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ABSTRACT

In many speech applications, a single talker is captured in the presence of

background noise using a multi-microphone array. Without knowledge of

the array geometry, talker location, or the room response, many traditional

beamforming techniques cannot be used effectively. An adaptive, maximum-

kurtosis objective is used in the frequency domain to blindly enhance the

speech signal. The algorithm provides SNR gains of 3.5 - 7.5 dB with just two

microphones in low-SNR, real-world scenarios. An improvement is presented

that allows for faster and more stable convergence of the algorithm in real-

time implementations. Finally, an alternative formulation to the problem is

given, framing it in a way that might inspire new discussion or alternative

solutions.
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“I remember loving sound before I ever took a music lesson. And so we

make our lives by what we love.” - John Cage
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CHAPTER 1

INTRODUCTION

From the origins of speech signal processing to the present day, the problem

of noise and interference is a primary concern in the design of audio sys-

tems. It corrupts the desired signal in some way, and requires that extreme

care is taken from the desired signal’s initial capture or generation to its end

use. A variety of techniques have been developed to reduce noise and inter-

ference, with applications in hearing aids, cellular phones, teleconferencing,

and automatic speech recognition. In the past, improving the quality and

intelligibility of speech for only human listeners was the goal of many noise

reduction systems. However, with automatic speech recognition becoming a

common feature in automobiles, phones, computers, video games, and many

other devices, continuing research in noise reduction is important for both

the human listener and the automatic speech recognizer.

1.1 Speech Processing

Speech signal processing deals with signals in the audio range (20Hz to

20kHz), that are generated by the human vocal tract. Since speech is in-

herently acoustic in nature, and signals are usually processed as electrical

signals, or samples of electrical signals, the acoustic signal is converted via a

microphone to an electrical signal for processing. Ideally, a single microphone

can capture frequencies over the entire range of human hearing. However,

frequency content is not the only important feature of sound present in a

natural acoustic environment. Since a microphone responds to the acoustic

signal at approximately a single location in space, the microphone is not

capturing much spatial information about the sound. In other words, infor-

mation about the direction of the sound’s origin is not known.

This problem can be addressed by using multiple microphones. Just as
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a human being’s ability to discriminate sounds in a noisy environment is

enhanced by using two ears to capture sound, spatial audio processing is

made possible with the use of multiple microphones in an array.

1.2 Noise Reduction

There are two main families of noise reduction techniques: single channel

and multi-channel. Each of these techniques has its benefits, and often a

combination of the two is used in real speech enhancement systems.

1.2.1 Single-channel Noise-reduction Techniques

In single-channel noise-reduction, only one channel of audio is used as in-

put to the algorithm, often along with other information about the signal,

such as its statistical properties or the acoustic space through which it was

transmitted. This information is used to modify the sound in some way,

with the intent of reducing the amount of noise present in the signal. Due

to the nature of single-channel techniques, only temporal, statistical, and

spectral information can be exploited, while spatial information is not taken

into consideration. While single-channel techniques have been found to im-

prove audio quality, they have not been shown to be effective in improving

recognition [1].

Common single-channel techniques include spectral subtraction [2], Wiener

filtering [3], minimum statistical methods [4], and subspace methods [5].

Since this thesis is concerned with array processing and multi-channel tech-

niques, these noise-reduction methods will not be presented. The referenced

papers provide a good introduction to these topics.

1.2.2 Multi-channel Noise-reduction Techniques

In multi-channel noise-reduction techniques, multiple microphones are used

as input to the algorithm, allowing the use of spatial information in the

audio processing. Beamforming, a form of spatial filtering, introduces a

directional dependence on the captured sound. When the signal and noise

do not originate from the same direction relative to the microphone array,
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it is possible to amplify sound from directions that contribute the desired

signal, and attenuate sound from directions that may contribute noise.

One way to classify beamformers is to split them into two classes: fixed

and adaptive. Fixed beamformers do not change their pickup pattern over

time, and are set beforehand based on some previous information, such as

the desired signal’s direction of arrival, or the acoustic properties of the

room. Adaptive beamformers can change their pickup pattern over time,

adapting to some parameter being examined by the system. In some cases,

the beamformer is completely blind, and has no prior information regarding

the desired signal’s direction of arrival, the acoustic properties of the room,

or even the geometry of the array itself.

A few common beamformers include filter-and-sum (including delay-and-

sum), maximum signal-to-noise ratio (SNR), and minimum variance distor-

tionless response (MVDR). These beamformers will be discussed in more

detail in the next chapter, to give some context to the subband maximum-

kurtosis beamformer we derived and implemented.

1.3 Motivation

Many beamforming methods require prior knowledge of the number, type,

or placement of microphones, as well as the acoustical properties of the en-

vironment, speech, or noise sources. Flexible methods are valuable, since

commercial technologies often impose constraints in these areas. In addition

to real-world use of noise-reduction algorithms, it is important to continue

to study the human auditory system’s response to various noise-reduction

methods. The auditory system and the brain are incredibly complex, and

intelligibility does not map to a single simple mathematical function that

can be maximized or minimized. Therefore, it is worthwhile to continue to

explore many methods and heuristics that may result in a greater under-

standing of what types of algorithms are most useful in noise reduction. We

implement a subband maximum kurtosis beamformer, and present improve-

ments and insights for using the maximum kurtosis objective in real-time

noise-reduction.

