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ABSTRACT 

 Traditionally, multiple linear regression has been widely used in the field of 

organizational science for predictive modeling. Despite its pervasive use, the classical regression 

model falls short in several aspects, including the lack of flexibility in handling complex 

nonlinear relationships and the strict assumptions imposed by parametric approaches. To 

overcome these limitations, the current study examined an alternative, nonparametric recursive 

partitioning method – Classification and Regression Trees (CART), and its advanced successor, 

random forests. Results from two Monte Carlo simulations (Study 1 and 2) showed that random 

forests consistently produced comparable predictive accuracy as the traditional methods when 

the data was structured in a linear or simple additive model, yet exhibited substantially more 

accurate results when the data was structured in a complex nonlinear manner. CART 

outperformed the traditional methods for evaluating model fit (i.e., resubstituition accuracy), but 

was not as effective when generalizability was evaluated, except when the data was structured in 

a nonlinear tree-like pattern. Two empirical studies were also conducted to illustrate the 

application of the two recursive partitioning methods for predicting employee turnover (Study 3) 

and job performance (Study 4). Practical guidance is provided regarding how the feature 

selection procedure of random forests and a single decision tree constructed by CART could be 

combined to explore complex relationships within the data and better facilitate model 

interpretation. Limitations and implications for future research are also discussed. 
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CHAPTER 1: INTRODUCTION 

For several decades, multiple regression has been one of the most popular data analytic 

techniques in the field of organizational science (LeBreton, Tonidandel, & Krasikova, 2013). 

Researchers and practitioners have generally adopted the basic linear additive model to both 

make predictions and understand the functional relationship between the predictor variables and 

the criterion. Nevertheless, as theory and empirical evidence evolve, a growing number of 

researchers have begun to challenge the basic assumptions of multiple linear regression and have 

noticed that the complexities of the real world may go beyond simple linear and additive effects. 

There has been an emerging awareness of the existence of nonlinear or curvilinear relationships 

in psychological and organizational research. Theoretically, Pierce and Aguinis (2013) have 

proposed a meta-theoretical principle, which they called the “too-much-of-a-good-thing effect” 

to account for a variety of seemingly paradoxical results in organizational research. They 

contended that positive and monotonic relationships may become asymptotic or even negative 

after a certain inflection point, resulting in a curvilinear pattern. Grant and Schwartz (2011) have 

reviewed the effects of several psychological constructs on well-being and performance. 

Similarly, they have concluded that “there is no such thing as an unmitigated good” (p. 62) as 

positive phenomena become negative after reaching inflection points.  As such, they called for 

more attention to advance our knowledge regarding nonmonotonic inverted-U-shaped effects in 

psychological research. Empirically, many studies have tested and supported a significant 

nonlinear/curvilinear link between personality traits and important work outcomes (e.g., Cucina 

& Vasilopoulos, 2005; Day & Silverman, 1989; LaHuis, Martin, & Avis, 2005; Le, Robbins, 

Ilies, Holland, & Westrick, 2011; Robie & Ryan, 1999; Vasilopoulos, Cucina, & Hunter, 2007; 

Whetzel, McDaniel, Yost, & Kim, 2010). In addition to the nonlinear higher-order effects of any 
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individual variable, multiple variables can also interact to affect the outcome. As noted by 

LeBreton, Tonidandel, and Krasikova (2013), “the world of psychology is not always a simple, 

main-effects world” (p. 3). When the effect of an individual variable is examined without being 

put into the context of possible covariates, the results can be biased.  

In response to these significant limitations of simple linear additive regression, there have 

been some methodological developments in the field. For example, Anderson (1970) and Lynch 

(1985) argued that both multiplicative and multilinear models are legitimate ways to combine 

predictors. Methods such as polynomial regression (Edwards & Parry, 1993) and hierarchical 

multiple regression (Cortina, 1993) have been developed to explicitly incorporate appropriate 

power terms and multiplicative interactions into the linear regression model. However, the form 

of the model including interactive and higher-order components must be specified in advance, 

involving a significant numbers of assumptions and guesswork. Moreover, the complexities of 

the real data may go beyond the most sophisticated model that could be specified.  Thus, a model 

determined a priori may fall short in detecting complex relationships. Another significant 

limitation of these classical regression methods is that they are bounded by the basic assumptions 

of a parametric approach such as normal distributions or residual independence. Given the lack 

of knowledge of the underlying data distribution, these assumptions may be considered too strict 

or even unrealistic by organizational scholars.  

More recently, with the rapid growth of computer science, there has been some 

development and application of a set of advanced, nonparametric predictive modeling techniques 

under the umbrella of machine learning and data mining. These methods have been proposed to 

overcome the shortcomings of the traditional regression approach and to offer an inductive 

approach to uncover the underlying relationships in the data, and have been widely adopted in 
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fields such as applied statistics, bioinformatics, engineering, and financial analysis. Among 

various machine learning methods, standard recursive partitioning methods, such as 

classification and regression trees (CART; Breiman, Friedman, Olshen, & Stone, 1984), as well 

as its methodologically improved adaptations such as random forests (Breiman, 2001) have 

received extensive attention and empirical support in a variety of scientific fields.  

Compared to their popularity in other fields, recursive partitioning methods are rarely 

employed in organizational research. The current study intends to provide an application of these 

methods (i.e., CART and RF) to the field of organizational research, and addresses two important 

questions: When should we prefer the recursive partitioning methods over the traditional 

regression approaches? How should we best apply recursive partitioning methods to 

organizational research?  

To accomplish these purposes, the current paper is organized in the following way. It 

begins with a review of several limitations associated with the traditional linear additive 

regression model for classification and prediction in organizational research. CART and random 

forests are then introduced as methods to address these limitations.  Then, four studies are 

described that compared CART and random forests with traditional methods. In Study 1 and 

Study 2, two Monte Carlo simulations were conducted to compare the classification and 

prediction accuracy of CART, random forests, and several classical statistical methods (e.g., 

logistic regression, linear and quadratic discriminant analysis, and multiple linear regression), 

under several manipulated conditions. In Study 3 and Study 4, CART and random forests were 

applied to two empirical samples to better understand employee turnover and job performance. 
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1. Limitations of the Traditional Regression Approach  

1.1 Nonlinearity in Organizational Research 

            A. Higher-Order Effects 

 Traditionally under the linear regression framework, each predictor is assumed to have a 

linear relationship with the criterion variable. Nevertheless, more and more researchers have 

challenged this assumption and highlighted the importance of investigating nonlinear 

relationships explicitly (e.g., Guion, 1991).  

 Nonlinear relationships occur when a predictor is not uniformly related to the criterion 

across the entire range of the predictor. One of the most common forms of nonlinear effect is a 

quadratic or cubic relationship. As summarized by Guion (1991), Murphy (1996) and Whetzel et 

al. (2010), possible quadratic relationships include: (1) a nonlinear but positive monotonic 

relationship; (2) an asymptotic relationship (J-shape or plateau-shape), which is a nonlinear, 

monotonic relationship up till a certain point, then no relationship after, and it is also considered 

as a “deficiency-sufficiency” form (Murphy, 1996); (3) a non-monotonic, U shape or inverted-U 

shape relationship, where moderate levels are worse or better than too much or too little of a 

characteristic. Nonlinear models can also take a cubic form. For example, Lord and Novick 

(1968) suggested that logistic relationship which takes the “S” shape could fit some test scores. 

An example of the S-curve model is provided by Sinclair and Lyne (1997). 

 Among the set of nonlinear relationships summarized above, the U shape or inverted-U 

shape relationship has received the most theoretical and empirical support. For example, 

evidence has accumulated that the relationship between personality and job performance is not a 

linear monotonic relationship. In the past two decades, personality inventories have received 
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growing popularity in making high-stakes selection and promotion decisions in organizational 

settings (Oswald & Hough, 2010). Contrary to its widespread application, the criterion-related 

validity evidence of personality measures is far from satisfactory. In a review paper, Arthur, 

Woehr and Graziano (2001) pointed out several major issues about using personality assessments 

for selection purposes, one of which was the “appropriateness of linear selection models” (p. 

658). Indeed, for a majority of previous studies, one implicit assumption of modeling the 

personality-performance relationship was linearity. Nevertheless, this assumption has been 

criticized on the grounds that the omission of the nonlinear relationship between personality and 

performance could potentially underestimate the true validity of personality measures (e.g., 

Murphy, 1996; Murphy & Dzieweczynski, 2005; Ones, Viswesvaran, Dilchert, & Judge, 2007; 

Robie & Ryan, 1999).   

 For example, conscientiousness has consistently been shown to be the best predictor 

among the Big Five, and it is generally agreed that higher conscientiousness leads to better job 

performance. More recently, several researchers began to question this conclusion and argued 

that excessively conscientious people can be maladaptive. Overly conscientious employees could 

be considered as “rigid, inflexible, and compulsive perfectionists” (p. 114, Le et al., 2011), and 

pay too much attention to details that compromise their achievement of the main goal (Mount, 

Oh, & Burns, 2008). Supervisors who are overly conscientious may also be bounded by rules and 

regulations, and lack flexibility in handling diverse situations (Murphy & Dzieweczynski, 2005).  

 Similar arguments have been raised for other Big Five dimensions. For example, 

Emotional Stability was found to have a curvilinear relationship with job performance: as long as 

one passes the “critically unstable” range and possess “enough” emotional stability, the positive 

relationship between emotional stability and job performance disappeared (Barrick & Mount, 
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1991, p.20). This is also consistent with the effects of tension and stress on performance: 

moderate level of Anxiety (one facet of Emotional Stability) best facilitates performance. With 

regard to Agreeableness, highly agreeable employees may also lack the assertiveness to enforce 

some procedures. For example, a highly agreeable customer service representative may be too 

cooperative with customers to take actions that are in the company’s best interests (Mount, 

Barrick, & Stewart, 1998), and could potentially be “giving away the store” (Whetzel et al., 

2010). Murphy and Dzieweczynski (2005) also articulated that leaders at the high end of 

agreeableness may not be able to provide bad news and critical feedbacks effectively, which 

could impair their job performance.  

 In addition to the theoretical justifications summarized above, most empirical evidence 

also supports the existence of the nonlinear relationships between various selection predictors 

and job performance. For example, Day and Silverman (1989) found that impulse expression and 

several dimensions of job performance had a curvilinear relationship. LaHuis, Martin, and Avis 

(2005), using a situational judgment test and biodata items as a measure of conscientiousness, 

also found a significant inverted-U shape relationship between conscientiousness and job 

performance. More recently, Le et al. (2011) examined the relationships between two of the big 

five traits (conscientiousness and emotional stability) and different dimensions of job 

performance (i.e., task performance, OCB, and CWB), and found support for curvilinear 

relationships. They also demonstrated that job complexity was a significant moderator of the 

curvilinear relationship, so that the optimal level of conscientiousness for a certain job depends 

on the complexity of that job. Besides job performance, significant nonlinear relationships have 

been uncovered for other performance-related criteria such as training performance 
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(Vasilopoulos, Cucina, & Hunter, 2007) and college GPA (Cucina & Vasilopoulos, 2005; 

Robbins, Allen, Casillas, Peterson, & Le, 2006).   

 However, it should be noted that two studies failed to detect any significant nonlinear 

effect. Robie and Ryan (1999) found no evidence of a significant quadratic or cubic relationship 

between conscientiousness and job performance across four samples. Le et al. (2011) provided a 

plausible explanation for this result, stating that the lack of significant nonlinear relationship 

might be attributed to the complexity of those jobs being sampled, which created a higher 

threshold for the optimal level of conscientiousness. In another study, Whetzel et al. (2010) 

examined 32 occupational personality scales and found that nonlinearity was uncommon. In 

addition, they also showed that the incremental validities of quadratic and cubic terms over linear 

were modest to small. Part of the reason for the null findings in these studies might be attributed 

to the inherent limitations of the polynomial and hierarchical multiple regression approaches 

these researchers have adopted: (1) a prior model specified in advance may lack the flexibility to 

fully uncover all the complex relationships within the data; (2) the data may not necessarily 

follow a normal distribution or any other statistical assumptions posited by these methods.  

            B. Interaction Effects 

 In addition to the higher-order effects covered above, another source of nonlinearity may 

arise from the interaction among different predictors. Any predictor does not exist in a vacuum. 

It co-exists with a constellation of other predictors. Therefore, their joint effect usually provides 

additional information above and beyond each in isolation (Baron & Kenny, 1986). There could 

be two patterns of joint effect: a multiplicative effect or a compensatory effect. For the 

multiplicative effect, it is believed that the benefit of being high on two predictors is greater than 
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the additive effects of the two in combination; whereas for the compensatory effect, being low on 

one predictor could be made up by a high score on the other predictor. Theoretical and empirical 

evidence has also supported the existence of such interaction effects.   

 Personality and intelligence have been suggested as jointly influencing performance. 

Maier (1958) proposed that job performance was a multiplicative function of motivation and 

ability: P = ƒ ( M ˟ A ), the relationship between motivation and performance was moderated by 

ability level. Several empirical studies supported Maier’s argument. Hollenbeck, Brief, Whitener 

and Pauli (1988) showed that self-esteem interacted with aptitude to predict performance of life 

insurance salespersons: self-esteem was positively related to sales volume for high aptitude 

salespersons, and negatively related to sales volume for low aptitude salespersons. Wright, 

Kacmar, McMahan and Deleeuw (1995) demonstrated that Achievement Need was positively 

related to job performance among warehouse workers who were high in cognitive ability, but the 

relationship was negative among those low in cognitive ability. Perry, Hunter, Witt and Harris 

(2010) also identified a multiplicative effect of cognitive ability and Achievement (a facet of 

conscientiousness) in predicting task performance. They reported that cognitive ability only 

predicted task performance positively for individuals with high Achievement; for low 

Achievement individuals, cognitive ability was negatively related to task performance. Besides 

their joint effect, personality and intelligence can also work in a compensatory manner where a 

low score in one factor is not necessarily disadvantageous as long as the score on the other factor 

is high. Using samples from the Navy and the Army, Perkins and Corr (2005) found that 

cognitive ability could serve as a buffer to neuroticism in that the negative effect of neuroticism 

on job performance only existed among less cognitively capable individuals. However, for the 

smarter employees, neuroticism was unrelated to job performance.  
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 In addition to the personality – intelligence interaction, different personality attributes can 

also interact with each other to influence job performance, as suggested by several researchers 

(Barrick & Mount, 2005; Hogan, Hogan, & Roberts, 1996; John & Srivastava, 1999). For 

example, several empirical studies have explicitly examined the interactions among different Big 

Five dimensions. Witt (2002) found an interactive effect between extraversion and 

conscientiousness in predicting performance: extraversion was positively related to performance 

among highly conscientious workers but negatively or unrelated to performance among low 

conscientious workers. Judge and Erez (2007) found that for customer service employees, 

extraversion was only positively related to job performance for highly emotionally stable 

individuals; for customer service employees who scored at the lower end of emotional stability, 

extraversion was detrimental in that it had a negative relationship with job performance. In 

another example, Witt, Burke, Barrick and Mount (2002) showed that low levels of 

agreeableness consistently canceled the positive effects of conscientiousness on job performance 

across five groups of employees from diverse occupations. Thus, highly conscientious workers 

who lacked interpersonal sensitivity and competence could be ineffective and even yield 

dysfunctional outcomes, particularly in jobs that require substantial interactions and cooperation 

with others. Beyond the Big Five, social skill has also been shown to moderate the relationship 

between conscientiousness and performance across multiple samples (Witt & Ferris, 2003): 

conscientiousness was only positively related to performance for individuals with high social 

skill. Another study by Blickle et al. (2008) examined the moderation effect of political skill and 

found that, for workers with high political skill, agreeableness was positively related to job 

performance while conscientiousness was negatively related (Blickle et al., 2008).   

            C. Configural and Complex Interactions 
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 When interaction effects are combined with higher-order effects, more complex multi-

way interaction can emerge among various predictors. And the unique combination of predictors 

has been argued to carry additional information above and beyond individual predictors (Horst, 

1954, 1968; Lee, 1961; Cronbach & Glaser, 1953). As noted by Bergman and Magnusson (1997), 

“there is a growing acceptance of a holistic, interactionistic view in which the individual is seen 

as an organized whole, functioning and developing as a totality” (p.291). This argument is also 

supported by a recent call for a paradigm shift in work psychology from the traditional variable-

centric approach to a person-centric approach (Weiss & Rupp, 2011). Following the holistic 

approach, to represent the patterns of multiple subgroups, a set of configurations (or profiles), as 

represented by conceptually developed typologies, or empirically captured taxonomies, are 

usually identified.  

 The identification of configurations or profiles has been shown to provide a unique value 

for descriptive purposes (Bergman & Magnusson, 1997; Doty & Glick, 1994; Magnusson & 

Tӧrestad, 1993). For instance, Asendorpf (2003) suggested that a clear advantage of configural 

types was their easiness to communicate to a wider audience regarding personality differences. 

Maertz and Campion (2004) classified employees who voluntarily left their jobs based on why 

and how they quit, and proposed four profiles of quitters: impulsive quitters, comparison quitters, 

preplanned quitters, and conditional quitters. Woo (2009) explored six profiles with distinctive 

combinations of personality characteristics and demonstrated that each profile was associated 

with a unique pattern of frequencies and reasons for voluntary turnover. 

 The profiles of different subgroups can also be identified to further improve prediction 

(Davison & Kuang, 2000). This is usually accomplished through cluster analysis, and the 

resulting cluster membership is used in multiple regression as an additional predictor. Despite its 
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theoretical promise, the majority of empirical evidence indicates that cluster membership (or 

typology) is either unrelated to the outcome or does not provide incremental information above 

and beyond a simple examination of the effects of individual predictors. For example, Asendorpf 

(2003) compared the predictive power of the configural type approach with the continuous 

dimension approach, and found the former was consistently less predictive than the latter in 

cross-sectional predictions. Within the educational domain, Schmitt et al. (2007) identified five 

groups of college students based on a combination of fourteen predictors, including measures 

such as biodata, situational judgment tests, and cognitive ability. However, the group 

memberships they identified did not offer significant incremental validity above and beyond 

individual variables in predicting GPA and other areas of college performance. Similarly, Shen 

(2011) found that personality profiles failed to demonstrate substantial incremental validity over 

personality levels in predicting OCB (organizational citizenship behavior) or CWB 

(counterproductive work behavior). 

 One plausible explanation for the lack of significant findings, as suggested by Shen 

(2011), is that in traditional cluster methods the specification of the relationship between 

subgroup membership and criterion was usually set as linear. Another limitation might be a 

failure to investigate non-linear or non-additive relationships between predictors and the criterion.  

1.2 Strict Assumptions of Parametric Approach 

 Traditional parametric approaches, such as linear regression, or linear discriminant 

analysis, are subject to several strict assumptions, such as normality, independence, and 

homoscedasticity of error distribution (i.e., the variance of errors is the same across all levels of 

the predictor). Another strong assumption is that the predictor variables follow continuous and 
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multivariate normal distributions. However, as Hosmer and Lemeshow (1989) claimed, the 

normality assumption is rarely met in reality. For example, response distortion has been widely 

documented in personnel selection situations (Rosse, Stecher, Miller, & Levin, 1998; Morgeson 

et al., 2007). The questions included in many personality inventories are fairly transparent and 

easy to fake (Alliger, Lilienfeld, & Mitchell, 1995; Furnham, 1986), and the job application 

setting creates a strong situational demand that is likely to invoke high impression management, 

leading some applicants to answer in a social desirably manner and endorse items that will make 

them look good.  This response distortion inevitably results in a negatively skewed distribution, 

which may interfere with the predictive validity of selection tests. Rosse et al. (1998) showed 

that personality scale scores were more negatively skewed for applicants (-.28) compared to 

incumbents (.04).  Skewed distributions may further exacerbate the problem when the selection 

ratio is low and a top-down selection approach is applied, in which case a substantial number of 

top-scoring applicants may be individuals who consciously faked good. Since the strict 

assumptions imposed by the regression approach are usually unrealistic in data sets used by 

organizational scholars, biased estimates may be engendered when these assumptions are 

violated.  

Summary 

 There has been substantial conceptual and empirical evidence to date to support the 

existence of nonlinear, interactive, or even complex configural relationships in organizational 

research. The omission of these relationships not only leads to underestimation of the linkage 

between the predictors and the criterion, but also poses serious risks when these results are 

applied to make high-stakes decisions. The majority of previous studies that have examined the 

nonlinear or interactive effect generally took the parametric regression-based approach, such as 
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polynomial regression (Edwards & Parry, 1993) or hierarchical multiple regression (Cortina, 

1993). There methods create power or product terms explicitly in the regression equation and test 

for the significance of the nonlinear terms. However, one limitation of this approach is that the 

current theories and practices have not been thorough and precise enough to specify the exact 

nature of all the complex relationships a priori. Another limitation is that the main effect terms in 

a regression equation that make up an interaction must be entered before the inclusion of that 

interaction term, which may decrease statistical power for detecting significant interaction effects 

(Cohen, 1988; see also Crews, 2008; Kiernan, Kraemer, Winkleby, King, & Taylor, 2001). 

Additionally, traditional multiple regression, as a parametric approach, is subject to several 

strong assumptions about the underlying data distribution that are usually hard to meet in real 

situations. As a result, it is important to find an alternative solution that is more flexible in 

dealing with imperfect data and better at leveraging the information suggested by the data in an 

explorative and inductive manner. To address these issues, several nonparametric methods in the 

area of machine learning have been proposed, including recursive partitioning methods such as 

classification and regression trees (CART) and its successor random forests. 

2. Classification and Regression Trees (CART)  

2.1 Logic of CART 

 CART is a binary recursive partitioning method that builds classification trees and 

regression trees for predicting categorical and continuous variables, respectively (Breiman et al., 

1984). CART starts by placing all observations into one node, and then examines exhaustively 

through all possible binary splits within a predictor and across all predictors to search for a best 

split. The best split is defined as the one that reduces the impurity of the data in that node the 
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most (Berk, 2008). For classification trees, several types of node impurity measures have been 

proposed, including the Gini index, the Bayes error, and the cross-entropy function (Breiman et 

al., 1984), among which the Gini index is most commonly used. The Gini impurity index can be 

computed by summing the probability of each observation being chosen multiplied by the 

probability of making mistakes in categorizing that observation randomly, and the equation is 

specified as: GDI = ∑ 𝑝𝑗(1 − 𝑝𝑗)𝐾
𝑗=1 =  1 − ∑ 𝑝𝑗

2𝐾
𝑗=1 . For a binary outcome, the Gini index has a 

minimum of 0 when all cases belong to one category and a maximum of 0.5 when cases are 

equally distributed among all categories, therefore it could be considered as a measure of node 

balance. For regression trees, the impurity of a node is represented by the within-node sum of 

squares for the response variable: 𝑖(𝜏) =  ∑( 𝑦𝑖 −  𝑦̅(𝜏))2. Based on the best split, the total 

sample is then partitioned into two groups. Within each group, the values of the response 

variable are intended to be as homogeneous as possible. The same searching procedure is then 

applied to each subgroup separately, with a new optimal split found for each subset to further 

divide it into more homogenous subgroups. This partitioning of the data continues until a 

predetermined stopping point is reached, or until no further meaningful reduction in the node 

impurity can be found, resulting in a single tree. Any subsequent new observations can then be 

classified based on the set of split decisions (if-then logical conditions) derived from this original 

tree.  

 The output of a CART analysis is often displayed in a tree diagram. Figure 1 is a simple 

illustration. The full dataset is stored in the root node. Cases with variable X greater than C1 are 

placed to the right branch and cases with X equal to or smaller than C1 are placed to the left 

branch. The right subset can be divided again, with cases having variable Y  > C2 going to the 

right node and Y <= C2 going to the left. From a regression point of view, all splits beyond the 
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initial split of the root node imply interaction effects (Berk, 2008). In the current example, there 

is an interaction effect between X and Y so that the influence of Y depends on the value of X. As 

CART can reuse the same predictor over and over, possibly with different thresholds or cutoff 

values, there are times when a subsequent partitioning uses the same predictor again, resulting in 

a more complicated curvilinear function. Berk (2008) named it as a “stagewise” process given 

that earlier stages will not be revisited once a later stage is set.  

 CART determines the predicted value based on a majority vote. For a classification tree, 

the label of the majority group within a terminal node is attached to that node. For example, if 80% 

of the cases in terminal node 3 are high performers and 20% are low performers, the label of 

terminal node 3 is then assigned as “high performers.” When a new case is classified into this 

node, its predicted group will be “high performer.” For a regression tree, the mean value of the 

response variable within a terminal node is calculated, and assigned as the predicted value for 

that group.  

 After a tree has been constructed, how should its classification or prediction accuracy be 

evaluated? In general, a training sample is used to develop a tree classifier (i.e., a set of decision 

rules), and a test sample runs through the classifier to make classifications/predictions. The 

discrepancy between the predicted and the observed outcomes is used to estimate the level of 

accuracy, typically indicated by error terms. Two common types of error are usually computed: 

Overall misclassification error in classification, or overall mean squared error (MSE) in 

regression, when the test sample is the same as the training sample used to develop the tree 

classifier, and the error rate represents how skillful the method has been in fitting the data. This 

is also called the resubstituition error (Breiman et al., 1984). Generalization error (i.e., cross-

validation error, as introduced below) is derived when two different samples, a training sample 
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and a test sample, are used to build and test the tree structure respectively, indicating how skillful 

the method has been in forecasting (Berk, 2008). For a classification tree, a confusion table, 

which cross-tabulates the observed and predicted classes, is also critical for evaluating model 

accuracy from the following perspectives: Type I error (false positive), Type II error (false 

negative), true positive) and true negative.   

