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Abstract

This thesis is concerned with the restriction theory of the Fourier transform. We prove two
restriction estimates for the Fourier transform. The first is a bilinear estimate for the light
cone when the exponents are on a critical line. This extends results proven by Wolff, Tao
and Lee-Vargas. The second result is a linear restriction estimate for surfaces with positive
Gaussian curvature that improves over estimates proven by Bourgain and Guth, and gives
the best known exponents for the well-known restriction conjecture for dimensions that are

multiples of three.
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Chapter 1

Introduction

1.1 Overview

The Fourier transform of f € L*(R") is defined by

-~

flo= [ s ian

The Plancherel theorem, which is valid a priori for f € L'(R") N L*(R"),

1£1l2 = 11 lle.

allows us to extend the Fourier transform to L?(R") functions. Since f € LP(R"), 1 < p < 2,
can be decomposed into two functions f; € L'(R"), fo € L*(R™) the Fourier transform can
also be defined for such functions.

We note that if f € L'(R"), then the Fourier transform ]/”\ is continuous, so can be
meaningfully restricted to any measure zero set, while for p = 2, f can be an arbitrary
function in L*(R™), and thus is not well defined on measure zero sets. The restriction
problem is the question of determining 1 < p < 2 for which the Fourier transform fof any
LP(R™) function f, can be restricted to hypersurfaces. It is easy to see that restriction to

flat surfaces is possible only for p = 1. For example, for a compactly supported non-negative



function ¢ defined on R™~!, the Fourier transform of

O(xay ..., xy)

is infinite on every point of the hyperplane {¢ € R™ : & = 0}. However it was observed
by Stein in 1967 that for curved hypersurfaces restriction for some p > 1 is possible, and
determining the exact range of p depending on the curved surface is of interest.

Modern formulation of the restriction problem is as follows: let S € R™ be a smooth
compact hypersurface, and let ¢ be a measure on this surface with essentially bounded

Radon-Nikodym derivative with respect to the surface measure. If

1 flze(s,a0) < Cpg,sollfllLemn) (1.1)

holds for all functions of the Schwartz class S(R™), then we say that the linear restriction
inequality Rg4,(p — ¢) holds. The following dual formulation is often used to study the

problem. Let f € L'(do) be a function on S, and define the Fourier transform f/d\O' by

Fio(e) = / f(@)e =S do ().

If the inequality

| fdollpamn) < Cpgs0llfllre(sin (1.2)

holds for all smooth functions on S, then we say that the adjoint linear restriction inequal-
ity R 4,(p — q) holds. This problem is related to some other well-known conjectures in
harmonic analysis and partial differential equations, such as the Bochner-Riesz conjecture,
the Kakeya conjecture, and the local smoothing conjecture. It has been studied particularly

intensively for compact subsets of the paraboloid

{(z1,...,7,) ER" 12y =2 +... + 22}, (1.3)



the sphere
{z e R" : |z| = 1}, (1.4)

and the light cone
{(z1,...,2p) ER" 1z, = (22 4. +22_)Y2) (1.5)

The first two of these are representatives of elliptic surfaces, that is surfaces of positive
Gaussian curvature, and most of the time what is true for them can be generalized to
elliptic surfaces. The last is an example of a surface with one vanishing principal curvature.
The light cone, of course, is flat for n = 2, so it is considered only for R", n > 3.

There are two basic counterexamples that put limitations on the range of exponents for
which R§,;,(p — ¢) holds. The first comes from the decay rate at infinity of the Fourier
transform of surface measures. For surface measures of elliptic surfaces this decay is like
(1+ |x])an, while for the light cone it is like (1 + |:1:|)277n Therefore taking f = 1 on the
surface, we see that ¢ > % is needed to make |f/d\o|q integrable for the case of elliptic
surfaces. For the light cone the range is g > %

The second counterexample is called Knapp example. We describe this for elliptic sur-
faces, for the light cone it is only slightly different. We take a cap c, of radius comparable to
€ on the surface and a function f = 1 on this cap. The ellipticity of the surface implies that
c. can be enclosed in a disk of radius comparable to € and thickness €2. Since ¢, has a surface
area comparable to €"~!, the magnitude of f/d; is comparable to €*~! on the tube dual to
the disk, that is, a tube centered at the origin with radius e ! and length e¢=2 oriented in the
direction of the unit normal of the surface at a point belonging to the cap. Then the left

hand side of (1.2) satisfies 2 T ¢"1, while the right hand side is comparable to €7

This gives the necessary condition

<(n—1)(1-2). (L6)
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Figure 1.1: The Knapp example for the paraboloid

For the light cone we lengthen the cap in the null direction so that it has length compa-

rable to 1. Then this will be enclosed in a box with dimensions comparable to

eX...xXexel x1
N———

n—2 times

with length 1 in the null direction, €? in the normal direction, and € in all other directions.

The box dual to this has dimensions comparable to

Therefore, a similar calculation gives this time

n 1
= (n—2)(1—5). (1.7)
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Figure 1.2: The Knapp example for the light cone

The restriction problem R§,, (p — ¢) is particularly important for two values of p. In
the case p = 2, the inequalities Rg ,, (p — q) are known as the Strichartz estimates and they
have many applications in partial differential equations. The case p = oo is known to imply
all other cases for S a sphere, and also serves as a good measure of progress for other surfaces;
see [30]. We will also concentrate on these two cases. For p = 2, the necessary conditions
stated above give g > % for elliptic surfaces, and ¢ > % for the light cone. That these
conditions are also sufficient follows from the work of Tomas and Stein; see [32]. When
p = 00, the necessary conditions coming from the Knapp examples are vacuous, and the
problem is known as the restriction conjecture. Notice that since for a set of finite measure
|| - [|2 norm of a function f can be dominated by its || - ||» norm, the resolution of p = 2 case
already implies a partial result for the case p = oo. This is far from the conjectured range of
q, and as opposed to the p = 2 case this conjecture is still wide open for elliptic surfaces in
dimensions three and higher, and for the light cone in dimensions five and higher. However
apart from these already resolved cases there has been significant progress, on which we will

further elaborate in section 1.2.



Before ending this section we will talk about bilinear and multilinear restriction estimates
that were utilized, apart from other applications, to obtain linear restriction estimates. We
first define the concept of transversality of hypersurfaces that will be needed to describe
these estimates. Let S;, 1 < ¢ < m be hypersurfaces in R” for m < n. Let & € 5; be

arbitrary points on these subsets, and & be unit normal vectors at these points. If we have
IEEA . NEL] > ¢

for a positive constant ¢ regardless of choice of the points &; € S; we will call the surfaces 5;
transversal.
Consider an estimate of the following type for two compact subsets 57, So of non-empty

interior of S, with S either the light cone or an elliptic surface:

| frdoy fodos||La@ny < Cp 5,0,

Jill2esy don) || 2|l L2¢85,doa) - (1.8)

Here 01,09 are the surface measures of S, 5. This type of restriction estimates are called

bilinear estimates. If we choose Si, Sy to be the same, this inequality is the same as (1.2),

and the inequality holds if and only if ¢ > Z—fl However, if these subsets are transversal,

we realize that the Knapp examples constructed above gives exponents lower than Z—ﬂ, and

n+1
n—1"

this raises the possibility of actually proving this type of estimates for ¢ lower than
Such an estimate was first observed by Carleson and Sj6lin, who proved that (1.8) holds for
q > 2 regardless of the dimension n if the surfaces S, Sy are transversal, see [7]. Further, for
such surfaces S7, 5, Klainerman and Machedon conjectured that ¢ > ”T“ is necessary and
sufficient. The condition on ¢ comes from a modification of the Knapp examples, that we
now describe for elliptic surfaces.

If we take just one cap from each surface of size € and take f; = 1, i = 1, 2, the functions

|f/1%\, |E%| are comparable to €*~! on corresponding dual tubes. Therefore, the place



where we can guarantee that their product is comparable to €22 is the intersection of these
tubes. Since the tubes are transversal the intersection has measure comparable to only e~".
One can further improve this example by taking more than one cap from each surface. After
taking one cap from each side, take about ¢! further caps from each side with normals
lying in the plane defined by the normals of the two caps we first took. Take f; to be
sum of nonnegative bump functions supported on these caps. The expressions j?l?i will be

comparable to ¢!

on two ends of bushes comprised by dual tubes. If we modulate f5 so
that one end of each bush intersect, |f/1%f/g-%‘ will be comparable to €2"~2 on a box shaped

region of dimensions

n+2
n

and this gives the condition ¢ > as conjectured by Klainerman and Machedon. For the
light cone the example is simpler. The caps will be aligned in the null direction, and by
appropriately modulating the bump functions dual tubes from both surfaces will comprise
a box of size comparable to the one for the elliptic case. We thus get exactly the same
exponent.

Bilinear restriction estimates suggest that higher levels of transversality might lead to
even better exponents, and encourage the study of multilinear restriction estimates. In 2006
Bennett, Carbery and Tao, [2], proved the following result in this direction. Fix 2 <m < n.

Let S; € R", 1 < i < m be smooth, compact hypersurfaces whose parametrizations ¥; :

U; — S; from subsets U; of R"! satisfy the smoothness condition
1Zillc2(wsy < A

Also assume that they are transverse, that is, for any points, x; € S;, unit normals z} satisfy
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|2y Ao Al | > B. We then have

] Fidoill Loy < Cosir, [T I1fillz2s) (1.9)
=1 =1
for ¢ > % We remark that we imposed no curvature condition, and without such an

assumption this is sharp except for the endpoint. Below we describe the counterexample.

Let S; be a compact rectangular subset of a hyperplane with unit normal

ith place

with e sidelength in the first m directions except i¢th, and 1 on the last n — m directions.
Thus if we consider R® = R™ x R"™™_ in directions normal to R it has length 1. Let f; =1
on S;. Then |, J%| is comparable to €™ (™~ on a box with sidelength comparable to
¢! in directions lying in R™, and to 1 for those normal to R™. So the left hand side of (1.9)

mem)/Z.

is comparable to em*=m=m/d and the right is to € This implies that the theorem

above is optimal except the endpoint.

1.2 History of the Progress

In this section we review the history of progress on problems introduced in the previous
section. We start with the restriction conjecture R4, (00 — q), q > %, for S the sphere
and the paraboloid. Many of these results were proved in the more general context of the
elliptic surfaces or can be extended in a straightforward way to them. In two dimensions
the conjecture asserts that ¢ > 4, and this was settled by Fefferman and Stein in 1970; see
[10]. In dimension three, the conjectured range is ¢ > 3, and as we mentioned the Tomas-
Stein theorem implies the conjecture for ¢ > 4. Then in 1991, Bourgain lowered this to
q > 4 — 2/15; see [3]. This is particularly important, as 4 is a very special exponent for

which L? based methods are applicable. Wolff, in [37], further improved this to 4 — 2/11.

9



Tao, Vargas and Vega, in [25], introduced the use of bilinear estimates of the type (1.8), and
proved that ¢ > 4 — 2/9 suffices. Tao and Vargas further lowered this to 4 — 2/7; see [26].
In [29], Tao proved g > 10/3, this represents the best range one can obtain using L? based
bilinear estimates. Finally, using multilinear estimates, Bourgain and Guth, [6], obtained the
range ¢ > 33/10. In higher dimensions the Tomas-Stein theorem gives ¢ > (2n+2)/(n —1).
Bourgain, [3], showed that ¢ > (2n 4 2)/(n — 1) — ¢, is possible. Wolff used his improved
Kakeya estimates to lower this to (2n* 4+ n+6)/(n?* 4+ n — 1); see [37]. In [29] Tao improved

this to (2n + 2)/n. Finally, in [6], Bourgain and Guth improved this to

8n + 6
q>4Zi—3 if n=0 mod 3
2 1
¢> T i =1 mod 3 (1.10)
n—1
dn + 4
q> nt if n=2 mod 3.
2n —1

For the cone case the conjecture is, of course, meaningful for n > 3, as for n = 2 the cone
is flat. First progress in this case is the well known work, [24], of Strichartz, which gives
q > 2n/(n —2). For n = 3 the conjecture was settled fully by Barcelo in [1], and for n = 4
by Wolff in [34]. In the same work Wolff also showed ¢ > 22 for n > 5. This represents
the best exponent up to date.

We now review the progress on the Klainerman-Machedon conjecture on the L? based
bilinear restriction estimates. This problem, as opposed to the linear restriction conjecture,
is now fully resolved. As we have mentioned the first theorem of the type (1.8) is the
Carleson-Sjolin theorem, [7], which proves that ¢ > 2 suffices for any dimension n > 2. This
holds without any curvature assumption, as in the Bennett-Carbery-Tao result. Also it is
sharp for n = 2. For n > 3, of course, we have a better range for elliptic hypersurfaces and
the light cone. For the elliptic surfaces ¢ > (n +1)/(n — 1) follows from the work of Tomas
and Stein. For n > 3 this improves upon the Carleson-Sjolin work, but for n = 3 gives the

same exponent. In this case Tao, Vargas and Vega, [25], proved that ¢ > 2—5/69. Later Tao

10



and Vargas, [26], further reduced this to ¢ > 2—2/17. In 2003, Tao proved the conjecture in
all dimensions, except for the endpoint; see [29]. The endpoint is recently proved by Jungjin
Lee in [14].

For the light cone the exponent given by Strichartz’s work, [24], is ¢ > n/(n — 2). For
n = 3, Bourgain, [5], improved this to ¢ > 2—13/2048. Tao and Vargas, [26], further lowered
this to 2 — 8/121. Finally Wolff proved the conjecture without the endpoint in [34]. In this
work he invented the methods that enabled progress also in the elliptic case. The endpoint

was proved by Tao in [28].

1.3 Statement of Results

In this section we will introduce the main results of this thesis. Our first result is an estimate
of the type (1.8). But to state it we need some further notation.

We define the mixed Lebesgue norms as follows

| fllerpa == (/ (/ \f(xy, ... 2,)| %, . . .dxn_l)gdxn>?.
Inequalities concerning these norms are useful in the study of dispersive PDE. This is because
of the fact that the Fourier transforms of solutions of the Schrodinger equation and the wave
equation are distributions supported respectively on the paraboloid and the light cone. This
close relation between the restriction estimates and PDE provides incentive for extending
these estimates to the mixed Lebesgue norms, treating time and space variables separately.

Our first estimate is a result in this direction.

Theorem 1 Let 51,5y be compact transverse subsets of the light cone, and let 01,05 be
measures on these surfaces that has essentially bounded Radon-Nikodym derivatives with

respect to the canonical measures of Sy,Sy. Let fi € L*(S;,do;), i = 1,2. Then for 1 <

11



q,r <2 with 2 < 2(1— %) and % < min(1, ) we have

| frdoy fadoa||zrre < Copsy00ll f1l 22(s1.d00) | f2 | L2(S5.d0s) - (1.11)

Two counterexamples that give conditions X < 2(1 — %), % < min(1, §) will be described

in the next chapter. The work of Lee and Vargas, proved this for % < 51— %) Thus our
result extends this to the endline.

Our second result is on the restriction conjecture.

Theorem 2 Let k > 2 be an integer, and let n = 3k. Let S C R™ be a compact subset of
an elliptic surface, and f € L*(S,do), where o is a measure on the surface with essentially
bounded Radon-Nikodym derivative with respect to the canonical measure of the surface.

Then we have

Ifdollze < Cosollflloo

for
18 2
-~ _ = if k=2
977 T 735 1
8k + 2 (5k — 4)(2k + 1)

- it k> 2.
17 =1 @2 —k)sk+ )@k — R e

Here observe that minus terms represent improvements over Bourgain-Guth exponents.

12



Chapter 2

Endline bilinear restriction estimates
for the lightcone

This chapter will be dedicated to the proof of Theorem 1.

2.1 Counterexamples and Simplifications

This first section of the proof will describe the counterexamples that show sharpness of the
result. We will also reformulate and simplify the result, introduce some notation that we
will use in the rest of the proof, and give an overview of the proof.

We start with the counterexamples. The condition 1 < 2(1 — %) comes actually from
the modification of the Knapp example described in the first section of the first chapter.
If we calculate the left hand side of (1.11) with this example we will obtain this condition.
The condition % < min(1, §), on the other hand, needs a new construction. First notice
that since we already assume ¢ > 1, this condition makes sense only for n = 3, and it thus
suffice to describe it in that case. Let S; be a strip of size € x 1 with length 1 being in the
null direction, on the light cone. Consider the intersection of the light cone with a slab of
thickness €? orthogonal to a normal of S; that is at an appropriate distance from the origin.
We define S, to be the part of the intersection that lies right in front of S; for an angular
width of 7/8. Let f; = 1 on S;, i = 1,2. We see that |f/1c_i?1| is comparable to € on the
box dual to S; centered at the origin , and we have |EZ?2| comparable to € in a box that
lies inside that dual, with dimensions comparable to 1 x 1 x e~2. Thus the left hand side of

3-2/r

the inequality is comparable to € while the right is to €3/2. Comparing these gives the

desired result.

13



We now reformulate and simplify Theorem 1. Let S, S5 be given as in the theorem and
let Uy, Uy be the projections of these onto R™~! x {0} hyperplane. Let f; be square integrable

functions defined respectively on U;. Define
Tu, fi(€) == | fi(x)e 2@ EHlzlen) gy
Uy
fori=1,2 and &£ = (£,&,) € R™. Then proving the inequality
1T, iTv, follLorr < Copvn |l fill 2w f2ll 2 ws) (2.1)

for (g, r) satisfying the conditions of Theorem 1, will clearly imply that theorem. To simplify

the geometric picture we will take

Uy ={reR"": /(x,(1,0,...,0)) <7/8, 1 <z, 1 <2},

Uy ={z e R"": L(z,(~1,0,...,0) <7/8, 1 <2, 1 <2}.

The same proof, with different constants, works for other domains as well. To prove our

estimate we will need the following larger domains:

Ul :={zecR"": ~(z,(1,0,...,0)) < 7/4, 1/2 <z, <4},

Uy:={zxeR"": L(z,(~1,0,...,0) <7/4, 1/2 < 2,1 < 4}

We introduce the modified versions of 1y, as well. Let a; be smooth, real-valued functions

with supports contained in U] which are identically 1 on U;. Then

l/]{fz(g) = /Gi(x)fi(l’)e2”i(x'5+|m|'5n)dx_

Notice that if f; is supported inside U;, then T}, is no different than Ty,. Henceforth we will

14



use T} to denote Tl’f{'

We can also simplify the conditions on exponents. Since for the non-endline cases this
result was proved in [19], proving it for the endline is enough. To further simplify, we
will introduce a property of the operators T;, that is called conservation of mass in PDE

literature. We have the following lemma

Lemma 1 Let U € R™! and let f € L*(U). Let T be an operator defined by
_ / f(x>672m'(ac-g+¢>(z)£n)dx_
U
for a smooth function ¢ on U. Then we have
[1T1E6)rdE= 1112

Proof. The proof uses the Plancherel theorem. We have

[irsEenra= [| [ swemeseosula

/‘/ —27rz¢ {n) —27rza:fd ‘ df

This last integral is actually the Fourier transform of the function f(x)e=2"¢@)¢n  Thus

(2.2)

using Plancherel’s theorem we have

= || fx)e 2@ &[5 = || f(a)e 6|3 = || 13,

We shall utilize this lemma together with the following simple application of Cauchy-

15



Schwarz inequality

||T1f1T2f2||L°°L1 :SUP/|T1f1(Z»§n)T2f2(E7§n>|dg
o (2.3)
<sup / T (E &) PdE) / ITofa(E, &) PdE) .

Thus one concludes

Ty A1 T foll oot < [ fall2]l foll2- (2.4)

1

If Theorem 1 is correct for a pair of (g, r) with % <min(1,%), - = 5(1 — 1), interpolating

Q=

with what we have above gives Theorem 1 for all points on the line between (1, c0) and (g, 7).
Hence it is enough to prove our theorem for (¢,r) with ¢ arbitrarily close to min(1,%). Thus

for each n > 3 we fix

0<ec— (2.5)
“= T00n° ‘
and let 1 < ¢,r < oo be such that
1 1 n 1
i 1.2) — Z=(1=2). 2.6
C—minL D)o L =F0-7) (2.6

Our requirement on € will be of use below.

Finally we also note that it is enough to prove our theorem for || fillo = || f2]]2 = 1. We
will use this especially in Section 2.4.

Before proceeding further with simplifications we introduce some fixed constants and
notation that will be utilized. We will use N to denote the integer 2", and Cy for 212/l 0
Thus N, 1/e are much smaller than Cy. We also introduce a still larger constant C; := 2C0"
As before C' will denote various constants, and dependencies of it will be written as subscripts
when necessary. The size of C' will in general be rather small such as 10n, and it will never

exceed 2V As N, e depend only on the dimension and (¢, 7), when C depends on these we

will not keep writing this dependency. The choice of C, Cy, (' is so that C' < Cy < (4, and

16



each of these is much larger than the constants smaller than it. We introduce the notation
A < B tomean A < CB for C' as described above, and A ~ B for A < B and B < A.
Standard method of exploiting transversality for the light cone is to divide functions
fi, © = 1,2 into strips so that their Fourier transforms will concentrate on transversal
tubes. But this decomposition has to be done with smooth cutoffs which enlarge support
of the function concerned. In our case this may take support of f; beyond U;. We thus
have introduced U/, and will introduce a quantity that we will call margin for functions f;

supported in U:

margin(f;) := dist(supp(f;), 0U;). (2.7)

Thus margin is the distance of the support of the function from the boundary of the region
U;. We also introduce the related quantity of angular dispersion of a function f; as the

diameter of the set

{z/lx| - x € supp(fi)}- (2.8)

With these quantities at hand, we introduce the following local form of what we want to
prove. We note that localization is a standard method of proving restriction estimates, see,

for example, [28, 29, 34, 6.

