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ABSTRACT

Computational modeling of visual attention has been a very active area over the
past few decades. Numerous models and algorithms have been proposed to de-
tect salient regions in images and videos. We present a unified view of various
bottom-up saliency detection algorithms. As these methods were proposed from
intuition and principles inspired from psychophysical studies of human vision,
the theoretical relations among them are unclear. In this thesis, we provide such
a bridge. The saliency is defined in terms of divergence between feature distribu-
tions estimated using samples from center and surround, respectively. We explic-
itly show that these seemingly different algorithms are in fact closely related and
derive conditions under which the methods are equivalent. We also discuss some
commonly-used center-surround selection strategies. Comparative experiments
on two benchmark datasets are presented to provide further insights on relative

advantages of these algorithms.
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CHAPTER 1

INTRODUCTION

Visual saliency is the perceptual quality which makes some items in the scene
pop out from their surroundings and immediately attract our attention. It is well-
known that humans can detect salient regions effortlessly even in highly clutter
and complex scenes.

The process of filtering out irrelevant and redundant visual information and
detecting the most relevant parts of an image can significantly reduce the com-
plexity of visual processing. An effective computational model for automatically
generating saliency maps from images is thus of great interest to the computer
vision community because it can facilitate many important computer vision and
graphics applications, including adaptive image compression [7], object detection
and recognition [8], thumbnail generation [9], content-aware image re-targeting
[10], photo collage [11] and non-photorealistic rendering [12], among many oth-
ers. The study of computational saliency modeling can also provide insights on
the computational aspects of the underlying neurological attention mechanisms.

Visual saliency detection has received a lot of attention from both psychology
and computer vision communities. Inspired by several principles of human visual
attention supported by psychological studies, many saliency detection algorithms
have been proposed over the past 25 years. Here we list several general principles

that have been extensively exploited in the literature:

e Rarity: Less frequently-occurring visual features in the image are consid-

ered salient because they carry more information content [3, 4, 13, 14, 15].

e Local complexity: Unpredictability and complexity of a local image region

indicate high saliency values [16].

e Contrast: High center-surround contrast draws visual attention [1, 17, 2, 18,
19, 20, 21].

e [earning: High-level factors learning directly from data, e.g., faces [22, 23,



24,25, 26].

e Center-bias: Exploiting the priors that salient objects are usually placed near
the center of the photograph taken [27, 28, 29].

Many of these methods claim performance improvement over others; however,
due to the difference in the principles used and the implementation details, the
underlying relations among these methods remain hard to understand and their
fundamental capabilities are unclear. To better understand the progress of this
field, some recent survey papers have been published to qualitatively discuss the
state-of-the-art methods on bottom-up saliency detection [30] and visual attention
modeling [31, 32]. On the other hand, several benchmark datasets and evaluation
methodologies have also been proposed to quantitatively evaluate the performance
of existing saliency detection algorithms [33, 34, 35]. These works usually pro-
vide a taxonomy using the above principles and cover a large body of existing
methods. While the categorization of these methods suggests some characteris-
tics of the methods within the class (and dissimilarity between classes) to a certain
extent, differences in feature selection, saliency measure definition, problem as-
sumptions and tuning of the various components make it difficult to understand
the underlying computational mechanism and to conduct comparative evaluation.

In this thesis, we propose a unified perspective on bottom-up saliency detec-
tion algorithms [36]. The saliency of a specific location in an image is defined as
the divergence between the probability distributions estimated using samples from
center and surround regions centered at that location, respectively. We explicitly
show that most of the existing bottom-up saliency models are in fact special cases
within our formulation. We derive different assumptions and approximation ap-
proaches under which these methods are equivalent (Chapter 3). Therefore, our
computational formulation provides a standardized interpretation of the quantities
involved in them. Moreover, as divergence has well-known fundamental connec-
tions with various fields, e.g., information theory and statistical decision theory
[37], we can understand these saliency detection algorithms in a principled way.
In addition, we also discuss commonly-used center-surround selection strategies
in designing saliency detection algorithms (Chapter 4). Together with the diver-
gence measure selection, these two factors can span a wide spectrum of algorithms
covering many existing works. The experiments on benchmark saliency detection
datasets can thus provide insights of which aspects of each method are particularly

important for good performance (Chapter 5).
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The contribution of this thesis is threefold:

1. We propose a unified perspective for bottom-up saliency detection. We ex-
plicitly show that many of the existing models are in fact special cases of

the proposed model.

