfield, IN). 0.10% Tylan 40, (Elanco; Greenfield, IN), 

0.77% fat. 
5 
Low Calcium

 
supplement included: 87% corn, 9% limestone, 1.8% TMS 

(20% CaCo3, 15.43% 4 ZINPRO, 14.17% KCl, 8.75% MgO, 8% MnSo4, 

6.74% FeSO4, 6.54 Rice hulls mineral oil, 6.21% ZnSO4, 5.95% S prilled, 

4.41% VIT E 50%, 1.50% Se, 1.03% MgSO4, 0.88% CuSO4, 0.22% Vit A 

1000, 0.13% Vit D3 500 MS, 0.04% Ca(IO3)2 63.5% to yield 5% Mg, 10% 

S, 7.5% K, 2% Fe, 3% Zn, 3% Mn, 5,000 mg/kg Cu, 250 mg/kg I, 40 

mg/kg Co, 150 mg/kg Se, 2,404,634 IU/lb Vitamin A, 7,275,293 IU/lb 

Vitamin D3, 22,046 IU/lb Vitamin E) 0.304% Rumensin 90, (Elanco; 

Greenfield, IN), 0.197% Tylan 40, (Elanco; Greenfield, IN), 1.51% fat. 
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Table 3. Composition of diets fed in Experiment 3.  

 

  

 Dietary treatment
1
   

Item, % DM basis UCS   TCS   TDG   SIL  CON 

Corn stover 20.00 

 

- 

 

20.00 

 

-   

Treated corn stover
2
 - 

 

20.00 

 

- 

 

-   

Corn silage - 

 

- 

 

- 

 

40.00  15.00 

MWDGS
3
 

 

40.00 

 

40.00 

 

40.00 

 

40.00  25.00 

Dry rolled corn 30.00 

 

35.00 

 

34.00 

 

10.00  50.00 

High Ca supplement
4
 10.00 

 

- 

 

- 

 

10.00  10.00 

Low Ca supplement
5
 - 

 

5.00 

 

5.00 

 

-  - 

CaO
6
 

 

- 

 

- 

 

1.00 

 

-  - 

Analyzed composition 

     

  

  NDF  31.27  28.86  31.42  32.57  21.55 

  ADF  18.92  19.75  18.96  20.50  11.50 

  CP 

 

16.02 

 

16.47 

 

16.13 

 

16.09  13.38 

  Fat 

 

4.59 

 

4.75 

 

4.75 

 

4.82  4.47 

  Ca 

 

1.02 

 

0.91 

 

1.03 

 

1.11  0.99 

  P 

 

0.38 

 

0.38 

 

0.39 

 

0.39  0.33 

  S   0.29   0.28   0.27   0.30  0.23 
1 
UCS = Untreated corn stover, TCS = Treated corn stover, TDG = Treated WDGS, SIL = Silage, 

CON = Control.
 

2 
Corn Stover wetted to 50% moisture and treated with 5% CaO ([71% Ca, MicroCal OF 200], 

Mississippi Lime Company [St. Louis, MO]).
 

3 
MWDGS = modified wet distillers grains with solubles.

 

4 
High Calcium supplement included: 75% corn, 23% limestone, 0.91% trace mineral salt (20% 

CaCo3, 15.43% 4 ZINPRO, 14.17% KCl, 8.75% MgO, 8% MnSo4, 6.74% FeSO4, 6.54 Rice hulls 

mineral oil, 6.21% ZnSO4, 5.95% S prilled, 4.41% VIT E 50%, 1.50% Se, 1.03% MgSO4, 0.88% 

CuSO4, 0.22% Vit A 1000, 0.13% Vit D3 500 MS, 0.04% Ca(IO3)2 63.5% to yield 5% Mg, 10% S, 

7.5% K, 2% Fe, 3% Zn, 3% Mn, 5,000 mg/kg Cu, 250 mg/kg I, 40 mg/kg Co, 150 mg/kg Se, 

2,204,634 IU/kg Vitamin A, 7,275,293 IU/kg Vitamin D3, 22,046 IU/lb Vitamin E), 0.15% 

Rumensin 90, (200g Rumensin/kg; Elanco; Greenfield, IN) 0.10% Tylan 40, (80g Tylosin/kg; 

Elanco; Greenfield, IN), 0.77% fat.
 