 Researchers such as Berk (2008) and Strobl, Malley and Tutz (2009) have claimed that 

the estimated resubstituition error rate is overly optimistic and yields lower than actual error rates. 

Indeed, Cureton (1950) already pointed out the problem with the resubstitution error in his 

classic article. Therefore, when multiple samples are available, or a large sample can be 

partitioned into several subsets, it is preferred to use different samples for training and testing to 

produce a more honest and accurate estimation. In the case when no test sample is available or 

training sample is limited in size, a widely-used alternative is the k-fold cross-validation 

procedure (Breiman et al., 1984). According to this method, the original sample is randomly 

partitioned into k equally sized subsamples. Each time, the combination of the (k -1) subsamples 

is used to grow the tree, with the one left-out subsample serving as the test sample. This process 

is then repeated k times until each subsample has been used exactly one time as the test sample. 

The average classification accuracy (or MSE) across the k results is then used as a single 

estimate of cross-validation accuracy. In practice, k usually takes the number of 10. However, if 

k equals to N (i.e., total sample size) and each test subsample includes only one case, this cross-

validation method is also called the “leave-one-out” estimate.  

2.2 Empirical Applications of CART 
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 In the past three decades, CART has been used in various scientific areas, such as 

genetics, bioinformatics, ecology, finance, mechanical engineering, and neuroscience (e.g., 

De’ath & Fabricius, 2000; Frydman, Altman, & Kao, 1985; Reibnegger, Weiss, Werner-

Felmayer, Judmaier, & Wachter, 1991). Within the broad discipline of psychology, there has 

been an increasing application of CART for predicting a variety of outcomes, such as violence 

(Steadman et al., 2000), sexual recidivism (Lloyd, 2008), suicidal ideation (Kerby, 2003), 

positive and negative affect (Gruenewald, Mroczek, Ryff, & Singer, 2008), perceived life stress 

(Scott, Jackson, & Bergeman, 2011), college admission (Sah, 1998), and student attrition 

(Windham, 1994). Two recent reviews have summarized the application of recursive partitioning 

methods in psychology (cf. Merkle & Shaffer, 2011; Strobl, Malley, & Tutz, 2009). Despite its 

popularity in other areas, the application of CART in I/O psychology and management science is 

rare. In the following section, I review the few studies that have either applied CART, or 

compared CART with traditional methods for predicting and/or explaining various 

organizational behaviors.  

One area in I/O psychology that CART has been more frequently considered is to predict 

and explain employee attrition and job performance. For example, a military study conducted by 

Stark et al. (2011) compared traditional multiple logistic regression with CART in predicting 

attrition among first-term enlisted soldiers, and found CART performed slightly better than 

logistic regression in classifying “stayers” and “leavers”. More importantly, CART was able to 

uncover nonlinear and configural relationships in the response data and identify different reasons 

of staying or leaving for soldiers. Gjurich (1999) predicted naval Surface Warfare Officer (SWO) 

retention level using logistic regression and CART, and identified the reasons for officers’ 

attrition. Reis (2000) also applied CART in another military setting to select the most important 
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factors for predicting student aviators’ performance in the aviation-training pipeline, including 

both a categorical outcome of completion/attrition and a continuous outcome of flight school 

grades. For a non-military setting, Chien and Chen (2008) proposed using a data mining 

framework to explore the relationship between personnel profiles and work behaviors, and 

developed decision trees for predicting job performance, retention and turnover reasons based on 

demographic information and work experience for a high-tech company. Beyond understanding 

attrition and performance, Keeney, Snell, Robison, Svyantek and Bott (2004) have applied 

CART to examine patterns of organizational climate and employee personality characteristics 

associated with three different organizations. Their findings supported the ASA (i.e., Attraction-

Selection-Attrition) theory and the presence of a person-environment interaction. CART has also 

been used to shorten surveys and remove items that do not contribute. For example, in a study 

conducted by Lee and Drasgow (working paper), a 22-item retention likelihood scale was 

examined using CART, and the final rule incorporated only 4 useful items that still provided an 

accurate classification of stayers and leavers. Petway (2010) also applied CART to reduce the 

length of the Big Five Inventory. 

2.3 Comparing CART with Classical Methods  

 As summarized above, standard parametric models such as linear and logistic regressions 

fall short in several aspects when used in organizational sciences. The introduction of CART 

may overcome some of the limitations associated with traditional methods, as described below. 

 A. Flexibility in handling complex relationships 

CART provides researchers with a flexible tool for exploring and exploiting nonlinear 

and configural relationships as suggested by the data. It is especially suitable for conditions when 



 

19 
 

the researchers suspect that there are complex nonlinear or interaction effects among the 

predictors, or between the predictor variables and the criterion, but are not sure about the exact 

form a priori. In addition, compared to multiple regression’s one-model-fits-all procedure, CART 

is able to specify an individual equation for each subgroup. In CART, each group of participants 

can be traced through a series of specific splits and corresponding splitting variables, with each 

set of splits representing a multiple regression equation. A sample regression equation is   

𝑓(𝑋, 𝑍) = 𝛽0 +  𝛽1 [𝐼 (𝑥 ≤ 𝑐1)] +  𝛽2 [𝐼 (𝑥 > 𝑐1 & 𝑧 ≤ 𝑐1)] + 𝛽3 [𝐼 (𝑥 > 𝑐1 & 𝑧 > 𝑐2)] 

where I represent the indicator function. As noted by Berk (2008, p.104), “In practice, 

there is no need to translate the partitioning into a regression model; the partitioning results stand 

on their own as a regression analysis. But if one wishes, the recursive partitioning can be seen as 

a special form of stepwise regression.” This is especially suitable for identifying subgroups and 

their corresponding characteristics. 

B. Not restricted by parametric assumptions 

 Another flexibility of CART is that it’s a nonparametric method, which means it does not 

rely on assumptions about sampling observations from a normal distribution. As discussed above, 

it can be difficult to meet these assumptions with real data. In situations like these, CART shows 

superior flexibility in handling a wide variety of data types, without requiring any sort of data 

transformation prior to analysis. On a related note, extreme responses and outliers are more 

likely to happen in situations with seriously skewed distributions. While the parametric method 

can be greatly impacted by outliers if they are not explicitly detected and removed, CART just 

isolates the outliers into a separate node. Hence, CART’s results are less likely to be affected by 

extreme responses.  
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 C. Ease of handling missing data 

 When missing values exist for the independent variables, a common procedure embraced 

by many statistical models is pairwise or listwise deletion, excluding observations with one or 

more attributes missing. This treatment potentially reduces the amount of information being used 

for model estimation. Missing values are less of an issue for CART though, because CART 

examines one variable at a time, so only cases with missing values in that particular variable are 

temporarily removed, whereas all the other cases are retained for that investigation. When other 

variables are considered, the observations deleted temporarily in a previous step will be included 

again. This approach does not involve permanently deleting any cases when developing a 

predictive algorithm and therefore maximizes the information being used.  

 When CART is used to make predictions for a new observation with missing values in 

any of the splitting variables, a so-called surrogate variable is used to replace the missing 

variable (Hastie, Tibshirani, & Friedman, 2001). A surrogate variable in CART is the one drawn 

from the remaining set of variables that most closely mimics or predicts the splits of the primary 

variable that is missing. This is a much simpler approach than imputing missing values and is 

preferable when dealing with cases that have partially missing data. 

 D. White box approach 

 In most cases, the interpretation of the results derived from a decision tree (i.e., a set of 

if-then conditional statements) is straightforward and intuitively clear. Any hierarchical nature of 

the independent variables, their interactions, and their relative importance for different classes, 

are explicit within the tree structure. This white box approach can be of tremendous help for 

researchers to uncover the underlying relationships between the predictors and the outcome 

variable in a more explicit manner, potentially leading to an enhanced understanding and better 
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theory building. For example, each branch in the decision tree can be considered as an individual 

profile, and the set of predictors and their cut-off values help define the characteristics of that 

particular profile. Breiman et al. (1984, p.7) noted that “an important criterion for a good 

classification procedure is that it not only produces accurate classifiers (within the limits of the 

data) but that it also provides insight and understanding into the predictive structure of the data.” 

Moreover, a tree diagram is often much easier to comprehend than the regression coefficients for 

practitioners. This approach is even more desirable when compared to other “black-box” 

advanced nonlinear classifiers, such as artificial neural networks (ANN; Bishop, 1995), whose 

internal patterns are never uncovered.  

 As a summary, the above section suggested that CART provides a valuable alternative in 

areas where the traditional regression approach falls short, and offers additional insights that are 

not otherwise revealed.  However, CART is not without its shortcomings. In the following 

section, I discuss some caveats to note when applying CART.    

2.4 Caveats for CART 

 A. Model Instability 

 CART may have limitations when stability and generalizability are considered. To make 

the terminal nodes as homogeneous as possible, CART can construct a very large tree with very 

few cases in each terminal node, which is usually called overfitting. Overfitting may engender 

three concerns: it causes the tree structure to be unstable, hard to generalize across samples, and 

difficult to interpret. Overfitting can be attributed to the following three reasons: first, a small 

sample size, especially when one or more terminal nodes include only a small number of 

observations; second, weak predictors, which is usually indicated by heterogeneous terminal 
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nodes; third, highly correlated predictors, which means selecting one of the two competing 

predictors rather than the other can change a tree structure substantially. To protect the tree from 

overfitting and strengthen the generalizability of the results, several remedies have been 

proposed. The first strategy is to set up a stopping rule, so that the tree will no longer be split 

after the stopping rule is achieved. A variety of heuristics or options can be used to determine the 

stopping rule, such as setting up a minimum leaf size (i.e., the number of cases within each node), 

specifying the homogeneity criteria, or defining the desired number of intermediate steps. The 

second approach to prohibit CART from constructing a large and unstable tree is through 

“pruning” (Breiman et al., 1984; Berk, 2008), usually in the backward direction. The underlying 

mechanism of pruning is to first grow a large tree, then cut off the branches that do not increase 

predictive accuracy sufficiently. The most widely used pruning strategy is the “minimal cost-

complexity pruning” developed by Breiman et al. (1984), which seeks to find a balance between 

overall misclassification error and tree complexity (i.e., number of terminal nodes) by adding a 

penalty for complex trees. This process removes weak branches by combining nodes that do not 

reduce misclassification error sufficiently to justify the extra complexity added. As the value of 

the penalty parameter can vary across a range, a sequence of optimal trees can be generated. 

Therefore, a second stage following this pruning step is to carry out a cross validation to select a 

single best tree. The so called “one standard error rule” (Breiman et al., 1984) is generally used 

to make this best selection, that is, choose the smallest-sized tree whose cross-validation costs 

are within the one standard error range of the minimum cross-validation cost. In cases when a 

large number of predictors are included for a relatively small sample, a more advanced approach 

to increase model stability and generalizability is through resampling. By resampling, hundreds 

and thousands of trees are constructed to create a tree ensemble, and the results averaged across 
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the ensemble are then used as the decision rule. The two most popular ensemble methods – Tree 

Bagging and Random Forests – are discussed below. 

 B. Model Bias 

 Another problem with CART is that its “greedy” search mechanism may induce bias in 

variable selection (Doyle, 1973; Loh, 2002; Loh, 2009): with all other things equal, variables 

with a larger number of distinct values have a greater chance to be selected as the splitting 

variables (Hothorn, Hornik, & Zeileis, 2006).  For example, a categorical variable X that takes n 

distinct values can have (2n-1 – 1) binary splits. When n increases, this number grows 

exponentially. Thus, a categorical variable with more values has a larger opportunity to be 

chosen. This selection bias can potentially cause irrelevant variables to be selected, leading to 

erroneous inferences.  

 An alternative method for constructing classification and regression trees, called GUIDE 

(i.e., Generalized, Unbiased Interaction Detection and Estimation), has been developed by Loh 

(Loh, 2002; Loh, 2009) to overcome the problem of selection bias. The main argument of 

GUIDE is that compared to restricting splits to one variable on a single node, one can sometimes 

gain greater predictive accuracy by splitting on a linear combination of multiple variables.  For 

classification trees, GUIDE involves three steps of chi-square significance tests. Step one is to 

test for main effects. It performs a chi-square test of independence of each predictor versus the 

outcome variable and calculates its significance probability. The first split is then based on the 

most significant variable. When no main effect achieves a specified level of significance, a 

second step is conducted to test for interaction effects. If an interaction test is significant, a two-

level split search for the splitting points is performed. A two-level split is needed because the 
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best split of X1 may depend on how X2 is subsequently split; similarly, the best split of X2 may 

also need to consider the best subsequent splits of X1. Considering their joint effect, the pair of 

variables with the largest chi-square value is then selected. If no test in the first two steps is 

significant, a third step is performed to test for linear structure. However, Hastie et al. (2001) 

cautioned that even though this linear combination of splits might improve predictive power, it 

may hurt interpretability. Therefore GUIDE is limited to two variables at a time when fitting a 

linear model. With respect to regression trees, GUIDE helps solve three problems: first, it 

controls for selection bias by applying a chi-square test for signed residuals and a bootstrap 

calibration of significance probabilities; second, it also includes tests for significant pairwise 

interactions between regression variables; third, it fits more complex node models (e.g., multiple, 

stepwise linear, polynomial and ANCOVA) than the piecewise constant model of CART.  

 GUIDE, although helpful for reducing model bias and uncovering good splits hidden 

behind interactions, still faces the same problem of instability and lack of generalizability. To 

address these challenges, two ensemble methods based on the CART algorithm, Tree Bagging 

and Random Forests, have been proposed. 

3. Tree Ensemble Methods 

3.1 Tree Bagging 

 “Bagging,” an abbreviation for “Bootstrap Aggregation,” is built on the idea of bootstrap 

resampling and majority vote (Breiman, 1996). Take a classification tree as an example. Each 

time, a random sample of size N is drawn with replacement from the original data to construct a 

single decision tree without pruning. For each tree, a case is assigned to one of the terminal 

nodes and the category associated with that node is stored. After repeating this process a number 
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of times, hundreds or even thousands of trees are constructed. Finally, one can count how many 

trees have classified a case into each category, and assign the class membership based on 

majority vote. As for regression trees, the average response across multiple trees is calculated as 

the predicted outcome for each case. An even more accurate procedure based on bagging is 

called “out-of-bag” estimation: only observations not included in the bootstrap training sample 

are used to form the test sample. By aggregating a collection of fitted values, tree bagging is able 

to compensate for overfitting by reducing random variations and canceling out idiosyncrasy of 

the training data, which results in a more stable decision algorithm and a more honest estimate of 

model fit.  

 Tree bagging, nevertheless, is not without limitations. First, the model averaging process 

is a black-box approach with limited interpretability. Since bagging involves averaging across a 

large number of trees, there is no longer a single tree structure for interpretation, and no direct 

way to relate predictors to the response as in a standard decision tree. The output generated by a 

bagging procedure is merely the predicted class for each case or the predicted probability of 

membership in a class, yet the underlying mechanism regarding how each case is assigned is 

unknown. Another limitation exists when a set of predictors are correlated with each other and 

the fitted values are not fully independent (Berk, 2008). For example, when two important 

predictors are highly correlated, the inclusion of one could potentially obscure the effect of the 

other and prohibit its inclusion, leading to a biased estimate. The introduction of the Random 

Forests method provides a solution to these problems (Breiman, 2001).      

3.2 Random Forests  
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 Similar to tree bagging, random forests method also leverages the advantage of model 

averaging by constructing a number of trees from bootstrap samples, and determining the 

predicted values according to the majority vote (or average). A critical difference between tree 

bagging and random forests lies in the way they select predictors at each split. For Tree Bagging, 

all the predictors are examined before each node is split, whereas for random forests, a random 

sample of the predictors without replacement is taken before each split. This treatment prevents 

an important predictor from being outplayed by a strong competitor that is highly correlated, and 

gives each predictor a chance to make an impact in different contexts with different covariates. 

As a consequence, beyond reducing sampling error, the random forests method also has the 

following three advantages compared to CART and tree bagging: First, it is able to work with a 

very large number of predictors. Second, it is preferred for dealing with substantially correlated 

predictors. Third, it helps further reduce random variance beyond sampling of observations. 

Therefore, random forests has been claimed to be most suitable for “small n large p problems” 

(Strobl, Malley, & Tutz, 2009, p. 339) when there are too many predictors with too few 

observations. Instead of simultaneously considering all the predictors at the same time, random 

forests examines a subset of predictors at one time, which is easier to handle. This strategy 

demonstrates a clear advantage over classical methods such as logistic regression when the 

number of dimensions is high (e.g., Bureau et al., 2005). Nevertheless, as with bagging, the 

random forests method is also a black-box approach that is limited in interpretation, lacking a 

unique tree structure and corresponding statistical functions linking the predictors with the 

outcome.  

3.3 Determining Variable Importance  
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 Estimating the relative contribution of each predictor for overall predictive accuracy 

usually offers another lens to interpret a model. This is not uncommon given that regression 

weights are widely considered as the indicator of variable importance. The random forests 

method provides a mechanism to calculate variable importance that includes two variations. The 

first one is called raw importance (or Gini importance for classification trees), which evaluates 

the total decrease in node impurity by splitting on a variable for each tree and then averages over 

all trees. Every time a split of a node is made on a particular variable, the sum of the split 

criterion (i.e., an impurity index such as Gini for classification or MSE for regression) for the 

two child nodes is less than the parent node. Adding up the impurity decreases for each 

individual variable over all trees in the random forest gives the estimate of the variable 

importance. Although intuitive, this method has been shown to carry forward the bias of a single 

tree, which favors continuous variables or variables with many categories (Strobl, Boulesteix, 

Zeileis, & Hothorn, 2007). Thus, it is not recommended in situations when predictor variables 

vary in their number of categories or scale of measurement. The second approach is called 

permutation importance (Breiman, 2001). This is achieved by randomly permuting the values of 

any predictor across all of the observations in the training data set or out-of-bag data set, and 

comparing the difference in predictive accuracy (i.e., misclassification rate or MSE) between the 

real data and the permutation data across all trees. If the random permutation of a particular 

variable substantially decreases the predictive accuracy, then this predictor is considered as a 

reasonably important one. Otherwise, it is not considered as important. A limitation of the 

permutation importance method is that it severely over-estimates the importance of a predictor 

variable if it correlates with other variables (Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 

2008).  
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 In simple multiple regression, the values of the standardized regression coefficients (or 

squared standardized regression coefficients) can be used to quantify the importance of different 

predictors and the strength of the connections between the predictors and the criterion. However, 

regression coefficients could be seriously distorted given the existence of multicollinearity 

among predictors. Recently, several comprehensive alternatives based on more solid statistical 

inferences such as dominance analysis (Azen, Budescu, & Reiser, 2001) and relative weights 

analysis (Johnson, 2000), have been proposed to overcome the multicollinearity problem. 

Dominance analysis addresses the problem of correlated predictors by examining the additional 

contribution of each predictor across all subset of regression models (Azen & Budescu, 2003; 

Budescu, 1993). Relative weights analysis, on the other hand, adopts a variable transformation 

approach by creating a set of new predictors that are orthogonal counterparts of the original ones 

(Johnson, 2000). Although developed based on different statistical rationales, past research has 

shown that the two methods tend to yield virtually identical results (LeBreton, Ployhart, & Ladd, 

2004). However, dominance analysis is less preferred, especially when the number of predictors 

is large, mainly due to its computational burden (i.e., it computes all possible subsets of 

regression models). Indeed, Johnson and LeBreton (2004) noted that dominance analysis can 

handle no more than 10 predictors at a time. Therefore, relative weights analysis is generally 

preferred, particularly for high-dimensional data. 

 Compared to the traditional regression coefficient approach, both random forests and 

dominance analysis/relative weights are superior when multicollinearity is present (e.g., Bi & 

Chung, 2011). However, two unique features further differentiate random forests from 

dominance analysis/relative weights. First, both dominance analysis and relative weights are 

limited to the first-order linear regression model and do not include any interactive or higher 
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order polynomial effects. This means the variable importance generated from these two 

techniques reflects only the “main effects”. Random forests, however, covers the impact of each 

predictor individually as well as its multivariate interactions with other predictors. Second, the 

foundational assumption of both dominance analysis and relative weights analysis is that the 

form and function of the regression model have been correctly specified (Budescu, 1993; 

Tonidandel & LeBreton, 2010). This could not be guaranteed particularly with high dimensional 

data that includes complex interactions. The random forests method offers more flexibility in 

cases when the regression model is not specified a priori.   

4. Comparing Classical Methods, CART, and Random Forests 

4.1 Brief Review of Several Classical Methods 

 Two of the most commonly adopted modeling methods for classification problems are 

Fisher’s discriminant analysis (DA) and logistic regression (LR). The underlying mechanism of 

discriminant analysis is to find a linear combination of a set of continuous predictors that best 

differentiates two or more classes of objects or events based on ordinary least squares (OLS). 

Discriminant analysis formulates a function that predicts the probability of an individual falling 

into each category, and then assigns the group membership based on the highest probability. 

When group variances are equal, linear discriminant analysis (LDA) is used; otherwise, quadratic 

discriminant analysis (QDA) is applied. However, DA is based on OLS that assumes normal 

distributions of the error variances. When this requirement is not satisfied and the dependent 

variable is a binary outcome, logistic regression (LR) is usually preferred for modeling the 

binomial distribution. LR is a special form of the generalized linear model with the link function 

being a log transformation of the odds ratio (i.e., the probability that an observation belongs to 
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one category divided by the probability that it falls into the other category), which is often called 

a logit function, as shown in the formula below. It describes how the probably of a binary 

outcome is related to a linear combination of the predictor variables (Hosmer & Lemeshow, 

1989). Unlike DA that uses OLS, LR obtains parameter estimates through maximum likelihood 

estimation.  

logit (𝜋(𝑥𝑖)) = log (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
) =  𝛼 +  𝛽1 𝑥1𝑖 +  … + 𝛽𝑗 𝑥𝑗𝑖 + 𝑒𝑖 

or alternatively in terms of 𝜋(𝑥𝑖): 

𝜋(𝑥𝑖) =  
exp{𝛼 +  𝛽1 𝑥1𝑖 + … +  𝛽𝑗 𝑥𝑗𝑖 + 𝑒𝑖}

1 +  exp{𝛼 + 𝛽1 𝑥1𝑖 +  … + 𝛽𝑗 𝑥𝑗𝑖 + 𝑒𝑖}
 

 When the response variable is a continuous numerical one, multiple linear regression, 

which is another form of generalized linear model with the link function being “identity,” is most 

commonly used (formula shown below): 

𝑌𝑖 =  𝛼 +  𝛽1 𝑥1𝑖 +  … + 𝛽𝑗 𝑥𝑗𝑖 + 𝑒𝑖 

where 𝑒𝑖 ~ 𝑁 (0, 𝜎2) and independent.  

4.2 Comparing Classical Methods, CART, and Random Forests 

 A number of previous empirical and simulation studies have compared the predictive 

accuracy of CART and the above mentioned classical methods. Results from empirical studies 

based on single dataset have been conflicting. For instance, several studies have found that 

traditional methods such as LDA, QDA, and LR performed comparably or better than CART 

(Arminger, Enache, & Bonne, 1997; Dudoit, Fridlyand, & Speed, 2002; Preatoni et al., 2005; 
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Ripley, 1994; Williams, Lee, Fisher, & Dickerman, 1999), whereas other studies (e.g., Grassi, 

Villani, & Marinoni, 2001) reported that CART provided higher classification accuracy than 

LDA. These conflicting results might be attributed to the idiosyncratic nature of the sample 

being used. A couple of simulation studies suggested that certain data and model distribution 

characteristics had differential impacts on the classification accuracy of traditional methods and 

CART. For example, Finch and Schneider (2006, 2007) conducted two Monte Carlo simulations 

that compared the cross-validated misclassification accuracy of LDA, QDA, LR, and CART 

under a variety of simulated conditions. Their results indicated that when the parametric 

assumptions such as normal distribution and equal covariance matrices of the two groups were 

met, LDA and LR performed as well as QDA and all were slightly better than CART. However, 

when the two groups’ covariance matrices are not equal, regardless of the underlying distribution 

of the predictors, QDA and CART consistently outperformed LDA and LR. The more unequal, 

the better QDA and CART performed. They also found a significant main effect of the group 

size ratio: when the two groups were extremely unequal in size (e.g., 10:90), the 

misclassification rate was consistently higher for the smaller group regardless of data distribution, 

sample size, or the modeling method being used. However, Finch and Schneider (2006) showed 

that CART did offer some buffering effects in situations like that, showing a slightly lower 

misclassification rate for the smaller group and a higher classification error for the larger group. 

