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Abstract

Formal methods have revolutionized software reliability and safety, and design patterns has revolutionized

software reusability and modularity. However, the preciseness required for formal methods and the flexibility

inherent in design patterns has rendered these two concepts somewhat disjoint and applied to different

application domains. Currently, new uses of software in medical device plug-and-play systems has pointed

to a need for creating systems that are both flexible and safe. In this dissertation, we describe significant

advancements towards the development of formal patterns to achieve greater assurance about medical device

safety. We consider three levels of safety and associated case studies in the medical device domain: device

interface safety, medical requirement safety, and network safety. For device interface safety we look at various

button-related faults and describe pattern solutions for addressing each fault. For medical requirement safety

we focus on a particular class of stress-relax safety and present the Command-Shaper pattern to address

this. Finally, in the network safety area we look at the particular case of message loss and describe an

active message repeater pattern. For each of these patterns: (i) we formally define them in the Maude

rewriting logic framework; (ii) we show their correctness by rigorously proving the required properties based

on their rewriting logic specification; and (iii) we also show practicality of each pattern with execution,

model checking, and emulation.
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and Professor José Meseguer for providing me with the path of my research and guiding me throughout the

way. I must also give my sincerest thanks to my two advisors and the CS department including Professor

Roy Campbell and Rhonda McElroy for helping me through difficult times and giving me the final push

needed to completing my dissertation.

I would also like to thank all people at the FDA and the MD PnP: Raoul Jetley, Yi Zhang, Sandy

Weininger, Julian Goldman and Susan Whitehead. They introduced me to the vision for the future of

medical systems and gave many suggestions on how to make my research more relavant for the real world.

I also give a big thanks to Doctor Richard Berlin for taking the time to sit in meetings with us giving me

the inside perspectives of medical practice and how to best design medical systems for use by real people.

I should also thank Doctor Raoul Jetley and Professor Gul Agha for being on my dissertation committee,

and providing me with additional suggestions and feedback. My dissertation is also just a small piece of

work built on the shoulder’s of giants. I owe my thanks to all the people who helped to develop Maude

rewriting logic framework in its current state. In particular, I would like to thank Peter Ölveczky for creating
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Chapter 1

Introduction

In everyday life we naturally use patterns as a powerful form of abstraction that not only serves to concisely

represent large amounts of information around us, but also provides a reasoning mechanism to deal with a

wide range of examples that we have not yet encountered. In the same spirit, engineers have also realized

that, after successfully designing many systems, a common part of a design can be extracted as a pattern.

Future engineers can readily use these patterns as a starting point in design and benefit from the tried and

true experience from successful designs in the past. The usage of pattern designs originated in (building)

architectures [5] and was later introduced to software engineers in the famous gang of four book [21].

There is no dispute that patterns have been enormously useful in software engineering. However, current

design patterns are used mostly to ensure modularity, portability, scalability, and maintainability of code.

But in the present practice of patterns there is often no clear way to attach to patterns formal conditions for

their applicability and formal guarantees for their behavior when such conditions are met. For example, a

design pattern may be successful in many cases, but, if its applicability conditions are not precisely specified,

there may be pattern instances that fail in unexpected ways. Clearly, to harness the full power of patterns in

safely critical systems, patterns must become mathematically precise entities, which we call formal patterns.

A formal pattern must come with:

1. Formally specified preconditions on the environment and the system in order to have correct application

of the pattern.

2. Formal safety and correctness guarantees provided by the pattern, assuming that the pattern applica-

tion satisfies all the preconditions.

3. Furthermore, it is desirable to have formal definitions of the pattern that are as generic as possible

and have an executable semantics that can be easily translated into an implementation.

To define patterns with all these properties in mind in the context of medical devices (or just cyber physical

systems in general), we need a semantic framework that naturally supports modeling real-time concurrent

1
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systems and logical and actor reflection capabilities. For this, we use the Maude rewriting logic framework

[16] to formally specify, simulate, and analyze our patterns.

1.1 Formal Patterns for Medical Systems

The formal patterns we will consider in this dissertation are software patterns to improve the safety of

medical device operation. Safety in designs of medical devices and systems is an important issue that, when

left unaddressed or addressed only partially by testing an implementation (which of course should also be

done in any case), can cause severe and perhaps deadly accidents for patients. The Integrated Clinical

Environment (Figure 1.1) [23] shows all the components in a typical medical system: the patient, individual

devices, device supervisor(s), the network, the clinical database, and medical personnel.

Patterns for Safe Medical Device Interfaces: The first class of safety issues we consider is the

inputs to the system, interaction of medical personnel with these devices. This is where all the behavior

of the medical system is set and guided. If this interface is faulty, then the system may not faithfully

capture the intentions of medical personnel. We call patterns in this first class patterns for safe device

interfaces in Chapter 3. In particular, we look at various button related faults including button bounce,

stuck buttons, and phantom button presses. We address each of these problem with corresponding solution

patterns including formalizing button debouncing logic, button stuck detection, and button dephantomizers.

For each of these patterns we prove bisimulation results that these patterns do not change system behavior

under normal cercumstances. Furthermore, we show that under faulty conditions our patterns can provide

additional robustness either by fault masking or fault detection.

2



Patterns for Safe Medical Devices: The second class of safety issues we consider are the interactions

of individual devices with the patient. Over the years, medical functionalities for each device have been

nicely abstracted and decoupled into different classes: e.g. infusion pumps, cardiac pacemakers, medical

ventilators, etc. Each device responsibility gives a precise but limited control of the patient. The necessary

properties of the device are of course successfully and safely providing its dimension of control. We call

patterns in this second class patterns for safe device/patient interaction. Many times safety of an individual

device administering treatment involves rate and time constraints. We discuss a specific pattern for enforcing

these types of constraints in Chapter 4. In particular, we focus on a special class of safety properties called

stress-relax safety characterizing to when the medical devices put patients into stressful, potentially unsafe,

states. Furthermore, we discuss a command reshaper pattern that can modify potentially unsafe commands

before they are executed by a medical device. The pattern allows many modifiable parameters such as range

limitations, rate of change limitations, and also time limitations that pertain to stress-relax safety. We further

prove that our pattern will indeed satisfy all of these parameterized safety properties once instantiated. We

also apply our pattern to many different medical device models such as infusion pumps, pacemakers, and

ventilators.

Patterns for Safe Medical Device Networking: The third class of safety issues we consider are

more global: they have to do with safe device coordination. That is, some important safety properties are

interaction safety properties and must be satisfied by several devices simultaneously. For example in airway-

laser surgery, the flow of oxygen must be reduced before the laser can be allowed to be turned on. This

is a property that must always hold in order to prevent a fire. Furthermore, coordinated safety properties

can naturally conflict with local safety. For example, the oxygen cannot turn off for too long, while the

global safety property needs to be coordinated for the laser. Addressing these issues while considering the

possibility of network disconnects makes the problem even more difficult. We call patterns in this third class

patterns for safe networked device communication. We discuss some specific patterns for ensuring global

system safety under message loss in Chapter 5. In particular, we describe the heartbeat pattern, which

transforms a design that assumes a reliable network to operate in an unreliable network but still maintain

safety. We prove that our heartbeat pattern preserves all ideal behavior when no network faults occur. We

also prove that under failure conditions our heartbeat pattern can preserve the safety of a networked medical

system by ensuring that all devices fall to a safe independent mode of operation.

3



1.2 Practicality of Our Formal Patterns for Real-World Systems

In this work we demonstrate, through many examples, the technique of using formal patterns to provide

provably correct templates for software design and reuse in the realm of medical device safety. Indeed, all

patterns in this dissertation are described in the context of medical systems. For each of our patterns we

consider a few well understood and precisely defined faults, and discuss a provably safe software pattern

under this limited fault model. Of course, in real systems the set of faults and hazards is much larger, and

our patterns should not be used directly to handle specific faults unless all the other faults are shown to be

orthogonal. For example, for the button bounce fault, we can use a button debouncer (Section 3.3.3), but

this may now introduce new timing faults to the system due to the presence of additional software. Thus, in

general, we need to be careful about how patterns are applied and composed. While the guarantees provided

by a pattern are precisely defined and formally proven, any required behavior that is not guaranteed must

still be verified separately.

The fault model is continuously evolving as we understand more about a system through its deployment.

For example, the NTSB, which investigates accidents, constantly influences certification criteria for aircraft

development, and these certification criteria must be revised based on new incidents and use of new tech-

nology. Practical formal patterns need to also adapt and change with increased understanding of a system.

We need domain experts to identify faults as they are found, and more time needs to be spent formalizing

these faults, possibly extending existing software models. The formal patterns in this dissertation were

carefully abstracted to cover the concrete examples instances we have considered, and we acknowledge the

need to improve these existing pattern definitions as we learn of examples that fall outside of the current

abstractions.

Thus, we view this work as an important step among others towards feasible use of formal patterns for

safe medical system development. Some of the problems not addressed in this dissertation but important

for future work on feasible use of formal patterns include: how to identify when a pattern can be used in an

extended context of new faults; and how to compose multiple patterns that handle nonorthogonal faults.
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Chapter 2

Background on Rewriting Logic,
Maude, and Parameterized
Specifications
We use the Maude rewriting logic language and framework [16] in order to define formal specifications for

our software patterns for medical systems. We present some of the basic concepts behind rewriting logic, its

real-time extensions, and parametrization.

2.1 Membership Equational Logic

Membership equational logic (MEL) [34] describes the most general form of the equational components of a

Maude rewrite theory. These are called functional modules in Maude [16].

Formally, a MEL signature is a tuple (K,F, S) where S is a set of sorts (i.e. types), K is a set of

kinds (i.e. super types or error types for data), and F is a set of typed function symbols (and constants).

A MEL theory is a pair (Σ, E) where Σ is a MEL signature, and E a set of sentences (equations and

memberships) expressing (possibly conditional) membership or equality constraints. If an MEL theory is

convergent (satisfies properties of confluence, termination, and sort-decreasingness), Maude provides efficient

execution of its initial model semantics.

More practically, to illustrate the syntax of functional modules in Maude, we take a look at a commonly

used module TIME used throughout this dissertation to model time. We present a simplified version of the

module to just highlight the main points.

fmod TIME is

sort Time .

op zero : -> Time .

op _plus_ : Time Time -> Time [comm assoc] .

op _le_ : Time Time -> Bool .

op _lt_ : Time Time -> Bool .
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eq zero plus R:Time = R:Time .

eq R:Time le R’:Time = (R:Time lt R’:Time) or (R:Time == R’:Time) .

endfm

This module is used to define the theory of time. The first line of the module defines the sort Time, which

semantically will correspond to the set of terms that represent time. The next set of lines define operators:

a 0-ary operator (i.e. a constant) zero; a binary operator plus taking two arguments of sort Time and

returning a term of sort Time (it also has attributes indicating that it is a commutative and associative

operator); binary operators le (less than or equal to) and lt (less than) taking two arguments of sort Time

and returning a boolean term1. The next part contains equations which define semantics of the operators.

The first equation expresses the fact that zero is an identity element for the set of terms of sort Time under

the operator plus. The second equation shows that the less than, le, operator is essentially just syntactic

sugar as it can be defined as a disjunction of strict less than and equality.

Now, this defines a theory of time with addition and comparison, but what about the sematics? Maude

uses inital model semantics for functional modules, which is the unique model (up to isomorphism) that

has unique homomorphisms to all of models satisfying the theory. Intuitively, the inital model means the

”minimal” model that satisfies the theory (it introduces no additional constant terms or operators and does

not equate different terms unless they are forced equal by the equations). The particular inital model that

Maude uses is the canonical term algebra, which associates with each sort a set of constructor terms (terms

constructed from constants and operators that are irreducible by the equations) and associates with each

operator a function that constructs terms using that operator and reduces them by the equations to some

canonical form with only constructors.

Currently the initial model for our module TIME is quite uninteresting as it only has one constructor term

zero. In order to make our model of time more realistic, we need to extend it.

Time can have many different models including discrete and continuous ones. Discrete time is generally

modelled with natural numbers. We can extend our model of time by defining another functional module

NAT-TIME-DOMAIN.

fmod NAT-TIME-DOMAIN is

including TIME .

protecting NAT .

1All modules in Maude implicitly import the functional module BOOL which defines the sort Bool, constants true and false,
and the common boolean operators.
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subsort Nat < Time .

vars N N’ : Nat .

eq zero = 0 .

eq N plus N’ = N + N’ .

eq N lt N’ = N < N’ .

endfm

This new module specifies that it is including TIME, which means that it will use all the sorts, operators,

and equations from TIME but will add more constants and equations. It also specifies that it is protecting

NAT, which means that it will use the model of natural numbers (but will not modify the semantics of the

natural numbers in any way). The next line specifies that Nat is a subsort of TIME. This means that all terms

that were of sort Nat are now also of sort Time (this effectively extends the ground terms of sort Time with

all natural numbers). The next line defines some variables for the equations introduced later. The equations

identify zero with the natural number 0, and map the plus and lt operators to the corresponding operators

for natural numbers. With this new module the semantics of time now becomes an algebra with the set of

natural numbers along with addition and comparison operators. Natural number time is a very useful model

of time that we will often use later in order to do finite-state model checking of timed systems.

Note that having Nat be a subsort of Time creates a partially ordered set for sorts. The connected

components for sorts are called kinds. To have simple reasoning about sorts, Maude modules requires a

property called preregularity, where every term in a kind has a least sort. For example, the term 3 would be

of sort Nat and Time, but since Nat is subsumed by Time, Nat is the least sort. Maude’s type system in full

generality is membership equational logic, which subsumes order-sorted logic, but for practical purposes we

normally do not use the full power of membership equational logic in the models we define in this dissertation,

and we mostly restrict ourselves to order-sorted logic. Interested readers can consult [34] for an explanation

of membership equational logic.

The semantics of modules in Maude has algebraic semantics, and algebra is essentially a characterization

of structure. This structure could be as simple as the interactions natural numbers under addition, or as

complex as the structure an entire software system. Either way, the hierarchical sort system in Maude

together with its module structure allows us to build more complex structures on top of existing models.

For example, from our model of time, we can easily define a structure for clocks.

fmod CLOCK is
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protecting NAT-TIME-DOMAIN .

sort Clock .

op c : Time -> Clock .

op tick : Clock Time -> Clock .

op over? : Clock -> Bool .

vars T T’ : Time .

eq tick(c(T), T’) = c(T plus T’) .

ceq over?(c(T)) = true if 24 le T .

eq over?(c(T)) = false [owise] .

endfm

Here, we have just defined a new sort Clock that encapsulates Time with the c operator, and we define

an operator tick that will advance the time of the clock. In the equations defining the operator over?, we

have introduced a conditional equation to indicate that over? is true if the time in the clock exceeds 24.

The last equation has the attribute [owise] which means it is only applied when no other equations can be

applied.

2.2 Rewriting Logic and Kripke Structures

We just described functional modules in Maude. Functional modules define algebras which have a static

structure. However, structure is not enough to define most systems. We also need the dynamics or the

behavior of a system. In Maude, this is defined by a system module, whose semantics is expressed by the

the idea of rewriting logic.

Formally, rewriting logic [12] describes the most general form of modules defined in Maude. A rewrite

theory in Maude is defined in the form of a tuple: (Σ, E, φ,R), where (Σ, E) is an underlying MEL theory,

φ defines the frozen positions of operators (positions where no rewrites are allowed to occur below), and

R is a set of rewrite sentences (possibly conditional on equality and membership sentences). If a rewrite

theory satisfies the properties of coherence, and the underlying MEL theory of a rewrite theory is convergent,

then Maude provides efficient execution of the initial model semantics for the rewrite theory. This includes
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efficient execution for simulation, searching and LTL model checking.

To illustrate rewriting, we go back to our clock example. We define it’s behavior over time with a system

module.

mod CLOCK-EXEC is

inc CLOCK .

var C : Clock .

rl [advance-time] : C => tick(C,1) .

crl [reset] : C => c(0) if over?(C) .

endm

We imported all the sorts, operators, and equations defining clocks, but now we added two additional

rules. The first rule states that we can tick the clock by one time unit. The second rule states that if the

clock’s time has gone over, then we can reset it. Rules are taken nondeterministically, and thus, semantically,

our clock could tick to arbitrary time values before being reset.

For any sort, such as Clock, in our system module, we have the semantics of a transition system. A

transition system is a pair A = (A,→), where A is a set of states, and →⊆ A × A is a binary relation

for transitions. In our Clock sort, our set A will be all possible values of clocks {c(0), c(1), c(2), ...}. Note

that reducible terms, such as c(1 + 1), are represented by a canonical element, c(2). The transition relation

would then have a→ a′ iff the term a can be rewritten into a′ with one rewrite rule. Thus, in our example,

c(0)→ c(1), c(4)→ c(5), c(30)→ c(0), but c(6) 6→ c(8).

Furthermore, given that we have our transition system, it is natural, to label our states with atomic

propositions. For example, we have already defined the predicate over? on clocks, and we can thus label

all states in our transition system with o whenever the predicate over? holds for clocks. Thus, given some

set of atomic propositions, AP with o ∈ AP , we can define a labeling function L : A → P(AP ). In our

clock example, we would have o ∈ L(c(30)), o ∈ L(c(40)), but o 6∈ L(c(20)). A transition system with this

labelling function is called a Kripke structure.

2.3 Simulations and Stuttering Simulations

Given two transition systems (defined by Maude systems modules), it is natural to ask whether they have

similar behavior. This brings us to the notion of simulations.
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Definition. Given transition systems A = (A,→A) and B = (B,→B), a simulation from A to B is a relation

H ⊆ A×B such that if a→A a′ and aHb then there is b′ such that b→B b′ and a′Hb′.

If both H and H−1 are simulations, then we call H is a bisimulation.

A simulation from A to B means that B must exhibit all the transition behavior of A and possibly more.

Any transition A can take, B should be able to ”simulate.”

In addition to similar transition behavior given by H it is also desirable to have H preserve important

properties of states of A and B. Thus, we can furthermore relate the Kripke structures of the two systems

in order have simulation of transitions as well as a correspondence of labels on states.

Definition. Given Kripke structures A = (A,→A, LA) and B = (B,→B, LB), both over the same set AP of

atomic propositions, an AP -simulation from A to B is given by a simulation H from the transition systems

of A to B such that if aHb, then LB(b) ⊆ LA(a).

However, for the purposes of reasoning in our system modules, the notion of simulation is a bit too strict.

Mostly it requires lockstep transitions between two transition systems. Most of the time we can relax these

constraints of lock step behavior, since often we have intermediate transitions that don’t really affect the

important parts of the state of a system (or more precisely, the labelling of atomic propositions in a Kripke

structure of interest). It is useful to define a more loose notion of simulation.

Definition. Given transition systems A = (A,→A) and B = (B,→B) and a relation H ⊆ A × B. Given

a path π in A and a path ρ in B, we say that ρ H-matches π if there are strictly increasing functions

α, β : N→ N with α(0) = β(0) = 0 such that, for all i, j, k ∈ N, if α(i) ≤ j < α(i+1) and β(i) ≤ k < β(i+1),

it holds that π(j)Hρ(k).

That is we divide pairs of paths in two transition systems into chunks, so that each chunk in one transition

system should match a chunk in the other transition system and in progressive order.

Definition. Given transition systems A = (A,→A) and B = (B,→B), a stuttering simulation from A to B

is a relation H ⊆ A×B such that if aHb, then for each path π in A starting at a there is a path ρ starting

at b that H-matches π.

If both H and H−1 are stuttering simulations, then we say that H is a stuttering bisimulation.

Intuitively, a stuttering simulation from A to B under the relation H says that for any path A can take,

B can also take a similar path. However, the paths only need to be loosely related by chuncks, and lock step

simulation is not required.
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Of course, reasoning about all possible paths would be quite hard in practice, especially since rewrite

rules only represent each individual step. It would be convenient to have an equivalent notion of stuttering

simulation but based on each transition step instead of on infinite paths. This is conveniently provided by

the notion of a well-founded simulation.

Definition. Let A = (A,→A) and B = (B,→B) be transition systems. A relation H ⊆ A × B is a

well-founded simulation of transition systems from A to B if there exist functions µ : A × B → W and

µ′ : A×A×B → N, with (W,<) a well founded order, such that whenever aHb and a→ a′, either:

1. there is b′ such that b→B b′ and a′Hb′, or

2. a′Hb and µ(a′, b) < µ(a, b), or

3. there is b′ such that b→B b′, aH ′b′, and µ′(a, a′, b′) < µ′(a, a′, b).

For purposes in this dissertation, we use the set N for W and furthermore, we also use the functions

ν : B×A→W and ν′ : B×B×A→ N to show well founded simulation in the other direction from B to A.

The equivalence between well-founded simulations and stuttering simulations are stated in a Theorem in

[36].

Theorem 2.3.1. Let A = (A,→A, LA) and B = (B,→B, LB) be Kripke structures over AP , and H ⊆ A×B.

Then, H is a well-founded AP-simulation iff it is a stuttering AP-simulation.

It is worth noting that practically, we are interested in stuttering AP-bisimulations. However, it is unclear

which set AP of atomic propositions that we should be reasoning over. However for all relations H we define

in our stuttering bisimulation proofs, H will preserve: (1) all values of attributes in common objects, (2) the

model time. Thus in our bisimulation proofs, all atomic propositions based on object attributes and current

time are preserved by H, and this set of atomic propositiotns cover most properties of interest.

2.4 Full Maude and Real-Time Maude

We have covered the core of Maude with functional module and systems modules and given a brief overview of

their semantics. We have also shown how these semantics can be used to reason about simulations. However,

creating complex systems from just basic primitives may be difficult and hard to preserve modularity. We

now discuss some higher level Maude constructs and the tools that exist to model real-time object-oriented

actor systems.
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Full Maude [19] is a Maude interpreter written in Maude, which in addition to the Core Maude constructs

provides syntactic constructs such as object oriented modules. Object oriented modules implicitly add in

sorts Object and Msg. Furthermore, OO-modules add a sort called Configuration which consists of a

multiset of terms of sorts Object or Msg. Objects are represented as records:

< objectID : classID | AttributeName 1 : Value 1, ...

AttributeName n : Value n >

where objectID is the object’s name of class classID, and each attribute AttributeName j; has a corre-

sponding value Value j.

Rewriting logic rules are then used to describe state transitions of objects based on consumption of

messages. For example, the following rule expresses the fact that a pacemaker object consumes a message

to set the pacing period to T:

rl setPeriod(pm, T)

< pm : Pacing-Module | pacing-period : PERIOD >

=> < pm : Pacing-Module | pacing-period : T > .

Real-time Maude [43] is a real-time extension of Maude developed on top of Full Maude. It adds syntactic

constructs for defining timed modules. Timed modules automatically import the TIME module, which defines

the sort Time (which can be instantiated as discrete or continuous) along with various arithmetic and

comparison operations on Time. We have show a very small subset of this earlier as an illustration of

equational modules. Timed modules also provide a sort System, which encapsulates a Configuration and

implicitly associates with it a time stamp of sort Time. After defining a time-advancing strategy, Real-time

Maude provides timed execution (trew), timed search (tsearch), which performs search on a term of sort

System based on the time advancement strategy, and timed and untimed LTL model checking commands.

Real-time Maude provides useful constructs for defining real-time systems, including basic semantics of

time and time advancement. We use the model of linear time provided by Real-Time Maude. For time

advancement, we have used the conventional best practice where only one timed rewrite rule is used and is

fully determined by the operators tick and mte [43].

The tick operator advances time over a configuration by some duration of time. For example, with timer

(and time units being seconds): tick(timer(10 ), 3) = timer(7). That is, a timer with 10 sec remaining ticked

by 3 sec will become a timer with 7 sec remaining.
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The mte operator gives the maximum time that can elapse in a system before an interesting event occurs.

Interesting events include all state transitions in which messages are generated in a configuration. Again,

with the timer example, we assume that components only react when the timers expire, so the maximum

time elapsable for a timer would be the time it takes the timer to expire: mte(timer(10)) = 10.

Real-Time Maude also includes models of time that have infinity, INF, as a possible time value. Although,

INF will never be used to advance time in any system, it is useful to have INF to describe unbounded time.

For example, mte(stableSys) = INF.

2.5 Parameterized Modules

Modules in Maude have an initial model semantics. Maude also supports theories which have a loose

semantics (that is, not just the initial mode, but all the models of the theory are allowed). Normally, theories

are instantiated via views to other theories or to modules. In particular, a theory can be instantiated by a

view to any module whose initial model satisfies all equational, membership, and rewrite sentences of the

theory.

Parametrized modules [16] are modules which take theories as input parameters and define operations

(parametrically) in terms of the input theory. Parametrized modules are instantiated by providing views

(i.e. theory interpretations) to concrete modules for the corresponding input theories. Once instantiated,

the parametrized module is given the free extension semantics for the initial models of the targets of the

input views. Core Maude, Full Maude, and Real-Time Maude all support parameterized modules. For our

formal patterns, we will exploit in particular the Real-Time Maude parameterization mechanisms.

2.5.1 Actor Reflection in Rewriting Logic

The representation of objects in Maude allows for arbitrarily complex term types to be used as object at-

tributes, including other objects or even entire actor configurations. This allows for simple specifications

of meta-objects. Meta-objects are objects that encapsulate other objects and have the capability to con-

trol/mediate/adapt the behaviors of these encapsulated objects. Expressing patterns as meta-objects, this

allows us to separate concerns and easily compose a solution by nesting meta-objects inside each other. In

this dissertation, most of our patterns use onion-skin meta-objects (objects that wrap a single object) [3].

For example, a meta-object to filter out of range requests to an infusion pump can be specified with a rule:

crl setRate(pump, R)

< pump : RateFilter | inner: < pump : Pump | ... > >
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=> < pump : RateFilter | inner: < pump : Pump | ... > >

if R > max-rate .

Precise formal semantics have been defined for onion-skin meta-objects in rewriting logic [17], and also

for a more general notion of meta-objects that may contain entire configurations [37].

2.6 Socket Programming in Maude

Maude supports the Berkley sockets API for TCP communication. This is done by having a special gateway

object, denoted <>, to consume all the messages responsible for setting up sockets and communicating to

an external environment (e.g. createClientTcpSocket, send, receive). The gateway object will also

generate messages upon status updates from the socket (e.g. sent, received, closedSocket). Consuming

and generating messages from the gateway object is achieved by external rewrite rules which can be executed

using the erew command in Core Maude. An important thing worth pointing out about external rewrite

rules is that external rewrite rules are only applied when no internal rewrite rules can be applied. Also, using

external rewrite rules with Real-Time Maude specifications (built on top of Full Maude) requires reifying

the specification down to a Core Maude module before executing it.
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Chapter 3

Patterns for Fault-Tolerant Device
Interfaces

Fault tolerance has been a major area of study in embedded systems since their creation. General notions

of faults cover everything from anomalies of the environment to misbehavior of internal system components

due to insufficient measurements or degradation of hardware over time.

For our inital work in describing patterns for fault tolerant design, we exclusively focus on external faults

(e.g. input noise, interference, message loss, etc.). The reason for this is that external faults are much more

easy to model, since they can be seen as variations of the input. While internal system faults (e.g. bit flips,

memory corruption, computation error, etc.) are also interesting, they are much more difficult to handle

completely, and usually, we must settle for probabilistic guarantees or make probabilistic assumptions of

the fault model. We believe that at the current time, internal system faults are usually better addressed by

extensive testing and probabilistic analysis.

In terms of solving the problems of external faults. We take a 4 step approach to describing solution

patterns for fault-tolerance or sometimes even full fault masking.

1. As with any application of formal methods, the domain model that we are using must be extensively

studied through use cases and case studies and encoded in a model.

2. The domain model is separated into the external environment, E that the system receives input from

and outputs actuation to.

3. The fault model is described as a relation of ideal environmental inputs to potential faulty behaviors

of the environment. More precisely, a relation F ⊆ E × E s.t. if eFe′ then e′ is a possible faulty

environmental model of e.

4. The desired behavior of a system can be described as an ideal design s s.t. the execution of the

environment-system pair (e, s) generates ideal behavior.

5. A fault tolerance technique is then a transformation T : Sys→ Sys s.t. the following property holds.

Given a fault-tolerance characterization H. For all possible models of e, for all e′ s.t eFe′, and for all

system designs s, then the execution of the system (e′, T (s)) H-corresponds to (e, s).
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In this section, we use this idea to describe 3 different fault tolerant patterns for buttons. The external

environment in this case will be the buttons and their associated behavior. The fault relations will be

various common button related faults such as button bounce, button stuck, or accidental presses. The fault

tolerance techniques will then be common design practices for handling button related faults such as button

debouncing.

3.1 Modeling Buttons

We first describe the model of the environment in detail. That is the formal model of a button. Our goal

in modeling a system is to have some reasonable abstraction of the real world. For many device interfaces,

buttons are used to communicate useful and important information to a system. Thus, it makes sense to

look at how a button works in an abstract but general sense. Furthermore, we will also be able to use this

abstraction to model faulty button behavior.

We model a button as something that can be in one of two states, either pressed or not pressed, at any

instant in time. Thus, we can model the behavior of a button as a function buttonstate : Time → {0, 1},

where b(t) = 0 means the button is not pressed, and b(t) = 1 means the button is pressed. Time is a

totally ordered set. Time can represent some ideal continuous physical time, which can be represented by

the positive real numbers R≥0. Time can also be reasoned about from the perspective of a system clock that

ticks (advances time) in discrete intervals, in which case we can model it using the natural numbers N. In

later definitions and theorems, we let Time = R≥0 whenever possible, since this provides the most general

definitions and results.

Although this model captures everything we want about a button, we would like to have an equivalent

model that can be discretized. In order to do this, we need to make some assumptions. When a button is

held down, it is natural to talk about the time when it was initially pressed, and also the time when it was

released. Thus, we define init(b, t) = inf ({t′ ∈ Time|∀t′′ ∈ [t′, t], b(t′′) = b(t)}) and end(b, t) = sup({t′ ∈

Time|∀t′′ ∈ [t, t′], b(t′′) = b(t)}). We make the following assumptions:

1. Time starts from 0, init(b, t) is always defined, and b(init(b, t)) = b(t).

2. A button is always pressed or released for at least a minimal finite duration Tmin, i.e. for all t,

end(b, t)− init(b, t) ≥ Tmin.

Let Ivalid be the subset of button functions b ∈ [Time → {0, 1}] that satisfy these assumptions.

These assumptions allow us to model continuous button behavior as a discrete timed model, since in

each finite interval of time, given a buttion function, b, there is only a finite number of press and release

16



events in b. For example, if the button behavior is b(t) = 1 for t ∈ [0, 1)∪ [2, 5) and b(t) = 0 otherwise. This

can be represented discretely without any loss of information as a list of pairs describing when a button

gets pressed and released, e.g., (press, 0).(release, 1).(press, 2).(release, 5). This model is captured in the

following Maude model:

(fmod PRESS-RELEASE is inc LTIME-INF .

The first structural property of a valid button model must have alternating press and release events. We

enforce this in button press models by using the powerful typing system provided by Sorts in Maude.

...

sorts Press Release .

sort PressReleaseList .

sorts MtList PressLastList ReleaseLastList .

subsort MtList < PressLastList ReleaseLastList .

subsorts PressLastList < PressReleaseList .

subsorts ReleaseLastList < PressReleaseList .

...

With the sorts defined, we can define the actual structure of what we want to model for a button.

Press and release events are all associated with a time stamp, and concatenating press and release events in

alternating order (enforced by the sorts) will generate valid button press models.

op press : Time -> Press .

op release : Time -> Release .

op nil : -> MtList .

op __ : PressLastList Release -> ReleaseLastList .

op __ : ReleaseLastList Press -> PressLastList .

...

Finally, even with sort constraints for button press models. We may want some further constraints on

button press models we consider as valid user input. For example, the assumption that button presses are

spaced far enough apart. However, we will not make these constraints part of the type of button press

models, as faults can easily create a button press model that is not a valid user input.
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op valid? : PressReleaseList -> Bool .

eq valid?(nil) = true .

eq valid?(L press(T)) = valid?(L) and (t-last(L) lt T) .

eq valid?(L release(T)) = valid?(L) and (T monus t-last(L)) geq T-min .

endfm)

To summarize, we have a list of press and release events over time. The press and release events must

alternate, and their time stamps must also be strictly increasing in order for it to be a valid model. The

constant Tmin spaces out the events to avoid Zeno-like behavior in valid non-faulty button press models.

3.2 Modeling the System

The formal model of our timed system can be found in Appendix A. The model starts by defining the

notion of time advancement (TICK-MTE-SEM), primitive real-time components (RT-COMP), and timed messages

(DELAY-MSG).

The behavior of a button we have defined before is a purely mathematical one by itself, it has no behavior

semantics. To capture the behavior of the list of button press events over time, we just simply convert the

list of press and release events over time into a set of delayed messages:

(tomod PRESS-RELEASE-MSGS is inc PRESS-RELEASE .

inc DELAY-MSG .

op to-msgs : PressReleaseList Oid -> Configuration .

msgs press release : Oid -> Msg .

...

The to-msgs operator homomorphically maps each element of the list to a message.

eq to-msgs(nil, O) = none .

eq to-msgs(L press(T), O) = to-msgs(L,O) delay(press(O), t(T)) .

eq to-msgs(L release(T), O) = to-msgs(L,O) delay(release(O), t(T)) .

endtom)

The object reacting to this button press event will then receive each button-related message at the

appropriate time according to the semantics of the delay operator.
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3.3 Pattern to Address Button Bounce Faults

With our current model of the environment (button presses as delayed messages), we are now ready to

discuss how to model faults. Faults essentially add additional behavior to the environment or system. In

general, we would like to capture a fault in full generality in order to check all cases, but we also need

to make enough assumptions to restrict in a realistic way the faulty behavior. Otherwise, it may become

impossible to correctly design a fault-tolerant system.

3.3.1 Button Bounce

When a button is pressed, the button may “bounce.” A button bounce is a mechanical phenomenon that

occurs due to oscillations when a button is pressed. The contact voltages of the button may oscillate between

high and low thresholds multiple times before stabilizing. This results in multiple errorneous button press

events of signals to be generated. Since oscillatory phenomena are usually dampened pretty quickly, there

is a short maximum time window, Tmaxbounce, within which a button may bounce after it is pressed.

We can formally define a bounce fault to be a binary relation Fbounce on our button input model, where,

intuitively, we use bf as the faulty button function, which may exhibit bouncing behavior, and b is as ideal

button function not subject to any faults.

A button bounce fault is a relation Fbounce ⊆ Ivalid × Ivalid (implicitly parameterized by a maximum

bounce time Tmaxbounce) where (b, bf ) ∈ Fbounce iff:

1. b(t) = 1 =⇒ bf (init(b, t)) = 1 (all initial button press events are preserved), and

2. if bf (t) = 1, then init(bf , t)− init(b, t) ≤ Tmaxbounce (all bouncing behavior occurs within Tmaxbounce time of

a button press).