5 
Low Calcium

 
supplement included: 87% corn, 9% limestone, 1.8% trace mineral salt (20% CaCo3, 

15.43% 4 ZINPRO, 14.17% KCl, 8.75% MgO, 8% MnSo4, 6.74% FeSO4, 6.54 Rice hulls mineral 

oil, 6.21% ZnSO4, 5.95% S prilled, 4.41% VIT E 50%, 1.50% Se, 1.03% MgSO4, 0.88% CuSO4, 

0.22% Vit A 1000, 0.13% Vit D3 500 MS, 0.04% Ca(IO3)2 63.5% to yield 5% Mg, 10% S, 7.5% K, 

2% Fe, 3% Zn, 3% Mn, 5,000 mg/kg Cu, 250 mg/kg I, 40 mg/kg Co, 150 mg/kg Se, 2,404,634 

IU/kg Vitamin A, 7,275,293 IU/kg Vitamin D3, 22,046 IU/kg Vitamin E) 0.304% Rumensin 90, 

(200g Rumensin/kg; Elanco; Greenfield, IN), 0.197% Tylan 40, (80g Tylosin/kg; Elanco; 

Greenfield, IN), 1.51% fat.
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Table 4. Feedlot growth performance and carcass characteristics for steers fed in Experiment 1.  

 

 

Dietary treatment
1
 

  
    

Item  UCS   TCS   TDG SEM P-value
2
 

n, pen (animal) 7(53)  7(55)  7(54)  - - 

Initial BW, kg 438 

 

436 

 

435 

 

1 0.30 

Final BW, kg 558
a
 

 

542
b
 

 

545
b
 

 

4 0.02 

ADG, kg 1.61
a
 

 

1.35
b
 

 

1.42
ab

 

 

0.07 0.03 

DMI, kg 10.62
a
 

 

8.78
b
 

 

8.59
b
 

 

0.17 <0.01 

G:F 0.1519 
 

0.1532 
 

0.1661 
 

0.0064 0.24 

HCW, kg 338
a
 

 

327
b
 

 

330
b
 

 

2 0.01 

Calculated yield grade
3
, kg 3.06

a
 

 

2.65
b
 

 

2.86
ab

 

 

0.08 <0.01 

LM area, cm
2
 79.67 

 

80.43 

 

78.63 

 

0.94 0.37 

Marbling score
4
 434 

 

396 

 

412 

 

12.3 0.08 

Backfat, cm 1.20
a
 

 

0.94
b
 

 

1.02
b
   0.05 <0.01 

1
UCS = Untreated corn stover, TCS = Treated corn stover, TDG = Treated distillers grain. 

2
Means in the same row with different superscript letters differ (P ≤ 0.05).

 

3
Yield grade calculation:[2.5 + (6.35 × cm. back fat) + (0.20 × %KPH) + (0.0017 × kg. HCW) – 

(2.06 × LM area cm.
2
)]. 

4
Marbling score: 300-399 – Slight; 400-499 – Small; 500-599 – Modest. 
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Table 5. Feedlot growth performance and carcass characteristics of heifers fed in Experiment 2.  

 

 

Dietary treatment
1
    

Item  UCS   TCS   SIL   SEM P-value
2
 

n, pen (animal) 6(47)  6(45)  6(46)  - - 

Initial BW, kg 406 

 

406 

 

406 

 

1 0.96 

Final BW, kg 504
b
 

 

490
c
 

 

516
a
 

 

4 <0.01 

ADG, kg 1.31
ab

 

 

1.10
b
 

 

1.48
a
 

 

0.08 <0.01 

DMI, kg 8.98
a
 

 

7.42
b
 

 

8.55
a
 

 

0.22 <0.01 

G:F 0.1472
b
 

 

0.1467
b
 

 

0.1731
a
 

 
0.0082 0.04 

HCW, kg 308
a
 

 

292
b
 

 

313
a
 

 

2 <0.01 

Calculated yield grade
3
, kg 2.91

a
 

 

2.37
b
 

 

2.88
a
 

 

0.08 <0.01 

LM area, cm
2
 79.03 

 

79.52 

 

80.54 

 

1.04 0.54 

Marbling score
2
 470

a
 

 

408
b
 

 

440
ab

 

 

12 0.02 

Backfat, cm 1.23
a
   0.88

b
   1.23

a 
  0.04 <0.01 

1
UCS = Untreated corn stover, TCS = Treated corn stover, SIL = Silage. 

2
Means in the same row with different superscript letters differ (P ≤ 0.05).

 

3
Yield grade calculation:[2.5 + (6.35 × cm. back fat) + (0.20 × %KPH) + (0.0017 × kg HCW) – 

(2.06 × LM area cm
2
)]. 