This thesis is organized as follows: In Chapter 2, we introduce common

beamforming terminology and review some standard beamformimg tech-
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niques. In Chapter 3, we derive the adaptive maximum-kurtosis beamformer,

and extend it for use in the frequency domain. The convergence of the al-

gorithm is improved by finding a factorization that removes the updated

beamformer weights’ dependence on old, less precise values. In Chapter 4, we

present the results of the beamformer’s performance on both simulated and

real-world signals. In Chapter 5, we introduce an alternative formulation of

the kurtosis maximization problem, and we discuss how other mathematical

methods might be used to approach this problem. We conclude in Chapter 6

with a discussion of the potential problems with this algorithm, and of future

work that is relevant to this topic.
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CHAPTER 2

BACKGROUND

In this chapter, we present some background information on beamforming

and independent component analysis, two techniques relevant to the problem

of multi-channel noise reduction.

2.1 Beamforming

Simply put, beamforming is a technique used for directional signal trans-

mission or reception [6]. In the reception of acoustical signals, beamforming

amplifies signals radiating from certain directions in space, and attenuates

signals from other directions. Using a continuous aperture, or multiple dis-

crete sensors, one can apply spatial filtering to attenuate noise. Beamform-

ing has applications in audio, RADAR, SONAR, communications, imaging,

geophysical and astrophysical exploration, and biomedical fields. We only

consider beamforming with discrete arrays for audio processing, since mi-

crophones are the most commonly used acoustic sensors, and can be easily

modeled using discrete arrays.

Since beamforming involves the use of samples from M microphones at

each time instant, a vector notation is used to simplify the mathematics. At

sample index n, the input to the microphone array is written as

xn =



x1(n)

x2(n)

x3(n)
...

xM(n)


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The current beamforming weights on each channel are written as

w =



w1

w2

w3

...

wM


In the simplest case, each beamforming weight is a scale factor applied to

its corresponding input channel. The weights are applied to each channel,

and the results are summed together, giving a single output. Using vector

notation is convenient, as it allows the output at time n to be compactly

written as the inner product wHx.

Another concept that arises in beamforming is the notion of a sound’s

steering vector. A steering vector contains the amplitude and phase that,

when applied to each microphone signal, aligns all microphone signals to the

reference microphone. If the first microphone is taken as a reference, the

steering vector will be of the form

d =



1

d2e
−jφ2

d3e
−jφ3

...

dMe
−jφM


A sound’s steering vector is usually a function of ω, meaning that a different

steering vector exists for each frequency in the sound to be steered. Steering

vectors arise in some beamformers, since they can convey the directional

information of a desired sound.

2.1.1 Filter-and-Sum Beamformer

Perhaps the most common beamformer is the filter-and-sum beamformer.

Often used when the signal of interest is broadband, it allows for both spatial

and temporal filtering. In a digital implementation, sound is captured at M

microphones, passed through M Q-tap FIR filters, and summed to obtain

6



the output signal y. The filter-and-sum beamformer structure is shown in

Figure 2.1, and the output signal y(n) is obtained according to Equation

(2.1) [6].

y(n) =
M∑
m=1

Q−1∑
q=0

wm(q)xm(n− q) (2.1)

Figure 2.1: Structure of the time-domain filter-and-sum beamformer.

Since the filter-and-sum beamformer is simply a summation of FIR fil-

ter outputs, it can be alternatively formulated as multiplications in the fre-

quency domain. Filtering in the Fourier domain can save computation when

the filters become long, and convolutions become computationally expen-

sive. Provided that the beamformer is designed to avoid the circular effects

of frequency-domain multiplication, the outputs of an FFT can be treated

as narrowband signals where a complex weight is applied in each bin. This

kind of frequency-domain structure is shown in Figure 2.2.

The popular delay-and-sum beamformer is a subset of the filter-and-sum

beamformer, where the filters used are of the form wm(q) = δ(q − dm), a

Kronecker delta delayed by dm samples for each channel.

2.1.2 Maximum SNR Beamformer

While the filter-and-sum beamformer defines a structure, it does not suggest

how to choose the filters for some desired performance. This is where statis-
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Figure 2.2: Structure of the frequency-domain filter-and-sum beamformer.

tically optimum beamformers enter array processing. The maximum signal-

to-noise-ratio (SNR) beamformer is an example of a statistically optimum

beamformer that is derived based on a maximization of the signal-to-noise

ratio of the output signal. It seeks to find the weights w that provide a com-

bination of the inputs that gives the highest possible signal-to-noise ratio of

the output. The maximum SNR beamformer is defined as:

w = argmax
w

wHRsw

wHRnw
(2.2)

where

Rs = E[ssH ] (2.3)

and

Rn = E[nnH ] (2.4)

The signal-to-noise ratio is defined as a ratio of quadratic forms, and can

be maximized by using the method of Lagrange multipliers.

L = wHRsw − λ(wHRnw − k) (2.5)

∇wL = 2Rsw − 2λRnw (2.6)

0 = 2Rsw − 2λRnw (2.7)

Rsw = λRnw (2.8)

R−1
n Rsw = λw (2.9)
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This is a generalized eigenvalue problem, and the optimal w is the eigenvector

corresponding to the largest eigenvalue of R−1
n Rs [6].

While the maximum SNR beamformer is a useful tool, the signal and noise

covariance matrices must be known. These matrices are often hard to obtain

in blind problems, since the incoming microphone signals often contain a

mixture of the speech and noise. They can be estimated by attempting

to detect speech-only and noise-only segments, but this is difficult in our

application.

2.1.3 MVDR Beamformer

The minimum-variance distortionless-response beamformer (also known as

the Capon beamformer) is another commonly used statistically optimum

beamformer. The MVDR beamformer seeks to preserve the signal in the look

direction d, and minimize the output signal power from all other directions.

This scheme works well in single-source noise reduction if the look direction

is chosen as the steering vector of the speech source. Since the output power

from other directions is minimized, any noise incident on the array from other

directions will be optimally reduced, constrained on a distortionless response

in the look direction [7].