3. if b(t) = 1 and t − init(b, t) ≥ Tmaxbounce then bf (t) = 1 (all bouncing behavior stabilizes after Tmaxbounce

time).

Of course, this is just defined based on the continuous model of time. However, since the definition is based

on the use of the init function, we can easily use Fbounce, represented as the binary predicate bounce-fault,

to define the same semantics for bounce faults in the list-like representation of button functions. Note that

the arguments of bounce-fault has the first argument as the faulty input and the second argument as the

non-faulty input (this reverses the arguments for the relation Fbounce but everything else about the relation

is the same).

op bounce-duration : -> Time .
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op space-duration : -> Time .

op bounce-fault : Input Input -> Bool .

eq bounce-fault(nil,nil) = true .

eq bounce-fault(I press(T), I’ press(T)) = bounce-fault(I,I’) .

ceq bounce-fault(I press(T), I’ press(T’)) = bounce-fault(I, I’ press(T’))

if T le (T’ plus bounce-duration) /\ T gt T’ .

eq bounce-fault(I release(T),I’) = bounce-fault(I,I’) .

eq bounce-fault(I, I’ release(T)) = bounce-fault(I,I’) .

eq bounce-fault(I,I’) = false [owise] .

The equations describe the Fbounce relation as the operator bounce-fault. Here, the first argument to

bounce-fault is a possible faulty button input model of the second argument (an ideal button input model).

This mostly amounts to checking that the faulty press messages are sufficiently close in time to nonfaulty

presses. Furthermore, we ignore the precise time for button releases. The important equations are those

that capture the requirements on the spacing between press events. Either they are the same press event,

or a press event is within Tmaxbounce of the nonfaulty one.

The current fault model is purely declarative. It is a binary relation that can be used to check whether

one button input is a faulty version of another. However, this gives no means for generating a faulty model

directly from a nonfaulty one. In order to have some degree of completeness in model checking analysis

later, we need to have a more executable fault model; one that specifies faults as transitions and not just by

a predicate.

3.3.2 Button Bounce Fault Generation

As mentioned above, our next step is to generate a set of faulty inputs for each set of nonfaulty inputs.

Of course, if we choose Time to be the real numbers, we have no hope of obtaining a set of possible faults

manageable for execution purposes as there are uncountably many. However, for most practical purposes,

we can obtain a fairly complete analysis just by using discrete natural number time, mostly because systems

operate based on discrete clocks anyway. Assuming a natural number model of time, a more executable fault

model can be defined.

The intuition is to create a sliding window for the faults. All input events after the window are assumed

to be finalized, and all inputs inside the window can still have faulty behavior. Each button press event in

the window can generate bounced button presses within the Tmaxbounce time intervals. Furthermore, the length

and spacing between bouncing presses can also vary and are captured by further rewrite rules. It can be
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shown that these rewrite rules will always terminate, since the time window decreases for each faulty button

press input generated, and, furthermore, each faulty button press can only decrease in duration for each

rewrite rule (and this must terminate for a natural number model of time).

The sliding window is captured by a 3 tuple: the input events before the sliding front and within the

window, the time of the sliding window front, the input event after the sliding window. Initially the window

covers all the events and is slowly shrunk. The equations capture when events are moved outside the window

because the sliding time has already moved beyond them. The multiple equations are mostly to distinguish

different events. The faulty and nonfaulty events need to be distinguished (e.g. pressf and releasef) as

to not generate more faults on top of faults.

(mod BOUNCE-FAULT is

inc BUTTON-FAULTS .

pr NAT-TIME-DOMAIN .

op bounce-fault : Input Nat Input ~> Input .

op pressf : Time -> Press .

op releasef : Time -> Release .

vars I I’ : Input .

vars T T’ T’’ : Time .

eq bounce-fault(nil, T, I) = I .

ceq bounce-fault(I press(T), T’, I’)

= bounce-fault(I, T’ monus 1, press(T) -> I’)

if T’ <= T .

ceq bounce-fault(I pressf(T), T’, I’)

= bounce-fault(I, T’ monus 1, press(T) -> I’)

if T’ < T .

eq bounce-fault(I release(T), T’, I’)

= bounce-fault(I, T monus 1, release(T) -> I’) .

eq bounce-fault(I releasef(T), T’, I’)

= bounce-fault(I, T monus 1, release(T) -> I’) .
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eq bounce-fault(nil, T’, I’) = I’ .

The actual sliding behavior of the window is defined by rules. These rules describe, respectively, how to

shift the window by one step, generate a faulty button press event with maximum duration, increase the

starting time of a bounced press, and decrease the ending time of a bounced press. All of these rules together

allow us to generate all possible bounced button press events at all times and of all durations.

rl bounce-fault(I, T, I’) => bounce-fault(I, T monus 1, I’) .

crl bounce-fault(I press(T), T’, I’)

=> bounce-fault(I press(T) releasef(T + 1) pressf(T’), T’, I’)

if T’ > T + 1 /\ T’ <= T + bounce-duration .

crl bounce-fault(I releasef(T) pressf(T’), T’’, I’)

=> bounce-fault(I releasef(T + 1) pressf(T’), T’’, I’)

if T’ > T + 1 .

crl bounce-fault(I releasef(T) pressf(T’), T’’, I’)

=> bounce-fault(I releasef(T) pressf(T’ monus 1), T’’, I’)

if T’ > T + 1 .

endm)

3.3.3 A Button Debouncer Pattern

Finally, we come to the most important part of all of our specification, namely, a pattern for correctly

handling faulty button bounce behavior. Figure 3.1 shows the intuitive structure of the button debouncer.

Essentially, all button inputs are filtered through a wrapper, and by properly timing button press events, we

can ignore exactly the faulty bounced button press events (assuming proper spacing between normal button

press events).

We first must describe the input theory that is required for a button debouncer. This includes the original

class that the button debouncer will modify, and also parameters of the system and of the fault in order to

adjust the pattern’s behavioral parameters accordingly.

(oth DEBOUNCED is

pr TICK-MTE-SEM .
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Figure 3.1: The Button Debouncer Pattern

class |Wrapped| .

op |dest| : Msg -> Oid .

op |t-bounce| : -> Time .

op |t-space| : -> Time .

eq |t-bounce| lt |t-space| = true .

msg |press| : Oid -> Msg .

var O : Oid .

eq mte(|press|(O)) = zero .

endoth)

The parameters of the theory DEBOUNCED can be intuitively thought as follows. The class Wrapped is

the class for the internal object that is wrapped by the button debouncer. An operator dest needs to be

provided in order to know whether a message should be forwarded outside of the wrapped configuration. The

constant t-bounce should be mapped to an appropriately measured constant Tmaxbounce. Furthermore, another

constant t-space is required to define the minimal time spacing between two intentional button presses. The

message press is of course the special button press message that we want to debounce. The last equation in

the theory DEBOUNCED says that time should not be allowed to advance when a press message has not yet
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been handled.

Now, the actual pattern itself is quite straight forward. The debouncer pattern is a wrapper around an

object that modifies its behavior by filtering messages. Besides the internal configuration, it also adds a

timer attribute, which is needed to filter the debouncing actions correctly. Note, we use parameter |O| as

an instance of the theory DEBOUNCED.

(tomod DEBOUNCER{|O| :: DEBOUNCED} is

pr RT-COMP .

pr DELAY-MSG .

class !Debouncer{|O|} |

inside : NEConfiguration,

timer : Timer .

The tick and mte equations are the intuitive ones, where we must tick the internal configuration according

to its defined semantics as well as the timer stored in the wrapper object.

eq tick(< O : !Debouncer{|O|} | inside : C, timer : TM >, T)

= < O : !Debouncer{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte(< O : !Debouncer{|O|} | inside : C, timer : TM >)

= minimum(mte(C), mte(TM)) .

Finally, we have the behavioral rules for the object. For receiving messages, all messages that are not

a button press message are forwarded to the internal configuration. Also, all messages output from the

internal object are forwarded to the external wrapper:

crl [forward-in] : IM < O : !Debouncer{|O|} | inside : C >

=> < O : !Debouncer{|O|} | inside : IM C >

if |dest|(IM) == O /\ IM =/= |press|(O) .

crl [forward-out] : < O : !Debouncer{|O|} | inside : OM C >

=> < O : !Debouncer{|O|} | inside : C > OM

if |dest|(OM) =/= O .

When a button press message is received, the behavior will differ based on the timer. If the timer is not

set, then we have an initial button press event, which is immediately forwarded to the internal configuration.

Furthermore, the timer is set for the maximum bounce duration.
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rl [set-timer] : |press|(O) < O : !Debouncer{|O|} | timer : no-timer, inside : C >

=> < O : !Debouncer{|O|} | timer : t(|t-space|), inside : |press|(O) C > .

If the timer is set, then the system is within a bounce duration, and the incoming button press event is

ignored.

crl [ignore-press] : |press|(O) < O : !Debouncer{|O|} | timer : TM, inside : C >

=> < O : !Debouncer{|O|} | inside : C >

if TM =/= timer0 /\ TM =/= no-timer .

Finally, when the timer expires, the timer is removed. This is a model-specific construct that allows the

time to advance.

crl [reset-timer] : < O : !Debouncer{|O|} | timer : TM >

=> < O : !Debouncer{|O|} | timer : no-timer >

if TM == timer0 .

endtom)

3.3.4 Proof of Correctness of the Debouncer Pattern

The button debouncer should essentially mitigate button bounce faults, but we must make precise this

notion and what it means. We essentially need to define a correspondence between ideal behavior and the

debounce pattern behavior under a faulty input. We must define the two transition systems of interest and

express their correspondence. First, we define appropriate projection operations. We need a message filter

and a wrapper remover. πnf only projects the nonfaulty messages. πw projects the object on the inside of

the wrapper. These two projection operators are defined in Maude as follows:

eq pi-nf(C) = pi-nonpress(C) pi-press(C, get-time(C)) .

eq pi-w(< I:Oid : PressDebouncer | inside : C >) = C .

eq pi-w(C C’) = pi-w(C) pi-w(C’) .

eq pi-w(C) = C [owise] .

Here all these operators are frozen. pi-nonpress projects all the components of the configuration that

are not press messages, and pi-press filters all press messages that are not faulty using the defined times

T-bounce and T-space, and also the timer set on the debounce wrapper to filter initial times.
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Definition. States of the transition system Sideal are system configurations with a single instance of a

wrapped object, and such that the input button press messages are spaced by at least the assumed minimal

time spacing.

States of the transition system Swrapped are system configurations with a single instance of a wrapped

object in a wrapper object, and such that input button press messages are related to an ideal button press

configuration by the button press fault Fbounce.

Define a relation H ⊆ Sideal×Swrapped such that siHsf iff πnf (πw((sf ))) = si and time(sf ) = time(si).

Definition. Consider a system with a wrapped object, which in the most general case is a system configu-

ration of the form

S = { C < O : Wrapper | inside : C ′ , timer : TM > } in time T .

We define the following functions:

• nmsgsto(S) is the number of messages in configuration C being sent to oid O.

• nmsgsfrom(S) is the number of messages in configuration C ′ which is being sent to an oid other than

O.

• χtimer is 1 when the timer TM is set, and 0 when TM is just no-timer.

Theorem 3.3.1. The relation H is a well-founded bisimulation, and thus H defines a stuttering bisimulation

between Sideal and Swrapped when considering natural number time.

Proof. By Theorem 2.3.1, we have that H is a well-founded bisimulation if we can find relations µ and µ′ in

both directions. Furthermore, since we are only considering natural number time, if mte > 0, then we tick

the system by 1 time unit as an atomic transition.

First, we show that a well-founded simulation from Sideal to Swrapped exists.

Define

µ(si, sf ) = 0 and

µ′(si, s
′
i, sf ) = 2(nmsgsto(sf ) + nmsgsfrom(sf )) + χtimer(sf ).

Suppose that siHsf . We consider possible cases for the transition si → s′i. For convenience, we denote

the object ID of the internal wrapped object to be Ow.

(1) mte(si) = 0 because a message M needs to be delivered in si, we consider the following cases:

(1.a) M is not a message to Ow, and M is in the external configuration of sf , then sf → s′f takes a

corresponding transition by using the same rule, and we have s′iHs
′
f .
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(1.b) M is a message to Ow, and M is in the internal wrapped configuration of sf , then, again, we can

just take a corresponding transition sf → s′f in the wrapped configuration using the same rule, and we have

s′iHs
′
f .

(1.c) M is a message to Ow, and M is in the external configuration of sf , and M is not a press message,

then the [forward-in] rule is used to transition sf → s′f , and we have siHs
′
f , and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf )

since nmsgsto decreases.

(1.d) M is a message not to Ow but in the internal configuration of sf . Then the [forward-out] rule is

used to transition sf → s′f , we have siHs
′
f and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ) since nmsgsfrom decreases.

(1.e) M is a message to Ow in the external configuration of sf , and M is a press message. Since siHsf ,

this means that the timer is not set, and the rule [set-timer] is used to transition sf → s′f . We have

siHs
′
f , and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ) since 2nmsgsto + χtimer decreases.

(2) if mte(si) > 0, then si → s′i is a tick rule advancing time by one time unit, and we have a few subcases

to consider for possible transitions sf → s′f

(2.a) mte(sf ) > 0, we have a corresponding tick rule sf → s′f by one time that preserves the relation H.

(2.b) mte(sf ) = 0 because the timer in the wrapper has expired. In this case, the only rule to take

is to stop the timer, so sf → s′f only changes the timer from t(0) to no-timer. We have siHs
′
f and

µ(si, s
′
i, s
′
f ) < µ(si, s

′
i, sf ), since the value of χtimer decreases and all other values stay the same.

(2.c) mte(sf ) = 0 because a message needs to be delivered in sf . Since siHsf , and mte(si) > 0, the

message in sf must have been a button press message, and the wrapper timer must be set to some positive

time. This means, that only the rule [ignore-press] can be used. Thus, in the transition sf → s′f , we still

have siHs
′
f , but µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ), since one message to Ow is removed and nmsgsto decreases.

Now, we show the other direction, namely, that a well-founded simulation exists from Sideal to Swrapped.

Define

ν(sf , si) = 2(nmsgsto(sf ) + nmsgsfrom(sf )) + χtimer(sf ) and

ν(sf , s
′
f , si) = 0.

Let H ′ = H−1, and suppose sfH
′si. We consider the following cases:

(1’) mte(sf ) > 0, and sf → s′f is a tick rule advancing time by one time unit. By the homomorphic

definition of mte, if sfH
′si, then mte(si) > 0, and a corresponding one time unit tick step can be taken

si → s′i with s′fH
′s′i.

(2’) sf → s′f uses the [forward-in] rule. In this case, s′fH
′si, and ν(sf , si) > ν(s′f , si), since nmsgsto

decreases.

(3’) sf → s′f uses the [forward-out] rule. Again, we have s′fH
′si, and ν decreases, since nmsgsfrom
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decreases.

(4’) sf → s′f uses the [ignore] rule. Since sfH
′si, we know that the button press message that was

ignored was not originally in si, and s′fH
′si, and ν decreases, since nmsgsto decreases.

(5’) sf → s′f uses the [set-timer] rule. Since sfH
′si, we know that the press message forwarded also

exists in si, and again, s′fH
′si, and ν decreases, since 2nmsgsto + χtimer decreases.

(6’) sf → s′f uses the [reset-timer] rule. This does not change anything with the projected configura-

tion, and s′fH
′si and ν decreases, since χtimer decreases.

(7’) sf → s′f has mte(sf ) = 0, and it transitions by a rule not in the debouncing pattern module. We

assume that all zero-time rules not in the debouncing module are about consuming messages by objects, and

additionally that the debouncer wrapper object does not appear on either side of these rules. Since sfH
′si,

we can take a corresponding transition si → s′i using the same rule with s′fH
′s′i.

This shows that H and H−1 are well-founded simulations, and therefore that we have a bisimulation

between the two systems, as desired.

Note that if we don’t have natural number time, then it is not guaranteed that we have a bisimulation.

A simple counter-example would be one where a button bounces an infinite number of times in a finite

time period. Of course, this is due to Zeno behavior. In order to remove Zeno behavior, we can make the

assumption that all events are spaced at least ∆t apart. This means that if we convert all times t into the

natural number dt/∆te, then the relation is still well founded, and the bisimulation result would still hold.

Notice that any atomic proposition AP defined on a state si can be lifted to a property of sf by labelling

sf according to πnf (πw((sf ))).

3.3.5 Model Checking Case Study for the Buttion Debouncer

We have proved that there is a bisimulation between an ideal system and our fault-tolerant system. We

would like to model check this property for a specific instantiation of the pattern and for a specific subset

of execution paths. The model contains the following parts:

• a simple button counter that counts the number of times the button is pressed,

• the debounced version of the button counter obtained by instantiating our debouncer pattern with the

simple button counter as the wrapped object,

• a system that has parallel execution over time of two different models,

• predicates to relate the simple button counter to the debounced button counter

28



The model-checking should then check that, given equivalent initial states, the simple button counter

with no faults and the debounced button counter with bounce faults executed in parallel should satisfy the

same predicates over time. Here, the predicate that we are most interested in would be that the value of the

counter is the same for both systems.

For our case study, we use a simple counter that counts the number of times a button has been pressed.

To make the problem more interesting, we also count the number of times the button has been released.

(tomod DUAL-COUNTER is

...

class Counter | press-count : Nat, release-count : Nat .

var O : Oid .

var N : Nat .

var T : Time .

op dest : Msg -> Oid .

eq dest(press(O)) = O .

eq dest(release(O)) = O .

eq tick(< O : Counter | >, T)

= < O : Counter | > .

eq mte(< O : Counter | >)

= INF .

rl press(O) < O : Counter | press-count : N >

=> < O : Counter | press-count : s N > .

rl release(O) < O : Counter | release-count : N >

=> < O : Counter | release-count : s N > .

op counter : -> Oid .

op init-counter : -> Configuration .

eq init-counter = < counter : Counter | press-count : 0, release-count : 0 > .
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op get-press : Object ~> Nat .

eq get-press(< O : Counter | press-count : N >) = N .

endtom)

In order to apply the pattern to this problem, we must set the appropriate parameters. The view from

the theory of a wrapped object for debouncing and the dual counter example is as follows:

(view Counter from DEBOUNCED to DUAL-COUNTER is

class |Wrapped| to Counter .

op |dest| to dest .

op |t-bounce| to bounce-duration .

op |t-space| to space-duration .

msg |press| to press .

endv)

With this view, we can instatiate the pattern, and define an initial state:

(tomod PRESS-DEBOUNCER is

pr DEBOUNCER{Counter}*(class !Debouncer{Counter} to PressDebouncer) .

op init-press-debounce-counter : -> Configuration .

eq init-press-debounce-counter =

< counter : PressDebouncer | inside : init-counter, timer : init-timer > .

endtom)

3.3.6 Model Checking Constructs

We now must consider the question of what exactly is the safety property that we are trying to verify. In

this case, we want to show that the pattern provides an ideal abstraction of system execution while the

system is running. To this end, we are really verifying a correspondence between two systems. An ideal

system, and the nonideal system with our pattern applied. The easiest way to compare two system is of

course to execute them simultaneously and define an equivalence relation that should hold on the two states

as a safety invariant. We first must define what we mean by a simultaneous system, and also specify in

Real-Time Maude how to execute it.

(tomod MATCHING-EXEC is
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pr TICK-MTE-SEM .

sort ConfPair .

subsort ConfPair < Configuration .

op _;;;_ : Configuration Configuration -> ConfPair .

op tick : ConfPair Time -> ConfPair .

op mte : ConfPair -> Time .

vars C C’ : Configuration .

var T : Time .

eq tick(C ;;; C’, T) = tick(C, T) ;;; tick(C’, T) .

eq mte(C ;;; C’) = minimum(mte(C), mte(C’)) .

endtom)

Now, in order to verify by model-checking that, regardless of faults, we always have a correct correspon-

dence between the ideal system and the faulty one wrapped by the pattern, we put everything together, the

input model, the ideal press counter, the fault input model, and the debounce pattern:

(tomod MATCHING-EXEC-TEST is

inc MATCHING-EXEC .

inc DUAL-COUNTER-TEST .

inc BOUNCE-TEST .

endtom)

We then model check that the number of button presses captured by both the ideal system and the

pattern based system is the same:

(tsearch [1] in MATCHING-EXEC-TEST :

{ (to-msgs(test-input,counter) init-counter) ;;;

(to-msgs(bounce-fault(test-input,100,nil),counter) init-press-debounce-counter) }

=>*

{ (C:Configuration O:Object) ;;; (C’:Configuration O’:Object) }

such that

mte(C:Configuration) > 0 /\

mte(C’:Configuration) > 0 /\
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mte(get-inside(O’:Object)) > 0 /\

get-press(O:Object) =/= get-press(get-inside(O’:Object))

in time <= 100 .)

Timed search [1] in MATCHING-EXEC-TEST

{(to-msgs(test-input,counter)init-counter);;; to-msgs(bounce-fault(

test-input,100,nil),counter)init-press-debounce-counter} =>* {(

C:Configuration O:Object);;; C’:Configuration O’:Object}

in time <= 100 and with mode maximal time increase with default 1 :

No solution

We indeed see that no counterexamples were found, and that the two systems always have the same

projected state for every instant in time. Note that the condition of checking mte larger than zero is

necessary, since we only care about the states when they are stabilized, or just before time advances. We

don’t want counterexamples where intermediate values of zero-time rewrite rules cause because the two

states are transiently different.

3.4 Pattern to Address Phantom Faults

3.4.1 Phantom Faults

Slight disturbances in the environment (e.g. EMI, moving parts, etc.) leads to a button being unintentionally

pressed for a very short time.

The domain model is exactly the same as that for button bounce. We consider a button input that we

model as discrete messages, and an object that reacts to button inputs by consuming these messages.

A phantom button fault is a relation Fphantom ⊆ Ivalid × Ivalid (implicitly parameterized by a phantom

press duration Tphantom) where faulty button presses of very short durations may occur that is, more precisely,

(b, bf ) ∈ Fphantom iff

1. b(t) = 1 =⇒ bf (t) = 1 (an intentional button press is always registered)

2. if bf (t) = 1 and b(t) = 0, then t − init(bf , t) < Tphantom (the duration of all phantom presses are

bounded by Tphantom)

op phantom-thresh : -> Time .
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Figure 3.2: The Dephantomizer Pattern

op phantom-fault : Input Input -> Bool .

eq phantom-fault(nil, nil) = true .

eq phantom-fault(I press(T), I’ press(T))

= phantom-fault(I,I’) .

eq phantom-fault(I press(T) release(T’), I’ press(T) release(T’))

= phantom-fault(I,I’) .

ceq phantom-fault(I press(T) release(T’), I’ press(R) release(R’))

= phantom-fault(I,I’ press(R) release(R’))

if T gt R’ /\ T’ lt (T plus phantom-thresh) .

eq phantom-fault(I,I’) = false [owise] .

We have the constant phantom-thresh, which defines the minimal time that a button must be held down

in order to be considered a valid button press. It is assumed that intentional button presses will always last

longer than this duration. The rest of the equations match press and release events and ignore ones that

have too short duration (time spacing between them).

3.4.2 Dephantom Pattern

The pattern for handling phantom button events first requires describing the necessary parameters to fully

define its behavior in the parameter theory PHATOMABLE.

Like the button debouncer pattern, the dephantomizer pattern is parameterized, in this case by the
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PHANTOMABLE input theory that describes the nature of the phantom button press fault and the object which

will be wrapped by the pattern. This includes a class |Wrapped| which specifies which object is subject to

the phantom press fault. The |dest| operator which is again used to find which messages to forward to the

outside configuration. The |press| and |release| messages which describe the actual button press events

subject to phantom press faults.

(oth PHANTOMABLE is

pr TICK-MTE-SEM .

class |Wrapped| .

op |dest| : Msg -> Oid .

op |t-phantom| : -> Time .

msg |press| : Oid -> Msg .

msg |release| : Oid -> Msg .

var O : Oid .

eq mte(|press|(O)) = zero .

endoth)

The dephatomizer pattern takes a PHANTOMABLE theory as input and describes a wrapper pattern to

mitigate phantom button press faults. The wrapper structure is very similar to the button debouncer except

for the logic of handling button presses, which is of course necessary since the fault behavior is different for

the pattern.

(tomod DEPHANTOMIZER{|O| :: PHANTOMABLE} is

pr RT-COMP .

pr DELAY-MSG .

class !PhantomIgnore{|O|} |

inside : NEConfiguration,

timer : Timer .

op init-timer : -> Timer .
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eq init-timer = no-timer .

vars T : Time .

var O : Oid .

var TM : Timer .

var C : Configuration .

The equations below defines the wrapper class and the time advancement semantics. This is exactly

the same as the button debouncer case. However, here the timer is used slightly differently to eliminate a

different set of faults. The logic for the timer will be shown later.

eq tick(

< O : !PhantomIgnore{|O|} |

inside : C, timer : TM >,

T)

=

< O : !PhantomIgnore{|O|} |

inside : tick(C, T),

timer : tick(TM, T) > .

eq mte(

< O : !PhantomIgnore{|O|} |

inside : C, timer : TM >)

=

minimum(mte(C), mte(TM)) .

The rule set-timer below sets the timer whenever a button press event is received. The timer is

then used to make sure that the button is pressed for sufficiently long before it is actually recognized as

an intentional button press event. The rule non-phantom-release decides the behavior when the system

receives a release after sufficient time has elapsed, and hence the timer is disabled to no-timer. The rule

phantom-release is applied when a release message is received before the timer expires. This means that

insufficient time has elapsed before a button is released and it is considered a phantom event. Thus, the

button press and the release events are hidden from the internal object. Furthermore, the timer is reset.
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The last rule reset-timer is specified when the timer expires. This means that the button press duration

has just passed the threshold to be registered as a valid press. The press event is forwarded to the internal

configuration.

rl [set-timer] : |press|(O) < O : !PhantomIgnore{|O|} |

timer : no-timer >

=>

< O : !PhantomIgnore{|O|} |

timer : t(|t-phantom|)

> .

rl [non-phantom-release] : |release|(O) < O : !PhantomIgnore{|O|} |

timer : no-timer, inside : C >

=> < O : !PhantomIgnore{|O|} |

inside : |release|(O) C > .

crl [phantom-release] : |release|(O) < O : !PhantomIgnore{|O|} |

timer : TM >

=> < O : !PhantomIgnore{|O|} | timer : no-timer >

if TM =/= timer0 /\ TM =/= no-timer .

crl [reset-timer] : < O : !PhantomIgnore{|O|} | timer : TM, inside : C >

=> < O : !PhantomIgnore{|O|} | timer : no-timer, inside : |press|(O) C >

if TM == timer0 .

The last two rules for forwarding messages in and out from the internal configuration are similar to the

forwarding rules for the debouncer pattern. Indeed, any wrapper that selectively filters certain messages will

have forward rules of this form.

var IM OM : Msg .

crl [forward-in] : IM < O : !PhantomIgnore{|O|} | inside : C >

=> < O : !PhantomIgnore{|O|} | inside : IM C >

if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !PhantomIgnore{|O|} | inside : OM C >
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=> < O : !PhantomIgnore{|O|} | inside : C > OM

if |dest|(OM) =/= O .

endtom)

3.4.3 Proof of Correctness of the Dephantomizer Pattern

As with the button debouncer, we would like to establish a correspondence between the execution of an ideal

system and that of a system with input faults but with the pattern applied. Again, the key is to define a

projection relation between the two systems. However, in this case, in addition to the projection operations,

we also need to define a time translation on button press messages to capture the delays of the pattern.

We first start by defining the delay operator.

(tomod DELAY-MSGS is

inc PHANTOM-COUNTER .

op delay-press : Configuration Time -> Configuration .

var CC CC’ : Configuration .

vars C C’ : NEConfiguration .

vars T T’ : Time .

eq delay-press(C C’, T) = delay-press(C, T) delay-press(C’, T) .

eq delay-press(delay(press(counter), t(T)), T’)

= delay(press(counter), t(T plus T’)) .

eq delay-press(press(counter), T’) = delay(press(counter), t(T’)) .

eq delay-press(CC, T) = CC [owise] .

The first transformation operation of interest is the delay-press, which delays all press messages by a

time duration T. This is useful as the dephantom pattern introduces delays in processing the press messages.

Because of this, a delay transformation is required to show an equivalent execution between an ideal system

and a delayed system.

op remove-small : Configuration -> Configuration .

ceq
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remove-small(

delay(press(counter), t(T)) delay(release(counter), t(T’))

CC)

= remove-small(CC)

if (T’ monus T) le phantom-thresh .

ceq

remove-small(CC

delay(release(counter), t(T))

< O : Dephantom |

inside : CC’,

timer : t(T’) >

)

= remove-small(CC

< O : Dephantom |

timer : no-timer >)

if T le T’ .

eq remove-small(CC) = CC [owise] .

The next projection operation is remove-small which removes all press and release events which are

shorter than the phantom threshold duration. Removing messages in the outer configuration is trivial

enough. The subtle part comes when a press has been consumed by the wrapper but the release is still

pending. In this case, we need to use the value of the timer in the dephantom wrapper to decide if the

message duration was too short.

op remove-wrapper : Configuration -> Configuration .

eq remove-wrapper(CC

< O : Dephantom |

inside : CC’,

timer : t(T) >

)

= CC CC’ delay(press(counter), t(T)) .
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eq remove-wrapper(CC

< O : Dephantom |

inside : CC’ >

)

= CC CC’ [owise] .

endtom)

Finally the last projection relation we need is the remove-wrapper operation. This removes the wrapper

by merging the external and internal configurations, and furthermore, uses the value of the timer to decide

if an additional press message needs to be generated in the projected configuration.

The projection πphantom from a phantom input system with a wrapper to an ideal input system with no

wrapper would be the composition remove-small ; remove-wrapper ; delay-press.

Again, we use the same definitions as with the button bounce case:

Definition. States of the transition system Sideal are system configurations with a single instance of a

wrapped (Dephantom) object, and such that the input button press messages are spaced by at least the

assumed minimal time spacing. States of the transition system Swrapped are system configurations with a

single instance of a wrapped object in a wrapper object, and such that input button press messages are

related to an ideal button press configuration by the button press fault Fphantom.

Define a relation H ⊆ Sideal × Swrapped such that siHsf iff πphantom(sf ) = si and time(sf ) = time(si).

Definition. Consider a system with a wrapped object, which in the most general case is a soup of the form

S = { C < O : Wrapper | inside : C ′ , timer : TM > } in time T .

We define the following functions:

• nmsgsto(S) computes the number of messages in configuration C being sent to oid O.

• nmsgsfrom(S) computes the number of messages in configuration C ′ which is being sent to an oid

other than O.

• χtimer is 1 when the timer TM is set, and 0 when TM is no-timer.

Theorem 3.4.1. The relation H is a well-founded bisimulation, and thus H defines a stuttering bisimulation

between Sideal and Swrapped when considering natural number time.

Proof. First, we show that a well-founded simulation from Sideal to Swrapped exists.

Define µ(si, sf ) = 0 and µ′(si, s
′
i, sf ) = 2(nmsgsto(sf ) + nmsgsfrom(sf )) + χtimer(sf ).
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Suppose that siHsf . We consider possible cases for the transition si → s′i. For convenience, we denote

the object ID of the internal wrapped object to be Ow.

(1) mte(si) = 0 because a message M needs to be delivered in si, we consider the following cases:

(1.a) M is not a message to Ow, and M is in the external configuration of sf , then sf → s′f takes a

corresponding transition by using the same rule, and we have s′iHs
′
f .

(1.b) M is a message to Ow, and M is in the internal wrapped configuration of sf , then again we can

just take a corresponding transition sf → s′f in the wrapped configuration using the same rule, and we have

s′iHs
′
f .

(1.c) M is a message to Ow, and M is in the external configuration of sf , and M is not a press message,

then the [forward-in] rule is used to transition sf → s′f , and we have siHs
′
f , and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf )

since nmsgsto decreases.

(1.d) M is a message not to Ow but in the internal configuration of sf . The the [forward-out] rule is

used to transition sf → s′f , we have siHs
′
f and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ) since nmsgsfrom decreases.

(1.e) M is a message to Ow in the external configuration of sf , and M is a press message. Since siHsf ,

this means that the timer is not set, and the rule [set-timer] is used to transition sf → s′f . We have

siHs
′
f , and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ) since 2nmsgsto + χtimer decreases.

(1.f) In the case when M is a release message, since we already concluded that the timer is not set, then

the [non-phantom-release] rule is used, and it will be similar to the [forward-in] case.

(2) if mte(si) > 0, then si → s′i is a tick rule by one time unit, we have a few subcases to consider for

possible transitions sf → s′f

(2.a) mte(sf ) > 0, we have a corresponding tick rule sf → s′f by one time that preserves the relation H.

(2.b) mte(sf ) = 0 because the timer in the wrapper is expired, in this case, the only rule to take

is to stop the timer, so sf → s′f only changes the timer from t(0) to no-timer. We have siHs
′
f and

µ(si, s
′
i, s
′
f ) < µ(si, s

′
i, sf ) since the value of χtimer decreases and all other values stay the same.

(2.c) mte(sf ) = 0 because a message needs to be delivered in sf . Since siHsf , and mte(si) > 0, the

message in sf must have been a phantom press or release message. If we have a phantom press message,

then the [set-timer] rule is used and 2nmsgsto +χtimer decreases. If we have a phantom release message,

then the wrapper timer must be set to some positive time. This means that the rule [phantom-release]

can be used. Thus, in the transition sf → s′f , we still have siHs
′
f , but µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ), since one

message to Ow is removed, and nmsgsto decreases.

Now, we show the other direction, i.e., that a well-founded simulation from Sideal to Swrapped exists.

Define ν(sf , si) = 2(nmsgsto(sf ) + nmsgsfrom(sf )) + χtimer(sf ) and ν(sf , s
′
f , si) = 0. Let H ′ = H−1,
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and suppose sfH
′si. We consider the following cases:

(1’) mte(sf ) > 0, and sf → s′f is a tick rule by 1 time unit. By the homomorphic definition of mte, if

sfH
′si, then mte(si) > 0, and a corresponding 1 time unit tick step can be taken si → s′i with s′fH

′s′i.

(2’) sf → s′f uses the [forward-in] rule. In this case, s′fH
′si, and ν(sf , si) > ν(s′f , si), since nmsgsto

decreases.

(3’) sf → s′f uses the [forward-out] rule. Again, we have s′fH
′si, and ν decreases, since nmsgsfrom

decreases.

(4’) sf → s′f uses the [set-timer] rule. Since sfH
′si, we know that the press message forwarded also

exists in si, and again, s′fH
′si, and ν decreases, since 2nmsgsto + χtimer decreases.

