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Abstract

This thesis is concerned with the restriction theory of the Fourier transform. We prove two

restriction estimates for the Fourier transform. The first is a bilinear estimate for the light

cone when the exponents are on a critical line. This extends results proven by Wolff, Tao

and Lee-Vargas. The second result is a linear restriction estimate for surfaces with positive

Gaussian curvature that improves over estimates proven by Bourgain and Guth, and gives

the best known exponents for the well-known restriction conjecture for dimensions that are

multiples of three.
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Chapter 1

Introduction

1.1 Overview

The Fourier transform of f ∈ L1(Rn) is defined by

f̂(ξ) =

∫
Rn
f(x)e−2πix·ξdx.

The Plancherel theorem, which is valid a priori for f ∈ L1(Rn) ∩ L2(Rn),

‖f‖2 = ‖f̂‖2,

allows us to extend the Fourier transform to L2(Rn) functions. Since f ∈ Lp(Rn), 1 < p < 2,

can be decomposed into two functions f1 ∈ L1(Rn), f2 ∈ L2(Rn) the Fourier transform can

also be defined for such functions.

We note that if f ∈ L1(Rn), then the Fourier transform f̂ is continuous, so can be

meaningfully restricted to any measure zero set, while for p = 2, f̂ can be an arbitrary

function in L2(Rn), and thus is not well defined on measure zero sets. The restriction

problem is the question of determining 1 ≤ p < 2 for which the Fourier transform f̂ of any

Lp(Rn) function f , can be restricted to hypersurfaces. It is easy to see that restriction to

flat surfaces is possible only for p = 1. For example, for a compactly supported non-negative
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function φ defined on Rn−1, the Fourier transform of

f(x) :=
φ(x2, . . . , xn)

1 + |x1|

is infinite on every point of the hyperplane {ξ ∈ Rn : ξ1 = 0}. However it was observed

by Stein in 1967 that for curved hypersurfaces restriction for some p > 1 is possible, and

determining the exact range of p depending on the curved surface is of interest.

Modern formulation of the restriction problem is as follows: let S ∈ Rn be a smooth

compact hypersurface, and let σ be a measure on this surface with essentially bounded

Radon-Nikodym derivative with respect to the surface measure. If

‖f̂‖Lq(S,dσ) ≤ Cp,q,S,σ‖f‖Lp(Rn) (1.1)

holds for all functions of the Schwartz class S(Rn), then we say that the linear restriction

inequality RS,dσ(p → q) holds. The following dual formulation is often used to study the

problem. Let f ∈ L1(dσ) be a function on S, and define the Fourier transform f̂dσ by

f̂dσ(ξ) :=

∫
S

f(x)e−2πix·ξdσ(x).

If the inequality

‖f̂dσ‖Lq(Rn) ≤ Cp,q,S,σ‖f‖Lp(S,dσ) (1.2)

holds for all smooth functions on S, then we say that the adjoint linear restriction inequal-

ity R∗S,dσ(p → q) holds. This problem is related to some other well-known conjectures in

harmonic analysis and partial differential equations, such as the Bochner-Riesz conjecture,

the Kakeya conjecture, and the local smoothing conjecture. It has been studied particularly

intensively for compact subsets of the paraboloid

{(x1, . . . , xn) ∈ Rn : xn = x2
1 + . . .+ x2

n−1}, (1.3)
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the sphere

{x ∈ Rn : |x| = 1}, (1.4)

and the light cone

{(x1, . . . , xn) ∈ Rn : xn = (x2
1 + . . .+ x2

n−1)1/2}. (1.5)

The first two of these are representatives of elliptic surfaces, that is surfaces of positive

Gaussian curvature, and most of the time what is true for them can be generalized to

elliptic surfaces. The last is an example of a surface with one vanishing principal curvature.

The light cone, of course, is flat for n = 2, so it is considered only for Rn, n ≥ 3.

There are two basic counterexamples that put limitations on the range of exponents for

which R∗S,dσ(p → q) holds. The first comes from the decay rate at infinity of the Fourier

transform of surface measures. For surface measures of elliptic surfaces this decay is like

(1 + |x|) 1−n
2 , while for the light cone it is like (1 + |x|) 2−n

2 . Therefore taking f ≡ 1 on the

surface, we see that q > 2n
n−1

is needed to make |f̂dσ|q integrable for the case of elliptic

surfaces. For the light cone the range is q > 2n
n−2

.

The second counterexample is called Knapp example. We describe this for elliptic sur-

faces, for the light cone it is only slightly different. We take a cap cε of radius comparable to

ε on the surface and a function f ≡ 1 on this cap. The ellipticity of the surface implies that

cε can be enclosed in a disk of radius comparable to ε and thickness ε2. Since cε has a surface

area comparable to εn−1, the magnitude of f̂dσ is comparable to εn−1 on the tube dual to

the disk, that is, a tube centered at the origin with radius ε−1 and length ε−2 oriented in the

direction of the unit normal of the surface at a point belonging to the cap. Then the left

hand side of (1.2) satisfies & ε−
n+1
q · εn−1, while the right hand side is comparable to ε

n−1
p .

This gives the necessary condition

n+ 1

q
≤ (n− 1)(1− 1

p
). (1.6)
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Figure 1.1: The Knapp example for the paraboloid

For the light cone we lengthen the cap in the null direction so that it has length compa-

rable to 1. Then this will be enclosed in a box with dimensions comparable to

ε× . . .× ε︸ ︷︷ ︸
n−2 times

×ε2 × 1

with length 1 in the null direction, ε2 in the normal direction, and ε in all other directions.

The box dual to this has dimensions comparable to

ε−1 × . . .× ε−1︸ ︷︷ ︸
n−2 times

×ε−2 × 1.

Therefore, a similar calculation gives this time

n

q
≤ (n− 2)(1− 1

p
). (1.7)
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Figure 1.2: The Knapp example for the light cone

The restriction problem R∗S,dσ(p → q) is particularly important for two values of p. In

the case p = 2, the inequalities R∗S,dσ(p→ q) are known as the Strichartz estimates and they

have many applications in partial differential equations. The case p =∞ is known to imply

all other cases for S a sphere, and also serves as a good measure of progress for other surfaces;

see [30]. We will also concentrate on these two cases. For p = 2, the necessary conditions

stated above give q ≥ 2n+2
n−1

for elliptic surfaces, and q ≥ 2n
n−2

for the light cone. That these

conditions are also sufficient follows from the work of Tomas and Stein; see [32]. When

p = ∞, the necessary conditions coming from the Knapp examples are vacuous, and the

problem is known as the restriction conjecture. Notice that since for a set of finite measure

‖ · ‖2 norm of a function f can be dominated by its ‖ · ‖∞ norm, the resolution of p = 2 case

already implies a partial result for the case p =∞. This is far from the conjectured range of

q, and as opposed to the p = 2 case this conjecture is still wide open for elliptic surfaces in

dimensions three and higher, and for the light cone in dimensions five and higher. However

apart from these already resolved cases there has been significant progress, on which we will

further elaborate in section 1.2.
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Before ending this section we will talk about bilinear and multilinear restriction estimates

that were utilized, apart from other applications, to obtain linear restriction estimates. We

first define the concept of transversality of hypersurfaces that will be needed to describe

these estimates. Let Si, 1 ≤ i ≤ m be hypersurfaces in Rn for m ≤ n. Let ξi ∈ Si be

arbitrary points on these subsets, and ξ′i be unit normal vectors at these points. If we have

|ξ′1 ∧ . . . ∧ ξ′m| > c

for a positive constant c regardless of choice of the points ξi ∈ Si we will call the surfaces Si

transversal.

Consider an estimate of the following type for two compact subsets S1, S2 of non-empty

interior of S, with S either the light cone or an elliptic surface:

‖f̂1dσ1f̂2dσ2‖Lq(Rn) ≤ Cp,q,Si,σi‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ2). (1.8)

Here σ1, σ2 are the surface measures of S1, S2. This type of restriction estimates are called

bilinear estimates. If we choose S1, S2 to be the same, this inequality is the same as (1.2),

and the inequality holds if and only if q ≥ n+1
n−1

. However, if these subsets are transversal,

we realize that the Knapp examples constructed above gives exponents lower than n+1
n−1

, and

this raises the possibility of actually proving this type of estimates for q lower than n+1
n−1

.

Such an estimate was first observed by Carleson and Sjölin, who proved that (1.8) holds for

q ≥ 2 regardless of the dimension n if the surfaces S1, S2 are transversal, see [7]. Further, for

such surfaces S1, S2 Klainerman and Machedon conjectured that q ≥ n+2
n

is necessary and

sufficient. The condition on q comes from a modification of the Knapp examples, that we

now describe for elliptic surfaces.

If we take just one cap from each surface of size ε and take fi ≡ 1, i = 1, 2, the functions

|f̂1dσ|, |f̂2dσ| are comparable to εn−1 on corresponding dual tubes. Therefore, the place
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where we can guarantee that their product is comparable to ε2n−2 is the intersection of these

tubes. Since the tubes are transversal the intersection has measure comparable to only ε−n.

One can further improve this example by taking more than one cap from each surface. After

taking one cap from each side, take about ε−1 further caps from each side with normals

lying in the plane defined by the normals of the two caps we first took. Take fi to be

sum of nonnegative bump functions supported on these caps. The expressions f̂idσi will be

comparable to εn−1 on two ends of bushes comprised by dual tubes. If we modulate f2 so

that one end of each bush intersect, |f̂1dσf̂2dσ| will be comparable to ε2n−2 on a box shaped

region of dimensions

ε−2 × ε−2 × ε−1 × . . .× ε−1,

and this gives the condition q ≥ n+2
n

as conjectured by Klainerman and Machedon. For the

light cone the example is simpler. The caps will be aligned in the null direction, and by

appropriately modulating the bump functions dual tubes from both surfaces will comprise

a box of size comparable to the one for the elliptic case. We thus get exactly the same

exponent.

Bilinear restriction estimates suggest that higher levels of transversality might lead to

even better exponents, and encourage the study of multilinear restriction estimates. In 2006

Bennett, Carbery and Tao, [2], proved the following result in this direction. Fix 2 ≤ m ≤ n.

Let Si ∈ Rn, 1 ≤ i ≤ m be smooth, compact hypersurfaces whose parametrizations Σi :

Ui → Si from subsets Ui of Rn−1 satisfy the smoothness condition

‖Σi‖C2(Ui) ≤ A.

Also assume that they are transverse, that is, for any points, xi ∈ Si, unit normals x′i satisfy
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Figure 1.3: The double ruling example for the paraboloid

Figure 1.4: The double ruling example for the light cone
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|x′1 ∧ . . . ∧ x′m| ≥ B. We then have

‖
m∏
i=1

f̂idσi‖Lq(Rn) ≤ Cq,Si,σi

m∏
i=1

‖fi‖L2(Si) (1.9)

for q > 2
m−1

. We remark that we imposed no curvature condition, and without such an

assumption this is sharp except for the endpoint. Below we describe the counterexample.

Let Si be a compact rectangular subset of a hyperplane with unit normal

(0, . . . , 1︸︷︷︸
ith place

, . . . , 0), 1 ≤ i ≤ m

with ε sidelength in the first m directions except ith, and 1 on the last n − m directions.

Thus if we consider Rn = Rm×Rn−m, in directions normal to Rm it has length 1. Let fi ≡ 1

on Si. Then |
∏m

i=1 f̂idσi| is comparable to εm·(m−1) on a box with sidelength comparable to

ε−1 in directions lying in Rm, and to 1 for those normal to Rm. So the left hand side of (1.9)

is comparable to εm
2−m−m/q and the right is to ε(m

2−m)/2. This implies that the theorem

above is optimal except the endpoint.

1.2 History of the Progress

In this section we review the history of progress on problems introduced in the previous

section. We start with the restriction conjecture R∗S,dσ(∞→ q), q ≥ 2n
n−1

, for S the sphere

and the paraboloid. Many of these results were proved in the more general context of the

elliptic surfaces or can be extended in a straightforward way to them. In two dimensions

the conjecture asserts that q > 4, and this was settled by Fefferman and Stein in 1970; see

[10]. In dimension three, the conjectured range is q > 3, and as we mentioned the Tomas-

Stein theorem implies the conjecture for q ≥ 4. Then in 1991, Bourgain lowered this to

q > 4 − 2/15; see [3]. This is particularly important, as 4 is a very special exponent for

which L2 based methods are applicable. Wolff, in [37], further improved this to 4 − 2/11.
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Tao, Vargas and Vega, in [25], introduced the use of bilinear estimates of the type (1.8), and

proved that q > 4 − 2/9 suffices. Tao and Vargas further lowered this to 4 − 2/7; see [26].

In [29], Tao proved q > 10/3, this represents the best range one can obtain using L2 based

bilinear estimates. Finally, using multilinear estimates, Bourgain and Guth, [6], obtained the

range q > 33/10. In higher dimensions the Tomas-Stein theorem gives q ≥ (2n+ 2)/(n− 1).

Bourgain, [3], showed that q ≥ (2n + 2)/(n − 1) − εn is possible. Wolff used his improved

Kakeya estimates to lower this to (2n2 + n+ 6)/(n2 + n− 1); see [37]. In [29] Tao improved

this to (2n+ 2)/n. Finally, in [6], Bourgain and Guth improved this to

q >
8n+ 6

4n− 3
if n ≡ 0 mod 3

q >
2n+ 1

n− 1
if n ≡ 1 mod 3

q >
4n+ 4

2n− 1
if n ≡ 2 mod 3.

(1.10)

For the cone case the conjecture is, of course, meaningful for n ≥ 3, as for n = 2 the cone

is flat. First progress in this case is the well known work, [24], of Strichartz, which gives

q ≥ 2n/(n− 2). For n = 3 the conjecture was settled fully by Barcelo in [1], and for n = 4

by Wolff in [34]. In the same work Wolff also showed q > 2n+4
n

for n ≥ 5. This represents

the best exponent up to date.

We now review the progress on the Klainerman-Machedon conjecture on the L2 based

bilinear restriction estimates. This problem, as opposed to the linear restriction conjecture,

is now fully resolved. As we have mentioned the first theorem of the type (1.8) is the

Carleson-Sjölin theorem, [7], which proves that q ≥ 2 suffices for any dimension n ≥ 2. This

holds without any curvature assumption, as in the Bennett-Carbery-Tao result. Also it is

sharp for n = 2. For n ≥ 3, of course, we have a better range for elliptic hypersurfaces and

the light cone. For the elliptic surfaces q ≥ (n+ 1)/(n− 1) follows from the work of Tomas

and Stein. For n > 3 this improves upon the Carleson-Sjölin work, but for n = 3 gives the

same exponent. In this case Tao, Vargas and Vega, [25], proved that q ≥ 2−5/69. Later Tao
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and Vargas, [26], further reduced this to q ≥ 2− 2/17. In 2003, Tao proved the conjecture in

all dimensions, except for the endpoint; see [29]. The endpoint is recently proved by Jungjin

Lee in [14].

For the light cone the exponent given by Strichartz’s work, [24], is q ≥ n/(n − 2). For

n = 3, Bourgain, [5], improved this to q ≥ 2−13/2048. Tao and Vargas, [26], further lowered

this to 2− 8/121. Finally Wolff proved the conjecture without the endpoint in [34]. In this

work he invented the methods that enabled progress also in the elliptic case. The endpoint

was proved by Tao in [28].

1.3 Statement of Results

In this section we will introduce the main results of this thesis. Our first result is an estimate

of the type (1.8). But to state it we need some further notation.

We define the mixed Lebesgue norms as follows

‖f‖LrLq :=
(∫ ( ∫

|f(x1, . . . , xn)|qdx1 . . . dxn−1

) r
q dxn

) 1
r
.

Inequalities concerning these norms are useful in the study of dispersive PDE. This is because

of the fact that the Fourier transforms of solutions of the Schrödinger equation and the wave

equation are distributions supported respectively on the paraboloid and the light cone. This

close relation between the restriction estimates and PDE provides incentive for extending

these estimates to the mixed Lebesgue norms, treating time and space variables separately.

Our first estimate is a result in this direction.

Theorem 1 Let S1, S2 be compact transverse subsets of the light cone, and let σ1, σ2 be

measures on these surfaces that has essentially bounded Radon-Nikodym derivatives with

respect to the canonical measures of S1, S2. Let fi ∈ L2(Si, dσi), i = 1, 2. Then for 1 ≤
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q, r ≤ 2 with 1
r
≤ n

2
(1− 1

p
) and 1

q
≤ min(1, n

4
) we have

‖f̂1dσ1f̂2dσ2‖LrLq ≤ Cq,r,Si,σi‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ2). (1.11)

Two counterexamples that give conditions 1
r
≤ n

2
(1 − 1

p
), 1

q
≤ min(1, n

4
) will be described

in the next chapter. The work of Lee and Vargas, proved this for 1
r
< n

2
(1 − 1

p
). Thus our

result extends this to the endline.

Our second result is on the restriction conjecture.

Theorem 2 Let k ≥ 2 be an integer, and let n = 3k. Let S ⊂ Rn be a compact subset of

an elliptic surface, and f ∈ L∞(S, dσ), where σ is a measure on the surface with essentially

bounded Radon-Nikodym derivative with respect to the canonical measure of the surface.

Then we have

‖f̂dσ‖Lq ≤ Cq,S,σ‖f‖∞

for

q >
18

7
− 2

735
if k = 2

q >
8k + 2

4k − 1
− (5k − 4)(2k + 1)

(4k2 − k)(28k + 7)(4k2 − k)
if k > 2.

Here observe that minus terms represent improvements over Bourgain-Guth exponents.
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Chapter 2

Endline bilinear restriction estimates
for the lightcone

This chapter will be dedicated to the proof of Theorem 1.

2.1 Counterexamples and Simplifications

This first section of the proof will describe the counterexamples that show sharpness of the

result. We will also reformulate and simplify the result, introduce some notation that we

will use in the rest of the proof, and give an overview of the proof.

We start with the counterexamples. The condition 1
r
≤ n

2
(1 − 1

p
) comes actually from

the modification of the Knapp example described in the first section of the first chapter.

If we calculate the left hand side of (1.11) with this example we will obtain this condition.

The condition 1
q
≤ min(1, n

4
), on the other hand, needs a new construction. First notice

that since we already assume q ≥ 1, this condition makes sense only for n = 3, and it thus

suffice to describe it in that case. Let S1 be a strip of size ε× 1 with length 1 being in the

null direction, on the light cone. Consider the intersection of the light cone with a slab of

thickness ε2 orthogonal to a normal of S1 that is at an appropriate distance from the origin.

We define S2 to be the part of the intersection that lies right in front of S1 for an angular

width of π/8. Let fi ≡ 1 on Si, i = 1, 2. We see that |f̂1dσ1| is comparable to ε on the

box dual to S1 centered at the origin , and we have |f̂2dσ2| comparable to ε2 in a box that

lies inside that dual, with dimensions comparable to 1× 1× ε−2. Thus the left hand side of

the inequality is comparable to ε3−2/r while the right is to ε3/2. Comparing these gives the

desired result.
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We now reformulate and simplify Theorem 1. Let S1, S2 be given as in the theorem and

let U1, U2 be the projections of these onto Rn−1×{0} hyperplane. Let fi be square integrable

functions defined respectively on Ui. Define

TUifi(ξ) :=

∫
U1

fi(x)e−2πi(x·ξ+|x|·ξn)dx

for i = 1, 2 and ξ = (ξ, ξn) ∈ Rn. Then proving the inequality

‖TU1f1TU2f2‖LqLr ≤ Cq,r,U1,U2‖f1‖L2(U1)‖f2‖L2(U2) (2.1)

for (q, r) satisfying the conditions of Theorem 1, will clearly imply that theorem. To simplify

the geometric picture we will take

U1 := {x ∈ Rn−1 : ∠(x, (1, 0, . . . , 0)) ≤ π/8, 1 ≤ xn−1 ≤ 2},

U2 := {x ∈ Rn−1 : ∠(x, (−1, 0, . . . , 0)) ≤ π/8, 1 ≤ xn−1 ≤ 2}.

The same proof, with different constants, works for other domains as well. To prove our

estimate we will need the following larger domains:

U ′1 := {x ∈ Rn−1 : ∠(x, (1, 0, . . . , 0)) ≤ π/4, 1/2 ≤ xn−1 ≤ 4},

U ′2 := {x ∈ Rn−1 : ∠(x, (−1, 0, . . . , 0)) ≤ π/4, 1/2 ≤ xn−1 ≤ 4}.

We introduce the modified versions of TUi as well. Let ai be smooth, real-valued functions

with supports contained in U ′i which are identically 1 on Ui. Then

T ′U ′ifi(ξ) :=

∫
ai(x)fi(x)e−2πi(x·ξ+|x|·ξn)dx.

Notice that if fi is supported inside Ui, then T ′U ′i
is no different than TUi . Henceforth we will
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use Ti to denote T ′U ′i
.

We can also simplify the conditions on exponents. Since for the non-endline cases this

result was proved in [19], proving it for the endline is enough. To further simplify, we

will introduce a property of the operators Ti, that is called conservation of mass in PDE

literature. We have the following lemma

Lemma 1 Let U ∈ Rn−1, and let f ∈ L2(U). Let T be an operator defined by

Tf(ξ) =

∫
U

f(x)e−2πi(x·ξ+φ(x)ξn)dx.

for a smooth function φ on U . Then we have

∫
|Tf(ξ, ξn)|2dξ = ‖f‖2

2

Proof. The proof uses the Plancherel theorem. We have

∫
|Tf(ξ, ξn)|2dξ =

∫ ∣∣ ∫
U

f(x)e−2πi(x·ξ+φ(x)·ξn)dx
∣∣2dξ

=

∫ ∣∣ ∫
U

(
f(x)e−2πiφ(x)·ξn

)
e−2πix·ξdx

∣∣2dξ. (2.2)

This last integral is actually the Fourier transform of the function f(x)e−2πiφ(x)·ξn . Thus

using Plancherel’s theorem we have

= ‖ ̂f(x)e−2πiφ(x)·ξn‖2
2 = ‖f(x)e−2πiφ(x)·ξn‖2

2 = ‖f‖2
2.

We shall utilize this lemma together with the following simple application of Cauchy-

15



Schwarz inequality

‖T1f1T2f2‖L∞L1 = sup
ξn

∫
|T1f1(ξ, ξn)T2f2(ξ, ξn)|dξ

≤ sup
ξn

( ∫
|T1f1(ξ, ξn)|2dξ

)1/2( ∫ |T2f2(ξ, ξn)|2dξ
)1/2

.

(2.3)

Thus one concludes

‖T1f1T2f2‖L∞L1 ≤ ‖f1‖2‖f2‖2. (2.4)

If Theorem 1 is correct for a pair of (q, r) with 1
q
< min(1, n

4
), 1

q
= n

2
(1 − 1

r
), interpolating

with what we have above gives Theorem 1 for all points on the line between (1,∞) and (q, r).

Hence it is enough to prove our theorem for (q, r) with q arbitrarily close to min(1, n
4
). Thus

for each n ≥ 3 we fix

0 < ε <
1

100n
, (2.5)

and let 1 ≤ q, r ≤ ∞ be such that

1

q
= min(1,

n

4
)− ε, 1

q
=
n

2
(1− 1

r
). (2.6)

Our requirement on ε will be of use below.

Finally we also note that it is enough to prove our theorem for ‖f1‖2 = ‖f2‖2 = 1. We

will use this especially in Section 2.4.

Before proceeding further with simplifications we introduce some fixed constants and

notation that will be utilized. We will use N to denote the integer 2n
10

, and C0 for 2bN/εc
100

.

Thus N, 1/ε are much smaller than C0. We also introduce a still larger constant C1 := 2C0
10

.

As before C will denote various constants, and dependencies of it will be written as subscripts

when necessary. The size of C will in general be rather small such as 10n, and it will never

exceed 2N
15

. As N, ε depend only on the dimension and (q, r), when C depends on these we

will not keep writing this dependency. The choice of C,C0, C1 is so that C < C0 < C1, and
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each of these is much larger than the constants smaller than it. We introduce the notation

A . B to mean A ≤ CB for C as described above, and A ≈ B for A . B and B . A.

Standard method of exploiting transversality for the light cone is to divide functions

fi, i = 1, 2 into strips so that their Fourier transforms will concentrate on transversal

tubes. But this decomposition has to be done with smooth cutoffs which enlarge support

of the function concerned. In our case this may take support of fi beyond Ui. We thus

have introduced U ′i , and will introduce a quantity that we will call margin for functions fi

supported in U ′i :

margin(fi) := dist(supp(fi), ∂Ui). (2.7)

Thus margin is the distance of the support of the function from the boundary of the region

Ui. We also introduce the related quantity of angular dispersion of a function fi as the

diameter of the set

{x/|x| : x ∈ supp(fi)}. (2.8)

With these quantities at hand, we introduce the following local form of what we want to

prove. We note that localization is a standard method of proving restriction estimates, see,

for example, [28, 29, 34, 6].

Definition 1 Let R ≥ C02C1/2, and let Q be a cube of sidelength R. We define A(R) to be

the best constant for which

‖T1f1T2f2‖LqLr(Q) ≤ A(R)‖f1‖2‖f2‖2 (2.9)

holds for all fi ∈ L2(Ui) with margin requirement

margin(fi) ≥ 1/C0 − (1/R)1/N . (2.10)

17



That A(R) is finite is clear: we have ‖Tifi‖∞ . ‖fi‖2 with constant depending only on the

volume of U ′i , and volume of Q is Rn, thus

‖T1f1T2f2‖LqLr(Q) ≤ CR
n−1
r

+ 1
q ‖f1‖2‖f2‖2.

So we have A(R) ≤ CR
n−1
r

+ 1
q . Further we have the following property: if R/C ≤ R′ ≤ R,

then A(R) . A(R′). This holds since any function satisfying the margin requirement for

scale R also satisfies it for scale R′, thus dividing a cube of size R into cubes of size at

most R′ we obtain this inequality. Similarly if R ≤ R′ ≤ CR we have A(R) . A(R′).

This follows since for any function on Ui, by decomposing Ui, and using Lorentz transforms,

dilations and rotations we obtain a constant number C of functions satisfying appropriate

margin requirements, and these operations can enlarge the domain of integration by at most

another constant factor C. Thus we also see that if we can prove

A(R) . 2CC1 , (2.11)

then we have

‖TU1f1TU2f2‖LqLr(Q) ≤ C2CC1‖f1‖2‖f2‖2

for any cube Q of any radius, and any choice of functions fi ∈ L2(Ui). This clearly, from the

monotone convergence theorem, implies Theorem 1.

The reason we define A(R) for not all functions in fi ∈ L2(Ui), but for those satisfying

a margin condition is that, as localization will enlarge the support of fi, the localized form

of fi may have support exceeding Ui. Then we would not be able to use A(R) to bound

this localized form. However, if we impose a margin requirement support of the localized

form will still be inside Ui. Then, as for smaller R the margin requirement relaxes, we may

use A(R/C) to bound these localized forms. The margin requirement (2.10) above will be

called the strict margin requirement, we will also use in coming sections the following relaxed
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margin requirement

margin(fi) ≥ 1/C0 − 3(1/R)1/N . (2.12)

Both of these margin requirements become more strict as R grows, that is for larger R fewer

functions satisfy them. Thus we introduce the following variation of A(R)

A(R) := sup
C02C1/2≤r≤R

A(r)

that will be of use in the proof.