4
Marbling score: 300-399 – Slight; 400-499 – Small; 500-599 – Modest. 
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Table 6. Effect of dietary treatment on total tract apparent digestibility by steers fed in 

Experiment 3.  

 

 

Dietary treatment
1
 

  Item UCS TCS TDG SIL CON SEM P-value
2
 

n 5 5 5 5 5 - - 

Apparent Digestibility, % DM basis      

DM 62.6
c
 70.0

ab
 66.4

bc
 70.2

ab
 75.0

a
 2.4 0.02 

ADF  49.1
c
 68.3

a
 57.1

bc
 64.3

ab
 63.9

ab
 3.5 0.01 

1
UCS = Untreated corn stover, TCS = Treated corn stover, TDG = Treated distillers grains, SIL = 

Silage, CON = Control. 
2
Means in the same row with different superscript letters differ (P ≤ 0.05). 
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Table 7. Composition and in situ digestibility of untreated corn stover and treated corn stover 

composited across Experiments 1, 2, and 3.      

 

 Corn stover 

Item, % DM basis Untreated
2
   Treated

1,2
 

NDF 

 

70.1 

 

58.1 

ADF 

 

48.8 

 

51.0 

Hemicelluloses 21.3 

 

7.1 

Cellulose 38.8 

 

36.8 

ADL 

 

6.8 

 

6.4 

Total dietary fiber 

 

76.8 

 

66.7 

  Insoluble dietary fiber 

 

72.8 

 

64.1 

  Soluble dietary fiber   4.0   2.5 

In situ disappearance 

    DM 

        12
3
  9.53  9.96 

    24  13.90  24.22 

    36  15.80  34.65 

    48  25.46  41.36 

  NDF       

    12  5.78  4.80 

    24  6.09  17.93 

    36  16.89  33.22 

    48  25.66  42.35 

1 
Treated with 5% CaO (71% Ca, MicroCal OF 200, 

Mississippi Lime Company St. Louis, MO). 
 

2
Corn stover wetted to 50% DM and ensiled in AG-BAG 

(AG-BAG, St. Nazianz, WI).                  

3
Values reflect hours within the rumen, corrected for washout 

(0 h) of DM and NDF.
 

 

  



55 
 

Table 8. Effect of dietary treatment on ruminal pH change over time in Experiment 3.  

 

 

Dietary Treatment
1
 

 

P-values
2
 

 

UCS TCS TDG SIL CON SEM D D × H T vs. U
3
 

n 5 5 5 5 5     

Ruminal pH      0.1 0.22 0.65 0.06 

  0
4
 6.91 6.36 6.75 6.87 6.7  

     1.5 6.28 5.99 6.38 6.33 6.14    

    3 6.21 5.89 6.22 6.13 6.14    

    6 5.94 5.84 6.24 6.06 6.04    

    9 6.20 5.83 5.98 6.06 5.94    

    12 6.10 5.92 6.06 6.08 5.91    

    18 6.40 6.05 6.27 6.37 6.07      

 1
UCS = Untreated corn stover, TCS = Treated corn stover, TDG = Treated distillers grain, SIL = 

Silage, CON = Control. 
2
D = Main effect of dietary treatment; D × H = interaction of dietary treatment × hour.  

3
Contrast of TCS vs. UCS.

 

4
Time post-feeding (h). 
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Table 9. Effect of dietary treatment on ruminal VFA concentrations over time from steers fed in 

Experiment 3.  

 

 

 

  

 

  

 Dietary treatment
1
   P-values

2, 3
 

Item UCS TCS TDG SIL CON SEM D D × H T vs. U
4
 

n 5 5 5 5 5 - - - - 

Acetate, mM      3.1 0.05 0.40 <0.01 

  0
5
 38.0 52.8 42.0 41.3 39.5    

    6 49.66 53.71 55.06 47.92 51.29    

  Propionate, mM      3.5 0.43 0.87 0.27 

  0 11.6 18.9 13.1 11.1 17.6    

    6 23.5 26.4 21.4 21.2 27.8    

  Butyrate, mM      1.8 0.33 0.56 0.06 

  0 6.6 12.0 8.3 6.8 7.9    

    6 11.4 13.7 12.7 12.3 11.4    

  Total VFA, mM      6.3 0.03 0.71 <0.01 

  0 58.8 86.7 66.7 62.0 68.2    

    6 84.8 97.1 92.6 84.6 93.9    

  A:P
6
      0.4 0.65 0.08 0.89 

  0 3.4 3.0 3.5 3.7 2.7    

    6 2.2 2.3 3.0 2.3 2.2      

 1
UCS = Untreated corn stover, TCS = Treated corn stover, TDG = Treated distillers grain, SIL = 

Silage, CON = Control. 
2
D = Main effect of dietary treatment; D × H = interaction of treatment by hour. 