(5’) sf → s′f uses the [reset-timer] rule. This actually creates a new press message in the internal

configuration, but this is exactly the message that should have been delayed in the ideal configuration, and

s′fH
′si and ν decreases, since χtimer decreases (not adding a new message to the internal configuration with

destination being the internal wrapped object does not increase the value of nmsgsto or nmsgsfrom.

(6’) sf → s′f uses the [phantom-release] rule. Since sfH
′si, we know that the button press message

that was ignored was not originally in si, and s′fH
′si, and ν decreases, since nmsgsto decreases.

(7’) sf → s′f uses the [nonphantom-release] rule. Since sfH
′si, we know that this release is a valid

release message, and it is treated similar to the [forward-out] rule. We have s′fH
′si, and ν decreases, since

nmsgsto decreases.

(8’) sf → s′f has mte(sf ) = 0, and it transitions by a rule not in the pattern module. We assume that

all zero-time rules not in the pattern module are about consuming messages by objects, and additionally

the wrapper object is not on either side of these rules. Since sfH
′si, we can take a corresponding transition

si → s′i using the same rule with s′fH
′s′i.

This shows that H and H−1 are well-founded simulations and, therefore, we have a bisimulation between

the two systems as desired.

3.5 Pattern to Address Stuck Faults

3.5.1 Stuck Faults

When a button is pressed, it may become stuck. This may be caused by deterioration in the spring or sudden

increase in friction due to deformation or adhesives. This results in a persistent logical 1 signal, even though

the button was already released.
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We again have another device-button interaction, and the model is exactly the same as the button bounce

and phantom press cases.

A button stuck fault is a relation Fstuck ⊆ Ivalid× Ivalid such that a faulty button may be held down for

longer durations than intended, or more precisely, (b, bf ) ∈ Fstuck iff:

1. b(t) = 1 =⇒ bf (t) = 1 (a button appears pressed when it is physically pressed, regardless of being

stuck)

2. If bf (t) = 1 and b(t) = 0, then there is a t′ < t s.t. b(t′) = 1 and bf (t′′) = 1 for all t′′ ∈ [t′, t] (a button

can only become stuck after it has been pressed, and stays stuck for a continuous time interval).

We can again describe this declaratively in Maude:

op stuck-duration : -> Time .

op stuck-fault : Input Input -> Bool .

eq stuck-fault(nil,nil) = true .

eq stuck-fault(I release(T), I’) = same-input(I release(T), I’) .

eq stuck-fault(I press(T), I’ release(T’)) = stuck-fault(I press(T), I’) .

ceq stuck-fault(I, I’) = same-input(I,I’) or stuck-fault(I,I’’)

if I’’ release(T) press(T’) := I’ .

eq stuck-fault(I, I’) = false [owise] .

To simplify things, this describes a model where buttons are permanently stuck if they become stuck.

This means that the equations just amounts to checking that the faulty input sequence is a prefix of the

normal input up to the stuck press event. The stuck-duration is a necessary constant to define the minimal

amount of time before a button is considered stuck. It is assumed that normal use of the button will not

have the button being held beyond stuck duration.

3.5.2 Stuck Detection Pattern

Like the button debouncer pattern, the stuck detector pattern takes an input theory that describes the

nature of the stuck button press fault. This includes a class Wrapped which specifies which object is subject

to the phantom press fault. The dest operator which is again used to find which messages to forward to

the outside configuration. The press and release messages which describe the actual button press events

subject to phantom press faults. Furthermore, we have t-stuck to describe the minimal time that the

button will remain stuck. The input theory for the stuck detector pattern is given as follows.
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Figure 3.3: The Stuck Detection Pattern

(oth STUCKABLE is

pr TICK-MTE-SEM .

class |Wrapped| .

op |dest| : Msg -> Oid .

op |t-stuck| : -> Time .

msg |press| : Oid -> Msg .

msg |release| : Oid -> Msg .

var O : Oid .

eq mte(|press|(O)) = zero .

endoth)

The stuck detector pattern is defined in the STUCK-DETECT module below. takes a STUCKABLE theory as

input and describes a wrapper pattern to detect stuck button press faults. The wrapper structure is again

very similar to the button debouncer wrapper.

(tomod STUCK-DETECT{|O| :: STUCKABLE} is

pr RT-COMP .

pr DELAY-MSG .
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class !StuckDetect{|O|} |

inside : NEConfiguration,

timer : Timer,

stuck-err : Bool .

op init-timer : -> Timer .

eq init-timer = no-timer .

op init-stuck-err : -> Bool .

eq init-stuck-err = false .

We first define the necessary attributes of the wrapper object. Besides the internal configuration, we have

a timer for keeping track of when the button has been pressed passed its stuck duration. The stuck-err

bit, which when set to true represents detection of the error. The other constants define initialization values

for each of the attributes.

The tick and mte rules are again similar to the other patterns by propagating the operations homomor-

phically to the internal configuration and timers. Their behavior on objects are defined by the equations

below.

eq tick(

< O : !StuckDetect{|O|} |

inside : C, timer : TM >,

T)

=

< O : !StuckDetect{|O|} |

inside : tick(C, T),

timer : tick(TM, T) > .

eq mte(

< O : !StuckDetect{|O|} |

inside : C, timer : TM >)

=

minimum(mte(C), mte(TM)) .
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The rules for the behavior under button press events is just forwarding all button press and release

messages normally, but setting and resetting the timers appropriately. The last rule, stuck-event, is

applied whenever a button press event is not followed by a release within t-stuck time units. When this

happens, the stuck-err is set to true to indicate detection.

rl [set-timer] : |press|(O) < O : !StuckDetect{|O|} |

timer : no-timer,

inside : C >

=>

< O : !StuckDetect{|O|} |

timer : t(|t-stuck|),

inside : |press|(O) C > .

rl [release-event] : |release|(O) < O : !StuckDetect{|O|} |

inside : C >

=> < O : !StuckDetect{|O|} |

inside : |release|(O) C,

timer : no-timer,

stuck-err : false > .

crl [stuck-event] : < O : !StuckDetect{|O|} | timer : TM >

=> < O : !StuckDetect{|O|} | timer : no-timer, stuck-err : true >

if TM == timer0 .

The forward in and out rules are again similar to the previous two patterns.

var IM OM : Msg .

crl [forward-in] : IM < O : !StuckDetect{|O|} | inside : C >

=> < O : !StuckDetect{|O|} | inside : IM C >

if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !StuckDetect{|O|} | inside : OM C >

=> < O : !StuckDetect{|O|} | inside : C > OM

if |dest|(OM) =/= O .

endtom)
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3.5.3 Proof of Correctness of the Stuck Detection Pattern

The stuck fault is inherently lossy, so the correctness of the pattern is shown in two parts. First, if no stuck

faults occur then we show that the behavior with the pattern is a bisimulation. Second, if a stuck fault

occurs, we can no longer guarantee any correspondence in behavior to the ideal case, but we can guarantee

detection of the fault within a certain time.

For the case with absence of stuck faults, we again show correspondence with a projection relation from

a wrapper system:

op remove-wrapper : Configuration -> Configuration .

eq remove-wrapper(CC

< O : StuckDetector |

inside : CC’ >

)

= CC CC’ .

endtom)

The projection πstuck from a wrapped system for stuck detection to an ideal input system with no

wrapper is just simply the function remove-wrapper.

Again, we use the same definitions as with the button bounce case:

Definition. States of the transition system Sideal are system configurations with a single instance of a

wrapped (StuckDetector) object, and such that the input button press messages are spaced by at least

the assumed minimal time spacing, and the input button press durations (time between consecutive press

and release events) are always at most Tstuck time units apart. States of the transition system Swrapped are

system configurations with a single instance of a wrapped object in a wrapper object, and such that input

button press messages are related to an ideal button press configuration by the button press fault Fstuck.

Define a relation H ⊆ Sideal × Swrapped such that siHsf iff πstuck(sf ) = si and time(sf ) = time(si).

Definition. Consider a system with a wrapped object, which in the most general case is a soup of the form

S = { C < O : Wrapper | inside : C ′ > } in time T .

We define the following functions:

• nmsgsto(S) computes the number of messages in configuration C being sent to oid O.

• nmsgsfrom(S) computes the number of messages in configuration C ′ which is being sent to an oid

other than O.
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• χtimer is 1 when the timer TM is set, and 0 when TM is just no-timer.

Theorem 3.5.1. The relation H is a well-founded bisimulation, and thus H defines a stuttering bisimulation

between Sideal and Swrapped when considering natural number time.

Proof. First, we show that a well-founded simulation from Sideal to Swrapped exists.

Define µ(si, sf ) = 0 and µ′(si, s
′
i, sf ) = 2(nmsgsto(sf ) + nmsgsfrom(sf )) + χtimer.

Suppose that siHsf . We consider possible cases for the transition si → s′i. For convenience, we denote

the object ID of the internal wrapped object to be Ow.

(1) mte(si) = 0 because a message M needs to be delivered in si, we consider the following cases:

(1.a) M is not a message to Ow, and M is in the external configuration of sf , then sf → s′f takes a

corresponding transition by using the same rule, and we have s′iHs
′
f .

(1.b) M is a message to Ow, and M is in the internal wrapped configuration of sf , then, again, we can

just take a corresponding transition sf → s′f in the wrapped configuration using the same rule, and we have

s′iHs
′
f .

(1.c) M is a message to Ow, and M is in the external configuration of sf , and M is not a press message,

then the [forward-in] rule is used to transition sf → s′f , and we have siHs
′
f , and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf )

since nmsgsto decreases.

(1.d) M is a message not to Ow but in the internal configuration of sf . Then the [forward-out] rule is

used to transition sf → s′f , we have siHs
′
f and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ) since nmsgsfrom decreases.

(1.e) M is a message to Ow in the external configuration of sf , and M is a press. The rule [set-timer]

can be applied to transition sf → s′f . In this case, we have siHs
′
f , and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ) since

2nmsgsto + χtimer decreases.

(1.f) In the case that M is a release message, then the [release-event] rule is used, and it will be

similar to the [forward-in] case with a possible added decrease in the value of χtimer.

(2) if mte(si) > 0, then si → s′i is a tick rule advancing time by one time unit, and we have a few subcases

to consider for possible transitions sf → s′f . Note that in this case, by the strict nature of the projection

relation, there cannot be any messages waiting to be delivered in sf .

(2.a) mte(sf ) > 0, we have a corresponding tick rule sf → s′f by one time that preserves the relation H.

(2.b) mte(sf ) = 0 because the timer in the wrapper is expired, in this case, the only rule to take is to

stop the timer, so sf → s′f changes the timer from t(0) to no-timer and changes the value of stuck-err.

We have siHs
′
f and µ(si, s

′
i, s
′
f ) < µ(si, s

′
i, sf ), since the value of χtimer decreases and all other values stay

the same.

Now, we show the other direction, namely, that a well-founded simulation from Sideal to Swrapped exists.
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Define ν(sf , si) = 2(nmsgsto(sf ) + nmsgsfrom(sf )) + χtimer(sf ) and ν(sf , s
′
f , si) = 0. Let H ′ = H−1,

and suppose sfH
′si. We consider the following cases:

(1’) mte(sf ) > 0, and sf → s′f is a tick rule by 1 time unit. By the homomorphic definition of mte, if

sfH
′si, then mte(si) > 0, and a corresponding 1 time unit tick step can be taken si → s′i with s′fH

′s′i.

(2’) sf → s′f uses the [forward-in] rule. In this case, s′fH
′si, and ν(sf , si) > ν(s′f , si), since nmsgsto

decreases.

(3’) sf → s′f uses the [forward-out] rule. Again, we have s′fH
′si, and ν decreases, since nmsgsfrom

decreases.

(4’) sf → s′f uses the [set-timer] rule. Since sfH
′si, we know that the press message forwarded also

exists in si, and again, s′fH
′si, and ν decreases, since 2nmsgsto + χtimer decreases.

(5’) sf → s′f uses the [release-event] rule. We have s′fH
′si and ν decreases, since 2nmsgsto + χtimer

decreases.

(6’) sf → s′f uses the [stuck-event] rule. We have s′fH
′si and ν decreases, since χtimer decreases.

(7’) sf → s′f has mte(sf ) = 0, and it transitions by a rule not in the pattern module. We assume that

all zero-time rules not in the pattern module are about consuming messages by objects, and additionally

the wrapper object is not on either side of these rules. Since sfH
′si, we can take a corresponding transition

si → s′i using the same rule with s′fH
′s′i.

This shows that H and H−1 are well-founded simulations, and therefore, we have a bisimulation between

the two systems as desired.

This shows that under a strict relation H that does not allow for differences in the faulty model (i.e. no

stuck faults occur), then the behavior is a bisimulation, and the added wrapper makes no changes to the

behavior of the system. However when a button does become stuck, we can no longer give any guarantees

about correct behavior, but we can still detect it.

Theorem 3.5.2. Consider a system in Swrapped. If we have a stuck fault such that there exist two consecutive

press and release events on the input delay(press, t) delay(release, t′) such that t′ − t > Tstuck then

the wrapper attribute stuck-err will be set after t+ Tstuck time units.

Proof. First, notice that by the characterization of inputs, the press and release events must alternate. Thus,

at t time units, we either have the first press event, in which case the timer is initalized to no-timer, or

we have the press event following a previous release event which must have been consumed by applying

the [release-event] rule, in which case the timer attribute is still set to no-timer. Thus upon receiving
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the press event at time t, the rule [set-timer] must be applied. This will set the timer value to be Tstuck

and at t + Tstuck time units, we still have received a release message since t′ > t + Tstuck. Thus, the rule

[stuck-event] will be applied, and the stuck-err attribute is set to true at t+ Tstuck time units.
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Chapter 4

A Device Level Safety Pattern

4.1 Safety of Life-Critical Medical Devices

In this chapter we describe in detail a safety pattern called the Command-Shaper Pattern for Medical Devices

that we have found applicable to a range of medical devices. However, before we can talk about a generic

safety pattern, we must first discuss a generic notion of safety for a certain class of medical devices receiving

commands that may be unsafe in some circumstances.

When studying medical device operation, we have found a recurring pattern of command restrictions.

Consider the following three examples:

• Infusion pumps for pain medication are normally incorporated into Patient Controlled Analgesia (PCA)

systems, where the patient can demand additional bolus doses of drugs with the push of a button.

If the patient pushes the button too often, this will clearly lead to depression of the central nervous

system and even death. The PCA needs some safety mechanism to make sure that not too many bolus

doses are administered.

• Pacemakers normally need to adapt the heart rate to the amount of patient activity. However, pace-

maker activity sensors often pick up false positives during bumpy car rides or from noisy vacuum

cleaners. Pacing a heart at high rates for a prolonged period of time could lead to patient discomfort

or even cardiac arrest. Thus, pacemakers must have safety mechanisms to prevent them from pacing

too fast for too long.

• A ventilator machine may need to be turned off temporarily for another piece of equipment to work.

Sometimes medical personnel will forget to turn the ventilator machine back on, potentially causing

brain damage to the patient due to oxygen deprivation. The ventilator should have time triggers to

make sure that it does not turn off too often or for too long.

Intuitively these examples illustrate some common theme with medical devices: human bodies are nor-

mally self stabilizing, and our bodies can normally be placed under some stress temporarily, provided they
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are given sufficient time to recover.

Thus, for the medical device examples presented above, all of the device states can be partitioned into

two types: stressed states and relaxed states. Stressed states are states where the patient cannot stay for

too long (heart pacing too fast, holding breath for too long, etc.) because permanent physical harm may

result for the patient. Relaxed states are states that allow the patient to recover over time from a previous

period of stressed states.

Although the partitioning of device states into stressed and relaxed states is common to many devices, it

should be noted that not all devices can be placed into this category. For example, a glucose-insulin pump

does not have any static relaxed states. There always exist patient contexts where any potential device

state: infuse insulin, infuse glucose, or do nothing could be considered an unsafe action. These devices,

which depend on external context and sensor information for their safety, are not addressed by the safety

pattern that we present in this chapter.

4.2 A Wrapper Pattern for Safety Monitoring

4.2.1 Patterns as Parameterized Specifications

Parameterized modules are very powerful constructs, since a parameterized module really defines a wide

range of modules, one for each possible correct instantiation of its input theories. This means that any

stable theorems we prove about a parameterized module should hold no matter what instantiation of the

input theories are given. This has a nice correspondence with design patterns (design structures that can

be reused within different contexts). If a design pattern can be formalized as a parametrized module and

we prove a safety property for it, then whenever we apply the pattern to a system (assuming the context

satisfies all the preconditions specified by the input theories), we can be sure that the safety property holds

in the instantiated system also.

4.2.2 Overall Idea of the Command-Shaper Pattern

The key idea of the command-shaper pattern is that commands from external devices should only be taken

as suggestions. Figure 4.1 shows this pattern applied in the form of a wrapper around a pacing module in

a cardiac pacemaker. If a command is detected to be deviating or unsafe, the command-shaper can either

ignore the command, or more generally, modify the command into something more reasonable. To do this,

we must first come up with a general definition of which commands are safe, and also, of how to respond to

commands that are unsafe.
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Figure 4.1: Command-Shaper Wrapper Pattern for the Pacemaker

The relavant notion of safety is defined via stressed and relaxed states. Consider the heart rate at which

a pacemaker is pacing the heart. We assume that the doctors customized the pacemaker’s parameters to

adapt to the patient’s normal expected heart rythm. There is a base rate that is assumed to be a safe

minimal heart rate for an inactive patient. In this list of parameters there should also be a threshold heart

rate above which pacing is considered fast. Any heart rate above this threshold will be considered stressed.

Also, any heart rate below this threshold will be considered relaxed. Suppose the patient’s threshold heart

rate is 100 bpm. Every time the heart rate rises above 100 bpm a stress event is recorded in the model. Every

time the heart rate decreases below 100 bpm a relax event is recorded. Assuming all other bodily functions

are operating normally, a log of stress and relax events over time can determine whether the patient is safe

or not. That is, safety can be defined as a function of the stress and relax events recorded over time. For

example if too much time elapses after a stress event and before a relax event, then this is unsafe. This

means that the patient has been in a stressed state too long. Similarly, if very little time elapses after a

relax event followed by a stress event, then this is also unsafe. This is the same as the intuitive notion that

we have too little time to relax before becoming stressed again. Thus, any reasonable definition of safety

must satisfy these two properties.

One more point for safety is that, normally, for proper device operation continuous states should change

gradually in order for the patient to adapt to the effects. For example, in a pacemaker, if the pacing rate

of 100 bpm immediately drops to 60 bpm over 1 second, the patient may start to feel a bit light headed.

Patient safety in this case requires constraining how fast the pacing rate can change over time.

Now that the appropriate notion of safety has been analyzed, we can also describe how to detect whether

a command will be safe or not. Any command that takes the system into a relaxed state is by default safe,
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because the longer we stay in relaxed states the safer the operation. The only commands we need to worry

about are those that take us into stressed states. To detect whether these commands are safe or not, we

must consider whether complying with a command to enter a stressed state will still allow the system to

go back to a relaxed state in the short period of time that is considered safe. If the command violates this

condition, then the system should immediately start to bring the system back to a relaxed state if it was

not already in a relaxed state to begin with.

4.2.3 Formal Models of Event Streams

In any system, changes in untimed state are caused by significant events that occur in the system. Many times

it is useful to keep track of these significant events. These can either be used as auxiliary model elements

to define safety properties during model checking, or they can be part of the system implementation itself

(e.g. black-box recording). Events of interest differ based on where they are used. Therefore, an event

stream is parametrized by the set of events that the system handles. This can be captured by the following

parameterized module EVENT-LOG (note that the sort Mt-Log (empty log) is added to ensure that the empty

log nil will have a least sort when there are multiple distinct instances of EVENT-LOG):

(fmod EVENT-LOG{X :: TRIV} is pr RT-COMP .

sorts NoEventType{X} EventType{X} Event{X} .

sorts Mt-Log Stopped-Event-Log{X} Event-Log{X} .

subsorts X$Elt NoEventType{X} < EventType{X} .

subsort Mt-Log < Stopped-Event-Log{X} < Event-Log{X} < RT-Comp .

op none : -> NoEventType{X} [ctor] .

op E : X$Elt Clock -> Event{X} [ctor] .

op type : Event{X} -> X$Elt .

op elapsed : Event{X} -> Time .

op stop : Event{X} -> Event{X} .

op stopped? : Event{X} -> Bool .

op tick : Event{X} Time -> Event{X} .

op mte : Event{X} -> Time .

var EV : Event{X} . var ET : X$Elt .
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var C : Clock . var L L’ : Event-Log{X} .

var SL : Stopped-Event-Log{X} .

var T T’ : Time .

eq type(E(ET, C)) = ET .

eq elapsed(E(ET, C)) = value(C) .

eq stop(E(ET, C)) = E(ET, stop(C)) .

eq stopped?(E(ET, C)) = stopped?(C) .

eq tick(E(ET, C), T) = E(ET, tick(C, T)) .

eq mte(E(ET, C)) = mte(C) .

op nil : -> Mt-Log [ctor] .

op __ : Event{X} Stopped-Event-Log{X} -> Event-Log{X} [ctor] .

op stop : Mt-Log -> Mt-Log .

op stop : Event-Log{X} -> Stopped-Event-Log{X} .

op append : Mt-Log Mt-Log -> Mt-Log .

op append : Event-Log{X} Stopped-Event-Log{X} -> Event-Log{X} .

cmb EV SL : Stopped-Event-Log{X} if stopped?(EV) .

op log : Mt-Log NoEventType{X} -> Mt-Log .

op log : Event-Log{X} EventType{X} -> Event-Log{X} .

op tick : Mt-Log Time -> Mt-Log .

op tick : Event-Log{X} Time -> Event-Log{X} .

op mte : Event-Log{X} -> Time .

eq stop(nil) = nil .

eq stop(EV L) = stop(EV) stop(L) .

eq append(nil, L) = L .

eq append(EV L , L’) = EV append(L, L’) .
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Figure 4.2: Event Example

eq log(L, none) = L .

eq log(L, ET) = E(ET, clock0) stop(L) [owise] .

eq tick(nil, T) = nil .

--- only the latest event needs to be ticked

--- remaining event clocks are stopped

eq tick(EV L, T) = tick(EV, T) L .

eq mte(nil) = INF .

eq mte(EV L) = mte(EV) .

endfm)

To understand event logs it is helpful to provide an example of how one such log is represented. Figure

4.2 shows a stream of events (with event names A!, B!, C!, D!) and the time durations between them. Also,

there is a reference point to the current time the system is at. To represent this set of events, we first need

to instantiate the set of event names with an appropriate module and view:

(fmod ABCD-EVENT is

sort EventName .

ops A! B! C! D! : -> EventName .

endfm)

(view ABCD-Event from TRIV to ABCD-EVENT is

sort Elt to EventName .

endv)

(fmod ABCD-EVENT-LOG is

pr EVENT-LOG{ABCD-Event} .
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pr POSRAT-TIME-DOMAIN-WITH-INF .

op events : -> Event-Log{ABCD-Event} .

eq events =

E(D!, c(4, run)) E(C!, c(6, stop)) E(B!, c(4, stop))

E(A!, c(5, stop)) nil .

endfm)

The constant events corresponds exactly to the graphical representation of the events in Figure 4.2.

Furthermore, ticking events increases the time elapsed for the latest event:

reduce in ABCD-EVENT-LOG :

tick(events,10)

result Event-Log{ABCD-Event} :

E(D!,c(14,run))E(C!,c(6,stop))E(B!,c(4,stop))E(A!,c(5,stop))nil

Finally, adding an event to the log locks (stops all the clocks for) the time elapsed of all previous events

and starts a clock for the newest event:

reduce in ABCD-EVENT-LOG :

log(tick(events,10),A!)

result Event-Log{ABCD-Event} :

E(A!,c(0,run))E(D!,c(14,stop))E(C!,c(6,stop))E(B!,c(4,stop))E(A!,c(5,

stop))nil

We would also like to highlight a particularly important type of event log for the medical device wrapper,

namely, the stress-relax log. An example of a stress-relax log is shown in Figure 4.3. Given a critical threshold

for a value that changes over time, a !stress event is recorded whenever the value crosses above the threshold,

and a !relax event is recorded whenever the value crosses below the threshold. Also, we assume that the

system starts at a value below the threshold. Notice that a stress-relax log imposes additional structure on

top of event logs:

1. The first event logged must be a !stress event

2. Events must alternate between !stress and !relax events over time

These constraints, and the notion of a stress-relax log, are both captured by the following parameterized

instantiation (plus additional constraints) on event logs:
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Figure 4.3: Stress Relax Event Log

(fmod STRESS-RELAX-EVENT is

sort SREvent .

ops !stress !relax : -> SREvent [ctor] .

endfm)

(view SREvent from TRIV to STRESS-RELAX-EVENT is

sort Elt to SREvent .

endv)

(fmod STRESS-RELAX-LOG is

inc EVENT-LOG{SREvent} .

sorts Stopped-Stress-Relax-Log Stress-Relax-Log .

subsorts Mt-Log

< Stopped-Stress-Relax-Log

< Stopped-Event-Log{SREvent} .
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subsorts Stopped-Stress-Relax-Log

< Stress-Relax-Log < Event-Log{SREvent} .

op tick : Stress-Relax-Log Time -> Stress-Relax-Log .

var C C’ : Clock .

var SL : Stopped-Stress-Relax-Log .

var L : Stress-Relax-Log .

cmb E(!stress, C) nil : Stopped-Stress-Relax-Log

if stopped?(C) .

cmb E(!stress, C) E(!relax, C’) SL : Stopped-Stress-Relax-Log

if E(!relax, C’) SL : Stopped-Stress-Relax-Log

/\ stopped?(C) .

cmb E(!relax, C) E(!stress, C’) SL : Stopped-Stress-Relax-Log

if E(!stress, C’) SL : Stopped-Stress-Relax-Log

/\ stopped?(C) .

mb E(!stress, C) nil : Stress-Relax-Log .

cmb E(!stress, C) E(!relax, C’) SL : Stress-Relax-Log

if E(!relax, C’) SL : Stopped-Stress-Relax-Log .

cmb E(!relax, C) E(!stress, C’) SL : Stress-Relax-Log

if E(!stress, C’) SL : Stopped-Stress-Relax-Log .

endfm)

4.2.4 Abstract Safety Definition

It would be absurd to define a safety pattern without first defining what it means to be safe. Furthermore,

it would be desirable to develop a generic form of safety for the class of devices receiving potentially unsafe

commands that we are considering so that, once instantiated, it can be used as an input to derive a concrete

design. This derivation of a design from safety definitions is exactly what is captured in the notion of a

formal safety pattern. This subsection describes the generic theory of safety for the class of medical devices

described in Section 4.1.
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Devices and their states are modeled as objects. For a device that has statically enforceable safety,

we characterize states by a totally ordered set of values with an upper and lower bound, vmax and vmin,

respectively. Intuitively, the order compares the relative safety of two states, with smaller values being safer

than larger values. Any state outside the upper and lower bound is assumed to be invalid. From now on, we

assume that only valid device states are set. Furthermore, there is a critical value vcrit such that any valid

value v, is considered relaxed when v ≤ vcrit, and is considered stressed when v > vcrit.

As a brief example, a pacing module with the state being the pacing rate may have vmin = 60bpm,

vmax = 120bpm, and vcrit = 90bpm. Thus, a rate of 40bpm or 200bpm is invalid, a rate of 70bpm is relaxed,

and a rate of 100bpm is stressed.

Furthermore, we want to have a generic way of characterizing the safe amount of time that devices can re-

main in relaxed and stressed states. This is captured by a predicate safe? defined on the Stress-Relax-Log

of the system state. Implicitly, it is assumed that a !stress event is recorded when the device state rises

above vcrit, and a !relax event is recorded when the state falls to or below vcrit. The safe? predicate is left

generic, so that arbitrarily complex conditions on time bounds can be defined on stress and relax intervals

because the Stress-Relax-Log maintains all the history. However safe? should satisfy some monotonicity

assumptions based on our knowledge of the domain. Some of these assumptions include that staying in a

stress situation for a longer amount of time cannot make a device safe when it was unsafe before. Also,

staying in a relax situation for a longer amount of time should keep the device safe if it was safe before.

The detailed requirements for state safety are captured in the following theory SAFE-STATE, whose axioms

are discussed subsequently.

(fth SAFE-STATE is

inc TOTAL-ORDER * (

sort Elt to Val,

op _<=_ to _<=risk_

) .

pr STRESS-RELAX-LOG .

ops min-val max-val crit-val safe-val : -> Val .

eq min-val <=risk safe-val = true .

eq safe-val <=risk crit-val = true .

eq crit-val <=risk max-val = true .
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op period : -> Time . --- period of wrapper dispatch

op delta : Val Val -> Val .

op tdelta-min : Val Val -> TimeInf .

...

op safe? : Stress-Relax-Log -> Bool .

op norm : Stress-Relax-Log -> Stress-Relax-Log .

...

endfth)

The SAFE-STATE theory defines an operator <=risk, which we shall write as ≤risk, where A ≤risk B

means that A is safer or less risky than B. Furthermore, in terms of risk, there are four key constants

vmin ≤risk vsafe ≤risk vcrit ≤risk vmax as described before. The relations between these values are described

by the following equations:

eq min-val <=risk safe-val = true .

eq safe-val <=risk crit-val = true .

eq crit-val <=risk max-val = true .

Real-time systems normally require a period of operation. Here, period, conventionally denoted T , is

assumed to have sort Time and defines a constant period of execution. For two values V, V ′, the operator

delta(V, V ′), which we will write as ∆(V, V ′), defines the value maximally changed from V towards the

direction of V ′ in one period. The tdelta-min(V, V ′), which we write as t∆min(V, V ′), defines the minimum

amount of time it will take to change from V to V ′. Because values are assumed to be modified only during

dispatch, which occurs once every period, it follows that t∆min must be a multiple of the period. The

functions ∆(V, V ′) and t∆min(V, V ′) are related by the following equations:

var V V’ V’’ : Val .

eq [no-delta] : delta(V, V) = V .

ceq [delta-bound] :

((V <=risk V’’) and (V’’ <=risk V’)) or

((V’ <=risk V’’) and (V’’ <=risk V)) = true

if delta(V, V’) = V’’ .

ceq [delta-mono] : delta(V, V’) <=risk delta(V, V’’) = true if V’ <=risk V’’ .
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ceq [delta-max] : delta(V,V’) = delta(V,V’’) = true

if delta(V,V’) =/= V’ /\ V’ <=risk V’’ .

eq [no-tdelta] : tdelta-min(V, V) = zero .

ceq [ind-tdelta] : tdelta-min(V, V’) = tdelta-min(delta(V,V’), V’) plus period

if V =/= V’ .

ceq [tdelta-mono] : tdelta-min(V’, V) le tdelta-min(V’’, V) = true

if V <=risk V’ /\ V’ <=risk V’’ .

The first few equations state that ∆ must change V towards V ′ without going over. That is, if V ≤risk V ′,

then V ≤risk ∆(V, V ′) ≤risk V ′′. If V ′ ≤risk V , then V ′ ≤risk ∆(V, V ′) ≤risk V . Also, we have a delta-max

constraint, which essentially states that if a value is changing to become a safe value, it should change at a

maximal rate, unless the target value can be reached in one step.

The next set of equations describe how t∆min relates to ∆. Essentially, to change from V to V ′, the time

t∆min(V, V ′) is inductively characterized (equation ind-tdel) by the number periods required for to reach

V ′ using ∆. The final tdel-mono constraint makes sure that the minimum time taken to reach a safer value

cannot be larger than closer values.

It is important to note that if repeated applications of ∆ from V towards V ′ never reach V ′, then it

should be the case that t∆min(V, V ′) = INF. The equations still hold in this case because of the equality

INF+T = INF. Normally, we do not have to worry about INF, when all values are eventually reachable from

every other value.

The most important function in SAFE-STATE is the predicate safe? which characterizes whether a

Stress-Relax-Log is safe (intuitively describing the time bounds on stressed states for safety). Furthermore,

we define a norm operator, which will shorten the length of a Stress-Relax-Log without influencing the

value of the safe? predicate over time. The definition of safe? must satisfy the following conditions:

var T T’ : Time .

var CA : ClockAttr .

var SRE : SREvent .

var L L’ : Stress-Relax-Log .

eq [initially-safe] : safe?(nil) = true .

--- instantaneous safety equivalent to safety with stopped time

eq [stopped-safe] : safe?(E(SRE, c(T, CA)) L) =

safe?(E(SRE, c(T, stop)) L) .
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--- safety implies safety of all sub-logs

eq [sub-safe] : safe?(E(SRE, c(T, CA)) L)

implies safe?(L) = true .

--- decreasing stress durations preserves safety

ceq [stress-safe] : safe?(E(!stress, c(T’, CA)) L) implies

safe?(E(!stress, c(T, CA)) L) = true

if T’ ge T .

--- safety is preserved while in a relaxed state

eq [relax-safe] : safe?(E(!relax, c(T, CA)) L) =

safe?(L) .

A Stress-Relax-Log is assumed to be initially nil, so the equation initially-safe states that the

system is assumed to satisfy safe? initially. The equation stopped-safe states the simple fact that

stopping the duration of the last event does not affect the value of safe?. The next three equations define

the monotonic property of safe?. The equation sub-safe states that any sub-log of a log satisfying safe?

must also satisfy safe?. The equation stress-safe states that if a stress duration is made shorter, it

cannot make the system unsafe if it was safe before. The equation relax-safe states that adding any

relaxed duration will be safe if the log was safe before.

The last operator norm is really a modeling construct used for efficiency of representation. Instead of

maintaining an unbounded list of events that grows over time, it is often possible to contract or normalize

the history of events to a list of bounded size. This is also important to ensure that term sizes and the

untimed state space are not unbounded (in the latter case, the equations defining the norm operator can be

thought of as an equational abstraction).

--- normalization preserves log structure

--- norm-tick-sort

cmb tick(norm(L), T) : Stress-Relax-Log

if tick(L, T) : Stress-Relax-Log .

--- norm-app-sort

cmb append(L’, stop(norm(L))) : Stress-Relax-Log

if append(L’, stop(L)) : Stress-Relax-Log .

--- normalization preserves safety

eq [norm-tick-safe] : safe?(tick(norm(L), T)) =

safe?(tick(L, T)) .
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ceq [norm-log-safe] : safe?(append(L’, stop(norm(L)))) =

safe?(append(L’, stop(L)))

if append(L’, stop(L)) : Stress-Relax-Log .

--- normalization is idempotent

eq [norm-tick] : norm(tick(norm(L), T)) = norm(tick(L, T)) .

eq [norm-app] : norm(append(L’, stop(tick(norm(L), T))))

= norm(append(L’, stop(tick(L, T)))) .