Formally, the MVDR beamformer is defined as

w = min
w

wHRxw (2.10)

subject to

wHd = 1 (2.11)

where

Rx = E[xxH ] (2.12)

This problem is solved using Lagrange multipliers, giving the standard MVDR

beamformer, with the optimal w being [7]

w =
R−1
x d

dHRxd
(2.13)

Intuitively, the MVDR is a great solution to reducing noise and interference

present in a single speech source, since it can maintain the integrity of the
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signal in the look direction, while optimally reducing the noise from other

directions. However, the solution depends on d, the steering vector, which is

unknown in blind applications. The steering vector can be estimated, but the

effectiveness of the beamformer heavily relies on the accuracy of the estimate

of d. Estimating d using a kurtosis-based method (similar to the method in

this thesis) is discussed in [8].

2.2 Independent Component Analysis

While traditional beamformimg methods are commonly used to spatially

filter a signal to reduce the presence of noise, other statistical methods exist

that can be applied to this problem. Independent component analysis (ICA)

is a relatively modern method that can be used to separate independent

signals mixed together and received in multiple channels [9]. A standard

example in which ICA is useful is source separation of audio signals captured

with multiple microphones. The mathematical setup to this problem is shown

in Equation (2.14).[
channel1

channel2

]
=

[
M1,1 M1,2

M2,1 M2,2

][
talker1

talker2

]
(2.14)

Assuming that the signals from the two talkers are independent, ICA pro-

vides a framework from which the two talker signals can be recovered from

the two mixed channels when the mixing matrix is unknown.

Since ICA deals with instantaneous mixtures, it cannot separate convo-

lutional mixtures when it is used conventionally. However, a convolutional

mixture can be treated as an instantaneous mixture in each frequency bin.

This allows for the possibility of employing multiple instances of ICA on

every bin in the frequency domain, using complex instead of real linear com-

binations [10]. When ICA is used in this manner, an issue arises known as the

“permutation problem”. ICA forces the output signals to be as independent

as possible, but it does not label the signals once they are separated. Even

if each frequency bin were to be successfully separated, it is not obvious how

to correctly label the signals in each bin. Some methods to deal with this

problem are addressed in [11], [12], and [13].

Some ICA implementations have the option to extract one source at a
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time, iterating until all sources have been separated. This method of using

ICA is more relevant to the noise-reduction problem, since recovery of only

one source (the talker) is desired. Using one-unit ICA with a kurtosis con-

trast function will recover the highest-kurtosis source in each bin, and the

permutation problem becomes relevant only if multiple talkers are present,

or the background noise is high-kurtosis.

FastICA is one of the most commonly used software packages to perform

ICA, but its goal and implementation are not suited for this application. For

example, running FastICA on two mixed input channels gives two channels of

unmixed output. However, the unmixing process is performed in a “batch”

fashion, using all of input samples at each iteration, with the assumption

that the mixing weights are unchanged during the duration of the input.

In real-time noise reduction, neither one of these assumptions is true. In

our application, only a small window of the input samples can be examined

during each iteration, and the environment may be non-stationary, allowing

for the optimal unmixing weights to change over time.
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CHAPTER 3

APPROACH

In this chapter, we present a beamforming algorithm for speech via kurtosis

maximization. The algorithm is first described for a single frequency bin and

operates on instantaneous mixtures. Then, a convergence improvement is

presented for use with real-time implementations. Finally, the algorithm is

extended to all frequency bins, for use with convolutive mixtures.

Similar methods have been developed in [14], [15], [16], [17], and [18].

While all based on the same principle of kurtosis maximization, they provide

a variety of algorithms for achieving this goal. Our approach is designed

for online, real-time use cases where the speech and noise sources may be

non-stationary.

3.1 Problem Statement

Speech recorded in real acoustic environments can be modeled as the de-

sired speech source s(n) convolutively mixed with interference vm(n),m =

{1, ...,M}, recorded at M microphones.

The signals appear at the mth microphone in the array as

xm(n) =
P−1∑
p=0

hm(p)s(n− p) + vm(n)

To attempt to recover the speech signal, a Q-tap FIR filter is applied to

each microphone channel, and all channels are summed to form the output

y(n):

y(n) =
M∑
m=1

Q−1∑
q=0

wm(q)xm(n− q)

Since wm is an FIR filter, the problem can be restated in the frequency
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domain as:

Yk[r] = WH
k Xk[r]

where k = {0...K − 1} is the frequency bin index, r = {0...R − 1} is the

frame index, Xk[r] = [X1,k[r], ..., XM,k[r]]
T , and W k = [W1,k, ...,WM,k]

T

3.2 Maximum-Kurtosis Objective

It has been shown that higher-order signal statistics can be used as a basis for

beamforming and source-separation algorithms [14]. In fact, the maximum-

kurtosis subband beamformer presented here is a special case of single-source

independent component analysis, with a kurtosis contrast function. Improve-

ments to this class of algorithms would have applications to problems using

a maximum or minimum kurtosis objective.

Kurtosis is a measure of the peakedness of a distribution, with respect to

the Gaussian distribution (which is defined to have zero kurtosis). Distribu-

tions that have positive kurtosis are considered super-Gaussian, and tend to

have a narrow peak with heavy tails. Distributions with negative kurtosis

are sub-Gaussian, and have a much wider main lobe for a given variance.

Figure 3.1: Estimated distributions of real speech and noise recorded in a
car (10 seconds).

Knowing that the probability distribution function of human speech is

high-kurtosis, and noise and interference distributions are typically lower-

kurtosis, a maximum-kurtosis objective can be used in source-separation
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and noise-reduction algorithms [14]. When a high-kurtosis speech source is

instantaneously mixed with many lower-kurtosis noise sources, a maximum-

kurtosis objective can blindly provide the reconstruction weights to maximize

the kurtosis of the output signal. Since the probability density function of

speech has a higher kurtosis than noise, the beamformer steers toward a solu-

tion that rejects noise while maintaining the speech signal. In the special case

when there are M microphones with M − 1 interferers, a complete removal

of the interference sources is possible if the speech is the highest-kurtosis

source.