After introducing the relevant notation and concepts, we note one last simple observation

before proceeding to give an overview of the proof. As noted above we have from the

conservation of mass property the inequality

∫
|Tifi(ξ, ξn)|2dξ = ‖fi‖2

2.

By simply integrating in the last variable we get

‖Tifi‖L2(Q) ≤ R1/2‖fi‖2. (2.13)

Thus from the Hölder inequality we have

‖T1f1T2f2‖L1(Q) ≤ R‖f1‖2‖f2‖2. (2.14)

This is what we will refer to as our trivial L1 estimate. Note that if we can prove an estimate

of this form for L2 norms with an appropriate negative power of R, by the Hölder inequality

and interpolation we can control A(R). Although such an estimate is clearly impossible, we

can still exploit this idea partially. Using the idea of wave-packet decomposition, we write

Tfi as sum of functions each localized on a sub-cube of Q. For such a localized function

an appropriate estimate is possible on other cubes. On the cube to which a function is
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localized, we use an inductive hypothesis. Thus, together with interpolation, we are able

to control A(R) with sum of A(R/C) with a constant. Now for a non-endline exponent

this method gives a negative power of R instead of this constant, which implies desired

boundedness for A(R). This is the induction on scales technique of Wolff with which he

solved the Klainerman-Machedon conjecture for the light cone except for the endpoint in

[34]. But for the endline this arguments alone is not sufficient.

It turns out that the key point is the concept of concentration. To make this concept

more clear we define the notion of a disk centered at a point ξ = (ξ, ξn) of radius r as the

intersection of the plane Rn−1×{ξn} with the closed ball of radius r centered at ξ. We denote

such a disk by D(ξ, r). By concentration we mean having for a radius r much smaller than

R ∫
D(ξ,r)

|Tifi(ξ, ξn)|2dξ ≈ ‖fi‖2
2

for both i = 1, 2. If this happens, the concentration persists for a cube Q′ of radius r centered

at ξ due to the geometry of the cone, - all vectors lying on the cone has an angle π/4 with the

plane Rn−1×{0}, that is they have constant velocity, thus the concentration cannot disperse

faster than a fixed rate-. Due to transversality we must have very fast decay of |T1f1T2f2|

outside of this box: recall that the transversality assumption forces Tifi to concentrate on

tubes in different directions. Thus we may regard the quantity |T1f1T2f2| as essentially zero

outside of Q′. Since our trivial L1 estimate (2.14) depends on the side-length of the cube

Q, having a much smaller support improves this estimate, which is sufficient to obtain the

desired result for functions fi, i = 1, 2 with concentration. If the concentration phenomenon

does not occur it is natural to expect A(R/C) to be less than a fraction of A(R). In that

case proving that A(R) is less than the sum of A(R/C) with a constant suffices, since this

directly implies boundedness of A(R). How to obtain such an expression is just what we

mentioned in the previous paragraph.

Executing this vision requires much work. Here we give a brief outline of the rest of
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chapter 2. In the next section we will give technical definitions, and some preparatory

lemmas. The section 2.3 will use these definitions and lemmas to decompose our functions

to pieces localized to sub-cubes, and prove properties that these pieces satisfy. The section

2.4 will use these properties as well as the concept of concentration to conclude the proof.

2.2 Some Definitions and Preparatory Lemmas

We start with definitions related to localization to sub-cubes. Let Q be a cube with side-

length R. We will use Kj(Q) to denote cubes that arise when we partition Q into subcubes

of sidelength 2−jR. Thus the cardinality of this collection is 2jn. By (c, k) interior Ic,k(Q) of

Q we will mean the set

Ic,k(Q) :=
⋃

q∈Kk(Q)

(1− c)q.

Here (1− c)q is a cube with the same center as q that has 1− c times the side-length of q.

Of course, 0 < c < 1 and k is a positive integer.

We go on with definitions concerning localization of mass described in the section above.

We let η be a fixed non-negative Schwarz function of total mass 1 on Rn−1 with Fourier

transform supported on the unit disk. We can construct such a function using a real,

even compactly supported smooth function φ. Because the function is even, φ̂ is also real.

Thus if we let η̂ = φ ∗ φ, then we have η(x) = |φ̂|2(−x). Thus we have non-negativity

for η and compact support for η̂. If we multiply φ by an appropriate constant we also

obtain the condition that the total mass of η is 1. Using this we define ηr for r > 0 by

ηr(x) := r−nη0(x/r), where x ∈ Rn−1. We define for i = 1, 2 the cone subsets

Ci(λ) := {(λ− rω, λn + r) ∈ Rn : r ∈ R, ω ∈ U ′i , |ω| = 1},

and r neighborhoods of these subsets, Ci(λ, r). For a given diskD(λ, r) localization operators
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PD, 1− PD are defined as follows: let fi ∈ L2(U ′i) and β̂r := χD ∗ ηr1−1/N . Then

PDfi(ξ) := Ti(βr ∗ (e−2πix·λnfi(x)))(ξ, ξn − λn),

(1− PD)fi(ξ) := Ti(e
−2πix·λnfi(x)− βr ∗ (e−ix·λnfi(x)))(ξ, ξn − λn),

Thus we actually have defined two different operators, one for T1 and another for T2. However

the reader will easily discern which one is used from the subscript of function fi. This

operator basically localizes the image of a function fi under the operator Ti to Ci(λ, r) while

ensuring that this localization is still image of a function under Ti. Thus for each fi, there

are two function gi, hi ∈ L2(Ui) with fi = gi + hi and

PDfi(ξ) = Tigi(ξ), (1− PD)fi(ξ) = Tihi(ξ).

Furthermore,

‖PDfi‖L2(Rn−1×{0}) = ‖βr ∗ (e−2πix·λnfi(x))‖2 = ‖gi‖2

‖(1− PD)fi‖L2(Rn−1×{0}) = ‖e−2πix·λnfi(x)− βr ∗ (e−2πix·λnfi(x))‖2 = ‖hi‖2

In what follows we will, by a small abuse of notation, we use ‖PDfi‖2 to denote ‖PDfi‖L2(Rn−1×{0});

and ‖(1−PD)fi‖2 to denote ‖(1−PD)fi‖L2(Rn−1×{0}). We now prove a result that make rig-

orous the concentration properties of this operator. The smooth cutoff for the disk D(λ, r)

χ̃D(x) :=
(
1 +
|x− λ|
r

)N−10

will be useful to make rigorous how strong these concentration properties are.

Lemma 2 Let r ≥ C0, and let D = D(λ, r). Let fi ∈ L2(Ui) be functions with margin(fi) ≥
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C0r
−1+1/N . Then we have the following estimates for PDfi

margin(PDfi) ≥ margin(fi)− Cr−1+1/N (2.15)

‖χ̃−ND PDfi‖L2(Dext+ ) . r−N
2‖fi‖2 (2.16)

‖(1− PD)fi‖L2(D−) . r−N‖fi‖2 (2.17)

‖PDfi‖2
2 ≤ ‖fi‖2

L2(D+) + Cr−N‖fi‖2
2 (2.18)

‖(1− PD)fi‖2
2 ≤ ‖fi‖2

L2(Dext− ) + Cr−N‖fi‖2
2 (2.19)

‖PDfi‖2, ‖(1− PD)fi‖2 ≤ ‖fi‖2 (2.20)

where the notation Dext denotes the rest of the plane Rn−1 × {λn} on which D lies, and

D± := D(λ, r(1± r−1/2N)).

Proof. The margin estimate follows from the radius of support of βr, which can be computed

from very elementary properties of the Fourier transform. The radius of support of this

function is Cr1/N−1, thus support of a function convolved with it can enlarge at most this

amount. For the other properties we observe that

PDfi(λ) := Ti(βr ∗ (e−2πix·λnfi(x)))(λ, 0) = β̂r(λ) ̂e−2πix·λnfi(λ),

(1− PD)fi(λ) := Ti(e
−2πix·λnfi(x)− βr ∗ (e−ix·λnfi(x)))(ξ, 0) = (1− β̂r(λ)) ̂e−2πix·λnfi(λ).

Therefore investigating the behaviour of β̂r = χD ∗ ηr−1+1/N will be helpful. Since ηr1−1/N is

a Schwartz function, it has decay faster than any polynomial rate, this combined with the

radius of the disk D+ implies that if x ∈ Dext
+

χ̃−ND (x)(χD ∗ ηr1−1/N )(x) . r−N
2

.
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This gives (2.16), (2.18). Similarly the size of D− combined with the fast decay of ηr1−1/N

shows

χD ∗ ηr1−1/N (x) ≥ 1− Cr−N ,

which gives (2.17), (2.19). Finally it is easy to see that

0 ≤ χD ∗ ηr1−1/N (x) ≤ 1

and this proves (2.20).

After this investigation of localization of the operator PD to disks, we turn to localization

to cubes. To this end we will look at the operators Ti more closely. We have

Tifi(ξ) = ̂ai(x)fi(x)e−2πi|x|·ξn(ξ) = −f̂i ∗
∫
Rn−1

ai(x)e−2πi(x·ξ+|x|·ξn)dx

= −Tifi(ξ, 0) ∗
∫
Rn−1

ai(x)e−2πi(x·ξ+|x|·ξn)dx.

We thus define

Kξn(ξ) := −
∫
Rn−1

ai(x)e−2πi(x·ξ+|x|·ξn)dx.

Thus we have

Tifi(ξ) = (Tifi(·, 0) ∗Kξn(·))(ξ).

Similarly we can replace the zero in the nth coordinate by any λn

Tifi(ξ) = (Tifi(·, λn) ∗Kλn−ξn(·))(ξ).

We have, from standard non-stationary phase methods, the following strong decay estimate

for this kernel:

|Kξn(ξ)| .
(
1 + dist(ξ, Ci(0))

)−N10

, (2.21)

see [28] equation (33), or [15] Lemma 11.
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Another important property of Ti is

|Tifi| ≤ ‖fi‖L1 . ‖fi‖L2 .

This clearly follows from the definition of Ti and compactness of the support of fi. From

this we will deduce two important conclusions. First, combining this with the conservation

of mass property that was introduced above

‖fi‖L2 = ‖Tifi(ξ, ξn)‖L2(Rn−1×ξn),

we can write

|Tifi| . ‖Tifi(ξ, ξn)‖L2(Rn−1×ξn). (2.22)

Second combining this with the dominated convergence theorem we see that Tifi is contin-

uous on Rn. Now we state our lemma about localization to cubes.

Lemma 3 Let D(ξD, r) be a disk with radius r ≥ 2C0 . Let fi ∈ L2(Ui), i = 1, 2 be two

functions with f1 satisfying

margin(f1) ≥ C0r
−1+1/N .

Then for 1 ≤ q < r ≤ 2 and r . R we have

‖((1− PD)f1)T2f2‖LqLr(Q(ξD,C−1r)) . rC−N‖f1‖2‖f2‖2, (2.23)

and

‖(PDf1)T2f2‖LqLr(Q(ξQ,R))\C1(ξD,Cr+R1/N )) . RC−N‖f1‖2‖f2‖2 (2.24)

whenever |ξn − ξDn| ≤ C0R.

Before the proof we note that an analogue of this with the places of f1, f2 changed also holds,

and the proof below works in that case as well with trivial changes.
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Proof. Note that the region of integration for the left hand side of (2.23) has measure

bounded by a power of r, and as the right hand side shows we can lose such powers. This

same argument also holds for (2.24). Thus using Hölder’s inequality, it suffices to prove these

statements for p = q = 2. First we prove (2.23). It clearly suffices to prove an appropriate

L∞ estimate for (1− PD)f1 and an appropriate L2 estimate on T2f2. The estimate on T2f2

that we need is (2.13). As for the L∞ estimate, note that

(1− PD)f1(ξ) = T1(e−2πix·ξDnf1(x)− βr ∗ (e−2πix·ξDnf1(x)))(ξ, ξn − ξDn)

= T1(e−2πix·ξDnf1(x)− βr ∗ (e−2πix·ξDnf1(x)))(·, 0) ∗Kξn−ξDn(·)(ξ)

= (1− PD)f1(·, ξDn) ∗Kξn−ξDn(·)(ξ)

=

∫
(1− PD)f1(ξ − λ, ξDn)Kξn−ξDn(λ)dλ.

(2.25)

Thus using Hölder’s inequality we can write

|(1− PD)f1(ξ)|2 ≤
∫
Rn−1

|(1− PD)f1(ξ − λ, ξDn)|2|Kξn−ξDn(λ)|dλ ·
∫
Rn−1

|Kξn−ξDn(λ)|dλ.

As we have |ξn−ξDn| < C−1r for ξ in our cube, the second integral can be bounded by rC for

some appropriate C. For the first integral we partition the domain of integration as union

of D(0, r/3) and its complement Rn−1 \ D(0, r/3). On the first of these |Kξn−ξDn(λ)| . 1,

thus we have

∫
D(0,r/3)

|(1− PD)f1(ξ − λ, ξDn)|2|Kξn−ξDn(λ)|dλ . ‖(1− PD)f1‖2
L2(D(ξD,r/2)).

But the disk D(ξD, r/2)) lies inside D− thus we can use (2.17) to bound it. To deal with

the second integral we first note from (2.20) that

|(1− PD)f1| . ‖T1f1(·, ξDn)‖L2(Rn−1×ξDn) ≈ ‖fi‖2
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Hence the second integral satisfies

. ‖f1‖2
2

∫
Rn−1\D(0,r/3)

|Kξn−ξDn(λ)|dλ

Since |ξn − ξDn| < C−1r, from here decay properties of the kernel gives

. r−N‖f1‖2
2.

Combining these results gives (2.23).

To prove (2.24) we follow a similar path: we prove an L∞ estimate on PDf1, and use

(2.13) for T2f2. As in (2.25) we can write

PDf1(ξ) =

∫
PDf1(ξ − λ, ξDn)Kξn−ξDn(λ)dλ,

and use the Hölder inequality and the decay estimate (2.21) to write

|PDf1(ξ)|2 . RC

∫
Rn−1

|PDf1(ξ − λ, ξDn)|2|Kξn−ξDn(λ)|dλ

We divide the domain of integration into C1((0, ξDn), r + R1/2N) ∩ (Rn−1 × {ξn}) and its

complement (Rn−1 \ (C1((0, ξDn), r+R1/2N)∩ ((Rn−1×{ξn}). On the second domain we use

the fact that |PDf1| . ‖f1‖2, and the fast decay of the kernel Kξn−ξDn . For the first domain

we observe that since ξ /∈ C1(ξD, Cr+R1/N)∩ (Rn−1×{ξn}), we must have dist(ξ−λ,D) >

2r + R1/N/2. Combining this with the fact that |Kξn−ξDn(λ)| . 1 allows us write for this

integral

. ‖PDf1‖L2(Dext(ξD,2r+R1/N/2))

From here the decay of smooth cutoff ηr1−1/N used for defining PD gives the desired result.
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For a cube Q of side-length R, we know that

‖T1f1‖L2(Q) . R1/2‖f1‖2

from conservation of mass property. If we want to replace the cube with the cone neighbor-

hood C2(ξC , R), then simply using the conservation of mass property and integrating in the

nth coordinate is not enough, since domain of integration in the nth variable has infinite

length. But the transversality of normals of C1(0), and C2(ξC) can be used to essentially

limit this length to R, and thus prove the same estimate for C2(ξC , R). Heuristically this

can be seen by considering a partition of f1 into small caps of radius R−1, dual tubes of

which will be oriented along the normals of C2(ξC). Owing to transversality each such tube,

although of length R2, will have an intersection with C2(ξC , R) that has length R in the

nth coordinate. Although our proof below will not follow exactly such a route, this makes

it clear why the result holds.

Lemma 4 Let R� 1, f1 ∈ L2(U1), and let ξC ∈ Rn be an arbitrary point. Then we have

‖T1f1‖L2(C2(ξC ,R)) . R1/2‖f1‖2.

Proof. Before begining the proof in earnest we note that by modulating f1 appropriately,

we can take ξC to be the origin in Rn. We will use duality type arguments in the proof. Let

T denote the operator χC2(ξC ,R)T1. Then our lemma is equivalent to proving that

‖Tf1‖L2(Rn) . R1/2‖f1‖2.

This operator maps functions on Rn−1 to functions on Rn−1. Its adjoint T ∗ is defined for

functions g1 on Rn via the following formula

T ∗g1(x) = a1(x)

∫
R
ĝ1 · χC2(0,R)(−x, ξn)e2πi|x|·ξndξn
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where ĝ1 · χC2(0,R)(−x, ξn) denotes g1 · χC2(0,R)(ξ, ξn) Fourier transformed in ξ variable. As

is well known ‖T‖ = ‖T ∗‖, hence it suffices to prove

‖T ∗g1‖L2(Rn−1) = ‖a1(x)

∫
R
ĝ1 · χC2(0,R)(−x, ξn)e2πi|x|·ξndξn‖L2(Rn−1) . R1/2‖g1‖L2(Rn).

By squaring we can write the first term as

‖T ∗g1‖2
L2(Rn−1) = 〈T ∗g1, T

∗g1〉L2(Rn−1) .

Writing T ∗g1 terms explicitly we have

〈
a1(x)

∫
ĝ1 · χC2(0,R)(−x, ξn)e2πi|x|·ξndξn, a1(x)

∫
ĝ1 · χC2(0,R)(−x, λn)e2πi|x|·λndλn

〉
L2(Rn−1)

which is equal to

∫
Rn−1

∫
R

∫
R
a2

1(x)ĝ1 · χC2(0,R)(−x, ξn)ĝ1 · χC2(0,R)(−x, λn)e2πi|x|·(ξn−λn)dξndλndx.

We change the order of integration to obtain

∫
R

∫
R

〈
a1(x)ĝ1 · χC2(0,R)(−x, ξn)e2πi|x|·ξn , a1(x)ĝ1 · χC2(0,R)(−x, λn)e2πi|x|·λn

〉
L2(Rn−1)

dξndλn.

Consider the inner product inside the integral for fixed ξn, λn. In this case we may regard

a1(x)ĝ1 · χC2(0,R)(x, ξn)e2πi|x|·ξn

as the image of g1(ξ, ξn) under an operator Tξn defined on L2(Rn−1). The same view, of

course, can be taken towards the other term in the inner product. The dual for such an

operator, T ∗ξn , can be calculated from the formula defining adjoint operators on Hilbert spaces
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and properties of the Fourier transform to be

T ∗ξnh(x) = χC2(0,R)(x, ξn) ̂a1 · h · e−2πi|·|ξn(x).

Again using the equality that defines adjointness on Hilbert spaces we can write our integral

above as ∫
R

∫
R

〈
g1, T

∗
ξnTλng1

〉
L2(Rn−1)

dξndλn. (2.26)

The following statement implies our result

∣∣ 〈g1, T
∗
ξnTλng1

〉
L2(Rn−1)

∣∣ . (1 + |ξn − λn|/R)−N‖g1(·, ξn)‖2‖g1(·, λn)‖2. (2.27)

We will first see how to arrive at our result from this. Our integral (2.26) above satisfies

.
∫
R

∫
R
(1 + |ξn − λn|/R)−N‖g1(·, ξn)‖2‖g1(·, λn)‖2dξndλn.

We define a function ω on R with ω(s) = (1 + |s|/R)−N . Then we can write the integral

above as

=

∫
R
ω ∗ ‖g1‖L2(Rn−1×{ξn})(λn)‖g1(·, λn)‖2dλn.

To this we can apply the Hölder inequality to obtain

≤
(∫

R

[
ω ∗ ‖g1‖L2(Rn−1×{ξn})(λn)

]2
dλn

)1/2

· ‖g1‖L2(Rn)

We apply Young’s inequality to the first term to obtain

. ‖ω‖1‖g1‖2
L2(Rn),
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and this, as a simple calculation shows, satisfy

. R‖g1‖2
L2(Rn).

Thus it remains to show (2.27). For |ξn − λn| . R this amounts to showing that

|
〈
g1, T

∗
ξnTλng1

〉
L2(Rn−1)

| . ‖g1(·, ξn)‖2‖g1(·, λn)‖2.

As both Tλn , T ∗ξn are merely combinations of modulations, multiplication by characteristic

functions and the Fourier transform they can easily seen to be bounded. Thus applying

the Cauchy-Schwarz inequality to the left hand side and then using boundedness of these

operators we obtain the desired result. Thus we may assume |ξn − λn| � R. In this case we

first look at our operator T ∗ξnTλn closely:

T ∗ξnTλng1(ξ) = χC2(0,R)(ξ, ξn)
[
− g1 · χC2(0,R)(θ, λn) ∗

∫
a2

1(x) · e−2πi(|x|(ξn−λn)+x·θ)dx
]
(ξ).

This follows directly from definitions of T ∗ξn , Tλn . The integral term is of course very similar

to the kernel we introduced before, so again we define

K̃ξn−λn(θ) = −
∫
a2

1(x) · e−2πi(|x|(ξn−λn)+x·θ)dx.

This kernel, by the same reasoning, satisfies a decay estimate very similar to (2.21),

K̃λn−ξn(θ) . (1 + dist((θ, ξn − λn), C1(0)))−N
10

, (2.28)
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and we have

T ∗ξnTλng1(ξ) = χC2(0,R)(ξ, ξn)
[
g1 · χC2(0,R)(θ, λn) ∗ K̃ξn−λn(θ)

]
(ξ)

= χC2(0,R)(ξ, ξn)

∫
Rn−1

g1 · χC2(0,R)(θ, λn)K̃ξn−λn(ξ − θ)dθ.

Thus

|T ∗ξnTλng1(ξ)| ≤ ‖g1(·, λn)‖2

[ ∫
Rn−1

χC2(0,R)(ξ, ξn)χC2(0,R)(θ, λn)|K̃ξn−λn(ξ − θ)|2dθ
] 1

2
.

We will now use this information to estimate the inner product. We start with the Cauchy-

Schwarz inequality

|
〈
g1, T

∗
ξnTλng1

〉
L2(Rn−1)

| . ‖g1(·, ξn)‖2‖T ∗ξnTλng1‖2.

Then we use our estimate above on |T ∗ξnTλng1|

≤ ‖g1(·, ξn)‖2‖g1(·, λn)‖2

[ ∫
Rn−1

χC2(0,R)(ξ, ξn)χC2(0,R)(θ, λn)|K̃ξn−λn(ξ − θ)|2dξdθ
] 1

2
.

From transversality of C1(0, R), C2(0, R), and the estimate (2.28) this last term satisfies

. (1 + |ξn − λn|/R)−N

and this finishes our proof.

We next give a simple corollary of this lemma which, in certain situations, will be used

as a substitute for our simple L1 estimate (2.14).

Corollary 1 Let fi ∈ L2(Ui), i = 1, 2. Let R � r � 1, ξ ∈ Rn and let Q be cube of
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side-length R. Then

‖T1f1T2f2‖L1(C3(ξ,r)∩Q) . r1/2R1/2‖f1‖2‖f2‖2.

Proof. This will easily follow from Lemma 3. We have

‖T1f1T2f2‖L1(C3(ξ,r)∩Q) ≤ ‖T1f1T2f2‖L1(C1(ξ,r)∩Q) + ‖T1f1T2f2‖L1(C2(ξ,r)∩Q).

We handle the first summand on the right, the second term is handled the same way. Using

the Hölder inequality

‖T1f1T2f2‖L1(C1(ξ,r)∩Q) ≤ ‖T1f1‖L1(Q)‖T2f2‖L1(C1(ξ,r))

From the analogue of Lemma 4 for functions in L2(U2), and (2.14) we have

. r1/2R1/2‖f1‖2‖f2‖2,

and thus we are done.

The following lemma represents the gain that can be obtained from having small angular

dispersion for at least one of the functions f1, f2 in an L2 estimate. As this suggests in the

coming chapters we will partition our functions into small pieces of small angular dispersion

to obtain such a gain. This lemma will be of fundamental use to us in this process.

Lemma 5 Let r ≥ C0. Let f1 ∈ L2(U1) with angular dispersion at most C/r and f2 ∈

L2(U2). Suppose f1, f2 satisfy the margin requirement margin(fi) ≥ 1/3C0, i = 1, 2. Let

φ be a compactly supported function in B(0, 1) with Fourier transform non-vanishing on
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B(0, C). Let φR(y) = Rnφ(Ry). Then for all cubes Q of side-length R we have

‖T1f1T2f2‖L2(Q) . R−n/2‖T1f1φ̂R‖2‖T2f2φ̂R‖2.

Proof. We first note that φ̂R(ξ) = φ̂(ξ/R). We have

‖T1f1T2f2‖L2(Q) . ‖T1f1φ̂RT2f2φ̂R‖2.

We can of course write

Tifi(ξ) =

∫
Ui

f(x)e−2πix·ξdx =

∫
Si

g(y)e−2πiy·ξdσi(y) = f̂idσi(ξ)

for Si cone neighborhoods as defined before, g(x, |x|) := f(x), and dσ pullback of the

Lebesgue measure on Ui. Thus

‖T1f1φ̂RT2f2φ̂R‖2 = ‖f̂1dσ1φ̂Rf̂2dσ2φ̂R‖2 = ‖ ̂f1dσ1 ∗ φR ̂f2dσ2 ∗ φR‖2

We use the Plancherel theorem to obtain

‖ ̂(f1dσ1 ∗ φR) ∗ (f2dσ2 ∗ φR)‖2 = ‖(f1dσ1 ∗ φR) ∗ (f2dσ2 ∗ φR)‖2

We will, instead of L2, will prove estimates on L1 and L∞ norms and use interpolation. We

have from Young’s inequality

‖(f1dσ1 ∗ φR) ∗ (f2dσ2 ∗ φR)‖1 . ‖f1dσ1 ∗ φR‖1‖f2dσ2 ∗ φR‖1

For the L∞ case we have

|(f1dσ1 ∗ φR) ∗ (f2dσ2 ∗ φR)(y)| ≤
∫ ∣∣(f1dσ1 ∗ φR)(y − z)(f2dσ2 ∗ φR)(z)

∣∣dz
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Expressions fidσi ∗ φR are functions supported inside C/R neighborhoods of supports of

measures fidσi. For any y measure of the set of z for which integrand on the right handside

satisfies CR−n. Thus we have

. R−n‖f1dσ1 ∗ φR‖∞‖f2dσ2 ∗ φR‖∞.

Now interpolation gives

‖(f1dσ1 ∗ φR) ∗ (f2dσ2 ∗ φR)‖2 . R−n/2‖f1dσ1 ∗ φR‖2‖f2dσ2 ∗ φR‖2

Applying the Plancherel theorem to the right hand side gives our result.

This lemma also have a global version. Its proof is essentially same as the one we

presented above, and can be found in [28].

Lemma 6 Let r ≥ C0. Let f1 ∈ L2(U1) with angular dispersion at most C/r, and f2 ∈

L2(U2). Suppose f1, f2 satisfy the margin requirement margin(fi) ≥ 1/3C0, i = 1, 2. Then

we have

‖T1f1T2f2‖2 . R
2−n
2 ‖f1‖2‖f2‖2.

We now prove a technical lemma of a very general nature. It will be frequently used

throughout the rest of Chapter 2.

Lemma 7 Let QR be a cube with center ξQR and side-length R. Let 0 < c ≤ 2−C , and

f ∈ L∞(C0Q). Then we have a cube Q′ with side-length CR contained in C2Q satisfying

‖f‖LqLr(Q) ≤ (1 + Cc)‖f‖LqLr(Ic,C0 (Q′)).