The first two membership statements are requirements on the sort-preserving (i.e. data-structure-

preserving) property of norm. These state that norm preserves the Stress-Relax-Log structure of the

list. The next few equations state that norm will not affect the value of safe?. The last equations norm-tick

and norm-app state that norm is idempotent, in that applying norm is not affected by also applying norm

to any sub-logs. It can be shown, based on the equational requirements of norm, that applications of norm

cannot alter the value of safe? on a list, regardless of how it is interleaved with applications of the tick

operator.

4.3 Command Shaper Pattern as a Parametrized Specification

Now that we have a formal definition of what we are considering for safety. We describe the pattern that

addresses all of these safety requirements in a medical device. Mostly intercepting commands to medical

devices so that:

• device operation stay within minimum and maximum thresholds,

• device operation does not exceed maximum rate of change requirements,

• device operation satisfies timing requirements defined by stress-relax requirements.

4.3.1 Wrapped Object Theory

Before we describe a wrapper, it is necessary to describe exactly what it is that we are wrapping. As already

mentioned, the wrapped object is assumed to have a state and to receive external messages to change this

state. Furthermore, it may also send output messages to interact with its environment. We define the

WRAPPED-OBJECT theory as follows:

(oth WRAPPED-OBJECT is
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inc SAFE-STATE .

inc TICK-MTE-SEM .

class Wrapped | set-val : Val .

sort InMsg .

sort OutMsg .

subsorts InMsg OutMsg < Msg .

msg set-val : Oid Val -> InMsg .

var O : Oid .

vars V V’ : Val .

eq mte(set-val(O, V)) = zero .

rl [wrapped-recv] : set-val(O, V)

< O : Wrapped | set-val : V’ >

=> < O : Wrapped | set-val : V > .

--- assumes that all messages sent to external objects are of sort OutMsg

--- assumes that set-val is the only message of sort InMsg sent from external objects

endoth)

The wrapped object is of class Wrapped, and has a single attribute set-val for its state (recall that this is

the totally ordered set of values with the order operator ≤risk from the theory SAFE-STATE). We distinguish

messages into input and output messages. This is so that the wrapper knows which messages to forward to

the external configuration. A message set-val is assumed to be the only message of sort InMsg. Also, the

behavior when receiving the message is fixed, and it is assumed that the wrapped object will immediately

set the state to the new state specified by the message. The fact that the message is immediately delivered is

specified by the fact that mte is 0, so that time will not be allowed to advance until the message is received.
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4.3.2 Parameterized Wrapper Object

The wrapper class structure is parametrized based on an instance of the WRAPPED-OBJ theory. The definition

of the wrapper is split up into three modules for ease of readability. The first part of the wrapper defines

the wrapper object itself with the appropriate accessor and modifier operations for each attribute. This is

shown in the parametrized EPR-WRAPPER module:

(tomod EPR-WRAPPER{X :: WRAPPED-OBJECT} is

class EPR-Wrapper{X} | inside : NEConfiguration,

next-val : X$Val, val : X$Val, disp : Timer,

stress-intervals : Stress-Relax-Log .

op _get-next-val : Object ~> X$Val [frozen] .

op _get-val : Object ~> X$Val [frozen] .

op _set-next-val_ : Object X$Val ~> Object [frozen] .

op _set-val_ : Object X$Val ~> Object [frozen] .

op _log-stress_ : Object EventType{SREvent} ~> Object [frozen] .

op _norm-stress : Object ~> Object [frozen] .

op _deliver : Object ~> Object [frozen] .

var O : Oid .

var V V’ : X$Val .

var L : Stress-Relax-Log .

var E : EventType{SREvent} .

var C : NEConfiguration .

eq < O : EPR-Wrapper{X} | next-val : V > get-next-val = V .

eq < O : EPR-Wrapper{X} | val : V > get-val = V .

eq < O : EPR-Wrapper{X} | next-val : V > set-next-val V’

= < O : EPR-Wrapper{X} | next-val : V’ > .

eq < O : EPR-Wrapper{X} | val : V > set-val V’

= < O : EPR-Wrapper{X} | val : V’ > .
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eq < O : EPR-Wrapper{X} | stress-intervals : L > log-stress E

= < O : EPR-Wrapper{X} | stress-intervals : log(L, E) > .

eq < O : EPR-Wrapper{X} | stress-intervals : L > norm-stress

= < O : EPR-Wrapper{X} | stress-intervals : norm(L) > .

eq < O : EPR-Wrapper{X} | inside : C, val : V > deliver

= < O : EPR-Wrapper{X} | inside : (set-val(O, V) C) > .

endtom)

The EPR-Wrapper class has four attributes. The inside attribute defines the internal wrapped configu-

ration. This is assumed to contain an instance of an object of the instantiated class Wrapped and possibly

various messages of type InMsg and OutMsg. The next-val and val attributes describe the next requested

(target) state and the current state respectively. The last attribute stress-intervals is the log of stress

and relaxed events used to evaluate safety. All the operators perform the intuitive operations of accessing

and modifying objects. Notice how they are all frozen in order to prevent any rewrites while we are trying

to obtain the attributes for the wrapper object.

4.3.3 Safety Envelope Calculations for the Wrapper

It is useful to have a parametrized module to describe various auxiliary operations based on the operations

defined in the theory SAFE-STATE:

(fmod WRAPPER-AUX{X :: WRAPPED-OBJECT} is inc EPR-WRAPPER{X} .

op cap : X$Val -> X$Val .

op stress? : X$Val -> Bool .

ops toStress? toRelax? : X$Val X$Val -> Bool .

op inEnv? : X$Val Stress-Relax-Log -> Bool .

var V V’ : X$Val .

ceq cap(V) = min-val if V <=risk min-val .

ceq cap(V) = max-val if max-val <=risk V .

eq cap(V) = V [owise] .

eq stress?(V) = not (V <=risk crit-val) .
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eq toStress?(V, V’) = not stress?(V) and stress?(V’) .

eq toRelax?(V, V’) = stress?(V) and not stress?(V’) .

var L : Stress-Relax-Log .

ceq [inenv-unreachable] : inEnv?(V, L) = false

if tdelta-min(V, crit-val) == INF /\ stress?(V) .

ceq [inenv-stress] : inEnv?(V, L) = safe?(L) and

safe?(log(tick(L, tdelta-min(V, crit-val) plus period), !relax))

if stress?(V) /\ tdelta-min(V, crit-val) :: Time .

ceq [inenv-relax] : inEnv?(V, L) = safe?(L) if not stress?(V) .

endfm)

The operator cap changes the value to be within the min and max risk range, if it was originally outside

of that range. The predicates toStress? and toRelax? describe when a value has crossed the crit-val

threshold in the more risky direction or less risky direction, respectively.

The last predicate inEnv?, which is an abbreviation for inside the envelope, is one of the most important

predicates for the pattern. It is used to detect whether a configuration can persistently satisfy the safe?

predicate in the future by performing a look ahead to see the shortest time it will take to reach a relaxed

state. It is worthwhile to discuss the properties of the inEv? predicate in more detail.

It is easy to see that inEnv? is a stronger predicate than safe?. All the equations for inEnv? can

be written in the form inEv?(V,L) = safe?(L) ∧ t (where t is an abitrary boolean term). Essentially,

inEnv? strengthens safe? so that it becomes inductive for each step of system execution. That is, if

inEv?(V,L) = true, then there always exists a controllable path of operation for the system to remain safe.

Figure 4.4 provides an intuition for this as a device state can only be in the envelope when it has sufficient

time to transition back to a safe state. The top part of the figure shows the shaded regions satisfying safe?,

and the bottom part of the figure shows the shaded regions satisfying inEv?.

4.3.4 Wrapper Execution

Finally, with all the auxiliary functions and the wrapper object fully defined, we can now describe how a

wrapper object should execute. Intuitively, the wrapper should filter and correct improper settings for the

state, so that the system always remains safe.

The wrapper executes with periodicity given by the period defined in the input theory SAFE-STATE.

During each period of execution, the wrapper must update the set state so that safety is maintained. The
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Figure 4.4: Characterization of the Stress Envelope
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wrapper also logs events !stress or !relax whenever the value of the predicate stress? changes for the

state of the system. Furthermore, any messages the wrapper receives will be buffered immediately in the

attribute next-val, but this attribute will not be used until the next dispatch time corresponding to the

period of execution. This means that if multiple messages are received, only the last buffered message is

used in the computation of the next state. The specification of the wrapper execution is describe in the

module EPR-WRAPPER-EXEC:

(tomod EPR-WRAPPER-EXEC{X :: WRAPPED-OBJECT} is

inc WRAPPER-AUX{X} .

op log-entry : X$Val X$Val ~> EventType{SREvent} .

op next-val : Object ~> X$Val [frozen] .

var O : Oid .

var L : Stress-Relax-Log .

var V V’ V’’ : X$Val .

var T T’ : Time .

ceq log-entry(V, V’) = !stress if toStress?(V, V’) .

ceq log-entry(V, V’) = !relax if toRelax?(V, V’) .

eq log-entry(V, V’) = none [owise] .

ceq next-val(< O : EPR-Wrapper{X} | val : V, next-val : V’, stress-intervals : L >

= delta(V, safe-val)

if not inEnv?(delta(V, V’), log(L, log-entry(V, delta(V, V’)))) .

ceq next-val(< O : EPR-Wrapper{X} | val : V, next-val : V’, stress-intervals : L >)

= delta(V, V’) if inEnv?(delta(V, V’), log(L, log-entry(V, delta(V, V’)))) .

var C : NEConfiguration .

var M : X$OutMsg .

crl [dispatch] :
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< O : EPR-Wrapper{X} | disp : t(T), val : V, next-val : V’ >

=> (< O : EPR-Wrapper{X} | disp : t(period), next-val : V’’, val : V’’ >

log-stress log-entry(V, V’’)) norm-stress deliver

if V’’ := next-val(< O : EPR-Wrapper{X} | >) /\ T == zero .

rl [recv] : set-val(O, V) < O : EPR-Wrapper{X} | >

=> < O : EPR-Wrapper{X} | next-val : cap(V) > .

rl [forward] : < O : EPR-Wrapper{X} | inside : C M >

=> < O : EPR-Wrapper{X} | inside : C > M .

eq mte(< O : EPR-Wrapper{X} | inside : C, disp : t(T) >)

= minimum(T, mte(C)) .

eq tick(< O : EPR-Wrapper{X} | stress-intervals : L,

disp : t(T), inside : C >, T’)

= < O : EPR-Wrapper{X} | stress-intervals : tick(L, T’),

disp : tick(t(T), T’), inside : tick(C, T’) > .

endtom)

The first few equations describe how to log the values into the stress-intervals attribute of a wrapper,

and also how to advance to the next state taking into account the suggestions of the buffered input value.

The rule dispatch describes how to update all the attributes inside a wrapper. The rule recv will buffer any

messages to set the next state immediately (without processing it). Finally, the rule forward will forward

messages in the internal configuration of sort OutMsg as defined in the theory WRAPPED-OBJ. The last few

equations for mte and tick propagate these functions to the internal configuration. This is in accordance

with the requirements in Theorem 4.5.15 for ensuring time robustness.

An important minor detail to notice is that the buffered suggestion for the next state is overwritten

with the next state set upon dispatch. This means that, to maintain a target trajectory for the state, a

controller for the state must continue to send messages to the wrapper with target values. This is important

for effective operation, because if a controller disconnects, then the next suggested state is soon overwritten

and no obsolete commands are stored.

4.3.5 Some Pattern Instantiations

At this point, we have fully defined the formal Command Shaper Pattern. Furthermore, any instantiation of

the pattern has provably nice properties for safety as will be shown in Section 4.5.6. In this subsection, we
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show some instantions of the pattern to a cardiac pacemaker and to an infusion pump. Once instantiated, the

specifications also become executable, so we are able to use model checking to validate with the Real-Time

Maude tool that, for given initial states, our specifications are indeed safe.

Pacemaker Instantiation

The pacemaker system represents a quite general application of the Command Shaper Pattern. It preserves

the structure of the pattern without introducing any collapsing of terms or degeneracies, so it is a good test

case to completely cover most constructs of the pattern.

We assume that the instantiation is customized to a specific patient, where the specific patient safety

properties are as follows (since pacing periods are more naturally modelled than a pacing rate, we set the

constraints on pacing periods):

1. Only pacing periods in the range between 500ms (120 bpm) and 1000ms (60 bpm) are considered valid.

2. Any pacing period below 660ms (above 90bpm) is considered stressful.

3. The pacemaker should not pace continuously at stressful rates for more than one minute.

4. Once the pacemaker’s pacing rate drops down from stressful rates, the pacing rate should remain

relaxed for a duration proportional to twice the previous stress interval.

5. The pacing period can be updated at most once every second.

6. An updated pacing period can increase the period by at most 30ms from the previous pacing period,

or it can decrease the period by at most 20ms from the previous pacing period.

All of these pacing requirements are captured in the module SAFE-PACEMAKER-DURATION with each time

unit representing 10ms.

(fmod SAFE-PACEMAKER-DURATION is

pr STRESS-RELAX-LOG .

--- time unit: 10ms

op _<=risk_ : Time Time -> Bool .

ops max-risk-dur min-risk-dur crit-dur safe-dur : -> Time .

var D D’ : Time .

eq D <=risk D’ = D ge D’ . --- longer duration are less risky
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Requirements 1 and 2 constraining the pacing periods are specified as follows:

eq min-risk-dur = 100 . --- x 10ms = 60 bpm

eq safe-dur = 75 . --- x 10ms = 80 bpm

eq crit-dur = 66 . --- x 10ms = 90 bpm

eq max-risk-dur = 50 . --- x 10ms = 120 bpm

Requirements 5 and 6 constraining the rate of change can be specified as follows:

op period : -> Time .

op risk-dec-max : Time -> Time .

op risk-inc-max : Time -> Time .

eq period = 100 . --- x 10ms = 1s

eq risk-dec-max(D) = 2 . --- x 10ms = 20ms

eq risk-inc-max(D) = 3 . --- x 10ms = 30ms

op del : Time Time -> Time .

op del-inc-risk : Time Time -> Time .

op del-dec-risk : Time Time -> Time .

ceq del(D, D’) = del-inc-risk(D, D’) if (D <=risk D’) .

eq del(D, D’) = del-dec-risk(D, D’) [owise] .

ceq del-inc-risk(D, D’) = D’ if (D - D’ <= risk-inc-max(D)) .

eq del-inc-risk(D, D’) = D - risk-inc-max(D) [owise] .

ceq del-dec-risk(D, D’) = D’ if (D’ - D <= risk-dec-max(D)) .

eq del-dec-risk(D, D’) = D + risk-dec-max(D) [owise] .

op ndel-min : Time Time -> Nat .

op tdel-min : Time Time -> TimeInf .

--- assumes that ndel-min recurrence terminates

--- which is the case with the current definition
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--- subtle issue : could appear to converge but not terminate

eq ndel-min(D, D) = 0 .

ceq ndel-min(D, D’) = s ndel-min(del-inc-risk(D, D’), D’) if

(D <=risk D’) and (D <=risk del-inc-risk(D, D’)) [owise] .

ceq ndel-min(D, D’) = s ndel-min(del-dec-risk(D, D’), D’) if

(D’ <=risk D) and (del-dec-risk(D, D’) <=risk D) [owise] .

ceq tdel-min(D, D’) = ndel-min(D, D’) * period if

ndel-min(D, D’) :: Nat .

eq tdel-min(D, D’) = INF [owise] .

Finally, requirements 3 and 4, which are a bit more verbose to specify due to the generality of the input

theory, are shown below:

op max-stress-interval : -> Time .

op min-relax-interval : Time -> Time .

op safe? : Stress-Relax-Log -> Bool .

op norm : Stress-Relax-Log -> Stress-Relax-Log .

var T : Time .

eq max-stress-interval = 6000 . --- x 10ms = 1 min

eq min-relax-interval(T) = 2 * T .

vars C C’ C’’ : Clock .

var L : Stress-Relax-Log .

eq safe?(nil) = true .

eq safe?(E(!stress, C) L) = safe?(L) and

value(C) <= max-stress-interval .

eq safe?(E(!relax, C) E(!stress, C’) L) =

safe?(E(!stress, C’) L) .

eq safe?(E(!stress, C’’) E(!relax, C) E(!stress, C’) L) =

safe?(E(!stress, C’) L) and

value(C’’) <= max-stress-interval and
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value(C) >= min-relax-interval(value(C’)) .

eq norm(nil) = nil .

ceq norm(E(!stress, C) L) = E(!stress, C) nil if

safe?(E(!stress, C) L) .

eq norm(L) = L [owise] .

endfm)

Notice that, in addition to requirements 3 and 4, we also included a definition of norm which will throw

away all history aside from the current stress duration if everything is already safe. This makes sense, since

for the defined pacemaker safety properties, there is no need to keep track of previous stress durations that

the patient has already had sufficient time to recovered from.

After safety has been defined for the pacemaker, we can specify how the internal (wrapped) pacing

module behaves. Notice that a module called EXTERNAL-CONFIGURATION is included. This is used for

creating emulations, introducing sorts InExtMsg and OutExtMsg for external input and output messages

respectively. These can be treated as just normal messages for the time being.

(omod WRAPPED-PACING-MODULE is

pr SAFE-PACEMAKER-DURATION .

inc EXTERNAL-CONFIGURATION .

sort SetMsg PropMsg .

subsort SetMsg PropMsg < InExtMsg .

class Pacing-Module | nextPace : Timer, period : Time .

msg set-period : Oid Time -> SetMsg .

op pace : -> OutExtMsg .

var O : Oid .

var TM : Timer .

var T T’ : Time .

eq tick(< O : Pacing-Module | nextPace : TM >, T)
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= < O : Pacing-Module | nextPace : tick(TM, T) > .

eq mte(< O : Pacing-Module | nextPace : TM >)

= mte(TM) .

rl [set-period] :

set-period(O, T) < O : Pacing-Module | period : T’ >

=> < O : Pacing-Module | period : T > .

crl [reset-next-pace] :

< O : Pacing-Module | nextPace : TM, period : T >

=> < O : Pacing-Module | nextPace : t(T) > pace

if TM == timer0 .

endom)

Notice that many of the defined parameters have names which are different from the original default

names in the pattern definition. This renaming is conveniently taken care of in the view from our module

to the input theory for the pattern.

(view Safe-Pacer from WRAPPED-OBJECT to WRAPPED-PACING-MODULE is

sort Val to Time .

sort SetMsg to SetMsg .

sort PropMsg to PropMsg .

sort InMsg to InExtMsg .

sort OutMsg to OutExtMsg .

op min-val to min-risk-dur .

op max-val to max-risk-dur .

op crit-val to crit-dur .

op safe-val to safe-dur .

class Wrapped to Pacing-Module .

attr Wrapped . set-val to period .

msg set-val to set-period .

endv)
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Now that the view to the pattern’s input theory is fully specified, we can finally instantiate the pattern

to an executable system specification:

(tomod PARAM-PACEMAKER is

pr EPR-WRAPPER-EXEC{Safe-Pacer} .

pr PM-LEAD-SAFETY-PROP .

pr PM-PACING-MODULE .

pr DELAY-MSG .

op init : -> Configuration .

op wrapper-init : -> Object .

op extern-init : -> Object .

op msgs-init : -> Configuration .

ops wrapper pacing-module lead : -> Oid .

op shock : -> OutExtMsg .

eq pace = shock .

eq init = msgs-init wrapper-init extern-init .

eq msgs-init =

delay(set-period(pacing-module, 50), t(99))

... --- more delayed messages delivered at different times

delay(set-period(pacing-module, 50), t(899)) .

eq wrapper-init =

< pacing-module : EPR-Wrapper{Safe-Pacer} |

inside :

< pacing-module : Pacing-Module | nextPace : t(0), period : safe-dur >,

val : safe-dur, next-val : safe-dur, disp : t(period),

stress-intervals : (nil).Event-Log{Stress-Relax} > .

eq extern-init =

< lead : Lead |

shocks : (nil).Event-Log{Shock} > .

endtom)
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An important thing to notice is that the object ID of the wrapper module is exactly the same as the

internal module being wrapped. This is needed for modularity. Essentially, this allows the wrapper object to

be used wherever the original (wrapped) object can be used, receiving the exact same set of input messages.

The model also includes in its initial state the term msgs-init which is a set of initial delayed messages

to simulate external input and an external environment model extern-init which includes the pacemaker

lead delivering the shock.

Infusion Pump Instantiation

The instantiation of the infusion pump is similar to that of the pacemaker. However, continuous infusion

rates can normally be abstracted into three states: no infusion, base infusion, and bolus infusion. For

example, in patient controlled analgesia, base infusion specifies a minimal infusion rate that is safe and able

to keep a resting patient reasonably sedated, and bolus infusion specifies a temporary high infusion rate to

relieve immediate pain. With these state abstractions, what happens is that we obtain a degenerate view

of the pattern, where different terms in the input theory actually get collapsed to a same term through

the view. Of course, this is perfectly legitimate instantiation, and it shows how a generic pattern can be

instantiated to a more constrained system.

We assume that the base infusion rates and bolus infusion rates are customized for each individual

patient (depending on age, medical conditions, and other factors). An example safety property instantiation

of an infusion pump for an analgesic (e.g. morphine sulfide) is as follows (since the timing constraints are

relative, all the timing intervals have been shortened to the order of seconds to allow for faster testing during

emulation):

1. Bolus doses do not last longer than 2 seconds

2. Two consecutive bolus doses must be separated by an interval of at least 8 seconds

3. There is a maximum of 3 bolus doses for any time window of one minute

The safety definition of the pump is similar to the pacemaker definition. We allow the pump state to be

updated every minute and allow the pump to change states without delay between updates.

(fmod SAFE-PUMP is

pr STRESS-RELAX-LOG .

--- time unit: 1s
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sort PumpState .

ops stop base bolus : -> PumpState .

op _<=risk_ : PumpState PumpState -> Bool .

var S S’ : PumpState .

eq S <=risk bolus = true .

eq stop <=risk S = true .

eq base <=risk base = true .

eq S <=risk S’ = false [owise] .

op period : -> Time .

eq period = 1 . --- 1s

op del : PumpState PumpState -> PumpState .

eq del(S, S’) = S’ .

op tdel-min : PumpState PumpState -> TimeInf .

eq tdel-min(S, S) = 0 .

ceq tdel-min(S, S’) = period if S =/= S’ .

op max-stress-interval : -> Time .

op min-relax-interval : -> Time .

op window-size : -> Time .

op max-in-window : -> Nat .

op safe-duration? : Stress-Relax-Log -> Bool .

op safe-freq? : Stress-Relax-Log -> Bool .

op stress-interval-window : Stress-Relax-Log Nat -> TimeInf .

op safe? : Stress-Relax-Log -> Bool .

The infusion pump safety properties are then defined as follows. Again, the specification is somewhat

verbose due to the generality of the safe? operator. In this case, we must define auxiliary operators to

capture the semantics of at most 3 bolus doses per minute. Furthermore, the norm operator is also more

complicated to define, as we can discard all events that happened more than one minute ago or all stress
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events aside from the three most recent.

op keep-latest : Stress-Relax-Log Time -> Stress-Relax-Log .

op norm : Stress-Relax-Log -> Stress-Relax-Log .

var T : Time .

eq max-stress-interval = 2 . --- 2 seconds

eq min-relax-interval = 8 . --- seconds

eq window-size = 60 . --- 1 minute

eq max-in-window = 3 . --- 3 times per minute

vars C C’ C’’ : Clock .

var L : Stress-Relax-Log .

eq safe?(L) = safe-duration?(L) and safe-freq?(L) .

eq safe-duration?(nil) = true .

eq safe-duration?(E(!stress, C) nil) =

value(C) <= max-stress-interval .

eq safe-duration?(E(!stress, C) E(!relax, C’) L) =

safe-duration?(L) and

value(C) <= max-stress-interval and

value(C’) >= min-relax-interval .

eq safe-duration?(E(!relax, C) E(!stress, C’) L) =

safe-duration?(E(!stress, C’) L) .

eq safe-freq?(nil) = true .

eq safe-freq?(E(!relax, C) L) =

safe-freq?(L) .

eq safe-freq?(E(!stress, C’) L) =

safe-freq?(L) and

stress-interval-window(E(!stress, C’) L, max-in-window)

>= window-size .
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var N : Nat .

eq stress-interval-window(nil, N) = INF .

eq stress-interval-window(E(!stress, C) L, 0) = 0 .

eq stress-interval-window(E(!stress, C) L, s N)

= stress-interval-window(L, N)

+ value(C) .

eq stress-interval-window(E(!relax, C) L, N)

= stress-interval-window(L, N)

+ value(C) .

eq keep-latest(nil, T) = nil .

eq keep-latest(E(!stress, C) L, 0) = nil .

ceq keep-latest(E(!stress, C) L, T)

= E(!stress, C) keep-latest(L, T monus value(C))

if T > 0 .

ceq keep-latest(E(!relax, C) L, T) = nil

if value(C) >= T .

ceq keep-latest(E(!relax, C) L, T)

= E(!relax, C) keep-latest(L, T monus value(C))

if value(C) < T .

ceq norm(L) = keep-latest(L, window-size) if safe?(L) .

eq norm(L) = L [owise] .

endfm)

The internal object definition and view definition are quite similar to the pacemaker example, so we omit

them for brevity. We show the final executable system model. To simulate the external environment, we

have provided a simple patient model which keeps track of the amount of chemicals present in the patient’s

body given the infusion rates and the patient’s metabolic rates.

(tomod PARAM-PUMP is

pr EPR-WRAPPER-EXEC{Safe-Pump} .

pr DELAY-MSG .
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pr PUMP-EMU .

op init : -> Configuration .

op wrapper-init : -> Object .

op extern-init : -> Object .

op msgs-init : -> Configuration .

ops pump-module patient : -> Oid .

eq init = msgs-init wrapper-init extern-init .

eq msgs-init =

delay(set-mode(pump-module, bolus), t(9))

... --- more messages delivered at different times

delay(set-mode(pump-module, stop), t(61)) .

eq wrapper-init =

< pump-module : EPR-Wrapper{Safe-Pump} |

inside :

< pump-module : Pump-Module | mode : base > base,

val : base, next-val : base, disp : t(period),

stress-intervals : (nil).Stress-Relax-Log > .

eq extern-init = < patient : Patient-Sim |

amount : 0, infusion-rate : 0, metabolic-rate : 2,

base-rate : 1, bolus-rate : 7 > .

endtom)

4.4 Model Checking Completeness and Verification

4.4.1 Completeness of Compositional Nested Systems

In general, Real-Time Maude provides sound but incomplete model checking for system specifications [42].

That is, all counterexamples found will be real, but some counterexamples may not be found. However, if

time advancement strategies and propositions satisfy the properties of time robustness and tick invariance

(i.e., no important system states are missed due to the time advancement strategy), then the timed model
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checking results are sound and complete [42].

We take a short detour to discuss the issue of completeness of model checking of timed systems in more

detail. In [42], Theorem 14 provided a simple criterion for verifying that flat object-oriented specifications

are time-robust. However, for many practical application we have nested or wrapped objects, in which case

Theorem 14 does not apply. We provide a proof sketch of a refined Theorem in Section 4.5.7 which gives

sufficient criteria for ensuring completeness of model checking in configurations with nested objects.

4.4.2 Model Checking of Instantiations

As we shall show in Section 7, our Command Shaper Pattern described in Section 4.2 is provably safe, so

naturally, all instantiations should satisfy the necessary safety properties. However, since we already have

executable instantiations available for certain medical devices, we can also use model checking as an extra

level of validation for the correctness of our pattern given certain initial states. Furthermore, the safety

properties described in the pattern are sometimes not the ultimate safety properties for the patient (for

example, there may be delays between when the device state changes and when the change actually affects

the patient), so it is also desirable to model check that these patient level safety properties are also satisfied

as a consequence of the pattern for certain initial states.

Model Checking the Pacemaker

Given the module PARAM-PACEMAKER described in Section 4.3.5, we can immediately model check that the

safety log of events in the wrapper always satisfies the defined safety properties of the pacemaker by searching

for a violation of such properties.

Maude> (tsearch [1] in PARAM-PACEMAKER : {init} =>*

{C:Configuration

< pacing-module : EPR-Wrapper{Safe-Pacer} |

A:AttributeSet, stress-intervals : L::Stress-Relax-Log >}

such that not safe?(L::Stress-Relax-Log) in time <= 10000 .)

rewrites: 1077615 in 1379ms cpu (1419ms real) (780999 rewrites/second)

Timed search [1] in PARAM-PACEMAKER

{init} =>* {C:Configuration

< pacing-module : EPR-Wrapper{Safe-Pacer}| A:AttributeSet, stress-intervals :
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Figure 4.5: A state change in the system may not be immediately reflected in the patient. There may be
some delay.

L::Stress-Relax-Log >}

in time <= 10000 and with mode maximal time increase :

No solution

This at least tells us that the pattern instantiation does indeed perform what it is meant to do with

the given initial state up to a given time bound. However, safety is defined for the patient and not for the

device; so is patient safety the same as device safety? For pacemaker operation, patient safety is closely

related to device safety but with some time delays as illustrated in Figure 4.5. Thus, to capture the actual

events affecting the patient, we create a model of a pacemaker lead (the bioelectrical element that actually

stimulates heart contractions by creating an activation potential on muscle tissue). In our case, the model of

the lead is quite simple: whenever it receives a !shock event (from the pacing module), it will log the event.

Thus, the model of the lead effectively keeps track of all the heart beats stimulated by the pacemaker.

(omod PM-LEAD is

pr EVENT-LOG{Shock} .

class Lead | shocks : Event-Log{Shock} .

op shock : -> Msg .

var O : Oid .

var L : Event-Log{Shock} .

var T : Time .
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eq tick(< O : Lead | shocks : L >, T)

= < O : Lead | shocks : tick(L, T) > .

eq mte(< O : Lead | >) = INF .

rl [recv-shock] :

shock < O : Lead | shocks : L >

=> < O : Lead | shocks : log(L, !shock) > .

endom)

Now, we have a lead model with a log of heart beats and the intervals between them, but it is now

necessary to define patient safety in terms of heart beat intervals. These corresponding safety properties are

somewhat more tedious to specify, since we are at a much lower level of abstraction, but their specification

is essentially straightforward.

(omod PM-LEAD-SAFETY-PROP is pr PM-LEAD .

ops min-period max-period crit-period : -> Time .

eq max-period = 100 . --- x 10ms = 60 bpm

eq min-period = 50 . --- x 10ms = 120 bpm

eq crit-period = 66 . --- x 10ms = 90 bpm

var T T’ : Time .

op stressed? : Time -> Bool .

eq stressed?(T) = T < crit-period .

ops dec-max inc-max : -> Time .

eq dec-max = 3 . --- x 10ms = 20ms

eq inc-max = 2 . --- x 10ms = 30ms

op max-stress-dur : -> Time .

op min-relax-dur : Time -> Time .

eq max-stress-dur = 6000 . --- x 10ms = 1 min

eq min-relax-dur(T) = 2 * T .

op pm-safe? : Object ~> Bool .
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op log-range-safe? : Event-Log{Shock} -> Bool .

op range-safe? : Time -> Bool .

op log-change-safe? : Event-Log{Shock} -> Bool .

op change-safe? : Time Time -> Bool .

op log-stress-safe? : Event-Log{Shock} Time Time -> Bool .

op stress-safe? : Time Time -> Bool .

var O : Oid .

var E E’ : Event{Shock} .

var L : Event-Log{Shock} .

eq pm-safe?(< O : Lead | shocks : L >) =

log-range-safe?(L) and log-change-safe?(L)

and log-stress-safe?(L, min-relax-dur(max-stress-dur), 0) .

--- periods must be within range

eq log-range-safe?(nil) = true .

eq log-range-safe?(E L) =

(not stopped?(E) or range-safe?(elapsed(E)))

and log-range-safe?(L) .

eq range-safe?(T) = T >= min-period and T <= max-period .

--- periods cannot change too fast

eq log-change-safe?(nil) = true .

eq log-change-safe?(E nil) = true .

eq log-change-safe?(E E’ L) =

(not stopped?(E) or change-safe?(elapsed(E), elapsed(E’)))

and log-change-safe?(E’ L) .

ceq change-safe?(T, T’) = T - T’ <= inc-max if T >= T’ .

ceq change-safe?(T, T’) = T’ - T <= dec-max if T <= T’ .
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--- periods cannot remain stressed too often

eq log-stress-safe?(nil, T, T’) = true .

ceq log-stress-safe?(E L, T, T’) =

log-stress-safe?(L, T, T’ + elapsed(E))

and stress-safe?(T, T’ + elapsed(E))

if stressed?(elapsed(E)) and stopped?(E) .

ceq log-stress-safe?(E L, T, T’) =

log-stress-safe?(L, elapsed(E), 0)

if not (stressed?(elapsed(E)) and stopped?(E)) and T’ > 0 .

ceq log-stress-safe?(E L, T, T’) =

log-stress-safe?(L, T + elapsed(E), 0)

if not (stressed?(elapsed(E)) and stopped?(E)) and T’ == 0 .

eq stress-safe?(T, T’) =

T >= min-relax-dur(T’)

and T’ <= max-stress-dur .

endom)

Now, we can perform model checking using the patient safety requirements to verify that the system

indeed still satisfies the true safety requirements in spite of the delays.

Maude> (tsearch [1] in PARAM-PACEMAKER : {init} =>*

{C:Configuration < lead : Lead | A:AttributeSet >}

such that not pm-safe?(< lead : Lead | A:AttributeSet >) in time <= 10000 .

rewrites: 6179398 in 4763ms cpu (5202ms real) (1297300 rewrites/second)

Timed search [1] in PARAM-PACEMAKER

{init} =>* {C:Configuration

< lead : Lead | A:AttributeSet >}

in time <= 10000 and with mode maximal time increase :

No solution
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The reason that safety still holds despite delays is because the wrapper pattern implicitly assumed that

a delay of at most one period may be required for actuation (notice the plus period).

ceq [inev-stress] : inEv?(V, L) = safe?(L) and

safe?(log(tick(L, tdel-min(V, crit-val) plus period), !relax))

if stress?(V) /\ tdel-min(V, crit-val) :: Time .

In the pacemaker the period was 1 second, and each heart beat was at most 1 second apart (60 bpm),

so the delay in pacing could not exceed 1 second.

Model Checking the Infusion Pump

As with the pacemaker example, we can immediately check that the device satisfies the predefined safety

properties for a given initial state up to a certain time bound.