These authors noted that one limitation of their simulations was that the interaction effects 

among the variables were not considered at all. Therefore, a more comprehensive simulation was 

conducted to extend the comparison (Holden, Finch, & Kelly, 2011). Holden et al. (2011) 

showed that when the simulated models included interactions, linear models such as LDA, QDA, 

and LR consistently had difficulty in obtaining accurate classification, whereas CART always 
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produced the greatest accuracy. The superiority of CART was particularly notable when the 

relationship between group membership and the predictors was complex and nonlinear. Similar 

conclusions were also supported by several other simulation studies regarding the impact of 

nonlinear relationships (Curram & Mingers, 1994; West, Brockett, & Golden, 1997), with the 

results showing that LDA and LR performed as well as more advanced alternatives such as 

classification trees under linear conditions, but were not as effective when the relationships 

between the predictors and the criterion measure were nonlinear. 

 Prior simulation studies comparing CART with traditional multiple linear regression 

(MLR) for predicting continuous outcomes have demonstrated similar results to that when 

predicting a categorical criterion. Breiman et al. (1984) conducted several simulation and 

empirical studies comparing regression trees with linear regression, and concluded that 

regression trees could be much more accurate for nonlinear problems, but tended to be less 

accurate when the problem followed a good linear structure. Garson (1998) also showed that 

linear models such as MLR performed poorly for prediction when a number of interactions 

existed among the predictor variables, based on a Monte Carlo simulation. Empirical evidence 

showed that CART performed comparable or slightly better than multiple linear regression in 

terms of predictive accuracy (Finch et al., 2011; Kerby, 2003; Fu, Anderson, Courtney, & Hu, 

2007), yet demonstrated additional advantages in other areas: CART displayed lower RMSE and 

higher R2 results than did MLR, and offered cutoff scores to aid decision making in applied 

settings.  

 Unlike comparisons between CART and traditional methods which are bounded by 

sample and model characteristics, studies comparing random forests with other methods have 

generally shown that random forests possess higher levels of predictive accuracy than other 
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classical methods or a single decision tree. Halstead (2006) compared linear regression with 

random forests and two alternatives and found that random forests best predicted military 

recruiter’s job performance while linear regression yielded the worst prediction. Based on the 

random forests variable importance selection mechanism, Halstead (2006) identified the best 

subset of features out of 260 predictors that produced the best model generalization. Sut and 

Simsek (2011) compared CART, random forests, and a set of other regression methods for 

predicting mortality in head injuries, and showed better performance for random forests than 

CART based on both overall accuracy and area under the ROC Curve. Loh (2009) also 

conducted a set of simulation studies comparing ensemble tree methods with several single-

decision-tree methods such as CART and GUIDE, and found that in general, ensemble methods 

fit better than any of the single-tree methods, and random forests was the best for most samples. 

In addition to superior predictive accuracy, the random forests method also excels at finding 

important predictors. A simulation study conducted by Eliot (2011) showed that when there was 

no structure among the predictors, random forests performed better than LR and CART at 

finding the order of variable importance, especially when predictors were not highly correlated. 

However, when the data was structured in the way that one variable was only predictive of the 

outcome within a level of another variable, CART and LR described the data better than random 

forests. Eliot (2011) suggested that each method may be best suited for certain types of data and 

distributions, and combining them may provide additional insights.  

5. The Current Study 

 Given previous theoretical and empirical evidence, it is expected that CART would 

outperform traditional classification and regression methods, such as DA, LR or MLR, when 

nonlinear, interactive, or complex configural relationships exist in the data. The classification 
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accuracy may also vary depending on parameters such as group size ratio (Finch & Schneider, 

2006, 2007; Perlich, Provost, & Simonoff, 2003). However, although random forests is expected 

to perform better than CART and other traditional methods in a variety of conditions, there is a 

lack of simulation research comparing random forests with CART and other methods under 

nonlinear data structure or various group size ratios. As a consequence, the first purpose of the 

current study is to replicate and extend previous simulations by comparing CART and random 

forests with classical methods such as logistic regression, linear and quadratic discriminant 

analysis, and multiple linear regression for predicting both categorical and continuous outcomes 

under a variety of manipulated conditions. In addition to the set of parameters examined before, I 

also included some other factors that have theoretical or empirical relevance with organizational 

research. Using a series of Monte Carlo simulations, the first two studies examined the 

methodological strengths and weaknesses of CART and random forests compared to the set of 

commonly used regression-based methods, particularly in the context of organization research.  

 The second goal of the current research was to illustrate the empirical application of 

CART and random forests using real data, comparing their predictive accuracy with the same set 

of traditional methods for addressing employee turnover problem (a binary outcome) in Study 3 

and job performance (a continuous outcome) in Study 4. The aim of these two studies was to 

offer practical guidance regarding how CART and random forests could be combined to enhance 

both model prediction and interpretation.  

 In a summary, the current paper provides an exposition and new findings regarding 

recursive partitioning methods for the researchers in the field of organizational sciences, and 

offers some empirical suggestions about when and how these methods should be applied.  
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CHAPTER 2: METHOD 

STUDY 1 

 In Study 1, a Monte Carlo simulation was carried out to systematically compare the two 

decision tree methods, CART and random forests (RF), with three traditional classification 

methods: logistic regression (LR), linear discriminant analysis (LDA), and quadratic 

discriminant analysis (QDA). In particular, the current study aimed at exploring if and when the 

decision tree methods were superior to the traditional methods. The manipulated parameters 

were selected to cover a variety of characteristics associated with the sample (base rate), 

distributions (level of skewness), relationships within the set of predictors (multicollinearity), 

and the relationships between the predictors and the outcome variable (variance explained and 

data complexity). These parameters were chosen based on their theoretical and practical 

relevance to personnel selection research (Aguinis, Culpepper, & Pierce, 2010; Bobko, Roth, & 

Potosky, 1999; Finch, Edwards, & Wallace, 2009).  

 Personnel selection was of particular interest in the current paper because, given the high-

stakes context of personnel selection, predictive accuracy is usually the foremost concern – even 

a small improvement in predictive utility can lead to a substantial monetary saving, such as 

reducing training costs (White, Nord, Mael, & Young, 1993) or increasing return on investment 

(ROI). In addition, understanding how predictors and criterion are related could assist personnel 

psychologists to develop better selection decisions. Note that sample characteristics and sample 

size were beyond the scope of the current study. This is because previous literature (Fan & Wang, 

1999; Lei & Koehly, 2003) found that sample size was not a significant factor in differentiating 

CART from LR or other traditional methods. Thus, the sample size was fixed to 1, 000 in the 

current study to make sure that when the base rate was set to be relatively small, there would be 
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sufficient cases in the minority group to yield meaningful results. Finally, the number of 

predictors was fixed at four to replicate what was done in previous research (e.g., Holden, Finch, 

& Kelly, 2011; De Corte, Lievens, & Sackett, 2006).   

Manipulated Parameters 

 Multicollinearity. To examine whether the existence of multicollinearity would impact 

the accuracy of different classification methods, the intercorrelations among the predictors were 

manipulated. In simulation studies, the correlation matrix of the predictor variables is usually 

used to generate data with a specified structure of the predictors. Past simulations in the area of 

personnel selection (e.g., Bobko, Roth, & Potosky, 1999; De Corte, Sackett, & Lievens, 2011; 

Finch, Edwards, & Wallace, 2009) usually took the correlation matrix of the most commonly 

used selection predictors (e.g., conscientiousness, cognitive ability, biodata, structured interview 

and integrity test) derived from meta-analyses to represent the input matrix. Despite its high 

fidelity and relevance, this fixed set of intercorrelations is limited in its coverage of a full range 

of relationships. As indicated by Cohen (1988), the effect size of a Pearson correlation 

coefficient ranges from small (below 0.3) to large (above 0.7). As such, to increase the variety of 

input matrices, the elements in the simulated four by four matrix were randomly generated from 

two intervals, 0 – 0.3 and 0.3 – 0.7, to represent two scenarios: the four predictors were either 

relatively independent (i.e., low multicollinearity) or moderately to highly correlated (i.e., high 

multicollinearity), respectively. A correlation coefficient above 0.7 was not considered in the 

current study, given that this scenario is rare in organizational research when different predictors 

are used to assess different constructs.  
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 Level of skewness. Skewness was manipulated in the current research to study violation 

of the normality assumption of the traditional parametric approaches. The data were generated as 

either positively skewed or negative skewed, with the level of skewness being set as either 0.3 or 

0.7, so there were four levels of skewness: -0.7, -0.3, 0.3, and 0.7. Note that 0.3 and 0.7 were 

chosen based on extensive review of actual data from selection tests. I was given permission to 

access the database of a consulting firm, which included a variety of selection tools that 

measured many non-cognitive predictors. Data analyses showed that in general, the skewness 

ranged from 0.3 to 0.7 in real selection situations. As such, these numbers were chosen in the 

present study to represent slightly and substantially skewed data.  

 Base rate. As the criterion of interest of the current study was a binary variable, an 

important parameter to be considered was the base rate (i.e., prior probability distribution of the 

two classes). Within the realm of personnel selection, base rate could play out in the form of 

selection ratios (e.g., Komar, Brown, Komar, & Robie, 2008; Sackett & Roth, 1996), turnover 

rate, or success/failure rate. The focal interest of the current study was to understand how to 

better predict whether a selection decision is successful or not. So 1 was used to represent a 

failure and 0 representing a success. As it is rare to have 50% to 90% of the applicants being 

selected fail their job, only the first two levels of base rate, 0.1 and 0.3, were included in the 

current study. Based on the data generated from the input matrix as well as the functional 

relationships between the predictors and the criterion (i.e., the first four models described below), 

an array of continuous outcome variables (y) can be obtained. To convert the continuous variable 

into a dichotomous variable, the values of y were ranked in descending order, and the base rate 

was used to determine the cut-off point with either the top 10% or top 30% of the cases being 

assigned a 1, and the remaining assigned a 0.  
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 Data complexity. The functional relationship between the set of predictors (x1 – x4) and 

the outcome variable (y) was also manipulated to affect data complexity. Five models linking the 

predictors with the outcome were defined. Model 1 was the most basic, a simple linear additive 

model. Models 2 to 4 were modified to incorporate nonlinear components in the forms of 

interaction, quadratic and cubic terms. Model 2 added the quadratic term of x1
2 to the basic 

model. Model 3 was specified by adding an interaction term between x1 and x2. Model 4 was the 

most complex additive model: it included an interaction term, a quadratic term, and a cubic term. 

Regression weights for these four models were set to one to simply the relationship, and a 

specific error component was added to each model. More information about how the error 

component was created is introduced in the next paragraph. Despite the difference in the level of 

complexity among Models 2 to 4, they were essentially all under the same umbrella of 

polynomial regression. However, the actual relationship within the data may go beyond the form 

of a linear regression model or any type of polynomial regression. As such, I decided to further 

extend the functional relationship between the predictors and the criterion variable, bringing in a 

configural model structured in the form of a classification tree. A prototype tree (shown in Figure 

2) was created to factor in various conditions, including the higher-order effect of a single 

predictor, and two-way and three-way interactions among various predictors. The mathematical 

expression of this model was mapped out as a set of stepwise regression functions, with a1, a2, b1, 

b2, c1, c2 and d1 being a set of predetermined cut-off scores at different decision points. To make 

sure that the final base rate was 0.1 or 0.3 as defined, meaning the group size ratio of 1 versus 0 

being either 1:9 or 3:7, one parameter (b1) was freed up at the very beginning of model set-up 

with all the other parameters fixed. This extra degree of freedom was created to allow the base 

rate requirement to be met. After the value of b1was determined, it was then incorporated back to 
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generate the final model. (A side note: as the base rates specified in the current study was a bit 

extreme, not any given value of a1 could result in the expected base rate of 0.1 or 0.3. Thus, 

multiple values of a1 were plotted against the final base rate with b1 fixed, and the value of a1 that 

yielded a base rate closest to 0.1 or 0.3 was used). The models are specified as follows:  

 1. 𝑦1 = 𝑥1 +  𝑥2 + 𝑥3 +  𝑥4  + 𝑒1 

 2. 𝑦2 = 𝑥1 +  𝑥2 +  𝑥3 +  𝑥4  +  𝑥1
2 + 𝑒2 

 3. 𝑦3 = 𝑥1 +  𝑥2 +  𝑥3 +  𝑥4  +  𝑥1 ∗ 𝑥2 + 𝑒3 

 4. 𝑦4 = 𝑥1 +  𝑥2 + 𝑥3 +  𝑥4  +  𝑥1 ∗ 𝑥2 + 𝑥3
2 +  𝑥4

3 + 𝑒4 

  5. 𝑦5 = 1, if 

                𝑥1 ≥  𝑎1 & 𝑥2 ≥  𝑏1, 

                or 𝑥1 ≥  𝑎1 & 𝑥2 <  𝑏1 & 𝑥3 ≥  𝑐1,  

                or 𝑥1 <  𝑎1 & 𝑥1 ≥  𝑎2 & 𝑥2 ≥  𝑏2 ,  

                or 𝑥1 <  𝑎1 & 𝑥2 <  𝑏2 & 𝑥3 ≥  𝑐2 & 𝑥4 ≥  𝑑1. 

                𝑦5 = 0, if 

                𝑥1 ≥  𝑎1 & 𝑥2 <  𝑏1 & 𝑥3 <  𝑐1, 

                or 𝑥1 <  𝑎2 & 𝑥2 ≥  𝑏2, 

                or 𝑥1 <  𝑎1 & 𝑥2 <  𝑏2 & 𝑥3 ≥  𝑐2 &  𝑥4 <  𝑑1, 

                or 𝑥1 <  𝑎1 & 𝑥2 <  𝑏2 & 𝑥3 <  𝑐2. 
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 Proportion of variance explained (R2). Organizational researchers are usually interested 

in the proportion of criterion variance explained by the set of predictors, represented by the 

coefficient of determination R2. The square root of R2
 can be conceptually understood as a 

Pearson correlation coefficient between the predictor composite and the criterion. To manipulate 

the composite correlation level, I chose 0.3 and 0.7 respectively indicating either a small or a 

large correlation. The manipulated R2 was set to 0.09 and 0.49, accordingly. Based on the 

following equation: 𝑅2 =   1 −  
𝑉𝐴𝑅𝑒𝑟𝑟

𝑉𝐴𝑅𝑡𝑜𝑡
 , the error variance could be determined if the composite 

variance of predictors variance was known. To estimate the composite variance of the predictors, 

I first generated 10,000,000 sets of random data of 𝑥1 through 𝑥4 , then calculated 𝑦1 through 𝑦4 

based on the above equations without adding any error variance. The variance of 𝑦1 through 𝑦4 

were then computed and served as an approximate measure of composite predictor variance. 

Returning to the equation above, the level of error variance 𝑉𝐴𝑅𝑒𝑟𝑟 could then be estimated for 

each equation. Lastly, the error component in each of the four equations was randomly generated 

from a normal distribution of (0, 𝑉𝐴𝑅𝑒𝑟𝑟).  

 Prediction method. Since the main goal of the present study was to compare the 

predictive accuracy of different classification methods, five methods, including classification tree 

(CART), random forests (RF), logistic regression (LR), linear discriminant analysis (LDA), and 

quadratic discriminant analysis (QDA), were applied to the set of random samples generated.  

 To sum up, the current study included a full-factorial design crossing 2 levels of 

multicollinearity (0.0 – 0.3 and 0.3 – 0.7), with 4 levels of skewness (-0.7, -0.3, 0.3, 0.7), 2 levels 

of base rate (0.1 and 0.3), 5 levels of data complexity, 2 levels of variance explained (0.09 and 

0.49), and 5 prediction methods. This design created 800 unique combinations of parameter 
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values as summarized in Table 1. A pilot study was conducted to compare the results from 10 

random samples with that from 100 random samples and no significant difference was found. 

Therefore, 10 random samples were drawn for each condition, producing a total of 8, 000 

samples. 

 To evaluate classification accuracy, two measures were compared. First, an overall 

misclassification error (a.k.a., resubstitution error) was calculated when the same sample used to 

build the tree was also applied to fit the model. The resubstitution error represents how well the 

model fit the data.  Second, a 10-fold cross-validation error, which is the mean error rate based 

on the 10-fold cross-validation procedure described above, was estimated. It is a measure of how 

well the method is at forecasting. Cureton (1950) clearly illustrated the danger of interpreting the 

resubstituition error rate, whereas the forecasting measure such as cross-validation error is likely 

to be a much more realistic indicator of the classification accuracy.  

Data Analysis  

 All the analyses were conducted using MATLAB (2012 a) statistics toolbox. To generate 

the input correlation matrix, “RndomCorr” was first used to generate a random correlation matrix 

with four dimensions (Numpacharoen & Atsawarungruangkit, 2012), then I wrote a function to 

transform the entities in the matrix to match the set intercorrelation intervals (either 0.0 – 0.3 or 

0.3 – 0.7).  The lower triangular matrix was constructed using Cholesky factorization (“chol”), 

which was then being multiplied by a 4*1000 matrix of random numbers drawn from a Pearson 

distribution with standard deviation of 1, kurtosis of 3 (i.e., normal distribution) and skewness set 

at one of the four values (-0.7, -0.3, 0.3, and 0.7). Following this process, a predictor matrix that 

included 1,000 sets of x1 – x4 was generated, representing the non-normal data that satisfied the 
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predetermined parameters. Next, response variables y1 to y5 were computed based on the 

equations specified above for each set of x1 – x4. Those continuous y values were then converted 

to dichotomous response variables according to one of the base rates (0.1 and 0.3). This process 

was repeated 10 times to generate 10 random samples for each condition.  

 In the next step, different classification methods were applied to fit the data generated 

above. Classification trees were grown using the “ClassificationTree.fit” function. Random 

forests were constructed using “fitensemble”. Logistic regression was applied using the “glmfit” 

function with “binomial distribution” and the “logit” link function. And linear and quadratic 

discriminant analyses were performed using the “ClassificationDiscriminant.fit” function.  

 To calculate various classification accuracy metrics, some MATLAB functions that are 

common to the four types of classifiers (CART, RF, LDA, and QDA) were applied: “resubLoss” 

was computed to calculate resubstitution error and “kfoldLoss” was used to estimate 10-fold 

cross-validation error. With regard to logistic regression, none of the above statistics were 

readily available. As a result, I wrote MATLAB functions to generate these metrics based on 

their definitions. In the current study, the ROC curve approach was applied and the optimal value 

that minimized the overall misclassification error was calculated and set as the cut-off point.  

Since the cut-off score was set up in a way to maximize the classification accuracy, it is 

noteworthy that any results generated from this approach represented the upper bound of the 

classification accuracy of LR, and should be interpreted with caution. To calculate 10-fold cross-

validation error for logistic regression, the data was randomly ordered and 10 equal segments 

were created. For each trial, nine segments were used as the training data to build the LR 

classifier while the remaining one serving as the test data. This process was repeated until all of 
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the 10 segments were utilized as the test data for one time. Then the mean classification error 

was calculated over the 10 trials.  

 Results across 10 replications were averaged, and a factorial analysis of variance 

(ANOVA) was conducted to compare the two classification accuracy metrics under different 

simulated conditions. The main effect for each factor and interaction effects between these 

factors and the classification methods were evaluated. Complex three-way interaction effects 

were beyond the consideration of the current study given their difficulty of interpretation.   

Results 

 Tables 2 and 3 list the raw results of the resubstitution error rate and 10-fold cross-

validation error rate for the five classification methods grouped by the five manipulated 

parameters. Table 4 is a summary of the average resubstitution and cross-validation error rate for 

each of the data models (Y1 to Y5) under each of the analysis methods. As shown, both CART 

and RF exhibited smaller resubstitution error rates than the other three methods. This is because 

both CART and RF were fully grown without pruning, resulting in a large number of terminal 

nodes within each decision tree (i.e., more than one hundred for N = 1000 observations in most 

conditions). Additionally, RF has the seemingly remarkable error rate of 0.0 or almost 0.0 in all 

conditions. The explanation for this effect is that RF has generated its classification based on 100 

trees. Some additional analyses showed that when only a single tree was grown, the 

resubstitution error rate of RF was similar to that of CART. However, as more trees were 

included in the RF, its resubstitution error decreased and approached 0 gradually.  

 With regard to cross-validation, among all the methods, CART has the highest cross-

validation error rates across all the conditions for the four polynomial regression models (Y1 – 
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Y4). Given that CART has a much smaller resubstituition error rate, this is a clear indication of 

the existence of overfitting. Surprisingly, the cross-validation error rate of RF is smaller than 

CART by substantial margin, and comes close to LR and LDA in the condition that most 

favorable to the latter two methods (i.e., the linear additive model, Y1). This is because the 

greedy algorithm of RF has been balanced by its averaging mechanism that prevents it from 

over-fitting. As the data generation methods become more complex, RF becomes as effective as 

the three traditional methods (except for Y4). Post-hoc analyses showed that the difference 

between RF and the three traditional methods was not significant for model Y1 through Y4. 

However, when the data was structured in a configural pattern (Y5), RF was significantly more 

effective than the set of traditional methods. In this latter condition, CART’s performance is 

similar to RF, yet the error rates are not quite as low.   

 Table 5 summarizes the means and standard deviations of the two classification accuracy 

metrics under different parameters. Main effects of all the parameters and interaction effects 

between classification method and all the other parameters are summarized in Table 6. 

According to the tables, there is a general pattern that higher intercorrelations among predictors 

(i.e., the existence of multicollinearity) result in slightly more accurate classifications, albeit the 

main effect was not significant. This pattern is consistent across different classification methods, 

as indicated by the non-significant interaction effects. The main effect of proportion of variance 

explained is significant for both metrics, so that a larger explained variance (i.e., a smaller error 

variance) is associated with a smaller resubstitution error and a smaller cross-validation error. 

Base rate also exhibits a significant main effect across both metrics. A larger base rate is 

associated with a higher error rate for both training and test data. This is because a smaller base 

rate presents a simpler classification problem in the sense that all cases can be classified as the 
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majority group resulting in a low error rate. Moreover, explained variance and base rate interact 

with classification methods significantly when resubstitution error was evaluated. According to 

Figures 3 and 4, the three traditional methods are more substantially influenced by the change of 

explained variance and base rate, while the two decision tree methods tend to be more stable. 

Regarding the parameter of skewness, there is a tendency that the more positively skewed a 

dataset is, the more accurate the classification will be, yet none of the main effects or interaction 

effects was significant. Data complexity has a significant impact on resubstitution error and 

cross-validation error, with the tree-like stepwise regression model (Y5) consistently yielding the 

most accurate predictions, whereas the remaining models (Y1 – Y4) do not differ notably from 

each other. The two significant interaction effects between data complexity and classification 

methods are illustrated in Figures 5 and 6. As shown in Figure 5, when resubstituition error is 

considered, random forests classification is most stable across different models. For the 

remaining methods, only Y5 could be significantly differentiated from all the other equations. 

When model forecasting capability is considered (i.e., cross-validation error), Figure 6 shows 

that CART does not predict as well as the three traditional methods for the polynomial regression 

models (Y1 – Y4), but is as good as random forests when the model is specified as a tree-like 

structure (Y5), and both CART and random forests are much better than the traditional methods 

under model Y5. Among the five methods, random forests consistently yields classification error 

rate that is close to optimal. CART manifests some advantage over the three traditional methods 

for configural data (i.e., Y5) but is the worst for polynomial data. The three traditional methods 

do not differ substantially. 

Discussion  
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  Results from the current study show that when different classification methods were 

compared on how well they fit (or overfit) the data (i.e., resubstituition accuracy), the two 

decision tree methods consistently outperformed all the three classical methods, across all the 

manipulated parameters; moreover, random forests was even more accurate than CART with the 

resubstitution error close to 0. On the other hand, when forecasting ability was compared, CART 

and random forests exhibited significantly higher cross-validation error rates than resubstitution 

error rates, whereas the three traditional methods did not show much difference. This result was 

consistent with Berk’s (2008) claim that the resubstitution error rate is an overly optimistic 

measure for decision tree methods and thus cross-validation error rate is required to evaluate the 

true classification accuracy.   

 Additionally, there was a significant interaction effect between data complexity and 

classification method on predictive accuracy. When data was structured in a linear regression or 

any type of polynomial regression form, random forests performed comparably to the three 

traditional approaches. CART was significantly less accurate than the other four methods. 

Nevertheless, when the data was structured in a tree-like stepwise function, both random forests 

and CART significantly outperformed the remaining traditional methods, while random forests 

and CART did not differ significantly from each other. This result indicates that the disadvantage 

of CART only existed when traditional polynomial regression based models were used to 

generate the data; when a tree model (Y5) was specified, CART outperformed all the three 

traditional methods. Therefore, the current study suggests that the reason previous empirical and 

simulation studies that failed to show the advantage of CART is that inappropriate models were 

studied. If the data has a tree-like structure, CART would show some benefits, such as increased 

classification accuracy. Among the remaining set of parameters, proportion of variance 
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explained, base rate, and data complexity all displayed some significant main effects, so that a 

larger proportion of explained variance, a smaller base rate, and a more complex model (Y5) 

were all associated with better classification. However, interaction effects indicated that the 

resubstitution accuracy of the three classical methods showed a more substantial difference under 

different levels of explained variance and base rate, yet their decision-tree counterparts were less 

impacted by these parameters.  
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STUDY 2 

 In Study 1, classification accuracy was examined when the outcome was a dichotomous 

variable. To extend the comparison to a continuous outcome, a similar simulation was conducted 

in Study 2 to compare the predictive accuracy of CART (regression trees in this case), random 

forests (RF), and multiple linear regression (MLR). No previous simulation study has compared 

the predictive accuracy of the two decision tree methods with the multiple linear regression 

approach when predicting a continuous outcome. According to results from Study 1, it was 

expected that random forests would produce the highest level of accuracy, especially under the 

more complex polynomial regression and configural models. Depending on the metric being 

compared, multiple linear regression and CART may have advantages under certain conditions.  