2. Our formulation using divergence measure and center-surround selection

spans a wide spectrum of saliency detection algorithms.

3. Through our unified formulation and evaluation, we are able to reveal the
important aspects which lead to improved performance, shedding new light

on how to improve saliency models in the future.

The thesis is organized as follows: We first review relevant works in Chapter 2
based on several categorization factors. We present in Chapter 3 various state-of-
the-art bottom-up saliency detection algorithms and explicitly show the theoretic
relations among them in a coherent formulation. In Chapter 4, we discuss the
selection of center-surround support and the implications. We present comparative

experimental results in Chapter 5. Chapter 6 concludes the thesis.



CHAPTER 2

RELATED WORKS

2.1 Computational Modeling of Saliency

There have been numerous computational and psychophysical studies on saliency
detection over the last few decades. An exhaustive review of existing saliency
detection algorithms is beyond the scope of this thesis. We refer readers to [30,
31, 32] for further details.

Here we briefly introduce existing saliency detection models based on several
important factors. All models take an image as an input and transform it into a
two-dimensional intensity map (i.e., saliency map [38]). A saliency map is an
image with high intensity indicating the high salience regions, i.e., regions that

attract our attention most.

2.1.1 Bottom-up vs. top-down

A main factor for categorizing saliency models is whether the top-down influences
are incorporated. In terms of attention-guided visual search, the bottom-up ap-
proaches correspond to the task-free viewing case while the top-down process ac-
count for task-specific search. Research along this direction has explored sources
of top-down influences coming from (1) objects [26, 39, 4, 40, 41], (2) scene
context [25, 24], or (3) task [42]. In contrast to the top-down driven saliency mea-
sure, bottom-up saliency is purely image stimulus driven and task-independent. In
this thesis, we consider only the computational formulation of bottom-up saliency

measure.



2.1.2 Biologically-inspired vs. pure computational

Itti et al. [1] in one of the early papers on the subject detect saliency in terms
of a biologically plausible architecture proposed by Koch and Ullman [38]. The
bottom-up saliency is derived using the center-surround difference of image fea-
tures across multi-scale decomposition. Based on the architecture of Koch and
Ullman [38], Le Meur et al. [43] proposed a model leveraging the understanding
of Human Visual System behavior, including contrast sensitivity function, percep-
tual decomposition, visual masking, and center-surround interactions. In contrast
to biologically-motivated models, some models derive saliency based on well-
known information-theoretic or decision-theoretic quantities. While not directly
inspired by the biologically mechanism, a wide range of statistical computations

have biologically plausible implementations in simple and complex cells [44].

2.1.3 Rarity vs. contrast

Many of the bottom-up approaches can be viewed as defining saliency either in
terms of rarity or contrast of the local image features. These two terms, rarity
and contrast, however, are often misunderstood and used interchangeably in some

works.

Rarity-based methods Rarity-based methods measure saliency in terms of how
rare the local image content is relative to its surroundings. The notion of rarity can
be mathematically represented using probability density distributions. Usually,
the probability distribution of local features is first empirically estimated and the
Shannon self-information is employed to quantify saliency for task-free visual
search [3, 45] and the bottom-up component in task-specific visual search [4, 25,
24] using the Bayesian framework. The rarity principle has also been applied in
the frequency domain to detect globally distinct regions, e.g., [6, 46, 47]. Due to
the use of the probability for characterizing saliency measures, the rarity-based
methods can find meaningful interpretation from information theory and coding
theory [3, 45, 48, 49, 50, 51].