Maude> (tsearch [1] in PARAM-PUMP : {init} =>*

{C:Configuration

< pump-module : EPR-Wrapper{Safe-Pump} |

A:AttributeSet, stress-intervals : L::Stress-Relax-Log >}

such that not safe?(L::Stress-Relax-Log) in time <= 10000 .)

rewrites: 4906764 in 7239ms cpu (7285ms real) (677739 rewrites/second)

Timed search [1] in PARAM-PUMP

{init} =>* {C:Configuration

< pump-module : EPR-Wrapper{Safe-Pump}| A:AttributeSet, stress-intervals :

L::Stress-Relax-Log >}

in time <= 10000 and with mode maximal time increase with default 1 :

No solution

Again, this form of safety verification may not be convincing enough as the end safety is about the

patient. Thus, we create another patient model in this case. For infusion pumps administering an analgesic,

it is required that concentrations of the analgesic do not exceed certain quantities in the patient’s body. This

is done through a delicate balance of infusion rate and patient metabolism. The model of this is captured
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by a Patient-Sim object which specifies the patient’s metabolic rate along with various set infusion rates

and keeps track of the amount of analgesic in the body.

(tomod PUMP-EMU is

pr WRAPPED-PUMP-MODULE .

class Patient-Sim |

amount : Rat,

infusion-rate : Rat,

metabolic-rate : Rat,

base-rate : Rat,

bolus-rate : Rat .

var O : Oid .

vars R R’ R’’ : Rat .

var T : Time .

rl [stop-rate] :

stop

< O : Patient-Sim |

infusion-rate : R >

=> < O : Patient-Sim |

infusion-rate : 0 > .

rl [base-rate] :

base

< O : Patient-Sim |

infusion-rate : R, base-rate : R’ >

=> < O : Patient-Sim |

infusion-rate : R’ > .

rl [bolus-rate] :

bolus

< O : Patient-Sim |

infusion-rate : R, bolus-rate : R’ >
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=> < O : Patient-Sim |

infusion-rate : R’ > .

eq tick(< O : Patient-Sim |

amount : R, infusion-rate : R’, metabolic-rate : R’’ >, T)

= < O : Patient-Sim |

amount : (R + R’ * T) monus R’’ * T > .

eq mte(< O : Patient-Sim | >)

= INF .

endtom)

The infusion pump specification in Section 4.3.5 already defines a Patient-Sim object with the various

attributes set. In this case, we model check if the amount of analgesic in the patient can exceed 5 mg.

Maude> (tsearch [1] in PARAM-PUMP : {init} =>*

{C:Configuration

< patient : Patient-Sim |

A:AttributeSet, amount : R:Rat >}

such that R:Rat > 5 in time <= 10000 .)

rewrites: 4653017 in 7261ms cpu (7493ms real) (640744 rewrites/second)

Timed search [1] in PARAM-PUMP

{init} =>* {C:Configuration

< patient : Patient-Sim | A:AttributeSet, amount : R:Rat >}

in time <= 10000 and with mode maximal time increase with default 1 :

No solution

However if the threshold were to be 4 mg, then model checking shows that it is possible for a sequence

of bolus doses to overdose the patient.

Maude> (tsearch [1] in PARAM-PUMP : {init} =>*

{C:Configuration

< patient : Patient-Sim |
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A:AttributeSet, amount : R:Rat >}

such that R:Rat > 4 in time <= 10000 .)

rewrites: 117481 in 292ms cpu (296ms real) (401020 rewrites/second)

Timed search [1] in PARAM-PUMP

{init} =>* {C:Configuration

< patient : Patient-Sim | A:AttributeSet, amount : R:Rat >}

in time <= 10000 and with mode maximal time increase with default 1 :

Solution 1

A:AttributeSet --> base-rate : 1, bolus-rate : 7, infusion-rate : 7,

metabolic-rate : 2 ; C:Configuration --> delay(set-mode(pump-module,bolus),

t(1))

delay(set-mode(pump-module,bolus),t(2))

delay(set-mode(pump-module,bolus),t(3))

delay(set-mode(pump-module,bolus),t(10))

delay(set-mode(pump-module,bolus),t(20))

delay(set-mode(pump-module,bolus),t(40))

delay(set-mode(pump-module,bolus),t(50))

delay(set-mode(pump-module,stop),t(51))

< pump-module : EPR-Wrapper{Safe-Pump}| disp : t(0), inside : < pump-module :

Pump-Module | mode : bolus >, next-val : bolus, stress-intervals : E(

!stress,c(1,run))nil, val : bolus > ; CLASS_OF_patient:Patient-Sim -->

Patient-Sim ; R:Rat --> 5 ; TIME_ELAPSED:Time --> 10

This just goes to show that even though the Command Shaper Pattern will satisfy the defined safety

properties for a device, the device’s safety properties do not immediately ensure safety of the patient if the

appropriate patient context is not taken into account. In this case, the patient is overly sensitive to the

analgesic, so either bolus doses should be disallowed, or lower infusion rates should be set for bolus doses.
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4.5 Correctness of the Command Shaper Pattern

In this section, we proceed to prove the correctness of the command shaper. We start by showing that the

our equational definition of safe? is sensible as a safety property, and we also take a slight detour to prove

that normalization operations on event logs will not change the evaluation of safety. After we have proved

these properties about our definition of safety, we then show that system execution defined by the command

shaper does indeed satisfy the preserve the safety invariant using induction on possible execution steps (i.e.

rewrite rules).

4.5.1 Stability of the Safety Property

Lemma 4.5.1. Consider any term L of sort Stress-Relax-Log, any term Esr of sort SREvent, and any

term T of sort Time.

If safe?(L) = false, then it must be the case that:

1. safe?(log(L,Esr)) = false, and

2. safe?(tick(L, T )) = false.

Proof. For ease of readability, we use “;” to denote the concatenation of events in event logs.

safe?(nil) = true by the equational axiom initially-safe in the theory SAFE-STATE, so we only need

to consider a nonempty list L.

For the first condition, if safe?(log(L,Esr)) = true, then

safe?(E(Esr, c(0)); stop(L)) = true (by using the equational definition of log)

safe?(stop(L)) = true (by the equational axiom sub-safe in SAFE-STATE)

safe?(L) = true (by the axiom stopped-safe in SAFE-STATE), a contradiction.

For the second condition, there are two possibilities for nonempty L. For some T ′ of sort Time,

and some L′ or sort Stress-Relax-Log, either L = E(!stress, T ′);L′ or L = E(!relax, T ′);L′. If L =

E(!stress, T ′);L′ = false, then T ′ + T ≥ T ′ (using a linear time model), so

safe?(tick(L, T )) = safe?(E(!stress, T ′ + T );L′) = false (by equation stress-safe)

On the other hand, if L = E(!relax, T ′);L′, then

safe?(tick(L, T )) = safe?(E(!relax, T ′ + T );L′) (by definition of tick)

= safe?(L′) = safe?(E(!relax, T ′);L′) (by two applications of the equation relax-safe).

Showing that safe?(tick(L, T )) = safe?(L) = false in this case.
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Lemma 4.5.1 shows that during execution where system transitions only modify a Stress-Relax-Log by

applications of the operators log and tick, it is sufficient to check that the safe? predicate holds over a

countable number of time instances St such that for any time t there is a time t′ ∈ St such that t′ > t. This

also shows the tick stabilizing property for the predicate safe?. Also, by Theorem 4.5.15, assuming that we

have defined our system to satisfy all the preconditions, our system should also be time robust. This means

that all untimed model checking on the predicate safe? of a system is both sound and complete.

4.5.2 Safety Preserving Property of the norm Operator

Next we consider the norm operation. We show that applying norm cannot affect the satisfaction of safe.

Notation. In this section, we rely heavily on reasoning with subterms and term substitution, so it is

appropriate for us to introduce some notation to make discussions more compact.

Given terms t and u and a position p, we write tp for the subterm at position p of t, and we write t[u]p for

the term t where the subterm at position p is replaced by u. For position p, we use the conventional repre-

sentation where p is a string of natural numbers corresponding to branch traversal of the tree representation

of a term.

For example, if t = h(f(x, g(x, y))) and u = z and p = 1.2, then tp = g(x, y), and t[u]p = h(f(x, z)).

Definition. An unreduced log is a term t of sort Stress-Relax-Log where for all positions p in t, the

subterm t′ = tp either has the form

1. t′ = nil or

2. t′ = log(L,Esr) or

3. t′ = tick(L, T )

where subterm L in (2) and (3) is of sort Stress-Relax-Log, Esr of sort SREvent, and T of sort Time.

Intuitively, t is constructed from only using the nil, log, and tick operators.

Furthermore, we define an unreduced normalized log to be a term t of sort Stress-Relax-Log, the

subterm t′ = tp can have the form t′ = norm(L) in addition to all the subterm forms for an unreduced log.

Lemma 4.5.2. If L is a term of Stress-Relax-Log, then tick(tick(L, T ), T ′) = tick(L, T + T ′).

Proof. Straightforward using structural induction on L.

Lemma 4.5.3. If L,L′, L′′ are terms of sort Event-Log{X} with L 6= nil, and append(L,L′) is of sort

Event-Log{X}, then
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1. tick(append(L,L′)) = append(tick(L), L′)

2. stop(append(L,L′)) = append(stop(L), L′)

3. append(append(L,L′), L′′) = append(L, append(L′, L′′))

Proof. Straightforward using structural induction on L and applying equational definitions of the operators.

Lemma 4.5.4. Let t be an unreduced log. For any position p in t, with the subterm t′ = tp, we have one of

the following equalities:

1. t = tick(t′, T ) or

2. t = append(L, stop(tick(t′, T ))).

for some nonempty log L of sort Log{SREvent} and some T of sort Time.

Proof. We proceed by induction on the lenght of the position p as a string.

When p = nil, the topmost postion, t′ = t, and we trivially have t = tick(t, 0) (the first form of the

equivalence).

Now, assuming the statement holds for positions of length n. For p of length n + 1, it must be of the

form p = q.r. We need to consider two cases:

If t = tick(t′′, T ), then t′ = t′′r . To use the inductive hypothesis, we must consider two subcases:

If t′′ = tick(t′, T ′), then t = tick(t′′, T ) = tick(tick(t′), T ), T ′) = tick(t′, T + T ′) (Lemma 4.5.2).

If t′′ = append(L, stop(tick(t′, T ′))), then t = tick(append(L, stop(tick(t′, T ′))), T )

= append(tick(L, T ), stop(tick(t′, T ′))) = append(L′, stop(tick(t′, T ′))) (using Lemma 4.5.3 and making

the substitution L′ = tick(L, T )).

Now consider the case when t = log(t′′, Esr). Again we have t′ = t′′r , and we must consider two subcases

for t′′:

If t′′ = tick(t′, T ′), then t = log(tick(t′, T ′), Esr) = E(Esr, c(0)); stop(tick(t′, T ′))

= append(E(Esr, c(0)); nil, stop(tick(t′, T ′)) = append(L′, stop(tick(t′, T ′))).

If t′′ = append(L, stop(tick(t′, T ′))), then t = log(append(L, stop(tick(t′, T ′))), Esr)

= E; stop(append(L, stop(tick(t′, T ′)))) = E; append(stop(L), stop(tick(t′, T ′)))

= append(E; stop(L), stop(tick(t′, T ′))) = append(L′, stop(tick(t′, T ′)))

(applying Lemma 4.5.3 multiple times).

Thus, we have proved the inductive step considering all cases.
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Definition. If t is an unreduced log, then a subnormalized log from t is a term tnormp s.t. the subterm

t′ = tp is replaced by norm(t′). I.e., tnormp = t[norm(tp)]p.

Lemma 4.5.5. Let t be an unreduced log, and tnormp its subnormalized log. We have the following equivalence:

norm(tnormp ) = norm(t)

Proof. We have shown in Lemma 4.5.4, for t with a subterm t′ = tp, t has one of two possible forms.

If t = tick(t′, T ), then tnormp = tick(norm(t′), T ). By the equation norm-tick, we immediately have,

norm(tnormp ) = norm(tick(norm(t′), T )) = norm(tick(norm(t′), T )) = norm(tick(t′, T )) = norm(t).

If t = append(L, stop(tick(t′, T ))), then

tnormp = append(L, stop(tick(norm(t′), T ))).

By the equation norm-app, we immediately have,

norm(tnormp ) = norm(append(L, stop(tick(norm(t′), T ))))

= norm(append(L, stop(tick(norm(t′), T )))) = norm(append(L, stop(tick(t′, T )))) = norm(t)

Definition. For an unreduced normalized log, define the function stripnorm recursively as follows.

1. stripnorm(nil) = nil

2. stripnorm(log(L,Esr)) = log(stripnorm(L), Esr)

3. stripnorm(tick(L, T ) = tick(stripnorm(L), T )

4. stripnorm(norm(L)) = stripnorm(L)

Thus, for an unreduced normalized log t, stripnorm(t) is an unreduced log that removes all the applications

of norm from t.

Lemma 4.5.6. Let t be an unreduced normalized log with the topmost application of norm at position p,

then stripnorm(t) = t[stripnorm(tp)]p.

Proof. Straight forward by induction on the depth of p and considering all possible forms of the top-most

term.

Lemma 4.5.7. Let t be an unreduced normalized log, then norm(stripnorm(t)) = norm(t).

Proof. We proceed by induction on the number of norm operators present in t.

If t has no norm operators, then of course, stripnorm(t) = t.
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Assume that the statement holds when for any term with n norm operators in subterms. If t has n + 1

norm operators, then consider the topmost norm operator position p. So t′ = tp = norm(t′′), and by the

inductive hypothesis, t′′ has n norm operators, so t′ = norm(stripnorm(t′′)) = norm(t′′).

Now using Lemma 4.5.6, we can define u = t[t′′]p = stripnorm(t).

We have that unormp = t[norm(stripnorm(t′′))]p is a subnormalized log, and we have that norm(unormp ) =

norm(u) by Lemma 4.5.5.

Thus, summarizing everything, we have

norm(stripnorm(t)) = norm(u) = norm(unormp )

= norm(t[norm(stripnorm(t′′))]p) = norm(t[norm(t′′)]p) = norm(t).

Theorem 4.5.8. Let t be an unreduced normalized log, then safe?(t) = safe?(stripnorm(t)).

Proof. Consider the position p of the topmost norm operator in t, and let t′ = tp = norm(t′′). Now define,

u = t[stripnorm(t′′)]p = stripnorm(t), and using Lemma 4.5.7, we have unormp = t[norm(stripnorm(t′′))]p =

t[norm](t
′′)p = t.

For u′ = up = stripnorm(t′′), we know from Lemma 4.5.4, that u has one of two forms.

For the first case, if u = tick(u′, T ), then by application of equation norm-tick-safe in the SAFE-STATE

theory

safe?(stripnorm(t)) = safe?(u) = safe?(tick(stripnorm(t′′), T )) = safe?(tick(stripnorm(t′′), T ))

= safe?(tick(norm(stripnorm(t′′)), T )) = safe?(unormp ) = safe?(t).

For the second case, if

u = append(L, stop(tick(u′, T ))), then by application of the equation norm-app-safe in the SAFE-STATE

theory

safe?(stripnorm(t)) = safe?(u) = safe?(append(L, stop(tick(stripnorm(t′′), T ))))

= safe?(append(L, stop(tick(norm(stripnorm(t′′)), T )))) = safe?(unormp ) = safe?(t).

We have shown that contracting or normalizing a log based on the requirements of the norm operation

cannot affect the result of the safe? predicate. This means that for the remainder of the section, we can

essentially “ignore” applications of norm, and assume that an unbounded length list is maintained even

though only a bounded length list is maintained for efficient implementation.
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4.5.3 Persistence of Safety using Safety Envelopes

Definition. Consider a term L of sort Stress-Relax-Log and a term V of sort Val. L is said to faithfully

follow V iff

1. when V ≤ vcrit, we have L = E(!relax, T );L′, and

2. when V > vcrit, we have L = E(!stress, T );L′.

Here, L′ is a term or soft Stress-Relax-Log, and T is a term of sort Time.

An pair (V,L) that satisfies this definition is called a sensible pair.

Lemma 4.5.9. If (V,L) is a sensible pair with V > vcrit, and V ′ is of sort Val with V ′ < vcrit, then

inEnv?(∆(V, vcrit), tick(L, period)) = true ⇔ inEnv?(∆(V, V ′), tick(L, period)) = true.

Proof. Notice that by the axioms del-mono, we have ∆(V, V ′) ≤ ∆(V, vcrit).

If ∆(V, vcrit) 6= vcrit, then by del-max we have ∆(V, vcrit = ∆(V, V ′), from which the implication trivially

follows because the left hand sides of the two equations are then equal. This means that we only need to

consider the case where ∆(V, vcrit) = vcrit. In this case, we have ∆(V, V ′) ≤ ∆(V, vcrit) = vcrit, so the

only conditional equational axiom that can be applied is inev-relax, which again trivials guarantees the

equivalence by:

inEnv?(∆(V, V ′), tick(L, period)) = safe?(tick(L, period)) = inEnv?(∆(V, vcrit), tick(L, period))

Lemma 4.5.10. Let (V,L) be a sensible pair with V > vcrit and inEnv?(V,L) = true. If V ′ ≤ vcrit, then

inEnv?(∆(V, V ′), tick(L, period)) = true.

Proof. Since inEnv?(V,L) = true and V is a stress state, it must be the case that equation inev-stress

was applied. This of course means that

safe?(L) = true and safe?(log(tick(L, t∆min(V, vcrit)+period), !relax)) = true, and t∆min is finite.

By Lemma 4.5.9, it is sufficient to just consider the case where V ′ = vcrit.

We first show the simple property safe?(tick(L, period)) = true. From Lemma 4.5.1, we directly have:

safe?(log(tick(L, t∆min(V, vcrit) + period), !relax)) = true

⇒ safe?(tick(L, t∆min(V, vcrit) + period))

= safe?(tick(tick(L, period), t∆min(V, vcrit))) = true

⇒ safe?(tick(L, period)) = true
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By the inductive definition of tdel-min, t∆min, by equation ind-tdel, we have t∆min(∆(V, vcrit), vcrit)+

period = t∆min(V, vcrit) (recall that V > vcrit by definition of a stressed state). Since t∆min(V, vcrit) is

finite, t∆min(∆(V, vcrit), vcrit) must also be finite. Furthermore, we have:

safe?(log(tick(tick(L, period), t∆min(∆(V, vcrit), vcrit) + period), !relax))

= safe?(log(tick(tick(L, period), t∆min(V, vcrit)), !relax))

= safe?(log(tick(L, t∆min(V, vcrit)) + period, !relax)) = true.

We have shown that all conditions for inEnv?(∆(V, vcrit), tick(L, period)) evalutate to true.

4.5.4 System Execution Assumptions

Correspondence Between Tick Rules and System Time Elapse

We model all time-evolving behavior in a system by terms of sort Timer and Clock. It is necessary to show

that these entities indeed behave as their intuitive names suggest. This means that when time elapse occurs

in Real-Time Maude, the corresponding time should decrease in a timer or increase in a non-stopped clock.

We only have one timed rewrite rule in our system:

crl [advance] : {C} => {tick(C, T)} in time T if T le mte(C) [nonexec] .

This means that (deterministic) time evolution of the system is fully captured by the tick operator. It

is assumed that all timed values in the system are affected by rewrites corresponding to the advancement of

the system time in Real-Time Maude.

4.5.5 Wrapper Dispatch and Well-Behaved Rule Applications

After knowing that timers are faithfully represented, we show that certain system behaviors may only occur

periodically with fixed period durations.

Definition. A sensible configuration is a term C of sort Configuration, where any top-level object O

in C has a unique oid (object identifier).

For a sensible configuration, we define Oid(C) to denote the unique subterm, if it exists, of C representing

the object having id as its oid. If a top-level object of id does not exist, then we say that Oid(C) is undefined.

Furthermore, if a is an attribute of an object with oid id, and given a configuration C, then we write

Oid.a(C) to denote the value of attribute a in the object instance Oid(C) when it is defined.

97



For an object with oid w of class EPR-Wrapper, we use the following conventions when referencing

attributes of Ow:

• Ow.disp represents the timer in attribute dispatch

• Ow.next represents the value of attribute next-val

• Ow.val represents the current value of attribute val

• Ow.log represents the stress-relax log of attribute stress-intervals

• Ow.Cin represents the internal configuration of attribute inside

We will also write Ow.Static to refer to the set of attributes {Ow.disp,Ow.next,Ow.val, Ow.log} (not

including Ow.Cin).

Notice that, since we sometimes have nested objects, some object attributes may be configurations, so if

pacemaker is the oid of an object in Ow.Cin, then we can write Opacemaker.rate(Ow.Cin(C)) to unambigu-

ously reference the set rate of a pacemaker in system {C}. For the internal wrapped class with oid v, we

use Ov.val to denote the value of attribute of set-val.

Furthermore, for a one-step rewrite C → C ′, when Oid.a(C) = Oid.a(C ′), we say that Oid.a does not

change under C → C ′. Also, for a rewrite rule l : t → t′, we say that Oid.a does not change under l if for

any configuration C, such that l has a rewrite C → C ′, then Oid.a(C) = Oid.a(C ′).

Definition. Fix an oid w for an object of sort EPR-WRAPPER.

An w-execution state (or just execution state) is a term {C} of sort System such that C is a sensible

configuration and Ow(C) is defined. An initial state is an execution state {C} s.t. vmin ≤ Ow.val(C) ≤risk

vcrit and Ow.log(C) = nil and vmin ≤risk Ow.next(C) ≤risk vmax.

We define a corresponding proposition init (implicitly parameterized on some fixed w):

{C} |= init⇐⇒ (vmin ≤ Ow.val(C) ≤risk vcrit) ∧ (Ow.log(C) = nil) ∧ (valid(Ow.next(C)))

Definition. Fix an oid w for an object of sort EPR-WRAPPER.

A w-sensible transition system (or just sensible transition system) is a transition system on w-

execution states such that if a one-step transition δ exists from execution states {C} → {C ′}, then either:

1. Ow.static(C) = Ow.static(C
′), or

2. C ′ = tick(C, T ) where T ≤ mte(C), or

3. Ow(C)→ Ow(C ′) is a one-step rewrite applying the rule dispatch, or
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4. C → C ′ is a one-step rewrite applying the rule recv.

In case the transition δ has C ′ = tick(C, T ) with T > 0, then we say that δ is a timed transition with

time elapse te(δ) = T .

A rewriting logic system module is also said to be a w-sensible system module if it’s induced transition

system on the sort System is an w-sensible transition system.

4.5.6 Correctness of the Command Shaper Pattern

From our earlier discussions, safety of medical devices boils down to three important properties that we must

check:

1. The state must remain in some valid risk range between vmin and vmax;

2. The state must satisfy the rate of change requirements. That is, for any state V to change to a state

V ′, we can change by at most ∆(V, V ′) in one operation period;

3. The states cannot remain stressed for too long. That is for a log of stress and relax events a predicate

safe? satisfying monotonicity properties must hold for the entire execution of the system (assuming

some initial safety properties).

We start with the first property. For notational compactness, we will use ≤ in place of ≤risk.

Definition. A state v is called valid if vmin ≤ v ≤ vmax.

Theorem 4.5.11. For an w-sensible system module, any execution state {C} reachable from an initial state

has both Ow.val(C) and Ow.next(C) valid.

Proof. We prove this by induction on the number of transitions (i.e., rule applications in our case).

Ow.val(C) and Ow.next(C) are clearly both valid for {C} being an initial state.

For the inductive step, suppose that Ow.val(C
′) and Ow.next(C

′) are both valid for an execution state

{C ′}, and {C ′} → {C} via a valid transition. Of the three possible cases for transitions in sensible transition

systems:

The two easy cases, if C = tick(C ′) or Ow(C) = Ow(C ′), then Ow.static(C) = Ow.static(C
′), and the

statement holds.

If the transition occurs as a result of applying the rule dispatch, then by the form of the rhs of the rule,

we either have Ow.val(C) = Ow.next(C) = ∆(Ow.val(C
′), Ow.next(C

′)) or Ow.val(C) = Ow.next(C) =
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∆(Ow.val(C
′), vsafe). It is clear from applications of the equation del-bound in theory SAFE-STATE that

both ∆(Ow.val(C
′), Ow.next(C

′)) and ∆(Ow.val(C
′), vsafe) provide valid values.

If the transition occurs as a result of applying the rule recv, then of course Ow.val(C) = Ow.val(C
′).

Also, by the form of the rhs of the rule, Ow.next(C) = cap(v) for some term v of sort Val. cap(v) will always

be a valid value.

Next we tackle the property that the values satisfy the rate of change requirements. Whatever the ∆

function defines, we must make sure a wrapped system will not change its state faster than this per period

of operation.

Definition. In an w-sensible transition system, a state {C ′} is reachable from {C} in τ time units denoted

{C} τ−→ {C ′}, if there is path in the underlying transition δ1 . . . δn such that the timed transitions δi1 . . . δim

in this path satisfy the equality τ = te(δi1) + . . .+ te(δim).

Theorem 4.5.12. For an w-sensible system module, then if {C} τ−→ {C ′} with τ < period, it must be the

case that Ow.val(C
′) = ∆(Ow.val(C), v′) for some value v′.

Proof. If Ow.val was unchanged, then of course we have Ow.val(C
′) = ∆(Ow.val(C), Ow.val(C)).

The value of Ow.val only changes by the dispatch rule. This is only applied when the attribute Ow.disp

is t(0), and this same rule resets the timer to be t(period). Since no other rules can modify Ow.disp aside

from the time advancement rules which decrements the timer by the amount of real-time elapsed, after each

change of Ow.val, the time advancement rules must advance time by period time units before changing

again. This shows that the intervals between updates of the attribute Ow.disp is at exactly period time

units.

Furthermore, an application of the dispatch rule will reset Ow.val to either ∆(Ow.val, Ow.nextval) or

∆(Ow.val, vsafe) each of these expressions satisfy the ∆ requirement by definition.

Now, we get to the most important and non-trivial theorem that says that the system will never remain

in a stressed state for too long to be considered unsafe (based on the definition of the safe? predicate). We

first define the following auxiliary predicates on a system.

Definition. For an w-sensible system module, define the proposition safehist (implicitly parameterized on

w) as follows:

{C} |= safehist ⇐⇒ safe?(Ow.log(C))
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Lemma 4.5.13. For an w-sensible system module, consider a state {C}. Let V = Ow.val(C) and L =

Ow.log(C), and let (V,L) be a sensible pair. Furthermore, let inEnv?(V,L) = true, and mte(Ow.disp(C)) =

period. If {C} reaches {C ′′} in period time with any application of the dispatch rule, and if {C ′′} → {C ′}

with an application of the dispatch rule, then with V ′ = Ow.val(C
′) and L′ = Ow.log(C ′), we have that

(V ′, L′) is a sensible pair, and inEnv?(V ′, L′) = true.

Proof. We show inEnv?(V ′, L′) = true by case analysis.

Recall that stress?(v) = true⇔ v >risk vcrit, and relax?(v)⇔ not(stress?(v)).

Case 1: relax?(V ) = true and relax?(V ′) = true.

Because V is a relaxed state, we must have either L = nil or L = E(!relax, c(T ));L′′ for some time T

and log L′′. Since V ′ is also a relaxed state, no new event is logged during the application of the dispatch

rule, and L′ = tick(L, period) due to the accumulation of timed rules with tick applications. Thus, (V ′, L′)

is still a sensible pair. Notice that, since V is a relaxed state, we must have applied the equation inev-relax

to evaluate to true, or safe?(L) = true. Now we have:

inEnv?(V ′, L′) = safe?(L′) = safe?(tick(L, period)) = safe?(tick(E(!relax, c(T ));L′′, period))

= safe?(E(!relax, c(T + period));L′′) = safe?(L′′) = safe?(E(!relax, c(T );L)) = safe?(L) = true.

Here we used the equations relax-safe to show the equivalence to safe?(L′′).

Case 2: stress?(V ) = true and stress?(V ′) = true.

The initial and final states are both stressed, so again the log does not add any new events. (V ′, L′) is again

a sensible pair. In this case, L′ = tick(L, period). Now, we have V ′ = ∆(V,Ow.next), if Ow.next ≤ vcrit,

then we directly use Lemma 4.5.10 to conclude that inEnv?(V ′, L′) = true. On the other hand, if we have

Ow.nextval > vcrit, then it must be the case that inEnv?(V ′, L′) = true; otherwise, the set value would be

vsafe ≤ vcrit.

Case 3: stress?(V ) = true and relax?(V ′) = true.

The final state becomes relaxed. This is almost a directl consequence of Lemma 4.5.10, but we have to

allow for the extra event being added to the log. In this case, L′ = E(!relax, c(0); stop(tick(L, period)).

Again (V ′, L′) is a sensible pair. We know from Lemma 4.5.10 that inEnv?(V ′, tick(L, period)) = true.

This transforms into our desired result by the following equalities (using applications of equations relax-safe
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and stopped-safe):

inEnv?(V ′, L′) = inEnv?(V ′, E(!relax, c(0); stop(tick(L, period))))

inEnv?(V ′, stop(tick(L, period))) = inEnv?(V ′, tick(L, period)) = true.

Case 4: relax?(V ) = true and stress?(V ′) = true.

In this last case, we must reason about the conditional fragments on equations that lead to the stressed

state in the first place. If the initial state was relaxed and the final state is stressed, it must be the

case that inEnv?(V ′, log(tick(L, period), !stress)) evaluated to true before an application of dispatch,

otherwise we would end up in the final state V ′ = ∆(V, vsafe), which would not be stressed. However, after

an application of dispatch; we would have set L′ = log(tick(L, period), !stress). This means that we

conditionally checked that transitioning to a stressed state would satisfy inEnv? before taking the transition,

and thus, trivially by just looking ahead, inEnv?(V ′, L′) = true. Of course, (V ′, L′) is still a sensible pair

in this last case.

Theorem 4.5.14. In a w-sensible system module, if {C} initially satisfies predicates init and safehist, then

the future states will always satisfy safehist. More precisely:

{C} |= (init ∧ safehist)→ �safehist.

Proof. As always, we proceed by induction on the number of application of rewrite rules applied to C to

prove �safehist. The base case is trivial as it is part of the hypothesis.

For one transition C → C ′. The only rules that can make Ow.log(C ′) different from Ow.log(C) are

dispatch and the time advancement rule advance. The dispatch timer Ow.disp(C) must be t(0) when

dispatch is applied. Furthermore, when Ow.disp(C)) = t(0), the advance rule cannot advance the system

(except by idempotent 0 time ticks).

We first show that the starting point of the system reduces to considering a system with Ow.disp(C) =

t(0) by advancing time until the timer expires. Suppose that Ow.disp(C) = t(T ) with T > 0, then the

advance rule must be applied before we can apply the dispatch rule. Of course, tick(nil, T ′) = nil, so

Ow.log will remain unchanged. Furthermore, Ow.val does not change with time advancement. Finally, by

Theorem 4.5.11, Ow.next will remain valid. Thus, after many applications of rules other than dispatch, the

configuration C will still satisfy the init proposition. Thus, we only have to consider the case of the system

starting with Ow.disp(C) = t(0).

We have reduced the problem to where C starts with an expired timer. Let tr denote the real time of

the system C, and define the initial time (when Ow.disp first expires) to be tr = 0. Since Ow.disp ticks
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with real-time, and only the dispatch rule modifies Ow.disp from t(0) to t(period), it must be the case

that dispatch is applied exactly once every period. This means that the dispatch rule is applied at times

tr = n × period, where n is a natural number. Let C(tr) be the system configuration at time tr. We now

show that inEnv?(Ow.val(C(tr)), Ow.log(C(tr))) = true for all tr ∈ {n× period|n ∈ N}.

For n = 0, it is clear that inEnv?(Ow.val(C(0)), Ow.log(C(0))) = true just by definition and the con-

ditions of the init predicate. For the inductive step, using Lemma 4.5.13 we can check that the inductive

hypothesis is indeed satisfied in each step, so each application of the dispatch rule will preserve the truth

value of inEnv?.

Now, we have inEnv?(Ow.val(C(tr)), Ow.log(C(tr))) = true from all times tr = n × period. It then

follows that safe?(Ow.log(C(tr))) = true. Since safe? is stably invalidated as shown in Lemma 4.5.1, for

every time tr, there is an n such that tr < n×period, we have that safe?(Ow.log(C(tr))) holds for all times

tr ≥ 0. Showing that C(tr) |= safehist for all reacheable times tr.

4.5.7 Model Checking Completeness of Nested Object Configurations

This section proves that, as already stated in Section 4.4, the model checking analysis performed in Real-

Time Maude for the nested object configurations corresponding to instantiations of the Command-Shaper

Pattern are complete, that is, if it does not find a counterexample within a given time bound, no such

counterexample exists, for such a bound. The result we give here is more general, and therefore applies to

the modeling checking of other systems involving nested object configurations, such as those associated to

the patterns in Chapters 3 and 5.

Theorem 4.5.15. Consider a rewrite theory R in Real-Time Maude.

Let St be a set of timed sorts such that for all s ∈ St the operators tick : s Time → s and mte : s →

TimeInf exist. Let St0 ⊆ St be the set of timed sorts such that for all terms t of any sort s ∈ St0, t does

not contain a proper subterm of any sort in St. Also, let all instantaneous rewrite rules have left hand sides

with sort s ∈ St.

Furthermore, assume that for any function symbol f that is not the system encapsulation function { },

if f : s1 ...sn -> s has si ∈ St for any i, then s ∈ St − St0. Assume that the following equations are

satisfied by R for any f with a domain sort in St:

tick(f(t1, . . . , tn), T ) = f(t′1, . . . , t
′
n), where t′i = tick(ti, T ) if ti is a term of sort s ∈ St and t′i = ti

otherwise,

and mte(f(t1, . . . , tn)) = min{mte(ti)|ti is of sort s ∈ St}.

Finally, let there be only one timed rewrite rule in R:
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var C : Configuration . var T : Time .

crl [advance] : {C} => {tick(C, T)} in time T if T le mte(C) [nonexec] .

Then, R is time-robust (see [44]) if the following conditions are satisfied for all appropriate ground terms

t of a sort s ∈ St and r , r′ of sort Time:

1. mte(tick(t, r)) = mte(t)−̇r for all r ≤ mte(t)

2. tick(t, 0) = t

3. tick(tick(t, r), r′) = tick(t, r + r′), for r + r′ ≤ mte(T )

4. mte(σ(l)) = 0 for each ground instance σ(l) of a left-hand side of an instantaneous rewrite rule.

Furthermore, it is sufficient to consider conditions 1-3 for t of sort s ∈ St0.

Proof Sketch. Most of the proof from Theorem 19 in [44] extends almost directly to the definitions here.

The only subtle part is the proof of time robustness property TR4: if t
r−→ t′ is a tick step with r > 0, and

t′
inst−−→ t′′ is an instantaneous one-step rewrite, then t

r−→ t′ is a maximal tick step.