Proof. We will prove this for the L1 norm and then extend it to our case via duality

arguments. We let Q(ξ, R) denote a cube centered at ξ with side-length R. If for an
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integrable function g we can prove the following

‖g‖L1(Q) ≤
1

|QR|

∫
QR

(1 + Cc)‖g‖L1(Ic,C0 (Q′(ξ,CR))∩Q)dξ, (2.29)

there has to be a cube satisfying the desired property for L1 norm. By Fubini’s theorem we

have

∫
QR

‖g‖L1(Ic,C0 (Q(ξ,CR))∩QR)dξ =

∫
QR

∫
QR

|g(ζ)|χIc,C0 (Q(ξ,CR))∩QR(ζ)dξdζ

=

∫
QR

|g(ζ)|
( ∫

QR

χIc,C0 (Q(ξ,CR))∩QR(ζ)dξ
)
dζ

=

∫
QR

|g(ζ)||Ic,C0(Q(ζ, CR)) ∩QR|dζ.

We also have the measure estimate

|Q(ζ, CR) \ Ic,C0(Q(ζ, CR))| ≤ c|Q(ζ, CR)|

which leads to

|QR| ≤ (1 + Cc)|Ic,C0(Q(ζ, CR)) ∩QR|

for any ζ ∈ QR. This combined with what we obtained from Fubini’s theorem gives (2.29).

So we have the L1 case. To go to our case, first observe that it is enough to prove it for

‖f‖LqtLpx(Q) = 1. By duality there exists a function h with properties ‖h‖Lq′Lr′ (Q) = 1, and

∫
Q

|f(ξ)|h(ξ)dξ = 1.

36



But from our result for L1 functions we have

1 =
∣∣ ∫

Q

|f(ξ)|h(ξ)dξ
∣∣ ≤ ‖fh‖L1(Q)

≤ (1 + Cc)‖fh‖L1(Ic,C0 (Q′)).

Applying the Hölder’s inequality to the last term gives our lemma.

2.3 Main Proposition

This section will provide the main proposition that we will use to conclude the proof. How-

ever proving this main propostion is rather long and will be divided into three steps. The

first is the wave packet decomposition, which will show that it is possible to partition the

function fi into pieces supported on thin strips such that, not only both pieces themselves

but also their images under Ti are well localized. After this the second part will introduce

a partitioning of fi into pieces whose images under Ti localize on sub-cubes. This is the

partitioning that we mentioned in the summary of the proof, and this will be achieved using

the wave packet decomposition. The third part will give some further information about

the decomposition to sub-cubes, and turn the information coming from the first two parts

into the exact form that will be applied in the last section. Apart from these we will give

an application of the wave packet decomposition that will be of use later. To do all these

we will need some new notation that will be introduced along the way.

We start this section with the definition that will make precise the notion of concentration.

Definition 2 Let r > 0, and let Q ⊂ Rn be a cube of side-length R centered at a point ξQ.

Let f1,α ∈ L2(U1), α ∈ A and f2,β ∈ L2(U2), β ∈ B with A,B finite index sets. Then the
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concentration Er,Q(f1,α, α ∈ A; f2,β, β ∈ B) is defined as

max
{1

2

(∑
α∈A

‖f1,α‖2
2 ·
∑
β∈B

‖f1,β‖2
2

) 1
2
, sup

D

(∑
α∈A

‖T1f1,α‖2
L2(D) ·

∑
β∈B

‖T2f2,β‖2
L2(D)

) 1
2
}
,

where D = D(ξD, r) are disks with |ξDn − ξQn| ≤ R/2.

We now prepare for the wave packet decomposition with some definitions. We let Y〉 be a

maximal 1/r separated subset of unit length vectors lying in U ′i , and L the lattice c−2rZn−1.

We will denote by Ti collections of tubes where a tube is defined as

Ti := {ξ ∈ Rn : |ξ − (ξTi + ξnωTi)| ≤ r}

with ξTi ∈ L, ωTi ∈ Yi denoting the unique point of the lattice L lying inside the tube and

the direction of the tube. Apart from the characteristic function of such a tube we will need

the following smooth cutoff

χ̃Ti(ξ) := χ̃D(ξTi−ξnωTi ,r)
(ξ),

namely at every ξn, we are taking the previously defined smooth cutoff of the disk given by

Rn−1 × {ξn} ∩ Ti. With these definitions at hand we state our wave packet decomposition

lemma, in which we will describe the process of decomposition, and prove certain properties

that the wave packets emerging satisfy. The way we decompose fi will make clear the margin

and angular dispersion properties, and property (2.30) clear. The two others following these

will follow from well localization under Ti, while the last two will exploit not only this

localization but also localization of pieces themselves.

Lemma 8 Let fi ∈ L2(Ui). We can find a decomposition of fi into wave packets φTi with

following properties.
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• The sum of wave packets give the function itself

fi =
∑
Ti

φTi . (2.30)

• Angular dispersion for any φTi is at most CR−1/2 and margin is at least margin(fi) −

CR−1/2.

• The wave packet TiφTi is well concentrated on the tube Ti

‖φTi‖2 . c−Cr‖χ̃Ti(·, ξn)Tifi(·, ξn)‖L2(Rn−1×{ξn}) (2.31)

if |ξn| . R.

• Due to well concentration on tube Ti the function TiφTi is very small on domains distant

from the tube: let Q be a cube centered at ξQ with radius rQ . R. If |ξQn| . R and

dist(Ti, Q) ≥ C0R then

‖TiφTi‖L∞(Q) . dist(T,Q)C−N‖fi‖2. (2.32)

• The strong localization of TiφTi to Ti and the conservation of mass property allows one to

obtain ∑
Ti

sup
q∈KJ (Q)

χ̃−3
Ti

(ξq)‖TiφTi‖L2(Cq) . c−Cr‖fi‖2
2 (2.33)

where ξq stands for the center of q.

• Let, for each Ti, mq0,Ti be constants with q0 running through a finite index, and with

∑
q0

mq0,Ti = 1.

we have (∑
q0

‖
∑
Ti∈Ti

mq0,TiφTi‖2
2

)1/2 ≤ (1 + Cc)‖fi‖2. (2.34)
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Proof. We partition the set U ′i using Yi

Σ =
⋃
ω∈Yi

Yω

with Yω denoting those points with direction closer to ω ∈ Yi than to the other elements of

Yi. Let G be the set r−1Z. Using this set we further partition each Yω as

Yω =
⋃
γ∈G

Yω,γ

where Yω,γ being those points closer to γ than any other point of G. We take H to be set of

translations given by elements of a disk centered at the origin with radius C/r, and dΩ to

be a smooth compactly supported probability measure in the interior of this disk. Then we

define, for Ω ∈ H, ω ∈ Y , γ ∈ G and f ∈ L2(Ui), the operators

PΩ,ω,γf(x) := χΩ(Yω,γ)(
x

|x|
)f(x).

Then of course for any Ω ∈ H

fi(x) =
∑

ω∈Yi,γ∈G

PΩ,ω,γfi(x). (2.35)

This decomposition of fi uses sharp cutoffs, which cannnot guarantee good localization of

images under the Fourier transform, thus we will average using the measure dΩ. Then we

will sum over these averages to obtain smooth cutoffs for strips, and finally apply smooth

cutoffs to the images under the Fourier transform. To this end recall the function η defined

in section 2.3. We define the smooth cutoffs ηξ by

η̂ξ(ζ) := η̂(
c2

r
(ζ − ξ)).
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Then from the Poisson summation formula we have

∑
ξ∈L

η̂ξ = 1. (2.36)

We define the averaging operator

Aω,γfi(x) =

∫
PΩ,ω,γfi(x)dΩ

and sum of averages over strips

Aωfi(x) =
∑
γ

Aω,γfi(x).

Using these sums and the smooth cutoffs introduced above we define

φTi := ηξTi ∗ AωTifi.

We first verify that from the sum of these φTi we recover fi.

∑
Ti

φTi =
∑
ξTi

∑
ωTi

ηξTi ∗ AωTifi =
∑
ξTi

ηξTi ∗
(∑

ωTi

∑
γ∈G

AωTi ,γfi
)
.

The inner integral gives from (2.35)

=
∑
ωTi ,γ

∫
PΩ,ωTi

fi(x)dΩ = fi(x).

Turning back we have

=
∑
ξTi

ηξTi ∗ fi = fi ∗
(∑

ξTi

ηξTi
)
.

At this point considering (2.36) we see that the Fourier transform of the last expression is
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equal to f̂i. Thus we obtain what we desired:

∑
Ti

φTi = fi.

We now turn to the angular dispersion and margin properties of φTi . The angular disper-

sion of PΩ,ω,γf is, of course, at most C/R. Averaging over Ω ∈ G can increase the support

at most by another C/R. Since we are summing over a single ω to obtain Aω the dispersion

remains bounded by C/R. From its definition the support of ηξTi is contained in a disk cen-

tered at the origin with radius . c2/R, so convolving with this can only lead to an increase

C/R in the angular dispersion. Thus the angular dispersion of φT is at most C/R. As we

see the increase over support of fi can be at most C/R, hence we also have our margin

requirement.

For the well concentration property (2.31), we remark that obtaining this requires some

technical work. We first note that

TiφTi(ξ, 0) = φ̂Ti(ξ, 0) = η̂ξTi (ξ) · ÂωTifi(ξ)

and since,

ÂωTifi(ξ) =

∫ (∑
γ

∫
PΩ,ωTi ,γ

fi(x)dΩ
)
e−2πix·ξdx =

∑
γ

∫ ( ∫
PΩ,ωTi ,γ

fi(x)e−2πix·ξdx
)
dΩ

=
∑
γ

∫
P̂Ω,ωTi

fi(ξ)dΩ,

using the fact that η is a Schwarz function, and the scaling we used to obtain ηξTi we may
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write

|TiφTi(ξ, 0)| ≤
∣∣η̂ξTi (ξ)∣∣∣∣∑

γ

∫
P̂Ω,ωTi

fi(ξ)dΩ
∣∣

. c−Cχ̃4
Ti

(ξ, 0)
∣∣∑

γ

∫
P̂Ω,ωTi

fi(ξ)dΩ
∣∣.

Hence

‖φTi‖2 = ‖TiφTi(·, 0)‖2 . c−C‖χ̃4
Ti

(·, 0) ·
∑
γ

∫
P̂Ω,ωTi

fi(·)dΩ‖2.

On the right hand side we wish to move along the tube and replace 0 with some appropriate

ξn. To this end we will prove a statement that will also be of use in proving (2.33). If

fi ∈ L2(U ′i) is a function of angular dispersion at most C/r centered around vector ω, we

have

‖Tifi‖L2(D(ξD,r)) . CC
0 ‖χ̃5

D(ξ,r)Tifi‖L2(D(ξ,r)) (2.37)

for ξ with ξ = ξD − (ξn − ξDn)ω, and |ξn − ξDn| . R. We can write, as discussed before

Tfi(ξ, ξn) = Tfi(·, ξDn) ∗Kω
ξn−ξDn (·)(ξ),

with

Kω
λn(λ) = −

∫
aω(x)e−2πi(x·λ+|x|λn)dx

where aω is a bump function adapted to the support of fi. We have the strong decay estimate

|Kω
λn(λ)| . CC

0 r
2−n(1 + |λ− λnω|/r)−N

5

(1 + |(λ− λnω) · ω|)−N5

which follows from (2.21), and the nature of the Lorentz scaling that takes a thin strip on

the light cone to a wider one. Then an appropriate decomposition around the disk D(ξ, r)

gives the desired estimate; see [28], (103). With (2.37) at hand we proceed. We consider the
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lattice rZn−1, and a natural partition of Rn−1 into disks of radius 2nr that one obtains from

this lattice. We let D denote these disks and Dk(ξD, 0, 2nr) ∈ D its elements. Denoting

g(x) =
∑
γ

∫
PΩ,ωTi

fi(x)dΩ

we have,

‖χ̃4
Ti

(·, 0)Tigi(·, 0)‖2
2 ≤

∑
Dk∈D

c8
k‖Tigi(·, 0)‖2

L2(Dk)

. c−C
∑
Dk∈D

c8
k‖χ̃5

D′k(ξD−ξnωTi ,ξn,2nr)
(·)Tigi(·, ξn)‖2

2

with ck constants coming from breaking χ̃Ti into disks Dk. Then

. c−C‖
( ∑
Dk∈D

c4
kχ̃

5
D′k(ξD−ξnωTi ,ξn,2nr)

(·)
)
Tigi(·, ξn)‖2

2.

Observe that ∑
Dk∈D

c4
kχ̃

5
D′k(ξD−ξnωTi ,ξn,2nr)

(·) . χ̃4
Ti

(·, ξn).

Hence

. c−C‖χ̃4
Ti

(·, ξn)Tigi(·, ξn)‖2
2.

As the next step we wish to replace Tigi with Tifi on the right hand side. To this end observe

that if we let

SωTi ,γ(x) =

∫
χΩ(YωTi ,γ

)(x)dΩ

then this STi is a compactly supported, smooth function, and

AωTif(x) = fi(x) ·
∑
γ

SωTi ,γ(x) = gi(x).
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Then

Tigi(ξ, ξn) = ̂gi(x)e−2πi|x|·ξn(ξ) = −
[ ̂fi(x)e−2πi|x|·ξn ∗

∑
γ

ŜωTi ,γ
]
(ξ)

= −
[
Tifi(·, ξn) ∗

∑
γ

ŜωTi ,γ(·)
]
(ξ)

The Fourier transform ŜωTi ,γ is, of course, a Schwarz function. We can thus write, using the

cutoffs χ̃D introduced before, and from the properties of the support of SωTi ,

|SωTi ,γ(ξ)| . r2−nχ̃3
D(ξ).

Then we have

‖χ̃4
Ti

(·, ξn) · Tigi(·, ξn)‖2 = ‖χ̃4
Ti

(·, ξn)
∑
γ

[
ŜωTi ,γ(ξ) ∗ Tifi(ξ, ξn)

]
(·)‖2

≤
∑
γ

‖χ̃4
Ti

(·, ξn)
[
ŜωTi ,γ(ξ) ∗ Tifi(ξ, ξn)

]
(·)‖2

=
∑
γ

‖χ̃4
Ti

(·, ξn)

∫
ŜωTi ,γ(· − ξ)Tifi(ξ, ξn)dξ ‖2

. r2−n‖χ̃4
Ti

(·, ξn)

∫
χ̃3
D(· − ξ)|Tifi(ξ, ξn)|dξ ‖2

. r2−n
(∫

χ̃2
Ti

(ζ, ξn)
( ∫

χ̃3
Ti

(ζ, ξn)χ̃3
D(ζ − ξ)|Tifi(ξ, ξn)|dξ

)2
dζ
)1/2

Simply from the definition of functions χ̃Ti , χ̃D we have

χ̃3
Ti

(ζ, ξn)χ̃3
D(ζ − ξ) . χ̃3

Ti
(ξ, ξn)
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Thus we have

. r2−n( ∫ χ̃2
Ti

(ζ, ξn)dζ
)1/2( ∫

χ̃3
Ti

(ξ, ξn)|Tifi(ξ, ξn)|dξ
)

. r2−n+n−1
2

( ∫
χ̃3
Ti

(ξ, ξn)|Tifi(ξ, ξn)|dξ
)

. r2−n+n−1
2 ‖χ̃Ti(·, ξn)‖2‖χ̃Ti(·, ξn)Tifi(·, ξn)‖2

. r‖χ̃Ti(·, ξn)Tifi(·, ξn)‖2.

Combining all of these together we obtain (2.31).

We now prove (2.32). This is simpler compared to (2.31). Consider the diskD(ξQ, 0,
C0

C
R) ⊂

Rn−1 × {0}. We have

|TiφTi(ξ, ξn)| = |TiφTi(·, 0) ∗Kξn(·)(ξ)| = |
∫
TiφTi(λ, 0)Kξn(ξ − λ)dλ|

≤ |
∫
D

TiφTi(λ, 0)Kξn(ξ − λ)dλ|

+ |
∫
Dext

TiφTi(λ, 0)Kξn(ξ − λ)dλ|

= I + II.

We evaluate I:

I ≤ ‖TiφTi(·, 0)‖L2(D)‖Kξn(ξ − ·)‖L2(D)

Using the trivial estimate ‖Kξn‖∞ ≤ C and the size of radius of D we have

. R5n‖TiφTi(·, 0)‖L2(D).

Then from the simple estimates

‖η̂ξTi‖L2(D) . R−N , ‖ÂωTif‖L2(D) . ‖fi‖2
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we obtain an acceptable bound for I. For II we have

II ≤ ‖TiφTi(·, 0)‖L2(Dext)‖Kξn(ξ − ·)‖L2(Dext)

Since the distance of ξ to Dext is greater than C0

C
R, we have

‖Kξn(ξ − ·)‖L2(Dext) . R−N .

The first term clearly satisfies

‖TiφTi(·, 0)‖L2(Dext) . ‖fi‖2.

Thus we obtain (2.32).

To prove (2.33) we utilize (2.37). Fix a cube q centered at ξq. We consider D(ξq, ξn, Cr)

with |ξn − ξqn| ≤ Cr. Then we have

‖TiφTi(·, ξn)‖L2(D(ξq ,ξn,Cr))
. c−C‖χ̃5

D(ξ
′
q ,0,Cr)

TiφTi(·, 0)‖2

with ξ
′
q = ξq−ξqnωTi , since ξn changes an amount at most Cr. Thus squaring and integrating

for ξn we have

‖TiφTi(·, ξn)‖2
L2(Cq) . c−Cr‖χ̃5

D(ξ
′
q ,0,Cr)

TiφTi(·, 0)‖2
2.

So the left hand side of (2.33) can be majorized by

c−Cr
∑
Ti∈Ti

sup
q∈KJ (Q)

χ̃−3
Ti

(ξq)‖χ̃5

D(ξ
′
q ,0,Cr)

TiφTi(·, 0)‖2
2.

which satisfies,

. c−Cr
∑
Ti∈Ti

sup
q∈KJ (Q)

χ̃−3
Ti

(ξq) · ‖χ̃3

D(ξ
′
q ,0,Cr)

(·)χ̃4
Ti

(·, 0)
∑
γ

∫
P̂Ω,ωTi

fi(·)dΩ‖2
2.
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Observe the simple fact

χ̃
D(ξ
′
q ,0,Cr)

(ξ)χ̃Ti(ξ, 0) . χ̃Ti(ξq),

Thus we are left with

. c−Cr
∑
Ti∈Ti

‖χ̃Ti(·, 0)|
∑
γ

∫
P̂Ω,ωTi

fi(·)dΩ|‖2
2.

But this summation satisfies

=

∫ ∑
Ti∈Ti

χ̃2
Ti

(ξ, 0)|
∑
γ

∫
P̂Ω,ωTi

fi(ξ)dΩ|2dξ =

∫ ∑
ωTi

∑
ξTi

χ̃2
ξTi

(ξ, 0)|
∑
γ

∫
P̂Ω,ωTi

fi(ξ)dΩ|2dξ

=

∫ ∑
ξTi

χ̃2
ξTi

(ξ, 0)
∑
ωTi

|
∑
γ

∫
P̂Ω,ωTi

fi(ξ)dΩ|2dξ

.
∫ ∑

ωTi

|
∑
γ

∫
P̂Ω,ωTi

fi(ξ)dΩ|2dξ

.
∑
ωTi

‖
∑
γ

∫
P̂Ω,ωTi

fi(·)dΩ‖2
2

.
∑
ωTi

‖
∑
γ

∫
PΩ,ωTi

fi(·)dΩ‖2
2.

From here we use that supports of only a finite number of PΩ,ωTi
fi can intersect to obtain

. ‖fi‖2
2.

We finally prove (2.34). We expand the left hand side as

(∑
q0

‖
∑
Ti∈Ti

mq0,Tiη
ξTi ∗ AωTifi‖

2
2

)1/2

=
(∑

q0

‖
∫ ∑

ξ∈L

∑
ω∈Yi

∑
γ

mq0,ω,ξ
η̂ξP̂Ω,ω,γfi(ξ)dΩ‖2

2

)1/2
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We apply the Minkowski integral inequality to bring the L2 norm inside:

=
(∑

q0

( ∫
‖
∑
ξ∈L

∑
ω∈Yi

∑
γ

mq0,ω,ξ
η̂ξP̂Ω,ω,γfi(ξ)‖2dΩ

)2
)1/2

.

We apply once more the Minkowski integral inequality to change the order of summation

with that of integration

=

∫ (∑
q0

‖
∑
ξ∈L

∑
ω∈Yi

∑
γ

mq0,ω,ξ
η̂ξP̂Ω,ω,γfi(ξ)‖2

2

)1/2

dΩ.

At this stage we define the set Wω for each ω ∈ Yi as the set of x ∈ Yω with a distance at

least Cc2/r to Yω′ for ω′ 6= ω. Let

W =
⋃
ω

Wω, W c =
⋃
ω

Yω \Wω.

We define

PΩ,Wωfi(x) := χΩ(Wω)(x)fi(x), PΩ,Wfi(x) := χΩ(W )(x)fi(x)

(1− PΩ,W )fi(x) = (1− χΩ(W ))(x)fi(x).

Thus we have

∑
ω∈Yi

∑
γ∈G

PΩ,ω,γfi(x) = fi(x) = PΩ,Wfi(x) + (1− PΩ,W )fi(x),

and from linearity of the Fourier transform

∑
ω∈Yi

∑
γ∈G

P̂Ω,ω,γfi(ξ) = P̂Ω,Wfi(ξ) + ̂(1− PΩ,W )fi(ξ).

We use this decomposition, and the triangle inequality, first for the norm inside, and then
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for the outer summation, to obtain

=

∫ (∑
q0

‖
∑
ξ∈L

mq0,ω,ξ
η̂ξP̂Ω,Wfi(ξ)‖2

2

) 1
2
dΩ +

∫ (∑
q0

‖
∑
ξ∈L

mq0,ω,ξ
η̂ξ ̂(1− PΩ,W )fi‖2

2

) 1
2
dΩ.

For the first term we use the fact that the sets Wω are at least Cc2/r separated, so supports

of ηξ ∗ PΩ,Wωfi are disjoint. Using this and the Plancherel theorem we have

=

∫ (∑
q0

∑
ω∈Yi

‖
∑
ξ∈L

mq0,ω,ξ
η̂ξP̂Ω,Wωfi‖2

2

) 1
2
dΩ.

We rearrange this as

=

∫ (∑
ω∈Yi

∫
|P̂Ω,Wωfi(ζ)|2

∑
q0

(∑
ξ∈L

mq0,ω,ξ
η̂ξ
)2
dζ
) 1

2
dΩ

=

∫ (∑
ω∈Yi

∫
|P̂Ω,Wωfi(ζ)|2

(∑
ξ∈L

∑
q0

mq0,ω,ξ
η̂ξ
)2
dζ
) 1

2
dΩ.

Summing first over q0, then over ξ, and then using disjointness of supports gives

=

∫ (∑
ω∈Yi

∫
|P̂Ω,Wωfi(ζ)|2dζ

) 1
2
dΩ =

∫ (∑
ω∈Yi

‖PΩ,Wωfi‖2
2

) 1
2
dΩ =

∫
‖PΩ,Wfi‖2dΩ

≤ ‖fi‖2.

We now turn the second term. This time supports are not disjoint, but they are al-

most disjoint in the sense that only a constant C of them can intersect. Thus by grouping

appropriately we obtain

.
∫ (∑

q0

∑
ω∈Yi

‖
∑
ξ∈L

mq0,ω,ξ
η̂ξ ̂(1− PΩ,Wω)fi‖2

2

) 1
2
dΩ.
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From this point on exactly the same process reduces this to

.
∫
‖(1− PΩ,W )fi‖2dΩ.

Applying the Cauchy-Schwarz inequality gives

.
( ∫
‖(1− PΩ,W )fi‖2

2dΩ
)1/2

=
( ∫
|fi(x)|2

( ∫
|χΩ,W c(x)|dΩ dx

)1/2
.

The inner integral satisfies . c2, so we have

≤ Cc‖fi‖2.

We thus obtain (2.34).

Thus we complete the first stage in the proof of the main proposition. The following

lemma comprises the second stage. It uses the wave packet decomposition to divide fi into

functions whose images under Ti are well localized to subcubes. The lemma proves three

facts about these functions. The first is about their margins and follows directly from Lemma

8. The second is about total mass of these functions, and again easily follows from Lemma

8. Th final one, the well-approximation property that will be stated below follows as a

consequence of localization, and is the most important part of the lemma.

Lemma 9 Let R ≥ C02C1 , and 0 < c ≤ 2−C0 . Let Q ⊂ Rn be a cube of side-length R centered

at ξQ. Let f1 ∈ L2(U1) with margin requirement margin(fi) & R−1/2, and let f2 ∈ L2(U2).

Then for every q0 ∈ KC0(Q) we have a function F
(q0)
1 depending on f1, f2, q0 satisfying the

following conditions:

• The margin requirement

margin(F
(q0)
1 ) ≥ margin(f1)− CR−1/2.
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• Requirement on the total mass

∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2 ≤ (1 + Cc)‖f1‖2
2. (2.38)

• The function Φ1 defined by

Φ1 :=
∑

q0∈KC0
(Q)

|F (q0)
1 |χq0

approximates T1f1 well

‖(T1f1 − Φ1)T2f2‖L2(Ic,C0 (Q)) . c−CR
2−n
4 ‖f1‖2‖f2‖2. (2.39)

Proof. We first note that if c is extremely small, such as 0 ≤ c ≤ R−
1

10n we may just set

F
(q0)
1 = 0 for each q0, and obtain all properties trivially. Thus we may assume c > R−

1
10n .

As mentioned we will utilize Lemma 8 greatly. We define F q0
1 by

F
(q0)
1 :=

∑
T1∈T1

mq0,T1

mT1

φT1

with

mq0,T1 := ‖T2f2χ̃T1‖2
L2(q0) +R−10n‖f2‖2

and

mT1 :=
∑
T1∈T1

mq0,T1 = ‖T2f2χ̃T1‖2
L2(Q) +R−10n2nC0‖f2‖2.

In the definition of mq0,T1 the second term is so small as to be dealt with as an error term,

and has the function of ensuring that these coefficients are non-zero. As the first term makes

clear if T2f2 concentrates on a cube q0 that lies on Ti, we take a larger coefficient for the

part of φT1 given to that cube to ensure that (2.39) holds. With this definition we of course
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have

f1 =
∑

q0∈KC0
(Q)

F
(q0)
1 .

Lemma 8 makes it clear that the margin requirement, and the requirement on the total mass

hold.