Definition 1 Let R > Cy29/2, and let Q be a cube of sidelength R. We define A(R) to be

the best constant for which

Ty /1T follLazr @) < A(R)|| f1ll2ll f2l2 (2.9)

holds for all f; € L*(U;) with margin requirement

margin(f;) > 1/Cy — (1/R)YN. (2.10)

17



That A(R) is finite is clear: we have ||T; filloo < ||fill2 with constant depending only on the

~Y

volume of U], and volume of ) is R", thus

n—1

1
1Ty fiTa follLarr) < CR T Ta || fillal foll2-

n—1

So we have A(R) < CR ~

*4. Further we have the following property: if R/C' < R' < R,
then A(R) < A(R’). This holds since any function satisfying the margin requirement for
scale R also satisfies it for scale R, thus dividing a cube of size R into cubes of size at
most R’ we obtain this inequality. Similarly if R < R < CR we have A(R) < A(R).
This follows since for any function on U;, by decomposing U;, and using Lorentz transforms,
dilations and rotations we obtain a constant number C' of functions satisfying appropriate
margin requirements, and these operations can enlarge the domain of integration by at most

another constant factor C'. Thus we also see that if we can prove
A(R) £ 2°9, (2.11)

then we have

ITv, iTv follzazr@) < C2°C | fullalfall2

for any cube @ of any radius, and any choice of functions f; € L?(U;). This clearly, from the
monotone convergence theorem, implies Theorem 1.

The reason we define A(R) for not all functions in f; € L*(U;), but for those satisfying
a margin condition is that, as localization will enlarge the support of f;, the localized form
of f; may have support exceeding U;. Then we would not be able to use A(R) to bound
this localized form. However, if we impose a margin requirement support of the localized
form will still be inside U;. Then, as for smaller R the margin requirement relaxes, we may
use A(R/C') to bound these localized forms. The margin requirement (2.10) above will be

called the strict margin requirement, we will also use in coming sections the following relaxed
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margin requirement

margin(f;) > 1/Cy — 3(1/R)N. (2.12)

Both of these margin requirements become more strict as R grows, that is for larger R fewer

functions satisfy them. Thus we introduce the following variation of A(R)

AR):= sup A(r)

Co2C1/2<r<R

that will be of use in the proof.
After introducing the relevant notation and concepts, we note one last simple observation
before proceeding to give an overview of the proof. As noted above we have from the

conservation of mass property the inequality

/ To(E,60)2E = || 12

By simply integrating in the last variable we get

I fill 2@ < R filla- (2.13)

Thus from the Holder inequality we have

1T AT follr @) < Bl f2l2 (2.14)

This is what we will refer to as our trivial L' estimate. Note that if we can prove an estimate
of this form for L? norms with an appropriate negative power of R, by the Holder inequality
and interpolation we can control A(R). Although such an estimate is clearly impossible, we
can still exploit this idea partially. Using the idea of wave-packet decomposition, we write
T f; as sum of functions each localized on a sub-cube of ). For such a localized function

an appropriate estimate is possible on other cubes. On the cube to which a function is
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localized, we use an inductive hypothesis. Thus, together with interpolation, we are able
to control A(R) with sum of A(R/C) with a constant. Now for a non-endline exponent
this method gives a negative power of R instead of this constant, which implies desired
boundedness for A(R). This is the induction on scales technique of Wolff with which he
solved the Klainerman-Machedon conjecture for the light cone except for the endpoint in
[34]. But for the endline this arguments alone is not sufficient.

It turns out that the key point is the concept of concentration. To make this concept
more clear we define the notion of a disk centered at a point & = (€,&,) of radius r as the
intersection of the plane R"1 x {&,} with the closed ball of radius r centered at £. We denote
such a disk by D(&,r). By concentration we mean having for a radius » much smaller than

R
/ T f.E, &) PE ~ || 1
D(¢,r)

for both i = 1, 2. If this happens, the concentration persists for a cube )" of radius r centered
at £ due to the geometry of the cone, - all vectors lying on the cone has an angle 7/4 with the
plane R"~! x {0}, that is they have constant velocity, thus the concentration cannot disperse
faster than a fixed rate-. Due to transversality we must have very fast decay of |1} fiT5 fo]
outside of this box: recall that the transversality assumption forces T;f; to concentrate on
tubes in different directions. Thus we may regard the quantity |77 f1 75 f2| as essentially zero
outside of @’. Since our trivial L' estimate (2.14) depends on the side-length of the cube
(@, having a much smaller support improves this estimate, which is sufficient to obtain the
desired result for functions f;, ¢ = 1,2 with concentration. If the concentration phenomenon
does not occur it is natural to expect A(R/C) to be less than a fraction of A(R). In that
case proving that A(R) is less than the sum of A(R/C) with a constant suffices, since this
directly implies boundedness of A(R). How to obtain such an expression is just what we
mentioned in the previous paragraph.

Executing this vision requires much work. Here we give a brief outline of the rest of
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chapter 2. In the next section we will give technical definitions, and some preparatory
lemmas. The section 2.3 will use these definitions and lemmas to decompose our functions
to pieces localized to sub-cubes, and prove properties that these pieces satisfy. The section

2.4 will use these properties as well as the concept of concentration to conclude the proof.

2.2 Some Definitions and Preparatory Lemmas

We start with definitions related to localization to sub-cubes. Let ) be a cube with side-
length R. We will use K;((@) to denote cubes that arise when we partition () into subcubes
of sidelength 277 R. Thus the cardinality of this collection is 2. By (c, k) interior I¢*(Q) of

() we will mean the set

I*Q)= J (1-0q

q€KL(Q)
Here (1 — ¢)q is a cube with the same center as ¢ that has 1 — ¢ times the side-length of g.
Of course, 0 < ¢ < 1 and k is a positive integer.

We go on with definitions concerning localization of mass described in the section above.
We let 1 be a fixed non-negative Schwarz function of total mass 1 on R"™! with Fourier
transform supported on the unit disk. We can construct such a function using a real,
even compactly supported smooth function ¢. Because the function is even, 5 is also real.
Thus if we let 7 = ¢ * ¢, then we have n(x) = |$|2(—x) Thus we have non-negativity
for n and compact support for 77. If we multiply ¢ by an appropriate constant we also

obtain the condition that the total mass of 1 is 1. Using this we define 7, for » > 0 by

ne(x) :==1r""no(x/r), where x € R"~*. We define for i = 1,2 the cone subsets
C'A) i ={A—rw, Ay +7) ER": 7 €R, we U], |w| =1},

and 7 neighborhoods of these subsets, C*(\, 7). For a given disk D(, ) localization operators
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Pp,1 — Pp are defined as follows: let f; € L*(U]) and B; = Xp *1,1-1/~v. Then
Ppfi(€) == Ty(By # (€72 fi(2))) (€, &0 — An),

(1= Pp)fi(&) == Ti(e ™ fi(x) = By * (€7 fi(2)))(€, & — An),

Thus we actually have defined two different operators, one for 77 and another for T5. However
the reader will easily discern which one is used from the subscript of function f;. This
operator basically localizes the image of a function f; under the operator T; to C*(\,r) while
ensuring that this localization is still image of a function under 7;. Thus for each f;, there

are two function g;, h; € L*(U;) with f; = g; + h; and

Ppfi(§) = Tigi(§), (1— Pp)fi(§) = Tihi(§).
Furthermore,
1Pp fill c2n-1xqoy) = 1B # (72752 fi(@))[|2 = [l gill2
1(1 = Pp) fill 210y = le2™ " fi(x) = By # (e fi(x))|l2 = [|hill2

In what follows we will, by a small abuse of notation, we use || Pp f;||2 to denote || Pp f;|| L2 rn—1x{0});
and [|(1 — Pp) fi||2 to denote [[(1 — Pp) fill L2n-1x40y)- We now prove a result that make rig-
orous the concentration properties of this operator. The smooth cutoff for the disk D(\, )

(14 =2

%D(ﬂﬁ) =

will be useful to make rigorous how strong these concentration properties are.

Lemma 2 Letr > Cy, and let D = D(\, 7). Let f; € L*(U;) be functions with margin(f;) >
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Cor™" YN Then we have the following estimates for Pp f;

margin(Pp f;) > margin(f;) — Cr— /Y (2.15)
15" Pofill oty < il (2.16)
(1 = Pp) fillzep_y S N1 fill2 (2.17)

1Po fillz < 1 fill72 o, + Cr= 1113 (2.18)

11 = Pp) fillz < fillZepesy + Cr=YI1ill3 (2.19)

1Pp fill2, [[(1 = Pp)fill2 < [ fill2 (2.20)

where the notation D' denotes the rest of the plane R™™! x {\,} on which D lies, and

D* .= D\, r(1 £ r71/2V)).

Proof. The margin estimate follows from the radius of support of 3,, which can be computed
from very elementary properties of the Fourier transform. The radius of support of this
function is Cr'/N=1 thus support of a function convolved with it can enlarge at most this

amount. For the other properties we observe that
Ppfi(A) == Ty(B, * (€72 £i(2))) (X, 0) = B (N)e 2z fi(X),

(1= Pp) fi(A) := Tu(e 2™ (@) — By % (7 fi(2)))(€,0) = (1 = Br(N))e-2ren f(N).

Therefore investigating the behaviour of 6: = Xp * N,—1+1/v Will be helpful. Since 1,11/~ is
a Schwartz function, it has decay faster than any polynomial rate, this combined with the

radius of the disk D* implies that if z € D"

2

Xp (@) (xp * ) () S
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This gives (2.16), (2.18). Similarly the size of D~ combined with the fast decay of 7,1-1/~
shows

XD * 777“171/1\1(1') Z 1-— OT_N,

which gives (2.17), (2.19). Finally it is easy to see that

0 S XD * 7]7.1—1/N(£E) S 1

and this proves (2.20). u
After this investigation of localization of the operator Pp to disks, we turn to localization

to cubes. To this end we will look at the operators 7T; more closely. We have

Tofi(€) = ai@) filw)e 2mieten () = —Jox | ay(a)e 2m@ TG gy
Rn—l
= TAE0« [ almeme
Rnfl

We thus define

K, (€) = —/R - a; () e~ 2R EHl€0) g

Thus we have

T:fi(€) = (Tifi(-, 0) * K, ()(€)-

Similarly we can replace the zero in the nth coordinate by any A\,

Tifi(§) = (Tifi(s An) * K, -, (1))(8).

We have, from standard non-stationary phase methods, the following strong decay estimate

for this kernel:

_NIO

|[Ke, (O] S (1+dist(¢, C(0)) (2.21)

see [28] equation (33), or [15] Lemma 11.
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Another important property of T; is

Tifil < 1 filler S W fill -

This clearly follows from the definition of 7; and compactness of the support of f;. From
this we will deduce two important conclusions. First, combining this with the conservation

of mass property that was introduced above

Hfz'HL2 = HTifi(Ea fn)Hm(Rn—lxgn),
we can write
T fil SNTfi(E &)l 2mn-1xen)- (2.22)

Second combining this with the dominated convergence theorem we see that T; f; is contin-

uous on R". Now we state our lemma about localization to cubes.

Lemma 3 Let D(ép,7) be a disk with radius v > 20, Let f; € L*(U;), i = 1,2 be two

functions with f, satisfying

margin(fy) > Cor YN,

Then for 1 < g <r <2 andr < R we have

(1 = Pp) fO)Tofollorr@en.c-1ry S N frll2ll foll2, (2.23)
and
1(PpfO)T2foll Larr @, mNC en.rerUNY) S RN All2 Il fl2 (2.24)

whenever &, — &p, | < CoR.

Before the proof we note that an analogue of this with the places of fi, fo changed also holds,

and the proof below works in that case as well with trivial changes.
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Proof. Note that the region of integration for the left hand side of (2.23) has measure
bounded by a power of r, and as the right hand side shows we can lose such powers. This
same argument also holds for (2.24). Thus using Holder’s inequality, it suffices to prove these
statements for p = ¢ = 2. First we prove (2.23). It clearly suffices to prove an appropriate
L™ estimate for (1 — Pp)f; and an appropriate L? estimate on T, f,. The estimate on T5 fo

that we need is (2.13). As for the L™ estimate, note that

(1= Po)fu(€) = Ti(e=20n £,(w) — iy + (=270 fi(2)))E, n — b,
Ty (e fy () — B+ (20 i (1)))(+,0) % Ke, ey, ()(E)
— (L= Po)fi( €pa) * Koy e, (V)
~ [(= Po)AE~ R0, e, (VT

(2.25)

Thus using Holder’s inequality we can write

(1= Po)A(E = X o) PKe,-co, (VIR [

Rn”

(1 - Pp)Fi(E) < /

Rn—1

3 |Ke,—¢p, (N)|dN.

As we have |£, —&p,,| < C~1r for € in our cube, the second integral can be bounded by r¢ for
some appropriate C. For the first integral we partition the domain of integration as union
of D(0,7/3) and its complement R"~*\ D(0,r/3). On the first of these |K¢,_¢, (V)| <1,

thus we have

/D(O . (1= Pp) f1(€ = A\ €pn)I*| Ke, e, (NIAA S (1 = P) fill 2(niepr2))-

But the disk D(¢£p,r/2)) lies inside D~ thus we can use (2.17) to bound it. To deal with

the second integral we first note from (2.20) that

(1= Pp) il SIT2fi( Epn)ll2@nrxep,) = [1fill2
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Hence the second integral satisfies

<AL / Ke, ey, (VX
R”_I\D(O,T/?))

Since |€, — €p,,| < C71r, from here decay properties of the kernel gives

Sr VAl

Combining these results gives (2.23).
To prove (2.24) we follow a similar path: we prove an L estimate on Ppf;, and use

(2.13) for T fs. As in (2.25) we can write

PDfl(f) = /PDfl(E_Xa fDn)Kénféun(XMX,

and use the Holder inequality and the decay estimate (2.21) to write

PP SR [ IPofiE = X600 K -g0, (VX

Rn—1

We divide the domain of integration into C'((0,&p, ), + RY2) N (R x {£,}) and its
complement (R*1\ (C((0,¢p,), 7+ RY2) N ((R*! x {&,}). On the second domain we use
the fact that |Pp fi| < || fill2, and the fast decay of the kernel K¢, ¢, . For the first domain
we observe that since £ ¢ C*(ép, Or + RYN)N(R™! x {&,}), we must have dist(§ — X, D) >
2r + RYN /2. Combining this with the fact that |K¢,—¢, (A\)] < 1 allows us write for this

integral

S HPDflHL?(Dezt(gD,2r+R1/N/2))

From here the decay of smooth cutoff 1,.1-1/~ used for defining Pp gives the desired result.

27



For a cube @) of side-length R, we know that

IT: fill 2@y S RV Al2

from conservation of mass property. If we want to replace the cube with the cone neighbor-
hood C?(&¢, R), then simply using the conservation of mass property and integrating in the
nth coordinate is not enough, since domain of integration in the nth variable has infinite
length. But the transversality of normals of C*(0), and C?({¢) can be used to essentially
limit this length to R, and thus prove the same estimate for C?({¢, R). Heuristically this
can be seen by considering a partition of f; into small caps of radius R, dual tubes of
which will be oriented along the normals of C?(£¢). Owing to transversality each such tube,
although of length R?, will have an intersection with C?({¢, R) that has length R in the
nth coordinate. Although our proof below will not follow exactly such a route, this makes

it clear why the result holds.

Lemma 4 Let R> 1, fi € L*(Uy), and let £ € R™ be an arbitrary point. Then we have

T fill 22 eory S B2 fu -

Proof. Before begining the proof in earnest we note that by modulating f; appropriately,
we can take £¢ to be the origin in R”. We will use duality type arguments in the proof. Let

T denote the operator xcz2(e.,z)71- Then our lemma is equivalent to proving that

IT filln2eny S BY?| fillo-

This operator maps functions on R"~! to functions on R*~!. Its adjoint T™* is defined for

functions g; on R"™ via the following formula

T gi(2) = ar(2) | 1 Xezgop)(—a, &)™ dg,
R
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where m02(07 r)(—,&,) denotes g1 - Xc2(0,R) (€,&,) Fourier transformed in € variable. As

is well known ||T'|| = ||7*]|, hence it suffices to prove

—

IT* g1l z2ee—1y = llar(x) | 91 Xezo.m) (—: &)™ G | 2 @n-1) S RV |lg1ll 2y
R

By squaring we can write the first term as

1T g1l 2 (n-1y = (T 91, T* 1) 21y -

Writing T%¢; terms explicitly we have

<a (z) g1 X X2 OR)( z,&n)e 2m|x"£”d§m al(x)/mc*?(o,}%)(_x’ /\n>€2mxl'knd/\n>

L2(Rn71)

which is equal to

/R 1//% g1 Xczo,p) (—2 6n)T1 X Nz (o,m (=2, An) T2V dE AN, d

We change the order of integration to obtain

/R /R <a1(x)m02(0,3)(_$7 fn)e%i'z‘{"7 al(x)ﬁ(}?(o,}z)(_l'a )\n)ezm|x\-,\n>L2(Rn_l) d&ndAy,.

Consider the inner product inside the integral for fixed &,,, A,. In this case we may regard

ay(2)g1 - Xes 0,7 (2, En) eI

as the image of gi(&,&,) under an operator T, defined on L*(R""!). The same view, of
course, can be taken towards the other term in the inner product. The dual for such an

operator, T¢ , can be calculated from the formula defining adjoint operators on Hilbert spaces
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and properties of the Fourier transform to be

Té‘nh(ﬂf) = XC2(0,R)(96, &n)ag - b e 2millen ().

Again using the equality that defines adjointness on Hilbert spaces we can write our integral

above as
R JR

The following statement implies our result
| €91 T8, T091) poggny | S L+ 160 = Aal/R) ™ lga (- €0)ll2llgn (5 An) 2 (2.27)
We will first see how to arrive at our result from this. Our integral (2.26) above satisfies

S /R/R(l + & — )\"|/R>_N||gl('7gn)||2||91(',)\n)||2d§nd)\n_

We define a function w on R with w(s) = (1 + |s|/R)™™. Then we can write the integral

above as

= [ oz Ol A ladhn

To this we can apply the Holder inequality to obtain

5 1/2
< ([ oIl smen T ah) " -z

We apply Young’s inequality to the first term to obtain

S Iwlhllgrlzeen),
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and this, as a simple calculation shows, satisfy

S R“gl”%?(wy

Thus it remains to show (2.27). For |§, — A\,,| < R this amounts to showing that

€91 T2, T3, 91) pggnry | S 19105 € 12llgn (5 An)l2-

As both T),, T¢, are merely combinations of modulations, multiplication by characteristic
functions and the Fourier transform they can easily seen to be bounded. Thus applying
the Cauchy-Schwarz inequality to the left hand side and then using boundedness of these
operators we obtain the desired result. Thus we may assume |, — A,| > R. In this case we

first look at our operator T T}, closely:

TgnTAnm(g) = XC2(0,R) (EJ &) [ — g1 XC2?(0,R) (57 An) * /a%(w) - e 2millal En=An) 42 0) g (E)

This follows directly from definitions of T¢ , T),,. The integral term is of course very similar

to the kernel we introduced before, so again we define
Reponn (@) = = [ at(a) - emmeredgy,
This kernel, by the same reasoning, satisfies a decay estimate very similar to (2.21),

K¢, (0) < (14 dist((0, &, — A\n), CH0)) "N, (2.28)

31



and we have

T¢ Th,91(E) = Xcz0,m) (€5 &n) [91 X2 @, M) ¥ Ke, -, (5)] (&)

= xc2 0. (&, En)/ 91 X2 o.r) (0, M) Ke, -, (€ — 0)d8.

Rn—1

Thus

72,51 < s M| [ xorom @ &o)xcrom @A) Re,a, (€~ B)dB)

Rn—1
We will now use this information to estimate the inner product. We start with the Cauchy-

Schwarz inequality

| <917T§HTAngl>L2(Rn71) | < g1 (s &)=l TE, T, 912

Then we use our estimate above on |T¢ T, g1

< ||g1(',§n)!|2||g1(',An)||2[/ 1 Xez0,r) (& &)Xz (0, An)|f~<§n—xn(g—5)\2dgdg]§-

Rr—

From transversality of C'(0, R), C?(0, R), and the estimate (2.28) this last term satisfies
S A+ 16— Al/R)TN

and this finishes our proof.

|
We next give a simple corollary of this lemma which, in certain situations, will be used

as a substitute for our simple L' estimate (2.14).

Corollary 1 Let f; € L*(U;), i = 1,2. Let R > r > 1, £ € R" and let Q be cube of
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side-length R. Then

1Ty fiTo fol 2 csemnoy S 72RYZ | filla]l foll2.

Proof. This will easily follow from Lemma 3. We have

1Ty fiTafallrcsemng) < 1T fiTafallrcrerng) + T fiTafoll e mng)-

We handle the first summand on the right, the second term is handled the same way. Using

the Holder inequality

Ty fiTa fal e crenng) < T fillcvo) | T2 falleeren)

From the analogue of Lemma 4 for functions in L?(Us), and (2.14) we have

SrPRY2| fuo | fo 2,

and thus we are done.
|
The following lemma represents the gain that can be obtained from having small angular
dispersion for at least one of the functions fi, f> in an L? estimate. As this suggests in the
coming chapters we will partition our functions into small pieces of small angular dispersion

to obtain such a gain. This lemma will be of fundamental use to us in this process.