Let {ttop} be the top-level encapsulated term of sort System. If an instantaneous rule applies to {ttop},

then by the assumptions on the format of instantaneous rewrite rules some subterm t′ of sort s ∈ St must

match a substitution of the left hand side of a rewrite rule. By Condition 4, this means that mte(t′) = 0. If

mte(ttop) > 0, by an inductive argument, mte is propagated from the minimum among all timed subterms

to the top-most term. Thus, it must be the case that mte(t′) ≥ mte(ttop) > 0, a contradiction.
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Chapter 5

A Pattern for Network Safety

Medicine is all about interactions. The patient’s health is improved by interactions with treatment. Of

course, treatments often interact with each other and present the possibility of adverse interactions. Drug

contraindications and conflicts are commonplace in the area of medical drugs. A similar phenomenon happens

in medical devices. In this chapter, we consider safety of device interactions, and in particular mutual

exclusion constraints. We give a practical example involving laser airway surgery. We look at network faults

that can make designing protocols difficult and can lead to unsafe situations. We discuss a formal pattern

that will allow the system to operate safetly under message loss failures, and we describe how this pattern

can be used to deal with mutual exclusion constraints.

5.1 Airway Laser Fires - A Case Study

Consider a typical airway laser surgery scenario. A surgical laser is used to perform surgery on a patient’s

airway. However, the flow of oxygen is not stopped, and the heat from the surgical point can start a fire.

Many times these fires can be dealt with, without any permanent harm to the patient, but sometimes these

airway fires can lead to unfortunate fatalities [50].

Airway laser fires occur frequent enough, that methods have been developed to deal with these prob-

lems with human protocols [46]. However, the safety of preventing fires can further be improved by using

automated controls and interlocks between oxygen supply devices and active surgical equipment.

5.2 The Issue of Open Loop Safety

It is easy enough to design a protocol to prevent the airway laser surgery scenario. Always make sure that

the laser is turned off before the oxygen is turned on. Figure 5.1 shows the simple first step implementation

of a potential laser oxygen interlock protocol. The laser requests for the oxygen to turn off, and it will wait

for the oxygen to return an acknowledgement. Once the oxygen acknowledges, then the laser will turn on

safely after some delay. When the oxygen timer runs out, then it will request the laser to turn off again,
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Figure 5.1: Simple Laser Protocol

and it will turn back on the oxygen before further harm comes to the patient.

On a purely logical viewpoint, there is nothing wrong with the laser oxygen interlock. However, from

a fault tolerance standpoint, it can be a very dangerous protocol. Once we consider message loss in the

system, then all bets are off. Once the oxygen turns off, the network can fail and prevent any further

messages from being sent. The oxygen will continue to try to send messages requesting the laser to turn off,

but no messages will delivered. After a certain time, we are left with a lose-lose situation. If the oxygen

stays off, then permanent brain damage can result due to the lack of oxygen, but if the oxygen turns on,

then a potential case of airway fire can occur. This dilemma is illustrated in Figure 5.2.

So how can a protocol be designed so that we never get into these unsafe situations? This is the idea of

designing for open loop safety.

5.3 The Heartbeat Pattern

5.3.1 Modeling Network Faults

We move from discussing a single device interface and interface faults to networks of devices. In order to

start thinking about the problems that occur in networked configurations, it suffices to start considering two

communicating entities. Essentially, a network can be thought of as many pairs of communicating entities.

We first focus exclusively on the fault of message loss during communication. Although this seems

like a very specific fault, many of the known existing network faults can be abstracted into this type. Of
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course, not receiving or dropping a message is clearly a message loss, but what about other faults such as

message corruption and delayed messages? For message corruption, in order for the system to deal with it

correctly, either error detection or error recovery must be implemented. If a message error is detected and

not correctable, then we just have a useless message and this is equivalent to a message loss. If the message

error is recoverable, then we have the original message as if no errors occurred. In terms of delayed messages,

since we are dealing with real-time systems (medical devices that must operate in a timely manner) then

not receiving the message in time can also be considered a message loss. For many other types of network

faults the same reasoning can be used to reasonably abstract them to a message loss fault.

We can model a message loss fault in the Maude object-oriented actor model with a single rule:

crl M => none if lossy?(M) = true .

Here a message is just removed form the configuration if it satisfies the predicate lossy?.

5.3.2 Transient Commands and Fail-Safe Modes

Consider the case study of turning off a ventilator for a short period of time in order to perform some other

medical procedure. This is a transient command as it should only be performed temporarily, and a turn

on message must be sent after this short window of time to restart the ventilator. However, if the network

drops this turn on message, then the ventilator may never turn on, and we enter an unsafe situation. In

order to deal with this error, we cannot rely on the network for delivering critical messages on time, and

there must be some intrinsic behavior in the ventilator for falling back to the fail-safe mode itself.
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There are many ways to acheive this, and actually, we have already solved this exact problem as an

instance of the Command-Shaper Pattern before. The Command-Shaper focused on the level of safety

that can be guarateed from a single device receiving commands from unknown sources, and in a sense, the

wrapped device acts somewhat autonomously. This makes analyzing the individual device easier since it

no longer depends completely on the network, but it makes analyzing networked behaviors difficult since

they may or may not behave according to the commands issued. However, if we also control the behavior of

the sender of these commands, then it is possible to design something that is still safe, but much easier to

analyze from a network perspective.

5.3.3 The Heartbeat Protocol

We present a well known pattern for handling unreliable network communication, while still providing safe

fall-back modes. The overall structure of our heartbeat protocol is shown in Figure 5.3.

The heartbeat protocol essentially creates a pair of wrappers around a sender-receiver pair. It classifies

the messages into repeated and non-repeated messages. The messages that are repeated are exactly the ones

that are for keeping devices in transient states as discussed above. The receiver will only stay in a transient

state if it continues to receive the repeated messages within a certain time. The sender will periodically send

the repeated messages. The idea is that if too many messages get dropped, then the receiver wrapper will

time out on receiving the repeated message and will automatically send a fall back message to the internal

configuration.

To capture the required information for the heartbeat protocol in Maude, we specify the following theory:

(oth COMM-PAIR is

inc LTIME-INF .

class Sender .
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class Receiver .

op dest : Msg -> Oid .

op sid : -> Oid .

op rid : -> Oid .

op repeat-msg? : Msg -> Bool .

msg safe-msg : Oid -> Msg .

op repeat-time : -> Time .

op timeout : -> Time .

eq repeat-time lt timeout = true .

op init-sender : -> Configuration .

op init-receiver : -> Configuration .

endoth)

Of course, this theory assumes that the system is modeled based on an object-oriented actor model with

linear time semantics. First, the Sender and Receiver classes are identified as the classes for the objects to

be wrapped. The dest operator is used to extract the destination object id from a message (since message

format is unknown). The sid and rid identify the specific object ids for the sender and receiver to be

wrapped. The repeat-msg? predicate determines which messages should be repeated (i.e. which messages

are only setting transient states). The safe-msg operator defines the message to the fall-back mode. The

repeat-time sets the period in which the sender will resend repeated messages, and the timeout defines how

long the receiver will receive a message before it performs the fail-safe actions. Of course, the assumption

is that the sender repeat time is smaller than the receiver timeout otherwise, the receiver will just timeout

before the sender even gets a chance to send. The remaining parameters are for setting the initial states of

the system.

Using the above input theory LTIME-INF, we can define the wrapper objects of the Heartbeat protocol

in a parameterized module:

(tomod REPEATER{X :: COMM-PAIR} is

pr DELAY-MSG .

class SenderWrap | internal : Configuration, time : Timer,
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repeat-msg : Configuration .ing

class ReceiverWrap | internal : Configuration, time : Timer,

repeat-msg : Configuration .

The internal attribute stores the wrapped configuration. Timers are used to both know when to send

a repeated message and when to time out for the receiver. The repeat-msg attribute is used to store

what message is currently being repeated. But the crucial aspect of the protocol is its real-time behavior

as fromally specified by rewrite rules. To illustrated the subtleties involved, we first present a flawed first

attempt, and then give the correct rules.

5.3.4 An Intuitive Yet Flawed First Attempt

The heartbeat protocol is intuitive enough. If we assume that messages received are idempotent (as is the

case for our case study: two turn off messages is the same as one), we just need to repeat messages until

the next one is sent. The important heartbeat rules specified in our first attempt to specify the protocol as

a parameterized module in Maude are as follows.

If the sender needs to send a repeated message, then the message is forwarded, and the repeat timer is

set, and the repeated message is buffered to be retransmitted.

crl < sid : SenderWrap | internal : M C, time : TM >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M > M

if dest(M) =/= sid /\ repeat-msg?(M) = true .

If the repeat timer times out, then retransmit the buffered message.

crl < sid : SenderWrap | internal : C, time : TM, repeat-msg : M >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M > M

if TM = timer0 .

If the receiver receives a repeated message then reset the timeout timer and deliver the message.

crl M < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : M C, time : t(timeout) >

if dest(M) = rid /\ repeat-msg?(M) = true .
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If the receiver timer timesout, then go to a fall-back mode.

crl < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : safe-msg(rid) C, time : no-timer >

if TM = timer0 .

This description follows immediately form the intuitive description of the pattern. For model checking,

we let the sender turn the receiver off from time 0 to 50, then turn the receiver back on after time 50. We are

not even considering message loss yet, this is merely a check of the pattern’s correctness in behavior under

normal conditions. In the model checking, we look for points where the receiver is still turned off after time

50. We checked up to time 100, and we get many counter examples, the last one being

Solution 61

C’:Configuration --> < receiver : Receiver | state : on >

< sender : Sender | receiver : receiver,state : on >; C:Configuration --> <

receiver : ReceiverWrap | internal : < receiver : Receiver | state : off >

,time : no-timer >

< sender : SenderWrap | internal : < sender :

Sender | receiver : receiver,state : on >,repeat-msg : none,time : no-timer >

; TIME_ELAPSED:Time --> 100

No more solutions

This means that it is possible that at time 100 the receiver was still off, and indeed looking into the

details of the counter example, the receiver will be off indefinitely. The reason for this is that messages can

be reordered, and the repeated message can become out of order with a normal command message overriding

that command. This shows the importance of encoding patterns formally and not just relying on intuitive

descriptions for safety critical designs. Designs should be provably safe.

5.3.5 Ironing Out The Kinks

The disastrous counterexample that we have just seen has two fundamental causes. One is that the mes-

sages can be reordered; the other is that repeated messages are indistinguishable from original commands.

Addressing each of these points can solve the problem.

To get rid of the problem of message reordering, we can add time stamps, for example the first sender

rule now becomes
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crl < sid : SenderWrap | internal : M C, time : TM,

time-stamp : N >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M, time-stamp : up(N) >

(if dest(M) == rid then stamp(rid, M , N) else M fi)

if dest(M) =/= sid /\ repeat-msg?(M) = true .

We of course needed to change the sender and receiver attributes to add in the time stamp. We also need

to introduce a new message format with time stamps. And we must also ensure that forwarding to internal

wrapped objects also preserves the desired order. After all these changes to the protocol, model checking

this system does remove all the counterexamples. However, the time stamp based approach does have

it’s drawbacks. Of course the system becomes more complicated and, furthermore, the timestamps cause

the untimed state space to become infinite, which makes complete model checking more difficult without

good abstraction techniques. Furthermore, this increase in state space and context complicates the proof of

correctness, and it makes many more assumptions and constaints on the design.

Thus, it is better to proceed based on the second approach of distinguishing repeated messages from

original commands. Using the repeated messages only to reset timeouts but not to be delivered to the

internal configuration. The complete specification of this design is as follows:

op repeated : Oid Msg -> Msg .

op repeated? : Msg -> Bool .

vars M M’ : Msg .

var C : Configuration .

var TM : Timer .

var T : Time .

var O : Oid .

eq dest(repeated(O,M)) = O .

eq repeat-msg?(repeated(O,M)) = false .

eq repeated?(repeated(O,M)) = true .

eq repeated?(M) = false [owise] .
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eq mte(< sid : SenderWrap | internal : C, time : TM >)

= minimum(mte(C), mte(TM)) .

eq mte(< rid : ReceiverWrap | internal : C, time : TM >)

= minimum(mte(C), mte(TM)) .

eq tick(< sid : SenderWrap | internal : C, time : TM >, T)

= < sid : SenderWrap | internal : tick(C,T), time : tick(TM, T) > .

eq tick(< rid : ReceiverWrap | internal : C, time : TM >, T)

= < rid : ReceiverWrap | internal : tick(C, T), time : tick(TM, T) > .

op init-sender-wrap : -> Configuration .

eq init-sender-wrap =

< sid : SenderWrap | internal : init-sender, time : no-timer,

repeat-msg : none > .

op init-receiver-wrap : -> Configuration .

eq init-receiver-wrap =

< rid : ReceiverWrap | internal : init-receiver, time : no-timer,

repeat-msg : none > .

--- send a nonrepeated message

crl [send-nonrepeat] : < sid : SenderWrap | internal : M C, time : TM >

=> < sid : SenderWrap | internal : C , time : no-timer,

repeat-msg : none > M

if dest(M) =/= sid /\ repeat-msg?(M) = false .

--- send a repeated message

crl [send-repeat] : < sid : SenderWrap | internal : M C, time : TM >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M > M

if dest(M) =/= sid /\ repeat-msg?(M) = true .

--- need dest(M) = rid ???
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--- repeat a message

crl [repeat] : < sid : SenderWrap | internal : C, time : TM, repeat-msg : M >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M > repeated(dest(M), M)

if TM = timer0 .

--- forward msg to sender

crl [fwd-to-sender] : M < sid : SenderWrap | internal : C >

=> < sid : SenderWrap | internal : C M >

if dest(M) = sid .

--- forward a message that will be repeated

crl [fwd-with-repeat] : M < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : M C, time : t(timeout),

repeat-msg : M >

if dest(M) = rid /\ repeat-msg?(M) = true .

--- forward a message that is not repeated

crl [fwd-no-repeat] : M < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : M C, time : no-timer >

if dest(M) = rid /\ repeat-msg?(M) = false /\ repeated?(M) = false .

--- receiving a message repeat that was seen

rl [repeated-seen] : repeated(rid,M) < rid : ReceiverWrap | internal : C, time : TM,

repeat-msg : M >

=> < rid : ReceiverWrap | time : t(timeout) > .

--- receiving a message repeat that was not seen

crl [repeat-not-seen] : repeated(rid,M) < rid : ReceiverWrap | repeat-msg : M’ >

=> < rid : ReceiverWrap | >

if M =/= M’ .
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--- repeat message timeout

crl [repeat-timeout] : < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : safe-msg(rid) C, time : no-timer,

repeat-msg : none >

if TM = timer0 .

--- forward out from receiver

crl [fwd-from-recv] : < rid : ReceiverWrap | internal : M C >

=> < rid : ReceiverWrap | internal : C > M

if dest(M) =/= rid .

endtom)

The modelchecking for this new protocol also generates no counterexamples, and has the advantage of

being much simpler than the design using time stamps.

5.3.6 Proof of Correctness

We show that under the condition of no message loss our pattern gives the exact behavior as an ideal

communicating pair. Again, this requires us to prove a stuttering bisimulation, and the first step in to

establish the bisimulation relation H.

The only difference between our system and the ideal system is that the sender and receiver are wrapped

and there are more types of messages. Thus we define the projection relation as follows:

vars C C’ : Configuration .

vars NC NC’ : NEConfiguration .

op proj-wrapped : Configuration -> Configuration .

eq proj-wrapped(NC NC’) = proj-wrapped(NC) proj-wrapped(NC’) .

eq proj-wrapped(< receiver : ReceiverWrap | internal : C >) = C .

eq proj-wrapped(< sender : SenderWrap | internal : C >) = C .

eq proj-wrapped(repeated(O:Oid, M:Msg)) = none .

eq proj-wrapped(NC) = NC [owise] .

Thus giving two systems, an ideal one s = {C} and a wrapped one s′ = {C ′}. We have that sHs′ iff
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C =proj-wrapped(C ′).

In order to show this, we must first show that under normal operation (no dropped messages and no out

of order delivery), the wrapped receiver will never take the fall back mode. That is the rule repeat-timeout

should never be applied starting in a proper initial state and when no messages are lost.

Definition. Let s be a wrapped system of the form

C < O : SenderWrapper | internal : C ′, time : TM, repeat-msg : M >

< O′ : ReceiverWrapper | internal : C ′′, time : TM ′, repeat-msg : M ′ >

s is a proper initial state iff

1. C contains no messages of the form repeated(Oid,Msg) and no other objects of type SenderWrapper

and ReceiverWrapper

2. TM = TM ′ = no-timer

3. M = M ′ = none

Also, define a relation < for timers such that t(T ) < t(T ′) when T < T ′ and also t(T ) < no-timer.

With the proper definition of an initial state, we have the following Lemma.

Lemma 5.3.1. Let s0 be a proper initial state of a wrapped sender-receiver pair. Let s be a any state

reacheable from s0 by the rewrite rules in the module REPEATER. s will have the form

C < O′ : ReceiverWrapper | time : TM ′, ...>, and TM ′ > t(0)

Proof. We proceed by induction on the number of rewrite rules applied from the module REPEATER. We use

the stronger induction hypothesis that any reacheable state has the form

s = C < O : SenderWrapper | time : TM, repeat-msg : M, ...>

< O′ : ReceiverWrapper | time : TM ′, repeat-msg : M ′, ...>

and one of the following must hold

1. TM ′ = no-timer

2. C = C ′ repeated(O′, M ′) and M = M ′ and TM ′ > t(0)

3. C = C ′M ′′ where repeat-msg?(M ′′) = false and M = none

4. TM ′ > TM .
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The initial state clearly satisfies the induction hypothesis.

Now, we reason on each of the rules. Notice that since we assume in order delivery of messages the send

and receive rules are usually taken in pairs. Consider the step s′ → s.

Notice that the timer for the sender, when set, is always set to t(repeat-time), and the timer for the

receiver, when set, is always set to t(timeout). Also, since values of timers can never increase, we always

have TM ′ ≤ t(timeout), and TM ≤ t(repeat-time). We also have t(repeat-time) < t(timeout) by the

requirements of the input theory COMM-PAIR.

If the last rewrite rule taken was send-nonrepeat, then by the form of the right hand side of the rule, s

satisfies case 3 of the induction invariant.

If the last rewrite rule taken was send-repeat or repeat, then by the form of rewrite rule, s should

satisy case 2 of the induction invariant.

If the last rewrite rule taken was fwd-with-repeat, and assuming s′ only had one instance of a repeated

message, then the sender must have sent a repeated message by the rules send-repeat or repeat. Since

time cannot elapse while a message is in the configuration, the sender timer must be TM = t(repeat-time),

and the receiver timer is set to TM ′ = t(timeout), and we have TM ′ > TM .

If the last rewrite rule taken was fwd-no-repeat, then the receiver timer is set to TM ′ is no-timer, and

s satisfies case 1.

If the last rewrite rule was repeated-seen, then the sender has just sent a repeated message, and the

sender timer must be set. The receiver timer is set to t(timeout) (largest possible time to set for any sender

or receiver timer), and we have TM ′ > TM .

Any other rewrite rule, including fwd-to-sender or fwd-from-recv, should not modify the attributes

of the SenderWrapper and ReceiverWrapper objects, and also should not add any repeated messages into

the external configuration. The rule repeat-not-seen should never be taken if the messages are delivered

in order, and the rule repeat-timeout will of course never be taken as the inductive hypothesis always has

TM ′ 6= t(0).

Thus considering all possible rewrite rules, we see that the time attribute for the ReceiverWrapper

object never reaches t(0).

The important implication of this Lemma is that we no longer have to consider the case where the

ReceiverWrapper timesout by not receiving a repeated message. Thus, in reasoning about the case where

no messages are lost in communication, it means that we do not have to consider transitions taken by the

rule repeat-timeout.

With this knowledge, we are ready to prove the bisimulation result between an ideal communicating pair,
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and a wrapped communicating pair.

We again use the notion of a well-founded simulation to show a bisimulation. First, we define some

important values associated with the states.

Definition. Let a wrapped system s have the form:

{ C < O : SenderWrapper | internal : C ′, time : TM, repeat-msg : M >

< O′ : ReceiverWrapper | internal : C ′′, time : TM ′, repeat-msg : M ′ > }

Let nmsgts(s) be the number of messages in C to the sender object O.

Let nmsgtr(s) be the number of messages in C to the receiver object O′.

Let nmsgfs(s) be the number of messages in C ′ where the destination is not the sender object O.

Let nmsgfr(s) be the number of messages in C ′′ where the destination is not the receiver object O′.

Let χrepeat be an indicator value that is set to 1 when TM = t(0) and 0 otherwise.

Also, in order for the wrapper to function correctly, we must satisfy the condition of no messages bypassing

the sender wrapper. The state of s actually has enough information to define the condition of no bypass

without considering time. Let nobypass(s) be true iff

1. C contains no messages to the receiver O′

2. C contains a message MR to the receiver, and M = MR

Define the relation H ⊆ Sideal×Swrapped such that {C}H{C ′} iff C =proj-wrapped(C ′)∧nobypass(C).

We have already defined a proper inital state for wrapped systems earlier. For an ideal system, define

a proper inital state to be a configuration with a sender and reciever (to be wrapped) and no messages in

transit.

Theorem 5.3.2. The relation H is a well-founded bisimulation (when restricted to all the reachable states

from proper inital states).

Proof. We first show the well-founded simulation form Sideal to Swrapped.

Define µ(si, sf ) = 0 and µ(si, s
′
i, sf ) = 3nmsgfr(sf )+2χrepeat+2nmsgfs(sf )+nmsgts(sf )+nmsgtr(sf ).

Suppose that siHsf , we consider possible transitions si → s′i.

Let sf have the following form

{ C < Os : SenderWrapper | internal : Cs, time : TM, repeat-msg : Mr >

< Or : ReceiverWrapper | internal : Cr, time : TM ′, repeat-msg : M ′r > }

Let nmsgts(s) be the number of messages in C to the sender

(1) mte(si) = 0 and a message M is delivered in s′i, we consider the following cases:

118



(1.a) M is not a message to or from Os or Or, and thus M is also in the external configuration of sf ,

then sf → s′f takes a corresponding transition by using the same rule, and we have s′iHs
′
f .

(1.b) M is a message to Os, and M is in Cs, then, again, sf → s′f takes a corresponding transition using

the same rule, and we have s′iHs
′
f .

(1.c) M is a message to Os, and M is in C, then we can apply the fwd-to-sender rule, and nmsgts

decreases, and thus µ′ decreases as required.

(1.d) M is a message to Or, and M is in Cr, this is similar to case (1.b)

(1.e) M is a message to Or, and M is in C, and repeat-msg?(M) =true, the fwd-with-repeat rule

applies, and siHs
′
f and nmsgtr decreases.

(1.d) M is a message to Or, and M is in C, and repeat-msg?(M) =false, the fwd-no-repeat rule

applies, and siHs
′
f and nmsgtr decreases.

(1.f) M is a message from Os, and M is in Cs, M must be forwarded by either rules send-nonrepeat

or send-repeat. In any case, siHs
′
f and nmsgfs decreases by 1, and nmsgtr or nmsgts (not both) may

increase by 1, but this will still decrease µ′.

(1.g) M is a message from Or, and M is in Cr, M must be forwarded by the rule fwd-from-recv. siHs
′
f

and nmsgfs decreases by 1, and nmsgts may increase by 1, but we have a net decrease in µ′.

(1.h) M is a message from Os or Or, but M is in C. This will be subsumed under the previous cases

unless the destination of M is not Os or Or, in which case sf will take a corresponding rewrite rule siHs
′
f .

(2) mte(si) > 0, and si → sf is a tick rule advancing time by one time unit. We consider a few subcases

for the transition of sf .

(2.a) mte(sf ) > 0, then we also apply a one time unit tick rule to have siHsf .

(2.b) mte(sf ) = 0 because the sender repeat timer TM has expired. In this case, the rule repeat is used,

and we have siHs
′
f and χrepeat decreases, and nmsgtr increases; a net decrease in µ′.

(2.e) mte(sf ) = 0 because a message M needs to be delivered. The only new messages that can be in sf

and not si are repeated messages, and so the rule repeated-seen can be applied, and we have a decrease

in nmsgtr.

This covers all the cases for showing a well-founded simulation from Sideal to Swrapped. Now for the other

direction.

We define ν(sf , si) = 3nmsgfr(sf ) + 2ξrepeat + 2nmsgfs(sf ) + nmsgts(sf ) + nmsgtr(sf )

and ν′(sf , s
′
f , si) = 0.

Let H ′ = H−1, and suppose sfH
′si.

We consider the following cases:
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(1’) mte(sf ) > 0, and sf → s′f is a tick rule advancing time by one time unit. By the homomorphic

definition of mte, if sfH
′si, then mte(si) > 0, and a corresponding one time unit tick step can be taken

si → s′i with s′fH
′s′i.

In the next set of cases, we consider transitions that occur by the rules in module REPEATER. Note that

none of the rules modify the states of internal objects, and they only generate new message of the form

repeated. Thus, s′fH
′si holds for all these cases by the nature of the projection relation. Thus, we only

have to show that ν decreases.

(2’) s′f is reached by rule send-nonrepeat. nmsgfs decreases by 1 while nmsgtr or nmsgts (but not

both) may increase by 1 resulting in a net decrease of ν.

(3’) s′f is reached by rule send-repeat. Even though internal object parameters are set differently,

externally, this looks the same as case (2’).

(4’) s′f is reached by rule repeat. χrepeat decreases by 1 and nmsgtr increases by 1 resulting in a net

decrease of ν.

(5’) s′f is reached by rule fwd-to-sender. nmsgts decreases.

(6’) s′f is reached by rule fwd-with-repeat or fwd-no-repeat or repeated-seen. nmsgtr decreases.

(7’) s′f is reached by rule fwd-from-recv. nmsgfr decreases by 1 while nmsgtr or nmsgts (but not both)

may increase by 1 resulting in a net decreases of ν.

The last case to consider is when mte(sf ) = 0 and a rule outside the REPEATER module is applied. We

assume that none of these rules have terms containing SenderWrapper, ReceiverWrapper, or repeated. In

this case, si should also be able to match the left hand side of the same rule, and we have s′fH
′S′i.

Note that for all these cases, we were able to ignore the rules repeat-timeout and repeat-not-seen in

the case by case analysis by the results of Lemma 5.3.1, and since we only consider proper initial states.

We have shown that H is a well-founded bisimulation, and thus, we have a bisimulation between ideal

communicating pairs and wrapped sender and receiver configurations.

5.3.7 Proof of Robustness

What we have just proved is the correctness of the Heartbeat pattern when the network does not fail. This

is good in showing that under normal operating conditions our pattern does not deviate from the ideal

behavior. However, our pattern should do much more than that under failure situations. Note that in cases

where faults occur, there is really no ideal behavior to compare to since the fault has already deviated from

ideal conditions. Furthermore, message loss over the network, and real-time constraints means that the
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system must make automated safe transitions even when they are not required.

Intuitively, a receiver is safe if it reacts to all the critical commands. In our pattern, the critical command

is captured by safe-msg. A receiver reacting to a critical message would then mean that when a sender

sends a safe-msg, then the receiver will receive the safe-msg at most some Tmax time units later. This

brings us to the following theorem.

Theorem 5.3.3. Consider a sender and receiver configuration with view form COMM-PAIR. Now, consider a

wrapped configuration

{ C < Os : SenderWrapper | internal : Cs, time : TM, repeat-msg : Mr >

< Or : ReceiverWrapper | internal : Cr, time : TM ′, repeat-msg : M ′r > }

If the receiver object last received a repeated message M with repeat-msg?(M) = true, and if the sender

object with oid sid in Cs sends a message of type safe-msg at time t1, and the sender object sends no

other messages in time betwenn t1 and t1+timeout, then the receiver object with oid rid in Cr will receive

a message of type safe-msg no later than t1+timeout.

This occurs even if we have the message loss rule at the top most level of the configuration:

rl [drop-msg] : { M:Msg C:Configuration } => { C:Configuration } .

Proof. Suppose that the sender sends a safe-msg at time t1, and since there are no other messages being

sent by the sender at time t1, then the configuration must be of the form:

{ C

< Os : SenderWrapper | internal : Cs safe-msg(Or), time : TM, repeat-msg : Mr >

< Or : ReceiverWrapper | internal : Cr, time : TM ′, repeat-msg : M ′r > }

where Cs, C, and Cr contains no messages from Os to Or.

For simplicity we assume that the safe-msg is not repeated, that is, repeated-msg?(safe-msg) =

false. This means that the rule send-nonrepeat will eventually be applied (assume the configuration we

described is the last state before the rule was applied, and we have a configuration of the form:

{ C < Os : SenderWrapper | internal : Cs, time : no-timer, repeat-msg : none >

safe-msg

< Or : ReceiverWrapper | internal : Cr, time : TM ′, repeat-msg : M ′r > }

Now, there are two cases, one is to apply the rule fwd-no-repeat, in which case safe-msg ends up in

the internal configuration of the receiver, eventually getting consumed by the receiver object. In this case,

the statement of the theorem is trivially satisfied. The second case is that the rule drop-msg is applied, and

we are left with the configuration:

{ C < Os : SenderWrapper | internal : Cs, time : no-timer, repeat-msg : none >
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safe-msg

< Or : ReceiverWrapper | internal : Cr, time : TM ′, repeat-msg : M ′r > }

Since C contains no messages, and since the last message received by the receiver was repeated, it must

be that timer TM ′ is set. Furthermore, the maximum value of TM ′ is t(timeout), and no rules can be

applied to reset TM ′ as all rules to reset the value requires a message from Os to Or in configuration C.

This means that eventually TM ′ will expire in at most timeout time units, and the rule repeat-timeout

will be used. This rule generates a safe-msg in the receiver configuration, and again the statement of the

theorem is satisfied in this case.

5.4 A Safe Laser Surgery Protocol - An Application of the

Heartbeat Pattern

We have described in detail a heartbeat pattern that can provide timely message delivery guarantees for

critical messages even when the network may be faulty and drop messages. We have described in the

beginning a laser surgery example that needs specific safety considerations when messages can be dropped.

Clearly, creating a safe design for such a system is nontrivial and, furthermore, even if such a safe design

was acheived, it is unclear how future changes in the code and protocols can affect the safety of the system.

This is a perfect opportunity to apply the Heartbeat Pattern that we just described. It will provide safety

guarantees while still maintaining flexibility of the internal logic.

The general idea of using the heartbeat pattern as a solution for faulty networks is to use the property

guaranteed by Theorem 5.3.3. Clearly, the critical message that can be missed by the laser is the message

to turn off. Thus, if we assign as the safe-cmd the turn off command for the laser, then we will be able to

design a safe system taking into account timing delays. Recall that from Theorem 5.3.3, the maximum time

from sending a safe-cmd to receiving it is at most timeout time units. Thus, we know that the laser must

turn off within timeout time units if we use the pattern, and we are able to use this to guarantee the safety

property that the oxygen and the laser will never be on at the same time.

A simple description of the laser oxygen system is shown below:

(tomod LASER is

pr DELAY-MSG .

pr POSRAT-TIME-DOMAIN-WITH-INF .
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sort State .

ops on off : -> State .

class Oxygen | state : State, receiver : Oid, turn-on-timer : Timer,

buffer-timer : Timer .

class Laser | state : State .

ops oxygen laser : -> Oid .

op off-time : -> Time .

eq off-time = 100 .

op buffer-time : -> Time .

eq buffer-time = 10 .

op set : Oid State -> Msg .

vars S S’ : State .

var O O’ : Oid .

rl set(O, off)

< O : Oxygen | state : S’, receiver : O’ >

=> < O : Oxygen | state : off, turn-on-timer : t(off-time) >

set(O’, on) .

rl set(O, on)

< O : Oxygen | state : S’, receiver : O’ >

=> < O : Oxygen | state : S’, turn-on-timer : no-timer,

buffer-timer : t(buffer-time) >

set(O’, off) .

rl < O : Oxygen | state : off, turn-on-timer : t(0), receiver : O’ >

=> < O : Oxygen | state : off, turn-on-timer : no-timer,

123



buffer-timer : t(buffer-time) >

set(O’, off) .

rl < O : Oxygen | state : off, buffer-timer : t(0) >

=> < O : Oxygen | state : on, buffer-timer : no-timer > .

rl set(O, S)

< O : Laser | state : S’ >

=> < O : Laser | state : S > .

var T : Time .

vars TM TM’ : Timer .

eq mte(< oxygen : Oxygen | buffer-timer : TM, turn-on-timer : TM’ >)

= minimum(mte(TM), mte(TM’)) .

eq tick(< oxygen : Oxygen | buffer-timer : TM, turn-on-timer : TM’ >, T)

= < oxygen : Oxygen | buffer-timer : tick(TM, T), turn-on-timer : tick(TM’, T) > .

eq mte(< laser : Laser | >) = INF .

eq tick(< laser : Laser | >, T) = < laser : Laser | > .

endtom)

The laser and oxygen systems are both modelled as having two states on and off. The oxygen system has

safety requirements to not turn off for too long. This is captured in the turn-on-time constant. A timer

in the oxygen system will ensure that the oxygen turns back on in a desired time window. Furthermore, in

order to compensate for command delays to the laser, the oxygen sysetm also has a buffer-time that it

must also time before making state transitions. The rules are effectively describing changing states based

on messages received as well as setting these timers appropriately. When the oxygen system wants to turn

back on, it will send a message to the laser, as well as wait for the required buffer-time. Of course, this

system by itself is clearly not safe, since the laser has no automated means to turn off once the network fails.

Indeed, model checking a simple configuration gives many counter examples:

(tsearch { init-sender init-receiver init-msg }

=>* { C:Configuration } s.t.

get-state(oxygen, C) == on /\ get-state(laser, C) == on

in time <= 100 .)
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Timed search in TEST-TEST

{init-sender init-receiver init-msg} =>* {C:Configuration}

in time <= 100 and with mode default time increase 1 :

Solution 1

C:Configuration --> < laser : Laser | state : on > < oxygen : Oxygen |

buffer-timer : no-timer,receiver : laser,state : on,turn-on-timer :

no-timer > ; TIME_ELAPSED:Time --> 60

...

Now, we apply the heartbeat pattern, and automatically transition the receiver (the laser) to safe states

when needed. First, we need to define all the parameters for the view.

(tomod LASER-AUX is

inc LASER .

op repeat-msg? : Msg -> Bool .

var O : Oid .

eq repeat-msg?(set(O, on)) = true .

eq repeat-msg?(set(O, off)) = false .

op dest : Msg -> Oid .

eq dest(set(O, S:State)) = O .

op safe-msg : Oid -> Msg .

eq safe-msg(O) = set(O, off) .

op timeout : -> Time .

eq timeout = 8 .

op repeat-time : -> Time .

eq repeat-time = 5 .
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op init-sender : -> Configuration .

op init-receiver : -> Configuration .

eq init-sender =

< oxygen : Oxygen |

state : on, receiver : laser, turn-on-timer : no-timer,

buffer-timer : no-timer > .

eq init-receiver = < laser : Laser | state : off > .

endtom)

(view SimpleCommPair

from COMM-PAIR

to LASER-AUX is

class Sender to Oxygen .

class Receiver to Laser .

op sid to oxygen .

op rid to laser .

op repeat-msg? to repeat-msg? .

msg safe-msg to safe-msg .

op repeat-time to repeat-time .

op timeout to timeout .

op init-sender to init-sender .

op init-receiver to init-receiver .

endv)

Essentially, we are just providing the key information required before using the pattern correctly. The

sending and receiving object ids and the appropriate timeouts to use. We also identify the set(O, off)

message to be the safe-msg, and, naturally, since we only have two types of messages, the set(O, on)

message is the repeated message. Note that the timeout is set to 8 time units, while the buffered state
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transition delay for the oxygen is 10 time units, and by Theorem 5.3.3 this is sufficient waiting time.