Figure 3.2 shows the kurtosis surface of a signal as a function of the beam-

former weights. The goal is to find a linear combination of the input signals

that maximizes the kurtosis of the output. As we will see later, we constrain

w to lie on the unit circle. Figure 3.3 shows the kurtosis with the unit-norm

constraint.

Figure 3.2: Kurtosis surface of an instantaneous mixture of high-kurtosis
speech and low-kurtosis noise.

When the problem is extended to convolutive mixtures, a maximum-kurtosis

objective can be applied to every bin in the frequency domain. This will pro-

vide the reconstruction filters to maximize the kurtosis in each bin, since each

bin is a complex instantaneous mixture. Again, an optimal solution should

yield a result with a reduction in the presence of noise relative to the speech.
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Figure 3.3: Kurtosis of an instantaneous mixture of high-kurtosis speech
and low-kurtosis noise (constrained to the unit circle).

To begin, the kurtosis of a complex random variable y is defined as

κ(y) = γ(y)− |ρ(y)|2 − 2

where

γ(y) =
E
[
|y|4
](

E
[
|y|2
])2

is the normalized fourth-order moment of y, and

ρ(y) =
E[y2]

E
[
|y|2
]

is the circularity quotient [19]. There are many definitions of complex kurtosis

[20], but the above definition is the most common in the literature (used in

[16], [21], [22],[23]). The circularity quotient goes to zero when y is zero-mean

and circular, or in other words, when y has the same distribution as ejθy for

∀θ ∈ R [19]. This property is satisfied in our application, since there is no

preferred phase of a single frequency bin of the input signal from frame to

frame.

3.3 Problem Geometry

To simplify notation, the vector x will represent a single frequency bin’s

Fourier coefficient for each of the microphones in the array. The beamformer

weights in a single frequency bin will be notated as w.
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The objective is to find the reconstruction weights wopt that maximize

κ(wHx), the narrowband kurtosis. Since the kurtosis surface is circularly

symmetric, βwopt is also a maximizer, for any β 6= 0. Therefore, we con-

strain ||w||22 = 1 to ensure wHx does not grow without bound. Since the

problem is non-convex, a gradient ascent method can be employed to numeri-

cally find a local maxima. An LMS algorithm is employed, with modifications

to project the normalized gradient back onto the unit sphere. The algorithm

is described below.

First, the gradient of the kurtosis of the output signal with respect to the

reconstruction weights is estimated and normalized. The kurtosis surface is

circularly symmetric, and the normalized gradient lies tangent to the unit

sphere. The purpose of normalizing the gradient is to ensure a fixed step size

in all frequency bins. While this may not be the optimal update strategy,

it provides a simple way to ensure all bins converge at a similar rate, with

stable convergence properties. The normalized gradient is scaled and added

to the current w, as in a standard LMS update. This gives the intermediate

vector a.

a = wn−1 + µ
∇wκ

||∇wκ||2
Since a no longer lies on the unit-norm constraint space, it is projected

back onto the unit-sphere.

wn =
a

||a||2
Figure 3.4 illustrates the geometry of the LMS update.

3.4 Kurtosis Gradient

The previous section described how to update w, but it did not show how

to calculate the gradient used in the LMS update. This section describes

how that gradient is estimated, and Subsection 3.4.1 presents an improve-

ment to the gradient estimate that is very useful for real-time applications

of maximum-kurtosis beamforming.
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Figure 3.4: Algorithm update geometry.

Recalling the definition of complex kurtosis,

κ(y) =
E
[
|y|4
]

(E [|y|2])2
− 2

a single frequency bin y = wHx can be computed as a linear combination of

a single bin of the microphone array x with the reconstruction weight vector

w:

κ(y) =
E
[∣∣wHx

∣∣4](
E
[
|wHx|2

])2 − 2

Then, the numerator and denominator are expanded so the absolute value

operation is no longer required. Since the matrix xxH is Hermitian symmet-

ric, the product wHxxHw is non-negative, giving

κ(y) =
E
[(
wHxxHw

)2]
(E [wHxxHw])2

− 2

The gradient of kurtosis with respect to the reconstruction weights is

∂κ(y)

∂w
=

∂

∂w

E
[(
wHxxHw

)2]
(E [wHxxHw])2
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The gradient is expanded using the product rule,

∂κ(y)

∂w
=

∂

∂w

(
E
[(
wHxxHw

)2]) (
E
[
wHxxHw

])−2

+ E
[(
wHxxHw

)2] ∂

∂w

(
E
[
wHxxHw

])−2

∂κ(y)

∂w
= E

[
2
(
wHxxHw

) (
2wHxxH

)] (
E
[
wHxxHw

])−2

+ E
[(
wHxxHw

)2]
(−2)

(
E
[
wHxxHw

])−3
E
[
2wHxxH

]
∂κ(y)

∂w
=

4E
[
wHxxHwwHxxH

]
(E [wHxxHw])2

−
4E
[(
wHxxHw

)2]
E
[
wHxxH

]
(E [wHxxHw])3

(3.1)

3.4.1 Convergence Improvement for Real-time
Implementations

Before Equation (3.1) is used in an adaptive algorithm, the four expectations

appearing in the equation must be estimated in some manner. One common

estimate of the expected value of a function f(w,x) at time n is simply the

sample mean of length N , shown in Equation (3.2).