Manipulated Parameters 

 Three parameters (i.e. multicollinearity, level of skewness, and proportion of variance 

explained) were set similar to Study 1 with one exception: three levels of explained variance 

were considered in this study – in addition to the 0.09 and 0.49 conditions, another scenario with 

a much larger explained variance of 90% (i.e., 0.95*0.95 = 0.90) was also considered. This 

condition was added to allow the data structure to more closely mimic the pre-defined equations. 

As the outcome was no longer a binary variable for the present study, base rate was no longer 

applicable and was therefore not considered. The set-up of the data complexity was slightly 

different, as explained below. 

 Data complexity. Equation Y1 – Y4 were the same as in Study 1. Y6 was constituted by 

eight multiple conditional regressions, representing the eight branches specified in Figure 2: 

                  𝑦6 = 𝑥1 +  𝑥2 + 𝑒1, if 𝑥1 ≥  𝑎1 & 𝑥2 ≥  𝑏1; 
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                      = 𝑥1 +  𝑥2 + 𝑥3 + 𝑒2 , if 𝑥1 ≥  𝑎1 & 𝑥2 <  𝑏1 & 𝑥3 ≥  𝑐1;  

                      = 𝑥1 +  𝑥2 + 𝑥3 + 𝑒3 , if 𝑥1 ≥  𝑎1 & 𝑥2 <  𝑏1 & 𝑥3 <  𝑐1; 

                      = 𝑥1 +  𝑥1 +  𝑥2 + 𝑒4 , if 𝑥1 <  𝑎1 & 𝑥1 ≥  𝑎2 & 𝑥2 ≥  𝑏2 ;  

                      = 𝑥1 +  𝑥2 + 𝑒5 , if 𝑥1 <  𝑎2 & 𝑥2 ≥  𝑏2; 

                      = 𝑥1 +  𝑥2 + 𝑥3 + 𝑥4 + 𝑒6 , if 𝑥1 <  𝑎1 & 𝑥2 <  𝑏2 & 𝑥3 ≥  𝑐2 & 𝑥4 ≥  𝑑1; 

                      = 𝑥1 +  𝑥2 + 𝑥3 + 𝑥4 + 𝑒7 , if 𝑥1 <  𝑎1 & 𝑥2 <  𝑏2 & 𝑥3 ≥  𝑐2 &  𝑥4 <  𝑑1; 

                      = 𝑥1 +  𝑥2 + 𝑥3 + 𝑒8 , if 𝑥1 <  𝑎1 & 𝑥2 <  𝑏2 & 𝑥3 <  𝑐2. 

 Note that some of the equations above were identical. However, it is kept in this manner 

intentionally to represent the eight branches in the tree structure explicitly. In addition, since 

different models (Y1 through Y6) have different scale levels, to make the results comparable, 

standardized scores were calculated for all the response values generated from all the models. 

 Prediction method. Three methods were evaluated regarding their predictive accuracy: 

regression tree (CART), random forests (RF) and multiple linear regression (MLR).  

 To sum up, Study 2 included a full-factorial design crossing 2 levels of multicollinearity 

(0.0 – 0.3 and 0.3 – 0.7), with 4 levels of skewness (-0.7, -0.3, 0.3, 0.7), 5 levels of data 

complexity, 3 levels of variance explained (0.09, 0.49, and 0.90), and 3 prediction methods, 

resulting in 360 unique combinations of parameter values, as summarized in Table 1. Similar to 

Study 1, pilot study showed that the results from 10 random samples did not differ significant 

from 100 random samples. Therefore, a random sample of 10 was drawn for each condition, 

producing a total of 3,600 samples.   
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 Two statistics were computed to evaluate predictive accuracy: (a) overall mean squared 

error (a.k.a., resubstitution MSE), which was the summed squared error between predicted and 

observed values divided by the number of cases; and (b) 10-fold cross-validation mean squared 

error, which was the mean MSE across 10 cross-validations.  

Data Analysis 

  A process similar to that in Study 1 was used to generate non-normal data, and 

continuous response variables were created using the five equations specified in this study. 

Regression trees were grown using the “RegressionTree.fit” function, random forests were 

constructed using “fitensemble,” and multiple linear regression was applied using the “glmfit” 

function with “link” parameter specified as “identity.” To calculate overall MSE and cross-

validation error, “resubLoss” and “kfoldLoss” were used, respectively.  

 10 iterations were averaged and one-way and two-way analyses of variance (ANOVA) 

were conducted to compare the two predictive accuracy statistics under a variety of simulated 

conditions. The main effect of each parameter and the interaction effect between these 

parameters with the prediction method were estimated.   

Results 

 Table 7 and 8 show the resubstitution MSE and 10-fold cross-validation MSE for various 

predictive techniques grouped by the five manipulated parameters. The average resubstitution 

and cross-validation error rate for each of the data models (Y1 to Y6) under each of three 

analytical methods (i.e., MLR, CART, and RF) is summarized in Table 9. Unlike the 

classification problem where RF had the smallest resubstitution error, Table 9 show that CART 

had the smallest error for training sample, followed by RF, both were much smaller than MLR. 
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When cross-validation error was considered, MLR consistently showed better predictive 

accuracy than RF and CART under the simplest model (Y1), and when the explained variance 

was small (0.09) across all the other models. For all the other conditions, RF exhibited the best 

predictive accuracy. The comparison between MLR and CART showed that on average CART 

was not as accurate as MLR, but when the level of variance explained was large (0.90) and the 

data was structured via the most complex polynomial regression model (Y4) or configural tree-

like model (Y6), CART significantly outperformed MLR, yet did not do as well as RF.  

 Table 10 is a summary of the means and standard deviations of the two predictive 

accuracy metrics for different parameters. Main effects of all the parameters and interaction 

effects between regression method and all the other parameters are summarized in Table 11. 

Similar to Study 1, higher predictor intercorrelations lead to a slightly smaller MSE for 

resubstitution and cross-validation, albeit the difference between the two levels of 

intercorrelations is not significant for either metric. The proportion of variance explained 

exhibits a significant main effect on both resubstitution and cross-validation errors, with a large 

variance associated with more accurate prediction. Moreover, proportion of variance explained 

also interacts significantly with regression method. As shown in Figures 7 and 8, an increase in 

explained variance remarkably reduces the resubstitution error of MLR and the cross-validation 

error of CART. Skewness, as in Study 1, does not show any significant main or interaction 

effects. Unlike what was found in Study 1, data complexity did not show any main or interaction 

effects for the regression problem. A further analysis indicated that the three-way interaction 

among proportion of variance explained, data complexity, and prediction method was significant 

for both resubstitution MSE, F (16, 315) = 18.54, p < .001), and cross-validation MSE, F (16, 

315) = 8.71, p < .001. As shown in Figure 9, the difference between MLR and CART/RF 
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resubstitution error was larger when the model became more complex, especially when a large 

proportion of variance was explained. With regard to cross-validation error, Figure 10 shows that 

when the model is simple, RF and MRL did not show much difference; as the model gets more 

complex, decision tree methods, especially RF, began to show an advantage, especially when the 

variance explained was moderate to large. Unlike Study 1, the superiority of CART under the 

tree-like model (Y6) was only prominent when the error variance was small and the data more 

closely represent the structure being specified. Lastly, predictive method is another significant 

factor. When MLR was used to fit the data, the resubstitution MSE was significantly larger than 

when CART or random forests was used, and CART had a slightly smaller error than RF. When 

cross-validation error is considered, random forests presents a significantly better forecasting 

capability than CART and slightly more accurate prediction than MLR.  

Discussion 

            Results from Study 2 showed that when different classification methods were compared 

on their resubstitution accuracy, the two decision tree methods consistently outperformed the 

linear model, across all the manipulated parameters. When CART and random forests were 

compared, results from Study 1 and Study 2 were slightly different: CART was a little more 

accurate than random forests for predicting a continuous outcome, while RF tended to capture 

the nuances of the original data better than CART for classification problems, though the 

different between the two methods was not significant. On the other hand, when forecasting 

ability was compared (i.e., cross-validation accuracy), Study 2 also showed that CART and 

random forests exhibited significantly higher cross-validation error than resubstitution error. The 

multiple linear regression method did not display much difference with regard to the two types of 

errors. Across various situations, random forests produced the most accurate cross-validated 
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prediction on average. However, proportion of variance explained, data complexity, and 

prediction method displayed a significant three-way interaction: when the explained variance 

was small, RF did not differ significantly from MLR; when the explained variance was moderate 

to large, RF was better than MLR for all the complex polynomial regression models (Y2 – Y4) 

as well as the configural tree-like model (Y6). Moreover, when the explained variance was large, 

CART showed substantial smaller cross-validation error rates than MLR when the data was 

structured in the most complex polynomial regression model (Y4) and configural tree-like 

pattern (Y6). The current study again shows that a predictive method is most advantageous when 

the data structure is aligned with the assumptions and specifications of the method. This 

conclusion holds especially when noise is not the dominant component in the data.  

          Similar to Study 1, the proportion of variance explained exhibited a significant main effect 

and an interaction effects with classification method. However, the existence of multicollinearity 

(i.e., higher predictor intercorrelations) tended to play in favor of classification problems and 

against regression problems, although the difference between the two levels of multicollinearity 

was not significant. Future study should investigate whether these results can be replicated. 

 To sum up, results of Study 2 further support the superiority of random forests method 

for making precise predictions across a range of conditions, especially when the data structure is 

more complex than the simple linear model, and the error variance is small. CART had the 

highest level of accuracy under resubstitution, but was less accurate for cross-validation. 

CART’s cross-validation error was only smaller than traditional methods when the data was 

structured in a complex polynomial regression model or a configural tree-like pattern, and a large 

proportion of criterion variance was explained by the predictors. 
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STUDY 3 

 To supplement the simulations in Studies 1 and 2, the goal of Study 3 was to illustrate the 

empirical application of CART and random forests to actual data for predicting the dichotomous 

outcome of employee turnover. More specifically, I addressed two objectives in the current study: 

prediction and interpretation. The first objective was to examine which method offers the most 

accurate prediction (primarily forecasting) of both involuntary and voluntary employee turnover. 

To achieve this goal, the two decision tree methods (CART and random forests) were compared 

with the three traditional methods (LR, LDA, QDA) on various metrics. In addition, as multiple 

predictors were included, I also explored if and how predictive accuracy changes as a result of 

the number of predictors. The second objective was to understand how CART and random 

forests could be used to interpret the causes of employee turnover. As shown by previous studies, 

random forests exhibited superior predictive accuracy, yet lack a single tree diagram to interpret 

the functional relationship between the predictors and the outcome; CART was good at 

interpretation, but fell short at cross-validation accuracy. To balance the interpretive and 

predictive power of decision tree methods, the current study was designed to offer some practical 

guidance to combine the two methods through variable selection and decision tree construction.  

Sample 

 The sample in Study 3 was from the employee work experience survey data collected by 

a large insurance company in the United States. The work experience survey was conducted with 

new employees when they reached their milestone tenure points (i.e., 3 months and 15 months). 

The current sample included 12,417 full records of current and past employees (8,144 cases for 

3-month, and 4,273 for 15-month). By the time the data was aggregated, some employees were 

surveyed once (i.e., those who had not stayed up till 15 months), whereas others were surveyed 
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at both tenure points. For this reason, the actual number of unique employees included in the 

sample was smaller than 12,417. However, as both employee names and work IDs were detached 

from the dataset, the exact number of unique employees included was not identifiable. Gender 

and ethnicity information was not available either. Among the 12,417 cases, 570 (4.59%1) 

employees were terminated involuntarily, 2,742 (22.08%2) employees left voluntarily, and the 

remaining 9,105 cases represented employees who stayed in the organization for either 3 months 

or 15 months. Among the involuntary turnover, 425 (74.56%) of them were terminated at or 

before the 3-month time point, while the remaining 145 (25.44%) were terminated between the 

3-month and the 15-month time points. 1,987 (72.47%) cases of the voluntary turnover left at or 

before the 3-month time point, while the remaining 755 (27.53%) employees left between 3 

months and 15 months. The reasons for involuntary termination identified by the company 

included 9 categories, such as absent without leave, death, employment agreement expired, job 

requirements not met and misconduct. In the current study, I was only interested in the three 

categories under involuntary turnover that represent poor performance (i.e., absent without leave, 

job requirements not met, and misconduct), which added up to 416 cases. The reason for 

voluntary turnover defined by the organization included 10 categories, such as another 

opportunity, dissatisfaction, did not return from maternity leave, domestic duties, moved, regular 

retirement, return to school, etc. The current study only focused on the five categories under 

voluntary turnover that were not related to either retirement or family/external reason. These 

categories include another opportunity, became an agent, dissatisfaction, return to school, and no 

reason given, resulting in 1,997 voluntary turnover cases. In combination with the remaining 

9,105 employees who stayed, a full record of 11,518 employees were included in the final 

                                                           
1, 2 Note: the actual percentage is larger than this given that the unique number of employees is smaller than 12,417 
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analysis, covering three major work groups: 6,138 employees were from the 

paraprofessional/support group (53.29%), 4,353 (37.79%) were from the professional/technical 

group, and 892 (7.74%) were from the management group. With regard to tenure, 7,475 of them 

were from the 3-month group, and 4,043 were from the 15-month group. 

Measures 

 In the work experience survey, employees were asked to evaluate various aspects of their 

workplace including how they viewed themselves, their supervisor, their job, and the 

organization, etc. The survey items were then grouped into nine factors based on factor analysis 

conducted in a previous study by the organization. A description of the nine factors follows. 

 Onboarding (ONB). The onboarding factor includes 9 items about employees’ first 

impression and onboarding experience. A sample item is: “I felt welcomed into my team/unit 

when I started at [organization name].” Cronbach’s alpha reliability of this factor was 0.84.  

 Supervisor (SUP). The supervisor factor consists of 9 items that cover employees’ 

feelings about how they are treated by their supervisor. A sample item is: “My supervisor gives 

me feedback that helps to improve my job performance.” Cronbach’s alpha reliability was 0.93 

for this factor.   

 Coworker (COW). 6 items were included to measure employees’ evaluations of their 

coworkers, and their work relationship with their coworkers. One sample item is: “My coworkers 

treat each other with dignity and respect.” Cronbach’s alpha was 0.90 for this factor. 

 Senior Leadership (SL). This factor is made up of 6 items that asks employees to evaluate 

the behaviors of the senior leaders in the organization. One sample item is: “Senior leadership 
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considers the needs of employees when changes are made.” Cronbach’s alpha reliability was 

0.91. 

 Financial Rewards (FW). This factor includes 7 items that ask employees if their 

compensation and benefits are fair and satisfactory. One sample item is: “My pay is fair for the 

work I do.” Cronbach’s alpha reliability of this factor was 0.86. 

 Job Fit (JF). Job fit is a measure of job satisfaction that consists of 5 items. One sample 

item is: “I like the kind of work I do.” Cronbach’s alpha reliability was 0.84 for job satisfaction. 

 Discretionary Effort (DE). Discretionary effort factor comprises 2 items that asks if 

employees put in extra effort at work. A sample item is: “I perform beyond what is typically 

expected or required.” Cronbach’s alpha reliability of this factor was 0.64. 

 Organizational Commitment (OC). This factor, although named as organization 

commitment, includes 5 items that actually measure employees’ views about their development 

opportunities within this organization. A sample item is: “I feel I can grow and develop at 

[organization name].” Cronbach’s alpha reliability of this factor was 0.81.  

 Intent to Stay (ITS).  Intent to stay is a measure of employees’ withdraw and turnover 

intention that is made up of 5 items. A sample item is: “I am seriously considering leaving this 

company.” Cronbach’s alpha reliability of this factor was 0.83.  

 All of the predictors included in the study were rated on a 5-point Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree).  
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 Outcome Measure. The dependent variable in the current study was the employees’ work 

status when the survey was collected including three categories – involuntary turnover, voluntary 

turnover, and staying. Leavers were coded as 1 and stayers as 0.   

Data Analysis 

 The focal interest of the present study was to apply different classification methods for 

predicting a binary outcome in an applied setting. Since the outcome measure includes three 

categories, I decided to segregate the data into two groups. The first group compared 

involuntarily terminated versus stayed employees, and the second group contrasted voluntarily 

left with stayed employees. The analyses were organized around the two objectives of prediction 

and interpretation.  

 To meet the first objective, the five classification methods were applied to the data when 

all the nine predictors were included, and compared based on the following four classification 

accuracy metrics: overall misclassification rate (resubstitution error), 10-fold cross-validation 

error, and 10-fold cross-validation sensitivity and specificity. The same set of MATLAB 

functions and procedures as described in Study 1 were adopted in the current study. A second 

objective was to explore how the classification accuracy of various methods changed as the 

number of predictors changed. 

 Regarding model interpretation, a variable selection process was first applied. Variable 

selection is widely used in many domains where a large number of predictors are present, such as 

bioinformatics. To narrow the focus to a smaller subset of variables that maximizes model 

prediction, the variable selection process included two steps, a variable importance ranking and a 

backward elimination. First, variable importance was computed and ranked based on the 
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following five statistics: regression coefficients, squared regression coefficients and p values that 

were derived from logistic regression, relative weights that were generated from logistic relative 

weights analyses (Tonidandel & LeBreton, 2010), and predictor importance ranking that was 

estimated from random forest using the “predictorImportance” function of MATLAB. Note that 

this particular MATLAB function calculates the variable importance based on raw importance 

rather than permutation importance. I chose to use raw importance in the current study since all 

the predictors were continuous with approximately the same score range. 

 Second, based on the importance ranking derived from the first step, one predictor was 

eliminated at a time, starting from the least important one. As a result, the five classification 

methods under the designated 8 conditions with the number of predictors ranging from 2 to 9 

were compared against the four accuracy metrics, resulting in 160 conditions.  

 Finally, based on the set of most important predictors identified, a single classification 

tree was built and pruned. To overcome the instability and enhance the theoretical relevance of 

the resulting tree diagram, a cost function was introduced to adjust the relative weights 

associated with sensitivity and specificity.  

Results  

 Descriptive statistics of the nine predictors for the three groups of people (i.e., stayed, 

voluntary turnover, and involuntarily turnover) are summarized in Table 12. For almost all the 

predictors, stayed employees exhibited the highest mean ratings among the three groups (except 

for the factor of Discretionary Effort where stayed and involuntarily left employee were similar). 

Voluntarily left employees showed the lowest ratings (except for the Coworker factor where 



 

60 
 

involuntary turnover employees rated the lowest). Table 13 shows the means, standard deviations, 

and intercorrelations among the predictors for all employees.  

 When all the nine predictors were included to predict voluntary turnover, random forests 

generated the smallest resubstitution classification error rate (0.0161), followed by CART 

(0.0972). Random forests and CART both had much smaller resubstituition errors than the three 

traditional methods of LR (0.1782), LDA (0.1792), and QDA (0.1962). When evaluated against 

the cross-validation accuracy, LR (0.1789) and LDA (0.1792) had slightly smaller errors than RF 

(0.1869), followed by QDA (0.1974), and all four methods were much smaller than CART 

(0.2624). Sensitivity results averaged across 10-fold cross-validation showed that CART (0.2048) 

was most sensitive at classifying voluntarily left employees, followed by QDA (0.1402), RF 

(0.0481), and the two simpler methods had the smallest sensitivity: LR (0.0342), LDA (0.0371). 

The specificity level was opposite to the pattern of sensitivity with CART (0.8545) having the 

smallest specificity, and LR (0.9937) and LDA (0.9926) having the largest specificity.  

 When predicting involuntary turnover, RF (0.0062) showed the smallest resubstitution 

error, followed by CART (0.0323), both were smaller than the three traditional methods. 

However, CART showed some level of overfitting with the largest cross-validation error 

(0.0634), while RF (0.0438) had a smaller cross-validation error that was similar to the level of 

LR (0.0439) and LDA (0.0437). Both CART (0.0264) and QDA (0.0264) showed superior cross-

validation sensitivity, while the remaining three methods were not able to successfully identify 

involuntary turnover. The zero sensitivity and near one specificity for the three traditional 

methods were likely due to the small base rate (4.37%) of the involuntary turnover sample.   
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 When various predictors were ranked according to their importance derived from 

different approaches, the results showed a mixture of similarity and difference (see Tables 14 

and 15). For the comparison between regression coefficients with relative weights, although both 

β2 and relative weights indicated that ITS (Intent to Stay) and JF (Job Fit) were the two most 

important predictors for predicting both voluntary and involuntary turnover, the remaining order 

of the predictor importance was quite different for the two statistics. This difference between β2 

and relative weights might be attributed to multicollinearity among predictors. Indeed, the 

correlation matrix in Table 13 showed that the predictors themselves were all moderately to 

highly correlated. In situations when multicollinearity is present, regression coefficients may 

obscure the contribution of each individual predictor. As such, the ranking from relative weights 

analysis is preferred.  

 When comparing variable importance ranking from relative weights analysis with that 

from random forests, both perspectives indicated that Intent to Stay (ITS), Job Fit (JF), and 

Financial Rewards (FR) tended to be among the most important factors for both voluntary and 

involuntary turnover. Nevertheless, Onboarding (ONB) was the most important factor for 

predicting voluntary turnover and second most important factor for predicting involuntary 

turnover, according to random forests variable ranking. Yet it was listed at the bottom of the 

relative weights ranking, and was not significant in the logistic regression. The supervisor (SUP) 

factor showed a similar pattern. The difference between random forests and relative weights, 

variable-importance rankings suggests that there might be some complex interaction or higher 

order effects that relative weights do not capture. Given the presence of multicollinearity and 

perhaps complex nonlinearity, random forests may provide the most comprehensive and accurate 
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picture of variable importance. The variable selection and model construction process introduced 

in a later paragraph were therefore based on the order derived from random forests.   

 Tables 16 and 17 summarize the results comparing classification accuracy of the five 

methods when different numbers of predictors were included. As shown, LR and LDA exhibited 

the smallest cross-validation error rates across various situations, and their classification 

accuracies were relatively stable despite the number of predictors. However, their smallest cross-

validation error was at the cost of sensitivity. Since the base rate was relative small in both 

scenarios (17.99% for voluntary turnover and 4.37% for involuntary turnover), LR and LDA 

simply classified almost all cases into the larger base rate group (i.e., “stayer”) yet still attained 

the smallest cross-validation error. QDA had slightly larger cross-validation error rate than LR 

and LDA, and this error rate was impacted by the number of predictors included: the more 

predictors, the larger the cross-validation error. Unlike LR and LDA, QDA was able to identify 

some of the “leavers.” There was also a general pattern that more predictors lead to a larger 

sensitivity for QDA. In comparison, the two decision tree methods (i.e., CART and RF) 

exhibited larger cross-validation error than resubstitution error, and the difference between the 

two metrics was more significant when more predictors were involved. CART showed the 

largest cross-validation error across all situations, but was among the best when sensitivity was 

evaluated. Similar to QDA, CART was also sensitive to the changing number of predictors – 

more predictors led to a larger cross-validation error and a larger sensitivity. With regard to RF, 

its cross-validation error was also influenced by how many predictors were used, but in the 

opposite direction as CART and QDA. When the number of predictors was small, RF had 

slightly larger cross-validation error than LR and LDA; but as the number of predictors got 
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larger, RF’s cross-validation error approached that of to LR and LDA.  The sensitivity of RF was 

moderate, larger than LR/LDA, but smaller than CART/QDA.  

 In summary, CART was most sensitive to the changing number of predictors, followed 

by RF and QDA; whereas the two simpler methods (LR and LDA) were more resistant to change. 

In general, LR and LDA showed the smallest cross-validation error rate, but fell short at 

sensitivity. CART and QDA were superior regarding sensitivity, but exhibited large cross-

validation error when more predictors were included. RF showed relatively balanced cross-

validation error and sensitivity, especially when the base rate was not extremely small, and RF 

was more advantageous when the number of predictor was large.  

 Understanding the functional relationship between the predictor variables and the 

outcome was another vital piece of information for model interpretation. However, the black box 

approach of random forests fell short without a specific tree diagram. As such, CART was used 

to grow a single classification tree that provided a visual representation of the specific process to 

enhance model interpretation. As CART may become unstable when the number of predictors is 

large, a subset of the nine predictors was selected to fit the decision tree. Information from both 

random forests and relative weights variable importance was taken into consideration to 

determine what predictors to include. As such, the top five predictors (i.e., ONB, FR, SUP, ITS, 

JF) for voluntary turnover and the top six predictors (i.e., FR, ONB, SUP, JF, ITS, and COW) for 

involuntary turnover were chosen as a starting point to build a decision tree for each scenario, 

respectively. 