Instantiating the pattern is pretty much completely done by the parameterized REPEATER specification.

We just need to define the initial states for execution.

(tomod TEST-TEST is

inc REPEATER{SimpleCommPair} .

op init : -> Configuration .

eq init = init-sender-wrap init-receiver-wrap .

op init-msg : -> Configuration .

eq init-msg = delay(set(oxygen, off), t(0)) delay(set(oxygen, on), t(50)) .

Furthermore, aside from instantiating the model, we model the message loss fault by a rule that will

remove messages in the outermost configuration. Note that we only remove messages in the outer-most

configuration, the inner configurations must still reliably deliver messages in order for the behavior to make

sense. It is assumed that the inner configurations receive messages locally and not across the network.

rl { M:Msg C:Configuration } => { C:Configuration } .

For model checking purposes, we also define an operator get-state to probe the internal states of the

objects.

op get-state : Oid Configuration -> State .

op err : -> State .

var O : Oid .

vars C C’ : Configuration .

var S : State .

eq get-state(O, < O : ReceiverWrap | internal : C > C’) = get-state(O, C) .

eq get-state(O, < O : Laser | state : S > C) = S .

eq get-state(O, < O : SenderWrap | internal : C > C’) = get-state(O, C) .

eq get-state(O, < O : Oxygen | state : S > C) = S .

127



eq get-state(O, C) = err [owise] .

endtom)

Thus, we have finally instantiated our laser-oxygen example, added the rule for the faults, given the

information for an initial state, and provided the necessary operators to define the safety predicate. We can

use a timed search to perform the model checking of the safety invariant that the laser and oxygen are never

on at the same time.

(tsearch { init init-msg }

=>* { C:Configuration } s.t.

get-state(oxygen, C) == on /\ get-state(laser, C) == on

in time <= 100 .)

We find that, indeed, our system with the initial conditions defined has no counter examples:

Timed search in TEST-TEST

{init init-msg} =>* {C:Configuration}

in time <= 100 and with mode default time increase 1 :

No solution
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Chapter 6

Formal Model Based Device
Emulation

Currently, all of our models execute in simulation time. In general for modeling and verification, this is

a desirable feature, as simulation time can advance much faster than real time, and we may be able to

simulate 1 hour of behavior in a few seconds and analyze it. However, Maude inherently provides us with

the ability to execute our specifications, and the sockets API also allow the model to communicate with the

outside world. This brings up the question of whether we can use the model not only as a simulation but

an emulation of the software itself. That is, if we model a control algorithm for a medical device, what is

to stop us from using this model as a real-time software controller? It turns out that the Maude framework

has already laid out all the foundations for this to happen, and we just need to put them all together.

6.1 Distributed Emulation of Safe Medical Devices

We now discuss the transformation of the model to execute in real world time with physical devices in a

medical device emulation environment. For this purpose we take the model of the wrapped pacemaker

and wrap it again in an external execution wrapper (Figure 6.1). The execution wrapper is responsible for

conveying to the model the notion of real world time as well as providing a communication interface to

the external world. A dedicated timer thread is responsible for “ticking” the model by sending a minimal

number of messages to advance the model’s logical time. The timer thread also intercepts all asynchronous

(interrupt) messages and relays them to the model. Another aspect of the execution wrapper is the ability

to map external I/O messages to communicate with the external devices. For example, in the pacemaker

specification an internal message called paceVentricle may be mapped into an entire client configuration to

send a message for setting the final voltage on a pacing lead.

The external execution wrapper is an object that encapsulates the original model. It is primarily respon-

sible for interfacing constructs between the physical world (the real interfaces to devices) and the logical

world (the world as seen by the model). In particular, the execution wrapper is responsible for conveying

the measurement of real time elapsed to the model and also mapping logical communication messages to

129



Figure 6.1: Real-Time Model Execution Wrapper

communication configurations that can deliver the message. The most important feature of the external

execution wrapper is its modularity. Aside from adding the minimal information about how to map external

I/O to messages in the model, no further specifications are required to execute the logical model with an

external environment.

6.2 Mapping Internal Messages to External I/O

Validating the design of a device in an execution environment requires handling its outputs. After all, the

end validation of a system’s behavior is based on its outputs. Thus, it seems reasonable to talk about how

internal messages in the model can be converted into messages for communicating with the external world.

This section also serves as an explanation for unfamiliar readers of how Maude sockets are used.

In order to talk about external communication, we must first define in the model what is external. The

model will have an internal distributed actor configuration with internal messages as well as messages to be

output to the external world. Thus, the first definition is EXTERNAL-CONFIGURATION, which defines a sort

of external messages ExtMsg as a subsort of Msg. Furthermore, external messages are classified in terms of

incoming external messages InExtMsg and outgoing external messages OutExtMsg. A configuration is called

open if there are external messages present in the configuration: either an incoming external message has

not been delivered, or an outgoing external message has not been sent. The predicate open? is defined

accordingly.

subsorts InExtMsg OutExtMsg < ExtMsg < Msg .

op open? : Configuration -> Bool .

eq open?(C C’) = open?(C) or open?(C’) .
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eq open?(O) = false .

eq open?(M) = M :: ExtMsg .

Actually sending an external message may be more complex than just forwarding the message through the

gateway object. External messages may not be represented in the same way in the internal configuration.

For example, a simple output message in the internal configuration may need to be mapped to a client

object that initiates the communication to deliver the message. Operators in-adapter and out-adapter

are defined to perform these mappings from external message client configurations to internal messages.

An example of an output adapter for a pacemaker message to beat the heart may be:

eq out-adapter(shock)

= createSendReceiveClient(pacer-client, "localhost", 4451, "SetLeadVoltage 5V")

In this example, the message shock is transformed into a client object which sends a message on port

4451 with the string "SetLeadVoltage 5V" indicating that the proxy server will then proceed to set a 5V

voltage on the pacemaker lead.

6.2.1 One-Round Communication Clients

Once the external message is mapped into a client configuration, we define the rewrite rules to specify how the

communication protocol works with the external device. Here we describe a simple SEND-RECEIVE-CLIENT

which is responsible for establishing communication, sending a message, receiving a reply, and then closing

the communication. Although simple, this type of protocol is sufficient for most of the communication for

medical devices we have used in our case studies.

(mod SEND-RECEIVE-CLIENT is ...

op createSendReceiveClient : Oid String Nat String -> Configuration .

eq createSendReceiveClient(CLIENT, ADDRESS, PORT, SEND-CONTENTS)

= < CLIENT : SendReceiveClient | ... >

createClientTcpSocket(socketManager, CLIENT, ADDRESS, PORT) .

op msg-received : Oid String -> InExtMsg .

...endm)

After creating the client and establishing communication, the client goes into one round of sending and

receiving before the socket is closed. Once the socket is closed, the entire client object is converted into one

reply message to be delivered to the internal configuration using the operator msg-received.
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--- send contents

rl createdSocket(CLIENT, socketManager, SOCKET-DST)

< CLIENT : SendReceiveClient | ... send-contents : SEND-CONTENTS >

=> < CLIENT : SendReceiveClient | ... > send(SOCKET-DST, CLIENT, SEND-CONTENTS) .

--- receive contents

rl sent(CLIENT, SOCKET-DST) < CLIENT : SendReceiveClient | ... >

=> < CLIENT : SendReceiveClient | ... > receive(SOCKET-DST, CLIENT) .

--- close socket

rl received(CLIENT, SOCKET-DST, RECEIVE-CONTENTS) < CLIENT : SendReceiveClient | ... >

=> < CLIENT : SendReceiveClient | ... recv-contents : RECEIVE-CONTENTS >

closeSocket(SOCKET-DST, CLIENT) .

--- done

rl closedSocket(CLIENT, SOCKET-DST, "")

< CLIENT : SendReceiveClient | ... recv-contents : RECEIVE-CONTENTS >

=> msg-received(CLIENT, RECEIVE-CONTENTS) .

6.3 Mapping Logical Time to Physical Time

As mentioned earlier, time advancement of the system is achieved by defining the tick and mte operators.

Ideally the system continuously evolves over time (possibly nondeterministically). Of course, we cannot

capture the notion of continuous time without abstractions in the model, so to advance time discretely, an

mte (maximum time elapsable) operator is introduced. A correctly defined mte operator ensures that if a

system is in state S, then for any time T < mte(S), no 0-time rewrite rules (state transitions) can apply to

tick(S, T ). That is, if a system is in state S, and T ≤ mte(S), then tick(S, T ) will be equivalent to the state

S advancing in continuous time for T time units. This ideal semantics of time is shown on the left side of

Figure 6.2. The figure shows that 0-time rewrite rules are assumed to take zero time, and ideally, the system

continuously evolves over time between the 0-time rewrite rules.

Of course, in a real execution of the model, the ideal notion of time with 0-time rewrite rules and time-

advancing rules is only an idealized abstraction. Performing rewrites cannot take zero time, and we cannot

continuously rewrite states of the system over time. We could of course create a model in discrete time

with very fine time granularity and drive it by a high frequency clock like in hardware. However, this would

introduce a lot of unnecessary overhead in terms of communication of timing messages and performing
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Figure 6.2: From Ideal Time Advancement Semantics to Physical Time Advancement

rewrite rules to change the model for every clock tick. We resolve this problem by observing that the

actual internal state of the model is not important at most instants in time, unless it is communicating with

the external world. The model states only generate output messages with 0-time rewrite rules, so we can

essentially let the model in state S remain unaffected by the passage of time until the next time instant in

which a 0-time rewrite rule can be applied; this is exactly mte(S) time units later. This method of driving

execution is shown in the right part of Figure 6.2. We have created a dedicated timer server thread (in Java)

that has access to the system time. When the execution of the wrapped model starts, it will send a start

request which includes the time units of the model or the minimum granularity of time for model execution

in milliseconds. Once the timer thread processes all the initial information, it will send a Go! message

to signal the model to start executing. The model then calculates the maximum time elapsable (which is

10 seconds in the example) and sends this information to the timer thread. The model then proceeds to

sleep until the timer thread wakes it in time for the next 0-time rewrite rule. The process then continues.

There are two key points to notice about this example. The input and output messages from the model may

be delayed by an amount of time equal to the communication jitter plus the time to complete rewriting.

Normally this delay is on the order of 10 ms, but this is still suitable for medical devices, which normally

receive commands on the order of seconds or more. Also, the timer thread sets the timeout from the last

time it sent a time advancement message to the model and not from the time it receives the mte message

from the model. This ensures that clock skew and jitter are bounded over time.

6.3.1 Synchronous Timed Execution

The communication wrapper (commwrap) is represented as an object with the attributes for the communica-

tion state, the socket information for communication, and the internal wrapped (Real-Time Maude) system
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model being executed. The top level system is of sort CommWrapConfiguration for any communicating

model.

op commwrap : Configuration -> CommWrapConfiguration .

op wrap-client : Configuration -> Configuration .

eq wrap-client(C) = < client : TickClient |

state : start, internal : [ {C} in time 0 ], socket-name : no-oid > .

op init-client : -> CommWrapConfiguration .

eq init-client = commwrap( <> wrap-client(internal)

createClientTcpSocket(socketManager, client, addr, port) ) .

The communication wrapper initializes a wrapped communication client that receives messages from

the tick server (a Java thread executing in real-time that sends it messages for time advancement). After

creating the TCP socket, the first message sent from the client to the tick server is the time-granularity

(time-grain), which is a rational number specifying the number of milliseconds in one time unit. Then,

the actual execution starts when the communication wrapper receives a GO message from the tick server.

The time when the tick server sends the GO message is the starting point from which time elapses are being

measured. Upon receiving the GO message, the formal model will immediately start to execute (state :

run).

rl [send-init] :

commwrap( <> createdSocket(...) < client : TickClient | ... > )

=> commwrap( <> < client : TickClient | ... > send(..., string(time-grain)) ) .

rl [wait-for-go] :

commwrap( <> sent(...) < client : TickClient | ... > )

=> commwrap( <> < client : TickClient | ... > receive(...) ) .

rl [start-running] :

commwrap( <> received(..., "GO\r\n") < client : TickClient | ... > )

=> commwrap( <> < client : TickClient | state : run, ... > .

The formal model executes until mte becomes non-zero (no other 0-time rewrite rules can be applied),

and the model sends a message to request the next time advancement message after the maximum time

elapse and blocks. After sending this waiting duration, the tick server will sleep for this time duration and

then send a time advancement message when the time has expired. The model will then advance time (tick)
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the model for the time duration expired and perform 0-time rewrite rules. The model now blocks again for

the next mte, and the cycle repeats.

crl [request-wait-timer] :

commwrap( <>

< client : TickClient |

state : run,

internal : [ {C} in time T ], ... > )

=> commwrap( <>

< client : TickClient |

state : request, ... >

send(..., string(mte(C, T))) )

if mte(C,T) :: TimeInf /\ mte(C,T) > 0 /\ not open?(C) . ...

rl [block] :

commwrap( <> sent(...)

< client : TickClient |

state : request, ... > )

=> commwrap( <>

< client : TickClient |

state : wait, ... >

receive(SOCKET-NAME, client) ) .

rl [wake-up] :

commwrap( <> received(..., ADV-STR)

< client : TickClient |

state : wait, ... > )

=> commwrap( <>

< client : TickClient |

state : run,

internal : [ {tick(C, rat(ADV-STR))} in time rat(ADV-STR) in time T ], ... > ) .
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Figure 6.3: Handling Interrupts and Asynchronous Communication Semantics

6.3.2 Handling Asynchronous External Events

So far, the model can only handle synchronous events (polling and blocking communication). However, in

general a useful design must be able to react to external events from the environment. For example, an EKG

sensor detects a QRS waveform, and sends this information to the pacemaker. This points to the fact that

our model needs to be able to handle external events asynchronously.

An external message would trigger a 0-time rewrite rule to receive the message by some object and process

it. More precisely, if we have CM and CExt as the model configuration and the external (environment) config-

uration respectively, the maximum time elapse for the system CMCExt should be min(mte(CM ),mte(CExt)),

where mte(CExt) denotes time duration before the next interrupt message. This semantics is captured by

having interrupt messages forwarded by the timer thread, as shown in Figure 6.3. The timer thread will

only check for interrupts when it is waiting for the next timeout, so when the interrupt message arrives, it

will wake up and immediately forward the interrupt message to the model with the amount of time that has

elapsed. Any future timeouts are canceled. Introducing the notion of interrupts requires us to modify the

wake-up rule for the model to not only advance time, but also check for potential interrupt messages as well.

rl [wake-up] :

commwrap( <> received(client, SOCKET-NAME, INTR-STR)

< client : TickClient |

state : wait,

internal : [ {C} in time T ],

socket-name : SOCKET-NAME > )

=>
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commwrap( <> < client : TickClient |

state : run,

internal : [

{tick(C, recv->rat(INTR-STR)) recv->conf(INTR-STR)}

in time recv->rat(INTR-STR) in time T

],

socket-name : SOCKET-NAME > ) .

6.4 Case Studies

The model execution framework works for all Real-Time Maude specifications that use only one tick rule.

Since the Command Shaper Pattern described in Section 4.2 was specified in this manner, we can directly

use instances of the pattern to validate our Real-Time Maude emulation capabilities.

6.4.1 Pacemaker Simulation Case Study

We first apply the Command Shaper to the pacemaker pattern described in Section 4.3.5. Recall, the final

wrapper object provided by the pattern is something of the form:

(tomod PARAM-PACEMAKER is pr EPR-WRAPPER-EXEC{Safe-Pacer} ...

eq wrapper-init =

< pacing-module : EPR-Wrapper{Safe-Pacer} |

inside :

< pacing-module : Pacing-Module |

nextPace : t(0),

period : safe-dur >,

val : safe-dur,

next-val : safe-dur,

disp : t(period),

stress-intervals : (nil).Event-Log{Stress-Relax} > .

... endtom)

The wrapper is placed around a pacing module, and the initial pacing rate is set as the default safe-

duration (safe-dur is 750 ms or 80 heart beats per minute). We have of course verified this instantiation

in Section 4.3.5. However, with the power of the model emulation framework, we can immediately use this
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specification to run with an actual pacemaker. In this paper we demonstrate this emulation capability not

on an actual pacemaker but on a pacemaker simulator (a Java widget that receives messages about when

to pace and draws a simple line graph resembling an ECG trace). Before the system can be emulated with

the pacemaker simulator, some interface information must be provided. The entire module providing all the

necessary interface information is shown below:

(mod CREATE-TICKER is

inc PARAM-PACEMAKER .

inc TIME-CLIENT .

inc SEND-RECEIVE-CLIENT .

eq addr = "localhost" .

eq port = 4444 .

eq def-te = 1 .

eq max-te = INF .

eq time-grain = 10 . --- milliseconds

op pacer-client : -> Oid .

eq internal = wrapper-init .

eq out-adapter(shock)

= createSendReceiveClient(pacer-client, "localhost", 4451, "shock") .

eq in-adapter(msg-received(pacer-client, "shocked\n"))

= set-period(pacing-module, 50) .

endm)

The module first indicates that the TCP socket interface to the pacemaker simulator is localhost on port

4444. The default time elapse for one tick is 1 time unit. The maximum time elapse for one tick step

is infinity (i.e. there is no maximum). The duration of one time unit is 10 milliseconds. The time units

are in terms of milliseconds since the minimum time granularity provided by the Java time interfaces is 1

millisecond.

The equation for internal specifies that the internal configuration to be executed is the configuration

defined by wrapper-init (as defined in PARAM-PACEMAKER). Also, the last two equations specify that the

138



Figure 6.4: Trace from Pacemaker Simulator

output message shock should be mapped to a string “shock” sent over the socket, and upon receiving the

acknowledgment message “shocked” set the pacing period to 500 ms (120 bpm - a really fast heart rate). The

last equation creates the scenario where a stressful heart rate is always being sent to the pacing module. Since

the command shaper pattern should prevent this unsafe behavior, we should see the pacing automatically

slow down from 120 bpm after some time interval.

The module is executed by first reflecting the CREATE-TICKER module down to Core Maude (with the

command show all CREATE-TICKER), and executing with the erew command. A snapshot of the “ECG”

trace of the pacemaker simulator is show in Figure 6.4. For validation we measured the jitter for executing

such a system – the physical time required to completely execute 0-time rules and finish communication

(Figure 6.5). The results were obtained from a 1.67 GHz Dual-Core Intel Centrino with Maude running in

Windows through Cygwin (tracing was turned off). The main thing to notice is that the jitter is mostly

below 0.1 seconds and almost never exceeds 0.2 seconds. This amount of jitter is tolerable, since most

medical devices need to respond in the order of seconds. The pacemaker is a bit more strict in terms of its

timing requirements. To evaluate the suitability for the pacemaker, we plotted the recorded physical time

duration between pacing events (Figure 6.6). Notice that in this example the heart rate increases (duration

decreases) up to a limit and then the heart rate starts to decrease (duration increases) and the cycle repeats.

The jitter in control seems tolerable, since there are no sharp spikes in the graph of the pacing durations.

6.4.2 Syringe Pump Case Study

The pacemaker emulation example was demonstrated through a simulated pacemaker, mostly because cur-

rent pacemakers do not have external interfaces for setting when to pace (and rightly so). However, for

devices such as electronic syringe pumps these interfaces are available. Recall our instantiated pump from

4.3.5 summarized below:

(tomod PARAM-PUMP is
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Figure 6.5: Model Execution Jitter Distribution

Figure 6.6: Pacing periods recorded by the pacemaker simulator (jitter effects are reflected by noise on the
curve)
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pr EPR-WRAPPER-EXEC{Safe-Pump} .

pr DELAY-MSG .

...

eq msgs-init =

delay(set-mode(pump-module, bolus), t(9))

delay(set-mode(pump-module, bolus), t(11))

delay(set-mode(pump-module, bolus), t(12)) ... .

eq wrapper-init =

< pump-module : EPR-Wrapper{Safe-Pump} |

inside :

< pump-module : Pump-Module |

mode : base

> base,

val : base,

next-val : base,

disp : t(period),

stress-intervals : (nil).Stress-Relax-Log > .

... endtom)

This module shows the initialized wrapper object for the pump, with the initial state being the base rate

of infusion. Furthermore, there is also a set of delayed messages that will be sent to the pump. In the term

msgs-init, the model will send bolus requests at 9 time units, 11 time units, 12 time units, . . . after the

start of execution for the system. Again, creating a simulated patient model, we can verified the safety of

the instantiated pattern in Section 4.3.5. Instantiating the pump is similar to instantiating the pacemaker,

except that there are a few more types of output messages.

(mod CREATE-TICKER is

inc PARAM-PUMP .

inc TIME-CLIENT .

inc SEND-RECEIVE-CLIENT .

eq addr = "localhost" .

eq port = 4444 .
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eq def-te = 1 .

eq max-te = INF .

eq time-grain = 1000 . --- milliseconds

ops pump-client pump-client’ : -> Oid .

eq internal = wrapper-init msgs-init .

eq out-adapter(stop)

= createSendReceiveClient(pump-client, "localhost", 1234, "STP") .

eq out-adapter(base)

= createSendReceiveClient(pump-client, "localhost", 1234, "RAT1")

createSendReceiveClient(pump-client’, "localhost", 1234, "RUN") .

eq out-adapter(bolus)

= createSendReceiveClient(pump-client, "localhost", 1234, "RAT2")

createSendReceiveClient(pump-client’, "localhost", 1234, "RUN") .

var S : String .

eq in-adapter(msg-received(pump-client, S))

= none .

eq in-adapter(msg-received(pump-client’, S))

= none .

endm)

The model is communicating with localhost on port 4444. The time granularity is 1 second. The internal

configuration being executed is the wrapped pump as well as the set of messages that will deliver bolus

requests. The output requests are handled by a Java thread listening on port 1234 and forwarding the

request string to the actual Multi-Phaser NE-500 Syringe Pump (Figure 6.7). A few important requests to

the pump are: STP stop the pump, RAT <n> set infusion rate to n ml/hr, RUN start the infusion. Reflecting

down the CREATE-TICKER module and executing with erew will now control the physical pump motor!

As a validation for correct pump control, we used a Salter Brecknell 7010SB scale to weigh the amount

of liquid infused from the syringe pump over time (Figure 6.8). The data granularity is a bit rough, since

the scale can only measure within a precision of 0.1 oz. For this example, to clearly distinguish between

two pump states, we let the base rate of infusion be zero (horizontal parts of the graph) and the bolus rate

be the maximum infusion rate provided by the pump (positive sloped parts of the graph). Bolus requests

142



Figure 6.7: Multi-Phaser NE-500 Syringe Pump

Figure 6.8: Infusion Volume over Time

are continuously sent to the pump. The safety properties require that bolus doses last no longer than 30

seconds, and there must be 10 seconds between bolus doses and at most 3 bolus doses for a window size of

3 minutes. The graph validates that these properties are indeed satisfied for this particular execution of the

pump.
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Chapter 7

Related Works

This dissertation describes specific examples of formal patterns for medical systems. It is thus natural to

discuss the related works in: (1) application of formal methods to medical systems and software, and (2)

formal specification and verification of software patterns.

7.1 Formal Methods and Medical Systems

Medical systems have always been quite simple when compared to other safety critical systems such as

avionics or nuclear power plants. However, the infamous set of accidents cause by overdosage in the radiation

therapy machine Therac-25 [31] immediately brought the issue of medical device safety to the attention of

the entire world. This later let to work in formal specifications of radiation therapy machines [25] creating

a domain specific language, and the synthesis of safety interlocks based on these specifications [24].

Controlling dosage has always been the a critical and prevalent aspect in most medical systems. The

formal specification and analysis of CARA (computer-aided resusitation algoritm) was done simultaneously

by different research groups at UPenn [7] and Stony Brook [45] using different specification techniques and

verification tools. This later led to the development of formal specification for infusion pumps in general

[10][27][53]. Further work has also been done at UPenn in building medical plug-and-play prototypes along

with modeling and verification [9][8].

Pacemaker safety has also been emphasized in the recent years. The Software Quality and Research

Laboratory (SQRL) at McMaster University issued the Pacemaker Formal Methods Challenge to formally

specify and verify an entire pacemaker [32]. Currently, no research group has completed a full specification

and verification of the pacemaker challenge, but researchers at UPenn have used it as a case study to explore

model-driven design [26]. Aside form safety concerns, recent works have also brought the issue of pacemaker

security into the spotlight [22]. Formal methods work has also been done in this area in terms of modeling

systems and attackers in the medical domain [11].

On the source code level, static verification techniques have also been proposed for medical software bugs
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in industrial scale software [28], and also put into practice at the FDA.

Our medical examples that we used to motivate our command-shaper pattern are heavily influenced by

the case studies and challenges found in the related works above. We improved our understanding of infusion

pump requirements through work on the GIP, and we improved our understanding of pacemaker systems

by the resources provided to us by SQRL. That being said, all these related works model and verify these

systems individually and separately. We go one step further and describe patterns of software design that

can be applied to multiple systems.

Our pattern on network safety is closely related to [30], which also describes a network pattern to

handle disconnects. However the protocol described in [30] does not lend itself to having any simple formal

specification, and we have chosen to present a much cleaner heartbeat pattern for specification and analysis.

7.2 Formal Methods and Software Patterns

The terminology of software patterns became widely adopted with the Gang of Four (GoF) book [21]. Of

course, this later spawned some famous follow up works [13, 48] that design entire systems only around the

concept of patterns. In these works, patterns have always been a tool for modularity and portablity of code.

Since patterns were so widely used and many times incorrectly, it was natural to have extensive works on

formalizing design patterns [4, 39, 47, 20, 51, 49, 18, 2]. These mostly focus on the original GoF patterns of

which many are just structural without any behavior. In this dissertation, we solely focus on patterns that

have behavior and ones that can satisfy predefined safety properties. This clearly restricts our patterns to

be much smaller than the GoF design patterns, but in turn, we can provide more safety guarantees.

The use of parameterized modules to define patterns is also related to the idea of assume-guarantee

aspects of patterns [38]. That is properties that we prove for a pattern, guarantees, will hold if the pattern is

instantiated with a proper input. Thus, our work is also related to the plethera works on assume/guarantee

reasoning [15, 1, 41, 52]. Of course, our work is not about this specific reasoning technique but about how

to apply this technique to create useful patterns in medical systems.

There have also been similar works describing other patterns in other domains such as virtual synchrony

in avionic systems [40, 35] and DoS protection for network security [14, 29, 6]. A general survey of various

patterns related to distributed systems can be found in [33].

145



Chapter 8

Conclusion and Future Work

We have demonstrated that formal patterns are not only possible to describe in the simple and executable

language of rewriting logic. We have also demonstarted that it is also very practical to use them for medical

device safety. In all of our patterns, the actual pattern module description did not exceed 20 rewrite rules.

Although our patterns are simple for a first attempt at tackling formal specification of patterns, they are

still quite useful and practical for many systems. The point of using patterns is modularity and reusability.

That is, patterns offer the hope of making larger, and more complex systems decomposable into simpler and

smaller systems by application of these formal patterns. Of course, one could ask the question of whether

it is necessary to describe such simple patterns like button debouncers in such rigorous detail. First, formal

patterns, even when not yet proven correct, force us to be precise in describing a system. Furthermore, even

simple patterns are worthwhile to specify in detail, especially if they occur often. As we have shown in the

example of the message repeater pattern, the first and most intuitive design can easily be incorrect or at

least can reveal the implicit assumptions that we have made with these systems. Of course, all specifications

are inevitably bound to a representation. Just as design patterns are bound to object-oriented systems,

our current design patterns are bound to actor models. The actor models provide a lot of flexiblity and

provide a very general model of concurrency. However, real systems may be much more deterministic that

actor models. For example, the button interface patterns are actually solved mostly at a level close to the

hardware, which does not actually require the full nondeterminism offered by the actor model. Just as

implementing and executing any algorithm requires choosing a particular programming language, specifying

a pattern requires choosing a particular modeling paradigm. While this is a current limitation, we imagine

that with more research in formal patterns, more general models of computation designed specifically with

pattern specification in mind will emerge and allow more general patterns to be specified.

Within the confined framework and scope in which we have formally specified our patterns, we have

successfully shown that many patterns can be formally specified using the established theories and frame-

works of parameterized modules. Furthermore, we have shown how the parameterized modules are detailed

enough to allow proof of generic safety properties or generic bisimulation results. Most of our patterns
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can be seen as simple wrappers around objects that try to preserve certain behaviors, and their proofs of

correctness are reasonably straightforward. However, it is worth remembering that the proofs apply in very

generic contexts, since they are completely parameterized and the properties hold in any bisimulation. This

means that repeated composition of many patterns that preserve assumptions and preconditions will allow

the development of a large system that satisfies all the proven properties. Not only does this provide a new

way of decomposing requirements of a system in a very effective manner, but it also provides the knowledge

of when a system can be reused confidently and safely.

This dissertation presents a small but important start for exploring how formal patterns can be applied

to the domain of medical systems. It is my hope that the many limitations of this work can be addressed

in the future. We make many ideal assumptions such as having perfect clock synchronization between

different medical devices. For future work, it would be important to explore the effects of clock skew during

synchronization and how this can affect the model and design of the patterns described. Also, since we

leverage our models on the power of the existing Maude rewriting logic framework, it was natural for us to

use object-oriented actor models to describe system behaviors. However, these abstractions may need to be

changed to model accurately the faults that occur in hardware designed systems that have less flexibility in

the behaviors and interfaces of components and more parallel and synchronized communication methods.

Furthermore, the case studies in this work are currently still limited, and we will of course need to apply our

patterns to more complex modelled systems, such as the Generic Infusion Pump model described in [10].

And naturally, applying patterns to larger systems would require composition of many smaller patterns.

While some patterns that provide full bisimulation results can be trivially composed, other patterns need

much more consideration in order to be composed correctly to preserve the required safety properties. This

highly nontrivial problem of pattern composition is one of the major challenges that must be addressed in

future work before formal patterns can be ubiquitously used in larger scale medical systems.
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Appendix A

Complete Maude Specifications of
Models Used

A.1 Basic Modeling

A.1.1 Time Advancement Semantics

The formal model of any timed system starts by defining the notion of time advancement. We use the

conventions used in the Real-Time Maude documentation[43] to ensure deterministic timed rewriting without

missing any critical timed events. The tick operation defines how to advance a system by certain time

durations, and the mte operation defines the maximum time elapse that can be used to ensure no critical

intermediate states are missed. These concepts are specified more precisely in the TICK-MTE-SEM module:

(tomod TICK-MTE-SEM is inc LTIME-INF .

op tick : Configuration Time -> Configuration .

op mte : Configuration -> TimeInf .

var C : Configuration .

var T T’ : TimeInf .

crl [advance] : {C} => {tick(C, T)} in time T if T le mte(C) [nonexec] .

var NC NC’ : NEConfiguration .

eq mte(none) = INF .

eq mte(NC NC’) = minimum(mte(NC), mte(NC’)) .

eq mte(NC) = zero [owise] .

eq tick(none, T) = none .

eq tick(NC NC’, T) = tick(NC, T) tick(NC’, T) .

op hasMsg? : Configuration -> Bool .

eq hasMsg?(none) = false .

eq hasMsg?(NC NC’) = hasMsg?(NC) or hasMsg?(NC’) .

eq hasMsg?(M:Msg) = true .

eq hasMsg?(O:Object) = false .

endtom)

The tick operator and mte (maximum time elapsible) are used to provide deterministic semantics or

the advance rule (tick rule). We also define hasMsg? to test when a configuration contains no messages.
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Notice at this point, we have not specified any particular model of time (natural number time, rational

number time, etc.), and we try to maintain the generality until specific models need to be defined. Notice

that the maximum time elapse (mte) of a configuration is the mte of the component with minimal mte in

the configuration. Any component with undefined mte will be assumed to have zero mte, and time will not

be able to advance in that case. This is useful, because for messages that must be delivered instantaneously,

time will not advance until the message disappears (is delivered) in the system. Also, tick rules work by

ticking each individual component of the configuration (without using any context information) if the mte

of the entire system is greater than zero.

A.1.2 Real-Time Components

After defining the semantics of time advancement, we define some typical building blocks for real-time

systems. These include clocks and timers. Clocks encapsulate time values that are monotonically non-

decreasing over time. Clocks can be either running or stopped. A running clock will advance its internal

time by the same amount as the time advanced, and a stopped clock will hold its internal time constant

over time. Timers encapsulate time values that are monotonically decreasing over time. A timer continues

to decrease the encapsulated time by a value equal to the time advancement, and system time is no longer

allowed to decrease when a timer’s encapsulated time value reaches zero. It is assumed that some significant

event happens at the time a timer reaches zero, and the event will instantaneously influence the state of the

system before any further time advances. The module RT-COMP defines these notions:

(fmod RT-COMP is inc LTIME-INF .

sorts RT-Comp Clock ClockAttr Timer .

subsorts Clock Timer < RT-Comp .

ops run stop : -> ClockAttr [ctor] .

op c : Time ClockAttr -> Clock [ctor] .

op t : Time -> Timer [ctor] .

op clock0 : -> Clock . --- started clock

op timer0 : -> Timer . --- expired timer

ops stop run : Clock -> Clock .

op stopped? : Clock -> Bool .

op value : Clock -> Time .

op no-timer : -> Timer .

var T T’ : Time .

var CA : ClockAttr .
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eq mte(no-timer) = INF .

eq tick(no-timer, T) = no-timer .

eq clock0 = c(zero, run) .

eq timer0 = t(zero) .

eq stop(c(T, CA)) = c(T, stop) .

eq run(c(T, CA)) = c(T, run) .

eq stopped?(c(T, stop)) = true .

eq stopped?(c(T, run)) = false .

eq value(c(T, CA)) = T .

op tick : RT-Comp Time -> RT-Comp .

op tick : Clock Time -> Clock .

op tick : Timer Time -> Timer .

eq tick(c(T, run), T’) = c(T plus T’, run) .

eq tick(c(T, stop), T’) = c(T, stop) .

eq tick(t(T), T’) = t(T monus T’) .

op mte : RT-Comp -> Time .

op mte : Clock -> Time .

op mte : Timer -> Time .

eq mte(c(T, CA)) = INF .

eq mte(t(T)) = T .

endfm)

A.1.3 Delayed Messages

It is useful to have a notion of delayed messages. Essentially messages wrapped inside an operator with a

timer, and the message is delivered (wrapper operator removed) once the timer expires. Not only does this

allow modeling communication delay, but this is also necessary as to set inital states of systems that receive

inputs over time. Aside from modeling messages with fixed delay, we also define the notion of a TimeSet

that can model nondeterministic message delay that can take any delay out of a set of times.