Thus it remains to prove (2.39). We have

|(T1f1 − Φ1)T2f2| = |
( ∑
q0∈KC0

(Q)

F
(q0)
1 −

∑
q0∈KC0

(Q)

F
(q0)
1 χq0

)
T2f2|

=
∑

q0∈KC0
(Q)

|F (q0)
1 T2f2|(1− χq0),

(2.40)

thus from our assumption that R
1

10n < c ≤ 2C0 , and the triangle inequality it is sufficient to

show that

‖T1F
(q0)
1 T2f2‖L2(Ic,C0 (Q)\q0) . c−CR

2−n
4 ‖f1‖2‖f2‖2 (2.41)

for each q0 ∈ KC0(Q). To prove this we further decompose the cube Q into cubes q ∈ KJ(Q),

where J is an integer such that 2J ≤ R1/2 < 2J+1. Then it suffices to prove that

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

‖T1F
(q0)
1 T2f2‖2

L2(q) . c−CR
2−n
2 ‖f1‖2

2‖f2‖2
2. (2.42)

Take an indivudual term from this sum, we have from the definition of F
(q0)
1 and the triangle

inequality

‖T1F
(q0)
1 T2f2‖L2(q) ≤

∑
T1∈T1

mq0,T1

mT1

‖T1φT1T2f2‖L2(q). (2.43)

We will first remove from this sum tubes that contribute insignificant amounts: consider

tubes that does not intersect C0Q. By (2.32) for such tubes we have

‖T1φT1T2f2‖L2(q) ≤ ‖T1φT1‖L∞(q)‖T2f2‖L2(q) . dist(q, T )C−N‖f1‖2 · r1/2‖f2‖2.
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The extremely fast decay depending on the distance to the cube allows us to bound the total

contribution of these tubes by CRC−N‖f1‖2‖f2‖2. Thus it remains to estimate the tubes that

do intersect the cube. In this case it is important to remember that there is at most RC

such tubes. The Lemma 5 gives for one such tube

‖T1φT1T2f2‖L2(q) . r−
n
2 ‖T1φT1φ̂

q
r‖2‖T2f2φ̂

q
r‖2

with φ̂qr are as described in Lemma 5. Putting together the information we gathered on

individual terms of the (2.42) we have

‖T1F
(q0)
1 T2f2‖L2(q) . r−

n
2 ‖T2f2φ̂

q
r‖2

∑
T1∈T1

mq0,T1

mT1

‖T1φT1φ̂
q
r‖2 +RC−N‖f1‖2‖f2‖2. (2.44)

Since there is at most RC cubes q, we see that proving (2.42) reduces to proving

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

‖T2f2φ̂
q
r‖2

2

( ∑
T1∈T1

mq0,T1

mT1

‖T1φT1φ̂
q
r‖2

)2

. c−Cr2‖f1‖2
2‖f2‖2

2. (2.45)

At this point we have a gain of r−
n
2 arising from narrowness of supports of functions φT1 . The

rest of the proof will use a geometric argument to estimate the sum in paranthesis to preserve

this gain. We will make use of the fact that the expression ‖T1φT1‖L2(Cq) is extremely small

if the tube T1 does not intersect Cq. Thus in a sense we can write

∑
T1∈T1

mq0,T1

mT1

‖T1φT1φ̂
q
r‖2 ≈

∑
T1∈T1

mq0,T1

mT1

‖T1φT1φ̂
q
r‖2χT1(ξq)

where ξq stands for the center of q. From here using the Cauchy-Schwarz inequality we sum

the terms

mq0,T1χT1(ξq)

separately, and these terms are nonzero only for T1 passing through a cube Cq. But such
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tubes form a cone neighborhood, which allows us to use Lemma 4 to obtain a good estimate.

We now make these ideas rigorous. First observe the trivial inequality

mq0,T1

mT1

≤
m

1/2
q0,T1

m
1/2
T1

.

This together with inserting the smooth cutoff we defined for tubes to the summation gives

∑
T1∈T1

mq0,T1

mT1

‖T1φT1φ̂
q
r‖2 ≤

∑
T1∈T1

m
1/2
q0,T1

m
1/2
T1

χ̃
1/2
T1

(ξq)χ̃
−1/2
T1

(ξq)‖T1φT1φ̂
q
r‖2.

We now use the Cauchy-Schwarz inequality to do separation we mentioned:

≤
∑
T1∈T1

‖T1φT1φ̂
q
r‖2

2

mT1

χ̃−1
T1

(ξq)
∑
T1∈T1

mq0,T1χ̃T1(ξq).

Observe that

∑
T1∈T1

mq0,T1χ̃T1(ξq) =
∑
T1∈T1

‖T2f2χ̃T1‖2
L2(q0)χ̃T1(ξq) +

∑
T1∈T1

R−10n‖f2‖2χ̃T1(ξq)

≤ ‖T2f2

( ∑
T1∈T1

χ̃T1(ξq)χ̃
2
T1

)1/2

χ̃q0‖2
2 +R−10n‖f2‖2

∑
T1∈T1

χ̃T1(ξq)

Using very fast decay of χ̃T1 and the fact that the number of tubes T1 passing through a

point ξq is bounded by CR(n−2)/2, we can bound the second sum by R−5n‖f2‖2. For the first

sum let

χ :=
( ∑
T1∈T1

χ̃T1(ξq)χ̃
2
T1

)1/2

χ̃q0 .

and observe that this function represents the part of smooth cutoffs of tubes passing through

the point ξ lying inside the cube q0. But the sum of such smooth cutoffs will be bounded by an

appropriate multiple of a smooth cutoff of a cone neighborhood. Since dist(q0, ξq) & C−1
0 cR,

at most c−C of tubes passing through ξq can intersect in q0. Since smooth cutoffs χ̃T1 decay
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very fast the contribution coming from tails can be bounded by another c−C . Thus we have

χ(ξ) . c−C
(
1 +

dist(ξ, C1(ξq))

r

)−10n
.

We will perform a dyadic decomposition into shells to exploit this decay. Let C1
k(ξq) be the

set of all ξ with 2k−1 ≤ dist(ξ, C1(ξq)) < 2k for k a natural number. Then

‖T2f2χ‖2
2 = ‖T2f2χ‖2

L2(C1(ξq ,r))
+
∑
k∈N

‖T2f2χ‖2
L2(C1

k(ξq))
.

To the first term on the right hand side we apply Lemma 4 to bound it by

. c−Cr‖f2‖2
2.

For terms in the summation we will apply the same Lemma as well. We have

‖T2f2χ‖2
L2(C1

k(ξq))
. c−C210n(k−1)‖T2f2‖2

L2(C1
k(ξq))

. c−C210n(k−1)‖T2f2‖2
L2(C1(ξq ,2kr))

. c−C2−10n(k−1)2kr‖f2‖2
2

So from the exponential decay of the coefficients

‖T2f2χ‖2
2 . c−Cr‖f2‖2

2 + c−Cr‖f2‖2
2

∑
k∈N

2−10n(k−1)2k . c−Cr‖f2‖2
2.

We insert this information back to (2.45) to see that it reduces to proving

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

‖T2f2φ̂
q
r‖2

2

∑
T1∈T1

‖T1φT1φ̂
q
r‖2

2

mT1χ̃T1(ξq)
. c−Cr2‖f1‖2

2.
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We can easily rearrange the left-hand side as

∑
T1∈T1

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

χ̃−3
T1

(ξq)‖T1φT1φ̂
q
r‖2

2

‖T2f2φ̂
q
r‖2

2χ̃
2
T1

(ξq)

mT1

which can be bounded by

∑
T1∈T1

sup
q∈KJ (Q)

dist(q,q0)&C−1
0 cR

(
χ̃−3
T1

(ξq)‖T1φT1φ̂
q
r‖2

2

) ∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

‖T2f2φ̂
q
r‖2

2χ̃
2
T1

(ξq)

mT1

. (2.46)

Observe that

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

‖T2f2φ̂
q
r‖2

2χ̃
2
T1

(ξq) ≤ ‖T2f2

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

φ̂qrχ̃T1(ξq)‖
2
L2(Q)

+ ‖T2f2

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

φ̂qrχ̃T1(ξq)‖
2
L2(Rn\Q).

We treat these two terms differently. For the first one note that

|φ̂qr(ξ)|1/2χ̃T1(ξq) . χ̃T1(ξ)

and ∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

|φ̂qr|1/2 . 1

from the Schwarz decay of φ̂qr. So the first term satisfies

‖T2f2

∑
q∈KJ (Q):dist(q,q0)&C−1

0 cR

φ̂qrχ̃T1(ξq)‖
2
L2(Q) . ‖T2f2χ̃T1‖2

L2(Q).

As for the second term from the very fast decay of φ̂qr, and the distance of small cubes q to

Rn \Q we have

. R−N‖f2‖2.
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Hence the inner sum is always bounded by some constant C, and thus (2.46) satisfies

∑
T1∈T1

sup
q∈KJ (Q)

dist(q,q0)&C−1
0 cR

(
χ̃−3
T1

(ξq)‖T1φT1φ̂
q
r‖2
L2

)
.

To this last term we can apply (2.33). We recall that our Ti intersects C0Q, thus the number

of such Ti is bounded by RC , and χ̃T1(ξq) cannot be very small. This way we majorize this

term by

.
∑
T1∈T1

sup
q∈KJ (Q)

(
χ̃−3
T1

(ξq)‖T1φT1φ̂
q
r‖2
L2(Q)

)
+R−N‖f1‖2.

The summation here in turn satisfies

∑
T1∈T1

sup
q∈KJ (Q)

(
χ̃−3
T1

(ξq)‖T1φT1‖2
L2(q)

)
.

So from (2.33) we are done.

Finally we arrived at the third part, in which we state and prove our main proposition.

The proposition obtains functions localized to subcubes from f1, f2, and then goes on to prove

a margin requirement, a total mass requirement, a persistence of concentration property and

two different well approximation properties for them. All of these, with the exception of

persistence of concentration property which we start from scratch, follows from the previous

lemma and some additional arguments.

Proposition 1 Let R ≥ C02C1 , and 0 < c ≤ 2−C0 . Let Q ⊂ Rn be a cube of side-length CR

centered at ξQ. Let fi ∈ L2(Ui), i = 1, 2 be functions with the normalization ‖f1‖2 = ‖f2‖2 =

1, and the margin requirement margin(fi) & 1/C0−2R−1/N . Then for every q0 ∈ KC0(Q) we

have functions F
(q0)
1 , F

(q0)
1 both depending on f1, f2, q0, Q satisfying the following conditions:
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• The margin requirement

margin(F
(q0)
1 ),margin(F

(q0)
2 ) ≥ 1/C0 − 3R−1/N . (2.47)

• Requirement on the total mass

∑
q0∈KC0

(Q)

‖F (q0)
i ‖2

2 ≤ (1 + Cc), i = 1, 2. (2.48)

• If the pair f1, f2 enjoys good concentration properties, these persist for F
(q0)
1 , F

(q0)
2 ,

Eρ(1−C0ρ−1/3N ),C0Q(F
(q0)
1 , q0 ∈ KC0(Q);F

(q0)
2 , q0 ∈ KC0(Q)) ≤ Eρ,C0Q(f1, f2) + Cc (2.49)

for R1/2+3/N . ρ . R2.

• The product of functions Φ1,Φ2 defined by

Φi :=
∑

q0∈KC0
(Q)

|F (q0)
i |χq0 , i = 1, 2

approximates T1f1T2f2 well

‖T1f1T2f2‖LqLr(Ic,C0 (Q)) ≤ ‖Φ1Φ2‖LqLr(Ic,C0 (Q)) + c−C . (2.50)

• For appropriate cone neighborhoods the following improved version holds

‖T1f1T2f2‖LqLr(Ic,C0 (Q))∩C3(ξC ,r))
≤ ‖Φ1Φ2‖LqLr(Ic,C0 (Q))∩C3(ξC ,r)

+ c−C(1 +R/r)−ε/4.

(2.51)

Proof. We define the functions F
(q0)
1 just as in Lemma 9. The requirement on the total mass,

then, follows from the definition. We have the desired margin estimates on these from the
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following computation that makes use of margin properties shown in Lemma 9

margin(F
(q0)
1 ) ≥ margin(f1)− CR−1/2 ≥ 1/C0 − 2R−1/N − CR−1/2

≥ 1/C0 − 3(1/R)1/N .

Now we define F
(q0)
2 , and this involves a twist. Let φT2 , T2 ∈ T2 denote wave packets

coming from decomposition of f2 according to Lemma 8. Then

F
(q0)
2 :=

∑
T2∈T2

mq0,T2

mT2

φT2

with

mq0,T2 :=
∑

q1∈KC0
(Q)

‖T1F
(q1)
1 χ̃T2‖2

L2(q0) +R−10n
∑

q1∈KC0
(Q)

R−10n‖F (q1)
1 ‖2

2

and

mT1 :=
∑

q0∈KC0
(Q)

mq0,T1 =
∑

q1∈KC0
(Q)

‖T1F
(q1)
1 χ̃T1‖2

L2(Q) +R−10n2nC0

∑
q0∈KC0

(Q)

‖F (q1)
1 ‖2

2.

Note that main diffence in the definition of F q0
2 is in coefficients and not wave packets used,

thus margin and total mass estimates will follow similarly. From Lemma 8 the tubes φT2

satisfy the margin requirement

margin(φT2) ≥ margin(f2)− CR−1/2,

thus F q0
2 satisfy the margin requirement by the same calculation above. Total mass require-

ment directly follows from (2.34).

So we proceed to prove (2.49). We fix ρ & R1/2+3/N , and pick γ with γ(1−C0γ
−1/2N) =

ρ(1 − C0ρ
−1/3N). It is clear that such a γ exists: we may think of the left-hand side as

a function, and apply the intermediate value theorem. This γ also satisfies γ & R1/2+1/N ,

and γ ≤ ρ(1 − C0ρ
−1/2N). The first of these can easily be shown: γ ≥ ρ(1 − C0ρ

−1/3N) ≥
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ρ/2 & R1/2+1/N . For the second, we need to observe that ρ > γ, for ρ ≤ γ would mean

γ−1/2N ≤ ρ−1/2N < ρ−1/3N . This would clearly contradict with the equality we used to define

γ. Since ρ, γ are extremely large numbers, we have

ρ1−1/2N + γ1−1/2N < 2ρ1−1/2N < ρ1−1/3N .

We already have from the equality defining γ

γ = ρ− C0ρ
1−1/3N + C0γ

1−1/2N .

Combining these two gives the desired result. This new quantity γ and its properties will

be used below to divide the proof of (2.49) into two similar stages. We first will prove

Eρ(1−C0ρ−1/3N ),C0Q(F
(q0)
1 , q0 ∈ KC0(Q);F

(q0)
2 , q0 ∈ KC0(Q))

= Eγ(1−C0γ−1/2N ),C0Q(F
(q0)
1 , q0 ∈ KC0(Q);F

(q0)
2 , q0 ∈ KC0(Q))

≤ Eγ,C0Q(f1;F
(q0)
2 , q0 ∈ KC0(Q)) + Cc,

and in the second stage

Eγ,C0Q(f1;F
(q0)
2 , q0 ∈ KC0(Q)) ≤ Eρ(1−C0ρ−1/2N ),C0Q(f1;F

(q0)
2 , q0 ∈ KC0(Q))

≤ Eρ,C0Q(f1; f2) + Cc.

We start the first part. Let D = D(ξ, γ(1− C0γ
−1/2N)) be a disk with |ξn| ≤ C0R/2. If

we have

Eγ(1−C0γ−1/2N ),C0Q(F
(q0)
1 , q0 ∈ KC0(Q);F

(q0)
2 , q0 ∈ KC0(Q))
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=
1

2

( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2

,

then by (2.48)

≤ (1 + Cc)
1

2
‖f1‖2

( ∑
q0∈KC0

(Q)

‖F (q0)
2 ‖2

2

)1/2

≤ Eγ,C0Q(f1;F
(q0)
2 , q0 ∈ KC0(Q)) + Cc.

Thus it suffices to prove that

( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 ‖2

L2(D)

)1/2( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 ‖2

L2(D)

)1/2

≤ Eγ,C0Q(f1;F
(q0)
2 , q0 ∈ KC0(Q)) + Cc.

We consider two more disks D′ := D(ξ, γ(1− C0

2
γ−1/2N)), and D′′ := D(ξ, γ) that are slightly

larger. We then partition f1 into a part localized on D′ and a part localized outside:

f1 = PD′f1 + (1− PD′)f1.

We will denote PD′f1 by f ′1, and (1−PD′)f1 by f ′′1 . By the linearity of decomposition into wave

packets we can find for each q0 ∈ KC0(Q) functions F
′(q0)
1 , F

′′(q0)
1 satisfying F

′(q0)
1 + F

′′(q0)
1 =

F
(q0)
1 . We have

( ∑
q0∈KC0

(Q)

‖T1F
′(q0)
1 ‖2

L2(D)

)1/2

≤
( ∑
q0∈KC0

(Q)

‖F ′(q0)
1 ‖2

2

)1/2

≤ (1 + Cc)‖f ′1‖2.

From Lemma 2 this last term satisfies

≤ (1 + Cc)‖T1f1‖L2(D′′) + ρC−N‖f1‖2.
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Now if we can prove that

( ∑
q0∈KC0

(Q)

‖T1F
′′(q0)
1 ‖2

L2(D)

)1/2

. ρC−N‖f1‖2, (2.52)

then from Hölder’s inequality and convexity we will have

( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 ‖2

L2(D)

)1/2

≤
( ∑
q0∈KC0

(Q)

(
‖T1F

′(q0)
1 ‖L2(D) + ‖T1F

′′(q0)
1 ‖L2(D)

)2
)1/2

≤
( ∑
q0∈KC0

(Q)

‖T1F
′(q0)
1 ‖2

L2(D)

)1/2

+
( ∑
q0∈KC0

(Q)

‖T1F
′′(q0)
1 ‖2

L2(D)

)1/2

≤ (1 + Cc)‖T1f1‖L2(D′′) + ρC−N‖f1‖2 ≤ ‖T1f1‖L2(D′′) + Cc.

Multiplying everything by ( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 ‖2

L2(D)

)1/2

,

and recalling Definition 2 we obtain what we desired. So it remains to prove (2.52). Since

number of cubes in KC0(Q) is much smaller than ρC it is enough to show

‖T1F
′′(q0)
1 ‖L2(D) . ρC−N‖f1‖2.

We should have

F
′′(q0)
1 =

∑
T1∈T1

mq0,T1

mT1

φ′′T1 ,

So we can use the Hölder inequality to consider tubes in separate groups. First consider

tubes Ti with dist(Ti, D) ≥ ρ3. From the fast decay property (2.32) contribution of these

tubes is acceptable. The number tubes with dist(Ti, D) < ρ3 is less than ρC , so it is enough

to prove

‖T1φ
′′
Ti
‖L2(D) . ρC−N‖f1‖2
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individually for each tube. We further divide these tubes into two groups. Assume we have

dist(Ti, D) < R1/2+1/100N . We have from (2.31)

‖T1φ
′′
Ti
‖L2(D) ≤ ‖φ′′Ti‖2 . c−Cr‖χ̃T1(·, ξn)T1f

′′
1 (·, ξn)‖L2(Rn−1×{ξn})

. c−Cr‖χ̃T1(·, ξn)T1f
′′
1 (·, ξn)‖L2(D′−) + c−Cr‖χ̃T1(·, ξn)T1f

′′
1 (·, ξn)‖L2(D′ext− )

Our condition ensures that dist(T1∩Rn−1×{ξn}, D′ext− ) ≥ C0

5
ρ1−1/N , and we have ρ1−1/N/R1/2 ≥

ρ1/2N . Thus using (2.17), and the decay of the smooth cutoff we have

. c−Cr‖T1f
′′
1 (·, ξn)‖L2(D′−) + c−Cr‖χ̃T1(·, ξn)‖L∞(D′ext− )‖T1f

′′
1 (·, ξn)‖L2(D′ext− )

. ρC−N‖f1‖2.

Now consider the case dist(Ti, D) ≥ R1/2+1/100N . If QD is a cube centered at ξ with sidelength

CR then dist(QD, T ) & R1/2+1/100N . Thus from Lemma 8, (2.32) we have

‖T1φ
′′
T1
‖L2(D) . dist(T,QD)C−N‖f1‖2 . rC−N‖f1‖2.

This completes the first stage of the proof.

We now turn to the second stage, which will proceed in a very similar way. We have,

from monotonicity of the definition of concentration

Eγ,C0Q(f1;F
(q0)
2 , q0 ∈ KC0(Q)) ≤ Eρ(1−C0ρ−1/2N ),C0Q(f1;F

(q0)
2 , q0 ∈ KC0(Q)).

Now if we have

Eρ(1−C0ρ−1/2N ),C0Q(f1;F
(q0)
2 , q0 ∈ KC0(Q)) =

1

2
‖f1‖2

( ∑
q0∈KC0

(Q)

‖F (q0)
2 ‖2

2

)1/2

,
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then by (2.48)

≤ (1 + Cc)
1

2
‖f1‖2‖f2‖2 ≤ Eρ,C0Q(f1; f2) + Cc.

This time let D := D(ξ, ρ− C0 · ρ−1/2N) with |ξn| ≤ C0R/2. Thus it suffices to prove that

‖f‖L2(D)

( ∑
q0∈KC0

(Q)

‖T2F
(q0)
2 ‖2

L2(D)

)1/2

≤ Eγ,C0Q(f1; f2) + Cc.

We again consider two more disks D′ := D(ξ, ρ(1 − C0

2
· ρ−1/2N)), and D′′ := D(ξ, ρ) that

are slightly larger. We this time partition f2 into a part localized on D′ and a part localized

outside:

f2 = PD′f2 + (1− PD′)f2.

We will denote PD′f2 by f ′2, and (1−PD′)f2 by f ′′2 . By the linearity of decomposition into wave

packets we can find for each q0 ∈ KC0(Q) functions F
′(q0)
2 , F

′′(q0)
2 satisfying F

′(q0)
2 + F

′′(q0)
1 =

F
(q0)
2 . We have

( ∑
q0∈KC0

(Q)

‖T2F
′(q0)
2 ‖2

L2(D)

)1/2

≤
( ∑
q0∈KC0

(Q)

‖F ′(q0)
2 ‖2

2

)1/2

≤ (1 + Cc)‖f ′2‖2.

From Lemma 2 this last term satisfies

≤ (1 + Cc)‖T2f2‖L2(D′′) + ρC−N‖f2‖2.

This time if we can prove that

( ∑
q0∈KC0

(Q)

‖T2F
′′(q0)
2 ‖2

L2(D)

)1/2

. ρC−N‖f1‖2,

from the Hölder inequality and convexity we will have

≤ ‖T2f2‖L2(D′′) + Cc.
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Then multiplying everything by

‖T1f1‖2
L2(D)

and recalling Definition 2 we can conclude the seceond stage. So it remains to prove (2.3).

But this follows from exactly the same arguments as before: we first observe that it is

sufficient to prove this on individual cubes q0, and then by the Hölder inequality consider

the tubes in three separate groups, each of which follow from arguments already described.

Thus we are done.

We turn to well approximation properties. First we prove (2.50). From (2.39) we have

‖(T1f1 − Φ1)T2f2‖L2(Ic,C0 (Q)) . c−CR(2−n)/4. (2.53)

We have from (2.29) the estimate

‖T1f1T2f2‖L1(Ic,C0 (Q)) . R,

and from the definition of Φ1 and the Cauchy-Schwarz inequality

‖Φ1T2f2‖L1(Ic,C0 (Q)) = ‖
∑

q0∈KC0
(Q)

|T1F
(q0)
1 |χq0T2f2‖L1(Ic,C0 (Q))

≤
∑

q0∈KC0
(Q)

‖T1F
(q0)
1 T2f2‖L1(q0)

≤
∑

q0∈KC0
(Q)

‖T1F
(q0)
1 ‖L2(q0)‖T2f2‖L2(q0)

≤
( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 ‖2

L2(q0)

)1/2( ∑
q0∈KC0

(Q)

‖T2f2‖2
L2(q0)

)1/2

.

(2.54)

Now applying (2.13) and (2.48),

66



≤
( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 ‖2

L2(Q)

)1/2

‖T2f2‖L2(Q) . R1/2
( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2

·R1/2‖f2‖2

. R.

(2.55)

From these two L1 estimates with triangle inequality we obtain

‖(T1f1 − Φ1)T2f2‖L1(Ic,C0 (Q)) . R. (2.56)

Using the Hölder inequality one obtains from (2.53)

‖(T1f1 − Φ1)T2f2‖LqL2(Ic,C0 (Q)) . c−CR
2−n
4

+ 2−q
2q . (2.57)

We wish to obtain a LqL1 inequality to interpolate with this last one. To this end observe

that by the Cauchy-Schwarz inequality

‖(T1f1 − Φ1)T2f2‖L∞L1(Ic,C0 (Q)) ≤ ‖T1f1 − Φ1‖L∞L2(Ic,C0 (Q))‖T2f2‖L∞L2(Ic,C0 (Q))

From the triangle inequality

.
(
‖T1f1‖L∞L2(Ic,C0 (Q)) + ‖Φ1‖L∞L2(Ic,C0 (Q))

)
‖T2f2‖L∞L2(Ic,C0 (Q))

Now with the conservation of mass we clearly have

‖T1f1‖L∞L2(Ic,C0 (Q)), ‖T2f2‖L∞L2(Ic,C0 (Q)) . 1.
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The same is true for the remaining term:

‖Φ1‖L∞L2(Ic,C0 (Q)) ≤ sup
ξn

‖
∑

q0∈KC0
(Q)

|T1F
(q0)
1 |χq0‖L2(Rn−1×{ξn})

= sup
ξn

( ∑
q0∈KC0

(Q)

‖T1F
(q0)
1 χq0‖2

L2(Rn−1×{ξn})

)1/2

.
( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2

. 1

So we have

‖(T1f1 − Φ1)T2f2‖L∞L1(Ic,C0 (Q)) . 1.

Interpolating this with (2.56) we obtain

‖(T1f1 − Φ1)T2f2‖LqL1(Ic,C0 (Q)) . R1/q. (2.58)

Interpolating this with (2.59) we obtain

‖(T1f1 − Φ1)T2f2‖LqLp(Ic,C0 (Q)) . c−CR
2−n
4

2−q
2q

+ 1
q

2−p
p . (2.59)

We now run a similar process to estimate

‖Φ1(T2f2 − Φ2)‖LqLp(Ic,C0 (Q)) .

We wish to prove that

‖Φ1(T2f2 − Φ2)‖L2(Ic,C0 (Q)) . c−CR(2−n)/4. (2.60)
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We have

‖Φ1(T2f2 − Φ2)‖L2(Ic,C0 (Q)) = ‖(
∑

q0∈KC0
(Q)

|T1F
(q0)
1 |χq0)(T2f2 − Φ2)‖L2(Ic,C0 (Q))

=
( ∑
q0∈KC0

(Q)

‖(T2f2 − Φ2)T1F
(q0)
1 ‖2

L2(Ic,C0 (Q))

)1/2

.

Since there are only CC
0 cubes in KC0(Q) it suffices to prove (2.60) for an individual sum-

mand.

‖(T2f2 − Φ2)T1F
(q0)
1 ‖L2(Ic,C0 (Q)) . c−CR(2−n)/4.

Just as in (2.40) we can write

‖(T2f2 − Φ2)T1F
(q0)
1 ‖L2(Ic,C0 (Q)) ≤ ‖

∑
q1∈KC0

(Q)

|T1F
(q0)
1 T2f

(q1)
2 |(1− χq1)‖L2(Ic,C0 (Q)) (2.61)

≤
∑

q1∈KC0
(Q)

‖T1F
(q0)
1 T2f

(q1)
2 ‖L2(Ic,C0 (Q)\q1). (2.62)

Again since the number of cubes is small it suffices to prove

‖T1F
(q0)
1 T2f

(q1)
2 ‖L2(Ic,C0 (Q)\q1) . c−CR(2−n)/4.