 To understand voluntary turnover, the full tree was first grown without pruning. The 

resulting structure was quite unstable with 57 levels of partition and far too much detail for 
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meaningful interpretation. As a result, the full tree was pruned according to the “1 standard error 

rule” (Breiman et al., 1984). Figure 11 shows a clean, interpretable structure without removing 

any predictor. However, a further examination of the terminal nodes showed that there were 

several terminal nodes with very small sample sizes. For example, one of the terminal nodes 

contained only 9 cases, although 8 out of the 9 were voluntary turnovers. Another terminal node 

consisted of a relatively balanced distribution of stayed versus left employees (47:61) even 

though the node was assigned as “turnover.” As Berk (2008) suggested, when the number of 

cases within each terminal is small, or the proportion of the two categories is similar, the 

classification tree may face a high risk of being unstable and hard to generalize, and 

interpretation should be carried out with great caution. To mitigate this risk, a cost function 

indexing the relative weights of false positive versus false negative was taken into consideration. 

From a theoretical standpoint, it is more detrimental if a potential quitter is not spotted, 

compared to incorrectly assigning a stayer to be a quitter. Therefore, I set the ratio of the cost of 

a false negative to a false positive to be 5 in the current study2. After the costs were factored in, a 

new classification tree was fully built that contains 102 levels. The full tree was then pruned with 

98 levels trimmed off, resulting in a meaningful, interpretable structure as shown in Figure 12. 

The sample sizes in the terminal nodes of this tree were large enough to draw conclusions about 

the splitting decisions. A rough skim of the results indicated that the majority of the voluntary 

turnover cases were able to be captured by this tree diagram. This observation is further 

supported by the sensitivity and specificity levels. Indeed, the sensitivity level of this 

classification tree (0.6159) is higher than all the traditional models considered, and even better 

than when all the predictors were included. As expected, the specificity level was compromised 

                                                           
2 5 was chosen because the ratio between stayed versus voluntarily left employees was roughly 5. 
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(0.5736). However, as a high specificity was not as desirable as a high sensitivity in the current 

case, I relied on this final decision tree to explain the functional relationship between predictors 

and outcome. According to the tree diagram, three out of the original five predictors (i.e., Intent 

to Stay, Financial Rewards, and Supervisor) were retained in this model with some level of 

interactions, and five profiles of employee voluntary turnover were identified: (1) ITS < 3.775; 

(2) ITS ≥ 3.775 & FR < 3.365; (3) 3.775 ≤ ITS < 4.1 & FR ≥ 3.365; (4) ITS ≥ 4.1 & FR ≥ 3.365 

& 4.415 ≤ SUP ≤ 4.435; (5) ITS ≥ 4.1 & FR ≥ 3.365 & 4.805 ≤ SUP ≤ 4.87 (shown in Figure 12).  

 Similar procedures were applied to understand involuntary turnover. The top six 

predictors were first included to build and prune a classification tree, resulting in a tree diagram 

displayed in Figure 13. The sample sizes of this tree were even smaller for the majority of the 

terminal notes, partly due to the smaller base rate of involuntary turnover. Therefore, a cost 

function was factored in with the ratio of costs between false negative to false positive set as 203. 

A new classification tree was built with 98 levels of partitions. I then trimmed 96 levels off the 

full tree and came to a final interpretable tree, as shown in Figure 14. In this final tree, even the 

smallest node had a sample size of 123, and it classified the involuntarily terminated employees 

relatively more accurately. The sensitivity level of this final tree was 0.3726, more than 10 times 

larger than the sensitivity of the regular classification tree. The specificity was slightly lower 

(0.7915). The three terminal nodes categorized as “stayer” all had a much larger group of stayed 

employees compared to left employees (i.e., unbalanced nodes), further strengthening confidence 

in this classification decision. Three out of the original six predictors were used in the final 

model (i.e., Job Fit, Onboarding, and Financial Rewards), and there were four profiles of 

                                                           
3 20 was chosen because the ratio between stayed versus involuntarily left employees was roughly 20. 
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involuntary turnover: (1) JF < 2.9; (2) JF ≥ 2.9 & ONB < 3.055; (3) JF ≥ 2.9 & 4.435 ≤ ONB ≤ 

4.565; (4) JF ≥ 2.9 & ONB ≥ 4.885 & FR < 4.365 (shown in Figure 14).  

Discussion 

 Results of the current study were consistent with what was found in Study 1: CART 

tended to overfit and was most unstable with the largest cross-validation error. Random forests 

had the smallest resubstitution error, but showed similar level of cross-validation accuracy as the 

traditional methods. Moreover, the current study demonstrated that CART was most significantly 

impacted by number of predictors with more predictors leading to a less stable tree structure and 

a larger cross-validation error rate. QDA also show a slight increase in cross-validation when 

more predictors were included. However, the advantage of RF was more prominent when the 

number of predictors was larger – the more predictors, the smaller the cross-validation error. LR 

and LDA had the smallest cross-validation error regardless of the number of predictors, but fell 

short with regard to sensitivity. Therefore, if the main purpose of a study is to increase overall 

predictive accuracy, LR and LDA may be considered. If there are only a few predictors and the 

sensitivity of the prediction is of particular importance, CART and QDA are preferred. If there 

are a large number of predictors, RF should be applied. Note that the conclusions of the current 

study should be generalized with caution, given that the base rate of this sample was very small 

while the sample size was quite large.  

 With regard to variable importance rank, different techniques revealed some level of 

inconsistency. The difference between regression coefficients and relative weights might be 

attributed to predictor multicollinearity. The difference between relative weights and random 

forests may suggest the presence of complex interactive or higher-order effects. Random forests 
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tends to represent the most comprehensive and accurate picture of variable importance when 

multicollinearity and complex relationships exist in the data. Thus, when the relationships within 

the data were unclear, random forests may offer more accurate information about variable 

importance. Empirically, it is suggested that results from both random forests and relative 

weights be considered simultaneously – consistent findings between the two methods could 

further confirm the importance of certain variables. In addition, variables that are identified as 

important by random forests but not by relative weights may deserve some additional exploration 

and theoretical understanding. 

 To understand the functional relationship, a single classification tree was built based on 

the set of most important predictors. Results showed that when equal cost was applied, the 

classification tree yielded a couple of small-size or heterogeneous terminal nodes, which could 

impair the stability and generalizability of the decision algorithm. Berk (2008) suggested that a 

cost function should be introduced when constructing a decision tree, especially when one of the 

conditions had greater importance than the other. In the current study, correctly predicting 

voluntary or involuntary turnover is of particular importance. Therefore, the cost ratio was set 

other than 1:1. As shown in the results, introducing a cost ratio other than 1:1 inevitability 

increased the overall proportion of cases misclassified; however, a significant increase in 

sensitivity led to better identification of left employees, which was considered to be of more 

importance. The resulting decision tree diagrams provided a decision rule that could be used for 

future classification, and shed some light on the causes of voluntary and involuntary turnover. 

The present results showed how different configurations of work experience impacted employees’ 

decision to stay or leave. According to the results, intent to stay was the most effective predictor 

of whether someone will stay or quit voluntarily. This finding is consistent with past research 
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that shows turnover intention is highly related to actual turnover behavior (Jackofsky, 1984; 

Mobley, Griffeth, Hand, & Meglino, 1979). Job satisfaction (called “Job Fit” in the data) was the 

best predictor for differentiating employees who stayed and those who were terminated 

involuntarily – that is, stayed employees usually were more satisfied. Financial reward emerged 

as an important factor for both cases so that employees who were not satisfied with their pay 

may leave, either voluntarily or involuntarily. A good working relationship with supervisor was 

vital to keeping employees from leaving unwantedly, and good onboarding experience and 

training may help employees be better equipped to handle their job and prevent them from being 

terminated involuntarily.  
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STUDY 4 

 The current study was designed to illustrate the empirical application of decision tree 

methods for predicting a continuous outcome – job performance. More specifically, nine 

predictors (including cognitive ability and bio-data measures) from the pre-employment selection 

inventory were examined and linked to supervisor-rated job performance. Similar to Study 3, the 

two decision tree methods were compared with the traditional linear regression approach when 

all, or a subset of predictors were included in the model. Additionally, a single regression tree 

was built based upon the most important subset of predictors, and the profiles of the high and 

low performers were uncovered.    

Sample  

 The sample in Study 4 was from a concurrent validation study conducted by a large 

insurance company. Full information was available for 1,818 incumbents including selection test 

scores and their supervisor-rated job performance. These employees were from two major 

functional groups: 1,027 (56.49%) were from the paraprofessional/support (PPSP) group that 

included administrative/office/operations support, technical support and customer contact 

support job functions, and 791 (43.51%) were from the professional/technical (PRTC) group 

which included administrative/operations professional, information technical/technical 

professional and customer contact professional job groups. Gender and ethnicity were not 

available. 

Measures 

 Background and Experience Questionnaire (BEQ). The BEQ is a biodata measure 

covering eight competency dimensions defined by the organization. These include: “Continuous 
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Learning Orientation (CLO),” “Dependability (DP),” “Developing and Maintaining Relationship 

(DMR),” “Flexibility (FL),” “Interpersonal Communication (IC),” “Leadership Skill (LD),” 

“Personal Motivation (PM),” and “Self-Management Skills (SM).” Weighted scores were used 

that ranged from 0 – 6.  

 Following Policies and Procedures (FPP). FPP is a measure of cognitive ability 

administered under proctored conditions. There were two different versions of the test, one for 

PPSP group and the other for PRTC group. Weighted scores ranged from 13.29 to 41.65.  

 Job Performance. The criterion measure in the current study was supervisor-rated job 

performance, a composite measure of 11 skill areas and 11 or 10 work behaviors (11 for PPSP 

and 10 for PRTC). The overall score ranged from 1 to 5. 

 As the original items and score calculations were kept by an external vendor, the number 

of items within each scale and Cronbach’s alpha reliability were not available.  

Data Analysis 

 To understand which regression method could maximize predictive accuracy, and how 

the nine selection predictors were related to job performance, a similar set of analyses were 

conducted as those in Study 3. For the first step, the three methods, including CART, random 

forests, and multiple linear regression, were used to fit the data. Their predictive accuracy was 

compared based on both resubstituition mean squared error and 10-fold cross validation mean 

squared error. Next, variable importance rankings were computed using the following five 

statistics: regression coefficients, squared regression coefficients and p values that were derived 

from multiple linear regression, relative weights that were derived from relative weights analysis, 

and random forests variable importance estimates. To understand how the number of predictors 
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would impact the predictive accuracy of various methods, eight models with the number of 

predictors, ranging from 2 to 9 were constructed and compared on resubstitution MSE and 10-

fold cross-validation MSE. Lastly, the optimal subset of predictors was selected to build a single 

regression tree and then pruned to a meaningful level. The resulting decision algorithm 

represented the configural interactions among different selection predictors and a set of cut-off 

points. Cost functions are not applicable to regression trees. As Berk (2008) indicated, symmetric 

costs are often inappropriate for classification, yet they are required when the response variable 

is continuous. Thus, the cost function was not considered in the current study. 

Results  

 Table 18 provides a summary of the descriptive statistics and intercorrelations among the 

9 predictors and the criterion variable. The biodata predictors are moderately to highly 

intercorrelated. The Following Policies and Procedures (FPP) measure is negatively correlated 

with all the remaining predictors within each job family (professional vs. support); but when the 

two job families are combined, the overall correlation between FPP and the other selection 

predictors are positive. The criterion-related validity of the predictors is positive and significant, 

yet the absolute values are relatively small (i.e., below 0.2).  

 In the prediction of job performance, CART showed the smallest resubstitution MSE 

(0.1301), followed by random forests (0.1667), both were much smaller than the traditional 

linear regression (0.2509).  In a comparison of cross-validation accuracies, random forests 

(0.2647) resulted in the most accurate prediction, followed by multiple linear regression (0.3125), 

and CART was least generalizable (0.4009).  
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 Table 19 shows the results of variable importance ranking. The rank orders of variable 

importance derived from standardized regression coefficients and relative weights differ 

substantially. This finding was expected given the high intercorrelations among the predictor 

variables. A further comparison between relative weights and random forests showed that the top 

four predictors identified by relative weights analysis (i.e., FPP, DP, SM, and PM) were also 

among the top five from random forests analysis. One exception was CLO (Continuous Learning 

Orientation) – it was at the very bottom according to both multiple regression and relative 

weights, yet was ranked second for random forests. This inconsistency in ranking implied that 

the relationship between CLO and job performance might involve some higher-order or complex 

interaction components. As such, the subsequent feature selection process was based on the 

variable importance rank generated by random forests.   

 As shown in Table 20, CART was most sensitive to how many predictors were included 

in the model – the inclusion of more predictors was associated with a smaller resubstitution error 

rate yet a larger cross-validation error rate. The random forests method was significantly 

impacted by the number of predictors when examined against resubstitution error, but was 

generally stable with regard to cross-validation. Multiple linear regression showed the highest 

level of stability when the number of predictors changed. Although more predictors led to a 

slightly larger resubstitution error and a smaller cross-validation error, the difference was 

negligible. Across all three methods, random forests consistently demonstrated the highest level 

of cross-validation accuracy. The average cross-validation error of random forests (M = 0.2656) 

was 13% less than the average of multiple linear regression (M = 0.3069).  

 To illustrate how the set of selection predictors were related to job performance, a 

regression tree was built based on the five most important predictors derived from random 
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forests (i.e., Following Policies and Procedures, Continuous Learning Orientation, Dependability, 

Self-Management Skills, and Personal Motivation). The original tree was quite leafy with 189 

levels. Therefore, I pruned 183 levels off for a meaningful structure, as shown in Figure 15. Only 

four out of the five predictors were selected in the final tree, with Continuous Learning 

Orientation not included. Unlike that in the classification scenario, no cost weight was applicable 

for regression trees. The cross-validation MSE for this tree was 0.3555. On the other hand, when 

the four predictors were entered into a multiple linear regression equation, the cross-validation 

MSE was 0.3075. Although the cross-validation error of the regression tree was slightly larger 

than the linear regression method, the tree structure in Figure 15 was informative for uncovering 

the underlying mechanism of how these predictors worked. For example, according to the 

decision tree, when an employee has a high cognitive ability score (i.e., FPP), he/she is very 

likely to perform well in the job. When an employee’s cognitive ability score is relatively low, as 

long as he/she is high in Dependability, the performance score of this employee is still likely to 

be moderate to high. When an employee has low scores in both cognitive ability and 

Dependability, even if he/she has high Personal Motivation, this person is unlikely to be 

successful at work. The richness of the information offered by the decision tree diagram was 

beyond what could be told from a linear regression model.  

Discussion 

 Results from Study 4 supported conclusions from the three previous studies. First, CART 

tended to overfit as demonstrated by a very low level of resubstituition error rate yet much higher 

cross-validation error rate. This pattern was strengthened when more predictors were included 

with the resubstituition error being even lower while cross-validation error increased. Second, 

random forests emerged as the most desirable approach, with the resubstituition error almost as 
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low as CART but cross-validation accuracy consistently higher than the other methods. The 

impact of predictor quantity on random forests was mainly reflected on resubstituition error with 

more predictors resulting in overfitting. Third, multiple linear regression displayed a relative 

stable pattern across changing numbers of predictors with more predictors not necessarily 

yielding better predictions. Fourth, variable importance rankings derived from various techniques 

did not quite converge, likely due to reasons such as multicollinearity or complex interactive or 

higher-order relationships among the predictors or between the predictors and the outcome 

variable. Fifth, the random forests method was able to identify a common set of important 

predictors as suggested by relative weights. Moreover, random forests also pointed out a unique 

variable (i.e., CLO) that might have been overlooked by other methods given its potential 

complex relationships with other variables. Finally, a simple regression tree was built based on 

the four most important predictors identified by both random forests and relative weights. 

Although its cross-validation error was slightly larger than its linear regression counterpart, the 

tree diagram provided some additional insights about how the selection predictors were related to 

job performance. As shown in Figure 15, cognitive ability (FPP) is the most important predictor, 

which is consistent with the conclusion from previous meta-analyses (Schmidt & Hunter, 1998). 

However, a low cognitive ability score does not always lead to poor performance – when an 

employee is high on Dependability, his/her performance may still be moderate to high.  
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CHAPTER 3: GENERAL DISCUSSION 

 The overarching goal of the current paper was to introduce two decision tree methods, 

Classification and Regression Trees (CART) and Random Forests (RF), and compare them with 

several traditional approaches through two simulations and two empirical applications. The 

second goal was to suggest when and how the decision tree methods should be applied.   

 Results from the two simulation studies showed that when resubstitution error and 10-

fold cross-validation error were compared, the two decision tree methods consistently showed a 

large discrepancy with the error in the training sample significantly smaller than that of the test 

sample, yet the traditional methods (i.e., LR, LDA, QDA, or MLR) yielded similar levels of error 

rates. This result implies that the greedy algorithms of the decision tree methods capitalize on 

chance, so the resubstitution error rate is overly optimistic. Consistent with Cureton (1950), it is 

essential that the cross-validation error rate should be relied on to gauge the accuracy of a 

statistical model. A further comparison between CART and random forests indicated that CART 

tended to overfit with the cross-validation error substantially larger than the other methods in 

general, while random forests classification accuracy was not attenuated as much through cross-

validation. This conclusion is consistent with previous findings that the random forests method is 

superior to CART with regard to stability and generalizability.    

 The current paper also showed that when the two decision tree methods were compared 

with the traditional methods on predictive accuracy (i.e., cross-validation error), the underlying 

structure of the data played a significant role. In general, when the data was structured in a 

simple linear additive manner, random forests performed comparably to the traditional methods, 

and CART was significantly inferior to all the other methods. However, when the data was 

structured in a configural tree-like pattern, both random forests and CART outperformed the 
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traditional methods. It should be noted that when the predicted outcome was a continuous 

variable, the proportion of variance explained moderated the conclusion above – the advantage 

of CART and random forests under the configural data structure was only prominent when the 

proportion of variance explained was moderate to large. This is because when predicting a 

continuous outcome, if the majority of the variance came from error, the data generated may 

represent more of a random distribution rather than a particular structure. Large error variance 

might be a lesser issue for predicting a binary outcome as the dichotomization process may 

round off the impact of the error. Additionally, it was found that when the variance explained 

was large, random forests was more accurate than linear regression even when the data was 

structured in a polynomial regression model (Y2, Y3 or Y4), and CART was better than linear 

regression under the most complex polynomial model (Y4).  

 The conclusions of the current research are not quite the same as previous simulation 

studies that also incorporated interaction or nonlinear relationships. A number of reasons may 

explain the divergence, including the difference in the set of manipulated parameters and analytic 

procedures. For example, the current study performed 10-fold cross-validation whereas previous 

simulations did not follow this approach for cross-validation. Also, the cut-off score for logistic 

regression was based on the ROC curve whereas previous studies used an arbitrary point of 0.5. 

Nevertheless, the present findings suggest that the inclusion of interaction or nonlinear effects 

does not always guarantee the superiority of CART.  When interaction and high-order terms are 

included in a linear additive manner, the nonlinear model specified is nothing more than a 

polynomial regression. This type of relationship may still be an over simplification of the 

inherent structure of real data. Instead, a set of regression equations that represent multiple 

subgroups may better capture configural relationships in the data. This latter situation is the case 
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where CART and random forests show more value beyond the traditional approaches. The 

current findings imply that when a method is aligned with the scenario to which it best applies, 

its utility is maximized.  

 Regarding the remaining set of simulated parameters, the proportion of variance 

explained and the base rate both demonstrated significant main effects: a larger explained 

variance and a smaller base rate were associated with better predictions. In addition, interaction 

effects showed that the difference between various levels of the simulated parameters appeared 

to be more substantial for traditional methods. The other two factors, multicollinearity and 

skewness, did not show any significant main or interaction effects. 

 Study 3 and 4 provided two empirical illustrations of how decision tree methods can be 

used to enhance model prediction and interpretation. Similar to what was found in the two 

simulation studies, CART showed overfitting while random forests cross-validated well, 

primarily due to the model averaging feature of random forests. The number of predictors 

included in the model had the greatest impact on CART with more predictors leading to more 

serious overfitting, as reflected by the decreasing resubstitution error and increasing cross-

validation error. However, the influence of predictor quantity on random forests cross-validation 

accuracy was in the opposite direction – more predictors slightly boosted the predictive accuracy 

of random forests. Unlike their decision tree counterparts, the set of traditional methods were 

more stable in response to a changing number of predictors, except that the classification error 

for QDA slightly increased when more predictors were involved.  

 In empirical settings, sensitivity or specificity sometimes has particular importance 

beyond the overall cross-validation error for a classification problem. For example, in Study 3, 
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identifying which employee may leave is critical for intervention purposes. When the set of 

methods were evaluated purely on cross-validation error, LR and LDA tended to have the best 

performance; yet, their overall classification accuracy was at the cost of low or near zero 

sensitivity. This is because when the base rate is low, simply placing everyone into the larger 

group (i.e., stayers) could still generate a great overall accuracy. However, this is counter to the 

purpose of identifying leavers for a turnover study, so these two methods may not be preferred. 

On the contrary, CART and QDA showed a higher sensitivity, but exhibited larger cross-

validation errors when more predictors were included. Random forests showed relatively 

balanced cross-validation error and sensitivity, especially when the base rate was not extremely 

small, and the number of predictor was large. 

  In addition to examining the predictive accuracy of various models, the two empirical 

studies also introduced a process to understand the functional relationship between the predictors 

and the outcome, which included two steps: step one was variable selection, meaning that all the 

predictors were ranked according to their relative importance, generated from either random 

forests or relative weights. The information from both analyses was then integrated to determine 

the most important subset of predictors. Step two was to build and prune a single decision tree 

(either a classification tree or a regression tree) based on the predictors selected in step one. For 

classification problems, a cost function was incorporated to adjust the weights of different 

outcomes.  

 The current paper helps address two primary concerns of statistical modeling, prediction 

and interpretation, through the introduction of the two recursive partitioning methods. Regarding 

prediction, the primary concern is to minimize prediction error. Traditional multiple regression 

approaches fall short in two aspects: the multivariate nature of the prediction and model 
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uncertainty. CART is able to consider the multivariate nature of the prediction problem by 

design. Indeed, CART was shown to be quite sensitive to the sample used for developing the 

model by picking up the nuances in the data set and reclassifying at high levels of accuracy. 

However, unless the nature of the data is structured in a configural manner represented by a 

series of regression equations, the CART level of fit usually could not be carried over to a new 

sample, leading to a lack of generalizability. This deficiency in generalizability worsened when 

more predictors were included and the model was more complex. The random forests method, 

which shares the same mechanism of CART in dealing with the multivariate challenge, also 

addresses the model uncertainty issue through averaging across predictions from multiple models. 

Both simulation and empirical results of the current study supported this notion that RF 

generated similar or better cross-validation accuracy compared to traditional approaches, 

especially when the model was more complex than simple linear regression. This advantage can 

be strengthened when there are more predictors, or when the data inherently takes the form of a 

configural structure. As a summary, it is suggested that random forests should be considered to 

supplement, if not replace the traditional predictive models when the goal is to make accurate 

predictions, especially when there are multiple predictors and their relationship is unclear. 

 A second concern of predictive modeling is interpretation, which includes the 

understanding of the relative contribution of each variable for making the prediction, and the 

functional relationship between the predictors and the outcome. For the first goal, the random 

forests approach is able to integrate more complex interactive or higher-order effects, which may 

add additional value beyond both the standardized regression coefficient and relative weights 

approach. The current study showed that random forests and relative weights converged with 

respect to several important predictors, but random forests also picked out another few predictors 
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that might be overlooked. A similar conclusion was reached by Ostberg (2005) who found a 

discrepancy between the most important variables identified by regression and neural network 

models (another type of machine learning). Therefore, it is suggested that when the underlying 

structure of the data is unclear, rankings from both relative weights and random forests should be 

considered, compared, and integrated. Information from variable importance rankings can also 

be used to select the most important subset of variables for building a smaller, more stable tree 

structure. In terms of the second goal, the black-box approach of random forests could be 

supplemented by a single decision tree with the most important subset of the predictors pruned to 

the appropriate level. The resulting tree diagram could provide additional insights about the 

configural relationship between various predictors and the outcome. For example, in the case of 

the Study 3, the classification tree was able to portray several profiles of both voluntary and 

involuntary left employees. As Breiman et al. (1984, p. 265) noted, “tree structured regression 

offers an interesting alternative for looking at regression type problems. It has sometimes given 

clues to data structure not apparent from a linear regression analysis. Like any other tool, its 

greatest benefit lies in its intelligent and sensible application.” In practice, when CART is used to 

understand the functional relationship between predictors and outcome variable, it is suggested 

that the results should be scrutinized against subject matter information to protect it from 

misleading interpretations (Berk, 2008). Additionally, Berk (2008) noted that a few factors might 

be related to unstable tree structure, such as small sample size in terminal nodes, or 

heterogeneous terminal nodes. Therefore, factors such as terminal node size or distribution of 

multiple categories should be evaluated. A cost function, which assigns differential weights for 

various categories, can be factored in when building a decision tree, to increase the theoretical 

and practical relevance of the model developed.  
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 The current study does not suggest completely dropping regression as an important 

analytic method. As shown by some of the simulation and empirical results, traditional 

regression approaches showed merit under certain conditions, for example, when the 

relationships among the predictors were relatively straightforward. Whenever possible, it is 

suggested that a complex CART or random forests model should be compared with a simpler 

linear or logistic regression model, and a decision can be made about whether simpler models 

would be adequate. Additionally, decision tree methods can be used in combination with 

regression to take advantages of the strengths of both.  For example, variable importance derived 

from relative weights analysis can be compared with the results from random forests to reinforce 

the importance of certain predictors.    