Lemma 5 Let r > Cy. Let fi € L*(Uy) with angular dispersion at most C/r and fy €
L3(Usy). Suppose f1, fo satisfy the margin requirement margin(f;) > 1/3Cy, i = 1,2. Let

¢ be a compactly supported function in B(0,1) with Fourier transform mon-vanishing on
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B(0,C). Let ¢pr(y) = R"¢(Ry). Then for all cubes Q of side-length R we have

1Ty AT follr2) S R\ T figr|l2|| Tofodrl-

Proof. We first note that q/ﬁj\g(f) = éﬁ\(f/R) We have

T fiTs foll2o) S | T1fiorTs fadr]|2-

We can of course write

Tfi(€) = /U fa)e s e = /S 9" doy(y) = Fidoi(€)

for S; cone neighborhoods as defined before, g(z,|z|) := f(z), and do pullback of the

Lebesgue measure on U;. Thus

||T1f1€$1\{T2f2¢/\R||2 = ||f1d01€gz\%f2d02$l\z||2 = || fidoy * ¢rfodos * Pgll2

We use the Plancherel theorem to obtain

—

[(fidoy * ¢r) * (fadoa x r)||2 = ||(firdoy * ¢r) * (fadog * dr)||2

We will, instead of L2, will prove estimates on L' and L> norms and use interpolation. We

have from Young’s inequality

[(fidoy * ¢r) * (fadoa x r)|1 S || frdoy * ¢rll1 || fados * drll

For the L*° case we have

((frdos * 6r) % (fado * dr)(y)] < / |(fadors * )y — 2)(fodors * 61)(2)|dz
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Expressions f;do; * ¢p are functions supported inside C'/R neighborhoods of supports of
measures f;do;. For any y measure of the set of z for which integrand on the right handside

satisfies CR™™. Thus we have

S R frdoy * ¢rllsol| f2dos * Or ||

Now interpolation gives

[(fidoy % ¢r) * (fados * ¢r)|l2 S R™?|| frdoy * ¢rl2|| fodos * drll

Applying the Plancherel theorem to the right hand side gives our result. [ |
This lemma also have a global version. Its proof is essentially same as the one we

presented above, and can be found in [28].

Lemma 6 Let r > Cy. Let fi € L*(Uy) with angular dispersion at most C/r, and fy €
L3(Us). Suppose fi, fo satisfy the margin requirement margin(f;) > 1/3Cy, i = 1,2. Then

we have

2-n
Ty fiTofolle S B2 || fill2ll f2ll2-

We now prove a technical lemma of a very general nature. It will be frequently used

throughout the rest of Chapter 2.

Lemma 7 Let Qg be a cube with center &g, and side-length R. Let 0 < ¢ < 279 and

f € L>*(CyQ). Then we have a cube Q' with side-length CR contained in C*Q satisfying

[ fllzazr@) < (L + COl fllLarrreco@ry)-

Proof. We will prove this for the L' norm and then extend it to our case via duality

arguments. We let Q(¢, R) denote a cube centered at ¢ with side-length R. If for an
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integrable function g we can prove the following

9l <

1
=104 Jo (L + Colgll L2 (oo e.cry ) @65 (2.29)
R

there has to be a cube satisfying the desired property for L! norm. By Fubini’s theorem we

have

/ ||9HL1(IcCo Q(¢,CR) mQR)df / /Q |X.rcCo (Q(¢,CR)) OQR(C)dgdC
:/ ’9(()’(/ X1¢:C0(Q(¢,CR) )OQR(<>d£) d¢
R QRr
= [ 1ol @i o) nQnde.

We also have the measure estimate

Q(C,CR)\ I“*(Q(¢, CR))| < c|Q(¢, CR)|

which leads to

|Qr| < (14 Cc)[I5“°(Q(¢,CR)) N Qg

for any ¢ € Qg. This combined with what we obtained from Fubini’s theorem gives (2.29).
So we have the L' case. To go to our case, first observe that it is enough to prove it for

1 fllzaz(q) = 1. By duality there exists a function h with properties ||A[| ) = 1, and

/ F()Ih(E)de = 1.
Q
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But from our result for L! functions we have

- | /Q FOINEE] < 1)

S (1 + CC)HthLl(IC’CO(Q’))'

Applying the Hélder’s inequality to the last term gives our lemma.

2.3 Main Proposition

This section will provide the main proposition that we will use to conclude the proof. How-
ever proving this main propostion is rather long and will be divided into three steps. The
first is the wave packet decomposition, which will show that it is possible to partition the
function f; into pieces supported on thin strips such that, not only both pieces themselves
but also their images under T; are well localized. After this the second part will introduce
a partitioning of f; into pieces whose images under 7T; localize on sub-cubes. This is the
partitioning that we mentioned in the summary of the proof, and this will be achieved using
the wave packet decomposition. The third part will give some further information about
the decomposition to sub-cubes, and turn the information coming from the first two parts
into the exact form that will be applied in the last section. Apart from these we will give
an application of the wave packet decomposition that will be of use later. To do all these
we will need some new notation that will be introduced along the way.

We start this section with the definition that will make precise the notion of concentration.

Definition 2 Let r > 0, and let ) C R™ be a cube of side-length R centered at a point &q.

Let f1, € L*(U1), o € A and fo3 € L*(Us), B € B with A, B finite index sets. Then the
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concentration E,. o(f1,a, € A; fap, B € B) is defined as

1 1 .
max {5 (Do 1al- D0 1sl) . sup (D2 UL allteemy - Yo 1T oslam) }

acA BEB acA peB

where D = D(&p,r) are disks with |£p,, — &q,,| < R/2.

We now prepare for the wave packet decomposition with some definitions. We let )} be a
maximal 1/r separated subset of unit length vectors lying in U/, and L the lattice ¢c—2rZ"~!.

We will denote by T; collections of tubes where a tube is defined as

T={¢ €R" |6 — (g + &awr)| <7}

with ETZ, € L,wr, € ); denoting the unique point of the lattice L lying inside the tube and
the direction of the tube. Apart from the characteristic function of such a tube we will need

the following smooth cutoff

X7,(8) = Xp(ey, nusr, ) (&):

namely at every &,, we are taking the previously defined smooth cutoff of the disk given by
R™ x {&,} N'T;. With these definitions at hand we state our wave packet decomposition
lemma, in which we will describe the process of decomposition, and prove certain properties
that the wave packets emerging satisfy. The way we decompose f; will make clear the margin
and angular dispersion properties, and property (2.30) clear. The two others following these
will follow from well localization under T;, while the last two will exploit not only this

localization but also localization of pieces themselves.

Lemma 8 Let f; € L*(U;). We can find a decomposition of f; into wave packets ¢, with

following properties.
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e The sum of wave packets give the function itself
fi=) o (2:30)
T;

e Angular dispersion for any ¢r, is at most CR™Y2 and margin is at least margin(f;) —
CR™Y2.

o The wave packet T;¢r, is well concentrated on the tube T;

H¢Tz

2 S IXn (5 )T i En) l2mn-1 gy (2.31)

if &l < R

e Due to well concentration on tube T; the function T;¢r, is very small on domains distant
from the tube: let QQ be a cube centered at &g with radius rg S R. If €, < R and
dist(T;, Q) > CoR then

|1 Tidr =) S dist(T, Q)| il (2.32)

e The strong localization of T;¢r, to T; and the conservation of mass property allows one to

obtain

sup X7, (€l Tz llracq S ¢TI fill3 (2.33)

T; qeK ;(Q)

where &, stands for the center of q.

o Let, for each T;, my, 1, be constants with qo running through a finite index, and with

§ :mQOvTi =1L
q0

we have

O <1+ Colfils (2.34)

(Z H Z QOTingi

qo0 T;eT;
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Proof. We partition the set U] using );

ZZUm

weY;

with Y,, denoting those points with direction closer to w € ); than to the other elements of

Y. Let G be the set »~'Z. Using this set we further partition each Y, as

Y, =J Yo

vEG
where Y,, , being those points closer to v than any other point of G. We take H to be set of
translations given by elements of a disk centered at the origin with radius C'/r, and dQ2 to
be a smooth compactly supported probability measure in the interior of this disk. Then we

define, for Q € H, w € Y, v € G and f € L*(U;), the operators

T

)f ().

PQ,UJ,'Yf(x) = XQ(Yw,'y)(m

Then of course for any 2 € H

file) = Y Pownfi(@). (2.35)

weYi,v€G

This decomposition of f; uses sharp cutoffs, which cannnot guarantee good localization of
images under the Fourier transform, thus we will average using the measure d€2. Then we
will sum over these averages to obtain smooth cutoffs for strips, and finally apply smooth
cutoffs to the images under the Fourier transform. To this end recall the function n defined

in section 2.3. We define the smooth cutoffs 77E by

~ c? _ _

Q) =5 - 8).
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Then from the Poisson summation formula we have
d =1 (2.36)
We define the averaging operator
Ay filx) = /Pgwﬁfi(x)dﬁ

and sum of averages over strips

Aufilx jZ&m
Using these sums and the smooth cutoffs introduced above we define

or, =0T % Ay, fi.

We first verify that from the sum of these ¢, we recover f;.

wr, Y€9

Son = ST di= e (D3 o)
T; ETi wr;
The inner integral gives from (2.35)

= 3 [ Poun )0 = filz).

Wy Y

Turning back we have

= ZUETZ' * fi = fi* (ZWET’)-
Er, r,

At this point considering (2.36) we see that the Fourier transform of the last expression is

41



equal to ﬁ Thus we obtain what we desired:

T;

We now turn to the angular dispersion and margin properties of ¢r.. The angular disper-
sion of Po ~f is, of course, at most C'/R. Averaging over 2 € G can increase the support
at most by another C'/R. Since we are summing over a single w to obtain A, the dispersion
remains bounded by C/R. From its definition the support of nzTi is contained in a disk cen-
tered at the origin with radius < ¢?/R, so convolving with this can only lead to an increase
C'/R in the angular dispersion. Thus the angular dispersion of ¢r is at most C'/R. As we
see the increase over support of f; can be at most C'//R, hence we also have our margin
requirement.

For the well concentration property (2.31), we remark that obtaining this requires some

technical work. We first note that

—
= —

Tipr,(€,0) = 6r,(€,0) = °7:(€) - Aoy, Ji(E)

and since,

/.\

Aor fi / Z/PﬂwT ~fi(x)dQ)e ZmédiU_Z/ / Qr, o Ji(T)e 72m'gdi€)d9
= Z/in fi(®)

using the fact that n is a Schwarz function, and the scaling we used to obtain 77 Ti we may
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write

Tion,E,0)] < 7 )| D [ Focrr@an

R ( (€,0) |z:/PQwaZ )dQ|.

Hence

7. ll2 = 1Tipr, (- O)l2 S X, Z/Paw Ji(-)d€2]2.

On the right hand side we wish to move along the tube and replace 0 with some appropriate
&, To this end we will prove a statement that will also be of use in proving (2.33). If
fi € L*(U}) is a function of angular dispersion at most C'/r centered around vector w, we

have

||TfZ||L2 D(ép,)) <CCHXD§rTfl”L2 D(¢,r)) (2.37)

for ¢ with € = &), — (&, — €p, )w, and |&, — &ép, | < R. We can write, as discussed before

Tfl(E? fn) = Tfl(’éDn) * KgﬁgDn<')(E),

with

K}\wn (X) _ _/aw($)e—27ri(x~>\+|x|)\n)dx

where a,, is a bump function adapted to the support of f;. We have the strong decay estimate
KE, 0 S CEr* (14 [N = Aol /)™M (14 |3 = Aw) - w]) ™Y

which follows from (2.21), and the nature of the Lorentz scaling that takes a thin strip on
the light cone to a wider one. Then an appropriate decomposition around the disk D(§,r)

gives the desired estimate; see [28], (103). With (2.37) at hand we proceed. We consider the
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lattice rZ™~ !, and a natural partition of R?~! into disks of radius 2nr that one obtains from

this lattice. We let D denote these disks and Dy (&,0,2nr) € D its elements. Denoting

=> / Pa gor, fi(2)dQ2

we have,

7, .00 Tgi (- 013 < D I Tigi(-, 0) 32,

DyeD

- Z Ck;HXD' §D Enwr, En,2n1) ( )ng( gn)”%

DkED

with ¢, constants coming from breaking X7, into disks Dj. Then

S C_CH( Z Cﬁ%%;g(gD—fanl,ﬁn,an)())T'Zgl<7571)”%

DyeD

Observe that

45 ~4 /-
Z CkXD;C(ED*SnWTi,annT)(‘) S XTz(agn)

DyeD

Hence

SR PR AR ] I+

As the next step we wish to replace T;g; with T; f; on the right hand side. To this end observe

that if we let

Sunol) = [ xatr @92

then this S, is a compactly supported, smooth function, and

Aur, f(2) = fi(2) - Y Sur, 1(2) = gi(2)-

Y
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Then

Tigi(€,60) = gilw)e 21160 (€) = —[fi(a)e2mlen « 35 ](€)

= [T &) % Y S (] ©)

—_—
The Fourier transform S, . is, of course, a Schwarz function. We can thus write, using the
7

cutoffs xp introduced before, and from the properties of the support of Swr, s

Sz, ()] S 7*7"Xp(€)-

Then we have

174, €0) - Tigi (- €a)ll2 = I (+€0) S [Sr, (&) * TifiE, €] O)ll2
<N R 60) [Sann (6) * Tfi(E, €] (2
= Y I &) [ Bl ~ OTAE L) I

SR (&) [ T - DITAEEIE I
s ([ RCEN [ RCETHE - DITAE &)1dE) )

1/2

Simply from the definition of functions xr., xp we have
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Thus we have

< / G (C,60)d0) / X3 (€6, T (€, £,)|dE)
< 2o / T (& 6T (E )| dE)

<2 R G &)l IR (&) T i 6) 2

S Xz G &) Tfil 6n) -

Combining all of these together we obtain (2.31).
We now prove (2.32). This is simpler compared to (2.31). Consider the disk D (&g, 0, %R) -

R™! x {0}. We have

Tibn,(E £)] = [T, (-, 0) = K, (V@) = | / Tibr, (N, 0) K, (€ — NN
<| /D Tior, (%, 0) Ke, (€ — NN
1) Ton (0 0)Ke, (€~ )]

=I+1I

We evaluate I:

I < || Tibr, (-, 0)| 2oy | Ke, (€ = )l 220y

Using the trivial estimate || K¢, ||«oc < C and the size of radius of D we have
< B Ti6r, (-, 0) |22 ().

Then from the simple estimates

—

1% 2oy S BTN, | Awr, f

|20y S I fill2
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we obtain an acceptable bound for I. For I we have

IT < || Tidr, (-, 0) || n2(pesry || Ke, (€ = ) || 2(pesr)

Since the distance of € to D is greater than %R, we have
1K, (€ = ) r2(peery S B

The first term clearly satisfies

HT’lngz(a 0)||L2(D‘””t) 5 ”.fZHQ

Thus we obtain (2.32).
To prove (2.33) we utilize (2.37). Fix a cube ¢ centered at &,. We consider D(_,&,, Cr)

with £, — &,,.| < Cr. Then we have

1Tl 2o, e S € IR g Tedn Ol

with E; = Eq — &, wr, since &, changes an amount at most C'r. Thus squaring and integrating

for &, we have

||E¢Tz ('7 §n> H%Q(C’q) 5 C_CTHSCJ%(E;’QCT)ﬂngi('a O) ||§

So the left hand side of (2.33) can be majorized by

cCr Z sup  Xr, (Sq)HXDé 0.0 Tiér, (-, 0)|3.
T,eT; quJ(Q)

which satisfies,

SO S s T g acOTHC0 L | Pocgitiani

T,€T; QGKJ( )
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Observe the simple fact

%D(E;O,Cr) (£)XT (é 0) < X7 (&),

Thus we are left with

< 3 Tn |Z/PMTfZ )0 2.

T;€T;

But this summation satisfies

/T; Xi SOIZ/PQwaZ (€)dQ2dE = /MXT:;T:X&T §0|Z/P9sz (€)dQ2dE
=/Z>z§ 0) Z!Z/PQWJ% ()8
/Z|Z/Pﬂwfz £ dE
SIS [ Aol

SIS [ P10l
wr, Y
From here we use that supports of only a finite number of Pq ;. f; can intersect to obtain
S Il

We finally prove (2.34). We expand the left hand side as

(XS muan = A i) = (S0 [ 325 S my e o hi@a0l)

qo0 T;€T; q0 feL weYi v
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We apply the Minkowski integral inequality to bring the L? norm inside:

1/2

oMY D35 3) S TRy

q0 feL weYi v

We apply once more the Minkowski integral inequality to change the order of summation

with that of integration

- [(ZI1E X S mpef R h@1F)

9  feL w€Vi v

At this stage we define the set W,, for each w € ); as the set of x € Y, with a distance at

least Cc?/r to Y, for w' # w. Let

W= Jw,, we=|Jv.\W.

We define

Pow, fi(x) == xaw.) (@) fi(x), Powfi(x) == xow)(x)fi(z)
(1= Pow)fi(z) = (1 — xaw))(2) fi(z).

Thus we have

Z Z Pouqfi(z) = fi(r) = Pow fi(z) + (1 — Pow) fi(w),

weY; v€G

and from linearity of the Fourier transform

SN P Ji(€) = Pow (&) + (1 = Pow) fi(6).

weY; veg

We use this decomposition, and the triangle inequality, first for the norm inside, and then
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for the outer summation, to obtain

B / <Z I quoywﬂ%fg"lf\fi@”@)%dﬁ + / <Z I quO,w,E%(l _/PQ\W)fZH%)édQ

o EeL q el

For the first term we use the fact that the sets W, are at least C'c?/r separated, so supports

of 77E * Pow, fi are disjoint. Using this and the Plancherel theorem we have

S\
B / <Z Z I ZmQO7W,gn£P9,WWfiH§> dQ).

Q@ w€Yi el

We rearrange this as

- / (> / o FQE Y (X g a0

weY; o el
— [ ([ 1 QP (3 3 ) )
weY; feL 9o

Summing first over go, then over &, and then using disjointness of supports gives

- /(Z/!Pm¢(5)|2dz>5d9 - / ( 3 !\Pn,wwfi\ygfdg I/HPQ,wfiHQdQ

weY; weY;

< [Ifill2-

We now turn the second term. This time supports are not disjoint, but they are al-
most disjoint in the sense that only a constant C' of them can intersect. Thus by grouping

appropriately we obtain

%1 oo 3
< / <Z Z | qumwéng(l - PQ,Ww)fiH%) ds.

g w€Yi ¢eL
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From this point on exactly the same process reduces this to

< / 1L = o) fillad2

Applying the Cauchy-Schwarz inequality gives

< ( / 10— Pow)fi]249) 7 = ( / @) / e (2)]dS2 ).

The inner integral satisfies < ¢2, so we have
< Ol fil2-

We thus obtain (2.34).
|
Thus we complete the first stage in the proof of the main proposition. The following
lemma comprises the second stage. It uses the wave packet decomposition to divide f; into
functions whose images under 7; are well localized to subcubes. The lemma proves three
facts about these functions. The first is about their margins and follows directly from Lemma
8. The second is about total mass of these functions, and again easily follows from Lemma
8. Th final one, the well-approximation property that will be stated below follows as a

consequence of localization, and is the most important part of the lemma.

Lemma 9 Let R > Cy2°", and 0 < ¢ < 27, Let Q C R" be a cube of side-length R centered
at &g. Let fi € L2(Uy) with margin requirement margin(f;) 2 R™Y2, and let fo € L*(Us).
Then for every qy € K¢, (Q) we have a function Fl(qo) depending on f1, f2,qo satisfying the
following conditions:

e The margin requirement

margin(F) > margin(f;) — CR™2.
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e Requirement on the total mass

> IEYE < 1+ ol (2.38)
90€Kc,(Q)
e The function @, defined by
Sri= > A"
qOEKCO(Q)
approximates Ty f1 well
_C p2on
(T fr = @) Tafoll 2 ooy S ¢ R I fillall foll2- (2.39)

Proof. We first note that if ¢ is extremely small, such as 0 < ¢ < R~ we may just set
Fl(qO) = 0 for each ¢y, and obtain all properties trivially. Thus we may assume ¢ > R~ on.

As mentioned we will utilize Lemma 8 greatly. We define F{° by

Fl(qO) = Z M¢T1

m
T1€Ty T

with

Mgy 1y = | TofoXr |72 () + B fall2

and

mr, = Y Mg = |TafoXr 32 + B2 fo -
TheTq

In the definition of mg, r, the second term is so small as to be dealt with as an error term,
and has the function of ensuring that these coefficients are non-zero. As the first term makes
clear if T, fy concentrates on a cube ¢y that lies on T}, we take a larger coefficient for the

part of ¢, given to that cube to ensure that (2.39) holds. With this definition we of course
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have

fl _ Z Fl(qo) )

qOGKCO (Q)
Lemma 8 makes it clear that the margin requirement, and the requirement on the total mass
hold.

Thus it remains to prove (2.39). We have

(Tifr = @0)Tafol = (D Ry — > F{™ ) Tofo]

€Ky (Q) q0€Kc, (Q)

= Y FTf|(1 — xq).

90€Kc,(Q)

(2.40)

thus from our assumption that Riow < ¢ < 2% and the triangle inequality it is sufficient to
show that

_ 2-n
T LT foll 12 gecoionan S € CR T L fllall follo (2.41)

for each gy € K¢, (Q). To prove this we further decompose the cube @ into cubes g € K;(Q),

where J is an integer such that 27 < RY2? < 27%1. Then it suffices to prove that

> 1Ty F* T foll 720y S ORI AlIA 5. (2.42)

q€EK ;(Q):dist(q,q0)2Cy 'cR

Take an indivudual term from this sum, we have from the definition of F l(qo) and the triangle
inequality

m
Ty Ty o 12(q) < Z TZ—OT’TlHT@TszszH(q)- (2.43)
TieTy !