En[f(w,x)] ≈ 1

N

n∑
k=n−N+1

f(wk,xk) (3.2)

Since w is being updated over time, it may be desired that wk in Equation

(3.2) be replaced with wn, the most recent estimate of w. This gives an

estimate that assumes the most recent, and presumably more accurate, value

of w is used over the entire window of the sum. Old values of w would not

be used for current estimates of the expectation, essentially “flushing” the

old, less-accurate values of w from the computation. This modified version

of Equation (3.2) is shown in Equation (3.3).

En[f(w,x)] ≈ 1

N

n∑
k=n−N+1

f(wn,xk) (3.3)

18



A problem with using the sample mean is that the entire sum must be

recomputed often, since w changes each step. This is usually expensive

for real-time applications, so an autoregressive moving average can be used

instead, shown in Equation (3.4). This update requires little computation,

making it suitable for use in real-time systems.

En[f(w,x)] ≈ αEn−1[f(w,x)] + (1− α)f(wn,xn) (3.4)

At this point in the derivation, it is tractable to use the Equation (3.1)

in an online adaptive algorithm, with expectations estimated using Equation

(3.4). However, Equation (3.4) suffers from the same issue as Equation (3.2):

the current expectation estimates rely on old values of w. This slows the

convergence of the algorithm, and can cause the value of w to overshoot the

desired value, due to the gradient’s dependence on past values of w.

Ridding Equation (3.4) of its dependence on old values of w is not as simple

as the modification made to Equation (3.2), since Equation (3.4) is defined to

be autoregressive. The computational savings of the autoregressive average

comes from the fact that we use old estimates of the expected value to update

the new estimate. However, there is a solution to the problem if En(f(w,x))

can be factored into a(wn)En(b(x))c(wn), for some functions a, b, and c.

This way, the most recent value wn can be used, making the expectation

depend only on x. Such a factorization can indeed be found, retaining the

computational savings of an autoregressive average without using old values

of w in the computation.

Using the matrix vectorization operator vec, the w vectors were factored

out of the four expectations. The vec operator stacks the columns of an m x

n matrix to form a mn x 1 column vector. The following relationships were

used, and are expanded on in Appendix A:
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E
[(
wHxxHw

)2]
= vec

(
wwH

)H
E
[
vec
(
xxH

)
vec
(
xxH

)H]
vec
(
wwH

)

E
[
wHxxHwwHxxH

]
= vec

(
w
(
vec
(
wwH

))H)H
E
[
vec
(
x
(
vec
(
xxH

))H)
xH
]

E
[
wHxxHw

]
= wHE

[
xxH

]
w

E
[
wHxxH

]
= wHE

[
xxH

]

The final gradient expression then becomes:

∂κ(y)

∂w
=

4 vec
(
w
(
vec
(
wwH

))H)H
E
[
vec
(
x
(
vec
(
xxH

))H)
xH
]

(wHE [xxH ]w)2
(3.5)

−
4 vec

(
wwH

)H
E
[
vec
(
xxH

)
vec
(
xxH

)H]
vec
(
wwH

)
wHE

[
xxH

]
(wHE [xxH ]w)3

To update the gradient according to the autoregressive averager in Equa-

tion (3.4), the following three values must be updated at every time step n.

The parameter α can be used to control the time constant over which the
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expectation is estimated.

En

[
vec
(
xxH

)
vec
(
xxH

)H]
= αEn−1

[
vec
(
xxH

)
vec
(
xxH

)H]
+ (1− α) vec

(
xnx

H
n

)
vec
(
xnx

H
n

)H
En

[
vec
(
x
(
vec
(
xxH

))H)
xH
]

= αEn−1

[
vec
(
x
(
vec
(
xxH

))H)
xH
]

+ (1− α) vec
(
xn
(
vec
(
xnx

H
n

))H)
xHn

En
[
xxH

]
= αEn−1

[
xxH

]
+ (1− α) xnx

H
n

The intuition behind this convergence improvement is the following: Sup-

pose the current w is wopt. If the optimal w has already been found, the

kurtosis gradient should be zero, because further adaptation of w is not re-

quired. When using the factored gradient from Equation (3.5), this is the

case in the mean, since only the current w is used in the gradient calculation.

However, using Equation (3.4) in Equation (3.1) may produce a nonzero gra-

dient even if w = wopt, due to its dependence on values of w before conver-

gence. A nonzero gradient produces an update for wopt, causing a deviation

from the desired w. This process repeats each time wopt is reached, causing

some amount of oscillation, as evidenced by Figure 4.1, presented in the next

chapter.

3.5 Frequency-Domain Extension

Using the above algorithm to find the beamforming weights maximizing the

kurtosis for a single frequency bin, we examine the extension to all bins in

parallel.

The first problem to consider is that the kurtosis-maximizing beamformer

is invariant to a complex scale factor. Without careful treatment of this

issue, the phase in each frequency bin would be essentially random, and the

output signal would have poor phase coherence and unnecessary distortion.

The solution is to constrain the phase of w1, the first element of w, to be

zero across all bins. This ensures consistency among bins, and forces the

phase of the rest of w to converge in reference to w1. This is accomplished
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by multiplying each element of w by e−jθ1 , during each LMS update, where

θ1 is the phase of w1.

A second challenge is ensuring the algorithm’s convergence in all frequency

bins. If there is little energy in a particular bin for an extended period of

time, the kurtosis gradient is very noisy, and it will not provide an update

that increases the output kurtosis in that bin. To try to force all frequency

bins to converge at approximately the same rate, a normalized gradient was

used in the LMS update. For robustness in a real-world application, a more

sophisticated update scheme is probably necessary to ensure convergence over

all frequency bins.
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CHAPTER 4

IMPLEMENTATION AND TESTING

To verify the algorithm’s performance, four tests were run using the maximum-

kurtosis algorithm developed in Chapter 3. The tests ranged from a simulated

source separation to real-world noise reduction using a dashboard microphone

array in a moving car.