Limitations and Future Directions 

 The results of the current study should be interpreted with its limitations in mind. For 

example, the examinations of the empirical data in Studies 3 and 4 were based on scale level 

rather than specific item level predictors, due to the unavailability of the item level data. As 

CART and random forests might show particular superiority for large-p-small-n scenarios, 

meaning that if more predictors were included, a study with item level data might show a more 

substantial difference between the decision tree methods and the traditional approaches. Future 

research is encouraged to replicate the current study using data sets with a larger number of 

predictors and relatively small sample sizes.    

 In addition, despite some general trends discovered in Study 1 and 2, it should be noted 

that the simulation results are bounded by the specific parameters manipulated, and the 

conclusions hold only within the ranges from which the parameter values were sampled. Further 



 

82 
 

generalization beyond the current parameters requires caution. For example, it was shown in the 

current study that skewness did not demonstrate any significant main or interaction effects on 

predictive accuracy. It was not clear if this was because skewness per se had no significant 

impact, or because the levels of skewness used in the current study (0.3 and 0.7) were not 

extreme enough to induce any large change. Similarly for Study 3, the base rate was quite small 

for the empirical samples. It is uncertain whether the same conclusion holds for a sample with a 

larger base rate. Future research might take into consideration a broader set of values, or 

investigate some other important parameters that are pertinent to organizational science, such as 

the level of range restriction.  

 Moreover, results from the logistic regression should be interpreted with caution because 

of the way the cut-off point was set. Note that the current paper applied the ROC curve approach 

and found the value that minimized the misclassification error to serve as the cut-off point. 

However, this procedure is not always followed in applied settings. Instead, an arbitrary cut-off 

point such as 0.5 might be chosen. Therefore, the results of the current study represent the upper 

bound of LR’s predictive accuracy and might be overly optimistic. Future studies may try out 

different strategies for setting cut-off points and explore whether the results differ. 

Theoretical and Practical Implications: 

 With the rapid growth of computer science in the past two decades, we have seen an 

increase in the development and application of advanced predictive modeling techniques in 

various fields such as applied statistics, bioinformatics, engineering, and finance. Organizational 

science as a field, however, has generally been slow in adopting these methods to fully take 

advantage of the methodological advances. In the past decade, only four papers published in 
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Organizational Research Methods (Detienne, Detienne & Joshi, 2003; Minbashian, Bright, & 

Bird, 2010; Palocsay & White, 2004; Somers & Casal, 2009) were either an introduction or 

application of artificial neural networks (another machine learning algorithm). No paper has 

introduced other popular algorithms, such as decision tree or support vector machines (SVM). 

Locke (2007) has argued that current researchers have placed too much emphasis on deductive 

approach of theory testing. Since theories in many areas of organizational science are fairly 

rudimentary, more studies need to be empirically driven. Instead of testing hypotheses based on 

not-so-valid theories, Locke (2007) suggested that an inductive approach may help develop more 

good theories. The empirical and inductive approach of machine learning fits this need.   

 Practically speaking, given the superior predictive power of random forests for complex 

models and a large number of predictors, it can be considered as a valuable off-the-shelf tool for 

exploring features of data sets. For example, in the high-stakes context of personnel selection, 

predictive accuracy is usually a foremost concern, and even a small improvement in predictive 

utility can lead to a substantial amount of monetary savings (White et al., 1993). Setting up a 

random forests software wizard to assist with making selection decisions may result in greater 

utility than would a traditional regression model. Several software packages are readily available 

to run these analyses, including R, MATLAB, SAS, Weka, etc.  

 No other topic in the talent management area has been more popular than big data and 

analytics in the past two years, as covered by various media including New York Times (e.g., 

Lohr, 2013), Harvard Business Review (McAfee & Brynjolfsson, 2012), and Forbes (Bersin, 

2013). With the growing awareness by the corporate world, HR analytics has rocketed to the top 

of the corporate agenda for a growing number of organizations. As more and more data are being 

collected from various sources at different time points on an ongoing basis, there is a pressing 
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need for I/O Psychologists and HR practitioners to adapt to the changing nature of the incoming 

data in terms of volume and velocity. I/O psychologists need to better leverage the existing 

knowledge and best practices from business intelligence world, where artificial intelligence such 

as machine learning and data mining are regularly used. The current paper examined one of the 

machine learning methods, recursive partitioning, with the hope of bringing more attention to a 

broader array of predictive solutions. Future studies should explore other promising machine 

learning and data mining methods, such as support vector machines (SVM).  

Conclusion 

 The current study introduced Classification and Regression Trees (CART) and random 

forests to the field of organizational science. Results of the current research suggest that the 

random forests method has promise for overcoming the methodological and practical limitations 

of the traditional multiple regression approach. As was shown, in linear or simple additive 

settings, applying random forests produces results comparable to the traditional methods; yet in 

complex or unknown settings, the adoption of random forests may substantially enhance 

predictive accuracy. Moreover, random forests provides additional insights for determining 

variable importance and feature selection. The combination of a single decision tree constructed 

by CART with a random forest can substantially enhance model interpretation, providing 

valuable insights regarding complex configural relationships or uncover profiles of subgroups.  
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TABLES 

Table 1 

Simulation Conditions 

Parameter Levels 

Multicollinearity 0.0 – 0.3, 0.3 – 0.7 

Level of Skewness -0.7, -0.3, 0.3, 0.7 

Base Rate (classification only) 0.1, 0.3 

Proportion of Variance Explained 0.09, 0.49, 0.90 (for regression only) 

Data Complexity Y1: Simple linear regression 

 Y2: Polynomial regression with quadratic term 

 Y3: Polynomial regression with interaction term 

 Y4: Polynomial regression with complex nonlinear terms 

 Y5: Tree-structured stepwise regressions for binary outcome 

 Y6: Tree-structured conditional regression for continuous outcome 

Prediction Method Classification: CART, RF, LR, LDA, QDA. 

 Regression: CART, RF, GLM. 
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Table 2  

Table 2 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

Y1 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.1001 0.1000 0.1000 0.0488 0.0000 

    -0.3 0.0994 0.1000 0.0999 0.0449 0.0000 

     0.3 0.0988 0.1000 0.1000 0.0441 0.0001 

     0.7 0.0988 0.0993 0.0998 0.0493 0.0002 

   0.3 -0.7 0.2940 0.2987 0.2976 0.1051 0.0000 

    -0.3 0.2905 0.2959 0.2920 0.1006 0.0000 

     0.3 0.2900 0.2941 0.2931 0.1040 0.0000 

     0.7 0.2915 0.2967 0.2952 0.1048 0.0000 

  0.7*0.7 0.1 -0.7 0.0952 0.0989 0.1036 0.0385 0.0001 

    -0.3 0.0910 0.0954 0.0953 0.0399 0.0002 

     0.3 0.0871 0.0906 0.0899 0.0353 0.0000 

     0.7 0.0783 0.0822 0.0861 0.0335 0.0001 

   0.3 -0.7 0.2131 0.2194 0.2319 0.0798 0.0000 

    -0.3 0.2063 0.2125 0.2132 0.0818 0.0000 

     0.3 0.2063 0.2118 0.2129 0.0763 0.0000 

     0.7 0.1903 0.1979 0.2013 0.0721 0.0000 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.1007 0.1000 0.1000 0.0495 0.0002 

    -0.3 0.0983 0.1000 0.0999 0.0478 0.0000 

     0.3 0.0982 0.1001 0.0997 0.0462 0.0000 

     0.7 0.0987 0.0995 0.1003 0.0450 0.0000 

   0.3 -0.7 0.2926 0.2978 0.2974 0.1030 0.0000 

    -0.3 0.2867 0.2946 0.2944 0.1006 0.0000 

     0.3 0.2882 0.2933 0.2909 0.1032 0.0000 

     0.7 0.2853 0.2898 0.2897 0.1064 0.0000 

  0.7*0.7 0.1 -0.7 0.0950 0.0994 0.1024 0.0388 0.0001 

    -0.3 0.0906 0.0958 0.0953 0.0374 0.0001 

     0.3 0.0870 0.0897 0.0889 0.0359 0.0000 

     0.7 0.0816 0.0850 0.0869 0.0336 0.0001 

Resubstitution Error Rate for Predicting Binary Outcomes (Study 1) 
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Table 2 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

   0.3 -0.7 0.2042 0.2121 0.2226 0.0739 0.0000 

    -0.3 0.1990 0.2036 0.2071 0.0726 0.0000 

     0.3 0.1977 0.2059 0.2034 0.0750 0.0000 

     0.7 0.1968 0.2011 0.2073 0.0753 0.0000 

Y2 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.0990 0.1000 0.0996 0.0459 0.0002 

    -0.3 0.0992 0.1000 0.0993 0.0496 0.0000 

     0.3 0.0972 0.0998 0.0982 0.0448 0.0000 

     0.7 0.0981 0.1001 0.0995 0.0457 0.0001 

   0.3 -0.7 0.2936 0.2975 0.2957 0.1002 0.0001 

    -0.3 0.2892 0.2951 0.2863 0.1012 0.0000 

     0.3 0.2897 0.2942 0.2858 0.1000 0.0000 

     0.7 0.2863 0.2921 0.2891 0.1053 0.0002 

  0.7*0.7 0.1 -0.7 0.0933 0.0990 0.0947 0.0367 0.0001 

    -0.3 0.0879 0.0949 0.0901 0.0384 0.0000 

     0.3 0.0797 0.0843 0.0792 0.0314 0.0000 

     0.7 0.0693 0.0730 0.0720 0.0275 0.0001 

   0.3 -0.7 0.2367 0.2427 0.2393 0.0725 0.0000 

    -0.3 0.2259 0.2333 0.2150 0.0797 0.0000 

     0.3 0.2080 0.2133 0.2005 0.0746 0.0000 

     0.7 0.1969 0.2018 0.1956 0.0700 0.0000 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.0991 0.1000 0.1000 0.0440 0.0001 

    -0.3 0.0983 0.0999 0.0998 0.0479 0.0000 

     0.3 0.0972 0.0994 0.0991 0.0467 0.0000 

     0.7 0.0987 0.1002 0.1003 0.0461 0.0000 

   0.3 -0.7 0.2900 0.2967 0.2963 0.1032 0.0000 

    -0.3 0.2849 0.2934 0.2921 0.0985 0.0000 

     0.3 0.2828 0.2890 0.2835 0.1021 0.0000 

     0.7 0.2789 0.2846 0.2830 0.1028 0.0000 

  0.7*0.7 0.1 -0.7 0.0908 0.0984 0.0984 0.0360 0.0001 

    -0.3 0.0787 0.0859 0.0832 0.0303 0.0000 
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Table 2 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

     0.3 0.0736 0.0791 0.0773 0.0291 0.0000 

     0.7 0.0695 0.0724 0.0735 0.0295 0.0000 

   0.3 -0.7 0.2043 0.2085 0.2190 0.0749 0.0001 

    -0.3 0.1986 0.2072 0.2022 0.0742 0.0000 

     0.3 0.2030 0.2097 0.2048 0.0746 0.0000 

     0.7 0.1936 0.2005 0.1993 0.0692 0.0000 

Y3 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.0997 0.1000 0.0999 0.0462 0.0003 

    -0.3 0.0992 0.0999 0.0999 0.0458 0.0002 

     0.3 0.0986 0.0999 0.0986 0.0456 0.0001 

     0.7 0.0973 0.0989 0.0989 0.0479 0.0000 

   0.3 -0.7 0.2864 0.2933 0.2921 0.1011 0.0000 

    -0.3 0.2895 0.2942 0.2913 0.1013 0.0000 

     0.3 0.2869 0.2920 0.2873 0.1029 0.0001 

     0.7 0.2858 0.2905 0.2893 0.0993 0.0000 

  0.7*0.7 0.1 -0.7 0.0855 0.0941 0.0945 0.0347 0.0002 

    -0.3 0.0814 0.0889 0.0864 0.0345 0.0001 

     0.3 0.0792 0.0836 0.0818 0.0315 0.0000 

     0.7 0.0692 0.0721 0.0712 0.0289 0.0000 

   0.3 -0.7 0.2049 0.2136 0.2113 0.0785 0.0000 

    -0.3 0.2086 0.2145 0.2080 0.0783 0.0002 

     0.3 0.1955 0.2015 0.1948 0.0749 0.0001 

     0.7 0.1960 0.2016 0.1988 0.0693 0.0000 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.0995 0.1000 0.0999 0.0476 0.0000 

    -0.3 0.0997 0.1000 0.1000 0.0453 0.0003 

     0.3 0.0982 0.0995 0.0996 0.0441 0.0000 

     0.7 0.0971 0.0994 0.1000 0.0462 0.0000 

   0.3 -0.7 0.2869 0.2953 0.2906 0.1027 0.0001 

    -0.3 0.2813 0.2899 0.2865 0.0996 0.0000 

     0.3 0.2801 0.2856 0.2828 0.0999 0.0002 

     0.7 0.2819 0.2865 0.2855 0.1029 0.0000 
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Table 2 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

  0.7*0.7 0.1 -0.7 0.0806 0.0943 0.0917 0.0330 0.0000 

    -0.3 0.0785 0.0840 0.0830 0.0310 0.0000 

     0.3 0.0763 0.0798 0.0799 0.0331 0.0000 

     0.7 0.0716 0.0751 0.0758 0.0314 0.0000 

   0.3 -0.7 0.1896 0.1961 0.2098 0.0708 0.0000 

    -0.3 0.1857 0.1927 0.1923 0.0706 0.0001 

     0.3 0.1897 0.1962 0.1939 0.0740 0.0001 

     0.7 0.1960 0.2019 0.2049 0.0739 0.0000 

Y4 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.0999 0.1000 0.1000 0.0456 0.0000 

    -0.3 0.0989 0.1000 0.0997 0.0466 0.0001 

     0.3 0.0980 0.0999 0.0996 0.0446 0.0000 

     0.7 0.0956 0.0996 0.0968 0.0434 0.0000 

   0.3 -0.7 0.2948 0.2981 0.2969 0.1037 0.0000 

    -0.3 0.2898 0.2974 0.2939 0.0998 0.0000 

     0.3 0.2837 0.2898 0.2870 0.1003 0.0000 

     0.7 0.2875 0.2915 0.2920 0.0995 0.0000 

  0.7*0.7 0.1 -0.7 0.0964 0.0998 0.0986 0.0420 0.0000 

    -0.3 0.0872 0.0946 0.0926 0.0360 0.0000 

     0.3 0.0759 0.0792 0.0746 0.0331 0.0001 

     0.7 0.0743 0.0776 0.0712 0.0262 0.0001 

   0.3 -0.7 0.2542 0.2596 0.2649 0.0874 0.0000 

    -0.3 0.2421 0.2477 0.2409 0.0871 0.0000 

     0.3 0.2284 0.2345 0.2220 0.0835 0.0001 

     0.7 0.2235 0.2308 0.2218 0.0837 0.0000 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.0998 0.1000 0.1000 0.0484 0.0001 

    -0.3 0.0988 0.1000 0.0999 0.0439 0.0001 

     0.3 0.0965 0.0995 0.0983 0.0466 0.0001 

     0.7 0.0956 0.0992 0.0972 0.0450 0.0000 

   0.3 -0.7 0.2910 0.2999 0.2986 0.1043 0.0000 

    -0.3 0.2853 0.2926 0.2899 0.1042 0.0000 
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Table 2 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

     0.3 0.2821 0.2868 0.2838 0.1008 0.0000 

     0.7 0.2792 0.2854 0.2873 0.1055 0.0001 

  0.7*0.7 0.1 -0.7 0.0845 0.0967 0.0917 0.0368 0.0000 

    -0.3 0.0747 0.0836 0.0813 0.0296 0.0002 

     0.3 0.0725 0.0784 0.0760 0.0315 0.0001 

     0.7 0.0685 0.0738 0.0720 0.0266 0.0001 

   0.3 -0.7 0.2304 0.2365 0.2397 0.0814 0.0000 

    -0.3 0.2207 0.2268 0.2263 0.0831 0.0000 

     0.3 0.2177 0.2262 0.2249 0.0838 0.0001 

     0.7 0.2151 0.2208 0.2215 0.0828 0.0000 

Y5 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.0589 0.0920 0.0698 0.0010 0.0000 

    -0.3 0.0624 0.0734 0.0612 0.0021 0.0000 

     0.3 0.0613 0.0644 0.0540 0.0020 0.0000 

     0.7 0.0682 0.0725 0.0527 0.0025 0.0000 

   0.3 -0.7 0.1572 0.1656 0.1241 0.0009 0.0000 

    -0.3 0.1489 0.1573 0.1031 0.0030 0.0000 

     0.3 0.1294 0.1342 0.1028 0.0037 0.0000 

     0.7 0.1159 0.1198 0.0961 0.0011 0.0000 

  0.7*0.7 0.1 -0.7 0.0589 0.0920 0.0698 0.0010 0.0000 

    -0.3 0.0716 0.0795 0.0692 0.0029 0.0000 

     0.3 0.0634 0.0672 0.0547 0.0034 0.0000 

     0.7 0.0668 0.0701 0.0533 0.0026 0.0000 

   0.3 -0.7 0.1527 0.1600 0.1283 0.0018 0.0000 

    -0.3 0.1504 0.1579 0.1079 0.0033 0.0000 

     0.3 0.1294 0.1342 0.1028 0.0037 0.0000 

     0.7 0.1159 0.1198 0.0961 0.0011 0.0000 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.0463 0.0967 0.0560 0.0016 0.0000 

    -0.3 0.0453 0.0648 0.0445 0.0017 0.0000 

     0.3 0.0512 0.0567 0.0477 0.0014 0.0000 

     0.7 0.0500 0.0515 0.0416 0.0022 0.0000 
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Table 2 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

   0.3 -0.7 0.0703 0.0790 0.0597 0.0026 0.0000 

    -0.3 0.1086 0.1140 0.0841 0.0035 0.0000 

     0.3 0.1013 0.1058 0.0822 0.0021 0.0000 

     0.7 0.1233 0.1292 0.1084 0.0030 0.0000 

  0.7*0.7 0.1 -0.7 0.0286 0.0955 0.0225 0.0005 0.0000 

    -0.3 0.0335 0.0601 0.0326 0.0011 0.0000 

     0.3 0.0376 0.0447 0.0358 0.0015 0.0000 

     0.7 0.0394 0.0431 0.0353 0.0021 0.0000 

   0.3 -0.7 0.1093 0.1204 0.0986 0.0013 0.0000 

    -0.3 0.1086 0.1140 0.0841 0.0035 0.0000 

     0.3 0.1293 0.1331 0.0997 0.0033 0.0000 

     0.7 0.1217 0.1285 0.0992 0.0040 0.0000 
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Table 3 

Table 3 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

Y1 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.1015 0.1000 0.1000 0.1704 0.1054 

    -0.3 0.1015 0.1000 0.1001 0.1696 0.1061 

     0.3 0.1010 0.1002 0.1015 0.1675 0.1063 

     0.7 0.1004 0.0997 0.1028 0.1686 0.1065 

   0.3 -0.7 0.3003 0.3005 0.3013 0.3974 0.3356 

    -0.3 0.2981 0.2983 0.2982 0.3927 0.3313 

     0.3 0.2963 0.2969 0.3012 0.3926 0.3297 

     0.7 0.2986 0.2994 0.3041 0.4053 0.3411 

  0.7*0.7 0.1 -0.7 0.0981 0.0991 0.1072 0.1550 0.1071 

    -0.3 0.0944 0.0959 0.0975 0.1458 0.1048 

     0.3 0.0909 0.0921 0.0959 0.1383 0.1016 

     0.7 0.0827 0.0842 0.0897 0.1243 0.0956 

   0.3 -0.7 0.2174 0.2202 0.2344 0.2945 0.2386 

    -0.3 0.2141 0.2148 0.2193 0.2911 0.2416 

     0.3 0.2141 0.2154 0.2185 0.2899 0.2401 

     0.7 0.1977 0.2010 0.2063 0.2743 0.2228 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.1008 0.1000 0.1000 0.1724 0.1046 

    -0.3 0.1009 0.1000 0.1000 0.1681 0.1057 

     0.3 0.1002 0.1004 0.1019 0.1642 0.1074 

     0.7 0.1009 0.0999 0.1037 0.1701 0.1045 

   0.3 -0.7 0.2998 0.3003 0.3037 0.3940 0.3344 

    -0.3 0.2954 0.2951 0.2999 0.3926 0.3289 

     0.3 0.2952 0.2956 0.3003 0.4006 0.3270 

     0.7 0.2931 0.2945 0.2999 0.4044 0.3255 

  0.7*0.7 0.1 -0.7 0.0989 0.0995 0.1050 0.1531 0.1105 

    -0.3 0.0950 0.0969 0.0980 0.1445 0.1061 

     0.3 0.0911 0.0920 0.0926 0.1342 0.1018 

     0.7 0.0871 0.0871 0.0911 0.1233 0.0947 

10-fold Cross-Validation Error Rate for Predicting Binary Outcomes (Study 1) 
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Table 3 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

   0.3 -0.7 0.2114 0.2151 0.2276 0.2821 0.2376 

    -0.3 0.2039 0.2065 0.2121 0.2785 0.2322 

     0.3 0.2035 0.2074 0.2094 0.2811 0.2295 

     0.7 0.2040 0.2043 0.2122 0.2760 0.2256 

Y2 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.1017 0.1000 0.1002 0.1645 0.1037 

    -0.3 0.1009 0.1000 0.0995 0.1660 0.1066 

     0.3 0.1005 0.0997 0.1000 0.1596 0.1053 

     0.7 0.0995 0.1004 0.1035 0.1669 0.1079 

   0.3 -0.7 0.2977 0.2981 0.3013 0.3998 0.3324 

    -0.3 0.2946 0.2975 0.2946 0.3924 0.3240 

     0.3 0.2966 0.2969 0.2957 0.3895 0.3226 

     0.7 0.2927 0.2957 0.2996 0.3869 0.3162 

  0.7*0.7 0.1 -0.7 0.0967 0.0993 0.0969 0.1325 0.1011 

    -0.3 0.0908 0.0952 0.0926 0.1325 0.0961 

     0.3 0.0842 0.0856 0.0819 0.1216 0.0862 

     0.7 0.0744 0.0745 0.0749 0.1089 0.0796 

   0.3 -0.7 0.2430 0.2460 0.2434 0.2938 0.2460 

    -0.3 0.2323 0.2375 0.2224 0.2955 0.2396 

     0.3 0.2131 0.2146 0.2071 0.2716 0.2212 

     0.7 0.2040 0.2048 0.2003 0.2671 0.2144 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.1009 0.1000 0.1000 0.1726 0.1057 

    -0.3 0.0998 0.1000 0.0999 0.1658 0.1067 

     0.3 0.0997 0.0997 0.1008 0.1709 0.1054 

     0.7 0.1008 0.1003 0.1034 0.1638 0.1067 

   0.3 -0.7 0.2967 0.2979 0.3000 0.3967 0.3341 

    -0.3 0.2916 0.2966 0.2972 0.3796 0.3172 

     0.3 0.2923 0.2902 0.2924 0.3950 0.3276 

     0.7 0.2871 0.2850 0.2928 0.3888 0.3168 

  0.7*0.7 0.1 -0.7 0.0937 0.0985 0.1028 0.1328 0.1042 

    -0.3 0.0840 0.0871 0.0867 0.1207 0.0936 
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Table 3 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

     0.3 0.0782 0.0802 0.0806 0.1171 0.0841 

     0.7 0.0744 0.0753 0.0762 0.1048 0.0753 

   0.3 -0.7 0.2109 0.2113 0.2219 0.2717 0.2285 

    -0.3 0.2038 0.2082 0.2060 0.2692 0.2205 

     0.3 0.2071 0.2112 0.2101 0.2845 0.2315 

     0.7 0.1996 0.2019 0.2034 0.2691 0.2168 

Y3 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.1025 0.1000 0.1001 0.1726 0.1052 

    -0.3 0.1015 0.0998 0.1005 0.1669 0.1067 

     0.3 0.1009 0.0998 0.0999 0.1729 0.1061 

     0.7 0.1003 0.0990 0.1015 0.1675 0.1076 

   0.3 -0.7 0.2923 0.2957 0.2975 0.3920 0.3231 

    -0.3 0.2969 0.2966 0.2962 0.3908 0.3237 

     0.3 0.2954 0.2954 0.2971 0.3943 0.3291 

     0.7 0.2925 0.2943 0.2983 0.3950 0.3333 

  0.7*0.7 0.1 -0.7 0.0893 0.0939 0.0964 0.1322 0.1012 

    -0.3 0.0855 0.0900 0.0889 0.1279 0.0912 

     0.3 0.0844 0.0846 0.0854 0.1199 0.0918 

     0.7 0.0725 0.0738 0.0744 0.1063 0.0808 

   0.3 -0.7 0.2111 0.2142 0.2163 0.2847 0.2291 

    -0.3 0.2149 0.2167 0.2123 0.2846 0.2255 

     0.3 0.2018 0.2042 0.1997 0.2748 0.2189 

     0.7 0.2019 0.2054 0.2064 0.2698 0.2188 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.1014 0.1000 0.1000 0.1661 0.1048 