We will first remove from this sum tubes that contribute insignificant amounts: consider

tubes that does not intersect Cy@. By (2.32) for such tubes we have

I Tvé7, Tafol 12y < (|T007: | (| To foll o) S dist(q, T)C V| fullz - /2| fo -
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The extremely fast decay depending on the distance to the cube allows us to bound the total
contribution of these tubes by C RE=V|| f1||2|| f2||2- Thus it remains to estimate the tubes that
do intersect the cube. In this case it is important to remember that there is at most R®

such tubes. The Lemma 5 gives for one such tube

ITidr Tofoll 2y S 772 | T1dr, 02 |2)| T2 fodbl 2

with $g are as described in Lemma 5. Putting together the information we gathered on

individual terms of the (2.42) we have

_n " Mo, T " _
I Ty foll 2 S 78I Tofedllls Y =28 Tihr, 62l + ROV fullall follo (2.44)

T €Ty T

Since there is at most R cubes ¢, we see that proving (2.42) reduces to proving

-~ Mgy T oy 2 _
> ||T2f2¢3||3< > %Hﬂcwzng) S AR (245)
4€K (Q)dist(0,00)2Cy "R fier; N
At this point we have a gain of r~2 arising from narrowness of supports of functions ¢,. The
rest of the proof will use a geometric argument to estimate the sum in paranthesis to preserve
this gain. We will make use of the fact that the expression ||T1¢r ||r2(cq) is extremely small

if the tube T does not intersect C'q. Thus in a sense we can write

Mgy, T “~ Mgy, T i
> %HT@Tﬁ?!h% > %HT@Tﬁ?HzXﬂ(fq)

T €Ty T T1e€Ty 7

where , stands for the center of q. From here using the Cauchy-Schwarz inequality we sum

the terms

Mgy, Ty XTy (5(1)

separately, and these terms are nonzero only for 77 passing through a cube C'q. But such
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tubes form a cone neighborhood, which allows us to use Lemma 4 to obtain a good estimate.

We now make these ideas rigorous. First observe the trivial inequality

1/2
Mgy, Ty mqo 11
— 1/2 °
mm mT{

This together with inserting the smooth cutoff we defined for tubes to the summation gives

1/2

Mgy ~ Mo Ty ~1/2 0 \ ~—1/2 o
D it ITiondtlle < > —BR ) Tn (6 I Taén e

T €T Ty TheTq mTl

We now use the Cauchy-Schwarz inequality to do separation we mentioned:

- Z HTl(bT1¢ H2~_1 gq Z mQO7T1XT1(€Q)

T1€Ty T1€Ty

Observe that

Z mQO7T1XT1 fq Z HTZfQXT1HL2 (q0) XT1 5(1 Z R~ 10an2H2XT1(€Q)

T1€T1 T1€Ty T €Ty

/
< 1Th( Y X)) Twli+ Bl Y W)

T €Ty T1€T
Using very fast decay of xr, and the fact that the number of tubes 77 passing through a
point &, is bounded by C R("=2)/2 we can bound the second sum by R~°"|| f5||o. For the first

sum let

- ( Z %ﬂ(@)ﬁl)l/g%qo‘

TheTy
and observe that this function represents the part of smooth cutoffs of tubes passing through
the point £ lying inside the cube ¢y. But the sum of such smooth cutoffs will be bounded by an
appropriate multiple of a smooth cutoff of a cone neighborhood. Since dist(qo,&,) = Cy'cR,

at most ¢~ of tubes passing through &, can intersect in go. Since smooth cutoffs X7, decay
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very fast the contribution coming from tails can be bounded by another ¢=¢. Thus we have

_C<1 . dist(f,rcl(fq)) )—wn'

X(§) S

We will perform a dyadic decomposition into shells to exploit this decay. Let C}(&,) be the

set of all & with 281 < dist(¢, C1(€,)) < 2" for k a natural number. Then

T2 faxll3 = I Tafax |22 (o e, ) + Z HT2f2X||2Lz(c,g(§q))-
keN

To the first term on the right hand side we apply Lemma 4 to bound it by

S < Orll -

For terms in the summation we will apply the same Lemma as well. We have

1T fox 7o cpien S €2 DIl
< 0‘0210”(’“_1)||T2f2||iz(cl(§q,2kr))

< €O Dgky

So from the exponential decay of the coefficients

1T foxls S € rllfalls + e rl falls Y 270" 028 < e rf| ol 3.
keN

We insert this information back to (2.45) to see that it reduces to proving

-~ Tigr ol _
) ITopdz 3 0l < ooy

1 mry %T1 (Sq) ~
q€K ;(Q):dist(q,q0)2Cq "cR T1€T
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We can easily rearrange the left-hand side as

I 2f2¢ HzXT( 7)
> > Kl (€) [Ty g3 == 220
TheTy qEKJ(Q):dist(q,qo)ZCglcR n
which can be bounded by
T2 20011353, (€ a)
S s (G ITion 313) ) TR (2.46)
TETy o g€ K 1(Q):dist(q,q0)2Cy 'cR n
ist(q,q0)2Cy cR ~%o
Observe that
> T 2001355 (&) < | T2 fs > Oixr (€720
q€EK 5 (Q):dist(q,q0)2Cy 'cR q€K 7(Q):dist(q,q0)>Cq 'cR
+ T2/ > Oixr (€ T2@m\q)-

q€EK ;(Q):dist(q,q0)2Cy 'cR

We treat these two terms differently. For the first one note that

’ng( )|1/2XT1(fq) XTl(f)

and

> 6812 <1

q€EK 5 (Q):dist(q,q0)2Cy 'R

from the Schwarz decay of éﬁ\? So the first term satisfies

T2/ > X1y ) I720) S 1TefoXn 720

G€EK ;(Q)dist(q,q0)2Cy 'cR

As for the second term from the very fast decay of ;52, and the distance of small cubes ¢ to
R™\ @ we have
S BV ol
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Hence the inner sum is always bounded by some constant C, and thus (2.46) satisfies

S aw )T,
4EK 7 (Q)

TeT
1= dist(q,qo)zcglcR

To this last term we can apply (2.33). We recall that our 7; intersects Co@, thus the number
of such 7; is bounded by R®, and Y, (§,) cannot be very small. This way we majorize this

term by

<SS s GRENTondEa) + BNl
TeT: qEK ;1 (Q)

The summation here in turn satisfies

sup (Y (€)ITaor I 22qq))-

TheT QEKJ(Q)

So from (2.33) we are done.
|
Finally we arrived at the third part, in which we state and prove our main proposition.
The proposition obtains functions localized to subcubes from fi, f>, and then goes on to prove
a margin requirement, a total mass requirement, a persistence of concentration property and
two different well approximation properties for them. All of these, with the exception of
persistence of concentration property which we start from scratch, follows from the previous

lemma and some additional arguments.

Proposition 1 Let R > Cy2°", and 0 < ¢ < 27, Let Q C R™ be a cube of side-length CR
centered at &g. Let f; € L*(U;), © = 1,2 be functions with the normalization || fi]|a = || fall2 =
1, and the margin requirement margin(f;) 2 1/Co—2R™YN. Then for every qy € K¢, (Q) we

have functions Fl(qO), Fl(q‘)) both depending on fi, fa, qo, Q satisfying the following conditions:
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e The margin requirement
margin(F™), margin(F{*) > 1/Cy — 3RV, (2.47)
e Requirement on the total mass

S IEYE <1+ Co), i=1,2 (2.48)

qOEKCO (Q)

o [f the pair f1, fa enjoys good concentration properties, these persist for Fl(qo), F2(q°),

Eyi—cop-1my.c00(FL 0 € Koy (Q): Fs™, g0 € Ky (Q)) < Epcoa(fi f2) + Ce (2.49)

fO’I" R1/2+3/N 5 p S RZ‘

e The product of functions ®1, Py defined by

qOGKC’O(Q)
approximates Ty f1Ts fo well
HT1f1T2f2HL‘ILT(IC*CO(Q)) S Hq)lq)QHLqu(]c,CO(Q)) + Cic. (250)

e For appropriate cone neighborhoods the following improved version holds

HT1f1T2f2HLQLT(IC»CO(Q))QC3(§C,T)) < ‘|®1(I)2HLqLT(IC’CO(Q))ﬂcg(gc’,’r‘) (2 51)

+c 91+ R/r)~/",

Proof. We define the functions Fl(qO) just as in Lemma 9. The requirement on the total mass,

then, follows from the definition. We have the desired margin estimates on these from the
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following computation that makes use of margin properties shown in Lemma 9

margin(Fl(%)) > margin(f,) — CR™Y*>1/Cy —2R™YN — CR™/?

>1/Cy — 3(1/R)'/™N,

Now we define F2(q°), and this involves a twist. Let ¢p,, T € Ty denote wave packets

coming from decomposition of f; according to Lemma 8. Then

F2(qo) = Z mQO,TQ ¢T2

To€eTo mT2
with
mez, = . ITE™ Xl + B > RF™|3
€K (Q) 71€Kc,(Q)
and
mr = Z Mgy, 1 = Z ||T1F1(Q1)5(/T1||%2(Q)+R_10n2nco Z ||F1(ql)||§'
QOEKCO(Q) qleKCO(Q) QOEKCO(Q)

Note that main diffence in the definition of F3° is in coefficients and not wave packets used,
thus margin and total mass estimates will follow similarly. From Lemma 8 the tubes ¢p,

satisfy the margin requirement

margin(ér,) > margin(fy) — CR™Y2,

thus F3° satisfy the margin requirement by the same calculation above. Total mass require-
ment directly follows from (2.34).

So we proceed to prove (2.49). We fix p > RY2T3/N " and pick v with y(1 — Coy™V/2V) =
p(1 — Cop™'/3N). Tt is clear that such a + exists: we may think of the left-hand side as
a function, and apply the intermediate value theorem. This v also satisfies v > RY/2+1/N

and v < p(1 — Cop~'/2N). The first of these can easily be shown: v > p(1 — Cop~/3V) >
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p/2 = RY?*1/N_For the second, we need to observe that p > 7, for p < v would mean
V2N < p 12N < 5=1/3N  This would clearly contradict with the equality we used to define

v. Since p,y are extremely large numbers, we have

1-1/2N 71—1/2N 1-1/2N 1-1/3N

p <2p <p

We already have from the equality defining ~
= p— Cop' V3N 4 Gy t12N.

Combining these two gives the desired result. This new quantity v and its properties will

be used below to divide the proof of (2.49) into two similar stages. We first will prove
Ep(l—Cop*1/3N),COQ(Fl(%)) qo € KC'() (Q)’ F2(q0)a qo € KC'() (Q))

= E.(1_cpr1vomy.co0 (P 60 € Koo (Q): Fs™ g0 € Koy (Q))
< E, ool fi; Fg(qO),QO € K¢, (Q)) + Co,

and in the second stage

E, coq(fi; FQ(QO), Q0 € Ky (Q)) < Eyi1—cop-r28), 000 (f1 FQ(QO), 9 € K¢y (Q))

< E,c0(f1; f2) + Ce.

We start the first part. Let D = D(&,v(1 — Coy™'/?V)) be a disk with |€,| < CoR/2. If

we have

Ey(kcm—l/?N),coQ(Fl(qo)7 d0 € Key(Q); Fs™, g0 € K (Q))
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1 1/2 1/2
=5 > EmE) (Y nEmE)

90E€Kc,(Q) 90E€Kc,(Q)

then by (2.48)

1 1/2
<@+coslhl( Y IF™IE) " < Buaelfi ™ a0 € Ko (Q) + Ce.

90€Kc,(Q)

Thus it suffices to prove that

1/2 1/2
(X ImFA) (> IRE )

€Ky (Q) q0€Kc,y(Q)

S E’y,CoQ(fl; F2(q0)7 qo c KCO(Q)) + Ce.

We consider two more disks D' := D(&, v(1—S2y~/2V)) and D" := D(¢,~) that are slightly

larger. We then partition f; into a part localized on D’ and a part localized outside:

fi=Pofi+(1—-Po)fi.

We will denote Pp f1 by f1, and (1—Pp/) f1 by fi'. By the linearity of decomposition into wave
packets we can find for each ¢y € K¢, (Q) functions FI'), /") satisfying F|® + F®) =

F%) We have

1/2 1/2
(X ImEIp) < (> IF"B) T < a+colfill

Q€K (Q) 90€Kcy(Q)

From Lemma 2 this last term satisfies

< (14 COTifill 2oy + p° V|| fullo-
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Now if we can prove that

1/2 B
(X InE ) " S e N (2.52)

QOEKCQ (Q)

then from Holder’s inequality and convexity we will have

1/2 9\ 1/2
(X mAw) "< (X (IBE lww + IBE " ew)’)
90€Kcy(Q) 90€Kc,(Q)
1/2 1/2
<X IMEYB) (X A
90€Kc,(Q) €K, (Q)

< (1+ CONT fill ooy + 0 Nl fill < ITufrll 2oy + Ce.

Multiplying everything by

1/2
(Y ImA )

90€Kc,(Q)
and recalling Definition 2 we obtain what we desired. So it remains to prove (2.52). Since

number of cubes in K¢, (Q) is much smaller than p© it is enough to show
17y S 07N fill

We should have

o) _ Mao, Ty g
1 - ¢T1 Y
mm

TheTy
So we can use the Holder inequality to consider tubes in separate groups. First consider
tubes T; with dist(7;, D) > p*. From the fast decay property (2.32) contribution of these
tubes is acceptable. The number tubes with dist(T;, D) < p? is less than p©, so it is enough

to prove

17165, 20y <2< M full2

63



individually for each tube. We further divide these tubes into two groups. Assume we have

dist(T;, D) < RY?+1/100N We have from (2.31)

| Tvo7, 2 SN (L DT (&) | 2en-1xeny)

2o < o,

SJ Cic?ﬂH%Tl('vgn)Tl {/('7€n>”L2(Dl_) + CiCrH%ﬂ(Vé&n)Tl f(’?gn)“LQ(D,fzt)

Our condition ensures that dist(TyNR™ ' x{&,}, D'***) > €2 p!=1/N and we have p'~'/N /RY/? >

p'/?N. Thus using (2.17), and the decay of the smooth cutoff we have
SN Gl ) + ¢ CrlIXm )l ety | T (- &) L2 ey

< ol

Now consider the case dist(7}, D) > RY2T1/100N If Q1 is a cube centered at ¢ with sidelength

CR then dist(Qp,T) > RY/**1/10N Thus from Lemma 8, (2.32) we have

1T |22y S dist(T, Qp) N fillz S v N fill2-

This completes the first stage of the proof.
We now turn to the second stage, which will proceed in a very similar way. We have,

from monotonicity of the definition of concentration

Eycna(fis B g0 € Koy(Q)) < Eyycopromy.co0(1i Fs™ a0 € Koy (Q)).

Now if we have

1 1/2
Ey—coriom cngfis S 0 € Ky (@) = 51l (30 IF™I3) ",

qOEKCO (Q)
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then by (2.48)

1
< A+ o5l Al fellz < Epcnq(fis f2) + Ce.

This time let D := D(&, p — Cy - p~Y/2V) with |&,| < CoR/2. Thus it suffices to prove that

1/2
Il (Y IBF® ) < Bl f2) +Ce

90€Kc,(Q)

We again consider two more disks D' := D(£,p(1 — L - p='/2V)), and D" := D(&, p) that

are slightly larger. We this time partition fs into a part localized on D" and a part localized

outside:

fo=Ppfo+ (1= Pp)fo.

We will denote Pp fa by f5, and (1—Ppr) fo by f. By the linearity of decomposition into wave
packets we can find for each ¢y € K¢, (Q) functions FQ/(QO), FQH(QO) satisfying FQ(QO) + F{'(QO) =

F{%) We have

1/2 1/2
(X ImEYEw) < (X IEYE) <0+ ol Sl

P0E€KCc,(Q) W€K, (Q)

From Lemma 2 this last term satisfies
< (1+Co)||T: C=N
< (14 Co|Tafall2omy + o~ I f2ll2-

This time if we can prove that

1/2 a
(X IBEBw) " S NIl

qOEKC'() (Q)

from the Holder inequality and convexity we will have

< Tz fallz2(pmy + Ce.
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Then multiplying everything by

1T fillZ2 )

and recalling Definition 2 we can conclude the seceond stage. So it remains to prove (2.3).
But this follows from exactly the same arguments as before: we first observe that it is
sufficient to prove this on individual cubes ¢y, and then by the Holder inequality consider
the tubes in three separate groups, each of which follow from arguments already described.
Thus we are done.

We turn to well approximation properties. First we prove (2.50). From (2.39) we have
[(Tyfr — ¢1)T2f2||L2(Ic,cO(Q)) < cCRET/A (2.53)

We have from (2.29) the estimate

”TlflTQfQHLl(ICvCO(Q)) S R,

and from the definition of ®; and the Cauchy-Schwarz inequality

1@ o oll precoiay = I D ITE™ [Xa Do ol ooy
qOEKCO(Q)
< Y ITFETofollii
qOGKCo(Q) (2 54)
< Y AT | Tofoll 2
qOGKC()(Q)
1/2 1/2
S( Z HT1F1(qO)H%2(qO)> < Z “T2f2H%2(qo))
90€Kc,(Q) q€Kc,(Q)

Now applying (2.13) and (2.48),
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1/2 1/2
<( X IBEVg) IBhlee s B2(CY IEVE)T R,

90€Kc,(Q) 90€Kc,(Q)
< R.
(2.55)
From these two L! estimates with triangle inequality we obtain
(T fy = @) Tofoll 11 gecoq) S B- (2.56)
Using the Hélder inequality one obtains from (2.53)
2-n 4 2-g
H(Tlfl - Ql)T2f2HLqL2(IC’CO(Q)) S CiCR 4 + 2qq, (257)

We wish to obtain a LYL! inequality to interpolate with this last one. To this end observe

that by the Cauchy-Schwarz inequality

[(T1fy = @) Tafoll oo prreco @) < NI T1f1r = Pall oo r2reco (@ 12 f2ll oo L2100 ()
From the triangle inequality
5 (HTl}tIHLOOL?(IC*CO(Q)) + H(I)1HL°°L2(IC*CO(Q)))HT2f2HL°°L2(ICaCO(Q))
Now with the conservation of mass we clearly have

HTlf1“L°°L2(ICvCO(Q))a HT2f2HL°°L2(ICvCO(Q)) 5 L.
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The same is true for the remaining term:

||‘1>1||L00L2(10,00(Q))SSUPH Z |T1F1(q0)|quHLZ(R”*x{sn})
" QOGKCO(Q)

1/2
= S?p ( Z ||T1F1(qO)qu||%2(R”—1><{£n})>

QOEKCQ(Q)
1/2
s> 1EE)
QOEKCO(Q)
<1

So we have

Ty f1 — q)1>T2f2||L°°L1(IC’CO(Q)) Sl

Interpolating this with (2.56) we obtain

[(Tyfr — @) Tofoll Lapi(reco(@)) S RYA. (2.58)

Interpolating this with (2.59) we obtain
2—n 2—q

||(T1f1 — ®1)T2f2||Lqu(IC’CO(Q)) 5 C_CRTTquE%, (259)

We now run a similar process to estimate

||(I)1(T2f2 - c1)2)||Lqu(chco(Q)) .

We wish to prove that

”(D1<T2f2 — (I)Q)HLQ(IC’CO(Q)) 5 CicR(2in)/4. (260)
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We have

1®1(T2fo — @)l 2recoi@y = 10 Y T F™ [ xg0) (Tafo — ®a)l| 2 (100 ()

qOGKCO (Q)

1/2
=( X Ih - o) BE g

(IOEKC'O (Q)

Since there are only C§ cubes in Ko (Q) it suffices to prove (2.60) for an individual sum-

mand.

H<T2f2 q)2)T1 HL2 15C0(Q)) ~ <c CR(Qin)/ZL.

Just as in (2.40) we can write

|(Tafs = @)™ | 2geco@n < | Y- IR Tf™ (1= Xl p2ecoa))

71€K0,(Q)

< Y ATFOT A 2 geco@pan-

71€Kc,(Q)

Again since the number of cubes is small it suffices to prove

||T1F1(qo)T2f2(q1) [ —C R—n)/4

\q1) ~>

(2.61)

(2.62)

We are now in a position very similar to (2.41). From here exactly the same arguments bring

us to the analogue of (2.45):

~ Mgy, T ~ 2 _
> IBE®GB( Y TR Thondil) S e

T
4€K 5 (Q):dist(q.q1)2Cy 'eR T2€T :

Using the Cauchy-Schwarz inequality exactly in the same way as before

(3 "ot ge,d.) < Y M~ ) S ma ()

TreTo T T>€To To€To
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Observe that

S meninE) =Y > ITFP X5 V(&)

To€Ts T2€T2 g2€Kc, (Q)
> IR Y RN )
QZGKCO(Q) T26T2

Defining this time
- 5 /2
= (> &))" T

TeT2

and changing order of summation we have

< D ITAP N+ X IBPIE R Y Xn()
qQEKCO(Q) QQEKC‘Q(Q) ToeTs
The second term, from tube counting and (2.48), is bounded by R™5". Each term in the
first sum , from the same arguments as before, satisfy < ¢ Cr||F\%||2. Summing and using
(2.48) allows one to bound the first sum by < ¢~ “r. Inserting this information back to (2.63)

to see that it reduces to proving

Z 1Ty F(qo (quz Z ||T2¢Tz¢ ||2 <ec

q€K ;(Q) T €T M, X1 <§q)

This can be bounded by

R T QO) q
ap (e Tonayy) Y DA E) (2.64)

m
ToeT, 1€K7(Q 4€K Q) T2

The inner sum, from the same arguments as in the proof of (2.39), satisfies

S T E G e T () S 1

= qeK ;(Q)
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Hence (2.64) satisfies

sup (Va2 (€| Todr, 8112).