Contrast-based methods Contrast-based methods, on the other hand, measure
saliency in terms of how an image feature differs from the features in its sur-

roundings. From the nature of direct comparisons of image features, contrast-



based methods have connections with decision-theoretic methods [44] and dis-
criminative approaches [52]. Due to its simplicity and effectiveness, the principle
of contrast as saliency measure has been extensively exploited in the literature
[53, 54, 1, 55, 19, 56].

2.1.4 Pixel-based vs. region-based

There have been many design choices for the element scale in saliency analysis.
For example, several works use pixels as its basic elements [14]. The resultant
saliency map thus could preserve the sharp boundaries of salient objects. How-
ever, the saliency measures computed from pixel values features may not be reli-
able especially when the image is noisy. To address this issue, patch-based anal-
ysis has been proposed [5, 19]. It is, however, difficult to choose the appropriate
scale for the patch size. Region-based methods alleviate this problem by over-
segmenting the images, providing regional hypothesis (superpixels) for saliency

analysis while maintaining the potential object boundaries [20, 57].

2.1.5 Local vs. global

The notion of local and global saliency is related to the scale of the surround
regions. For example, some saliency measures are computed with respect to a
localized region [1, 55, 19]. In contrast, some detect globally salient regions by
considering the whole image as the background [6, 14, 20]. Recently, the local
and global surround are combined in [58].

2.1.6 Learning-based

Inspired by the success in learning-based approaches for object detection, learning
methods had been applied to improve saliency detection algorithms. In Liu et al.
[59], saliency detection was formulated as a conditional random field trained using
a large set of example images with annotations. Similarly, in [60, 23], off-the-shelf
classifiers such as SVMs were used to classify input image features into salient

and non-salient regions.



CHAPTER 3

A UNIFYING FRAMEWORK

3.1 Center-Surround Divergence

The notion of center-surround operation is ubiquitous in the early stage of human
vision processing, e.g., the receptive fields of V1 cells, lateral geniculate nucleus
(LGN) cells. It is thus natural to model the saliency of a region through center-
surround process. In this chapter, we show that most of the saliency detection
algorithms can be viewed as computing center-surround divergence.

Denote x; € M, 1 <1 < N as the iy, pixel location in an image with N pixels
and spatial support M and f,, € IR? as the features extracted at position z;, e.g.,
luminance, color, orientation, texture, or motion. For a pixel located at x;, we
first define two disjoint spatial supports, namely center C; and surround S;. We
also denote their union as A; = C; U S; and the patch centered at x; as N (i.e., a
common choice for surround).

The saliency of z; can thus be defined as the divergence between the two feature

distributions estimated using samples from center and surround:

Sz, = D(PCZ

P&;)? (31)

where D(-||-) is a function which establishes the dissimilarity of one probabil-
ity distribution to the other on a statistical manifold. The most frequently used
class of divergences is the so-called f-divergence, which includes the well-known
Kullback-Leibler divergence (KL divergence) as a special case.

In the following sections, we show that most of the saliency detection algo-
rithms in the literature share the same form as Eqn. 3.1. That is, with certain as-
sumptions and approximations, these methods are equivalent. Table 3.1 presents
a summary of various saliency detection algorithms categorized based on the un-

derlying quantity involved.