    -0.3 0.1011 0.1000 0.1003 0.1686 0.1057 

     0.3 0.1009 0.0999 0.1015 0.1738 0.1060 

     0.7 0.1007 0.0996 0.1027 0.1715 0.1057 

   0.3 -0.7 0.2930 0.2970 0.2964 0.4039 0.3284 

    -0.3 0.2907 0.2897 0.2921 0.3914 0.3195 

     0.3 0.2884 0.2892 0.2911 0.3890 0.3212 

     0.7 0.2894 0.2882 0.2928 0.3905 0.3219 
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Table 3 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

  0.7*0.7 0.1 -0.7 0.0847 0.0940 0.0954 0.1227 0.0930 

    -0.3 0.0831 0.0849 0.0867 0.1257 0.0875 

     0.3 0.0800 0.0822 0.0831 0.1178 0.0880 

     0.7 0.0748 0.0764 0.0807 0.1148 0.0847 

   0.3 -0.7 0.1952 0.1969 0.2136 0.2673 0.2229 

    -0.3 0.1935 0.1942 0.1978 0.2671 0.2129 

     0.3 0.1962 0.1982 0.1982 0.2660 0.2167 

     0.7 0.2017 0.2035 0.2107 0.2715 0.2288 

Y4 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.1024 0.1000 0.1000 0.1695 0.1048 

    -0.3 0.1014 0.1000 0.0999 0.1769 0.1053 

     0.3 0.1010 0.1000 0.1014 0.1643 0.1064 

     0.7 0.1003 0.0996 0.0996 0.1615 0.1022 

   0.3 -0.7 0.2995 0.2987 0.3028 0.4006 0.3345 

    -0.3 0.2972 0.2986 0.3005 0.4043 0.3275 

     0.3 0.2904 0.2923 0.2944 0.4055 0.3254 

     0.7 0.2971 0.2941 0.3002 0.3937 0.3282 

  0.7*0.7 0.1 -0.7 0.1009 0.0999 0.0997 0.1500 0.1078 

    -0.3 0.0905 0.0950 0.0944 0.1393 0.0974 

     0.3 0.0797 0.0809 0.0798 0.1238 0.0816 

     0.7 0.0786 0.0794 0.0757 0.1110 0.0783 

   0.3 -0.7 0.2611 0.2618 0.2703 0.3351 0.2815 

    -0.3 0.2491 0.2500 0.2487 0.3236 0.2625 

     0.3 0.2362 0.2369 0.2288 0.3020 0.2455 

     0.7 0.2309 0.2330 0.2268 0.3037 0.2458 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.1015 0.1000 0.1001 0.1700 0.1066 

    -0.3 0.1010 0.1001 0.1003 0.1657 0.1040 

     0.3 0.0996 0.0996 0.1001 0.1613 0.1048 

     0.7 0.0994 0.0998 0.1008 0.1643 0.1054 

   0.3 -0.7 0.2994 0.2998 0.3026 0.3970 0.3366 

    -0.3 0.2942 0.2937 0.2955 0.3974 0.3270 
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Table 3 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

     0.3 0.2916 0.2907 0.2927 0.3873 0.3226 

     0.7 0.2878 0.2893 0.2963 0.3863 0.3224 

  0.7*0.7 0.1 -0.7 0.0884 0.0968 0.0950 0.1307 0.0960 

    -0.3 0.0802 0.0846 0.0838 0.1172 0.0828 

     0.3 0.0779 0.0804 0.0798 0.1195 0.0829 

     0.7 0.0738 0.0762 0.0749 0.1072 0.0772 

   0.3 -0.7 0.2379 0.2391 0.2464 0.3153 0.2616 

    -0.3 0.2263 0.2303 0.2341 0.3134 0.2455 

     0.3 0.2246 0.2275 0.2295 0.3039 0.2440 

     0.7 0.2228 0.2230 0.2282 0.3081 0.2396 

Y5 0.0 – 0.3 0.3*0.3 0.1 -0.7 0.0631 0.0925 0.0745 0.0125 0.0111 

    -0.3 0.0664 0.0742 0.0643 0.0135 0.0101 

     0.3 0.0659 0.0664 0.0571 0.0120 0.0101 

     0.7 0.0733 0.0740 0.0572 0.0124 0.0119 

   0.3 -0.7 0.1620 0.1689 0.1289 0.0070 0.0069 

    -0.3 0.1534 0.1578 0.1094 0.0149 0.0102 

     0.3 0.1338 0.1348 0.1053 0.0145 0.0108 

     0.7 0.1203 0.1215 0.1003 0.0118 0.0110 

  0.7*0.7 0.1 -0.7 0.0631 0.0925 0.0745 0.0125 0.0111 

    -0.3 0.0749 0.0807 0.0733 0.0130 0.0113 

     0.3 0.0681 0.0698 0.0589 0.0155 0.0110 

     0.7 0.0708 0.0725 0.0569 0.0154 0.0114 

   0.3 -0.7 0.1591 0.1627 0.1330 0.0127 0.0079 

    -0.3 0.1553 0.1592 0.1142 0.0137 0.0085 

     0.3 0.1338 0.1348 0.1053 0.0145 0.0108 

     0.7 0.1203 0.1215 0.1003 0.0118 0.0110 

 0.3 – 0.7  0.3*0.3 0.1 -0.7 0.0520 0.0973 0.0629 0.0106 0.0126 

    -0.3 0.0496 0.0666 0.0496 0.0137 0.0110 

     0.3 0.0551 0.0583 0.0535 0.0133 0.0129 

     0.7 0.0540 0.0532 0.0452 0.0159 0.0121 



 

107 
 

Table 3 (cont.) 

Model Multicollinearity Variance Base Rate Skewness 
Method 

LR LDA QDA CART RF 

   0.3 -0.7 0.0749 0.0799 0.0633 0.0110 0.0098 

    -0.3 0.1135 0.1170 0.0868 0.0142 0.0106 

     0.3 0.1067 0.1089 0.0865 0.0124 0.0108 

     0.7 0.1295 0.1315 0.1109 0.0176 0.0121 

  0.7*0.7 0.1 -0.7 0.0321 0.0953 0.0296 0.0044 0.0043 

    -0.3 0.0386 0.0612 0.0373 0.0076 0.0043 

     0.3 0.0429 0.0464 0.0407 0.0094 0.0065 

     0.7 0.0433 0.0449 0.0393 0.0115 0.0111 

   0.3 -0.7 0.1138 0.1220 0.1013 0.0106 0.0092 

    -0.3 0.1135 0.1170 0.0868 0.0142 0.0106 

     0.3 0.1354 0.1348 0.1045 0.0166 0.0113 

     0.7 0.1272 0.1303 0.1036 0.0201 0.0152 
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Table 4 

Mean and Standard Deviation of the Two Classification Accuracy Metrics by Model and Method (Study 1) 

 
Method 

LR LDA QDA CART RF 

  Resubstitution  

Y1 0.170 (0.084) 0.174 (0.085) 0.175 (0.085) 0.066 (0.027) 0.000 (0.000) 

Y2 0.169 (0.086) 0.173 (0.087) 0.170 (0.086) 0.064 (0.027) 0.000 (0.000) 

Y3 0.164 (0.084) 0.169 (0.085) 0.168 (0.084) 0.063 (0.027) 0.000 (0.000) 

Y4 0.173 (0.089) 0.178 (0.090) 0.176 (0.090) 0.066 (0.029) 0.000 (0.000) 

Y5 0.088 (0.040) 0.100 (0.036) 0.074 (0.029) 0.002 (0.001) 0.000 (0.000) 

  Cross-Validation 

Y1 0.175 (0.086) 0.175 (0.086) 0.179 (0.087) 0.247 (0.104) 0.193 (0.097) 

Y2 0.173 (0.087) 0.175 (0.088) 0.175 (0.088) 0.239 (0.107) 0.187 (0.097) 

Y3 0.169 (0.086) 0.171 (0.086) 0.172 (0.086) 0.239 (0.106) 0.186 (0.097) 

Y4 0.179 (0.091) 0.180 (0.091) 0.181 (0.092) 0.250 (0.112) 0.194 (0.103) 

Y5 0.093 (0.040) 0.102 (0.036) 0.079 (0.029) 0.013 (0.003) 0.010 (0.002) 
Note. SD is listed in parentheses within each cell.  
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Table 5 

Mean and Standard Deviation of the Two Classification Accuracy Metrics for the Six Parameters (Study 1) 

Parameter   Level Resubstituition Error Cross-Validation Error 

Multicollinearity 
  0.0 – 0.3 0.106 (0.095) 0.168 (0.104) 

  0.3 – 0.7 0.101 (0.093) 0.163 (0.104) 

Proportion of Variance 

Explained 

  0.3*0.3 0.116 (0.106) 0.187 (0.118) 

  0.7*0.7 0.091 (0.078) 0.144 (0.082) 

Base Rate 
  0.1 0.058 (0.039) 0.093 (0.036) 

  0.3 0.149 (0.109) 0.238 (0.098) 

Skewness 

 -0.7 0.107 (0.096) 0.170 (0.105) 

 -0.3 0.104 (0.094) 0.166 (0.103) 

  0.3 0.102 (0.093) 0.163 (0.103) 

  0.7 0.100 (0.094) 0.161 (0.104) 

Data Complexity 

  Y1 0.117 (0.097) 0.194 (0.095) 

  Y2 0.115 (0.098) 0.190 (0.096) 

  Y3 0.113 (0.096) 0.187 (0.095) 

  Y4 0.119 (0.101) 0.197 (0.101) 

  Y5 0.053 (0.051) 0.059 (0.048) 

Classification Method 

  LR 0.153 (0.084) 0.158 (0.086) 

  LDA 0.159 (0.084) 0.160 (0.084) 

  QDA 0.153 (0.087) 0.157 (0.088) 

  CART 0.052 (0.035) 0.198 (0.133) 

  RF 0.000 (0.000) 0.154 (0.113) 
Note. SD is listed in parentheses within each cell.  
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Table 6 

One-way and Two-way ANOVA Results Summary for Predicting Binary Outcomes (Study 1) 

Parameter ANOVA Resubstituition Error Cross-Validation Error 

Multicollinearity 
Main F (1,798) = 0.48, p = .487 F (1,798) = 0.57, p = .450 

Interaction F (4,790) = 0.15, p = .965 F (4,790) = 0.03, p = .998 

Proportion of Variance 

Explained 

Main  F (1,798) = 14.43, p < .001 F (1,798) = 34.64, p < .001 

Interaction  F (4,790) = 2.57, p = .037 F (4,790) = 0.41, p = .805 

Base Rate 
Main  F (1,798) = 250.04, p < .001 F (1,798) = 770.06, p < .001 

Interaction   F (4,790) = 114.31, p < .001 F (4,790) = 0.25, p = .908 

Skewness 
Main  F (3,796) = 0.21, p = .887 F (3,796) = 0.29, p = .831 

Interaction  F (12,780) = 0.06, p = 1.000 F (12,780) = 0.01, p = 1.000 

Data Complexity 
Main  F (4,795) = 15.59, p < .001 F (4,795) = 71.17, p < .001 

Interaction  F (16,775) = 2.37, p = .002 F (16,775) = 4.25, p < .001 

Classification Method Main  F (4,795) = 185.87, p < .001 F (4,795) = 5.07, p < .001 
Note. Bold cells represent significant main or interaction effects.  
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Table 7 

Table 7 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

Y1 0.0 – 0.3  0.30*0.30 -0.7 0.9028 0.2786 0.4093 

   -0.3 0.8958 0.2817 0.4098 

    0.3 0.9116 0.2897 0.4140 

    0.7 0.8939 0.2773 0.4070 

  0.70*0.70 -0.7 0.5314 0.1726 0.2508 

   -0.3 0.5055 0.1612 0.2391 

    0.3 0.4960 0.1663 0.2361 

    0.7 0.4695 0.1547 0.2237 

  0.95*0.95 -0.7 0.1026 0.0539 0.0628 

   -0.3 0.1192 0.0602 0.0726 

    0.3 0.1052 0.0568 0.0662 

    0.7 0.1061 0.0522 0.0650 

 0.3 – 0.7  0.30*0.30 -0.7 0.8900 0.2790 0.4075 

   -0.3 0.9274 0.2868 0.4199 

    0.3 0.9280 0.2786 0.4194 

    0.7 0.9086 0.2760 0.4130 

  0.70*0.70 -0.7 0.5355 0.1688 0.2491 

   -0.3 0.4896 0.1528 0.2275 

    0.3 0.4952 0.1579 0.2313 

    0.7 0.5369 0.1707 0.2478 

  0.95*0.95 -0.7 0.0900 0.0394 0.0478 

   -0.3 0.0967 0.0400 0.0510 

    0.3 0.1091 0.0432 0.0568 

    0.7 0.0949 0.0387 0.0500 

Y2 0.0 – 0.3  0.30*0.30 -0.7 0.9248 0.2758 0.4125 

   -0.3 0.9373 0.2806 0.4161 

    0.3 0.9236 0.2858 0.4159 

    0.7 0.9225 0.2820 0.4147 

Resubstitution Mean Squared Error for Predicting Continuous Outcomes (Study 2) 
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Table 7 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

  0.70*0.70 -0.7 0.6501 0.1693 0.2463 

   -0.3 0.6324 0.1674 0.2382 

    0.3 0.6154 0.1633 0.2424 

    0.7 0.5568 0.1455 0.2218 

  0.95*0.95 -0.7 0.3497 0.0571 0.0714 

   -0.3 0.3764 0.0595 0.0812 

    0.3 0.3068 0.0499 0.0681 

    0.7 0.2489 0.0472 0.0636 

 0.3 – 0.7  0.30*0.30 -0.7 0.9240 0.2857 0.4127 

   -0.3 0.9332 0.2748 0.4205 

    0.3 0.9245 0.2918 0.4149 

    0.7 0.9137 0.2856 0.4131 

  0.70*0.70 -0.7 0.6004 0.1622 0.2387 

   -0.3 0.5907 0.1590 0.2373 

    0.3 0.5805 0.1629 0.2406 

    0.7 0.5839 0.1732 0.2487 

  0.95*0.95 -0.7 0.2606 0.0435 0.0561 

   -0.3 0.2688 0.0460 0.0606 

    0.3 0.2426 0.0457 0.0634 

    0.7 0.1919 0.0378 0.0517 

Y3 0.0 – 0.3  0.30*0.30 -0.7 0.9179 0.2811 0.4110 

   -0.3 0.9168 0.2810 0.4063 

    0.3 0.9129 0.2815 0.4074 

    0.7 0.9266 0.2781 0.4133 

  0.70*0.70 -0.7 0.5829 0.1719 0.2405 

   -0.3 0.5850 0.1612 0.2452 

    0.3 0.5757 0.1642 0.2410 

    0.7 0.5480 0.1508 0.2263 

  0.95*0.95 -0.7 0.2534 0.0530 0.0666 

   -0.3 0.2514 0.0573 0.0744 
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Table 7 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

    0.3 0.2477 0.0581 0.0731 

    0.7 0.2409 0.0569 0.0717 

 0.3 – 0.7  0.30*0.30 -0.7 0.9197 0.2797 0.4157 

   -0.3 0.9230 0.2908 0.4119 

    0.3 0.9278 0.2890 0.4185 

    0.7 0.9054 0.2862 0.4136 

  0.70*0.70 -0.7 0.5848 0.1645 0.2449 

   -0.3 0.5661 0.1606 0.2378 

    0.3 0.5841 0.1690 0.2525 

    0.7 0.5929 0.1743 0.2577 

  0.95*0.95 -0.7 0.2017 0.0411 0.0539 

   -0.3 0.2136 0.0444 0.0590 

    0.3 0.2018 0.0486 0.0640 

    0.7 0.1685 0.0392 0.0491 

Y4 0.0 – 0.3  0.30*0.30 -0.7 0.9256 0.2795 0.4170 

   -0.3 0.9237 0.2725 0.4081 

    0.3 0.9211 0.2688 0.4113 

    0.7 0.9235 0.2841 0.4147 

  0.70*0.70 -0.7 0.6522 0.1692 0.2475 

   -0.3 0.6524 0.1635 0.2598 

    0.3 0.6251 0.1644 0.2529 

    0.7 0.6228 0.1690 0.2442 

  0.95*0.95 -0.7 0.3984 0.0561 0.0842 

   -0.3 0.3796 0.0522 0.1006 

    0.3 0.3714 0.0497 0.1016 

    0.7 0.3515 0.0562 0.0831 

 0.3 – 0.7  0.30*0.30 -0.7 0.9321 0.2867 0.4129 

   -0.3 0.9296 0.2875 0.4140 

    0.3 0.9332 0.2785 0.4181 

    0.7 0.9301 0.2730 0.4173 
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Table 7 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

  0.70*0.70 -0.7 0.6239 0.1677 0.2475 

   -0.3 0.6326 0.1635 0.2507 

    0.3 0.6273 0.1663 0.2519 

    0.7 0.6623 0.1884 0.2716 

  0.95*0.95 -0.7 0.3291 0.0478 0.0712 

   -0.3 0.3115 0.0459 0.0844 

    0.3 0.3188 0.0514 0.0800 

    0.7 0.2953 0.0488 0.0766 

Y6 0.0 – 0.3  0.30*0.30 -0.7 0.9224 0.2734 0.4031 

   -0.3 0.9104 0.2635 0.3911 

    0.3 0.9113 0.2543 0.3917 

    0.7 0.8705 0.2581 0.3813 

  0.70*0.70 -0.7 0.6419 0.1208 0.1838 

   -0.3 0.6654 0.1300 0.1951 

    0.3 0.6094 0.1128 0.1710 

    0.7 0.5456 0.0930 0.1434 

  0.95*0.95 -0.7 0.4653 0.0194 0.0328 

   -0.3 0.4554 0.0212 0.0342 

    0.3 0.4345 0.0177 0.0306 

    0.7 0.3838 0.0145 0.0253 

 0.3 – 0.7  0.30*0.30 -0.7 0.8917 0.2601 0.3854 

   -0.3 0.8702 0.2534 0.3809 

    0.3 0.8535 0.2543 0.3656 

    0.7 0.8233 0.2419 0.3534 

  0.70*0.70 -0.7 0.5219 0.0945 0.1470 

   -0.3 0.5190 0.0933 0.1419 

    0.3 0.4866 0.0851 0.1319 

    0.7 0.4402 0.0718 0.1134 

  0.95*0.95 -0.7 0.3335 0.0152 0.0245 

   -0.3 0.3589 0.0162 0.0266 
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Table 7 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

    0.3 0.3242 0.0131 0.0226 

    0.7 0.3073 0.0120 0.0201 
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Table 8 

Table 8 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

Y1 0.0 – 0.3  0.30*0.30 -0.7 0.9120 1.5701 0.9747 

   -0.3 0.9046 1.5780 0.9730 

    0.3 0.9213 1.5779 0.9831 

    0.7 0.9038 1.5654 0.9693 

  0.70*0.70 -0.7 0.5364 0.9734 0.5921 

   -0.3 0.5104 0.9037 0.5619 

    0.3 0.5010 0.8924 0.5551 

    0.7 0.4746 0.8543 0.5252 

  0.95*0.95 -0.7 0.1035 0.2728 0.1511 

   -0.3 0.1206 0.3066 0.1735 

    0.3 0.1063 0.2837 0.1598 

    0.7 0.1073 0.2779 0.1555 

 0.3 – 0.7  0.30*0.30 -0.7 0.8989 1.5802 0.9644 

   -0.3 0.9365 1.6153 0.9987 

    0.3 0.9369 1.5730 0.9943 

    0.7 0.9191 1.5698 0.9824 

  0.70*0.70 -0.7 0.5410 0.9346 0.5853 

   -0.3 0.4953 0.8678 0.5349 

    0.3 0.5003 0.8805 0.5422 

    0.7 0.5425 0.9382 0.5866 

  0.95*0.95 -0.7 0.0910 0.2021 0.1131 

   -0.3 0.0976 0.2043 0.1203 

    0.3 0.1103 0.2378 0.1336 

    0.7 0.0959 0.2046 0.1185 

Y2 0.0 – 0.3  0.30*0.30 -0.7 0.9354 1.5641 0.9772 

   -0.3 0.9485 1.5829 0.9883 

    0.3 0.9335 1.6103 0.9929 

    0.7 0.9316 1.5728 0.9876 

10-fold Cross-Validation Mean Squared Error for Predicting Continuous Outcomes (Study 2) 
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Table 8 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

  0.70*0.70 -0.7 0.6577 0.9413 0.5791 

   -0.3 0.6402 0.9207 0.5629 

    0.3 0.6224 0.9284 0.5717 

    0.7 0.5634 0.8434 0.5202 

  0.95*0.95 -0.7 0.3546 0.3067 0.1718 

   -0.3 0.3820 0.3257 0.1936 

    0.3 0.3124 0.2600 0.1613 

    0.7 0.2525 0.2473 0.1496 

 0.3 – 0.7  0.30*0.30 -0.7 0.9336 1.5368 0.9788 

   -0.3 0.9437 1.6153 0.9986 

    0.3 0.9346 1.6066 0.9843 

    0.7 0.9234 1.5548 0.9749 

  0.70*0.70 -0.7 0.6077 0.9123 0.5629 

   -0.3 0.5980 0.8862 0.5579 

    0.3 0.5873 0.9265 0.5652 

    0.7 0.5906 0.9344 0.5831 

  0.95*0.95 -0.7 0.2648 0.2227 0.1329 

   -0.3 0.2734 0.2348 0.1430 

    0.3 0.2468 0.2386 0.1474 

    0.7 0.1944 0.2019 0.1205 

Y3 0.0 – 0.3  0.30*0.30 -0.7 0.9279 1.5775 0.9797 

   -0.3 0.9268 1.5898 0.9675 

    0.3 0.9237 1.6041 0.9659 

    0.7 0.9376 1.5634 0.9756 

  0.70*0.70 -0.7 0.5901 0.9261 0.5656 

   -0.3 0.5928 0.9256 0.5748 

    0.3 0.5818 0.8976 0.5650 

    0.7 0.5547 0.8656 0.5308 

  0.95*0.95 -0.7 0.2577 0.2766 0.1578 

   -0.3 0.2548 0.3078 0.1766 
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Table 8 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

    0.3 0.2519 0.2998 0.1732 

    0.7 0.2448 0.2885 0.1690 

 0.3 – 0.7  0.30*0.30 -0.7 0.9313 1.6062 0.9875 

   -0.3 0.9330 1.5686 0.9790 

    0.3 0.9374 1.5986 0.9940 

    0.7 0.9151 1.5747 0.9773 

  0.70*0.70 -0.7 0.5911 0.9300 0.5767 

   -0.3 0.5727 0.9190 0.5590 

    0.3 0.5906 0.9591 0.5912 

    0.7 0.5990 0.9759 0.6053 

  0.95*0.95 -0.7 0.2044 0.2187 0.1261 

   -0.3 0.2168 0.2396 0.1375 

    0.3 0.2049 0.2527 0.1499 

    0.7 0.1709 0.1978 0.1153 

Y4 0.0 – 0.3  0.30*0.30 -0.7 0.9354 1.6128 0.9818 

   -0.3 0.9347 1.5671 0.9640 

    0.3 0.9304 1.5907 0.9824 

    0.7 0.9333 1.5837 0.9812 

  0.70*0.70 -0.7 0.6608 0.9082 0.5827 

   -0.3 0.6611 0.9272 0.6027 

    0.3 0.6334 0.8962 0.5854 

    0.7 0.6304 0.9012 0.5702 

  0.95*0.95 -0.7 0.4064 0.2540 0.1865 

   -0.3 0.3866 0.2896 0.2199 

    0.3 0.3788 0.2959 0.2137 

    0.7 0.3577 0.2613 0.1850 

 0.3 – 0.7  0.30*0.30 -0.7 0.9420 1.5850 0.9812 

   -0.3 0.9405 1.6042 0.9813 

    0.3 0.9440 1.6310 0.9926 

    0.7 0.9411 1.5712 0.9821 
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Table 8 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

  0.70*0.70 -0.7 0.6310 0.9188 0.5793 

   -0.3 0.6409 0.9251 0.5880 

    0.3 0.6355 0.9143 0.5898 

    0.7 0.6711 1.0388 0.6378 

  0.95*0.95 -0.7 0.3347 0.2363 0.1609 

   -0.3 0.3176 0.2542 0.1783 

    0.3 0.3245 0.2591 0.1800 

    0.7 0.3006 0.2454 0.1676 

Y6 0.0 – 0.3  0.30*0.30 -0.7 0.9322 1.5516 0.9557 

   -0.3 0.9208 1.5060 0.9233 

    0.3 0.9214 1.4640 0.9217 

    0.7 0.8798 1.4109 0.9027 

  0.70*0.70 -0.7 0.6488 0.6729 0.4299 

   -0.3 0.6720 0.7106 0.4578 

    0.3 0.6152 0.6311 0.4015 

    0.7 0.5519 0.5265 0.3353 

  0.95*0.95 -0.7 0.4706 0.1146 0.0796 

   -0.3 0.4605 0.1207 0.0827 

    0.3 0.4389 0.1054 0.0737 

    0.7 0.3877 0.0854 0.0611 

 0.3 – 0.7  0.30*0.30 -0.7 0.9010 1.4624 0.9107 

   -0.3 0.8788 1.4124 0.9031 

    0.3 0.8618 1.3723 0.8609 

    0.7 0.8315 1.3376 0.8333 

  0.70*0.70 -0.7 0.5278 0.5403 0.3456 

   -0.3 0.5248 0.5225 0.3332 

    0.3 0.4915 0.4896 0.3096 

    0.7 0.4454 0.4221 0.2652 

  0.95*0.95 -0.7 0.3372 0.0881 0.0597 

   -0.3 0.3628 0.0938 0.0638 



 

120 
 

Table 8 (cont.) 