ToeTo 9€Ky (Q)

which, in turn, by (2.33) satisfies

Thus we finally have

_Cpxn
|®1(Tofo — ®a)llp2gecoiqy S ¢ R

From this one gets with the Holder inequality

2-n 2
1@1(Tafo — Pl parzgrecogy S ¢ “RT T W

(2.65)

(2.66)

For the L' estimates on ®;®y and ®,7f, the process described in (2.54) suffices. Then

by triangle inequality we can obtain the appropriate L' estimate on ®(Thfs — @5). An

appropriate L>°L! estimate on ®(T5f, — ®,) can easily be deduced from repeating the same

arguments as above. Interpolation then gives

1
[P1(Tof2 — P2) || Lapt (zeco(q)) S Re-

Interpolating this with (2.66) gives

||(1)1(T2f2 - ®2)||L‘1LT(IC’CO(Q)) 5 C_CR 4 2q ET

Finally, this inequality together with (2.59) and the triagnle inequality gives

2-p

—n 2—q 1
+q P,

2-n
||T1f1T2f2 - ®1¢2)||LQLT(IC’CO(Q)) 5 C_CR 4 2
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Notice that for our fixed pair of exponents (g, ) we have

2-n2— 12—
n2-q 12-p_,
4 2q q p

so from triangle inequality we obtain (2.50).
Finally we prove (2.51). Arguments very similar to those used above will suffice to prove

this. First let
Q:=I1°(Q)) NC3 (&, 1))

and observe that if » > R the desired result follows from (2.50). So we will assume r < R.
Main difference of what follows from what is above will be in L' based estimates. Indeed we

have from what we proved above
2—n | 2—

‘|T1f1T2f2 - (I)l(I)QHLQLQ(Q) S HTlflTZfQ - (I)ch)QHL‘ILZ(IC’CO(Q)) 5 CicRT—Fqu. (267)

In the L' case however we use Lemma 4 to obtain

HT1f1T2f2HL1(Q) S r'/2RY? = (r/R)l/QR
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and

121 ®ol ey =1 Y ITLF™ g, - > T F™ gl @)

€K, (Q) €K (Q)

= Y AR el

90€Kc,(Q)

_ Z ||T1F1(QO)T2F2((IO)||L1(Q)

QOEKCO (Q)

S(/RYPR YT F® ||| FE

q0€Kc,(Q)

so/ryer(c Y 1EWE) (X 1)

€Ky (Q) Q1€K ) (Q)

< (r/R)'?R.

Then triangle inequality yields
T i Tofo — 1®al 1) S (r/R)?R. (2.68)
For the L>*L! estimate, however, we do not need any major changes:
[T fiTofo — 1P| Lo ri@) < | T1fiTofe — Pi®Pa|| o 1 (reco )y S 1-
Interpolating this with the L' estimate gives
Ty f1Tafo — @1®a parr(e) S (r/R)V*IRYA.
Finally interpolating this with (2.67) gives

2—p 2—n2—q 12-p
qa p R 4 2q +q P,

l\)‘,_‘

|1 fiTs fo — @1Po| Larr() S CiC(T/R)
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Our particular choice of the exponents allow us to write
1Ty fiTofo — ®1®s || parn(oy S ¢ C(r/R)?,

and thus from the triangle inequality we obtain the desired result.
|
The following is an application of the wave packet decomposition that will be useful in
the next section. It actually is a simpler version of the well-approximation property (2.51),
that removes part of a function lying on a certain domain directly, rather than subtracting

a sophisticated well-approximating function. As such its proof is easier.

Lemma 10 Let R > 2NC1 2NC1/2 < p < RY2H/IN gnd et D = D(Ep, Cy/?r). Let f; €

LA(U;), i = 1,2 with margin(f;) > 1/3Cqy for both functions. Then we have
I(Pof) T2 follLor@en 2mnaenmy S BN fillall f2ll2.

|71 f1(Pp fo)llLarr @eep2rnoienmy < BN fill2ll falla-

Proof. As both of these estimates are proven similarly, we will only prove the first one. We
may assume ||fi]la = ||f2||]2 = 1 by simply normalizing. Also we may set {p = 0. Thus the

statement we will prove is

1(Po )T foll Loz o 2rne0.m) S B7VE,

We will obtain this, using the Holder inequality and interpolation, from the L! estimate

1(Pp f1)Tafoll 1 @o2rn00.R)) S REN R (2.69)
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and the L? estimate

2—n

1(Pp f1)Tofoll 12(@o2m000.8) S RY/NR T (2.70)

We first handle (2.69). This is relatively easy. We have

1(PpfO)T2follr@u2rneo.r) < I(Ppfi)T2falliiqo2rnct0.m1/2+¢my)

+ ” (PDfl)TQfZ ||L1(CI(O7RI/2+C/N))

The first term’s contribution satisfies < R~V by Lemma 3 and the Holder inequality. The
contribution of the second term, by Lemma 4, and conservation of mass property satisfies
< R¥4+C/N Thus we have (2.69).

For (2.70) we decompose Pp f; using our wave packet decomposition lemma, choosing
c=2"%_ We have

Ppfi= > Tién

T1€Ty

from Lemma 8. We use the Holder inequality to obtain

I(Pof1)Tafollr2oemneory < Y ITi6n Tafollz2@o2m)\00.R)-

TheTq

For tubes with dist(7,0) 2 CoR we write

Ty o To fall2@o2r0Q0.8) < | T107 || @o2m) || T2f2 |l L2(Q(0.2R))

For the first factor on the right hand side we utilize (2.32), and for the second conservation
of mass to obtain

< Rdist(T,0)~".

75



Thus total contribution of such tubes satisfies
< RC_N.
We turn to tubes with RY/2+V/N < dist(T,0) < CyR. We have, from (2.31), for such tubes
oz ll2 S ¢ “RVZ[X, (-, 0) Po fu(-, 0) |2 S RO

Since number of such tubes is at most R®, their total contribution is acceptable as well. We
finally deal with tubes satisfying dist(T,0) < RY?*Y/N_ Let T’ denote these tubes. Clearly,

cardinality of T} satisfies < RY. We want to estimate

| Z Ty o1, T f2| L2(Q(0,2R)\Q(0, R)) -

Tl ETll

1/2

Let RN ™*T; denote the tube with same central line but with radius multiplied by RV ",

We have, from (2.32)

_n1/2
17167, (1 = X 172l £ (@e0.2m) S RSN

Thus

1Y Tion Tofo(l = X pu-rr2g,) 220 2m000,8)

T1 ETII

< ITen Tafo(l = Xpu-12p) 12028

T €T’1

This, then, satisfies

_nrl/2
S Y ITon (1= X w12 | @o2ry | To foll 2@o2my S RO
TleTﬁ
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Thus it remains to estimate

1Y Tion Tofox pu-vvog, l2(@02m000.5)-

T ET’I

We observe the geometric fact that at most RE/N of tubes T} € T, can intersect inside

Q(0,2R) \ Q(0, R). Thus using almost orthogonality it is enough to show that

) 1/2 2-n
(> ImonBplE) " S R

T GT/1

For an individual term we have from Lemma 6

2-n 2-n
[Tior, Tafolla S B77 [|én 2l folla S B77 ([ [|o-

Thus

(Y imennnld)” s 85 (Y lonlt)

TiET) T, €T

From (2.34), and (2.20) we have

/
(3 IonlB) " £+ CaIPoAll < (1+COfille S 1

Ty ET/l

Thus we are done.

2.4 Conclusion of the Proof

In this section we conclude the proof of Theorem 1. The following is the first step in this

direction. It only partially uses the power of the machinery we developed, and will be used
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to bound A(R) for relatively small R. But we will use again some of the same ideas in its

proof.

Proposition 2 Let R > 202" and 0 < ¢ < 2%, Let f; € L*(U;), i = 1,2 be functions
satisfying the normalization || fi|lo = 1, i = 1,2 and the relaxed margin requirement (2.12).

Then we have for any cube Qr with side-length R the inequality

1T AT follporr gy < (1+ COAR/2)l| fillall follz + ¢ (2.71)

Proof. From Lemma 7 it is possible to find a cube @ of sidelength C'R inside C%2R with

1T AT foll oo < (1 + CO TLAT2foll Lapreco ) -

From the well approximation property (2.50) in Proposition 1 we can find ®;, ¢ = 1,2 with

||T1f1T2f2HL‘ILT'(ICaCO(Q)) < (1 + CC) H(I)l(ID2HLQLT‘(IC*CO(Q)) +c € (2-72>

From the definitions of ®; and the triangle inequality we must have

P2 Bo | o recoiay < D ITIF ToFY™ || Larr(qy)-
q0€K e, (Q)

Then from definition of the best constants A(-), and from (2.47) of Proposition 1 we have

@1 ®o | arreco(yy < ARTOCR) D" [ F® | FS.

QOGKC’O (Q)

Applying the Cauchy-Schwarz inequality on the right-hand side yields

1/2 1/2
S OIEPLIEYL< (> IEVB) (Y IETE)

€K, (Q) 90€Kc,(Q) €K, (Q)
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From here the requirement on total mass property (2.48) proven in Proposition 1 together
with the definition of A(-) gives the desired result. [ |

This proposition of course gives
A(R) < (L+ COAR/2)[| fillll foll2 + €

We observe that if R > 4Cy R, since we have A(-) on the right hand side, we can bound

A(R) for all R/2 < R' <R by
(1+ Co)AR/2)| fill2ll f2ll2 4 €

Since all A(R') with R" < R/2 are also bounded by this quantity, we then can conclude
that A(R) is also bounded by it. Thus it is possible to iterate this proposition. So let
200R < R < CoRNt and let ¢ = (1/R)YN. Let J be a natural number with the property
2C R < 277 R < 4CyR®. We iterate the proposition to obtain

J—

AR) < [+ C(@2/R)™M)A(R/2") + 2T RO,

=0

—_

Here of course J <log, R — C < RI/N, SO 2J(R)C/N < RE/N_ As for the first term we first
note a simple inequality that will be utilized to estimate it: In1 4 x < x whenever x > 0.

Now we have

J—1 J—1 J—1
(II1+02U31W> Y 1+ C@ /RN < }%WE:wW
=0 =0

This last sum can be bounded by
2//N —1

2N 1"
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But we have from our inequality In1 +x < x

< 6l/Nlong — 21/N7

1
+Nlog26 -

SO

oY/N _1>1/2N.

Thus the last sum is bounded by 2//V2N < 2'os NN < 2NRYN. So the product itself
should be bounded by 2¢N < RYN. To term A(R/2’) we can apply the trivial inequality
A(R) < CR"'/7+1/4 that was stated before to get A(R/27) < RC“1. Thus we finally get for
R < CoRN

A(R) <2099, (2.73)

The rest of the proof will deal with larger R. To this end we will introduce a variant of A(-)
that is sensitive to concentration and can be related to A(-). This version will allow us to

use the improved estimate for cone neighborhoods (2.51).
Definition 3 Let R > 2V/2 and r,v' > 0. Then we define A(R,r,7") as the best constant

satisying

1A fall s i@uroscecnny < AR ) fillall follo) Y Ercogn (fr f2)/7

for all cubes Qg of side-length R, all o € R", and all functions f; € L*(U;) obeying the the

margin requirement (2.12)

Before proceeding to relating this newly defined quantity to A(-) we introduce a technical
lemma that is of very general nature, and may be helpful whenever one is dealing with mixed

norms. It will be used in several propositions below.

Lemma 11 Let f;;1 < 1@ < k be a finite collection of complex valued functions with f; €
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LIL"(R") for all i. If we have q < r and supports of these functions mutually disjoint, then

k
IS Al < Sy -
=1

j=1*

Proof. We will first exploit the fact that the supports are disjoint:

//|Zfz T, 2,)|"dz)"" dx,, /Z/|f, T, x,)|Pdx) V" dx,,.

Now we exploit concavity

gé/dm@mmww%

and thus we are done.
|
We now exploit non-concentration to bound A(-) by the variant A(-,-,-) with some gain.
It is natural to expect a result such as we state below in the absence of concentration, since
in this case the term E.. will be small, and thus A(-, -, ) large. When there is concentration,
the trick is to reduce the cube size through Lemma 10 to such a scale that the size of disk on
which concentration occurs is no longer much smaller than the cube size. We now execute

this plan.

Proposition 3 Suppose R > 2NC1. Then the following inequality holds

AR) < (1-Cy%)  sup  A(R,7,Co(1+71))+ 209,
ENCISESR
RI/2+4/N<p

Proof. 1t is clear that if we can show

IT AT ol i < (1= Co©) sup AR, 7, Gyl + 1)) + 207
ENcl SESR
R1/2+4/N§7‘
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for all cubes Qg of side-length R centered at some point {, € R", and for all f; € L*(U;)
satisfying the normalization ||f;||o = 1 and the strict margin requirement (2.10), from the
definition of A(+) our result follows. We can clearly assume that A(R) < 2¢¢1. Furthermore
we can assume that |11 fiT2 ol papr g,y & A(R). We let 0 < < 1/4 be a small number to

be chosen later. We define r to be the supremum of all radii > 2V¢1(1/2+4/N) guch that

Er,CoQR(f17f2) <1-96

or 7 = 2NC1(1/2+4/N) if there is no such radius. Since 4 is small, there is a disk D := D({p, 7)
satisfying

min([| ol 2 py » 191l L2py) = 1 = 26,

and |§D7L - an
1 — 26, conflicting the continuity of T;f;. Also define the disk D' = C’é/ D, and set Q =

< CoR/2. Such a disk must exist, or else we would have E, ¢ 0, (f1, f2) <

Qr N C3(&p, Cyr). We decompose the functions f; into two parts: f; = Pp/f; + (1 — Ppr) f;.
We investigate the problem in two cases: r > RY***/N and r < RY/?**/N_We handle the
first case now. Since D'*** C D we have from (2.19) of Lemma 2, and our choice of D, D’

the inequalities

1L = Por) fulla, 11 = Ppr)fell3 S 6+ Cg €.

Hence we must have

(1= Po) fi(1 = Po) follozrm) S (6 + C39)A(R). (2.74)

On the other hand from (2.24) in Lemma 3 we have

| Pp [1Ts foll zazr@mays (1 = Por) f1Por foll Larr@mey S Co ©
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Thus from the triangle inequality and our assumption [|73 fiT5 fol| popr (g, & A(R) we have

1Ty i follorr@me) S 0+ Cy)A(R) S (6 + CoTy filafoll Larrn)- (2.75)

Now we will apply Lemma 11. This point of the proof does not work for the uppermost

endpoint (n+ 1/n —1,1) for n > 4, and is the reason why we cede it.

1T i To foll g < N T2fol Lo opa) + 1T AT fol T o

< CO+CoNNTAT follfaprm + 1TV AT foll a0

Thus,

Ty fiTofoll papr iy = (1= C6+ Ce DY N fiTofoll parr i -

But we also have from our choice of r
1T AT foll papr iy < AR, Co(1+7))(1 = 6)V7.
Here setting 6 = C5© and showing
(1—069)(1 =691 > (1 -8V (2.76)

will suffice. To see this last inequality remember that we set 1 /q = min(1,%) — € and
1/r:1—%$whereo<e<ﬁ. Sowehave 1/g <1—¢€¢> 1= >1+¢1<q<2
When 0 = 0 both sides of the above inequality are the same, then both decrease for small
positive §. So we shall compare values of derivatives of them for such ¢ to find the one that

decreases faster. On the left the derivative is

S+ D1 — 6 ast > _ogstt > 4
q
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while on the right we have

For our choice of ¢ clearly the former is greater.

We now turn to the case where 7 < RY2+4/N_ We define R := r 777/~ . S0 2¥C1 < R < R
and r > RY2+4/N We will proceed similarly: just as we obtained upper and lower bounds
on |11 fi T fal] 14 (e and compared them, this time we will obtain upper and lower bounds

on |T1fiTs foll arr(o(ep. gy 20 compare them. If we have R > 2N% then
T AT Folin s e oy < ACR . CoL+ )(1 = ).
If on the other hand R = 2V from (2.73) we have

||T1f1T2f2HLqLT(Q(fD,E)ﬂQ) S 2001.

These two constitute our upper bound. For the lower bound observe that from the same

arguments that we used to obtain (2.75) we can obtain

1TV Ao foll parreep ipne) S (0 + Co VAR) S (6 + Co T Tafall Larr@r)-

So if we can show that

1T T2 foll o grvaeen. iy S 0+ Cy )A(R)
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using the same arguments as above will give the upper bound, and then the whole result.

This inequality follows from the estimate (2.74), and

[(Po fO) T2 foll Lo @ \@ieniiy = (6 + Co VA(R),

1= Por f1) Por foll arr imaiensiy S (04 Co ) A(R).

These two estimates can be obtained from Lemma 10 by a dyadic decomposition. We

decompose the domain of integration Qg \ Q({p; R) dyadically into pieces

Q(ép,2R)\ Q(ép, R), Q(£p,4R)\ Q(6p,2R), Q(Ep,8R)\ Q(ép,4R). ..

. We will have coefficients (2"R)—1/C, which means summing over terms 27%/¢ and this

sum clearly converges. Therefore simply summing with the triangle inequality together with
our assumption A(R) > 2°¢1 gives the desired result.

|

Thus we only need to bound the variant A(-,-,-) by A(:) appropriately. This will be

divided into two cases according to absence or presence of concentration. First we suppose

the absence of concentration.

Proposition 4 Let R, 7,7, c be positive quantities satisfying R > 2VN/2 r > CYR, r' > 0,

and 0 < ¢ < 27%_ Then we have the following inequality
A(R,r,7") < (1+ Ce)A(R) + ¢ ©.

Proof. Let f; € L*(U;), i = 1,2 be functions that satisfy the normalization of mass || fi||2 =

| f2ll2 = 1, and the strict margin requirement (2.10). If we can prove that

IT AT foll parr ) < Brcoan(frs f2) /7 (1 + Ce)A(R) + ¢€
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for an arbitrary cube Q)i of side-length R, we will have for arbitrary £ € R”

T Ao foll parr@uneniery < [(1+ CA(R) + ¢ ] Brouan(fis f2)/7 (I fullall foll2) 7,

and thus from the definition of A(R,r,7") we must have the desired inequality. Let D :=
D(&g,7/2) where &g denotes the center of ). We perform a decomposition with respect to
this disk for both functions: T;f; = Ppf; + (1 — Pp) fi;. From the definition of the operator
Pp we have T,g; = Ppf; with g;(z) = _?DZ(—.T,O). These g; obey the relaxed margin

requirement (2.12) and furthermore by (2.18) in Lemma 1

lg1ll2llgellz = |1 Pofilll| Pp follz < Ercoon(fi, fo) + CRETN2.

Thus we can apply Proposition 3 to get

1(Pof0)(Pofo)ll oz n) < (1+ C)(Ercun(@, ) + CRENE)A(R) + ¢ €.

Since we have A(R) < RC, we can absorb the term CRC~N/2A(R) into ¢=¢. Thus we will

be done if we can show

11 = Po)8)éll s iom - | (Po@) (A = Po)ill pugrion < ¢

But these follow from Lemma 3 and its analogue with the roles of fi, fo reversed.
|
Thus remains the concentrated case for which we again utilize the idea of passing to
smaller scales until concentration disappears. Once concentration vanishes one can again
apply the previous propostion. So in effect the following proposition allows us to reduce the

concentrated case to the non-concentrated.