Table 3.1: A summary of saliency detection algorithms using divergence analysis

Basic form Ref | Notes (assumptions) Center-surround selection
[61] | Independence among feature Multi-scale, patch-based
D [3]1 | Self-information Ci: {zi}, Sit Ni \ z;
wr( ) [4] | Self-information Ci: {zi}, Sit Ni \ z;
[5] Difference of self-information Single-scale patch-based
[16] | Surround distribution Ps, ~ Py C;: adaptive, S;: M\ z;
[53] | Downsample image for speedup Ci: {zi}, Sit Ni \ z;
[54] | Luminance feature, look-up table Ci: {zi}, Sit M\ z;

Dk (Ps,||Pe,) | [1]
[2]

Contrast as center-surround difference
Contrast as center-surround difference

C;: fine, S;: coarse
C;: fine, S;: coarse
C

[14] | Replace all samples with its mean i {xi}, Sit M\

[62] | Maximum symmetric surround Ci: {z;}, S;: adaptive

[19] | K nearest neighbor for approximation | C;: {x;}, S;: center-weighted
Dy (Pe,||Ps,) [18] | Discriminant center-surround Single-scale, patch-based
Des(Pe,||Ps,) || [20] | Sparse histogram comparison C;: regions

3.2 From Center to Surround

We first consider saliency s,, as the KL divergence from center to surround, i.e.,

from I, to Ps;:

= Dg(Pc,||Ps,)

- SR

L. (f)

Ps.(f)’ (3.2)

Feature independence assumption By assuming independence among the di-
mensions in f,., one can compute the KL divergence in each feature channel and

fuse these channels to form the final saliency map [61].

Single pixel center support By shrinking the center support to a single pixel z;,
ie., C; = {z;}, we have P, (f,,) = 1. The equation in Eqn. 3.2 is then simplified
into

= I(f;) = —log Ps,(fz.),

which yields the Shannon self-information as used in AIM [3] and SUN [4] mod-

els.

(3.3)

Here, we connect the rarity-based methods using the proposed divergence

measure.



Self-information Difference The difference between the self-information of

observing f, evaluated using P4, and I, has the form

_logPAi(fZ‘i) - (_logPCz(fIz)) :log %7 (34)

which gives rise to the saliency measure defined in [5].

Complexity-based methods By assuming the surround distribution Fs, to be
uniform P, we can build connection with the local complexity-based methods

[16], which uses entropy of a local region as a saliency measure:
H(Fe,) = log|F| = Dxr(Fe||FPv), (3.5)

where F is the set of the feature values.

3.3 From Surround to Center

As the KL divergence is not symmetric, one can compute the saliency as the KL

divergence from the opposite direction ':

Z Ps, Ps.(f ). (3.6)

= Dl 8P (f)

The meaning of Eqn. 3.6 and 3.2 can be better understood via the fundamental

connection between the KL divergence and the likelihood theory [63].

Dir(Ps,||Pe,) = —H(Ps,) = Y _ Ps.(f)log Pe,(f), 3.7)

where the second term of the right-hand side can be rewritten as the minus log-

likelihood function:

- Z Ps,(f)log Fe,(f) Z log P, ( fa,)- (3.8)

f | ] z;€S;

'From the neuroscience literature, we know that there are two types of retinal ganglion cells:
“on-center/off-surround” and “off-center/on-surround”. The divergence measure computing from
center to surround and from surround to center may have tight connections with these neuroscience
findings.



We can then interpret the quantity Dy (Ps,||Fe,) as how well the probabilistic
model of center F, can explain the samples from surround. If the probability
density function estimated using samples from the center support Fr, can provide
a good fit (i.e., high likelihood) of the surrounding samples, then the saliency s,,
is small, and vice versa. On the other hand, Eqn. 3.2 measures saliency as how
well the model of surround Ps,can explain samples from center.

We can view the likelihood model in Eqn. 3.7 as a generalization of many
contrast-based methods [54, 14, 53, 62, 19], which makes different assumptions

and approximations.

Single pixel center support For example, by shrinking the center support to a
single pixel z; and assuming the form of I, as Gaussian distribution with mean

=, and variance o2, the minus log-likelihood in Eqn. 3.8 becomes

1 (f;tz _f;rj)2
|Sil o?