3
Means in the same row with different superscript letters differ (P ≤ 0.05). 

4
Contrast of TCS vs. UCS.

 

5
Time post-feeding (h).

 

6
A:P = ratio of Acetate to Propionate. 
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CHAPTER 3: CONCLUSION 

As long as corn prices remain high as a result of ethanol production, feeding co-products 

like modified wet distillers grains with solubles (MWDGS) and corn stover (CS) as partial or 

complete corn replacement feeds will be necessary. However, feeding DGS to cattle presents 

challenges. Recently it has been suggested that the greatest issue with feeding DGS is its 

negative effects on ruminal pH, and that this may be overcome through the use of alkaline 

agents. Furthermore, recent research has suggested that treatment of corn stover with alkalizing 

agents, namely calcium oxide (CaO), prior to feeding will improve its digestibility and, 

ultimately, cattle growth performance. However, the combined effects of ruminal buffering and 

potentially increasing digestibility with corn stover and DGS diets have not been investigated. 

Therefore, in an effort to determine the combination of the effects of alkaline agents on MWDGS 

and CS, three experiments were designed and tested. 

In experiment 1, our objective was to determine the effects of feeding CaO-treated 

MWDGS or CS to cattle during the finishing phase on growth, feed efficiency, and carcass 

characteristics. We found that feeding CaO-treated CS to cattle decreased final body weight 

(BW), average daily gain (ADG), and dry matter intake (DMI) compared to feeding CS that had 

not been treated. Feeding treated MWDGS to cattle decreased final BW and DMI when 

compared to untreated CS, but was intermediate for ADG with respect to treated CS and 

untreated CS. Feeding treated CS resulted in decreased backfat and yield grade (YG); but, 

marbling score (MS) and longissimus muscle (LM) area were unaffected. Therefore, simply 

wetting and bagging CS was a more effective feeding strategy than treating either MWDGS or 

CS with CaO. 
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In Experiment 2, our objective was to determine the effects of feeding CaO-treated CS or 

corn silage to cattle during the finishing phase on growth, feed efficiency, and carcass 

characteristics. We found that, once again, cattle fed treated CS had the lightest final BW and 

lowest DMI. Cattle fed corn silage had similar ADG and DMI, and improved feed efficiency and 

final BW when compared to cattle fed untreated CS. Although we had hypothesized that feeding 

treated CS would result in growth performance more similar to the cattle fed immature forage, 

corn silage, the cattle fed untreated CS actually performed more similarly to those fed corn 

silage. Cattle fed treated CS had decreased YG, MS, and BF when compared to those fed corn 

silage or untreated CS. These data, again, suggest that simply wetting and bagging CS may be an 

effective strategy for its use in beef cattle diets. Furthermore, they suggest that cattle fed this 

bagged, untreated CS product and MWDGS can achieve similar feedlot performance as cattle fed 

corn silage with MWDGS.  

In Experiment 3, our objectives were to determine the effects of feeding CaO-treated 

MWDGS or treated CS, and corn silage, on ruminal metabolism and in situ dry matter 

disappearance in fistulated cattle. Feeding treated CS and corn silage resulted in increased dry 

matter (DM) and ADF digestibility compared to feeding untreated CS. Contrary to our 

hypothesis, feeding cattle treated CS tended to decrease ruminal pH compared to the other diets. 

This reduction in ruminal pH may have been because feeding treated CS increased both mean 

acetate and total VFA concentrations when compared to all other treatments. Therefore, treating 

CS with CaO increased digestibility of fiber, and was comparable to feeding corn silage or corn-

based diets with regards to ruminal metabolism.  

Although treating CS with 5% CaO (DMB) improved ruminal fiber digestibility, effects 

on growth performance were not realized. Therefore, a more practical strategy for feeding CaO, 
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based on this study’s results, may be harvesting and anaerobically storing wetted, untreated CS. 

Treatment of MWDGS with CaO at 2.5% (DMB) did not affect ruminal pH, nor did it improve 

digestibility and, therefore, does not appear to be a viable management practice for producers 

feeding DGS-based diets. Research at greater dietary inclusion levels of CaO in the diet may be 

warranted. 