We are now in a position very similar to (2.41). From here exactly the same arguments bring

us to the analogue of (2.45):

∑
q∈KJ (Q):dist(q,q1)&C−1

0 cR

‖T1F
(q0)
1 φ̂qr‖2

2

( ∑
T2∈T2

mq0,T2

mT2

‖T2φT2φ̂
q
r‖2

)2

. c−Cr2. (2.63)

Using the Cauchy-Schwarz inequality exactly in the same way as before

( ∑
T2∈T2

mq0,T2

mT2

‖T2φT2φ̂
q
r‖2

)2

≤
∑
T2∈T2

‖T2φT2φ̂
q
r‖2

2

mT2

χ̃−1
T2

(ξq) ·
∑
T2∈T2

mq0,T2χ̃T2(ξq).
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Observe that

∑
T2∈T2

mq0,T2χ̃T2(ξq) =
∑
T2∈T2

∑
q2∈KC0

(Q)

‖T1F
(q2)
1 χ̃T2‖2

L2(q0)χ̃T2(ξq)

+
∑

q2∈KC0
(Q)

‖F (q2)
1 ‖2

2 ·
∑
T2∈T2

R−10nχ̃T2(ξq).

Defining this time

χ :=
( ∑
T2∈T2

χ̃T2(ξq)χ̃
2
T1

)1/2

χ̃q0 ,

and changing order of summation we have

≤
∑

q2∈KC0
(Q)

‖T1F
(q2)
1 χ‖2

L2(q0) +
∑

q2∈KC0
(Q)

‖F (q2)
1 ‖2

2 ·R−10n
∑
T2∈T2

χ̃T1(ξq).

The second term, from tube counting and (2.48), is bounded by R−5n. Each term in the

first sum , from the same arguments as before, satisfy . c−Cr‖F (q2)
1 ‖2

2. Summing and using

(2.48) allows one to bound the first sum by . c−Cr. Inserting this information back to (2.63)

to see that it reduces to proving

∑
q∈KJ (Q)

‖T1F
(q0)
1 φ̂qr‖2

2

∑
T1∈T2

‖T2φT2φ̂
q
r‖2

2

mT2χ̃T2(ξq)
. c−Cr.

This can be bounded by

∑
T2∈T2

sup
q∈KJ (Q)

(
χ̃−3
T2

(ξq)‖T2φT2φ̂
q
r‖2

2

) ∑
q∈KJ (Q)

‖T1F
(q0)
1 φ̂qr‖2

2χ̃
2
T2

(ξq)

mT2

. (2.64)

The inner sum, from the same arguments as in the proof of (2.39), satisfies

.
1

mT2

∑
q∈KJ (Q)

‖T1F
(q0)
1 φ̂qr‖2

L2(Cq)χ̃
2
T2

(ξq) . 1.

70



Hence (2.64) satisfies ∑
T2∈T2

sup
q∈KJ (Q)

(
χ̃−3
T2

(ξq)‖T2φT2φ̂
q
r‖2

2

)
.

which, in turn, by (2.33) satisfies

. c−Cr.

Thus we finally have

‖Φ1(T2f2 − Φ2)‖L2(Ic,C0 (Q)) . c−CR
2−n
4 . (2.65)

From this one gets with the Hölder inequality

‖Φ1(T2f2 − Φ2)‖LqL2(Ic,C0 (Q)) . c−CR
2−n
4

+ 2−q
2q . (2.66)

For the L1 estimates on Φ1Φ2 and Φ1Tf2 the process described in (2.54) suffices. Then

by triangle inequality we can obtain the appropriate L1 estimate on Φ1(T2f2 − Φ2). An

appropriate L∞L1 estimate on Φ1(T2f2−Φ2) can easily be deduced from repeating the same

arguments as above. Interpolation then gives

‖Φ1(T2f2 − Φ2)‖LqL1(Ic,C0 (Q)) . R
1
q .

Interpolating this with (2.66) gives

‖Φ1(T2f2 − Φ2)‖LqLr(Ic,C0 (Q)) . c−CR
2−n
4

2−q
2q

+ 1
q

2−p
p .

Finally, this inequality together with (2.59) and the triagnle inequality gives

‖T1f1T2f2 − Φ1Φ2)‖LqLr(Ic,C0 (Q)) . c−CR
2−n
4

2−q
2q

+ 1
q

2−p
p .
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Notice that for our fixed pair of exponents (q, r) we have

2− n
4

2− q
2q

+
1

q

2− p
p

= 0

so from triangle inequality we obtain (2.50).

Finally we prove (2.51). Arguments very similar to those used above will suffice to prove

this. First let

Ω := Ic,C0(Q)) ∩ C3(ξC , r))

and observe that if r ≥ R the desired result follows from (2.50). So we will assume r < R.

Main difference of what follows from what is above will be in L1 based estimates. Indeed we

have from what we proved above

‖T1f1T2f2 − Φ1Φ2‖LqL2(Ω) ≤ ‖T1f1T2f2 − Φ1Φ2‖LqL2(Ic,C0 (Q)) . c−CR
2−n
4

+ 2−q
2q . (2.67)

In the L1 case however we use Lemma 4 to obtain

‖T1f1T2f2‖L1(Ω) . r1/2R1/2 = (r/R)1/2R
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and

‖Φ1Φ2‖L1(Ω) = ‖
∑

q0∈KC0
(Q)

|T1F
(q0)
1 |χq0 ·

∑
q1∈KC0

(Q)

|T2F
(q1)
2 |χq1‖L1(Ω)

= ‖
∑

q0∈KC0
(Q)

|T1F
(q0)
1 T2F

(q0)
2 |χq0‖L1(Ω)

=
∑

q0∈KC0
(Q)

‖T1F
(q0)
1 T2F

(q0)
2 ‖L1(Ω)

. (r/R)1/2R
∑

q0∈KC0
(Q)

‖F (q0)
1 ‖2‖F (q0)

2 ‖2

. (r/R)1/2R
( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2

·
( ∑
q1∈KC0

(Q)

‖F (q1)
2 ‖2

2

)1/2

. (r/R)1/2R.

Then triangle inequality yields

‖T1f1T2f2 − Φ1Φ2‖L1(Ω) . (r/R)1/2R. (2.68)

For the L∞L1 estimate, however, we do not need any major changes:

‖T1f1T2f2 − Φ1Φ2‖L∞L1(Ω) ≤ ‖T1f1T2f2 − Φ1Φ2‖L∞L1(Ic,C0 (Q)) . 1.

Interpolating this with the L1 estimate gives

‖T1f1T2f2 − Φ1Φ2‖LqL1(Ω) . (r/R)1/2qR1/q.

Finally interpolating this with (2.67) gives

‖T1f1T2f2 − Φ1Φ2‖LqLp(Ω) . c−C(r/R)
1
2q

2−p
p R

2−n
4

2−q
2q

+ 1
q

2−p
p .
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Our particular choice of the exponents allow us to write

‖T1f1T2f2 − Φ1Φ2‖LqLp(Ω) . c−C(r/R)ε/4,

and thus from the triangle inequality we obtain the desired result.

The following is an application of the wave packet decomposition that will be useful in

the next section. It actually is a simpler version of the well-approximation property (2.51),

that removes part of a function lying on a certain domain directly, rather than subtracting

a sophisticated well-approximating function. As such its proof is easier.

Lemma 10 Let R ≥ 2NC1 , 2NC1/2 ≤ r ≤ R1/2+4/N and let D = D(ξD, C
1/2
0 r). Let fi ∈

L2(Ui), i = 1, 2 with margin(fi) ≥ 1/3C0 for both functions. Then we have

‖(PDf1)T2f2‖LqLr(Q(ξD,2R)\Q(ξD,R)) . R−1/C‖f1‖2‖f2‖2,

‖T1f1(PDf2)‖LqLr(Q(ξD,2R)\Q(ξD,R)) . R−1/C‖f1‖2‖f2‖2.

Proof. As both of these estimates are proven similarly, we will only prove the first one. We

may assume ‖f1‖2 = ‖f2‖2 = 1 by simply normalizing. Also we may set ξD = 0. Thus the

statement we will prove is

‖(PDf1)T2f2‖LqLr(Q(0,2R)\Q(0,R)) . R−1/C ,

We will obtain this, using the Hölder inequality and interpolation, from the L1 estimate

‖(PDf1)T2f2‖L1(Q(0,2R)\Q(0,R)) . RC/NR3/4 (2.69)
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and the L2 estimate

‖(PDf1)T2f2‖L2(Q(0,2R)\Q(0,R)) . RC/NR
2−n
4 . (2.70)

We first handle (2.69). This is relatively easy. We have

‖(PDf1)T2f2‖L1(Q(0,2R)\Q(0,R)) ≤ ‖(PDf1)T2f2‖L1((Q(0,2R)\C1(0,R1/2+C/N ))

+ ‖(PDf1)T2f2‖L1(C1(0,R1/2+C/N ))

The first term’s contribution satisfies . RC−N by Lemma 3 and the Hölder inequality. The

contribution of the second term, by Lemma 4, and conservation of mass property satisfies

. R3/4+C/N . Thus we have (2.69).

For (2.70) we decompose PDf1 using our wave packet decomposition lemma, choosing

c = 2−C0 . We have

PDf1 =
∑
T1∈T1

T1φT1

from Lemma 8. We use the Hölder inequality to obtain

‖(PDf1)T2f2‖L2(Q(0,2R)\Q(0,R)) ≤
∑
T1∈T1

‖T1φT1T2f2‖L2(Q(0,2R)\Q(0,R)).

For tubes with dist(T, 0) & C0R we write

‖T1φT1T2f2‖L2(Q(0,2R)\Q(0,R)) ≤ ‖T1φT1‖L∞(Q(0,2R)‖T2f2‖L2(Q(0,2R))

For the first factor on the right hand side we utilize (2.32), and for the second conservation

of mass to obtain

. RCdist(T, 0)−N .
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Thus total contribution of such tubes satisfies

. RC−N .

We turn to tubes with R1/2+1/N . dist(T, 0) . C0R. We have, from (2.31), for such tubes

‖φT1‖2 . c−CR1/2‖χ̃T1(·, 0)PDf1(·, 0)‖2 . RC−N .

Since number of such tubes is at most RC , their total contribution is acceptable as well. We

finally deal with tubes satisfying dist(T, 0) . R1/2+1/N . Let T′1 denote these tubes. Clearly,

cardinality of T′1 satisfies . RC . We want to estimate

‖
∑
T1∈T′1

T1φT1T2f2‖L2(Q(0,2R)\Q(0,R)).

Let RN−1/2
T1 denote the tube with same central line but with radius multiplied by RN−1/2

.

We have, from (2.32)

‖T1φT1(1− χRN−1/2
T1

)‖L∞(Q(0,2R) . RC−N1/2

.

Thus

‖
∑
T1∈T′1

T1φT1T2f2(1− χ
RN
−1/2

T1
)‖L2(Q(0,2R)\Q(0,R))

≤
∑
T1∈T′1

‖T1φT1T2f2(1− χ
RN
−1/2

T1
)‖L2(Q(0,2R)).

This, then, satisfies

.
∑
T1∈T′1

‖T1φT1(1− χRN−1/2
T1

)‖L∞(Q(0,2R))‖T2f2‖L2(Q(0,2R)) . RC−N1/2

.
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Thus it remains to estimate

‖
∑
T1∈T′1

T1φT1T2f2χRN−1/2
T1
‖L2(Q(0,2R)\Q(0,R)).

We observe the geometric fact that at most RC/N of tubes T1 ∈ T′1 can intersect inside

Q(0, 2R) \Q(0, R). Thus using almost orthogonality it is enough to show that

( ∑
T1∈T′1

‖T1φT1T2f2‖2
2

)1/2

. R
2−n
4 .

For an individual term we have from Lemma 6

‖T1φT1T2f2‖2 . R
2−n
4 ‖φT1‖2‖f2‖2 . R

2−n
4 ‖φT1‖2.

Thus

( ∑
T1∈T′1

‖T1φT1T2f2‖2
2

)1/2

. R
2−n
4

( ∑
T1∈T′1

‖φT1‖2
2

)1/2

.

From (2.34), and (2.20) we have

( ∑
T1∈T′1

‖φT1‖2
2

)1/2

. (1 + Cc)‖PDf1‖2 ≤ (1 + Cc)‖f1‖2 . 1.

Thus we are done.

2.4 Conclusion of the Proof

In this section we conclude the proof of Theorem 1. The following is the first step in this

direction. It only partially uses the power of the machinery we developed, and will be used
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to bound A(R) for relatively small R. But we will use again some of the same ideas in its

proof.

Proposition 2 Let R ≥ 2C02C1 and 0 < c ≤ 2C0. Let fi ∈ L2(Ui), i = 1, 2 be functions

satisfying the normalization ‖fi‖2 = 1, i = 1, 2 and the relaxed margin requirement (2.12).

Then we have for any cube QR with side-length R the inequality

‖T1f1T2f2‖LqLr(QR) ≤ (1 + Cc)A(R/2)‖f1‖2‖f2‖2 + c−C . (2.71)

Proof. From Lemma 7 it is possible to find a cube Q of sidelength CR inside C2R with

‖T1f1T2f2‖LqLr(QR) ≤ (1 + Cc) ‖T1f1T2f2‖LqLr(Ic,C0 (Q)) .

From the well approximation property (2.50) in Proposition 1 we can find Φi, i = 1, 2 with

‖T1f1T2f2‖LqLr(Ic,C0 (Q)) ≤ (1 + Cc) ‖Φ1Φ2‖LqLr(Ic,C0 (Q)) + c−C . (2.72)

From the definitions of Φi and the triangle inequality we must have

‖Φ1Φ2‖LqLr(Ic,C0 (Q)) ≤
∑

q0∈KC0
(Q)

‖T1F
(q0)
1 T2F

(q0)
2 ‖LqLr(q0).

Then from definition of the best constants A(·), and from (2.47) of Proposition 1 we have

‖Φ1Φ2‖LqLr(Ic,C0 (Q)) ≤ A(2−C0CR)
∑

q0∈KC0
(Q)

‖F (q0)
1 ‖2‖F (q0)

2 ‖2.

Applying the Cauchy-Schwarz inequality on the right-hand side yields

∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2‖F (q0)

2 ‖2 ≤
( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2( ∑
q0∈KC0

(Q)

‖F (q0)
2 ‖2

2

)1/2

.
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From here the requirement on total mass property (2.48) proven in Proposition 1 together

with the definition of A(·) gives the desired result.

This proposition of course gives

A(R) ≤ (1 + Cc)A(R/2)‖f1‖2‖f2‖2 + c−C .

We observe that if R ≥ 4C0R
C1 , since we have A(·) on the right hand side, we can bound

A(R′) for all R/2 ≤ R′ ≤ R by

(1 + Cc)A(R/2)‖f1‖2‖f2‖2 + c−C .

Since all A(R′) with R′ ≤ R/2 are also bounded by this quantity, we then can conclude

that A(R) is also bounded by it. Thus it is possible to iterate this proposition. So let

2C0R
C1 ≤ R ≤ C0R

NC1 and let c = (1/R)1/N . Let J be a natural number with the property

2C0R
C1 ≤ 2−JR < 4C0R

C1 . We iterate the proposition to obtain

A(R) ≤
J−1∏
i=0

(1 + C(2j/R)1/N)A(R/2J) + 2JRC/N .

Here of course J ≤ log2R− C1 ≤ R1/N , so 2J(R)C/N . RC/N . As for the first term we first

note a simple inequality that will be utilized to estimate it: ln 1 + x ≤ x whenever x ≥ 0.

Now we have

ln
( J−1∏
i=0

1 + C(2j/R)1/N
)
≤

J−1∑
i=0

1 + C(2j/R)1/N ≤ C

R1/N

J−1∑
i=0

2j/N .

This last sum can be bounded by

2J/N − 1

21/N − 1
.
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But we have from our inequality ln 1 + x ≤ x

1 +
1

N log2 e
≤ e1/N log2 e = 21/N ,

so

21/N − 1 ≥ 1/2N.

Thus the last sum is bounded by 2J/N2N ≤ 2log2R
1/N

2N ≤ 2NR1/N . So the product itself

should be bounded by 2CN ≤ R1/N . To term A(R/2J) we can apply the trivial inequality

A(R) ≤ CRn−1/r+1/q that was stated before to get A(R/2J) . RCC1 . Thus we finally get for

R ≤ C0R
NC1

A(R) . 2CC1 . (2.73)

The rest of the proof will deal with larger R. To this end we will introduce a variant of A(·)

that is sensitive to concentration and can be related to A(·). This version will allow us to

use the improved estimate for cone neighborhoods (2.51).

Definition 3 Let R ≥ 2NC1/2 and r, r′ > 0. Then we define A(R, r, r′) as the best constant

satisying

‖f1f2‖LqtLpx(QR∩C3(ξC ,r′))
≤ A(R, r, r′)(‖f1‖2‖f2‖2)1/qEr,C0QR(f1, f2)1/q′

for all cubes QR of side-length R, all ξC ∈ Rn, and all functions fi ∈ L2(Ui) obeying the the

margin requirement (2.12)

Before proceeding to relating this newly defined quantity to A(·) we introduce a technical

lemma that is of very general nature, and may be helpful whenever one is dealing with mixed

norms. It will be used in several propositions below.

Lemma 11 Let fi, 1 ≤ i ≤ k be a finite collection of complex valued functions with fi ∈

80



LqLr(Rn) for all i. If we have q < r and supports of these functions mutually disjoint, then

∥∥ k∑
i=1

fi
∥∥q
LqLr
≤
∑
j=1k

‖fj‖qLqLr .

Proof. We will first exploit the fact that the supports are disjoint:

∫
(

∫
|

k∑
i=1

fi(x, xn)|rdx)q/rdxn =

∫
(
k∑
i=1

∫
|fi(x, xn)|pdx)q/rdxn.

Now we exploit concavity

≤
k∑
i=1

∫
(

∫
|fi(x, xn)|rdx)q/rdxn,

and thus we are done.

We now exploit non-concentration to bound A(·) by the variant A(·, ·, ·) with some gain.

It is natural to expect a result such as we state below in the absence of concentration, since

in this case the term E·,· will be small, and thus A(·, ·, ·) large. When there is concentration,

the trick is to reduce the cube size through Lemma 10 to such a scale that the size of disk on

which concentration occurs is no longer much smaller than the cube size. We now execute

this plan.

Proposition 3 Suppose R ≥ 2NC1. Then the following inequality holds

A(R) ≤ (1− C−C0 ) sup
2NC1≤R̃≤R
R̃1/2+4/N≤r

A(R̃, r, C0(1 + r)) + 2CC1 .

Proof. It is clear that if we can show

‖T1f1T2f2‖LqLr(QR) ≤ (1− C−C0 ) sup
2NC1≤R̃≤R
R̃1/2+4/N≤r

A(R̃, r, C0(1 + r)) + 2CC1
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for all cubes QR of side-length R centered at some point ξQ ∈ Rn, and for all fi ∈ L2(Ui)

satisfying the normalization ‖fi‖2 = 1 and the strict margin requirement (2.10), from the

definition of A(·) our result follows. We can clearly assume that A(R) ≤ 2CC1 . Furthermore

we can assume that ‖T1f1T2f2‖LqLr(QR) ≈ A(R). We let 0 < δ < 1/4 be a small number to

be chosen later. We define r to be the supremum of all radii r ≥ 2NC1(1/2+4/N) such that

Er,C0QR(f1, f2) ≤ 1− δ

or r = 2NC1(1/2+4/N) if there is no such radius. Since δ is small, there is a disk D := D(ξD, r)

satisfying

min(‖φ‖L2(D) , ‖ψ‖L2(D)) ≥ 1− 2δ,

and |ξDn − ξQn| ≤ C0R/2. Such a disk must exist, or else we would have Er,C0QR(f1, f2) ≤

1 − 2δ, conflicting the continuity of Tifi. Also define the disk D′ = C
1/2
0 D, and set Ω =

QR ∩ C3(ξD, C0r). We decompose the functions fi into two parts: fi = PD′fi + (1− PD′)fi.

We investigate the problem in two cases: r > R1/2+4/N and r ≤ R1/2+4/N . We handle the

first case now. Since D′ext− ⊂ Dext we have from (2.19) of Lemma 2, and our choice of D,D′

the inequalities

‖(1− PD′)f1‖2
2, ‖(1− PD′)f2‖2

2 . δ + C−C0 .

Hence we must have

‖(1− PD′)f1(1− PD′)f2‖LqLr(QR) . (δ + C−C0 )A(R). (2.74)

On the other hand from (2.24) in Lemma 3 we have

‖PD′f1T2f2‖LqLr(QR\Ω), ‖(1− PD′)f1PD′f2‖LqLr(QR\Ω) . C−C0 .
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Thus from the triangle inequality and our assumption ‖T1f1T2f2‖LqLr(QR) ≈ A(R) we have

‖T1f1T2f2‖LqLr(QR\Ω) . (δ + C−C0 )A(R) . (δ + C−C0 )‖T1f1T2f2‖LqLr(QR). (2.75)

Now we will apply Lemma 11. This point of the proof does not work for the uppermost

endpoint (n+ 1/n− 1, 1) for n ≥ 4, and is the reason why we cede it.

‖T1f1T2f2‖qLqLr(QR) ≤ ‖T1f1T2f2‖qLqLr(QR\Ω) + ‖T1f1T2f2‖qLqLr(Ω)

≤ C(δ + C−C0 )q‖T1f1T2f2‖qLqLr(QR) + ‖T1f1T2f2‖qLqLr(Ω).

Thus,

‖T1f1T2f2‖LqLr(Ω) ≥ (1− C(δ + C−C0 )q)1/q ‖T1f1T2f2‖LqLr(QR) .

But we also have from our choice of r

‖T1f1T2f2‖LqLr(Ω) ≤ A(R, r, C0(1 + r))(1− δ)1/q′ .

Here setting δ = C−C0 and showing

(1− δq)(1− δq)1/q ≥ (1− δ)1/q′ (2.76)

will suffice. To see this last inequality remember that we set 1/q = min(1, n
4
) − ε and

1/r = 1 − 2
n

1
q

where 0 < ε < 1
10n

. So we have 1/q ≤ 1 − ε, q ≥ 1
1−ε ≥ 1 + ε, 1 < q < 2.

When δ = 0 both sides of the above inequality are the same, then both decrease for small

positive δ. So we shall compare values of derivatives of them for such δ to find the one that

decreases faster. On the left the derivative is

−(1 +
1

q
)q(1− δq)1/qδq−1 ≥ −2qδq−1 ≥ −4δε
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while on the right we have

− 1

q′
(1− δ)

1
q′−1 ≤ −ε 1

(1− δ)1/q
≤ −ε.

For our choice of δ clearly the former is greater.

We now turn to the case where r ≤ R1/2+4/N . We define R̃ := r
1

1/2+4/N . So 2NC1 ≤ R̃ ≤ R

and r ≥ R̃1/2+4/N . We will proceed similarly: just as we obtained upper and lower bounds

on ‖T1f1T2f2‖LqLr(Ω) and compared them, this time we will obtain upper and lower bounds

on ‖T1f1T2f2‖LqLr(Q(ξD,R̃)∩Ω) and compare them. If we have R̃ > 2NC1 then

‖T1f1T2f2‖LqLr(Q(ξD,R̃)∩Ω) ≤ A(R, r, C0(1 + r))(1− δ)1/q′ .

If on the other hand R̃ = 2NC1 from (2.73) we have

‖T1f1T2f2‖LqLr(Q(ξD,R̃)∩Ω) ≤ 2CC1 .

These two constitute our upper bound. For the lower bound observe that from the same

arguments that we used to obtain (2.75) we can obtain

‖T1f1T2f2‖LqLr(Q(ξD,R̃)\Ω) . (δ + C−C0 )A(R) . (δ + C−C0 )‖T1f1T2f2‖LqLr(QR).

So if we can show that

‖T1f1T2f2‖LqLr(QR\Q(ξD,R̃)) . (δ + C−C0 )A(R)
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using the same arguments as above will give the upper bound, and then the whole result.

This inequality follows from the estimate (2.74), and

‖(PD′f1)T2f2‖LqLr(QR\Q(ξD;R̃)) . (δ + C−C0 )A(R),

‖(1− PD′f1)PD′f2‖LqLr(QR\Q(ξD;R̃)) . (δ + C−C0 )A(R).

These two estimates can be obtained from Lemma 10 by a dyadic decomposition. We

decompose the domain of integration QR \Q(ξD; R̃) dyadically into pieces

Q(ξD, 2R̃) \Q(ξD, R̃), Q(ξD, 4R̃) \Q(ξD, 2R̃), Q(ξD, 8R̃) \Q(ξD, 4R̃) . . .

. We will have coefficients (2kR̃)−1/C, which means summing over terms 2−k/C , and this

sum clearly converges. Therefore simply summing with the triangle inequality together with

our assumption A(R) ≥ 2CC1 gives the desired result.

Thus we only need to bound the variant A(·, ·, ·) by A(·) appropriately. This will be

divided into two cases according to absence or presence of concentration. First we suppose

the absence of concentration.

Proposition 4 Let R, r, r′, c be positive quantities satisfying R ≥ 2NC1/2, r ≥ CC
0 R, r′ > 0,

and 0 < c ≤ 2−C0. Then we have the following inequality

A(R, r, r′) ≤ (1 + Cc)A(R) + c−C .

Proof. Let fi ∈ L2(Ui), i = 1, 2 be functions that satisfy the normalization of mass ‖f1‖2 =

‖f2‖2 = 1, and the strict margin requirement (2.10). If we can prove that

‖T1f1T2f2‖LqLr(QR) ≤ Er,C0QR(f1, f2)1/q′(1 + Cc)A(R) + c−C
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for an arbitrary cube QR of side-length R, we will have for arbitrary ξC ∈ Rn

‖T1f1T2f2‖LqLr(QR∩C3(ξ,r′)) ≤
[
(1 + Cc)A(R) + c−C

]
Er,C0QR(f1, f2)1/q′(‖f1‖2‖f2‖2)1/q,

and thus from the definition of A(R, r, r′) we must have the desired inequality. Let D :=

D(ξQ, r/2) where ξQ denotes the center of Q. We perform a decomposition with respect to

this disk for both functions: Tifi = PDfi + (1− PD)fi. From the definition of the operator

PD we have Tigi = PDfi with gi(x) = P̂Dfi(−x, 0). These gi obey the relaxed margin

requirement (2.12) and furthermore by (2.18) in Lemma 1

‖g1‖2‖g2‖2 = ‖PDf1‖2‖PDf2‖2 ≤ Er,C0QR(f1, f2) + CRC−N/2.

Thus we can apply Proposition 3 to get

‖(PDf1)(PDf2)‖LqLr(QR) ≤ (1 + Cc)(Er,C0QR(φ, ψ) + CRC−N/2)A(R) + c−C .

Since we have A(R) . RC , we can absorb the term CRC−N/2A(R) into c−C . Thus we will

be done if we can show

‖((1− PD)φ)ψ‖LqLr(QR) , ‖(PDφ)(1− PD)ψ‖LqLr(QR) ≤ c−C .

But these follow from Lemma 3 and its analogue with the roles of f1, f2 reversed.

Thus remains the concentrated case for which we again utilize the idea of passing to

smaller scales until concentration disappears. Once concentration vanishes one can again

apply the previous propostion. So in effect the following proposition allows us to reduce the

concentrated case to the non-concentrated.

Proposition 5 Let R ≥ C02NC1/2, and let CC
0 R ≥ r > R1/2+3/N . Then for any 0 < c ≤
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2−C0 we have

A(R, r, r′) ≤ (1 + Cc)A(R/C0, r(1− Cr−1/3N), r′) + c−C(1 +
R

r′
)−ε/4.