Jjix; €S;

+ const (3.9)

Many of the contrast-based methods measure saliency by approximately evaluat-
ing Eqn. 3.9 or its variants. For example, Achanata et al. [14] replaced all ij with
its mean (ﬁ > €S Jz,;) for approximating Eqn 3.9. In biologically-inspired
saliency detection algorithms [1, 2], the difference between fine and coarse scales

in Gaussian pyramids is used.

Other contrast-based methods Other variants include adaptive surround §;
[62], Laplacian distribution on F, [54] and k nearest neighbor for efficient com-

putation [19].

3.4 Symmetrised Divergence

In contrast to the non-symmetric KL divergence, some symmetrised divergences

have also been proposed. One example is the A\ divergence:
DA(P[|Q) = ADkr(P|[A) + (1 = ) Dk r(Q|]A), (3.10)

where P, (), A are probability distributions and A = AP + (1 — A\)Q. By ap-

propriately choosing \ as the prior probability of the center A = |C;|/|.A4;|, the A

10



divergence between center and surround is

D/\(Pcz‘

PSi) = )\DKL<PC'LHP-AZ') + (1 - )‘)DKL(P&

Py,), (3.11)

which is the mutual information of feature distribution and center-surround label
used in [18].

Another alternative is the Cauchy-Schwarz divergence [64], which is given by

[ P(x)Q(x)dx

Des(P|Q) = —log \/fP( iz [ Q) :

(3.12)

When estimating the probabilistic density P, () using non-parametric density es-
timation techniques (known as Parzen windowing), the Cauchy-Schwarz diver-
gence can be easily evaluated in closed form. Specifically, we estimate the pdf of

FPe, using
1

|Cil

Pe(fe) = == Y Worlfes fuy), (3.13)

jix;eC;
where W,2(-, ) is a Gaussian kernel with parameter 0. Then the Cauchy-Schwarz
Ps,) has the form

Zl:xleci Zj:IjGSi Klvj
\/Zl,l’::pl,xgeci Kl,l/ Zj,j’::vj,x;ESi Kj:j'

divergence D¢ (Fe,

—log , (3.14)

where K ; denotes W,z ( fy,, fz; ). This gives rise to the histogram contrast saliency

measure in [20].
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CHAPTER 4

CENTER-SURROUND SUPPORT
SELECTION

The center-surround hypothesis for saliency detection is inspired by the center-
surround mechanisms in the early stages of biological vision [65, 66], e.g., in V1
cells and LGN cells. However, the selection of the center and surround in an
image is a not a trivial task. Here, we investigate various strategies for selecting

support of center and surround and discuss their implications.

4.1 Selection of Center Support

The center support represents the basic elements for saliency analysis. The sim-
plest choice for center support is to use a single pixel [3, 4, 19, 62]. The main
advantage of using a single pixel as center support is that the potential object
boundaries could be preserved in the resultant saliency map, facilitating further
processing such as object segmentation. However, estimating the distribution of
center with one single observation clearly introduces high variance. As ways of
increasing the sample size for estimating the distribution, patch-based or window-
based approaches have been proposed [5, 61]. Yet, without knowing image dis-
continuities in the vicinity, the optimal patch/window size of the center cannot be
estimated, which can be only partly mitigated by added complexity of multi-scale
computation. Region-based approaches emerge as a good choice for spatial sup-
port estimation of center. While not biologically-inspired, region-based methods
provide appropriate spatial scales and directly involve potential object boundaries
in the saliency analysis. Therefore, region-based analysis has become a promising
way for measuring saliency [20, 21]. Note that region-based saliency is different
from region-enhanced saliency, which serves as a post-processing of pixel/patch-

based saliency by averaging them over segments [67].

12



4.2  Selection of Surround Support

The selection of the surround is closely related the notion of local and global
saliency. For example, by choosing surround as the whole image, the algorithm
predicts globally salient regions. For local saliency, finite support or center-

weighted kernels can be used.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we quantitatively evaluate these bottom-up saliency detection al-

gorithms to provide a comparative study.