Proposition 5 Let R > Cy2V/2 and let CSR > r > RY**3/N_ Then for any 0 < ¢ <
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2-Co we have

A(Rv T, 7"/) S (1 + CC)A(R/C(),T(:[ — CT_I/?)N)7T/) + C_C(l + E/)—e/él.
T

Proof. As above, from the definition of A(R,r,7’) it suffices to prove that given a cube Qg

of sidelength R, a point {¢ € R, and functions f; € L?(U;) functions obeying the strict

margin requirement (2.10) and the normalization of mass || fi||2 = 1 we have

1T AT foll o @uncsecaryy < (1+ COA(R/Co, 1) Ercoon (frs f2)10

R
+ C—C(l + _)—6/4
r

(2.77)

with 7 = r(1 — Cr~'/3N). We now perform a series of reductions. By applying Lemma 7

to 11 f1T2 faXca(eery We can find a cube @ of sidelength C'R lying inside C*Qp with the

property
||T1f1T2f2”Lqu(QRncﬁ(gc;?«/)) < (1 + OC) ||T1f1T2f2||LqLT(ICvCO(Q)mC3(§C;r’)) :

Thus showing (2.78) with HT1f1T2f2HLqu(Ic»Co(Q)mm(gc;rQ) on the left-hand side suffices. By

applying (2.51) of our main proposition we see that it is sufficient to prove

1P1P| Lo pr(1e.co(@)nes oy < (1 4+ CA(R/Co,T,1") Er coqp (fi f)l

R
+e Y1+ =)
T

(2.78)

Then since 1/2 < E, c,0x(f1, f2)/9 < 1 it is enough to prove that left-hand side satisfies

< (1+ CA)A(R/Co,7,7")Ercoon(FY, g0 € Key(Q); FS™ o € Ky (Q))VY. (2.79)
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Now we apply Lemma 11 to see that

(@)1 plao)
191®all o reco@rerecay € D IR TR I ncaeer):
qOEKCO(Q)

Thus it suffices to show that the right-hand side is less than or equal to expression in (2.79).
To see this we consider individual terms in the summation. By definition of the quantity
A(+, -, +) we have

T T F ™ 4 s eonny < AR/ Co T YL || FS |2 By coq (FY™), F*))2/9

Thus summing these and bearing in mind the fact E;:,COQ(Fl(qO), F©) < E;VCOQR(FI(QO), Qo €

Ke, (Q); FQ(qO), qo € Kc,(Q)) we can bound our summation by

A(R/Co,7,1") Br cyon (FL™), 4o € Ky (Q): Fs™ a0 € Ky @)YT S [ ol F5™ 2.

q0€Kc,(Q)

At this point using the Cauchy-Schwarz inequality and the Proposition (2.48) yields

1/2 1/2
S OIELIE < (> IEE) (Y IEB)

q0€Kc, (Q) q0€Kc,(Q) 9€Kc,(Q)

< (L + €l fill2ll f2l2-

Thus we are done. |

The following corollary will allow us to finally conclude our proof by showing that
A(-,-, ) can appropriately be related to A(-) regardless of concentration, by handling the
non-concentrated case with Proposition 4 and reducing the concentrated case to the non-

concentrated one with Proposition 5.
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Corollary 2 Let R > 2V and let r > RY***/N_ Then for any 0 < ¢ < 27 we have
A(R,7,Co(1+7)) < (14 Ce)A(R) + ¢ °.

Proof. 1f r > C§ R the result follows from Proposition 4, thus we assume 7 < C§{'R. We let J
denote the least integer with /2 > Cy/CS' R. We have J < logr since r > RY?*4/N_ Define
ri=19>1ry >...>ry recursively by 741 = r;(1 — Cr}l/gN). This sequence decreases very

1-1/3N

slowly, each time r decreases at most by Cr , and has only about logr terms, so

r—ry; < CriYEN ogr,

J)e/8C

which means r/2 < r; < r. We define ¢; := Cj cC’ for 0 < 5 < J. We iterate

Proposition 4 with these values to obtain

J
. R .
A(R, 7, Co(147)) H 1+Cc)) [ 1+C’c)A(R/C'6],TJ,C’o(l—i-r))—i—chC(1+m) /],

j=1
We use same techniques introduced at the beginning of this section to estimate the product:
J J J
lnH(l +C¢j) = Zlnl +Cc¢; < Cch.
j=1 j=1 j=1
Writing out explicitly one has for this last sum

C(()J-i—l)E/SC' 1

J
C«O—ICCO—JE/BC Z O(j]e/8C _ Oo_lcCO—Je/BC CG/BC 1
5 _

J=1

< Co_lcc(;Je/SCCéJJrl)e/SC

<c.
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Hence

J
H 14+ Cc¢j) <e <1+ 3c
7j=1

It remains to estimate the sum inside the paranthesis

icj‘c(ljucji)—e/ﬁl CO¢ CZ Ci ‘])/215’)_6/4
=1 o(1+7) CI(1+7)
< Cocc—c ;(Céj_‘])ﬂ + %ﬁf)—e/él'
Now observe that R/(1 +1r) > 06]_2_07 thus
< CC CZ —e/4 < CC CJC Je/8 -

Thus we finally have

A(R,7,Co(1+7)) < (14 Cc)A(R/CY vy, Co(1 + 1)) +c €.

At this point one can apply Proposition 4 to A(R/C{,r;,Co(1 + 7) to obtain the desired

result.

We can now conclude the proof of Theorem 1 by showing that for all R > 0

A(R) < 29¢, (2.80)

For R < 2N we already proved this. For R > 2V¢1 set ¢ = 271 and combine Proposition

3 with the corollary above to obtain

A(R) < (1 — C79)A(R) 4 2°°.
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Since we also have (2.80), we can improve this to

A(R) < (1 —Cy9)A(R) + 29,

Thus for R > 2V¢ too we have

A(R) <209,

Thus we are done.
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Chapter 3

Linear Restriction Estimates for
Elliptic surfaces

In this chapter we will prove Theorem 2.

3.1 Preliminaries

In this first section we will reformulate and simplify the result, briefly describe the proof and
develop some technical tools for the proof. We first start with reformulation.

We reformulate the theorem in a way very similar to reformulation of Theorem 1 in
Chapter 2. We first define an elliptic surface by a parametrization. Let U be a small disk
around the origin lying on R"™! x {0}. We can parametrize an elliptic surface S on this

neighborhood using a phase function ¢(z) with
¢(a) = (Az,z) + O(|z])
where A is a positive definite matrix. We define
THE = [ S,
Then proving that for every f € L>*(U)
ITfllze < Collflloo

whenever ¢ satisfies conditions stated on Theorem 2 will imply Theorem 2. We however note
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that given a phase ¢ as described above we can always write

THE) = /U (@) mieEroE gy /S g(y)e=VEdo(y)

with, in the second integral, y € R™, g(7, ¢(y)) = f(y), S the surface that the phase ¢ gives,
and o an appropriate measure on the surface -pullback of the Lebesgue measure on U.- Thus
we can use both formulations interchangeably.

We further reformulate the problem through localization. Localizing the estimate is a
standard approach in proving restriction estimates for the Fourier transform, and our proof
in Chapter 2 was an instance of this. From standard e-removal arguments, see [6], to prove

the Theorem 2 it suffices to prove that for

18 2

=— - — if k=2
=7 T s ' 31)
_8k+2 (5k —4)(2k + 1) ks 9 ’
T= 0k —1 7 k2 — k) (28k + 7)(4k2 — k) '
with n = 3k, and for € arbitrarily small, we have
1T fllao.r) < CoeRF| floe (3.2)

for every radius R > 0. We further note that it is enough to prove this estimate for || f|lo < 1.

Thus we introduce A,(R) as the best constant satisfying

1T fllra(Bo,r)) < Aq(R)

for || f|lco < 1. Since we trivially have

| fdol|zo(so.r) S Re
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following from

this constant is well defined. As a result it suffices to prove, for ¢ satisfying (3.1), and for

any € > (

A,(R) < C, R, (3.3)

The proof will use the multilinear estimates of Bennett, Carbery and Tao, [2], described in
Chapter 1, the method of rescaling introduced in [25], and the conservation of mass property
described in Lemma 1, Chapter 2. Since || - || norm of a compactly supported function can
be bounded by its || - ||« norm, Bennett-Carbery-Tao estimates are useful. We will observe
that we can use these estimates to essentially reduce the dimension of the problem, which
makes the method of rescaling work better. This will be achieved through decomposition
of the surface into small caps. We will give more detailed heuristics about the proof as we
proceed. As we will prove Theorem 2 by proving the local estimates (3.3), this explanation
suffices to motivate introduction of the following local form of Bennett, Carbery and Tao
result, also proven in [2]. We formulate it using parametrizations. Let S; e R", 1 <i<m
be smooth, compact hypersurfaces whose parametrizations ¢; : U; — S; from subsets U; of

R™~! satisfy smoothness condition

pillo=ny < A,

and that are transverse, i.e, for any points y; € S; unit normals y, satisfy |y} A... Ay | > B.

Then for operators T; associated to ¢; we have the localized version

{ H TifiHLq(B(o,R)) < Cgapelt’ H 1 fill 2y (3.4)
=1 =1

for ¢ = % and every € > 0.

Finally, to be used in the proof of one of our lemmas below, we introduce a further variant
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of the Bennett-Carbery-Tao result, that deals with thin neighborhoods of surfaces, and that
was too proven in [2]. Let S; € R™, 1 <i < m be surfaces just as in the previous paragraph,
and let Y, be C/R neighborhoods of these surfaces for R > 1. Then we have for functions

fi € L*(Y;®) and every € > 0

” H ﬂ{Lq(B(o,R)) < Oq,A,B,eRE_nﬂ H ||fi||L2(YiR) (3.5)
i=1 i=1

for g = %

We will now prove some lemmas, that will be used in sections 3.2 and 3.3. The first of
these will mainly be used to make rigorous heuristic information coming from the uncertainty
principle. We will describe how to use the well-known Bernstein inequality for exponents

lower than 1.

Lemma 12 Let 0 < ¢ < p < oo, and let f € LP(R™) be a function whose Fourier transform

]? s supported in a box of measure E. Then

1flly < Ea 7l fllq

Proof. First of all we note that we may assume E = 1, since all other cases will follow from
scaling. If p > 1 we may use the Bernstein inequality to lower it to 1, so it suffices to prove

it for p < 1. First assume that p = 1. Then we have

I = [ 10 <z [ 1o

We apply the Bernstein inequality to || f]]oc:

1flloe < W1 £112-
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So we have

1fll < IIinq/lf!q = IFIL A1

If || f||1 is zero then what we want to prove is trivial, so assuming that it is not zero we divide

both sides by ||f||;? to obtain

LI < IA11E-

From which we obtain

11l S W -

For p < ¢ we run the same argument:

iz = [1 < st [ 151

Then we have

[ flloe S ALf 11 S 111l

From here with the same arguments we conclude

1 llp < 11£1lq-

We now proceed to our next lemma. In what follows S will be a surface with properties
described in this section, and for x € S a point, 2’ will be used to denote the unit normal
vector at this point. We will need to use the Gauss map I' : S"! — S taking the unit
normal 3" of a point to itself y. We let 0 < ¢ < 1 denote various small constants. The

notation fE will be used to denote average over a set F.

Lemma 13 Let S; C S, 1 < i <mn be small caps with |yy A ... Nyl| > ¢ for all y; € S;, and

let D; C S; be discrete sets with at least 1/M separation for M > 1. Then for any bounded
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function a on S and any ball By; C R™ of radius M we have

n n

£ IS atwe gt < 2 T[S latw)?)

Bum j=1 yeD; i=1 yeD;

Proof. Our basic strategy is to pass from these sums to integrals over neighborhoods of .S;,
and then to apply (3.5). We may clearly assume Bj; to be centered at the origin, for otherwise
we may incorporate the oscillation coming from being away from the origin into the function
a. We introduce the measures p; = Y ., 0, and define the functions fi(z) = a(z)xp,(2)-
Let ¢ be a Schwartz function supported in B(0, C') whose Fourier transform is non-negative

on the unit ball. Let ¢ (&) = M™p(ME). Then

F IS atwe e ag= {11 [ e <dutz)] g
By =1 yeD; By oj—1 VS

n

=TI |Fdul = de

Bum =1
L~ 2
S | (it
By =1

—f TTifdnvoulHrde

M =1
To this we can apply Bennett-Carbery-Tao result since f;du; * ¢y are functions in C/M
neighbourhood of S;.
__n - 2
S MM T fadp + ol

i=1

We can calculate individual factors in this product using the fact that supports of at most
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C of axp,d, * ¢ can intersect as y ranges over D;. Thus we have

n

S a = (S Jay) M la@)?

i=1 yeD; i=1 yeD;

[
This last lemma will only be used to prove the next lemma, which will be the one used in
the rest of the proof. The idea of the first lemma was to pass from discrete sums to integrals.

In the second lemma we will pass from integrals to sums to utilize the first lemma.

Lemma 14 Let V C R" be a subspace of dimension m, where2 <m <n. Let P,... P, € S
be points with P! € V, and |P{ A ...\ P) | > c. Let Uy,..., U, C S be small neighborhoods
of Pi,...,P,. Let M > 1, and D; C U; be sets of 1/M separated points y that obey the
condition dist(y', V') < ¢/M for a small c. Let ¢ be a Schwartz function supported in B(0, c)
with Fourier transform non-negative on the unit ball, and let ¢p(y) = M™¢(My). Then for

any f; € L>(U;) we have

m

(» —2miz-€ o % .
LINS [ st 9

< B[ o [ fe)e o) (3.7)

i=1 yeD; lz—yl<37
Proof. We may assume that B), is centered at the origin just as above. By a simple rotation
in the space where the surface S lives we may also assume that V' = span{ey,es, ..., e}
Let V denote the image of V NS under the Gauss map. It is possible, by partitioning D;
into subsets and modifying functions f; if necessary, to assume y € V for all y. Also we may
assume f;(z) = 01if |z —y| > ¢/M for all y € D;. Let ¢ be a non-negative Schwartz function

that is identical to 1 in B(0, 10¢), and supported in B(0,20c¢) whose Fourier transform is
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nonnegative on B(0,1). We define ¢ (y) = M™p(My). Then

][ ﬁ| Z /|Zy<hc{ fi(z)e—2m‘z~§dai(z)|%d§ = o ﬁ | /S fi(Z)e_sz'fdaz-(z)|ﬁd§

Bum j=1 yeD;
=]{3 T] 1 Fdo(e)|7 de

M =1

<t ]| fidodn(€)ir(€)|71de

Bum =1
=TT fido = oure (@) 75
M =1

We define g; = fido * ¢ * ar. We can break f;do into pieces f;,do by restricting it to the
points z with |z —y| < ¢/M. Let f;,0do denote translations of these pieces to the origin
-here we are translating both the function and the measure to the translation of the cap,

on which these are supported, to the origin-. Then we define g;, = fi,do * ¢pr * pr and

Gi.0 = Jiyodo * ¢ar x ar. We have

gi = fido x far = by = Y fiydox darx b = D giys

yeD; yeD;

and

Gigo(2) = giy(z +y).
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Using these we can write

— —27rzz £ _ —27riz~§d
@) =1 [ e b =1 [ gt

yeD; yI<SF

= | Z 6_27riy~§/ g%y(u + y)e 2miu gdu|
veDi Ju|<18¢

= ’ Z 627riy-£/ gz,y,o(u)e’%“‘ 5du‘
yeD; Ju|< L5e
/ 15 Z Jiy, O 727riy'§)6*27riu-§du|

[WI<3F  yeD;

= / 5 | Z gi,y,O(U)eﬂmy'éldu

h<3F  yeD;

SMT sup | Z Gio(u)e 7T

|u\< yeD;

Observe that the domain of u is compact, and the function concerned is continuous. Thus

the supremum is attained at some u;. Hence turning back we have to estimate

2’”"][ HIZgzyoul 2 T .

By =1 yeD;

Writing y = (v,w) € R™ x R"™™ and £ = (o, 5) € R™ x R*™™ we can bound this by

< M~ max ][ H| Z Giy0w(Ui)e 27r”"”'O‘|ﬁaloz
weB)y Byt i=1 yeD;

where g; 0. (i) = giyo(uwi)e 2P Since S; has positive definite second fundamental form

the projection to first m variables of V too has the same property. Thus for fixed w we

apply Lemma 13 to obtain

5 HZ|gzy, Uz T-

1=1 yeD;
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We use Young’s inequality to write

1915 (i)l S [ fiwodo * oullal¥arllcc S M| fiy0do * by

On the other hand whenever u € B(0, ¢) we have

| fiyodo * dar| x Yar(w) > M"|| fiyodo * darl|1-

Utilizing this information and again using Young’s inequality we can write

900 (i)l S MW oo Ol xSl S ME|fiyodo = dael % 0l
< M2 || fiyodo * darllallva

S M2 fiyodo * dar.

We insert this back to get

m m
S MO W faodo * o377 < M7= Ml figdo % pual|2) 77
=1 yeD; i=1 yeD;

From the Plancherel theorem we have

m

_mm . ——— o 1
SM ST TIO0 W fiydodull3)m

i=1 yeD;

S0 H$M/ fi(2)e 2o (2) |3) 7

i=1 yeD; lz—yl<77
[ |

Our next lemma follows basically from change of variables for integrals. In [25] it was

observed that this could be used to prove restriction estimates.

Lemma 15 Let S, C S be a cap of radius p with p much smaller than the radius of the
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surface S. Then

I /S F@)e 8 do(y)|| s,y S P71 TVPA(R).

Proof. We can parametrize the surface S, through affine coordinate changes, on a neighbor-
hood U of the origin as

(21, @non, 2> + O(|z]*))
Then integral becomes

(x)e—Qm(x-E-i-w(w)&n)dw
Up

with U, C U is a cap of radius comparable to p and centered at a point v, and ¥(x) =

|z|? + O(|z|?). Our first step is to take the cap U, to the origin:

H /Up f(x)e—Zwi(x~g+¢(df)f")dxH(iq(BR) = || /Upv flz+ U)G_Qwi((x—&—v)f—&—w(ﬂ&‘f'v)f")dx||(2q(BR)

= / ‘ flz+ U)eﬁm(x.&w(wv)&n)dx‘qdé
Br

Up—v

By applying coordinate changes of the form & = & + &,(2v; + ...) for 1 < i < n, and
¢ = &,(1 4+ P(v)) with P(v) standing for various powers of v, we obtain a new phase

¢’<I) = |x|2 + O(|x|3) and
5 / | f(q; -+ U)e—27ri(m.g+w/(x)§n)dx’ng.
BCR Up—v
Now we change variables as @’ = p~'z, § = pg; for 1 <7 <n, and ¢, = p*¢, to obtain
5 pq(n—l)—(n-i—l) / ’ / f(pl' + U)6—27ri(a:~g+(|z\2+po(|z‘3))£n)dx‘ng'
Bycr U

Here U is a domain centered at the origin with radius comparable to 1, f(px + v) a function

defined on U with L> norm not exceeding 1, and |z|> + pO(|z|?) is another elliptic phase.
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Therefore we have

< pq(n_1)_(n+1)(Aq(pR))q < pq(”_l)_(”+l)(Aq(R))q~

~Y

3.2 The Bourgain-Guth Argument

We are now ready to describe arguments used by Bourgain and Guth. The argument we

use to prove Theorem 2 is in essence an iteration of this argument. We introduce the the

constants
K<Ki<.. <K, 1<K, <R,
with
Km _ ‘erl()ﬂ#»nfrn)7 2 S m S n.
We decompose our surface .S into small caps S}} of size = —, and we let y, € S. Note that

for the projection U of S onto R™™! x {0} this induces a decomposition into caps U" of size

roughly 1/K,. In accordance,

/f 27my§ ) _ Z eQﬂ'iyg-{/ f(y)€—27ri(y*yg)-fdo-<y).

n
« [e%

Here we define the operators

Tf(E) = f( Je 2T do (y)

which could also be defined using U} and a parametrization of S. Thus we have
[ fe oty = e mrzye)
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Now since |y — y?| < 1/K, the function T f is heuristically constant on balls of size com-
parable to K,,. The aim of the following arguments is to make this rigorous. We will obtain
functions ¢ that dominate 77} f, and that are approximately constant on balls of this size.
We take a Schwartz class function 1 on R”, with 7(xz) = 1 on B(0,1) and 7(x) = 0 outside

B(0,2). We let n,(x) = -=n(%). Note that if we define g(y) = f(y + y2) we have

T (E) = / o(y)e > do (y)

S&—ya

that is T f is the Fourier transform of a surface measure on a cap living in a ball of size

1/K, around the origin. Thus we have the equality

We need to obtain our functions ¢ in a careful way, for we want certain results such as
multilinear theory of Bennett-Carbery and Tao to be applicable to them. The following

process has this aim. For a fixed £ we use Lemma 12 to obtain

120 < [ 1T20(€ ~ Ome (Q)ldC
S ([ 112516 = Omi Q1) Ky

If we take the constant term inside the integral we get

1 n
<( / ITZZf(f—C)Il/"K—gln(K%)ll/"dC) .

This has the form, which we want our function ¢! to have, but it does not have the property

of being constant on balls of desired size. To also have this property we define

2n—m —n—10

1 —(10n) €
9Km(<>:K_gL<1+%> ,  2<m<n.
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Then we set

) = ([ 1T - O, ()"

We have (&) =~ (&) whenever |z, — x3] < K,,. Moreover the growth of ¢7(¢) is bounded
depending on decay of 0x,. Thus convolving ¢} with functions decaying significantly faster
than O, will leave its value at a point approximately the same. This is a fact that will be

used in this section as well as in section 3.3. Since 7 is a Schwarz function

TR (O] < cald).

Hence we have

| [ 1werrianw)] £ 3 e
S (07
With this appropriate decomposition at hand, we proceed to the argument proper. We
let Br denote the ball centered at the origin with radius R, and B(a, M) the ball centered
at a with radius M. We fix a point £ € R". We have two possibilities.
1.1. There exist ay, ..., a, with [y) A ... Ay, | > c(K,) for any y; € UJ. and

Ca, (€) > K "max ¢ (€).

€7

Here ¢(K,,) stands for some negative power of K,. We can choose the same aq, ..., «a, for
all z in a ball of radius K, since ¢! (z) are approximately constant on balls of this size.
1.2. There exist an (n — 1)-dimensional subspace V,_; such that if dist(S?, V,_1) > 1/K,,
then

n(€) < K, Mmax 1 (€).

«
«

Here V stands for the image of V' N S"! under the Gauss map. Owing to the fact that

')

Ca

(&) are essentially constant on balls of radius K, on such balls we can take the linear

subspace V,,_; to be the same. Note that with appropriate choice of ¢(K,) these two cases
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are complementary, that is one is the negation of the other.

First we assume 1.1 holds. Since the number of caps is comparable to K"~

n

| [ s tant| < - max e < k2 (TLea ()

i=1

Thus letting B;; denote x € By satisfying 1.1 we have

/Bl‘l

where the sum on the right hand side is over all possible caps satisfying transversality

n

> [ (TLene)ia

1yeeeyQn =1

[ s redaty)['dg < wen
S (0%

property stated in the case 1.1. Hence by the definition of ¢, (§) and the Holder inequality,

noting that O, (¢;)d¢; has total mass < 1, we have

< K@ 3 /B (11 / T F(€ — G110, (G)dG,)de
.V BrR =1

_ K(Zn—l)q

Z /B (/H T35 f(€ = Ym0k, () dC - .. d¢,)dg.