4.1 Implementation Details

All signals used in testing were 16-bit WAV files with a sample rate of 11.025

kHz. Before processing, the signals were high-pass filtered with a cutoff of

150 Hz, in order to remove the bias caused by a lack of speech content in

the low frequencies. A 1024-point Hann window was used in a mixed overlap

save/add implementation. The beamformer weights were recomputed every

128 samples, the step size of the algorithm. This implies the reconstruction

filters used are 1024-tap FIR filters, giving around 5 Hz resolution in the

frequency domain.

Another important parameter is the kurtosis time-constant α, which deter-

mines the window over which the kurtosis gradient is estimated. A primary

reason why the pdf of speech becomes very large near zero is due to the am-

plitude fluctuations between syllables or words, so choosing a window length

that captures more than one syllable is vital in measuring a consistently

high kurtosis value over time. Choosing the time constant between 0.25 and

3 seconds provides the best results, and intuitively agrees with why speech

is higher kurtosis than noise.

In each of the tests, the standard measure of SNR gain is given, quantifying

the reduction of noise present in the speech signal.
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4.2 Testing and Results

4.2.1 Test 1: Source Separation of Simulated Instantaneous
Mixtures

The first test was to separate two discrete sources mixed in two channels.

This problem can be modeled as passing a speech and noise source through

the mixing matrix M to give two mixed channels.[
channel1

channel2

]
=

[
M1,1 M1,2

M2,1 M2,2

][
speech

noise

]
The speech can be recovered by finding the weights w to recover speech,

where M is assumed to be unknown to the algorithm:

speech =
[
w1 w2

] [channel1
channel2

]
This is the blind source separation problem, where the recovery of only one

source is desired. Since this is an instantaneous mixture, a single instance of

the algorithm was employed to adaptively find w. The speech source was a

male talker, captured in a quiet room, and the noise source was a relatively

stationary recording of street noise. Both sound files were obtained from the

MIT ICA Synthetic Benchmarks website [24].

The mixing matrix was arbitrarily chosen as

M =

[
0.5 0.5

0.5 0.3

]

making the true recovery weights

w = ±

[
−0.5145

0.8575

]

The convergence of w over time is shown in Figure 4.1.

To demonstrate the convergence benefits of factoring w out of the expected-

value estimates (developed in Section 3.4.1), two plots are shown. The upper

plot shows the convergence of w using the unfactored gradient from Equa-

tion (3.1), and the lower plot shows the convergence when using the improved
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Figure 4.1: Convergence of reconstruction weights for an instantaneous
mixture.

factored gradient expression from Equation (3.5). When the unfactored gra-

dient is used, the algorithm has memory of old values of w, and overshoots

the true value. When the factored gradient is used instead, there is no mem-

ory of old, less accurate values of w, and it is obvious that the algorithm

converges more smoothly, with little ringing or oscillation.

The maximum-kurtosis algorithm consistently provided an SNR increase

of more than 50 dB, signaling a successful extraction of the speech source in

a simple two-channel instantaneous mixture.

4.2.2 Test 2: Two-Channel Source Separation of Simulated
Convolutive Mixtures

The second test was an extension of the first test to convolutive mixtures. In

this example, the speech and noise sources were passed through FIR channels,

instead of being combined using an instantaneous mixing matrix. The 50-

tap FIR filters were randomly generated, and the two simulated microphone
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Figure 4.2: Convergence of reconstruction weights (1 kHz frequency bin) for
convolutive mixture.

recordings were obtained using the equations in (4.1), where (*) denotes

convolution and Ci,j is a 50-tap FIR filter.

channel1 = C1,1 ∗ speech+ C1,2 ∗ noise

channel2 = C2,1 ∗ speech+ C2,2 ∗ noise
(4.1)

To deal with convolutive mixtures, an instance of the maximum kurtosis

algorithm was employed in each frequency bin.

Figure 4.2 shows the convergence of the reconstruction weights for the 1

kHz frequency bin. Notice that w1 is constrained to be real, as discussed in

Section 3.5.

The subband maximum-kurtosis algorithm consistently provided an SNR

increase of more than 25 dB, indicating significant extraction of the speech

source in convolutive mixtures. The SNR gain is not as large as the instan-

taneous mixture case due to the fact that the algorithm must converge in all

frequency bins independently. Finding parameters that ensure convergence

in all bins is more difficult, especially since some bins contain almost entirely

noise, and hardly any speech.
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Figure 4.3: SNR gains for speech and noise recorded in a real room.

4.2.3 Test 3: Two-Channel Noise Reduction in a Real Room

The third test was a real-world noise-reduction problem using a two-microphone

array in a medium sized, reverberant room. The microphone array comprised

two Shure KSM137 cardioid microphones spaced 11 cm apart as a linear ar-

ray, with broadside defined as 0 degrees. The room was 5 x 5 m, with a

carpeted floor and hard walls. A pair of speakers were set up 1 m from the

array. The first speaker was placed at 0 degrees, and played a recording of

a male talker. The second speaker was placed at 90 degrees to the array,

and played a recording of street noise. The speech and noise were recorded

separately so that they could be mixed at various signal-to-noise ratios for

testing.

To qualify the results obtained with the maximum kurtosis beamformer,

we compared its results to the maximum SNR beamformer. Since the speech

and noise were recorded separately and mixed at various SNRs, the signal

and noise covariances could be directly computed to find the maximum SNR

solution. These statistics could be unknown in practice, but provide an

upper bound to the performance of the maximum kurtosis beamformer, which

estimates these unknown parameters with no prior information.