Dataset We show performance comparison on two publicly available datasets:
the MSRA dataset [22] and the McGill dataset [68]. For the MSRA dataset, we
use a subset of 1,000 images where groundtruth segmentation are available [14].
The McGill dataset contains 235 natural images with rough categorization based

on difficulty.

Evaluation metric To quantitatively evaluate the performance of these saliency
detection algorithms, we use binary (thresholded) saliency masks derived from
the saliency map and compare with human segmentation to compute the precision
and recall curve. A perfect agreement with the human segmentation mask will
result in the curve passing though the top-right corner in the precision and recall
curve.

State-of-the-art saliency detection methods: We conduct comparative study

using the following state-of-the-art methods:

e Rarity-based: AIM [3], SUN [4], SW [5] from Section 3.2

e Contrast-based: IT [1], GB [2], CA [19], AC [62], FT [14], LC [54] from
Section 3.3 and HC [20], RC [20] from Section 3.4.

e Spectrum-based: SR [6]

We choose these methods based on the principle used (rarity vs. contrast), the
selection of center and surround support (pixels, patches, or regions), and features
in different domain (e.g., spectrum-based method [6]).

Quantitative results: In Figures 5.1 and 5.2, we show the mean precision-
recall curves on the MSRA dataset. Similar results are shown in Figure 5.3 and 5.4

for the McGill dataset. We use two separate plots to avoid the line clutter.

14



Several observations can be seen in the comparative experiments. First, for
rarity-based methods, the self-information methods AIM [3] and SUN [4] have
similar performance regardless of using image-specific or generic statistics of nat-
ural images. The SW [5] improves the self-information based method by the use
of patch-based analysis. Second, for contrast-based methods, we can see that from
LC [54] to FT [14], the performance improves as the feature sets are richer (from
intensity to color features). AC [62] further improves upon FT [14] with the adap-
tive surround support. Third, we can see the effect of using regions (as opposed to
patches) as basic elements for saliency detection by comparing RC [20] and HC
[20].

Note that similar results can be observed in Figures 5.3 and Figure 5.4. Yet, we
can see that the overall performance from all the methods tested on the McGill
dataset is lower, suggesting that the images in MSRA 1000 dataset may be too
idealized. For example, in MSRA 1000 dataset, it is usually assumed that there is

only one salient object (which almost never occurs in real world scenarios).
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Figure 5.1: Quantitative comparison of on MSRA dataset. IT [1], GB [2] are
biologically inspired methods, AIM [3], SUN [4], and SW [5] are representative
methods exploiting rarity principle, and SR [6] is spectrum-based approach.
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Figure 5.3: Quantitative comparison on McGill dataset. IT [1], GB [2] are
biologically inspired methods, AIM [3], SUN [4], and SW [5] are representative
methods exploiting rarity principle, and SR [6] is spectrum-based approach.
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CHAPTER 6

CONCLUSION

We have shown theoretical connections among various bottom-up saliency detec-
tion algorithms. By providing a standardized interpretation, the unified perspec-
tive sheds new light on current methods in the literature. From the divergence
measure, we can now directly compare the quantity involved in different meth-
ods and show conditions under which they are equivalent. We also discuss the
several center-surround selection strategies, argue the motivations of the method
design and empirically show the effects. Comparative evaluation on two publicly
available datasets provides further insights on relative strengths of each method.
The list of saliency detection methods in this thesis is not exhaustive. For exam-
ple, spectrum-based approaches are missing from the list and methods using back-
ground and boundary priors are hard to interpret using the proposed scheme. In the
future, we plan to extend our framework to include those methods as well as build
a common ground for detailed comparison, for example, by controlling all condi-
tions when comparing different divergence measure, feature, and center-surround
selection schemes. The initial attempt we made is illustrated in Figure 6.1, where
we created an interface for selecting method design choices, center-surround sup-

port scale, and divergence measures.
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