Model Multicollinearity Variance Skewness 
Method 

MLR CART RF 

    0.3 0.3273 0.0793 0.0550 

    0.7 0.3103 0.0683 0.0491 
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Table 9 

Mean and Standard Deviation of the Two Prediction Accuracy Metrics by Model and Method (Study 2) 

 
Method 

MLR CART RF 

  Resubstitution    

Y1 0.506 (0.336) 0.164 (0.097) 0.237 (0.148) 

Y2 0.602 (0.271) 0.165 (0.098) 0.240 (0.146) 

Y3 0.573 (0.291) 0.166 (0.098) 0.240 (0.145) 

Y4 0.636 (0.244) 0.166 (0.095) 0.251 (0.137) 

Y6 0.606 (0.219) 0.125 (0.103) 0.187 (0.151) 

  Cross-Validation 

Y1 0.511 (0.339) 0.911 (0.556) 0.560 (0.351) 

Y2 0.610 (0.274) 0.916 (0.554) 0.567 (0.348) 

Y3 0.580 (0.294) 0.923 (0.553) 0.567 (0.346) 

Y4 0.645 (0.246) 0.928 (0.556) 0.586 (0.332) 

Y6 0.613 (0.222) 0.700 (0.573) 0.442 (0.356) 
Note. SD is listed in parentheses within each cell.  
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Table 10 

Mean and Standard Deviation of the Two Prediction Accuracy Metrics for the Five Parameters (Study 2) 

Parameter   Level Resubstitution MSE Cross-Validation MSE 

Multicollinearity 
 0.0 – 0.3 0.331 (0.265) 0.682 (0.427) 

 0.3 – 0.7 0.317 (0.265) 0.659 (0.443) 

Proportion of Variance 

Explained 

 0.30*0.30 0.532 (0.276) 1.148 (0.294) 

 0.70*0.70 0.318 (0.191) 0.653 (0.176) 

 0.95*0.95 0.123 (0.120) 0.211 (0.097) 

Skewness 

 -0.7 0.329 (0.268) 0.678 (0.438) 

 -0.3 0.328 (0.267) 0.679 (0.433) 

  0.3 0.324 (0.265) 0.672 (0.436) 

  0.7 0.316 (0.263) 0.654 (0.438) 

Data Complexity 

  Y1 0.302 (0.262) 0.661 (0.457) 

  Y2 0.336 (0.266) 0.697 (0.433) 

  Y3 0.326 (0.263) 0.690 (0.440) 

  Y4 0.351 (0.266) 0.720 (0.422) 

  Y6 0.306 (0.270) 0.585 (0.418) 

Regression Method 

  GLM 0.585 (0.274) 0.592 (0.277) 

  CART 0.157 (0.098) 0.876 (0.556) 

  RF 0.231 (0.145) 0.545 (0.345) 
Note. SD is listed in parentheses within each cell.  
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Table 11 

One-way and Two-way ANOVA Results Summary for Predicting Continuous Outcome (Study 2) 

Parameter ANOVA Overall Misclassification Error  Cross-Validation Error 

Multicollinearity 
Main F (1,358) = 0.24, p = .626  F (1,358) = 0.26, p = .608 

Interaction F (2,354) = 0.19, p = .830  F (2,354) = 0.01, p = .988 

Proportion of Variance 

Explained 

Main  F (2,357) = 118.70, p < .001  F (2,357) = 622.56, p < .001 

Interaction  F (4,351) = 213.36, p < .001  F (4,351) = 182.84, p < .001 

Skewness 
Main  F (3,356) = 0.05, p = 0.986  F (3,356) = 0.06, p = .980 

Interaction  F (6,348) = 0.04, p = 1.000  F (6,348) = 0.00, p = 1.000 

Data Complexity 
Main  F (4,355) = 0.43, p = .788  F (4,355) = 1.05, p = .383 

Interaction  F (8,345) = 0.72, p = .671  F (8,345) = 0.52, p = .838 

Regression Method Main  F (2,357) = 177.85, p < .001  F (2,357) = 22.88, p < .001 

Note. Bold cells represent significant main or interaction effects.  
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Table 12 

Mean and Standard Deviation for Stayed, Voluntary, and Involuntary Turnover Employees (Study 3) 

 Stayed  (N = 9105) Voluntary Turnover (N = 1997) Involuntary Turnover (N = 416) 

DE 4.48 (0.52) 4.43 (0.57) 4.49 (0.55) 

ITS 4.40 (0.62) 4.09 (0.82) 4.26 (0.72) 

JF 4.10 (0.63) 3.91 (0.77) 3.95 (0.76) 

SL 4.17 (0.62) 4.12 (0.67) 4.15 (0.66) 

OC 4.37 (0.55) 4.26 (0.67) 4.32 (0.65) 

ONB 4.29 (0.53) 4.23 (0.57) 4.25 (0.61) 

FR 3.97 (0.64) 3.84 (0.73) 3.88 (0.67)  

SUP 4.39 (0.58) 4.31 (0.66) 4.32 (0.70) 

COW 4.44 (0.53) 4.38 (0.58) 4.36 (0.63) 
Note. DE = Discretionary Effort, ITS = Intent to Stay, JF = Job Fit, SL = Senior Leadership, OC = Organizational Commitment, ONB = Onboarding, FR = Financial Rewards, 

SUP = Supervisor, COW = Coworker. 
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Table 13 

Mean, Standard Deviation, and Intercorrelations among Predictors (All Employees Included) (Study 3) 

 M (SD) 1 2 3 4 5 6 7 8 9 

1. DE 4.47 (0.53) 0.64 0.46** 0.52** 0.47** 0.56** 0.45** 0.34** 0.43** 0.38** 

2. ITS 4.34 (0.68) 0.46** 0.83 0.54** 0.39** 0.59** 0.38** 0.38** 0.39** 0.34** 

3. JF 4.06 (0.67) 0.52** 0.54** 0.84 0.58** 0.65** 0.53** 0.51** 0.60** 0.53** 

4. SL 4.16 (0.63) 0.47** 0.39** 0.58** 0.91 0.63** 0.54** 0.52** 0.55** 0.47** 

5. OC 4.35 (0.57) 0.56** 0.59** 0.65** 0.63** 0.81 0.57** 0.57** 0.56** 0.48** 

6. ONB 4.28 (0.54) 0.45** 0.38** 0.53** 0.54** 0.57** 0.84 0.46** 0.63** 0.47** 

7. FR 3.94 (0.66) 0.34** 0.38** 0.51** 0.52** 0.57** 0.46** 0.86 0.44** 0.38** 

8. SUP 4.37 (0.60) 0.43** 0.39** 0.60** 0.55** 0.56** 0.63** 0.44** 0.93 0.51** 

9. COW 4.42 (0.55) 0.38** 0.34** 0.53** 0.47** 0.48** 0.47** 0.38** 0.51** 0.90 
Note. N = 11, 518.  DE = Discretionary Effort, ITS = Intent to Stay, JF = Job Fit, SL = Senior Leadership, OC = Organizational Commitment, ONB = Onboarding, FR = 

Financial Rewards, SUP = Supervisor, COW = Coworker. Cronbach’s alpha reliabilities of the predictors are listed in the diagonal. ** p < .01. 
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Table 14 

Relative Importance of Predictors for Predicting Voluntary Turnover (Study 3) 

 RF  RW  β β2 p 

ONB 10.7 E-06 (1)    6.83 E-04 (8)     0.0049 (6) 0.0000 (9) 0.9384 

FR 10.3 E-06 (2)  25.35 E-04 (3)       -0.1450 (7)* * 0.0210 (6) 0.0022 

SUP 9.30 E-06 (3)    8.38 E-04 (7)    0.0379 (5) 0.0014 (8) 0.5221 

ITS 8.49 E-06 (4)  253.94 E-04 (1)     -0.6859 (9) ** 0.4705 (1) 0.0000 

JF 8.02 E-06 (5)   58.91 E-04 (2)       -0.2909 (8) ** 0.0846 (2) 0.0000 

COW 7.90 E-06 (6)    6.22 E-04 (9)    0.0422 (4) 0.0018 (7) 0.4335 

SL 7.51 E-06 (7)  13.51 E-04 (5)       0.2276 (1) ** 0.0518 (3) 0.0001 

OC 6.77 E-06 (8)  22.28 E-04 (4)       0.2039 (3) ** 0.0416 (5) 0.0042 

DE 3.45 E-06 (9)  12.60 E-04 (6)       0.2107 (2) ** 0.0444 (4) 0.0001 
Note. RF = Random Forests. RW = Relative Weights. β is logistic regression coefficient. p is significant value for linear regression coefficient. ** p < .01. The number in 

parentheses represents its relative ranking. ONB = Onboarding, FR = Financial Rewards, SUP = Supervisor, ITS = Intent to Stay, JF = Job Fit, COW = Coworker, SL = Senior 

Leadership, OC = Organizational Commitment, DE = Discretionary Effort. 
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Table 15 

Relative Importance of Predictors for Predicting Involuntary Turnover (Study 3) 

 RF  RW  β β2 p 

FR 8.92 E-06 (1)    5.06 E-04 (4)     -0.1885 (6) * 0.0355 (4) 0.0458 

ONB 8.29 E-06 (2)    1.20 E-04 (9)    -0.0421 (4) 0.0018 (9) 0.7347 

SUP 7.27 E-06 (3)    2.17 E-04 (8)   -0.0646 (5) 0.0042 (8) 0.5622 

JF 6.45 E-06 (4)  14.87 E-04 (1)       -0.2806 (8) ** 0.0787 (2) 0.0080 

ITS 6.40 E-06 (5)  13.69 E-04 (2)      -0.3265 (9) ** 0.1066 (1) 0.0003 

COW 6.33 E-06 (6)    4.47 E-04 (5)     -0.2723 (7) ** 0.0741 (3) 0.0065 

SL 5.73 E-06 (7)    2.69 E-04 (6)   0.1764 (1) 0.0311 (5) 0.1118 

OC 5.29 E-06 (8)    2.50 E-04 (7)   0.1577 (2) 0.0249 (6) 0.2537 

DE 3.16 E-06 (9)    5.21 E-04 (3)   0.0972 (3) 0.0094 (7) 0.3551 
Note. RF = Random Forests. RW = Relative Weights. β is logistic regression coefficient. p is significant value for linear regression coefficient. ** p < .01. The number in 

parentheses represents its relative ranking. FR = Financial Rewards, ONB = Onboarding, SUP = Supervisor, JF = Job Fit, ITS = Intent to Stay, COW = Coworker, SL = Senior 

Leadership, OC = Organizational Commitment, DE = Discretionary Effort.  
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Table 16 

Classification Error Rate for Predicting Voluntary Turnover (Study 3) 

  TREE RF LR LDA QDA 

Overall 

Misclassification 

Error 

2 Predictor 0.1709 0.1656 0.1789 0.1799 0.1811 

3 Predictors 0.1468 0.1087 0.1789 0.1799 0.1854 

4 Predictors 0.1274 0.0640 0.1789 0.1794 0.1858 

5 Predictors 0.1181 0.0301 0.1786 0.1787 0.1894 

6 Predictors 0.1093 0.0203 0.1787 0.1789 0.1898 

7 Predictors 0.1058 0.0168 0.1783 0.1792 0.1904 

8 Predictors 0.1010 0.0163 0.1782 0.1783 0.1937 

9 Predictors 0.0972 0.0161 0.1782 0.1792 0.1962 

Cross-Validation 

Error 

2 Predictor 0.1937 0.1967 0.1792 0.1799 0.1819 

3 Predictors 0.2245 0.2123 0.1792 0.1799 0.1855 

4 Predictors 0.2340 0.2020 0.1794 0.1798 0.1861 

5 Predictors 0.2458 0.2005 0.1792 0.1790 0.1901 

6 Predictors 0.2519 0.1959 0.1791 0.1792 0.1909 

7 Predictors 0.2608 0.1900 0.1791 0.1792 0.1921 

8 Predictors 0.2649 0.1912 0.1788 0.1789 0.1946 

9 Predictors 0.2624 0.1869 0.1789 0.1792 0.1974 

Sensitivity 

2 Predictor 0.0270 0.0315 0.0072 0.0000 0.0135 

3 Predictors 0.0921 0.0771 0.0075 0.0000 0.0300 

4 Predictors 0.1652 0.0886 0.0321 0.0230 0.1062 

5 Predictors 0.1868 0.0906 0.0295 0.0285 0.1167 

6 Predictors 0.1813 0.0706 0.0263 0.0290 0.1247 

7 Predictors 0.1883 0.0621 0.0263 0.0305 0.1267 

8 Predictors 0.1938 0.0421 0.0342 0.0325 0.1357 

9 Predictors 0.2048 0.0481 0.0342 0.0371 0.1402 

 

 

 

Specificity 

2 Predictor 0.9773 0.9725 0.9993 1.0000 0.9945 

3 Predictors 0.9254 0.9435 0.9992 1.0000 0.9866 

4 Predictors 0.8977 0.9535 0.9936 0.9951 0.9691 

5 Predictors 0.8786 0.9550 0.9944 0.9948 0.9619 

6 Predictors 0.8724 0.9650 0.9952 0.9944 0.9593 

7 Predictors 0.8601 0.9741 0.9953 0.9942 0.9573 

8 Predictors 0.8538 0.9769 0.9939 0.9941 0.9522 

9 Predictors 0.8545 0.9809 0.9937 0.9926 0.9478 
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Table 17 

Classification Error Rate for Predicting Involuntary Turnover (Study 3) 

  TREE RF LR LDA QDA 

Overall 

Misclassification 

Error 

2 Predictor 0.0425 0.0402 0.0438 0.0437 0.0439 

3 Predictors 0.0413 0.0298 0.0435 0.0437 0.0450 

4 Predictors 0.0383 0.0213 0.0438 0.0437 0.0465 

5 Predictors 0.0374 0.0116 0.0436 0.0437 0.0474 

6 Predictors 0.0368 0.0068 0.0436 0.0437 0.0495 

7 Predictors 0.0352 0.0065 0.0435 0.0437 0.0493 

8 Predictors 0.0332 0.0062 0.0437 0.0437 0.0500 

9 Predictors 0.0323 0.0062 0.0438 0.0437 0.0522 

Cross-Validation 

Error 

2 Predictor 0.0456 0.0460 0.0439 0.0437 0.0440 

3 Predictors 0.0487 0.0486 0.0439 0.0437 0.0458 

4 Predictors 0.0546 0.0471 0.0439 0.0437 0.0473 

5 Predictors 0.0582 0.0469 0.0437 0.0437 0.0482 

6 Predictors 0.0618 0.0456 0.0437 0.0437 0.0502 

7 Predictors 0.0623 0.0448 0.0444 0.0437 0.0510 

8 Predictors 0.0610 0.0444 0.0441 0.0437 0.0508 

9 Predictors 0.0634 0.0438 0.0439 0.0437 0.0540 

Sensitivity 

2 Predictor 0.0120 0.0120 0.0000 0.0000 0.0000 

3 Predictors 0.0096 0.0192 0.0000 0.0000 0.0024 

4 Predictors 0.0168 0.0000 0.0000 0.0000 0.0144 

5 Predictors 0.0168 0.0000 0.0000 0.0000 0.0240 

6 Predictors 0.0216 0.0000 0.0000 0.0000 0.0288 

7 Predictors 0.0192 0.0000 0.0023 0.0000 0.0240 

8 Predictors 0.0288 0.0024 0.0000 0.0000 0.0337 

9 Predictors 0.0264 0.0000 0.0000 0.0000 0.0264 

 

 

 

Specificity 

2 Predictor 0.9975 0.9970 0.9998 1.0000 0.9997 

3 Predictors 0.9943 0.9940 0.9998 1.0000 0.9977 

4 Predictors 0.9878 0.9965 0.9998 1.0000 0.9956 

5 Predictors 0.9841 0.9966 1.0000 1.0000 0.9942 

6 Predictors 0.9801 0.9980 1.0000 1.0000 0.9919 

7 Predictors 0.9797 0.9988 0.9991 1.0000 0.9912 

8 Predictors 0.9806 0.9991 0.9996 1.0000 0.9910 

9 Predictors 0.9781 0.9999 0.9998 1.0000 0.9880 
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Table 18 

Mean, Standard Deviation, and Intercorrelations between Predictors and Job Performance (Study4) 

 M (SD) 1 2 3 4 5 6 7 8 9 10 11 12 

1.   CLO 4.14 (1.04)   1.00  0.48**  0.42**   0.38**   0.48**   0.45**   0.47**   0.45**  -0.14**  -0.09**   0.03 0.07** 

2.   LD 5.07 (0.98)   0.48**  1.00  0.51**   0.49**   0.61**   0.57**   0.61**   0.55**  -0.09**  -0.10**   0.11 0.12** 

3.   PM 4.60 (0.81)   0.42**  0.51**  1.00   0.50**   0.58**   0.56**   0.50**   0.53**  -0.10**  -0.09**   0.09** 0.13** 

4.   DP 5.01 (1.01)   0.38**  0.49**  0.50**   1.00   0.60**   0.53**   0.51**   0.58**  -0.12**  -0.08*       0.11** 0.17** 

5.   DMR 3.02 (0.58)   0.48**  0.61**  0.58**   0.60**   1.00   0.66**   0.65**   0.68**  -0.10**  -0.07   0.19** 0.13** 

6.   FL 2.83 (0.65)   0.45**  0.57**  0.56**   0.53**   0.66**   1.00   0.56**   0.66**  -0.07*   0.00   0.16** 0.11** 

7.   IC 3.16 (0.53)   0.47**  0.61**  0.50**   0.51**   0.65**   0.56**   1.00   0.55**  -0.08**  -0.05   0.12** 0.10** 

8.   SM 4.36 (0.90)   0.45**  0.55**  0.53**   0.58**   0.68**   0.66**   0.55**   1.00  -0.10**  -0.05   0.15** 0.16** 

9.   FPPS 26.62 (5.76)  -0.14** -0.09** -0.10**  -0.12**  -0.10**  -0.07*  -0.08**  -0.10**   1.00    ---    --- 0.18** 

10. FPPP 30.14 (5.58)  -0.09** -0.10** -0.09**  -0.08*  -0.07   0.00  -0.05  -0.05    ---   1.00    --- 0.14** 

11. FPP 28.15 (5.95)   0.03          0.11**  0.09**   0.11**   0.19**   0.16**   0.12**   0.15**    ---    ---   1.00 0.21** 

12. PERF 3.53 (0.52)   0.07**  0.12**  0.13**   0.17**   0.13**   0.11**   0.10**   0.16**   0.18**   0.14**   0.14**   1.00 
Note. N = 1,818 for most of the relationship among predictors, except for N = 1,027 between FPPS and all the predictors and N = 791 between FPPP and all the predictors; N = 

1,815 for the relationship between predictors and job performance, except for N = 1,025 between FPPS and job performance and N = 790 between FPPP and job performance. ** p 

< .01. CLO = Continuous Learning Orientation, LD = Leadership Skill, PM = Personal Motivation, DP = Dependability, DMR = Development and Maintaining Relationship, FL = 

Flexibility, IC = Interpersonal Communication, SM = Self-Management Skills, FPPS = Following Policies and Procedures Support (Group), FPPP = Following Policies and 

Procedures Professional (Group), FPP = Following Policies and Procedures, PERF = Job Performance (composite). The number in parentheses represents its relative ranking.  

 

  



 

131 
 

Table 19 

Relative Importance of Predictors for Predicting Job Performance (Study 4) 

 RF  RW  β β2 p 

FPP 5.93 E-05 (1)  0.0363 (1)     0.0436 (6) ** 0.0019 (8) 0.0000 

CLO 2.80 E-05 (2)  0.0008 (9)      0.0267 (7) 0.0007 (9) 0.1043 

DP 2.58 E-05 (3)  0.0133 (2)     0.1160 (3) ** 0.0135 (4) 0.0000 

SM 2.53 E-05 (4)  0.0071 (3)     0.0619 (5) ** 0.0038 (7) 0.0096 

PM 2.51 E-05 (5)  0.0049 (4)      0.1840 (2) ** 0.0339 (2) 0.0000 

FL 2.22 E-05 (6)  0.0017 (7)    -0.1231 (9) ** 0.0152 (3) 0.0002 

IC 2.07 E-05 (7)  0.0014 (8)     0.2112 (1) ** 0.0446 (1) 0.0000 

LD 1.91 E-05 (8)  0.0038 (5)     0.0672 (4) ** 0.0045 (6) 0.0009 

DMR 1.64 E-05 (9)  0.0028 (6)    -0.0691 (8) 0.0048 (5) 0.0920 
Note. RF = Random Forests. RW = Relative Weights. β is general linear regression coefficient. p is significant value for linear regression coefficient. ** p < .01. The number in 

parentheses represents its relative ranking. FPP = Following Policies and Procedures, CLO = Continuous Learning Orientation, DP = Dependability, SM = Self-Management Skills, 

PM = Personal Motivation, FL = Flexibility, IC = Interpersonal Communication, LD = Leadership Skill, DMR = Development and Maintaining Relationship.  
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Table 20 

Mean Squared Error for Predicting Job Performance (Study 4) 

 Method 

 CART RF MLR 

Resubstitution  

    2 Predictor 0.2404 0.2434 0.2578 

    3 Predictors 0.2170 0.2334 0.2526 

    4 Predictors 0.1839 0.2057 0.2520 

    5 Predictors 0.1689 0.1953 0.2518 

    6 Predictors 0.1533 0.1889 0.2514 

    7 Predictors 0.1403 0.1705 0.2512 

    8 Predictors 0.1303 0.1657 0.2510 

    9 Predictors 0.1301 0.1667 0.2509 

Cross-Validation  

    2 Predictor 0.2779 0.2629 0.2995 

    3 Predictors 0.3111 0.2613 0.3028 

    4 Predictors 0.3238 0.2703 0.3074 

    5 Predictors 0.3590 0.2683 0.3076 

    6 Predictors 0.3725 0.2668 0.3077 

    7 Predictors 0.3727 0.2650 0.3088 

    8 Predictors 0.3850 0.2651 0.3090 

    9 Predictors 0.4009 0.2647 0.3125 
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FIGURES 

 

 

Figure 1. A Sample Tree Diagram 
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Figure 2. Prototype Tree Diagram for Simulation 
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Figure 3. Interaction Effect between Proportion of Variance Explained and  

Classification Method on Resubstitution Error (Study 1) 

 

 

 

Figure 4. Interaction Effect between Base Rate and Classification Method on  

Resubstitution Error (Study 1) 
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Figure 5. Interaction Effect between Data Complexity and Classification Method on  

Resubstitution Error (Study 1) 

 

 

     

Figure 6. Interaction Effect between Data Complexity and Classification Method on 

Cross-Validation Error (Study 1) 
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Figure 7. Interaction Effect between Proportion of Variance Explained and  

Prediction Method on Resubstitution MSE (Study 2) 

 

           

Figure 8. Interaction Effect between Proportion of Variance Explained and  

Prediction Method on Cross-Validation MSE (Study 2) 
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Figure 9. Three-Way Interaction Effect among Proportion of Variance Explained, Data 

Complexity and Prediction Method on Resubstitution MSE (Study 2) 
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Figure 10. Three-Way Interaction Effect among Proportion of Variance Explained, Data 

Complexity and Prediction Method on Cross-Validation MSE (Study 2)
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Figure 11. Initial Tree Diagram for Predicting Voluntary Turnover (Study 3) 

 
Note. “0” = stay; “1” = voluntary turnover; number in parentheses represents number of stayed/left employees in each terminal node. ITS = Intent to Stay, JF = Job Fit, FR = 

Financial Rewards, ONB = Onboarding, SUP = Supervisor.    
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Figure 12. Final Tree Diagram for Predicting Voluntary Turnover (Study 3) 

 
Note. “0” = stay; “1” = voluntary turnover; number in parentheses represents number of stayed/left employees in each terminal node. ITS = Intent to Stay, FR = Financial Rewards, 

SUP = Supervisor.    
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Figure 13. Initial Tree Diagram for Predicting Involuntary Turnover (Study 3) 

 
Note. “0” = stay; “1” = involuntary turnover; number in parentheses represents number of stayed/left employees in each terminal node. JF = Job Fit, COW = Coworker, SUP = 

Supervisor, FR = Financial Rewards, ONB = Onboarding, ITS = Intent to Stay. 
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Figure 14. Final Tree Diagram for Predicting Involuntary Turnover (Study 3) 

  
Note. “0” = stay; “1” = involuntary turnover; number in parentheses represents number of stayed/left employees in each terminal node. JF = Job Fit, ONB = Onboarding, FR = 

Financial Rewards.  
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Figure 15. Regression Tree for Predicting Job Performance (Study 4) 

 
Note. Numbers in terminal nodes represent the average response value in that node; numbers in parentheses represent node size. FPP = Following Policies and Procedures, DP = 

Dependability, SM = Self-Management Skills, PM = Personal Motivation. 

 