Proof. As above, from the definition of A(R, r, r′) it suffices to prove that given a cube QR

of sidelength R, a point ξC ∈ Rn, and functions fi ∈ L2(Ui) functions obeying the strict

margin requirement (2.10) and the normalization of mass ‖fi‖2 = 1 we have

‖T1f1T2f2‖LqLr(QR∩C3(ξC ;r′)) ≤ (1 + Cc)A(R/C0, r̃, r
′)Er,C0QR(f1, f2)1/q′

+ c−C(1 +
R

r
)−ε/4

(2.77)

with r̃ = r(1 − Cr−1/3N). We now perform a series of reductions. By applying Lemma 7

to T1f1T2f2χC3(ξC ;r′) we can find a cube Q of sidelength CR lying inside C2QR with the

property

‖T1f1T2f2‖LqLr(QR∩C3(ξC ;r′)) ≤ (1 + Cc) ‖T1f1T2f2‖LqLr(Ic,C0 (Q)∩C3(ξC ;r′)) .

Thus showing (2.78) with ‖T1f1T2f2‖LqLr(Ic,C0 (Q)∩C3(ξC ;r′)) on the left-hand side suffices. By

applying (2.51) of our main proposition we see that it is sufficient to prove

‖Φ1Φ2‖LqLr(Ic,C0 (Q)∩C3(ξC ;r′)) ≤ (1 + Cc)A(R/C0, r̃, r
′)Er,C0QR(f1, f2)1/q′

+ c−C(1 +
R

r
)−ε/4.

(2.78)

Then since 1/2 ≤ Er,C0QR(f1, f2)1/q′ ≤ 1 it is enough to prove that left-hand side satisfies

≤ (1 + Cc)A(R/C0, r̃, r
′)Er̃,C0QR(F

(q0)
1 , q0 ∈ KC0(Q);F

(q0)
2 , q0 ∈ KC0(Q))1/q′ . (2.79)
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Now we apply Lemma 11 to see that

‖Φ1Φ2‖LqLr(Ic,C0 (Q)∩C3(ξC ,r′))
≤

∑
q0∈KC0

(Q)

‖T1F
(q0)
1 T2F

(q0)
2 ‖qLqLr(q0∩C3(ξC ,r′))

.

Thus it suffices to show that the right-hand side is less than or equal to expression in (2.79).

To see this we consider individual terms in the summation. By definition of the quantity

A(·, ·, ·) we have

‖T1F
(q0)
1 T2F

(q0)
2 ‖qLqLr(q0∩C3(ξC ,r′))

≤ A(R/C0, r̃, r
′)q‖F (q0)

1 ‖2‖F (q0)
2 ‖2Er̃,C0Q(F

(q0)
1 , F

(q0)
2 )q/q

′
.

Thus summing these and bearing in mind the fact Er̃,C0Q(F
(q0)
1 , F

(q0)
2 ) ≤ Er̃,C0QR(F

(q0)
1 , q0 ∈

KC0(Q);F
(q0)
2 , q0 ∈ KC0(Q)) we can bound our summation by

A(R/C0, r̃, r
′)qEr̃,C0QR(F

(q0)
1 , q0 ∈ KC0(Q);F

(q0)
2 , q0 ∈ KC0(Q))q/q

′ ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2‖F (q0)

2 ‖2.

At this point using the Cauchy-Schwarz inequality and the Proposition (2.48) yields

∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2‖F (q0)

2 ‖2 ≤
( ∑
q0∈KC0

(Q)

‖F (q0)
1 ‖2

2

)1/2( ∑
q0∈KC0

(Q)

‖F (q0)
2 ‖2

2

)1/2

≤ (1 + Cc)‖f1‖2‖f2‖2.

Thus we are done.

The following corollary will allow us to finally conclude our proof by showing that

A(·, ·, ·) can appropriately be related to A(·) regardless of concentration, by handling the

non-concentrated case with Proposition 4 and reducing the concentrated case to the non-

concentrated one with Proposition 5.
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Corollary 2 Let R ≥ 2NC1, and let r ≥ R1/2+4/N . Then for any 0 < c ≤ 2−C0 we have

A(R, r, C0(1 + r)) ≤ (1 + Cc)A(R) + c−C .

Proof. If r ≥ CC
0 R the result follows from Proposition 4, thus we assume r < CC

0 R. We let J

denote the least integer with r/2 ≥ C−J0 CC
0 R. We have J . log r since r ≥ R1/2+4/N . Define

r := r0 > r1 > . . . > rJ recursively by rj+1 = rj(1−Cr−1/3N
j ). This sequence decreases very

slowly, each time r decreases at most by Cr1−1/3N , and has only about log r terms, so

r − rJ . Cr1−1/3N · log r,

which means r/2 ≤ rJ < r. We define cj := C−1
0 cC

(j−J)ε/8C
0 for 0 < j ≤ J . We iterate

Proposition 4 with these values to obtain

A(R, r, C0(1+r)) ≤
J∏
j=1

(1+Ccj)
[
(1+Cc)A(R/CJ

0 , rJ , C0(1+r))+
J∑
j=1

c−Cj (1+
R

Cj
0(1 + r)

)−ε/4
]
.

We use same techniques introduced at the beginning of this section to estimate the product:

ln
J∏
j=1

(1 + Ccj) =
J∑
j=1

ln 1 + Ccj ≤ C
J∑
j=1

cj.

Writing out explicitly one has for this last sum

C−1
0 cC

−Jε/8C
0

J∑
j=1

C
jε/8C
0 = C−1

0 cC
−Jε/8C
0

C
(J+1)ε/8C
0 − 1

C
ε/8C
0 − 1

≤ C−1
0 cC

−Jε/8C
0 C

(J+1)ε/8C
0

≤ c.
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Hence
J∏
j=1

(1 + Ccj) ≤ ec ≤ 1 + 3c.

It remains to estimate the sum inside the paranthesis

J∑
j=1

c−Cj (1 +
R

Cj
0(1 + r)

)−ε/4 = CC
0 c
−C

J∑
j=1

(C
(j−J)/2
0 +

C
(j−J)/2
0 R

Cj
0(1 + r)

)−ε/4

≤ CC
0 c
−C

J∑
j=1

(C
(j−J)/2
0 +

C
−J/2
0 R

1 + r
)−ε/4.

Now observe that R/(1 + r) ≥ CJ−2−C
0 , thus

≤ CC
0 c
−C

J∑
j=1

(C
J
2
−2−C

0 )−ε/4 ≤ CC
0 c
−CJC

−Jε/8
0 ≤ c−C .

Thus we finally have

A(R, r, C0(1 + r)) ≤ (1 + Cc)A(R/CJ
0 , rJ , C0(1 + r)) + c−C .

At this point one can apply Proposition 4 to A(R/CJ
0 , rJ , C0(1 + r) to obtain the desired

result.

We can now conclude the proof of Theorem 1 by showing that for all R > 0

A(R) . 2CC1 . (2.80)

For R ≤ 2NC1 we already proved this. For R > 2NC1 , set c = 2−C1 and combine Proposition

3 with the corollary above to obtain

A(R) ≤ (1− C−C0 )A(R) + 2CC1 .
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Since we also have (2.80), we can improve this to

A(R) ≤ (1− C−C0 )A(R) + 2CC1 .

Thus for R > 2NC1 too we have

A(R) . 2CC1 .

Thus we are done.
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Chapter 3

Linear Restriction Estimates for
Elliptic surfaces

In this chapter we will prove Theorem 2.

3.1 Preliminaries

In this first section we will reformulate and simplify the result, briefly describe the proof and

develop some technical tools for the proof. We first start with reformulation.

We reformulate the theorem in a way very similar to reformulation of Theorem 1 in

Chapter 2. We first define an elliptic surface by a parametrization. Let U be a small disk

around the origin lying on Rn−1 × {0}. We can parametrize an elliptic surface S on this

neighborhood using a phase function φ(x) with

φ(x) = 〈Ax, x〉+O(|x|3)

where A is a positive definite matrix. We define

Tf(ξ) :=

∫
U

f(x)e−2πi(x·ξ+φ(x)ξn)dx.

Then proving that for every f ∈ L∞(U)

‖Tf‖Lq ≤ Cq‖f‖∞

whenever q satisfies conditions stated on Theorem 2 will imply Theorem 2. We however note
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that given a phase φ as described above we can always write

Tf(ξ) =

∫
U

f(x)e−2πi(x·ξ+φ(x)ξn)dx =

∫
S

g(y)e−2πiy·ξdσ(y)

with, in the second integral, y ∈ Rn, g(y, φ(y)) = f(y), S the surface that the phase φ gives,

and σ an appropriate measure on the surface -pullback of the Lebesgue measure on U .- Thus

we can use both formulations interchangeably.

We further reformulate the problem through localization. Localizing the estimate is a

standard approach in proving restriction estimates for the Fourier transform, and our proof

in Chapter 2 was an instance of this. From standard ε-removal arguments, see [6], to prove

the Theorem 2 it suffices to prove that for

q =
18

7
− 2

735
if k = 2

q =
8k + 2

4k − 1
− (5k − 4)(2k + 1)

(4k2 − k)(28k + 7)(4k2 − k)
if k > 2.

(3.1)

with n = 3k, and for ε arbitrarily small, we have

‖Tf‖Lq(B(0,R)) ≤ Cq,εR
ε‖f‖∞ (3.2)

for every radius R > 0. We further note that it is enough to prove this estimate for ‖f‖∞ ≤ 1.

Thus we introduce Aq(R) as the best constant satisfying

‖Tf‖Lq(B(0,R)) ≤ Aq(R)

for ‖f‖∞ ≤ 1. Since we trivially have

‖f̂dσ‖Lq(B(0,R)) . R
n
q
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following from

|Tf(ξ)| =
∣∣ ∫

U

f(x)e−2πi(x·ξ+φ(x)ξn)dx
∣∣ ≤ CU

this constant is well defined. As a result it suffices to prove, for q satisfying (3.1), and for

any ε > 0

Aq(R) ≤ Cq,εR
ε. (3.3)

The proof will use the multilinear estimates of Bennett, Carbery and Tao, [2], described in

Chapter 1, the method of rescaling introduced in [25], and the conservation of mass property

described in Lemma 1, Chapter 2. Since ‖ · ‖2 norm of a compactly supported function can

be bounded by its ‖ · ‖∞ norm, Bennett-Carbery-Tao estimates are useful. We will observe

that we can use these estimates to essentially reduce the dimension of the problem, which

makes the method of rescaling work better. This will be achieved through decomposition

of the surface into small caps. We will give more detailed heuristics about the proof as we

proceed. As we will prove Theorem 2 by proving the local estimates (3.3), this explanation

suffices to motivate introduction of the following local form of Bennett, Carbery and Tao

result, also proven in [2]. We formulate it using parametrizations. Let Si ∈ Rn, 1 ≤ i ≤ m

be smooth, compact hypersurfaces whose parametrizations φi : Ui → Si from subsets Ui of

Rn−1 satisfy smoothness condition

‖φi‖C2(Ui) ≤ A,

and that are transverse, i.e, for any points yi ∈ Si unit normals y′i satisfy |y′1∧ . . .∧ y′m| ≥ B.

Then for operators Ti associated to φi we have the localized version

∥∥ m∏
i=1

Tifi
∥∥
Lq(B(0,R))

≤ Cq,A,B,εR
ε

m∏
i=1

‖fi‖L2(Ui) (3.4)

for q = 2
m−1

and every ε > 0.

Finally, to be used in the proof of one of our lemmas below, we introduce a further variant
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of the Bennett-Carbery-Tao result, that deals with thin neighborhoods of surfaces, and that

was too proven in [2]. Let Si ∈ Rn, 1 ≤ i ≤ m be surfaces just as in the previous paragraph,

and let Y R
i be C/R neighborhoods of these surfaces for R� 1. Then we have for functions

fj ∈ L2(Y R
i ) and every ε > 0

∥∥ m∏
i=1

f̂
∥∥
Lq(B(0,R))

≤ Cq,A,B,εR
ε−n/2

m∏
i=1

‖fi‖L2(Y Ri ) (3.5)

for q = 2
m−1

.

We will now prove some lemmas, that will be used in sections 3.2 and 3.3. The first of

these will mainly be used to make rigorous heuristic information coming from the uncertainty

principle. We will describe how to use the well-known Bernstein inequality for exponents

lower than 1.

Lemma 12 Let 0 < q ≤ p ≤ ∞, and let f ∈ Lp(Rn) be a function whose Fourier transform

f̂ is supported in a box of measure E. Then

‖f‖p . E
1
q
− 1
p‖f‖q

Proof. First of all we note that we may assume E = 1, since all other cases will follow from

scaling. If p > 1 we may use the Bernstein inequality to lower it to 1, so it suffices to prove

it for p ≤ 1. First assume that p = 1. Then we have

‖f‖1 =

∫
|f | ≤ ‖f‖1−q

∞

∫
|f |q.

We apply the Bernstein inequality to ‖f‖∞:

‖f‖∞ . ‖f‖1.
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So we have

‖f‖1 . ‖f‖1−q
1

∫
|f |q = ‖f‖1−q

1 ‖f‖qq.

If ‖f‖1 is zero then what we want to prove is trivial, so assuming that it is not zero we divide

both sides by ‖f‖1−q
1 to obtain

‖f‖q1 . ‖f‖qq.

From which we obtain

‖f‖1 . ‖f‖q.

For p < q we run the same argument:

‖f‖pp =

∫
|f |p ≤ ‖f‖p−q∞

∫
|f |q.

Then we have

‖f‖∞ . ‖f‖1 . ‖f‖p.

From here with the same arguments we conclude

‖f‖p . ‖f‖q.

We now proceed to our next lemma. In what follows S will be a surface with properties

described in this section, and for x ∈ S a point, x′ will be used to denote the unit normal

vector at this point. We will need to use the Gauss map Γ : Sn−1 → S taking the unit

normal y′ of a point to itself y. We let 0 < c � 1 denote various small constants. The

notation −
∫
E

will be used to denote average over a set E.

Lemma 13 Let Si ⊂ S, 1 ≤ i ≤ n be small caps with |y′1 ∧ . . . ∧ y′n| > c for all yi ∈ Si, and

let Di ⊂ Si be discrete sets with at least 1/M separation for M � 1. Then for any bounded
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function a on S and any ball BM ⊂ Rn of radius M we have

−
∫
BM

n∏
i=1

|
∑
y∈Di

a(y)e−2πiy·ξ|2/n−1dξ �M ε

n∏
i=1

(
∑
y∈Di

|a(y)|2)1/n−1.

Proof. Our basic strategy is to pass from these sums to integrals over neighborhoods of Si,

and then to apply (3.5). We may clearly assumeBM to be centered at the origin, for otherwise

we may incorporate the oscillation coming from being away from the origin into the function

a. We introduce the measures µi =
∑

y∈Di δy and define the functions fi(z) = a(z)χDi(z).

Let φ be a Schwartz function supported in B(0, C) whose Fourier transform is non-negative

on the unit ball. Let φM(ξ) = Mnφ(Mξ). Then

−
∫
BM

n∏
i=1

∣∣ ∑
y∈Di

a(y)e−2πiy·ξ∣∣ 2
n−1dξ = −

∫
BM

n∏
i=1

∣∣ ∫
Si

fi(z)e−2πiz·ξdµi(z)
∣∣ 2
n−1dξ

= −
∫
BM

n∏
i=1

|f̂idµi|
2

n−1dξ

. −
∫
BM

n∏
i=1

|f̂idµiφ̂M |
2

n−1dξ

= −
∫
BM

n∏
i=1

| ̂fidµi ∗ φM |
2

n−1dξ.

To this we can apply Bennett-Carbery-Tao result since fidµi ∗ φM are functions in C/M

neighbourhood of Si.

.M−nM− n
n−1

+ε
n∏
i=1

‖fidµi ∗ φM‖
2

n−1

2 .

We can calculate individual factors in this product using the fact that supports of at most
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C of aχDiδy ∗ φM can intersect as y ranges over Di. Thus we have

.M−n− n
n−1

+ n2

n−1
+ε

n∏
i=1

(
∑
y∈Di

|a(y)|2)
1

n−1 .M ε

n∏
i=1

(
∑
y∈Di

|a(y)|2)
1

n−1 .

This last lemma will only be used to prove the next lemma, which will be the one used in

the rest of the proof. The idea of the first lemma was to pass from discrete sums to integrals.

In the second lemma we will pass from integrals to sums to utilize the first lemma.

Lemma 14 Let V ⊂ Rn be a subspace of dimension m, where 2 ≤ m ≤ n. Let P1 . . . Pm ∈ S

be points with P ′i ∈ V, and |P ′1 ∧ . . . ∧ P ′m| > c. Let U1, . . . , Um ⊂ S be small neighborhoods

of P1, . . . , Pm. Let M � 1, and Di ⊂ Ui be sets of 1/M separated points y that obey the

condition dist(y′, V ) < c/M for a small c. Let φ be a Schwartz function supported in B(0, c)

with Fourier transform non-negative on the unit ball, and let φM(y) = Mnφ(My). Then for

any fi ∈ L∞(Ui) we have

−
∫
BM

m∏
i=1

|
∑
y∈Di

∫
|z−y|< c

M

fi(z)e−2πiz·ξdσ(z)|
2

m−1dξ (3.6)

�M− m·n
m−1

+ε
m∏
i=1

(
∑
y∈Di

‖φ̂M
∫
|z−y|< c

M

fi(z)e−2πiz·ξdσ(z)‖2
2)

1
m−1 . (3.7)

Proof. We may assume that BM is centered at the origin just as above. By a simple rotation

in the space where the surface S lives we may also assume that V = span{e1, e2, . . . , em}.

Let V̂ denote the image of V ∩Sn−1 under the Gauss map. It is possible, by partitioning Di

into subsets and modifying functions fi if necessary, to assume y ∈ V̂ for all y. Also we may

assume fi(z) = 0 if |z− y| ≥ c/M for all y ∈ Di. Let ψ be a non-negative Schwartz function

that is identical to 1 in B(0, 10c), and supported in B(0, 20c) whose Fourier transform is
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nonnegative on B(0, 1). We define ψM(y) = Mnψ(My). Then

−
∫
BM

m∏
i=1

|
∑
y∈Di

∫
|z−y|< c

M

fi(z)e−2πiz·ξdσi(z)|
2

m−1dξ = −
∫
BM

m∏
i=1

|
∫
Si

fi(z)e−2πiz·ξdσi(z)|
2

m−1dξ

= −
∫
BM

m∏
i=1

|f̂idσ(ξ)|
2

m−1dξ

. −
∫
BM

m∏
i=1

|f̂idσφ̂M(ξ)ψ̂M(ξ)|
2

m−1dξ

= −
∫
BM

m∏
i=1

| ̂fidσ ∗ φM ∗ ψM(ξ)|
2

m−1dξ.

We define gi = fidσ ∗ φM ∗ ψM . We can break fidσ into pieces fi,ydσ by restricting it to the

points z with |z − y| < c/M . Let fi,y,0dσ denote translations of these pieces to the origin

-here we are translating both the function and the measure to the translation of the cap,

on which these are supported, to the origin-. Then we define gi,y = fi,ydσ ∗ φM ∗ ψM and

gi,y,0 = fi,y,0dσ ∗ φM ∗ ψM . We have

gi = fidσ ∗ φM ∗ ψM =
∑
y∈Di

fi,ydσ ∗ φM ∗ ψM =
∑
y∈Di

gi,y,

and

gi,y,0(z) = gi,y(z + y).
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Using these we can write

|ĝi(ξ)| = |
∫
gi(z)e−2πiz·ξdz| = |

∑
y∈Di

∫
|z−y|< 15c

M

gi,y(z)e−2πiz·ξdz|

= |
∑
y∈Di

e−2πiy·ξ
∫
|u|< 15c

M

gi,y(u+ y)e−2πiu·ξdu|

= |
∑
y∈Di

e−2πiy·ξ
∫
|u|< 15c

M

gi,y,0(u)e−2πiu·ξdu|

= |
∫
|u|< 15c

M

( ∑
y∈Di

gi,y,0(u)e−2πiy·ξ)e−2πiu·ξdu|

≤
∫
|u|< 15c

M

|
∑
y∈Di

gi,y,0(u)e−2πiy·ξ|du

.M−n sup
u:|u|≤ 15c

M

|
∑
y∈Di

gi,y,0(u)e−2πiy·ξ|.

Observe that the domain of u is compact, and the function concerned is continuous. Thus

the supremum is attained at some ui. Hence turning back we have to estimate

M− 2mn
m−1−
∫
BM

m∏
i=1

|
∑
y∈Di

gi,y,0(ui)e
−2πiy·ξ|

2
m−1dξ.

Writing y = (v, w) ∈ Rm × Rn−m and ξ = (α, β) ∈ Rm × Rn−m we can bound this by

.M− 2mn
m−1 max

w∈Bn−mM

−
∫
BmM

m∏
i=1

|
∑
y∈Di

gi,y,0,ω(ui)e
−2πiv·α|

2
m−1dα

where gi,y,0,ω(ui) = gi,y,0(ui)e
−2πiw·β. Since Si has positive definite second fundamental form

the projection to first m variables of V̂ too has the same property. Thus for fixed w we

apply Lemma 13 to obtain

.M− 2mn
m−1

+ε(
m∏
i=1

∑
y∈Di

|gi,y,0(ui)|2)
1

m−1 .

100



We use Young’s inequality to write

|gi,y(ui)| . ‖fi,y,0dσ ∗ φM‖1‖ψM‖∞ .Mn‖fi,y,0dσ ∗ φM‖1.

On the other hand whenever u ∈ B(0, c) we have

|fi,y,0dσ ∗ φM | ∗ ψM(u) ≥Mn‖fi,y,0dσ ∗ φM‖1.

Utilizing this information and again using Young’s inequality we can write

|gi,y(ui)| .Mn‖|fi,y,0dσ ∗ φM | ∗ φM
10
‖1 .M

n
2 ‖|fi,y,0dσ ∗ φM | ∗ ψM‖2

.M
n
2 ‖fi,y,0dσ ∗ φM‖2‖ψM‖1

.M
n
2 ‖fi,y,0dσ ∗ φM‖2.

We insert this back to get

.M− m·n
m−1

+ε
m∏
i=1

(
∑
y∈Di

‖fi,y,0dσ ∗ φM‖2
2)

1
m−1 .M− m·n

m−1
+ε

m∏
i=1

(
∑
y∈Di

‖fi,ydσ ∗ φM‖2
2)

1
m−1 .

From the Plancherel theorem we have

.M− m·n
m−1

+ε
m∏
i=1

(
∑
y∈Di

‖f̂i,ydσφ̂M‖2
2)

1
m−1

.M− m·n
m−1

+ε
m∏
i=1

(
∑
y∈Di

‖φ̂M
∫
|z−y|< c

M

fi(z)e−2πiξ·zdσ(z)‖2
2)

1
m−1 .

Our next lemma follows basically from change of variables for integrals. In [25] it was

observed that this could be used to prove restriction estimates.

Lemma 15 Let Sρ ⊂ S be a cap of radius ρ with ρ much smaller than the radius of the
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surface S. Then

∥∥∫
Sρ

f(y)e−2πiy·ξdσ(y)
∥∥
Lq(BR)

. ρn−1−(n+1)/pAq(R).

Proof. We can parametrize the surface S, through affine coordinate changes, on a neighbor-

hood U of the origin as (
x1, . . . , xn−1, |x|2 +O(|x|3)

)
Then integral becomes ∫

Uρ

f(x)e−2πi(x·ξ+ψ(x)ξn)dx

with Uρ ⊂ U is a cap of radius comparable to ρ and centered at a point v, and ψ(x) =

|x|2 +O(|x|3). Our first step is to take the cap Uρ to the origin:

∥∥∫
Uρ

f(x)e−2πi(x·ξ+ψ(x)ξn)dx
∥∥q
Lq(BR)

=
∥∥∫

Uρ−v
f(x+ v)e−2πi((x+v)·ξ+ψ(x+v)ξn)dx

∥∥q
Lq(BR)

=

∫
BR

∣∣ ∫
Uρ−v

f(x+ v)e−2πi(x·ξ+ψ(x+v)ξn)dx
∣∣qdξ.

By applying coordinate changes of the form ξ′i = ξi + ξn(2vi + . . .) for 1 ≤ i < n, and

ξ′n = ξn(1 + P (v)) with P (v) standing for various powers of v, we obtain a new phase

ψ′(x) = |x|2 +O(|x|3) and

.
∫
BCR

∣∣ ∫
Uρ−v

f(x+ v)e−2πi(x·ξ+ψ′(x)ξn)dx
∣∣qdξ.

Now we change variables as x′ = ρ−1x, ξ′i = ρξi for 1 ≤ i < n, and ξ′n = ρ2ξn to obtain

. ρq(n−1)−(n+1)

∫
BρCR

∣∣ ∫
U

f(ρx+ v)e−2πi(x·ξ+(|x|2+ρO(|x|3))ξn)dx
∣∣qdξ.

Here U is a domain centered at the origin with radius comparable to 1, f(ρx+ v) a function

defined on U with L∞ norm not exceeding 1, and |x|2 + ρO(|x|3) is another elliptic phase.
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Therefore we have

. ρq(n−1)−(n+1)(Aq(ρR))q . ρq(n−1)−(n+1)(Aq(R))q.

3.2 The Bourgain-Guth Argument

We are now ready to describe arguments used by Bourgain and Guth. The argument we

use to prove Theorem 2 is in essence an iteration of this argument. We introduce the the

constants

K2 � K3 � . . .� Kn−1 � Kn � Rε,

with

Km = Rε10(1+n−m)

, 2 ≤ m ≤ n.

We decompose our surface S into small caps Snα of size 1
Kn

, and we let yα ∈ Snα. Note that

for the projection U of S onto Rn−1×{0} this induces a decomposition into caps Un
α of size

roughly 1/Kn. In accordance,

∫
S

f(y)e−2πiy·ξσ(dy) =
∑
α

e−2πiynα·ξ
∫
Snα

f(y)e−2πi(y−ynα)·ξdσ(y).

Here we define the operators

T nα f(ξ) =

∫
Snα

f(y)e−2πi(y−ynα)·ξdσ(y)

which could also be defined using Un
α and a parametrization of S. Thus we have

∫
S

f(y)e−2πiy·ξdσ(y) =
∑
α

e−2πiynα·ξT nα f(ξ)
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Now since |y − ynα| . 1/Kn the function T nα f is heuristically constant on balls of size com-

parable to Kn. The aim of the following arguments is to make this rigorous. We will obtain

functions cnα that dominate T nα f , and that are approximately constant on balls of this size.

We take a Schwartz class function η on Rn, with η̂(x) = 1 on B(0, 1) and η̂(x) = 0 outside

B(0, 2). We let ηr(x) = 1
rn
η(x

r
). Note that if we define g(y) = f(y + ynα) we have

T nα f(ξ) =

∫
Snα−ynα

g(y)e−2πiy·ξdσ(y)

that is T nα f is the Fourier transform of a surface measure on a cap living in a ball of size

1/Kn around the origin. Thus we have the equality

T nα f = T nα f ∗ ηKn .