Lyeeey Qn
Here observe how the definition of ¢ (£) allowed us to bring the exponent ¢ inside the integral.

Now, by Fubini’s theorem

< K@e Y / ( /B [T 172 £(e — e [] 0x, (C)dGr -G (38)
31 Qn =1

R =1

.....

Assuming ¢ > -2 we see that the inner integral has a form suitable for applying (1.9). Thus

an individual integral in the sum over aq, ..., «a, satisfies

S R
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and hence (3.8) satisfies

S KRS R

2n

—= is the best possible according to the restriction conjecture, thus in this

The exponent
n-linear case we encounter no loss. However when we apply this same idea to lower levels
of multilinearity we will suffer significant losses, and these losses will increase as level of
multilinearity decreases. For example in trilinear case we must have ¢ > 3, and with this
it is not possible to improve best known exponents for the restriction conjecutre. Thus one
must also have another method that gets better as multilinearity disappears. This is the
method of rescaling, and its use will be illustrated soon.

We now assume that the case 1.2 holds. We use the fact that the number of caps is

comparable to K"~! to obtain

[sweranw)] <] [ e inty)
S {y:dist(y,Va—1)S 2}

+ ’ / f (y)e‘my'&da(y))
{ydist(y, V1) 2 7}

—2mivy- 1 n
5| / A F (@) Eda(y)| + —max ci(€)
{y:dist(y,Vn—l)s%n}

n o

=1+11.

Letting B;, denote those & € By for which 1.2 holds, we obtain

/Bl.2

. q . q
[swersanacs [ [ et
S B {y:dist(y, V1) S 7}

1.2

«

+ Kiﬁ, /BR (max cg(g))ng
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The second term here is an error term, and it is easy to evaluate. We have

1
E/BR(maaxc ))4de < 0 Z/BR €))4d¢
Z leall o

where the summation is over all caps of size 1/K,. Writing out ¢2(§) explicitly and using

the Holder inequality we see that we can apply Lemma 15:

I iy 5 [ ([ 122006 = O, () 39)
S [(] st orag)on (¢ (3.10)

S Kyt (A (R K)). (3.11)

Thus the contribution of /7 is bounded by Kﬁ(qu)(Aq(R/ K,))? In an inductive argument

” and this makes

trying to bound A,(R) this is harmless since we will always have ¢ >
the exponent n(2 — ¢) negative.
To evaluate I, we decompose S into caps S"~! of radius 1/K,,_;. Then we follow a similar

process:

/ A e oty = 3 / F(y)e > edo(y)
{y:dist(y,\/nfﬂgL Ui~ 1ﬂ{y dist(y, Vi 1)< %}

Kn}
= YT (),

[e%

We also define

o' f(€) = Fy)e ™4 do(y).

-1
Su

We note the difference between T and T, while the first is defined on intersection of caps
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with a strip, the second is defined on full caps. We define 7y, _, just as ng, was defined, and

also recall the definition of 6,,_;. Then we write

(e = ( / Tt (e — O e (O)dC)™

() = ( / T (€ — O™ 0, (O)de)"

The functions ¢”~! will be needed in the next step of our process. From the same arguments

as in the definition of ¢! we observe that

T2 fOl Seta), |TEFO] S (),

and that both ¢! ¢! are approximately constant on balls of size K,_;. We fix a point
¢ € B1s. We have two distinct and complementary cases:

2.1. There exist o, ..., ap_1 with [E{A .. AE, | > c(Ky_y) for all & € U2, and
[ (O > 1,5 max(e T (€)).

We can choose ay, . . ., a,_1 the same for all z in a ball of size K,,_; since ¢! are essentially
constant on balls .

2.2. There exist an (n — 2)-dimensional subspace V,,_5 which can be chosen a subspace of
V,,_1 satisfying

@O < K max(@ ™ (©)

if dist(S7',V,,_y) = 1/K,_;. The linear subspace V,_, can be chosen the same for all z in

a ball of size K,,_o.
We assume that 2.1 holds. We will use both the multilinear theory, and the method of

rescaling and compare the exponents the give to decide which one is more advantageous.
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-1

Since we have at most K~7 functions ¢! we can write

/ : Fe 4 do(y) $ K27 ([T e @)
{y:dist(y,vn_l)s%n} 11

If g > 2" , we can proceed to use the multilinear theory just as in the case 1.1. So

/ | / A fly)e ™ do(y)|"de
Baa  J{y:dist(y,Ve-1)S 7}

<ot [ (lja‘zf@))q/” e

where we, of course, choose ¢! depending on &. This, then satisfies

scte [ ([T 0)

=1 o

n—1
scwy X [ ([Tete)™
Qe —1 R =1

2n2

This time we assume g < . In this case we have

B(a,Kn) {y:dist(y,Vi—1) %}
- (3.12)

oy f (e e
n—1 @ fn i=

with the subspace V,,_; being the same for all + € B(a, K,). The sum is over those

ay, ..., a1 satisfying the transversality condition of case 2.1. The choice of ay, ..., a, 1
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is the same only for balls of size K,,_1, but as the subspace remains the same, caps S"~! are

always chosen from those intersecting the set

1

{y : dlSt(yv ‘A/nfl) S; Fn}

Although, as we stated, this time we will apply the method of rescaling, we also will exploit

multilinearity partially. This partial exploitation is necessary, and without it improvement

of best know exponents would not be possible. We take an individual integral from (3.12)

above. As g < % by the Holder inequality

o Mo (f,

Writing out ¢! (£) explicitly,

3
e i3
£

i=

n—1) Q(Z:2)
< (f /ﬁ“m 66k, (G)de) )
B(a,Kn)
We use first the Holder inequality then Fubini’s theorem to obtain
e
s (f H/Wlscwwmxmmg
B(a,Kn) ;1

q(n—2)

/][K H!T" LF(E — G)|FRde) HeKn (¢)dG - dgn_l)”"*l{

(3.13)

At this point observe that since ¢ used in Lemma 14 is a Schwarz function, we see that it is

possible to apply Lemma 14 to the inner integral and get the result

q(n—2)

q¢/n 5‘@%“H%M@% G )
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where the summation is over all o; with S5 N f/n_l # (). We rewrite this as

a(n—2)

Ki([ (e - e ™0x, (o)

(&7}

s k([ (Tt re - 0ae)on, )’

a;
As O, | decays faster than 6k, the convolution with 6 cannot increase the value of ¢} at a

point. Using this and the Holder inequality

q
2

SELY ()*(©)

Qg

+Hr-2)(3-1) N\ n
S K > ().

As we have exploited the fact of a being restricted, we now allow our summation to be over

all . We thus write

n—1
]i ) s kY e sor
& n i=1

i a;

Integrating both sides over B(0, R) gives

n—1
/B ([T )7 de < kgD / D (ch f(9))d (3.14)
R =1

Br o

To the individual ¢! we apply the method of rescaling much the same way as in (3.9) to

obtain
leallfeis,y S KaH 10D (AL (R/K,))"
and thus

~— 4 e+(n—2)(2-1)+2n—q(n—1
| QM) s < w20 N e
R =1
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Now if we return to (3.12) and integrate over all a € By we will obtain

n—1
/ |/ : e Sdo(y)|'de S KT Y0 / ([Ten @) ae.
Ba . {y:dist(y,vn_l)g%n} N B ot

7777 Qn—1

We already have estimated a single integral on the right hand side. Summing over all such

integrals we obtain

e+(n—2)(§-1)+2n—q(n-1)

< KM K, (Ay(R))".
It is clear that such a term is acceptable in our inductive argument if

mfax%—n+an—ﬂn—n<o

2n+4

and if € is chosen appropriately . This gives the condition ¢ > =*= . Combining this with

the exponent coming from the multilinear method we see that we should have

2n—1) 2(n+2)
n—2" n

).

g > min(

Now how the rest of the argument proceeds is more or less clear. We already have
obtained two disjoint sets Bj 1, By1. We will similarly obtain sets Bs1,...,Bn,_1.1, Bn_12

satisfying
n—1
Br=DB, 12U < U Bn71.1>

j=1

with all sets on the right hand side disjoint. Then we will obtain

n—1
/B | /S F(y)e 2w Edo(y)|"de < Z /B . /S F(y)e v Edo(y)|"de

v [ [ sty e

(3.15)
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and evaluate these terms. Although how to achieve this all is rather similar to what we
already did above, we will further describe how to obtain the set Bs; and how to evaluate
integrals on Bs 1, B, 12 in (3.22) to make illuminate certain points.

Having handled ¢ satisfying 2.1, we assume ¢ satisfies 2.2. Notice that we already have
Br = B11U By1 U Bao.

where sets on the right hand side disjoint. For £ € By, we have

| / F)e 2 edo(y)| < | / ) F)e 2 ¢do(y)|
S {y:dist(y,Vp—2)<

Kn_1 }

(3.16)
+ \/ . Fy)e ™ eda(y)],
{y:dist(y,Vn—2)2 Knl—l }
and the set {y : dist(y, ‘7n_2) e %1} can be written as a union of disjoint sets
By(€) 1=y distly, Vo 1) S s dist(y, V) 2 22—
1 =Y AIstlyY, Vi NKn7 ISU(Y, Vn—2 NKn_l )
By(€) 1= {y + dist(y, Vo) 2 s list(y: V) 2 =)
= {y : dis e —, dist(y, V_2) = :
as these sets depend on £. So
[ swerant)| S| [ e rdsty)
:dist(y,Vn—2)2 F1
{y:dist(y 27, ) ©) (3.17)

+ | fy)e ™ do(y)|.
Es (&)

(

We now use a 1/K,_» partitioning of S to partition {y : dist(y, V,_s) < ﬁ}, and define

operators T2 T2 and functions ¢”2,¢"~2 just as before. Then we obtain two subcases

et

3.1, 3.2 and a partitioning of Bss into B3, Bso analogously. Having obtained Bs; as
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desired, we now estimate the integral on it in (3.22). We of course have

—omiy- q iy
[ 1 [swesmsanies [ | /{(V) i

—27riy-§d qd
w1 s o)

I do (y)|de.
o] | SO doty)'dg

Since ¢ satisfies 1.2 and 2.2 we have

RIS VD MG Sy

E1(€)

where « are such that S"~'' N E;(£) # (. Thus this last sum satisfies

1
-2 -1
S K - g (0,
=

Then

4 1
Fly)e™mvSdo(y)|'de 5 | @
/;341 | Eq(8) ( ) ( )| Z ; Bsa (

1
N Kq Z”En 1||Lq BR

["d¢

(3.18)

“de

(3.19)

where the last two sums are over all a. Here one uses scaling as before -although this time

caps leading to ¢”~! have a peculiar shape, this really does not matter, we can multiply the

function on the cap by cap’s characteristic function, and pass to any larger cap.- We see that

for any ¢ > 2 we get

fy)e ™ edo(y)|*de < R/K, 1)) <
/BM\ [0 W) Kq AR/ ) 5 72

Similarly

| fly)e ™ edo(y ZIT” OIS Y e ©

Ea(€)
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with « satisfying Fo(£) NS” # (). Then the last sum satisfies

/331‘ E>(€) f( ) _2my§d ( >‘ dgs Kig%:/&u (cg(g))ng

S KI Z chHLq(BR

with last two sums being over all a. Then rescaling gives for ¢ > 2

(3.20)

1L et as e S ge(AdR/ KD S (AR

Thus remains the term

/ |/ fy)e ™ ¢da(y)|"d¢
By J {y:dist(y,Vn— 51(:,1

which we estimate just as in case 2.1 to obtain.

n—2 4
> min(2——. 2
q_mln(n_?), +n+1

).

This process runs in the same vein until we obtain cases n-1.1, n-1.2, and thus the
sets B,,_1.1, Bn_1.2. There is no difference in handling the integral on B,_; 1, but there is a
small difference for the integral on B,,_15. In this case we do not proceed to obtain further

subcases, and write

—2miy-& q < —2miy-€ q
/;341 | /Sf(y)e dg(y)| dg ~ /B3 1 ‘ /{‘y'dist(y \71)<L f(y)e d0<y)‘ df

.y F@)e S (y)| e
Bs.a {y:dist( yV1)>K—}
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Now, firstly, the set {y : dist(y, 171) < KLQ} is neighborhood of a point on S, and there is no
multilinearity to exploit. We thus proceed directly to scaling for the first term, and obtain

the bound

/33.1 | /{yidiSt(y,‘A/l)S

and this gives the exponent ¢ > % The second integral can be handled easily by dividing

} Fly)e v edo(y)|"de < K250 (A (R))e

1
Ko

~Y

the set {y : dist(y,f}l) e KLQ} appropriately into subset as we did above. Ultimately the

second integral can be bounded by a term

1

C E(Aq(R))q

for any ¢ > 2, and such a term is harmless for induction.
Thus we have estimated all terms in (3.22). For the integral on By ; and B,_;.5 we have
the condition ¢ > % For any integral on B;; with 2 < j <n —1 we have

n—j+1 24 4

T I =

q > min(2

So we see that for higher levels of multilinearity, multilinear method is better, and for lower
levels rescaling gives better exponents. At about j = 2n/3 the method of rescaling becomes
better , but the exact value of j depends on the value of [ in the equation n = 3k + 1. Also
the exponent we get when we combine all these conditions on ¢ is taken at about this value

of j. We can easily calculate that if n = 3k then the final condition on the exponent ¢ is

- 8n + 6
4dn — 3

(3.21)

and this exponent comes from the term j = k + 1, from the method of rescaling. For
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n = 3k + 1 this is
2n +1

>
g n—1

and comes from j = k + 1 using the multilinearity. For n = 3k 4 2 the exponent is

4n + 4

>
1= 5,1

and this comes from both j = k+ 1 by multilinearity, and j = k+ 2 by rescaling. In the next
section we will limit ourselves to case n = 3k and improve the exponent given by (3.21). We
explain the reason why we are able to do this in this case and not the other two. As written
above, the condition (3.21) comes from the term j = k 4 1, namely for j = k + 1

8n+6_

—7+1 4 4
4n_3—min(2i 2+

N9 *
n—j n+j—2) +n+j—2

The term 2(n — j 4+ 1)/(n — j) coming from multilinear estimates is strictly larger than this
minimum that comes from rescaling. This will be used for a pigeonholing argument that

allows finer estimates.

3.3 Iteration of the Bourgain-Guth Argument

From now on we restrict ourselves to those n with n = 3k, £ € N. We recall the expression

n—1
/B | /S F(y)e > Ve do(y)| de < Z /B . /S F()e > e do(y) | de

+/Bn_1.2} /S Fy)e ™4 do(y)|"de.

(3.22)

We estimated these integrals one by one to obtain our final result. We saw that the worst
exponent comes from the integral on By, 11, that this exponent is obtained via the method

of rescaling, and that the integral on By ; is the last one for which the better exponent comes
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from the multilinear method. We first observe that if one have m + 1 level of multilinearity
then one also have m level of multilinearity. So a careful consideration of our section 3.2
reveals that we can run the same argument starting with 2k+1 level of multilinearity instead

of n level, and obtain the same result. In this case we partition By into
n—1
Br= B2 (U Bin).

=k

Measure of a set here coming from the same level of multilinearity as in the partition before
may be different, but this is not of any importance, as we have never used this information.

So instead of (3.22) we have

n—1
—2miy-§ q —2miy-€ q
/B | /S Fy)e v do(y)|1de < Z /B N /S Fly)e v do ()| "de

+ /Bn_u} /S Fy)e > do(y)|"de.

(3.23)

This reduction will simplify the iteration process that will be described below so significantly
that it will allow calculation of improvement for dimensions n = 3r for r > 2.

Let 1 < m < 2k + 1 denote the level of linearity , and so we may define B,, = B;;
form+j5=n+1, and B,, = B,_15 for m = 1. We observe from section 3.2 that for

£ € B, 2<m <2k we have

m Jm— 2k .
rrol s own ([Ia) "+ 3 gomasaio + g —max o)
i=1 i=m+1" "
ifm=1,
1/m—1 * ; 1
THOIS @©) " + D, gmax8(E) + —max ' (0)
i=m+1 ¢
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while if £ € B,,.1, m = 2k + 1 we have

1) s e ([ane) "

i=1

In all cases, of course, ¢! terms are appropriately chosen. Thus for any § € Br we have

2k m 1/m 2k+1 . 1/2k+1
Trol s> e (TTam©)  + e ( [T &)
m=2 . =1 =1 (324>
FEE+ 3 omax (6) + g €

We can replace terms on the second line by ¢, (§), denoting maximum of terms on that line.

Thus we have

2k m l/m 2k+1 1/2k41
Tr©) 5> e (T]a©) " + ) ([[E1©) T +eald. (32)

Our aim is to iterate this decomposition for smaller caps that give rise to last two terms

on the right-hand side, until we reach the scale R~/2, which allows one to use more direct

methods like conservation of energy. But before this we need to make some replacements.
We can obtain a function ¢,, for 2 < m < 2k that is approximately constant on balls of

radius 1 and that satisfies

TT@E )™ = du - (3 (t1(6))?) 2. (3.26)

=1 a

To obtain such a function we simply divide the left hand side by the right hand side when
the right-hand side is not zero, when it is zero we just set ¢,, = 0. Since both sides
are approximately constant on much larger balls, the condition of ¢,, being approximately

constant on balls of radius 1 is satisfied. These functions satisfy the following additional
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property:
(][ (6m)77) LB Ky (3.27)
B(a,Km+1)

To see this observe that the process we used to bound the left hand side of (3.13) already
gives

F . Temera] ™ s xia(Senen™

«

From which (3.27) follows. Since m < 2k, simply using the Holder inequality gives

(][ (6n)PT) ® S Ko
B(a,Km+1)

Inserting this replacement back to (3.25) to obtain

2kt 1/2k+1 1/2
7)1 % ([T 20) Z mtas (ON

+ ca(§).

The iteration will be performed on the second and third term in the sum above. We will
illustrate this for a single ¢! from the second term on the right-hand side, for any other
term in (3.28), or any other term that will arise as we decompose, the process is the same.
This iteration is an entirely elementary, but rather cumbersome process. To simplify we will

makes some modifications to (3.28). To this end we introduce

ar(€) = / T £ (€ — O)[6x, (C)dC,

for 2 < m < n. Using the Holder inequality we have
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So from (3.28) we pass to

2k+1

TS (I 0 )1/2k+1+2 Kt (ere?)

+ aq(§).

We introduce another variant of ¢’ that averages over tubes rather than balls. We will use
parabolic rescaling as we iterate our decomposition, and the nature of which dictates use of
tubes. Recall the function 7 that we used in section 3.2 to define ¢'. For a cap S, of radius
1/ K,, rescale this function to make it concentrated on a tube centered at the origin oriented

along the normal e, of the cap S,. Also define the smooth cutoff

10n 2n— me— n—10

/BKm,a<§) = +

K2 K.,

( |€ eal 1€- fea|>

Then using these we define

b(e) = / T F(€ — ) B (C)dC,

and obtain from slower decay of [k, than Ok,

T FO] S o (§) S ag'(§) S b3 (8)- (3.30)
Thus we can write
pasy 2k 1 1/2k+1 1 2\1/2
THOIS CKann) H b)) T+ Z ot (S (0(€)) .