The subband maximum-kurtosis algorithm was run using input SNRs of

-5 dB, -2.5 dB, 0 dB, 2.5 dB, and 5 dB. The algorithm consistently produced

SNR gains of around 7 dB over the range of input SNRs, coming rather close

to the maximum SNR beamformer’s optimal SNR gains of 8 dB. Figure 4.3

shows the SNR gain as a function of input SNR for this experiment.

The reconstruction filters’ impulse responses are shown in Figure 4.4. The

first filter appears to approximate an impulse, while the second filter appears
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Figure 4.4: Reconstruction filters for speech and noise recorded in a real
room.

similar to a scaled and shifted sinc function. This agrees with the intuitive

solution for removing the signal present at 90 degrees. Applying a 3.5 sam-

ple delay and polarity inversion to one microphone, and summing it with

the second microphone, produces a null at 90 degrees for the current array

geometry and sampling rate.

Both beamformers’ beam-patterns are shown in Figure 4.5. Notice the null

produced at 90 degrees, in an effort to remove the noise source present from

that direction. The downside is a comb filtering of the speech source present

at 0 degrees. Visually, the beam-patters appear quite similar, verifying the

maximum-kurtosis beamformer’s ability to estimate the unknown statistics

used in calculating the maximum-SNR beamformer.

4.2.4 Test 4: Two-Channel Noise Reduction in a Car

The fourth test was a very challenging real-world noise-reduction problem

using a two-microphone array in a car. The linear array was mounted in the

center of the dashboard of a 2005 Nissan Altima, pointed directly toward the

back of the car. The talker was seated in the driver’s seat and was recorded

while the car was stationary in a very quiet environment. The noise signals
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Figure 4.5: Beampattern comparison between the subband maximum SNR
beamformer and the subband maximum kurtosis beamformer for speech
and noise recorded in a real room.

were recorded while the car was traveling at 100 kph on the highway with

the windows closed.

Like the previous experiment, the speech and noise signals were recorded

separately, and were mixed at a variety of SNRs for testing. The subband

maximum-kurtosis algorithm was run using input SNRs of -5 dB, -2.5 dB,

0 dB, 2.5 dB, and 5 dB, and again compared to subband maximum SNR

beamformer. The results are presented in Figure 4.6 and show improvements

of close to 5 dB at low SNRs. The maximum SNR beamformer provided an

SNR gain of 5.1 dB, slightly better than the blind maximum-kurtosis method.

Both beam patterns are shown in Figure 4.7. While the overall structure

is the same, the maximum-kurtosis beamformer’s pattern looks noisier and

less defined when compared to the maximum SNR beamformer. This is due

to the adaptive nature of the maximum-kurtosis algorithm, and the difficulty

in ensuring convergence in each bin.
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Figure 4.6: SNR gains for speech recorded in a car with highway noise.

Figure 4.7: Beampattern comparison between the subband maximum-SNR
beamformer and the subband maximum-kurtosis beamformer for speech
recorded in a car with highway noise (Test 4).
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4.3 Discussion

In Tests 1 and 2, the algorithm performed very well. This is no surprise, as

kurtosis is often used with ICA in blind source-separation problems. Since

both of these experiments tested a two-source, two-channel mixture, com-

plete separation was to be expected. While the subband beamformer in Test

2 provided at least a 25 dB SNR increase, it did not entirely separate the

signals, due to difficulties in the convergence of all frequency bins. For fre-

quencies where speech power is low (due to the spectrum of the speech itself,

or the channel response), the gradient contains little information about which

reconstruction weights can maximize output kurtosis. This test exposes one

difficulty in using adaptive frequency-domain algorithms: extreme care must

be taken in ensuring the convergence of each bin.

Tests 3 and 4 are much more interesting, since they deal with real-world

signals in very challenging environments. Test 3 exhibits the difficulty in

extending a theoretically simple problem to the real world. A two-channel

source separation should be possible if the sources are discrete, and two

microphones are used to capture the sound. However, the reverberant room

can be thought of as smearing the discrete sources into a nearly infinite

number of directions. While the algorithm provided up to 7.6 dB SNR gain,

a larger microphone array would allow more degrees of freedom, and better

handle reverberant environments. The similar performance of the maximum-

SNR beamformer illustrates the maximum-kurtosis beamformer’s ability to

estimate the optimal beam pattern.

In Test 4, the algorithm performed fairly well in reducing highway noise

in an in-car speech recording. Gains of around 5 dB at -5dB input SNR

are respectable when using a two-microphone array in diffuse noise. Again,

the performance of the maximum-SNR beamformer highlights the maximum-

kurtosis beamformer’s ability to achieve similar results.
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CHAPTER 5

ALTERNATIVE PROBLEM
FORMULATION

In the previous sections, the gradient of kurtosis with respect to the recon-

struction weights is calculated for use with a gradient-ascent algorithm. It

is also possible to state the optimization problem in another form, resulting

in a non-convex, homogeneous, quadratically constrained quadratic program

(QCQP), a problem that can be approached with other mathematical tools.

Although no closed-form solution has been found, other types of adaptive

algorithms might be more easily developed after examining the problem in

this alternative manner. A conversion of the problem to this standard math-

ematical form is presented in this section.

To simplify the expressions in this section, a constant value of two is added

to the definition of complex kurtosis.

κ =
E
[(
wHxxHw

)2]
(E [wHxxHw])2

This equation can be expanded further, giving:

κ =
E
[
wHxxHwwHxxHw

]
E [wHxxHw]E [wHxxHw]

Using the factorizations presented in the last chapter, the kurtosis becomes:

κ =
vec
(
wwH

)H
E
[
vec
(
xxH

)
vec
(
xxH

)H]
vec
(
wwH

)
vec (wwH)H vec (E [xxH ]) vec (E [xxH ])H vec (wwH)

(5.1)

Equation (5.1) is a ratio of quadratic forms in terms of v = vec(wwH),

and is commonly known as a Rayleigh quotient. Rayleigh quotients are of

the form:

κ =
vHAv

vHBv
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where in this instance

A = E
[
vec
(
xxH

)
vec
(
xxH

)H]

B = vec
(
E
[
xxH

])
vec
(
E
[
xxH

])H
v = vec

(
wwH

)
For clarity, only the two-microphone case (w is a 2x1 vector) will be exam-

ined. This can be extended to larger dimensions if desired.