We need to obtain our functions cnα in a careful way, for we want certain results such as

multilinear theory of Bennett-Carbery and Tao to be applicable to them. The following

process has this aim. For a fixed ξ we use Lemma 12 to obtain

|T nα f(ξ)| ≤
∫
|T nα f(ξ − ζ)ηKn(ζ)|dζ

.
( ∫
|T nα f(ξ − ζ)ηKn(ζ)|

1
ndy
)n
Kn−n2

n .

If we take the constant term inside the integral we get

.
( ∫
|T nα f(ξ − ζ)|1/n 1

Kn
n

|η(
ζ

Kn

)|1/ndζ
)n
.

This has the form, which we want our function cnα to have, but it does not have the property

of being constant on balls of desired size. To also have this property we define

θKm(ζ) =
1

Kn
m

(
1 +

|ζ|
Km

)−(10n)2n−mε−n−10

, 2 ≤ m ≤ n.

104



Then we set

cnα(ξ) :=
( ∫
|T nα f(ξ − ζ)|1/nζKn(ζ)dζ

)n
.

We have cnα(ξ1) ≈ cnα(ξ2) whenever |x1− x2| < Kn. Moreover the growth of cnα(ξ) is bounded

depending on decay of θKn . Thus convolving cnα with functions decaying significantly faster

than θKn will leave its value at a point approximately the same. This is a fact that will be

used in this section as well as in section 3.3. Since η is a Schwarz function

|T nα f(ξ)| . cnα(ξ).

Hence we have ∣∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣∣ .∑

α

cnα(ξ).

With this appropriate decomposition at hand, we proceed to the argument proper. We

let BR denote the ball centered at the origin with radius R, and B(a,M) the ball centered

at a with radius M . We fix a point ξ ∈ Rn. We have two possibilities.

1.1. There exist α1, . . . , αn with |y′1 ∧ . . . ∧ y′n| > c(Kn) for any yi ∈ Un
αi

and

cnαi(ξ) > K−nn max
α

cnα(ξ).

Here c(Kn) stands for some negative power of Kn. We can choose the same α1, . . . , αn for

all x in a ball of radius Kn since cnα(x) are approximately constant on balls of this size.

1.2. There exist an (n− 1)-dimensional subspace Vn−1 such that if dist(Snα, V̂n−1) & 1/Kn,

then

cnα(ξ) ≤ K−nn max
α

cnα(ξ).

Here V̂ stands for the image of V ∩ Sn−1 under the Gauss map. Owing to the fact that

cnα(ξ) are essentially constant on balls of radius Kn, on such balls we can take the linear

subspace Vn−1 to be the same. Note that with appropriate choice of c(Kn) these two cases
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are complementary, that is one is the negation of the other.

First we assume 1.1 holds. Since the number of caps is comparable to Kn−1
n

∣∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣∣ . Kn−1

n max
α

cnα(ξ) . K2n−1
n

( n∏
i=1

cnαi(ξ)
)1/n

Thus letting B1.1 denote x ∈ BR satisfying 1.1 we have

∫
B1.1

∣∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣∣qdξ . K(2n−1)q

n

∑
α1,...,αn

∫
BR

( n∏
i=1

cnαi(ξ)
) q
ndξ

where the sum on the right hand side is over all possible caps satisfying transversality

property stated in the case 1.1. Hence by the definition of cnαi(ξ) and the Hölder inequality,

noting that θKn(ζi)dζi has total mass . 1, we have

. K(2n−1)q
n

∑
α1,...,αn

∫
BR

( n∏
i=1

∫
|T nαif(ξ − ζi)|q/nθKn(ζi)dζi

)
dξ

= K(2n−1)q
n

∑
α1,...,αn

∫
BR

( ∫ n∏
i=1

|T nαif(ξ − ζi)|q/nθKn(ζi)dζ1 . . . dζn
)
dξ.

Here observe how the definition of cnα(ξ) allowed us to bring the exponent q inside the integral.

Now, by Fubini’s theorem

. K(2n−1)q
n

∑
α1,...,αn

∫ ( ∫
BR

n∏
i=1

|T nαif(ξ − ζi)|q/ndx
) n∏
i=1

θKn(ζi)dζ1 . . . dζn (3.8)

Assuming q ≥ 2n
n−1

we see that the inner integral has a form suitable for applying (1.9). Thus

an individual integral in the sum over α1, . . . , αn satisfies

. Rε5 ,
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and hence (3.8) satisfies

. K10n2

n Rε . Rε3 .

The exponent 2n
n−1

is the best possible according to the restriction conjecture, thus in this

n-linear case we encounter no loss. However when we apply this same idea to lower levels

of multilinearity we will suffer significant losses, and these losses will increase as level of

multilinearity decreases. For example in trilinear case we must have q ≥ 3, and with this

it is not possible to improve best known exponents for the restriction conjecutre. Thus one

must also have another method that gets better as multilinearity disappears. This is the

method of rescaling, and its use will be illustrated soon.

We now assume that the case 1.2 holds. We use the fact that the number of caps is

comparable to Kn−1
n to obtain

∣∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣∣ . ∣∣∣ ∫

{y:dist(y,V̂n−1). 1
Kn
}
f(y)e−2πiy·ξdσ(y)

∣∣∣
+
∣∣∣ ∫
{y:dist(y,V̂n−1)& 1

Kn
}
f(y)e−2πiy·ξdσ(y)

∣∣∣
.
∣∣∣ ∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πiy·ξdσ(y)

∣∣∣+
1

Kn

max
α

cnα(ξ)

= I + II.

Letting B1.2 denote those ξ ∈ BR for which 1.2 holds, we obtain

∫
B1.2

∣∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣∣qdξ . ∫

B1.2

∣∣∣ ∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πiy·ξdσ(y)

∣∣∣qdξ
+

1

Kp
n

∫
BR

(
max
α

cnα(ξ)
)q
dξ
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The second term here is an error term, and it is easy to evaluate. We have

1

Kq
n

∫
BR

(max
α

cnα(ξ))qdξ ≤ 1

Kq
n

∑
α

∫
BR

(cnα(ξ))qdξ

=
1

Kq
n

∑
α

‖cnα‖
q
Lq(BR)

where the summation is over all caps of size 1/Kn. Writing out cnα(ξ) explicitly and using

the Hölder inequality we see that we can apply Lemma 15:

‖cnα‖
q
Lq(BR) .

∫
BR

( ∫
|T nα f(ξ − ζ)|qθKn(ζ)dζ

)
dξ (3.9)

.
∫ ( ∫

BR

|T nα f(ξ − ζ)|qdξ
)
θKn(ζ)dζ (3.10)

. Kn+1−q(n−1)
n (Aq(R/Kn))q. (3.11)

Thus the contribution of II is bounded by K
n(2−q)
n (Aq(R/Kn))q. In an inductive argument

trying to bound Aq(R) this is harmless since we will always have q > 2n
n−1

and this makes

the exponent n(2− q) negative.

To evaluate I, we decompose S into caps Sn−1
α of radius 1/Kn−1. Then we follow a similar

process:

∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πiy·ξdσ(y) =

∑
α

∫
Un−1
α ∩{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πiy·ξdσ(y)

=:
∑
α

e−2πiyn−1
α ·ξT̃ n−1

α f(ξ).

We also define

T n−1
α f(ξ) =

∫
Sn−1
α

f(y)e−2πiy·ξdσ(y).

We note the difference between T̃ and T , while the first is defined on intersection of caps
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with a strip, the second is defined on full caps. We define ηKn−1 just as ηKn was defined, and

also recall the definition of θn−1. Then we write

c̃n−1
α (ξ) :=

( ∫
|T̃ n−1
α f(ξ − ζ)|1/n−1ζKn−1(ζ)dζ

)n−1
.

cn−1
α (ξ) :=

( ∫
|T n−1
α f(ξ − ζ)|1/n−1θKn−1(ζ)dζ

)n−1
.

The functions cn−1
α will be needed in the next step of our process. From the same arguments

as in the definition of cnα we observe that

|T̃ n−1
α f(ξ)| . c̃n−1

α (x), |T n−1
α f(ξ)| . cn−1

α (ξ),

and that both c̃n−1
α , cn−1

α are approximately constant on balls of size Kn−1. We fix a point

ξ ∈ B1.2. We have two distinct and complementary cases:

2.1. There exist α1, . . . , αn−1 with |ξ′1 ∧ . . . ∧ ξ′n−1| > c(Kn−1) for all ξi ∈ Un−1
αi

, and

|c̃n−1
αi

(ξ)| > K
−(n−1)
n−1 max

α
|c̃n−1
α (ξ)|.

We can choose α1, . . . , αn−1 the same for all x in a ball of size Kn−1 since cn−1
α are essentially

constant on balls .

2.2. There exist an (n − 2)-dimensional subspace Vn−2 which can be chosen a subspace of

Vn−1 satisfying

|c̃n−1
α (ξ)| ≤ K

−(n−1)
n−1 max

α
|c̃n−1
α (ξ)|

if dist(Sn−1
α , V̂n−2) & 1/Kn−1. The linear subspace Vn−2 can be chosen the same for all x in

a ball of size Kn−2.

We assume that 2.1 holds. We will use both the multilinear theory, and the method of

rescaling and compare the exponents the give to decide which one is more advantageous.
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Since we have at most Kn−2
n−1 functions c̃n−1

α we can write

∣∣ ∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πiy·ξdσ(y)

∣∣ . K2n−3
n−1

( n−1∏
i=1

c̃n−1
αi

(ξ)
)1/n−1

.

If q ≥ 2n−2
n−2

, we can proceed to use the multilinear theory just as in the case 1.1. So

∫
B2.1

∣∣ ∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πiy·ξdσ(y)

∣∣qdξ

. C(Kn−1)

∫
BR

( n−1∏
i=1

c̃n−1
αi

(ξ)
)q/n−1

dξ

where we, of course, choose c̃n−1
αi

depending on ξ. This, then satisfies

. C(Kn−1)

∫
BR

( n−1∏
i=1

∑
αi

cnαi(ξ)
)q/n−1

dξ

. C(Kn)
∑

α1,...,αn−1

∫
BR

( n−1∏
i=1

cnαi(ξ)
)q/n−1

dξ

and from multilinear theory of Bennett-Carbery and Tao we obtain

. C(Kn)Rε5 . Rε3 .

This time we assume q < 2n−2
n−2

. In this case we have

−
∫
B(a,Kn)

∣∣ ∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πix·ξdσ(y)

∣∣qdξ
. K

(2n−3)q
n−1

∑
α1,...,αn−1

−
∫
B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(ξ)
)q/n−1

dξ

(3.12)

with the subspace Vn−1 being the same for all x ∈ B(a,Kn). The sum is over those

α1, . . . , αn−1 satisfying the transversality condition of case 2.1. The choice of α1, . . . , αn−1
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is the same only for balls of size Kn−1, but as the subspace remains the same, caps Sn−1
α are

always chosen from those intersecting the set

{y : dist(y, V̂n−1) .
1

Kn

}.

Although, as we stated, this time we will apply the method of rescaling, we also will exploit

multilinearity partially. This partial exploitation is necessary, and without it improvement

of best know exponents would not be possible. We take an individual integral from (3.12)

above. As q < 2n−2
n−2

by the Hölder inequality

−
∫
B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(ξ)
) q
n−1dξ .

(
−
∫
B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(ξ)
) 2
n−2dξ

) q(n−2)
2(n−1)

. (3.13)

Writing out c̃n−1
αi

(ξ) explicitly,

.
(
−
∫
B(a,Kn)

( n−1∏
i=1

∫
|T̃ n−1
α f(ξ − ζi)|

1
n−1 θKn−1(ζi)dζi

) 2(n−1)
n−2 dξ

) q(n−2)
2(n−1)

.

We use first the Hölder inequality then Fubini’s theorem to obtain

.
(
−
∫
B(a,Kn)

( n−1∏
i=1

∫
|T̃ n−1
α f(ξ − ζi)|

2
n−2 θKn−1(ζi)dζi

)
dξ
) q(n−2)

2(n−1)

.
(∫ (

−
∫
B(a,Kn)

n−1∏
i=1

|T̃ n−1
α f(ξ − ζi)|

2
n−2dξ

) n−1∏
i=1

θKn−1(ζi)dζ1 . . . dζn−1

) q(n−2)
2(n−1)

.

At this point observe that since φ used in Lemma 14 is a Schwarz function, we see that it is

possible to apply Lemma 14 to the inner integral and get the result

. Kε
n

(∫ n−1∏
i=1

(∑
αi

(cnαi)
2(ξ − ζi)dξ

) 1
n−2

n−1∏
i=1

θKn−1(ζi)dζ1 . . . dζn−1

) q(n−2)
2(n−1)
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where the summation is over all αi with Snαi ∩ V̂n−1 6= ∅. We rewrite this as

Kε
n

(∫ (∑
αi

(cnαi)
2(ξ − ζi)dξ

) 1
n−2 θKn−1(ζ)dζ

) q(n−2)
2

. Kε
n

(∫ (∑
αi

(cnαi)
2(ξ − ζ)dξ

)
θKn−1(ζ)dζ

) q
2

As θKn−1 decays faster than θKn the convolution with θ cannot increase the value of cnα at a

point. Using this and the Hölder inequality

. Kε
n

∑
αi

(cnαi)
2(ξ)

) q
2 . K

ε+(n−2)( q
2
−1)

n

∑
αi

(cnαi)
q(ξ).

As we have exploited the fact of α being restricted, we now allow our summation to be over

all α. We thus write

−
∫
B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(ξ)
) q
n−1dξ . K

ε+(n−2)( q
2
−1)

n

∑
αi

(cnαif(ξ))q.

Integrating both sides over B(0, R) gives

∫
BR

( n−1∏
i=1

c̃n−1
αi

(ξ)
) q
n−1dξ . K

ε+(n−2)( q
2
−1)

n

∫
BR

∑
αi

(cnαif(ξ))qdξ (3.14)

To the individual cnα we apply the method of rescaling much the same way as in (3.9) to

obtain

‖cnα‖
q
Lq(BR) . Kn+1−q(n−1)

n (Aq(R/Kn))q.

and thus

∫
BR

( n−1∏
i=1

c̃n−1
αi

(ξ)
) q
n−1dξ . K

ε+(n−2)( q
2
−1)+2n−q(n−1)

n (Aq(R))q.
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Now if we return to (3.12) and integrate over all a ∈ B2.1 we will obtain

∫
B2.1

∣∣ ∫
{y:dist(y,V̂n−1). 1

Kn
}
f(y)e−2πix·ξdσ(y)

∣∣qdξ . K
(2n−3)q
n−1

∑
α1,...,αn−1

∫
BR

( n−1∏
i=1

c̃n−1
αi

(ξ)
)q/n−1

dξ.

We already have estimated a single integral on the right hand side. Summing over all such

integrals we obtain

. K10n2

n−1 K
ε+(n−2)( q

2
−1)+2n−q(n−1)

n (Aq(R))q.

It is clear that such a term is acceptable in our inductive argument if

(n− 2)(
q

2
− 1) + 2n− q(n− 1) < 0

and if ε is chosen appropriately . This gives the condition q > 2n+4
n

. Combining this with

the exponent coming from the multilinear method we see that we should have

q > min(
2(n− 1)

n− 2
,
2(n+ 2)

n
).

Now how the rest of the argument proceeds is more or less clear. We already have

obtained two disjoint sets B1.1, B2.1. We will similarly obtain sets B3.1, . . . , Bn−1.1, Bn−1.2

satisfying

BR = Bn−1.2 ∪
( n−1⋃
j=1

Bn−1.1

)
with all sets on the right hand side disjoint. Then we will obtain

∫
BR

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ ≤ n−1∑

j=1

∫
Bj.1

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ

+

∫
Bn−1.2

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ, (3.15)
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and evaluate these terms. Although how to achieve this all is rather similar to what we

already did above, we will further describe how to obtain the set B3.1 and how to evaluate

integrals on B3.1, Bn−1.2 in (3.22) to make illuminate certain points.

Having handled ξ satisfying 2.1, we assume ξ satisfies 2.2. Notice that we already have

BR = B1.1 ∪B2.1 ∪B2.2.

where sets on the right hand side disjoint. For ξ ∈ B2.2 we have

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣ ≤ ∣∣ ∫

{y:dist(y,V̂n−2). 1
Kn−1

}
f(y)e−2πiy·ξdσ(y)

∣∣
+
∣∣ ∫
{y:dist(y,V̂n−2)& 1

Kn−1
}
f(y)e−2πiy·ξdσ(y)

∣∣, (3.16)

and the set {y : dist(y, V̂n−2) & 1
Kn−1
} can be written as a union of disjoint sets

E1(ξ) := {y : dist(y, V̂n−1) .
1

Kn

, dist(y, V̂n−2) &
1

Kn−1

},

E2(ξ) := {y : dist(y, V̂n−1) &
1

Kn

, dist(y, V̂n−2) &
1

Kn−1

},

as these sets depend on ξ. So

∣∣ ∫
{y:dist(y,V̂n−2)& 1

Kn−1
}
f(y)e−2πiy·ξdσ(y)

∣∣ . ∣∣ ∫
E1(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣

+
∣∣ ∫

E2(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣. (3.17)

We now use a 1/Kn−2 partitioning of S to partition {y : dist(y, V̂n−2) . 1
Kn−1
}, and define

operators T n−2
α , T̃ n−2

α and functions cn−2
α , c̃n−2

α just as before. Then we obtain two subcases

3.1, 3.2 and a partitioning of B2.2 into B3.1, B3.2 analogously. Having obtained B3.1 as
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desired, we now estimate the integral on it in (3.22). We of course have

∫
B3.1

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ . ∫

B3.1

∣∣ ∫
{y:dist(y,V̂n−2). 1

Kn−1
}
f(y)e−2πiy·ξdσ(y)

∣∣qdξ
+

∫
B3.1

∣∣ ∫
E1(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣qdξ

+

∫
B3.1

∣∣ ∫
E2(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣qdξ.

(3.18)

Since ξ satisfies 1.2 and 2.2 we have

∣∣ ∫
E1(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣ .∑

α

|T̃ n−1
α (ξ)| .

∑
α

c̃n−1(ξ)

where α are such that Sn−1
α ∩ E1(ξ) 6= ∅. Thus this last sum satisfies

. Kn−2
n−1 ·

1

Kn−1
n−1

max
α

c̃n−1
α (ξ).

Then ∫
B3.1

∣∣ ∫
E1(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣qdξ . 1

Kq
n−1

∑
α

∫
B3.1

(
c̃n−1
α (ξ)

)q
dξ

.
1

Kq
n−1

∑
α

‖c̃n−1
α ‖qLq(BR)

(3.19)

where the last two sums are over all α. Here one uses scaling as before -although this time

caps leading to c̃n−1
α have a peculiar shape, this really does not matter, we can multiply the

function on the cap by cap’s characteristic function, and pass to any larger cap.- We see that

for any q > 2 we get

∫
B3.1

∣∣ ∫
E1(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣qdξ . 1

Kq
n−1

(Aq(R/Kn−1))q .
1

Kq
n−1

(Aq(R))q.

Similarly ∣∣ ∫
E2(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣ .∑

α

|T n−1
α (ξ)| .

∑
α

cn−1
α (ξ)
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with α satisfying E2(ξ) ∩ Snα 6= ∅. Then the last sum satisfies

. Kn−1
n · 1

Kn
n

max
α

cnα(ξ).

So ∫
B3.1

∣∣ ∫
E2(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣qdξ . 1

Kq
n

∑
α

∫
B3.1

(
cnα(ξ)

)q
dξ

.
1

Kq
n

∑
α

‖cnα‖
q
Lq(BR)

(3.20)

with last two sums being over all α. Then rescaling gives for q > 2

∫
B3.1

∣∣ ∫
E2(ξ)

f(y)e−2πiy·ξdσ(y)
∣∣qdξ . 1

Kq
n

(Aq(R/Kn))q .
1

Kq
n

(Aq(R))q.

Thus remains the term

∫
B3.1

∣∣ ∫
{y:dist(y,V̂n−2). 1

Kn−1
}
f(y)e−2πiy·ξdσ(y)

∣∣qdξ
which we estimate just as in case 2.1 to obtain.

q ≥ min(2
n− 2

n− 3
, 2 +

4

n+ 1
).

This process runs in the same vein until we obtain cases n-1.1, n-1.2, and thus the

sets Bn−1.1, Bn−1.2. There is no difference in handling the integral on Bn−1.1, but there is a

small difference for the integral on Bn−1.2. In this case we do not proceed to obtain further

subcases, and write

∫
B3.1

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ . ∫

B3.1

∣∣ ∫
{y:dist(y,V̂1). 1

K2
}
f(y)e−2πiy·ξdσ(y)

∣∣qdξ
+

∫
B3.1

∣∣ ∫
{y:dist(y,V̂1)& 1

K2
}
f(y)e−2πiy·ξdσ(y)

∣∣qdξ.
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Now, firstly, the set {y : dist(y, V̂1) . 1
K2
} is neighborhood of a point on S, and there is no

multilinearity to exploit. We thus proceed directly to scaling for the first term, and obtain

the bound

∫
B3.1

∣∣ ∫
{y:dist(y,V̂1). 1

K2
}
f(y)e−2πiy·ξdσ(y)

∣∣qdξ . K
2n+q(1−n)+ε
n−2 (Aq(R))q

and this gives the exponent q > 2n
n−1

. The second integral can be handled easily by dividing

the set {y : dist(y, V̂1) & 1
K2
} appropriately into subset as we did above. Ultimately the

second integral can be bounded by a term

C
1

Kq
2

(Aq(R))q

for any q > 2, and such a term is harmless for induction.

Thus we have estimated all terms in (3.22). For the integral on B1.1 and Bn−1.2 we have

the condition q > 2n
n−1

. For any integral on Bj.1 with 2 ≤ j ≤ n− 1 we have

q > min(2
n− j + 1

n− j
, 2 +

4

n+ j − 2
).

So we see that for higher levels of multilinearity, multilinear method is better, and for lower

levels rescaling gives better exponents. At about j = 2n/3 the method of rescaling becomes

better , but the exact value of j depends on the value of l in the equation n = 3k + l. Also

the exponent we get when we combine all these conditions on q is taken at about this value

of j. We can easily calculate that if n = 3k then the final condition on the exponent q is

q >
8n+ 6

4n− 3
(3.21)

and this exponent comes from the term j = k + 1, from the method of rescaling. For
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n = 3k + 1 this is

q >
2n+ 1

n− 1

and comes from j = k + 1 using the multilinearity. For n = 3k + 2 the exponent is

q >
4n+ 4

2n− 1

and this comes from both j = k+1 by multilinearity, and j = k+2 by rescaling. In the next

section we will limit ourselves to case n = 3k and improve the exponent given by (3.21). We

explain the reason why we are able to do this in this case and not the other two. As written

above, the condition (3.21) comes from the term j = k + 1, namely for j = k + 1

8n+ 6

4n− 3
= min(2

n− j + 1

n− j
, 2 +

4

n+ j − 2
) = 2 +

4

n+ j − 2

The term 2(n− j + 1)/(n− j) coming from multilinear estimates is strictly larger than this

minimum that comes from rescaling. This will be used for a pigeonholing argument that

allows finer estimates.

3.3 Iteration of the Bourgain-Guth Argument

From now on we restrict ourselves to those n with n = 3k, k ∈ N. We recall the expression

∫
BR

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ ≤ n−1∑

j=1

∫
Bj.1

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ

+

∫
Bn−1.2

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ. (3.22)

We estimated these integrals one by one to obtain our final result. We saw that the worst

exponent comes from the integral on Bk+1.1, that this exponent is obtained via the method

of rescaling, and that the integral on Bk.1 is the last one for which the better exponent comes
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from the multilinear method. We first observe that if one have m+ 1 level of multilinearity

then one also have m level of multilinearity. So a careful consideration of our section 3.2

reveals that we can run the same argument starting with 2k+1 level of multilinearity instead

of n level, and obtain the same result. In this case we partition BR into

BR = Bn−1.2 ∪
( n−1⋃
j=k

Bj.1

)
.

Measure of a set here coming from the same level of multilinearity as in the partition before

may be different, but this is not of any importance, as we have never used this information.

So instead of (3.22) we have

∫
BR

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ ≤ n−1∑

j=k

∫
Bj.1

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ

+

∫
Bn−1.2

∣∣ ∫
S

f(y)e−2πiy·ξdσ(y)
∣∣qdξ. (3.23)

This reduction will simplify the iteration process that will be described below so significantly

that it will allow calculation of improvement for dimensions n = 3r for r > 2.

Let 1 ≤ m ≤ 2k + 1 denote the level of linearity , and so we may define Bm = Bj.1

for m + j = n + 1, and Bm = Bn−1.2 for m = 1. We observe from section 3.2 that for

ξ ∈ Bm, 2 ≤ m ≤ 2k we have

|Tf(ξ)| . C(Km)
( m∏
i=1

c̃mαi(ξ)
)1/m−1

+
2k∑

i=m+1

1

Ki

max
α

c̃iα(ξ) +
1

K2k+1

max
α

c2k+1
α (ξ),

if m = 1,

|Tf(ξ)| .
(
c̃2
αi

(ξ)
)1/m−1

+
2k∑

i=m+1

1

Ki

max
α

c̃iα(ξ) +
1

K2k+1

max
α

c2k+1
α (ξ),
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while if ξ ∈ Bm.1, m = 2k + 1 we have

|Tf(ξ)| . C(Km)
( m∏
i=1

c̃mαi(ξ)
)1/m

.

In all cases, of course, cmαi terms are appropriately chosen. Thus for any ξ ∈ BR we have

|Tf(ξ)| .
2k∑
m=2

C(Km)
( m∏
i=1

c̃mαi(ξ)
)1/m

+ C(K2k+1)
( 2k+1∏

i=1

c̃2k+1
αi

(ξ)
)1/2k+1

+ c̃2
α(ξ) +

2k∑
i=2

1

Ki

max
α

c̃iα(ξ) +
1

K2k+1

max
α

c2k+1
α (ξ).

(3.24)

We can replace terms on the second line by cα(ξ), denoting maximum of terms on that line.

Thus we have

|Tf(ξ)| .
2k∑
m=2

C(Km)
( m∏
i=1

c̃mαi(ξ)
)1/m

+ C(K2k+1)
( 2k+1∏

i=1

c̃2k+1
αi

(ξ)
)1/2k+1

+ cα(ξ). (3.25)

Our aim is to iterate this decomposition for smaller caps that give rise to last two terms

on the right-hand side, until we reach the scale R−1/2, which allows one to use more direct

methods like conservation of energy. But before this we need to make some replacements.

We can obtain a function φm for 2 ≤ m ≤ 2k that is approximately constant on balls of

radius 1 and that satisfies

m∏
i=1

(c̃mαi(ξ))
1/m = φm ·

(∑
α

(cm+1
α (ξ))2

)1/2
. (3.26)

To obtain such a function we simply divide the left hand side by the right hand side when

the right-hand side is not zero, when it is zero we just set φm = 0. Since both sides

are approximately constant on much larger balls, the condition of φm being approximately

constant on balls of radius 1 is satisfied. These functions satisfy the following additional
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property: (
−
∫
B(a,Km+1)

(φm)
2m
m−1

)m−1
2m . Kε5

m+1. (3.27)

To see this observe that the process we used to bound the left hand side of (3.13) already

gives [
−
∫
B(a,Km+1)

m∏
i=1

(c̃mαi(ξ))
2/m−1dx

]m−1
2m

. Kε5

m+1

(∑
α

(cm+1
α (ξ))2

)1/2
.