(tomod DELAY-MSG is

inc TICK-MTE-SEM .

pr RT-COMP .

sort DelayedMsg .

subsort DelayedMsg < Msg .

sort TimeSet .

subsort Time < TimeSet .
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op __ : TimeSet TimeSet -> TimeSet [assoc comm] .

op delay : Msg Timer -> DelayedMsg [ctor frozen] .

op delay : Msg TimeSet -> DelayedMsg [frozen] .

var M : Msg . var TM : Timer .

var T : Time .

ceq delay(M, TM) = M if TM == timer0 .

eq tick(delay(M, TM), T) = delay(M, tick(TM, T)) .

eq mte(delay(M, TM)) = mte(TM) .

var TS : TimeSet .

eq mte(delay(M, TS)) = zero .

rl delay(M, T TS) => delay(M, t(T)) .

rl delay(M, T) => delay(M, t(T)) .

endtom)

Delayed messages, are messages wrapped in a delay operator such that they are completely frozen until

the delay timer runs out. This is useful for modeling communication delays as well as just to test inputs

over time. Delayed messages can also take nondeterministic delays, where the messages may be delayed by

any time in a set of possible times.

A.1.4 Event Logs

Naturally, the notion of safety in real-time systems may also depend on the behavior of systems over time.

While we can use tools for timed temporal model checking, the counter examples found are quite convoluted

to parse and understand. Furthermore, our systems are much simpler and mostly deterministic given a set

of initial conditions (the only non-determinism comes from faults). Thus, it is easier for us to keep a log of

events over time, and evaluate the safety properties as a predicate on these logs. Essentially this keeps a

running history of the system in its current state, and this allows us to evaluate time related properties as

just a predicate defined on the current state. Usually history is recorded based on a set of discrete events

over time.

(fmod EVENT-LOG{E :: TRIV * (sort Elt to |EventType|)} is pr RT-COMP .

sorts NoEventType{E} EventType{E} Event{E} .

sorts !MtLog StoppedEventLog{E} EventLog{E} .

subsorts E$|EventType| NoEventType{E} < EventType{E} .

subsorts !MtLog < StoppedEventLog{E} < EventLog{E} < RT-Comp .

op !none : -> NoEventType{E} [ctor] .

op !e : E$|EventType| Clock -> Event{E} [ctor] .

op type : Event{E} -> E$|EventType| .
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op elapsed : Event{E} -> Time .

op stop : Event{E} -> Event{E} .

op stopped? : Event{E} -> Bool .

op tick : Event{E} Time -> Event{E} .

op mte : Event{E} -> Time .

var EV : Event{E} . var ET : E$|EventType| .

var C : Clock . var L L’ : EventLog{E} .

var SL : StoppedEventLog{E} .

var T T’ : Time .

eq type(!e(ET, C)) = ET .

eq elapsed(!e(ET, C)) = value(C) .

eq stop(!e(ET, C)) = !e(ET, stop(C)) .

eq stopped?(!e(ET, C)) = stopped?(C) .

eq tick(!e(ET, C), T) = !e(ET, tick(C, T)) .

eq mte(!e(ET, C)) = mte(C) .

op !nil : -> !MtLog [ctor] .

op __ : Event{E} StoppedEventLog{E} -> EventLog{E} [ctor] .

op stop : !MtLog -> !MtLog .

op stop : EventLog{E} -> StoppedEventLog{E} .

op append : !MtLog !MtLog -> !MtLog .

op append : EventLog{E} StoppedEventLog{E} -> EventLog{E} .

cmb EV SL : StoppedEventLog{E} if stopped?(EV) .

op log : !MtLog NoEventType{E} -> !MtLog .

op log : EventLog{E} EventType{E} -> EventLog{E} .

op tick : !MtLog Time -> !MtLog .

op tick : EventLog{E} Time -> EventLog{E} .

op mte : EventLog{E} -> Time .

eq stop(!nil) = !nil .

eq stop(EV L) = stop(EV) stop(L) .

eq append(!nil, L) = L .

eq append(EV L , L’) = EV append(L, L’) .

eq log(L, !none) = L .

eq log(L, ET) = !e(ET, clock0) stop(L) [owise] .

eq tick(!nil, T) = !nil .

--- only the latest event needs to be ticked

--- remaining event clocks are stopped

eq tick(EV L, T) = tick(EV, T) L .

eq mte(!nil) = INF .
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eq mte(EV L) = mte(EV) .

endfm)

A.2 Button Related Patterns

A.2.1 Button Press Model

The first step to modeling button related patterns is to understand how to model a button over time. A

button can be modeled as a set of press and release events over time. Notice the similarity between the

button press model and event log models. However, these are ultimately different in that the button press

model is not used for execution and will be processed as an input. So even though button models and event

logs are both timed list, they are used differently (e.g. button press model uses absolute time instead of

relative time), and we create a separate model.

(fmod PRESS-RELEASE is inc LTIME-INF .

inc CONVERSION .

sorts Press Release .

sort Event .

subsort Press Release < Event .

sort PressReleaseList .

sorts MtList PressLastList ReleaseLastList .

subsort MtList < PressLastList ReleaseLastList .

subsorts PressLastList < PressReleaseList .

subsorts ReleaseLastList < PressReleaseList .

sort Input .

subsort PressReleaseList < Input .

op press : Time -> Press .

op release : Time -> Release .

op nil : -> MtList .

op __ : PressLastList Release -> ReleaseLastList .

op __ : ReleaseLastList Press -> PressLastList .

var L : PressReleaseList .

var T : Time .

op t-last : PressReleaseList -> Time .

eq t-last(nil) = zero .

eq t-last(L press(T)) = T .

eq t-last(L release(T)) = T .

op valid? : PressReleaseList -> Bool .

eq valid?(nil) = true .

eq valid?(L press(T)) = valid?(L) and (t-last(L) lt T) .

eq valid?(L release(T)) = valid?(L) and (t-last(L) lt T) .
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var L’ : PressReleaseList .

var E : Event .

op _->_ : PressReleaseList PressReleaseList ~> PressReleaseList .

op _->_ : Event PressReleaseList ~> PressReleaseList .

eq L -> nil = L .

eq L -> (L’ E) = (L -> L’) E .

eq E -> L = (nil E) -> L .

op length : Input -> Nat .

eq length(nil) = 0 .

eq length(L E) = s length(L) .

endfm)

After defining button input as a list, we can also convert this list to a set of delayed messages for defining

the initial state of inputs in an actor model.

(tomod PRESS-RELEASE-MSGS is inc PRESS-RELEASE .

inc DELAY-MSG .

op to-msgs : PressReleaseList Oid -> Configuration .

msgs press release : Oid -> Msg .

var L : PressReleaseList .

var O : Oid .

var T : Time .

eq to-msgs(nil, O) = none .

eq to-msgs(L press(T), O) = to-msgs(L,O) delay(press(O), t(T)) .

eq to-msgs(L release(T), O) = to-msgs(L,O) delay(release(O), t(T)) .

endtom)

A.2.2 Button Fault Models

We can also use the model of button presses to define fault relations for the inputs.

(fmod BUTTON-FAULTS is pr PRESS-RELEASE .

vars T T’ : Time .

vars R R’ : Time .

vars I I’ I’’ : Input .

op sub-event : Press Input -> Bool .

op sub-event : Release Input -> Bool .

eq sub-event(press(T), nil) = false .

eq sub-event(press(T), I release(T’)) = sub-event(press(T),I) .

eq sub-event(press(T), I press(T’)) = (T == T’) or sub-event(press(T),I) .

eq sub-event(release(T), nil) = false .

eq sub-event(release(T), I press(T’)) = sub-event(release(T),I) .

154



eq sub-event(release(T), I release(T’)) = (T == T’) or sub-event(release(T),I) .

op sub-input : Input Input -> Bool .

eq sub-input(nil, I’) = true .

eq sub-input(I press(T), I’) = sub-input(I,I’) and sub-event(press(T), I’) .

eq sub-input(I release(T), I’) = sub-input(I,I’) and sub-event(release(T), I’) .

op same-input : Input Input -> Bool .

eq same-input(I,I’) = sub-input(I,I’) and sub-input(I’,I) .

op bounce-duration : -> Time .

op space-duration : -> Time .

op bounce-fault : Input Input -> Bool .

eq bounce-fault(nil,nil) = true .

eq bounce-fault(I release(T),I’) = bounce-fault(I,I’) .

eq bounce-fault(I, I’ release(T)) = bounce-fault(I,I’) .

eq bounce-fault(I press(T), I’ press(T)) = bounce-fault(I,I’) .

ceq bounce-fault(I press(T), I’ press(T’)) = bounce-fault(I, I’ press(T’))

if T le (T’ plus bounce-duration) /\ T gt T’ .

eq bounce-fault(I,I’) = false [owise] .

op stuck-duration : -> Time .

op stuck-fault : Input Input -> Bool .

eq stuck-fault(nil,nil) = true .

eq stuck-fault(I release(T), I’) = same-input(I release(T), I’) .

eq stuck-fault(I press(T), I’ release(T’)) = stuck-fault(I press(T), I’) .

ceq stuck-fault(I, I’) = same-input(I,I’) or stuck-fault(I,I’’)

if I’’ release(T) press(T’) := I’ .

eq stuck-fault(I, I’) = false [owise] .

op phantom-thresh : -> Time .

op phantom-fault : Input Input -> Bool .

eq phantom-fault(nil, nil) = true .

eq phantom-fault(I press(T), I’ press(T)) = phantom-fault(I,I’) .

eq phantom-fault(I press(T) release(T’), I’ press(T) release(T’)) = phantom-fault(I,I’) .

ceq phantom-fault(I press(T) release(T’), I’ press(R) release(R’)) = phantom-fault(I,I’ press(R) release(R’))

if T gt R’ /\ T’ lt (T plus phantom-thresh) .

eq phantom-fault(I,I’) = false [owise] .

endfm)

A.2.3 Debouncer Pattern

This is the full specification of the Debouncer Pattern described in detail in Section 3.3.3.

(oth DEBOUNCED is

pr TICK-MTE-SEM .

class |Wrapped| .
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op |dest| : Msg -> Oid .

op |t-bounce| : -> Time .

op |t-space| : -> Time .

eq |t-bounce| lt |t-space| = true .

msg |press| : Oid -> Msg .

var O : Oid .

eq mte(|press|(O)) = zero .

--- assumes that all messages sent to external objects are of sort |OutMsg|

endoth)

(tomod DEBOUNCER{|O| :: DEBOUNCED} is

pr RT-COMP .

pr DELAY-MSG .

class !Debouncer{|O|} |

inside : NEConfiguration,

timer : Timer .

op init-timer : -> Timer .

eq init-timer = no-timer .

vars T : Time .

var O : Oid .

var TM : Timer .

vars C C’ : NEConfiguration .

op get-inside : Object ~> Configuration [frozen] .

eq get-inside(< O : !Debouncer{|O|} | inside : C >)

= C .

op pi-inside : Configuration -> Configuration .

eq pi-inside(C C’) = pi-inside(C) pi-inside(C’) .

eq pi-inside(< O : !Debouncer{|O|} | >) = get-inside(< O : !Debouncer{|O|} | >) .

eq pi-inside(C) = C [owise] .

eq tick(

< O : !Debouncer{|O|} |

inside : C, timer : TM >,

T)

=

< O : !Debouncer{|O|} |

inside : tick(C, T),

timer : tick(TM, T) > .
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eq mte(

< O : !Debouncer{|O|} |

inside : C, timer : TM >)

=

minimum(mte(C), mte(TM)) .

rl |press|(O) < O : !Debouncer{|O|} |

timer : no-timer,

inside : C >

=>

< O : !Debouncer{|O|} |

timer : t(|t-space|),

inside : |press|(O) C > .

crl |press|(O) < O : !Debouncer{|O|} |

timer : TM, inside : C >

=> < O : !Debouncer{|O|} | inside : C >

if TM =/= timer0 /\ TM =/= no-timer .

crl < O : !Debouncer{|O|} | timer : TM >

=> < O : !Debouncer{|O|} | timer : no-timer >

if TM == timer0 .

var IM OM : Msg .

crl IM < O : !Debouncer{|O|} | inside : C >

=> < O : !Debouncer{|O|} | inside : IM C >

if |dest|(IM) == O /\ IM =/= |press|(O) .

crl < O : !Debouncer{|O|} | inside : OM C >

=> < O : !Debouncer{|O|} | inside : C > OM

if |dest|(OM) =/= O .

endtom)

A.2.4 Dephantomizer Pattern

This is the full specification of the Dephantomizer Pattern described in Section 3.4.1.

(oth PHANTOMABLE is

pr TICK-MTE-SEM .

class |Wrapped| .

op |dest| : Msg -> Oid .

op |t-phantom| : -> Time .

msg |press| : Oid -> Msg .

msg |release| : Oid -> Msg .

var O : Oid .
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eq mte(|press|(O)) = zero .

endoth)

(tomod DEPHANTOMIZER{|O| :: PHANTOMABLE} is

pr RT-COMP .

pr DELAY-MSG .

class !PhantomIgnore{|O|} |

inside : NEConfiguration,

timer : Timer .

op init-timer : -> Timer .

eq init-timer = no-timer .

vars T : Time .

var O : Oid .

var TM : Timer .

var C : Configuration .

eq tick(

< O : !PhantomIgnore{|O|} |

inside : C, timer : TM >,

T)

=

< O : !PhantomIgnore{|O|} |

inside : tick(C, T),

timer : tick(TM, T) > .

eq mte(

< O : !PhantomIgnore{|O|} |

inside : C, timer : TM >)

=

minimum(mte(C), mte(TM)) .

rl [set-timer] : |press|(O) < O : !PhantomIgnore{|O|} |

timer : no-timer >

=>

< O : !PhantomIgnore{|O|} |

timer : t(|t-phantom|)

> .

rl [non-phantom-release] : |release|(O) < O : !PhantomIgnore{|O|} |

timer : no-timer, inside : C >

=> < O : !PhantomIgnore{|O|} |

inside : |release|(O) C > .

crl [phantom-release] : |release|(O) < O : !PhantomIgnore{|O|} |

timer : TM >

=> < O : !PhantomIgnore{|O|} | timer : no-timer >
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if TM =/= timer0 /\ TM =/= no-timer .

crl [reset-timer] : < O : !PhantomIgnore{|O|} | timer : TM, inside : C >

=> < O : !PhantomIgnore{|O|} | timer : no-timer, inside : |press|(O) C >

if TM == timer0 .

var IM OM : Msg .

crl [forward-in] : IM < O : !PhantomIgnore{|O|} | inside : C >

=> < O : !PhantomIgnore{|O|} | inside : IM C >

if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !PhantomIgnore{|O|} | inside : OM C >

=> < O : !PhantomIgnore{|O|} | inside : C > OM

if |dest|(OM) =/= O .

endtom)

A.2.5 Stuck Detection Pattern

This is the full specification of the stuck detection pattern described in Section 3.5.

(oth STUCKABLE is

pr TICK-MTE-SEM .

class |Wrapped| .

op |dest| : Msg -> Oid .

op |t-stuck| : -> Time .

msg |press| : Oid -> Msg .

msg |release| : Oid -> Msg .

var O : Oid .

eq mte(|press|(O)) = zero .

endoth)

(tomod STUCK-DETECT{|O| :: STUCKABLE} is

pr RT-COMP .

pr DELAY-MSG .

class !StuckDetect{|O|} |

inside : NEConfiguration,

timer : Timer,

stuck-err : Bool .

op init-timer : -> Timer .

eq init-timer = no-timer .

op init-stuck-err : -> Bool .

eq init-stuck-err = false .

vars T : Time .
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var O : Oid .

var TM : Timer .

var C : Configuration .

eq tick(

< O : !StuckDetect{|O|} |

inside : C, timer : TM >,

T)

=

< O : !StuckDetect{|O|} |

inside : tick(C, T),

timer : tick(TM, T) > .

eq mte(

< O : !StuckDetect{|O|} |

inside : C, timer : TM >)

=

minimum(mte(C), mte(TM)) .

rl [set-timer] : |press|(O) < O : !StuckDetect{|O|} |

timer : no-timer,

inside : C >

=>

< O : !StuckDetect{|O|} |

timer : t(|t-stuck|),

inside : |press|(O) C > .

rl [release-event] : |release|(O) < O : !StuckDetect{|O|} |

inside : C >

=> < O : !StuckDetect{|O|} |

inside : |release|(O) C,

timer : no-timer,

stuck-err : false > .

crl [stuck-event] : < O : !StuckDetect{|O|} | timer : TM >

=> < O : !StuckDetect{|O|} | timer : no-timer, stuck-err : true >

if TM == timer0 .

var IM OM : Msg .

crl [forward-in] : IM < O : !StuckDetect{|O|} | inside : C >

=> < O : !StuckDetect{|O|} | inside : IM C >

if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !StuckDetect{|O|} | inside : OM C >

=> < O : !StuckDetect{|O|} | inside : C > OM

if |dest|(OM) =/= O .

endtom)
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A.3 Command-Shaper Pattern

The input theory for the Command-Shaper Pattern, which describes the stress-relax safety requirements.

(fth SAFE-STATE is

inc TOTAL-ORDER * (

sort Elt to Val,

op _<=_ to _<=risk_

) .

pr STRESS-RELAX-LOG .

ops min-val max-val crit-val safe-val : -> Val .

eq min-val <=risk safe-val = true .

eq safe-val <=risk crit-val = true .

eq crit-val <=risk max-val = true .

op period : -> Time . --- period of wrapper dispatch

op delta : Val Val -> Val .

op tdelta-min : Val Val -> TimeInf .

var V V’ V’’ : Val .

eq [no-delta] : delta(V, V) = V .

ceq [delta-bound] :

((V <=risk V’’) and (V’’ <=risk V’)) or

((V’ <=risk V’’) and (V’’ <=risk V)) = true

if delta(V, V’) = V’’ .

ceq [delta-mono] : delta(V, V’) <=risk delta(V, V’’) = true if V’ <=risk V’’ .

--- ceq [delta-max] : delta(V,V’) = delta(V,V’’) if delta(V,V’) =/= V’ /\ V’ <=risk V’’ .

ceq [delta-max] : (delta(V,V’) == delta(V,V’’)) = true if delta(V,V’) =/= V’ /\ V’ <=risk V’’ .

eq [no-tdelta] : tdelta-min(V, V) = zero .

ceq [ind-tdelta] : tdelta-min(V, V’) = tdelta-min(delta(V,V’), V’) plus period

if V =/= V’ .

ceq [tdelta-mono] : tdelta-min(V’, V) le tdelta-min(V’’, V) = true

if V <=risk V’ /\ V’ <=risk V’’ .

op safe? : Stress-Relax-Log -> Bool .

op norm : Stress-Relax-Log -> Stress-Relax-Log .

var T T’ : Time .

var CA : ClockAttr .

var SRE : SREvent .

var L L’ : Stress-Relax-Log .

eq [initially-safe] : safe?(nil) = true .

--- instantaneous safety equivalent to safety with stopped time

eq [stopped-safe] : safe?(E(SRE, c(T, CA)) L) =
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safe?(E(SRE, c(T, stop)) L) .

--- safety implies safety of all sub-logs

eq [sub-safe] : safe?(E(SRE, c(T, CA)) L) implies safe?(L) = true .

--- decreasing stress durations preserves safety

ceq [stress-safe] : safe?(E(!stress, c(T’, CA)) L) implies safe?(E(!stress, c(T, CA)) L) = true

if T’ ge T .

--- safety is preserved while in a relaxed state

eq [relax-safe] : safe?(E(!relax, c(T, CA)) L) =

safe?(L) .

--- normalization preserves log structure

--- norm-tick-sort

cmb tick(norm(L), T) : Stress-Relax-Log

if tick(L, T) : Stress-Relax-Log .

--- norm-app-sort

cmb append(L’, stop(norm(L))) : Stress-Relax-Log

if append(L’, stop(L)) : Stress-Relax-Log .

--- normalization preserves safety

eq [norm-tick-safe] : safe?(tick(norm(L), T)) =

safe?(tick(L, T)) .

ceq [norm-log-safe] : safe?(append(L’, stop(norm(L)))) =

safe?(append(L’, stop(L)))

if append(L’, stop(L)) : Stress-Relax-Log .

--- normalization is idempotent

eq [norm-tick] : norm(tick(norm(L), T)) = norm(tick(L, T)) .

eq [norm-app] : norm(append(L’, stop(tick(norm(L), T))))

= norm(append(L’, stop(tick(L, T)))) .

endfth)

The internal wrapped object used by the Command-Shaper is defined as another input theory as follows:

The structural part of the Command-Shaper Pattern is defined as follows:

to enforce the safety defined in the input theory SAFE-STATE is as follows:

(oth WRAPPED-OBJECT is

inc SAFE-STATE .

inc TICK-MTE-SEM .

class Wrapped | set-val : Val .

sort InMsg .

sort OutMsg .

subsorts InMsg OutMsg < Msg .

msg set-val : Oid Val -> InMsg .

var O : Oid .

vars V V’ : Val .
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eq mte(set-val(O, V)) = zero .

rl [wrapped-recv] : set-val(O, V)

< O : Wrapped | set-val : V’ >

=> < O : Wrapped | set-val : V > .

--- assumes that all messages sent to external objects are of sort OutMsg

--- assumes that set-val is the only message of sort InMsg sent from external objects

endoth)

We now describe the behavioral part of the Command-Shaper Pattern to enforce safety constraints

described in SAFE-STATE on the wrapped object defined in WRAPPED-OBJECT:

(tomod EPR-WRAPPER{X :: WRAPPED-OBJECT} is

class EPR-Wrapper{X} | inside : NEConfiguration,

next-val : X$Val, val : X$Val, disp : Timer,

stress-intervals : Stress-Relax-Log .

op _get-next-val : Object ~> X$Val [frozen] .

op _get-val : Object ~> X$Val [frozen] .

op _set-next-val_ : Object X$Val ~> Object [frozen] .

op _set-val_ : Object X$Val ~> Object [frozen] .

op _log-stress_ : Object EventType{SREvent} ~> Object [frozen] .

op _norm-stress : Object ~> Object [frozen] .

op _deliver : Object ~> Object [frozen] .

var O : Oid .

var V V’ : X$Val .

var L : Stress-Relax-Log .

var E : EventType{SREvent} .

var C : NEConfiguration .

eq < O : EPR-Wrapper{X} | next-val : V > get-next-val = V .

eq < O : EPR-Wrapper{X} | val : V > get-val = V .

eq < O : EPR-Wrapper{X} | next-val : V > set-next-val V’

= < O : EPR-Wrapper{X} | next-val : V’ > .

eq < O : EPR-Wrapper{X} | val : V > set-val V’

= < O : EPR-Wrapper{X} | val : V’ > .

eq < O : EPR-Wrapper{X} | stress-intervals : L > log-stress E

= < O : EPR-Wrapper{X} | stress-intervals : log(L, E) > .

eq < O : EPR-Wrapper{X} | stress-intervals : L > norm-stress

= < O : EPR-Wrapper{X} | stress-intervals : norm(L) > .

eq < O : EPR-Wrapper{X} | inside : C, val : V > deliver

= < O : EPR-Wrapper{X} | inside : (set-val(O, V) C) > .

endtom)
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(fmod WRAPPER-AUX{X :: WRAPPED-OBJECT} is inc EPR-WRAPPER{X} .

op cap : X$Val -> X$Val .

op stress? : X$Val -> Bool .

ops toStress? toRelax? : X$Val X$Val -> Bool .

op inEnv? : X$Val Stress-Relax-Log -> Bool .

var V V’ : X$Val .

ceq cap(V) = min-val if V <=risk min-val .

ceq cap(V) = max-val if max-val <=risk V .

eq cap(V) = V [owise] .

eq stress?(V) = not (V <=risk crit-val) .

eq toStress?(V, V’) = not stress?(V) and stress?(V’) .

eq toRelax?(V, V’) = stress?(V) and not stress?(V’) .

var L : Stress-Relax-Log .

ceq [inenv-unreachable] : inEnv?(V, L) = false

if tdelta-min(V, crit-val) == INF /\ stress?(V) .

ceq [inenv-stress] : inEnv?(V, L) = safe?(L) and

safe?(log(tick(L, tdelta-min(V, crit-val) plus period), !relax))

if stress?(V) /\ tdelta-min(V, crit-val) :: Time .

ceq [inenv-relax] : inEnv?(V, L) = safe?(L) if not stress?(V) .

endfm)

(tomod EPR-WRAPPER-EXEC{X :: WRAPPED-OBJECT} is

inc WRAPPER-AUX{X} .

op log-entry : X$Val X$Val ~> EventType{SREvent} .

op next-val : Object ~> X$Val [frozen] .

var O : Oid .

var L : Stress-Relax-Log .

var V V’ V’’ : X$Val .

var T T’ : Time .

ceq log-entry(V, V’) = !stress if toStress?(V, V’) .

ceq log-entry(V, V’) = !relax if toRelax?(V, V’) .

eq log-entry(V, V’) = none [owise] .

ceq next-val(< O : EPR-Wrapper{X} |

val : V, next-val : V’, stress-intervals : L >)

= delta(V, safe-val)

if not inEnv?(delta(V, V’),

log(L, log-entry(V, delta(V, V’)))) .

ceq next-val(< O : EPR-Wrapper{X} |

val : V, next-val : V’, stress-intervals : L >)

= delta(V, V’)
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if inEnv?(delta(V, V’),

log(L, log-entry(V, delta(V, V’)))) .

var C : NEConfiguration .

var M : X$OutMsg .

crl [dispatch] :

< O : EPR-Wrapper{X} |

disp : t(T), val : V, next-val : V’ >

=> (< O : EPR-Wrapper{X} | disp : t(period),

next-val : V’’,

val : V’’

>

log-stress log-entry(V, V’’))

norm-stress deliver

if V’’ := next-val(< O : EPR-Wrapper{X} | >)

/\ T = zero .

rl [recv] : set-val(O, V) < O : EPR-Wrapper{X} | >

=> < O : EPR-Wrapper{X} | next-val : cap(V) > .

rl [forward] : < O : EPR-Wrapper{X} | inside : C M >

=> < O : EPR-Wrapper{X} | inside : C > M .

eq mte(< O : EPR-Wrapper{X} | inside : C, disp : t(T) >)

= minimum(T, mte(C)) .

eq tick(< O : EPR-Wrapper{X} |

stress-intervals : L,

disp : t(T),

inside : C >, T’)

= < O : EPR-Wrapper{X} |

stress-intervals : tick(L, T’),

disp : tick(t(T), T’),

inside : tick(C, T’) > .

endtom)

A.4 Heartbeat Pattern

Here, we provide the full specification of the final correct heartbeat pattern described in Section 5.3.3.

(oth COMM-PAIR is

inc LTIME-INF .

class Sender .

class Receiver .

op dest : Msg -> Oid .

op sid : -> Oid .

op rid : -> Oid .

op repeat-msg? : Msg -> Bool .
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msg safe-msg : Oid -> Msg .

op repeat-time : -> Time .

op timeout : -> Time .

eq repeat-time lt timeout = true .

op init-sender : -> Configuration .

op init-receiver : -> Configuration .

endoth)

(tomod REPEATER{X :: COMM-PAIR} is

pr DELAY-MSG .

class SenderWrap | internal : Configuration, time : Timer,

repeat-msg : Configuration .

class ReceiverWrap | internal : Configuration, time : Timer,

repeat-msg : Configuration .

op repeated : Oid Msg -> Msg .

op repeated? : Msg -> Bool .

vars M M’ : Msg .

var C : Configuration .

var TM : Timer .

var T : Time .

var O : Oid .

eq dest(repeated(O,M)) = O .

eq repeat-msg?(repeated(O,M)) = false .

eq repeated?(repeated(O,M)) = true .

eq repeated?(M) = false [owise] .

eq mte(< sid : SenderWrap | internal : C, time : TM >)

= minimum(mte(C), mte(TM)) .

eq mte(< rid : ReceiverWrap | internal : C, time : TM >)

= minimum(mte(C), mte(TM)) .

eq tick(< sid : SenderWrap | internal : C, time : TM >, T)

= < sid : SenderWrap | internal : tick(C,T), time : tick(TM, T) > .

eq tick(< rid : ReceiverWrap | internal : C, time : TM >, T)

= < rid : ReceiverWrap | internal : tick(C, T), time : tick(TM, T) > .

op init-sender-wrap : -> Configuration .

eq init-sender-wrap =

< sid : SenderWrap | internal : init-sender, time : no-timer,

repeat-msg : none > .
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op init-receiver-wrap : -> Configuration .

eq init-receiver-wrap =

< rid : ReceiverWrap | internal : init-receiver, time : no-timer,

repeat-msg : none > .

--- send a nonrepeated message

crl [send-nonrepeat] : < sid : SenderWrap | internal : M C, time : TM >

=> < sid : SenderWrap | internal : C , time : no-timer,

repeat-msg : none > M

if dest(M) =/= sid /\ repeat-msg?(M) == false .

--- send a repeated message

crl [send-repeat] : < sid : SenderWrap | internal : M C, time : TM >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M > M

if dest(M) =/= sid /\ repeat-msg?(M) == true .

--- need dest(M) == rid ???

--- repeat a message

crl [repeat] : < sid : SenderWrap | internal : C, time : TM, repeat-msg : M >

=> < sid : SenderWrap | internal : C , time : t(repeat-time),

repeat-msg : M > repeated(dest(M), M)

if TM == timer0 .

--- forward msg to sender

crl [fwd-to-sender] : M < sid : SenderWrap | internal : C >

=> < sid : SenderWrap | internal : C M >

if dest(M) == sid .

--- forward a message that will be repeated

crl [fwd-with-repeat] : M < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : M C, time : t(timeout),

repeat-msg : M >

if dest(M) == rid /\ repeat-msg?(M) == true .

--- forward a message that is not repeated

crl [fwd-no-repeat] : M < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : M C, time : no-timer >

if dest(M) == rid /\ repeat-msg?(M) == false /\ repeated?(M) == false .

--- receiving a message repeat that was seen

rl [repeated-seen] : repeated(rid,M) < rid : ReceiverWrap | internal : C, time : TM,

repeat-msg : M >

=> < rid : ReceiverWrap | time : t(timeout) > .

--- receiving a message repeat that was not seen

crl [repeat-not-seen] : repeated(rid,M) < rid : ReceiverWrap | repeat-msg : M’ >

=> < rid : ReceiverWrap | >
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if M =/= M’ .

--- repeat message timeout

crl [repeat-timeout] : < rid : ReceiverWrap | internal : C, time : TM >

=> < rid : ReceiverWrap | internal : safe-msg(rid) C, time : no-timer,

repeat-msg : none >

if TM == timer0 .

--- forward out from receiver

crl [fwd-from-recv] : < rid : ReceiverWrap | internal : M C >

=> < rid : ReceiverWrap | internal : C > M

if dest(M) =/= rid .

endtom)
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Carolyn Talcott. All About Maude – A High-Performance Logical Framework, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

[17] G. Denker, J. Meseguer, and C. Talcott. Rewriting semantics of meta-objects and composable dis-
tributed services. Technical report, In Proceedings of the 3rd International Workshop on Rewriting
Logic and Its Applications, 2000.

[18] Jing Dong, Paulo S. C. Alencar, Donald D. Cowan, and Sheng Yang. Composing pattern-based com-
ponents and verifying correctness. Journal of Systems and Software, 80(11):1755–1769, 2007.

[19] F. Durán and J. Meseguer. The Maude specification of Full Maude. Technical report, SRI International,
1999.

[20] Amnon H. Eden and Yoram Hirshfeld. Principles in formal specification of object oriented design and
architecture. In Darlene A. Stewart and J. Howard Johnson, editors, CASCON, page 3. IBM, 2001.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[22] Daniel Halperin, Thomas S Heydt-Benjamin, Benjamin Ransford, Shane S Clark, Benessa Defend, Will
Morgan, Kevin Fu, Tadayoshi Kohno, and William H Maisel. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 129–142. IEEE, 2008.

[23] Medical Devices and Medical Systems - Essential Safety Requirements for Equip-
ment Comprising the Patient-Centric Integrated Clinical Environment (ICE).
http://mdpnp.org/uploads/ICE Part I draft 21Dec2008 N30 web.pdf.

[24] J. JACKY. Verification, analysis and synthesis of safety interlocks. Technical Report 91-04-01, Depart-
ment of Radiation Oncology RC-08, University of Washington, 1991.

[25] Jonathan Jacky. Formal specification for a clinical cyclotron control system. SIGSOFT Softw. Eng.
Notes, 15(4):45–54, April 1990.

[26] Eunkyoung Jee, Insup Lee, and Oleg Sokolsky. Assurance cases in model-driven development of the
pacemaker software. In Leveraging Applications of Formal Methods, Verification, and Validation, pages
343–356. Springer, 2010.

[27] R Jetley and P Jones. Safety requirements based analysis of infusion pump software. IEEE RTSS/SMDS,
2007.

[28] Raoul Jetley, S Purushothaman Iyer, and P Jones. A formal methods approach to medical device
review. Computer, 39(4):61–67, 2006.

[29] Sanjeev Khanna, Santosh S. Venkatesh, Omid Fatemieh, Fariba Khan, and Carl A. Gunter. Adaptive
selective verification. In INFOCOM, pages 529–537. IEEE, 2008.

[30] Cheolgi Kim, Mu Sun, Sibin Mohan, Heechul Yun, Lui Sha, and Tarek F Abdelzaher. A framework for
the safe interoperability of medical devices in the presence of network failures. In Proceedings of the 1st
ACM/IEEE International Conference on Cyber-Physical Systems, pages 149–158. ACM, 2010.

[31] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. IEEE Computer, 1993.

170



[32] Tom Maibaum and Alan Wassyng. A product-focused approach to software certification. Computer,
41(2):91–93, 2008.

[33] J. Meseguer. Taming distributed system complexity through formal patterns. Science of Computer
Programming, 2013.
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[37] José Meseguer and Carolyn L. Talcott. Semantic models for distributed object reflection. In Proceedings
of the 16th European Conference on Object-Oriented Programming, ECOOP ’02, pages 1–36, London,
UK, UK, 2002. Springer-Verlag.

[38] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[39] Tommi Mikkonen. Formalizing design patterns. In ICSE, pages 115–124, 1998.

[40] S.P. Miller, D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem. Implementing logical synchrony in
integrated modular avionics. In Proc. 28th Digital Avionics Systems Conference. IEEE, 2009.

[41] J. Misra. A Discipline of Multiprogramming. Springer-Verlag, 2001.
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