+ ba(§).

m-+1

Thus instead of decomposing ¢! we may decompose b *!. Since b+ are approximately
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constant on balls of size 1/K,, ;1 we can write

b (€) & b ()d¢ = T (¢ — o(n)dndC. 3.32
i (g) / G / . / T F(C = 1) B (7)€ (3.32)

We expand the term T™*! using the projection U, = Uy (24, 1/K,n11) of the cap S,, and a

parametrization of S, on this projection

_ / / | [ fla)e2mile @+ 00Nl g B (1) didC.
B(&,1) Ua

From this point onwards we apply change of variables repeatedly. We first translate the cap

to the origin

< —2mi®(x,¢,m)
S S e e i
with
Ba,Cn) =2 €T+ (200t )G = 1)+ (204 )+ O )

We now apply appropriate change of variables for two outer integrals to obtain

< / / | / F(@+ g)e 2 Cm U+ OGN Gl B (m)dnd
B({’,C) a Lo

where Sk, ., o represents the smooth cutoff for the cap we obtained by translating U, to the

m+1;

origin. We first apply parabolic rescaling to x with factor 1/K,, 1, then to (,n variables

with K,,+1. We obtain

x —2mi¥(x =
SIS [ 1] e mae e el B K )G
B U m+1
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where U a domain of size comparable to 1,

W, Cn) = - € =)+ (faf? + —Oa)) (G — m),
m+1
and
R 1

At this point we can apply the decomposition (3.29) to obtain

2k+1
S K:z—:-lc Kopt1) / / H G%H >2k+1ﬁKm+1 o( K11, K72n+177n)d77dC
+K;L1312K1+1/ /¢l l+1 C 77)) )1/26Km+1,0(Km+1ﬁ7 K%+1nn)dnd<

+K$;//%@—W&mwﬁ%dﬂﬁﬂ%ﬂmg
B

All three terms are handled similarly, so we will only demonstrate in detail how to handle
the second one, which is the most complicated of all three. It is clear that understanding

the term

//@ S (@ = 1)) B0 (BT, K2y )G

is sufficient for this. This term can be written as

//@ S (@C = )80 KT, Ky y1a))2) 2. (3.33)

We have
att (¢ —n) = / T (¢ —n — v)|0k,,, (v)dv

with g(x) = f(x/ K41 + x4). Due to nature of parabolic scaling we have

—n—10

(14 [nl)~ 0o,

1071)2” m—1 e n— 10

BKm ,O(Km+1ﬁ7 ng 17771) = n ( + |77|) — n
. ) = R Kk
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and

We write

a%r—H(C - 77)5}@”“,0(77) - / |T7l—+1g(C - n-—- V>|0Kl+1 (V)BKmH,O(Km—i-lﬁa K72n+177n)dy'

We insert what we obtained above to the right-hand side

—on 1 77+V n 5771710 n
<@l [ 1T~ g -v) (14 ooy,

n+1 n
Km+1Kl+1 K

For fixed n we perform a change of variables y = 7 + v we obtain

(1+1n|) 5”/ I+1 || (10n)me—m—1045
— n |T - C 2 | ( ) n)"e + ”du
Kmill l+1 KI—H

We insert this back to (3.33) to obtain

(4 Ehpaapyac [+ anac
+

1
< / ( / T (¢ — )t
) (2 KK

with p = —(10n)"e 1% 4 5n. We will handle these two factors separately. In the first term
we have a smooth cutoff for a ball of radius K;,;. By reducing decay a little we can pass to

cutoff for a tube of radius K41 and length K7,

l =g e\ Conynen-10410n 1/2
Z/ /|T+1 C H |Kn+1Kn+l (1+ Kl+1 + K2 ) (10m) 10 d ) ) dC

I+1 “*m+1 I+1

where e, is the normal of the cap S, Let @(Hw be the cutoff in this last statement. Then

the integral can be written as

1 / / x —2mifz- (E—70)+ (o> + 7L
S et ]S + Za)e fmetd
K;Zill B U~ K
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We now will return to our initial domain U,. To this end we apply parabolic rescaling to z

by K11, and to &, p by 1/K,,1. Thus we obtain

—n— —2mi|x- -1 1'2 $3 n—HMUn
§Km+13/B(€/ C)/|/U fz+z4)e 2mifz-(C—1)+(|z[*+O(|z]°)) (Cn—1t )]dxlﬁkamH,oT(M)dudC

with U,. — z, denoting the cap arising from U, after scaling, and

1 _
/6}(l+1K7”+]_,07— (M) - W/Bé(H,l,T(/’L/Km+17 /"Ln/K’?anl)
m+1

We have U,, — x, a cap inside U, — z,, and after translating it will be inside U,. We are

now ready to translate to x, through change of variables first in &, 4, and then in z to obtain

< / / [ fla)em2mile @m0l DGl gl 8 ()dpdC
~Y B(g,l) Ua_,_ I+1 8 m+41,071

—2rifz-(E—n z|? z|? n—pMn
5/| 1w R P

with 85, k..., 18 the function By, . o rotated to have direction of the normal of the
cap U,,. This function is a natural smooth tubular cutoff for U, .. Thus we obtained a term
that is similar to the one we started with, except that this time the cap is of smaller size,
and the decay of smooth cutoff is a little slower. But as we started with very fast decay, even
after reaching to scale R~/? we will have enough decay. Thus this final term is acceptable

for us. But, of course, we also need to show that the second factor

£ @ mec — mandc

is also acceptable. We perform change of variables for both variables, we apply parabolic
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rescaling to both n and ¢ by 1/K,,1:

7| Iﬂn! Cn C=T G —
m )" "cb( ; )dnd.
K " /B(g' / m+1 Km+l m+1 ng-;—l

m+1

Both functions inside integrals are approximately constant on tubular domains oriented
along the vector (0,...,0,1). Applying the change of variables that we used above for these
variables after translating caps makes them constant on tubes oriented along e, the normal
of the cap S,. Letting B}’(m+ha denote the first function, and ¢; the second, our integral

becomes

dnd
KTTrL:rll/El /BKm+1a QSZ(C /’7) Ui C

Inside integral is approximately constant over the domain B(&, 1), thus

ng—:ll /BKm.Ha (bl(é 77)

We define
€)= ot [ B alm(E ~ )

This function satisfies two properties that are required for the iteration process. Firstly it
is approximately constant on tubes oriented along e, with radius K41 and length K2
Secondly if B is a box centered at £ with thickness K41 /K41 and length K72 K7, along

€q,, then

][ bus (6)dE < KT,
B

To see this we will use the definition of ¢,,. We have

foutere = oz . [ B atnrcits — myind
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Applying the inverse of translation we used above to both 7, & we get

7| 0l s =T & —
n , dnd
Kﬁlfl][// K Km—‘,—l) ” (Km+1 K Jdnds

where B’ is now a box of the same size as B, oriented along the normal of the translation of

the cap a,. We apply parabolic scaling to both terms to obtain

~ ][ , / (L [n)) =" (& = m)dnd€ = / (L)1 (€ —m)d€)d

where B” is a box of radius K,,11 and length K2 .| oriented along the normal of the cap S,
that emerges from the parabolic scaling. That the inner integral satisfies < K, f_il is clear.
Thus we have the desired property.

Thus we see that second factor is acceptable to us as well. Hence we have repeated the
decomposition succesfully. Further iteration of this decompostion process is much the same
as this one. However we will need to deal with the functions ¢,,, arising at each step. As we
iterate we will get a product of these function, and we need to understand this product. To
investigate this phenomenon, let ¢, and ¢, be such functions arising consecutively, with p
denoting the cap 7,,. So ¢, is constant on boxes 7' dual to the cap 7, while ¢,, is constant
on boxes p' dual to the cap p. Since p arise from the decomposition of 7, if 7 is of size §, p
must have size §/K,,+1 . Let B be a box dual to p;. Since this can be covered with a small
number of K;,1p boxes, we may assume that it is a K;,1p" box We can decompose this box

into p’ boxes B,; since ¢,, is comparable to a constant on a box B, we have

/ ¢4kz/2k 1

/¢4k/2k: 1 4I<:/2k < Z¢4kz/2k 1

with

4k/2k—1
¢Pz

Ba
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denoting the constant to which this function is comparable on B,. Since p denotes the cap

Tm, We have

4k /2k—1 €®
][ ¢Tm 5 Km+1
Bq

Hence we have

Z ¢4k/2k 1

«

/ ¢4k/2k 1< Z/ ¢4k/2k 1][ ¢4k/2k 1
m+12/ /21

<K51+1/ ¢4k/2k 1

S Ko K| Bl

So if B is a box dual to p;, or can be covered with a small number of these boxes we have

4k /2k—1 4k 2k—1 5
][ QIR IR < e et

From here we also understand that the constants of type Kfi 41 incurred during the
decomposition are always inversely proportionate to the size of caps 7, emerging, that is a
smaller cap incurs a larger constant. This means as we iterate our decomposition to reach
size R~'/? we will not encounter excess growth of constants, for dividing into smaller caps

~1/2 while dividing into larger caps incurs smaller

means a smaller number of steps to reach R
constants.

After these explanations we state the final situation after iteration until the scale R~/2.

2k+1 1/2
< pe [ 2k+1\1/2k+1 2}
T/l SR max max ;E(S (@(H PR 4
i = 3.3
€3 2 1/2 ( )
+R n}%x[ > (6b,)?]
pPEE,

1. In the first term Ej is a collection of § caps that has cardinality < 6=2**!, while in the
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second E., are caps of size L <N < RTV2,

2. In the first term 7; C 7 are caps of size §/ Kok 1.

3. We have for B a 7" box, K a p’ box
4k /2k—1 et 4k /2k—1 et
fowmrsrt, f g g
B K
4. The functions b2**! have the form

2k+1
(3 / T2 FE = Q1Y B iy, ()

where we have, for a unit normal e,, of the cap 7;,

1 E—E&-en]l | |§-er )—(10n>5

Bkoor foim 0 *
Ko /6.7 (§) = Kﬂ;:ll(;ml( Kok y1/0 K3y /0?

Similarly

1 -6 (10n)®
€)= [1T,0(6 = NBaOe, Pl = mp (14 B2 By 000”

We will deal with the terms in (3.34) separately. We start with the first term.

3.3.1 Estimates on the multilinear term

4k+4-2

We will estimate this term first in the space L?, with ¢ = ==,

which is the sharp exponent

given for 2k + 1 level multilinearity by the multilinear method -which is better than the one

given by rescaling.- Then we will estimate it in L% swhich is the final exponent that our

work in section 3.2 gives. We note that 4k+2 < Z’Z—ff. We will then interpolate between these
exponents to improve ii”
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We pick an arbitrary acceptable Ej, and consider

2k+1

< [ 3 I sy

TeEs i=1

1/2

The terms bzf“ come from small caps inside a larger one 7. By rescaling this larger cap to

scale 1 we can obtain some gain. We will illustrate this first.
2%+1 2%+1 hrayn
2k-+1)2/2k 1/2k+1 4k+2/2
/BR Hl b " / / H /|TTzf 5 C |§/K2k+1/6K2k+1/6,Ti(C)dc) dé-
From this by the Holder inequality
2k+1

S_,/ /lTnfg C)’l/kﬂK2k+1éTz(C)dC) 6
=1

2k+1

/ /H |Trzf€ Cl)|1/kﬁK2k+15n(Cz>dC1 dg2k+1) §

Then using Fubini’s theorem
2k+1 2%k+1
/ / T 17 for(€ = )| V5de) HBKMTZ GG - dGops.
B

R =1

Here f,, are modulations of f. We rescale the inner integral to obtain functions |g.,| < 1
and caps oy, -+ , a1 with size 1/Ko,y1, and the linear independence condition. To these

multilinear estimates apply and we obtain

for the inner integral for any choice of (;. Since outer terms are just smooth cutoffs used to
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average over certain domains the overall term too satisfies
3k—1 ped
S OTERS.

With this at hand we proceed to our estimates. First will come simpler and coarser
estimates, and the we will refine these using pigeonholing arguments. These coarser estimates
will not be directly utilized for the final result, but we will illustrate the arguments that

enable the finer estimates in proving them.

T 2t+1y1/26+1)2] /2 = e 2k 1y 1/2k4 1) 2k-+1/K] B/ KA
[ (T ety < g | 3 (oo (T p2etyvaseny ]
TEESs i=1 TEES i=1
2k+1
S [ 3 (o[ ooty )

TEES

At this point 7 ranges over a full partition into §- caps of S, and thus does not depend on
any particular choice of Ej. Let B stand for 7/ boxes. Since 2! are constant on 7/ boxes,

we can write

2k+1 2%+1
/ (ng(H b3k+1)1/2k+1>4’3z2 < Z(H b2k+1)% (/ 22k
Br plel B i=1 B

2k+1

2k+1 ][ ¢4k+2/2k
(3.35)

<3l
sk [ <H e

R =1
< Re363k—%
Since a full partition of S into § caps has cardinality ~ § =¥+, we have
2%h+1

2 _ _ _
1[0 T w2ty ) e, < RS8R = gt
L™ 2k (Bgr) ™

Te€ES i=1
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Exactly same steps together with the fact bff“ < 0" gives

2k+1

1/2
2k+1\1/2k+1)2 < pe
132 Gn (T o)) sy, SR

TEE§ =1

We now proceed to finer estimates. To this end we will perform pigeonholing arguments.
We note that use of pigeonholing is very standard in non-endpoint restriction estimates; see

for example [28],[6]. We first set
2k+1 .
1/2k+1
oo = (] o)

=1

Let 0 < A <1 be a dyadic number, and g, x = g-X{g,~rsn-1}- Then we have

8k+2 8k+2  2k+41 2k+1 5 1 3k—1 1

4k—1 n—1 —— — =7 k € EAk—D W—"—?)k_E
/ gt < ()\(5 )4k: 17 % 9rx S R \F@k=T) § k(4k—1) )
BR BR

We use this and the techniques introduced for coarser estimates above to obtain

1

1 4k— 1
[ (T 0] < et
Br 7

TeEs

We do one more pigeonholing. Let 1 < u < oo be dyadic, and decompose

¢T - Z ¢T,u
m

with

¢T,,LL = (b‘rX{(i)TN,u}? ¢T,1 = ¢TX{¢7—§1}‘

Then we have on 7 boxes B

8k+2 2 4k 4 2
qg;}fu—l < M_(Qk—l)(zlk—l) d)‘fQ‘:k!L_l 5 R¢ M_(Qk—l)(4k—1)‘
B B
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Using this and previous techniques

4k+1 % 3 1 _ 1
[/ ( E (gbﬂugﬂ)\)?)uq] S Re¢ )\k(8k+2)lu (2k—1)(4k+1) | (3.36)
Br

TEESs

We will estimate the left hand side above using a different method. Clearly

( Z (¢T,ugT,A)2)1/2 < M( Z 972.7)\)1/2.

TEESs T

Here 7 ranges over a full partition of the surface S into caps of size §. We will write the
right hand side as convolutions of measures with tubes, to which using convexity we will
apply the Kakeya maximal function estimates. We know that separation between directions
of caps 7 and 7; is small, and that bzf“ are constant on boxes of size larger than the size of
7'. Thus

2%k+111/2k+1 2%k+1\1/2k+1 3k+1

(D) PREE (2R )YPRL s (555 ) (3.37)

with x,, denoting the characteristic function of the tube 7. Hence for £ € Br we have

2k+1

gr(é) 5 / ( H (b?_:c-&-l)l/%—i—l « 53k+1XT’)(C)(53k+1XT’>(£ . C)d(

i=1

- /B (O ) (€ — O)de

From (3.37) and the definition of g, we can write

2 2
gT,/\ 5 w X{wznflfy)\&nfl}.
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1

The extra n~'° on the right hand side above allows us to write

G2, (6) < 5 / (WX oz 13717 (€ — Q)

Bsgr

— 53k+1 /(WQX{wzn15)\5n1}XB3R)(C)XT/ (é - g)dg

We want to replace the measure

(WQX{wZn*15)\5”*1}XB3R) (C)dC

with a constant multiple of a probability measure with support contained in Bsg, from
which using convexity we will pass to the Kakeya maximal function. This can be done by

estimating the total mass of this measure. By Chebyshev’s inequality

4k+2

1
/WQX{wzn—lmn—l}XBgR(f)df5 (W)l/k/ w 2 (§)d§
Bsr

which can be expanded as

1 2k+1 2k+1

S (W)l/k/ (/B (T 82 — ) hde) ( TT %X ) ()G - .- dGapn

3R =1 i=1
ety — L c3k—3
< RENTR T3,

Having estimated the total mass of the measure, we can replace it by this quantity multiplied

by a probability measure supported in Bsr. Thus

G2, S RGN / oo l€ = Q) (€)
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with du, being the probability measure. From this we have

1O (Grpgr)?) 2l spse S R pd®™ A~ 1/%”2 Xor(€ = G)d(G)) Nl
L

4k—1 (BR)
TeFs (

Using the Holder inequality we have

SR N [l - GauGIE,

Let’s enumerate the range of 7 from 1 to [. We observe that

5 [ xete - i) = [ (o6~ 6ty

Thus from the Holder inequality we have

. /
< R st / 13w (€ = Ol g (@) (@)

If we can obtain an estimate for

“ ZXT/(é - CT)”%

independent of the choice of (,, we can use the fact that the measures concerned are proba-
bility measures. We will obtain such an estimate via the Kakeya maximal function estimates.
Here there are two different estimates, one is due to Wolff and works better for dimensions
n < 8, the other by Katz-Tao and is better when n > 9. We will thus apply both estimates.

Wolft’s estimate for d-separated d-tubes T', that is, tubes of radius ¢ and length 1, gives
1D xrllaze S 87557,
T

with the minus after the exponent denoting an arbitrarily small deduction from it. Of course
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the constant hidden in 2 notation depends on this deduction. We clearly have the

estimate
IS vl S 1
T

Interpolating these two estimates yields
Jo—
1D xrllawes S 6735
4k—1
T

On the other hand Katz-Tao estimate gives
3k—1
nts SO AT
1D xrllanes S 655
T

Interpolating this with L' estimate gives

I xrllases S 07365
T

We rescale these estimates according to the size of our tubes, to obtain

—24k2 46k 4 =8k42

H ZXT“:Z% 5 0 4k+1 4k+1
T

from the Wolff estimate and,

—24k2 16k 4 618k

H ZXTH% S EGR! 28k+7
T

trivial

from the Katz-Tao estimate. We now use these estimates, and the fact that the measures

above are probability measures. From the Wolff estimate we get

1/2 Gk
H( Z(Cbr,ugr)\)z) / || 8k+2 5 R3M§8k+2/\ 1/2k

L2k—1(B
LB (Br)
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and from the Katz-Tao estimate we get

1Y Grpgen)®) 2l s S R pois A1/, (3.39)

Lik—1 (B
TEESs ( R)

For k = 2, (3.38) is better, and in this case we can write

1/2 B3 o1l 3 ol
1O @rnge)) s ) S BRSNS REpsaA—1, (3.40)

TEESs

and we combine this with previous estimates to get

1/2 3. 1 -
10D (Grngrn)®) ll e, S R min(uds A3/, N30, 712T)

TeEs

< R,
Let \g =~ R0 ;) ~ R be two dyadic numbers. Then we may write

13 0r9e ) 3 (5 < 20 2N Gragn)) Pl

TEESs A<Ao M TEESs

2.2 I Z(@,MEIT,A)Q)UZ”L%BR)

A>Ng 1> o TEES

DI IO IS ke I

A>Ao pu<po TEES

The first term in the sum above can be shown to satisfy < R\, using (3.36), while the
5 1

second term is bounded by < R¢ o 27 . Clearly both of these terms satisfy < R<6s5. The

last term only has about C'log, R terms, thus it, too, is dominated by the same expression.

Hence

1/2 2o 1
H( Z ((ngT)Q) HL%(BR) S R §o2s.

TEESs
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Since we also have

1Y @9 Pl 5,y S BEGT0

T€Es

Interpolation yields an improvement of

5

1764

We turn to k£ > 3 case. In this case (3.39) is better, and

e (D (6rugrn)?) sz, S R min(ua B AR AT )
Eg feBs L (Br)

< Re mln(u528k+7)\ /\k(8k+2),u (2k— 1)(4k+1))
3 5k—4
< RE § @8k+7)(skZ—2k) _
Then from the same arguments, the improvement improvement is

(5k — 4)(2k + 1)
(4k2 — k)(28k + 7)(4k2 — k)’

3.3.2 Estimates on the Linear Term

In this term the scale is about R~*/2, and this permits use of the more direct method of
conservation of mass presented in Lemma 1. We will combine this method with the methods

already introduced above.

1/2 _ok-1 wnn 22
I [Z(Cbpbp)z] ||L%(BR) < R2(4;§++2) [zp: /BR(qubp)’;;r} Ttz

T€E
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In the last term p ranges over a partition into caps of size 7 of all of S. We use the technique

n (3.35) to obtain
_2k_
5 Rz(f;:;iz)—l—e‘l[z/ (bp)zll%z] 4k+2'
p UBr

3k—1/2+¢€

Due to size of our caps we have b, S R~ . Using this we have

< R2(4k++2)+4k+2 +e E / 4k+2
Br

We now use the conservation of mass property. To this end we expand

/B (b,(€))d€ < /B ( / T, (€ — OBy, (O)dc) de
< / ( /B T, (€ — O)[2dE) By ().

To the inner integral we apply conservation of mass. We have

/ 16—

Thus what we have
2k

[;/BR(bp(f))zdf} 2 < Ruisate

Hence we finally get

1 2
7"'6
5 R20k+2) .

This time we will obtain estimates in the space LT first without using the Kakeya

maximal function estimate and then using it. We decompose ¢, into ¢, , exactly as before.
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Then
1/2 2k—1 8k+2 gk
2 +2
1] Gnbo?] Il e 2, < BEF Z/ (6,4b,) 353
pEE
8k42 | 4k—1
< R8k+2+6 L T k-1 (dk+1) 1)(4k+1) E / 4k+1 8k+2

2k— 1 1
< Rsk+2 +irey e p CEDERTD l)(4k+1) E / 8k+2
Br

1
< R62/J/_4(2k71)(4k+1) .

Now we will employ the Kakeya maximal function bounds. We will follow exactly the same

procedure as in the multilinear case. Thus we first write

b b % 73k+1X

Expanding the right hand side and using the Holder inequality, we have for £ € Bgr

(b,)2(€) < A / (0,2 (€ — O)dC = 4+ / (b)) (€ — Qe

Baor

_ / (b, (O) X ()X (€ — C)dC.

We consider (b,)*({)xBsx(¢)d¢ as a measure, and we want to replace it with a probability

measure supported in Bsr. Thus we wish to estimate its total mass. From conservation of

/ ROREL

(b,)2(€) < B3I+ / 3o (€ = O (O).

mass we have

Hence

141



Thus

1/2 1/2
2 2
I nte] Wt gy < 0]
p p

1-3k

a 1/2
SR Z T pusup || E Xp/('—Cp)H@
Cp p 4k—1

2 2
1-3k | 124k%—3k—2 | 3 _1-3k_ 1 (24k®>—6k_ 6-18k ) 3
5 min(R 3 taT a1 1€ 2 +4( 4k+1 +28k+7)+€ )M

with different powers of R coming from different Kakeya estimates introduced before. Now
for k = 2 the first is better, and comparison with the other method, and interpolation shows

that improvement is again

5

1764

For k > 3 the second is better, and we still have the same improvement:

(5k — 4)(2k + 1)
(4K — k) (28k + 7)(4k2 — k)’

As from both linear and multilinear cases we obtain the same improvements we have

Theorem 2.
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