Generally, A is a 4x4 rank-three matrix, and B is a 4x4 rank-one matrix.

Due to the conjugate symmetry of the outer products used in the construction

of A, B, and v, the second and third rows of A, B, and v are identical,

as well as the second and third columns of A and B. This allows the 4-

dimensional problem to be converted to a 3-dimensional problem. Since the

two middle dimensions always contribute equally to the kurtosis, the ratio

can be redefined as

κ =
ṽHÃṽ

ṽHB̃ṽ

where the middle two dimensions of v were summed to give

ṽ =

ṽ1ṽ2
ṽ3

 =

 v1

v2 + v3

v4


and the redundant third dimension of A and B can be removed to form Ã

(now full rank) and B̃ (still rank one).

Ã =

A11 A12 A14

A21 A22 A24

A41 A42 A44



B̃ =

B11 B12 B14

B21 B22 B24

B41 B42 B44


If one wished to maximize κ over ṽ, choosing ṽ ∈ Null(B̃) would cause κ to
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go to infinity. However, the maximizing w is desired, not the maximizing ṽ.

This can be thought of as a requirement that v must always be representable

as the vectorized outer product vec(wwH). In other words, applying the

vec-transpose operator to re-order v as a 2x2 matrix should result in a rank

one matrix, from which the optimal w can be obtained.

To formalize this requirement as a constraint, it can be noted that if v is

to equal vec(wwH), then

ṽ =

ṽ1ṽ2
ṽ3

 =

 w2
1

2w1w2

w2
2


and

ṽ1ṽ3 =
1

4
ṽ2

2

This constraint can be expressed in matrix form as

ṽHCṽ = 0

where

C =

 0 0 −1
2

0 1
4

0

−1
2

0 0


In this way, the maximum-kurtosis beamformer can be found by solving

the following optimization problem: maximize ṽHÃṽ subject to ṽHB̃ṽ = k

and ṽHCṽ = 0. Ã is positive definite, B̃ is positive semidefinite (of rank

one), C is full rank but indefinite, and k is an arbitrary constant. Matrices

A, B, and C are known. This belongs to a family of problems known as

homogeneous, quadratically constrained quadratic programs (QCQP).

Like the gradient-ascent algorithm derived earlier, the optimal w is optimal

up to a scale factor, since the kurtosis surface is scale invariant (spherically

symmetric). This ambiguity could technically be resolved with the additional

constraint ||w||22 = 1, but it is not a true constraint, since any w on the

solution line can be projected back onto the unit sphere and remains optimal.

Methods for solving this equivalent problem were not explored and are

open to further research.
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CHAPTER 6

DISCUSSION

6.1 Issues and Future Work

One important consideration in using the maximum-kurtosis objective is that

this method does not impose any distortionless constraints on the processed

signal. Unlike the MVDR beamformer, which attempts to minimize the noise

power constrained on a distortionless look direction, this algorithm allows

distortion of the speech source in an attempt to maximize the kurtosis. It is

unclear how the distortion affects intelligibility or perceived sound quality.

In some instances, the distortion might be distracting to a human listener,

or detrimental to the performance of a speech recognizer. In other cases,

however, the additional noise reduction may provide additional intelligibility

improvements at the expense of distortion. For example, applying a Wiener

postfilter can improve SNR at the expense of distortion, suggesting that

distortionless beamformers may not always be desired. This question is open

to further research.

Another issue with using a maximum-kurtosis objective is convergence

when multiple talkers are present. While the algorithm is designed under

the assumption that one speech source is present in lower-kurtosis noise,

real-world use surely yields situations where this is not the case. Depending

on the environment and the attributes of each talker (distance from the array,

signal amplitude, and frequency content), the behavior of the algorithm is

unclear.

In a simulation using two talkers at equal amplitude, a local maximum

was observed that would surely cause convergence issues for the algorithm.

Figure 6.1 shows the output kurtosis with the weights constrained to the

unit circle. Two maxima can be seen, potentially preventing the proposed

algorithm from reaching the global maximum. The occurrence of situations
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like these in common applications is open to further research.

Figure 6.1: Kurtosis of an instantaneous mixture with two speech sources
present.

One last consideration deals with the unit-norm constraint of the recon-

struction weights. Suppose there are frequency bins containing no speech,

only noise. These bins will probably not converge to any meaningful solution,

and will contain only noise even after they have been weighted to maximize

kurtosis. The unit-norm constraint forces noise-only bins to contribute to the

output just as heavily as bins containing the desired speech signal. A postfil-

ter can be used to attenuate bins with low SNR, but this attenuation could

also be designed into the calculation of the beamformer weights themselves.

6.2 Contribution and Conclusion

In this thesis, we derive and implement a subband maximum kurtosis beam-

former, showing SNR gains around 3.5 - 7.5 dB in real-world situations when

used with a two-microphone linear array. Factoring the beamformer weights

from the expected-value estimations has shown to greatly improve the con-

vergence properties of the algorithm. Finally, an alternative formulation of

the problem was developed, from which new approaches to the problem might

be formulated.
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APPENDIX A

EXPECTED-VALUE FACTORIZATIONS

E
[(
wHxxHw

)2]
= E

[
wHxxHwwHxxHw

]
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] [x1
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