From which (3.27) follows. Since m ≤ 2k, simply using the Hölder inequality gives

(
−
∫
B(a,Km+1)

(φm)
4k

2k−1

) 2k−1
4k . Kε5

m+1.

Inserting this replacement back to (3.25) to obtain

|Tf(ξ)| . C(K2k+1)
( 2k+1∏

i=1

c2k+1
αi

(ξ)
)1/2k+1

+
2k∑
m=2

Kε5

m+1φm ·
(∑

α

(cm+1
α (ξ))2

)1/2

+ cα(ξ).

(3.28)

The iteration will be performed on the second and third term in the sum above. We will

illustrate this for a single cm+1
α from the second term on the right-hand side, for any other

term in (3.28), or any other term that will arise as we decompose, the process is the same.

This iteration is an entirely elementary, but rather cumbersome process. To simplify we will

makes some modifications to (3.28). To this end we introduce

amα (ξ) :=

∫
|Tmα f(ξ − ζ)|θKm(ζ)dζ,

for 2 ≤ m ≤ n. Using the Hölder inequality we have

cmα (ξ) . amα (ξ).
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So from (3.28) we pass to

|Tf(ξ)| . C(K2k+1)
( 2k+1∏

i=1

a2k+1
αi

(ξ)
)1/2k+1

+
2k∑
m=2

Kε5

m+1φm ·
(∑

α

(am+1
α (ξ))2

)1/2

+ aα(ξ).

(3.29)

We introduce another variant of cmα that averages over tubes rather than balls. We will use

parabolic rescaling as we iterate our decomposition, and the nature of which dictates use of

tubes. Recall the function η that we used in section 3.2 to define cmα . For a cap Sα of radius

1/Km rescale this function to make it concentrated on a tube centered at the origin oriented

along the normal eα of the cap Sα. Also define the smooth cutoff

βKm,α(ξ) :=
(

1 +
|ξ · eα|
K2
m

+
|ξ − ξ · eα|

Km

)−(10n)2n−mε−n−10

.

Then using these we define

bmα (ξ) :=

∫
|Tmα f(ξ − ζ)|βKm,α(ζ)dζ,

and obtain from slower decay of βKm than θKm

|Tmα f(ξ)| . cmα (ξ) . amα (ξ) . bmα (ξ). (3.30)

Thus we can write

|Tf(ξ)| . C(K2k+1)
( 2k+1∏

i=1

b2k+1
αi

(ξ)
)1/2k+1

+
2k∑
m=2

Kε5

m+1φm ·
(∑

α

(bm+1
α (ξ))2

)1/2

+ bα(ξ).

(3.31)

Thus instead of decomposing cm+1
α we may decompose bm+1

α . Since bm+1
α are approximately

122



constant on balls of size 1/Km+1 we can write

bm+1
α (ξ) ≈

∫
B(ξ,1)

bm+1
α (ζ)dζ =

∫
B(ξ,1)

∫
|Tm+1
α f(ζ − η)|βKm+1,α(η)dηdζ. (3.32)

We expand the term Tm+1
α using the projection Uα = Uα(xα, 1/Km+1) of the cap Sα, and a

parametrization of Sα on this projection

=

∫
B(ξ,1)

∫
|
∫
Uα

f(x)e−2πi[x·(ζ−η)+(|x|2+O(|x|3))(ζn−ηn)]dx|βKm+1,α(η)dηdζ.

From this point onwards we apply change of variables repeatedly. We first translate the cap

to the origin

.
∫
B(ξ,1)

∫
|
∫
Uα−xα

f(x+ xα)e−2πiΦ(x,ζ,η)dx|βKm+1,α(η)dηdζ

with

Φ(x, ζ, η) = x · (ζ − η + (2xα + . . .)(ζn − ηn)) + (|x|2(1 + . . .) +O(|x|3))(ζn − ηn).

We now apply appropriate change of variables for two outer integrals to obtain

.
∫
B(ξ′,C)

∫
|
∫
Uα−xα

f(x+ xα)e−2πi[x·(ζ−η)+(|x|2+O(|x|3))(ζn−ηn)]dx|βKm+1,0(η)dηdζ

where βKm+1,0 represents the smooth cutoff for the cap we obtained by translating Uα to the

origin. We first apply parabolic rescaling to x with factor 1/Km+1, then to ζ, η variables

with Km+1. We obtain

. Kn+3
m+1

∫
B

∫
|
∫
U

f(
x

Km+1

+ xα)e−2πiΨ(x,ζ,η)dx|βKm+1,0(Km+1η,K
2
m+1ηn)dηdζ
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where U a domain of size comparable to 1,

Ψ(x, ζ, η) = x · (ζ − η) + (|x|2 +
1

Km+1

O(|x|3))(ζn − ηn),

and

B = {ζ : |ζ − ξ′| . 1

Km+1

, |ζn − ξ′n| .
1

K2
m+1

.}

At this point we can apply the decomposition (3.29) to obtain

. Kn+3
m+1C(K2k+1)

∫
B

∫ ( 2k+1∏
i=1

a2k+1
τi

(ζ − η)
) 1

2k+1
βKm+1,0(Km+1η,K

2
m+1ηn)dηdζ

+Kn+3
m+1

2k∑
l=2

Kε
l+1

∫
B

∫
φl ·
(∑

τ

(al+1
τ (ζ − η))2

)1/2
βKm+1,0(Km+1η,K

2
m+1ηn)dηdζ

+Kn+3
m+1

∫
B

∫
aτ (ζ − η)βKm+1,0(Km+1η,K

2
m+1ηn)dηdζ

All three terms are handled similarly, so we will only demonstrate in detail how to handle

the second one, which is the most complicated of all three. It is clear that understanding

the term ∫
B

∫
φl ·
(∑

τ

(al+1
τ (ζ − η))2

)1/2
βKm+1,0(Km+1η,K

2
m+1ηn)dηdζ

is sufficient for this. This term can be written as

=

∫
B

∫
φl ·
(∑

τ

(al+1
τ (ζ − η)βKm+1,0(Km+1η,K

2
m+1ηn))2

)1/2
dηdζ. (3.33)

We have

al+1
τ (ζ − η) =

∫
|T l+1
τ g(ζ − η − ν)|θKl+1

(ν)dν

with g(x) = f(x/Kl+1 + xα). Due to nature of parabolic scaling we have

βKm+1,0(Km+1η,K
2
m+1ηn) =

1

Kn+1
m+1

(1 + |η|)−(10n)2n−m−1ε−n−10 ≤ 1

Kn+1
m+1

(1 + |η|)−(10n)nε−n−10

,
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and

θKl+1
(ν) ≤ 1

Kn
l+1

(1 +
|ν|
Kl+1

)−(10n)nε−n−10−5n.

We write

al+1
τ (ζ − η)β′Km+1,0

(η) =

∫
|T l+1
τ g(ζ − η − ν)|θKl+1

(ν)βKm+1,0(Km+1η,K
2
m+1ηn)dν.

We insert what we obtained above to the right-hand side

≤ (1 + |η|)−5n

∫
|T l+1
τ g(ζ − η − ν)| 1

Kn+1
m+1K

n
l+1

(1 +
|η + ν|
Kl+1

)−(10n)nε−n−10+5ndν.

For fixed η we perform a change of variables µ = η + ν we obtain

≤ (1 + |η|)−5n

Kn+1
m+1

∫
|T l+1
τ g(ζ − µ)| 1

Kn
l+1

(1 +
|µ|
Kl+1

)−(10n)nε−n−10+5ndµ.

We insert this back to (3.33) to obtain

.
∫
B

(∑
τ

(

∫
|T l+1
τ g(ζ − µ)| 1

Kn
l+1K

n+1
m+1

(1 +
|µ|
Kl+1

)pdµ)2
) 1

2dζ · −
∫
B

∫
(1 + |η|)−5nφldηdζ

with p = −(10n)nε−n−10 + 5n. We will handle these two factors separately. In the first term

we have a smooth cutoff for a ball of radius Kl+1. By reducing decay a little we can pass to

cutoff for a tube of radius Kl+1 and length K2
l+1

(∑
τ

∫
B

(

∫
|T l+1
τ g(ζ − µ)| 1

Kn+1
l+1 K

n+1
m+1

(1 +
|µ− µ · eτ |

Kl+1

+
|µ · eτ |
K2
l+1

)−(10n)nε−n−10+10ndµ)2
)1/2

dζ

where eτ is the normal of the cap Sl+1
τ . Let β′Kl+1,τ

be the cutoff in this last statement. Then

the integral can be written as

.
1

Kn+1
m+1

∫
B

∫
|
∫
Uτ

f(
x

Km+1

+ xα)e
−2πi[x·(ξ−µ)+(|x|2+ 1

Km+1
O(|x|3))(ξn−µn)]

dx|β′Kl+1,τ
(µ)dµdζ
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We now will return to our initial domain Uα. To this end we apply parabolic rescaling to x

by Km+1, and to ξ, µ by 1/Km+1. Thus we obtain

. K−n−3
m+1

∫
B(ξ′,C)

∫
|
∫
Uατ−xα

f(x+ xα)e−2πi[x·(ζ−µ)+(|x|2+O(|x|3))(ζn−µn)]dx|β′Kl+1Km+1,0τ
(µ)dµdζ

with Uατ − xα denoting the cap arising from Uτ after scaling, and

β′Kl+1Km+1,0τ
(µ) =

1

Kn+1
m+1

β′Kl+1,τ
(µ/Km+1, µn/K

2
m+1).

We have Uατ − xα a cap inside Uα − xα, and after translating it will be inside Uα. We are

now ready to translate to xα through change of variables first in ξ, µ, and then in x to obtain

.
∫
B(ξ,1)

∫
|
∫
Uατ

f(x)e−2πi[x·(ζ−µ)+(|x|2+O(|x|3))(ζn−µn)]dx|β′Kl+1Km+1,ατ
(µ)dµdζ

.
∫
|
∫
Uατ

f(x)e−2πi[x·(ξ−µ)+(|x|2+O(|x|3))(ξn−µn)]dx|β′Kl+1Km+1,ατ
(µ)dµ

with β′Kl+1Km+1,ατ
is the function β′Kl+1Km+1,0τ

rotated to have direction of the normal of the

cap Uατ . This function is a natural smooth tubular cutoff for Uατ . Thus we obtained a term

that is similar to the one we started with, except that this time the cap is of smaller size,

and the decay of smooth cutoff is a little slower. But as we started with very fast decay, even

after reaching to scale R−1/2 we will have enough decay. Thus this final term is acceptable

for us. But, of course, we also need to show that the second factor

−
∫
B

∫
(1 + |η|)−5nφl(ζ − η)dηdζ

is also acceptable. We perform change of variables for both variables, we apply parabolic
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rescaling to both η and ζ by 1/Km+1:

.
1

Kn+1
m+1

∫
B(ξ′,C)

∫
(1 +

|η|
Km+1

+
|ηn|
K2
m+1

)−5nφl(
ζ − η
Km+1

,
ζn − ηn
K2
m+1

)dηdζ.

Both functions inside integrals are approximately constant on tubular domains oriented

along the vector (0, . . . , 0, 1). Applying the change of variables that we used above for these

variables after translating caps makes them constant on tubes oriented along eα, the normal

of the cap Sα. Letting β′′Km+1,α
denote the first function, and φ′l the second, our integral

becomes

.
1

Kn+1
m+1

∫
B(ξ,1)

∫
β′′Km+1,α

(η)φ′l(ζ − η)dηdζ.

Inside integral is approximately constant over the domain B(ξ, 1), thus

.
1

Kn+1
m+1

∫
β′′Km+1,α

(η)φ′l(ξ − η)dη.

We define

φαl(ξ) :=
1

Kn+1
m+1

∫
β′′Km+1,α

(η)φ′l(ξ − η)dη.

This function satisfies two properties that are required for the iteration process. Firstly it

is approximately constant on tubes oriented along eα with radius Km+1 and length K2
m+1.

Secondly if B is a box centered at ξ with thickness Km+1Kl+1 and length K2
m+1K

2
l+1 along

eατ , then

−
∫
B

φαl(ξ)dξ . Kε5

l+1.

To see this we will use the definition of φαl . We have

−
∫
B

φαl(ξ)dξ =
1

Kn+1
m+1

−
∫
B

∫
β′′Km+1,α

(η)φ′l(ξ − η)dηdξ.
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Applying the inverse of translation we used above to both η, ξ we get

≈ 1

Kn+1
m+1

−
∫
B′

∫
(1 +

|η|
Km+1

+
|ηn|
K2
m+1

)−5nφl(
ξ − η
Km+1

,
ξn − ηn
K2
m+1

)dηdξ

where B′ is now a box of the same size as B, oriented along the normal of the translation of

the cap ατ . We apply parabolic scaling to both terms to obtain

≈ −
∫
B′′

∫
(1 + |η|)−5nφl(ξ − η)dηdξ =

∫
(1 + |η|)−5n

(
−
∫
B′′
φl(ξ − η)dξ

)
dη

where B′′ is a box of radius Km+1 and length K2
m+1 oriented along the normal of the cap Sτ

that emerges from the parabolic scaling. That the inner integral satisfies . Kε5

l+1 is clear.

Thus we have the desired property.

Thus we see that second factor is acceptable to us as well. Hence we have repeated the

decomposition succesfully. Further iteration of this decompostion process is much the same

as this one. However we will need to deal with the functions φαm arising at each step. As we

iterate we will get a product of these function, and we need to understand this product. To

investigate this phenomenon, let φτm and φρl be such functions arising consecutively, with ρ

denoting the cap τm. So φτm is constant on boxes τ ′ dual to the cap τ , while φρl is constant

on boxes ρ′ dual to the cap ρ. Since ρ arise from the decomposition of τ , if τ is of size δ, ρ

must have size δ/Km+1 . Let B be a box dual to ρl. Since this can be covered with a small

number of Kl+1ρ
′ boxes, we may assume that it is a Kl+1ρ

′ box We can decompose this box

into ρ′ boxes Bα; since φρl is comparable to a constant on a box Bα we have

∫
B

φ4k/2k−1
τm φ4k/2k−1

ρl
.
∑
α

φ4k/2k−1
ρl

∣∣∣
Bα

∫
Bα

φ4k/2k−1
τk

with

φ4k/2k−1
ρl

∣∣∣
Bα
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denoting the constant to which this function is comparable on Bα. Since ρ denotes the cap

τm, we have

−
∫
Bα

φ4k/2k−1
τm . Kε5

m+1.

Hence we have

∑
α

φ4k/2k−1
ρl

∣∣∣
Bα

∫
Bα

φ4k/2k−1
τm .

∑
α

∫
Bα

φ4k/2k−1
ρl

−
∫
Bα

φ4k/2k−1
τm

. Kε5

m+1

∑
α

∫
Bα

φ4k/2k−1
ρl

. Kε5

m+1

∫
B

φ4k/2k−1
ρl

. Kε5

m+1K
ε5

l+1|B|.

So if B is a box dual to ρl, or can be covered with a small number of these boxes we have

−
∫
B

φ4k/2k−1
τm φ4k/2k−1

ρl
. Kε5

m+1K
ε5

l+1.

From here we also understand that the constants of type Kε5

m+1 incurred during the

decomposition are always inversely proportionate to the size of caps τm emerging, that is a

smaller cap incurs a larger constant. This means as we iterate our decomposition to reach

size R−1/2 we will not encounter excess growth of constants, for dividing into smaller caps

means a smaller number of steps to reach R−1/2, while dividing into larger caps incurs smaller

constants.

After these explanations we state the final situation after iteration until the scale R−1/2.

|Tf | . Rε3 max
R−1/2<δ<1

max
Eδ

[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2
]1/2

+Rε3max
Eγ

[ ∑
ρ∈Eγ

(φρbρ)
2
]1/2

(3.34)

1. In the first term Eδ is a collection of δ caps that has cardinality . δ−2k+1, while in the
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second Eγ are caps of size R−1/2

Kn
≤ γ ≤ R−1/2.

2. In the first term τi ⊂ τ are caps of size δ/K2k+1.

3. We have for B a τ ′ box, K a ρ′ box

−
∫
B

φ4k/2k−1
τ . Rε4 , −

∫
K

φ4k/2k−1
ρ . Rε4 .

4. The functions b2k+1
τi

have the form

b2k+1
τi

(ξ) =
( ∫
|T 2k+1
τi

f(ξ − ζ)|1/2k+1βδ/K2k+1,τi(ζ)dζ
)2k+1

where we have, for a unit normal eτi of the cap τi,

βK2k+1/δ,τi(ξ) =
1

Kn+1
2k+1δ

n+1

(
1 +
|ξ − ξ · eτi|
K2k+1/δ

+
|ξ · eτi|
K2

2k+1/δ
2

)−(10n)5
.

Similarly

bρ(ξ) =

∫
|Tρf(ξ − ζ)|βγ,ρ(ζ)dζ, βγ,ρ(ξ) =

1

γn+1

(
1 +
|ξ − ξ · eρ|

γ
+
|ξ · eρ|
γ2

)−(10n)5
.

We will deal with the terms in (3.34) separately. We start with the first term.

3.3.1 Estimates on the multilinear term

We will estimate this term first in the space Lq, with q = 4k+2
2k

, which is the sharp exponent

given for 2k+ 1 level multilinearity by the multilinear method -which is better than the one

given by rescaling.- Then we will estimate it in L
8k+2
4k−1 which is the final exponent that our

work in section 3.2 gives. We note that 4k+2
2k

< 8k+2
4k−1

. We will then interpolate between these

exponents to improve 8k+2
4k−1

.
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We pick an arbitrary acceptable Eδ, and consider

.
[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2
]1/2

.

The terms b2k+1
τi

come from small caps inside a larger one τ . By rescaling this larger cap to

scale 1 we can obtain some gain. We will illustrate this first.

∫
BR

(
2k+1∏
i=1

b2k+1
τi

)2/2k =

∫
BR

( 2k+1∏
i=1

∫
|Tτif(ξ − ζ)|1/2k+1

δ/K2k+1
βK2k+1/δ,τi(ζ)dζ

)4k+2/2k
dξ

From this by the Hölder inequality

.
∫
BR

( 2k+1∏
i=1

∫
|Tτif(ξ − ζ)|1/kβK2k+1δ,τi(ζ)dζ

)
dξ

=

∫
BR

( ∫ 2k+1∏
i=1

|Tτif(ξ − ζi)|1/kβK2k+1δ,τi(ζi)dζ1 . . . dζ2k+1

)
dξ.

Then using Fubini’s theorem

=

∫ ( ∫
BR

2k+1∏
i=1

|Tτifζi(ξ − ζi)|1/kdξ
) 2k+1∏
i=1

βK2k+1δ,τi(ζi)dζ1 . . . dζ2k+1.

Here fζi are modulations of f . We rescale the inner integral to obtain functions |gζi | ≤ 1

and caps α1, · · · , α2k+1 with size 1/K2k+1, and the linear independence condition. To these

multilinear estimates apply and we obtain

. δ3k− 1
kRε5

for the inner integral for any choice of ζi. Since outer terms are just smooth cutoffs used to
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average over certain domains the overall term too satisfies

. δ3k− 1
kRε5 .

With this at hand we proceed to our estimates. First will come simpler and coarser

estimates, and the we will refine these using pigeonholing arguments. These coarser estimates

will not be directly utilized for the final result, but we will illustrate the arguments that

enable the finer estimates in proving them.

[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2
]1/2

≤ |Eδ|
1

4k+2

[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2k+1/k

]k/2k+1

. δ
−2k+1
4k+2

[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2k+1

]k/2k+1

At this point τ ranges over a full partition into δ- caps of S, and thus does not depend on

any particular choice of Eδ. Let B stand for τ ′ boxes. Since b2k+1
τi

are constant on τ ′i boxes,

we can write

∫
BR

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
) 4k+2

2k .
∑
B

(
2k+1∏
i=1

b2k+1
τi

)
1
k

∣∣∣
B

( ∫
B

φ4k+2/2k
τ )

.
∑
B

(

∫
B

(
2k+1∏
i=1

b2k+1
τi

)
1
k

)
(−
∫
B

φ4k+2/2k
τ )

. Rε4
∫
BR

(
2k+1∏
i=1

b2k+1
τi

)
1
k

. Rε3δ3k− 1
k .

(3.35)

Since a full partition of S into δ caps has cardinality ≈ δ−3k+1, we have

‖
[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2
]1/2

‖
L

4k+2
2k (BR)

. Rε3δ
−2k+1
4k+2

+ 2k−2
4k+2 = Rε3δ

−1
4k+2 .
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Exactly same steps together with the fact b2k+1
τi

. δn−1 gives

‖
[ ∑
τ∈Eδ

(
φτ (

2k+1∏
i=1

b2k+1
τi

)1/2k+1
)2
]1/2

‖
L

8k+2
4k−1 (BR)

. Rε3 .

We now proceed to finer estimates. To this end we will perform pigeonholing arguments.

We note that use of pigeonholing is very standard in non-endpoint restriction estimates; see

for example [28],[6]. We first set

gτ =
( 2k+1∏
i=1

b2k+1
τi

)1/2k+1
.

Let 0 < λ < 1 be a dyadic number, and gτ,λ = gτχ{gτ≈λδn−1}. Then we have

∫
BR

g
8k+2
4k−1

τ,λ < (λδn−1)
8k+2
4k−1

− 2k+1
k

∫
BR

g
2k+1
k

τ,λ . Rε5λ
1

k(4k−1) δ
3k−1

k(4k−1)
+3k− 1

k .

We use this and the techniques introduced for coarser estimates above to obtain

[ ∫
BR

( ∑
τ∈Eδ

(φτgτ,λ)
2
) 4k+1

4k−1

] 4k−1
8k+2

. Rε3λ
1

k(8k+2) .

We do one more pigeonholing. Let 1 ≤ µ <∞ be dyadic, and decompose

φτ =
∑
µ

φτ,µ

with

φτ,µ = φτχ{φτ∼µ}, φτ,1 = φτχ{φτ≤1}.

Then we have on τ ′ boxes B

−
∫
B

φ
8k+2
4k−1
τ,µ ≤ µ−

2
(2k−1)(4k−1)−

∫
B

φ
4k

2k−1
τ,µ . Rε4µ−

2
(2k−1)(4k−1) .
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Using this and previous techniques

[ ∫
BR

( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
) 4k+1

4k−1

] 4k−1
8k+2

. Rε3λ
1

k(8k+2)µ−
1

(2k−1)(4k+1) . (3.36)

We will estimate the left hand side above using a different method. Clearly

( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2 ≤ µ

(∑
τ

g2
τ,λ

)1/2
.

Here τ ranges over a full partition of the surface S into caps of size δ. We will write the

right hand side as convolutions of measures with tubes, to which using convexity we will

apply the Kakeya maximal function estimates. We know that separation between directions

of caps τ and τi is small, and that b2k+1
τi

are constant on boxes of size larger than the size of

τ ′. Thus

(b2k+1
τi

)1/2k+1 . (b2k+1
τ2k+1

)1/2k+1 ∗ (δ3k+1χτ ′) (3.37)

with χτ ′ denoting the characteristic function of the tube τ ′. Hence for ξ ∈ BR we have

gτ (ξ) .
∫ ( 2k+1∏

i=1

(b2k+1
τi

)1/2k+1 ∗ δ3k+1χτ ′
)
(ζ)(δ3k+1χτ ′)(ξ − ζ)dζ

=

∫
B3R

ω(ζ)(δ3k+1χτ ′)(ξ − ζ)dζ

From (3.37) and the definition of gτ,λ we can write

g2
τ,λ . ω2χ{ω&n−15λδn−1}.
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The extra n−15 on the right hand side above allows us to write

g2
τ,λ(ξ) . δ3k+1

∫
B3R

(ω2χ{ω&n−15λδn−1})(ζ)χτ ′(ξ − ζ)dζ

= δ3k+1

∫
(ω2χ{ω&n−15λδn−1}χB3R

)(ζ)χτ ′(ξ − ζ)dζ.

We want to replace the measure

(ω2χ{ω&n−15λδn−1}χB3R
)(ζ)dζ

with a constant multiple of a probability measure with support contained in B5R, from

which using convexity we will pass to the Kakeya maximal function. This can be done by

estimating the total mass of this measure. By Chebyshev’s inequality

∫
ω2χ{ω&n−15λδn−1}χB3R

(ξ)dξ . (
1

λδn−1
)1/k

∫
B3R

ω
4k+2
2k (ξ)dξ

which can be expanded as

. (
1

λδn−1
)1/k

∫ ( ∫
B3R

(
2k+1∏
i=1

b2k+1
τi

(ξ − ζi))1/kdξ
)( 2k+1∏

i=1

(δ3k+1χτ ′)(ζi)
)
dζ1 . . . dζ2k+1

. Rε4λ−
1
k δ3k−3.

Having estimated the total mass of the measure, we can replace it by this quantity multiplied

by a probability measure supported in B5R. Thus

g2
τ,λ . Rε4δ6k−2λ−1/k

∫
χτ ′(ξ − ζ)dµτ (ζ)

135



with dµτ being the probability measure. From this we have

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
8k+2
4k−1 (BR)

. Rε3µδ3k−1λ−1/2k‖
∑
τ

( ∫
χτ ′(ξ − ζτ )dµ(ζτ )

)2‖1/2
4k+1
4k−1

.

Using the Hölder inequality we have

. Rε3µδ3k−1λ−1/2k‖
∑
τ

∫
χτ ′(ξ − ζτ )dµ(ζτ )‖1/2

4k+1
4k−1

.

Let’s enumerate the range of τ from 1 to l. We observe that

∑
τ

∫
χτ ′(ξ − ζτ )dµ(ζτ ) =

∫ (∑
τ

χτ ′(ξ − ζτ )
)
dµ(ζ1) . . . dµ(ζl).

Thus from the Hölder inequality we have

. Rε3µδ3k−1λ−1/2k
(∫
‖
∑
τ

χτ ′(ξ − ζτ )‖ 4k+1
4k−1

dµ(ζ1) . . . dµ(ζl)
)1/2

.

If we can obtain an estimate for

‖
∑
τ

χτ ′(ξ − ζτ )‖ 4k+1
4k−1

independent of the choice of ζτ , we can use the fact that the measures concerned are proba-

bility measures. We will obtain such an estimate via the Kakeya maximal function estimates.

Here there are two different estimates, one is due to Wolff and works better for dimensions

n ≤ 8, the other by Katz-Tao and is better when n ≥ 9. We will thus apply both estimates.

Wolff’s estimate for δ-separated δ-tubes T , that is, tubes of radius δ and length 1, gives

‖
∑
T

χT‖n+2
n

. δ−
3k−2
3k+2

−,

with the minus after the exponent denoting an arbitrarily small deduction from it. Of course
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the constant hidden in & notation depends on this deduction. We clearly have the trivial

estimate

‖
∑
T

χT‖L1 . 1.

Interpolating these two estimates yields

‖
∑
T

χT‖ 4k+1
4k−1

. δ−
3k−2
4k+1

−.

On the other hand Katz-Tao estimate gives

‖
∑
T

χT‖ 4n+3
4n−4

. δ−
3k−1
4k+1

−.

Interpolating this with L1 estimate gives

‖
∑
T

χT‖ 4k+1
4k−1

. δ−
18k−6
28k+7

−.

We rescale these estimates according to the size of our tubes, to obtain

‖
∑
T

χT‖ 4k+1
4k−1

. δ
−24k2+6k

4k+1
+−3k+2

4k+1
−

from the Wolff estimate and,

‖
∑
T

χT‖ 4k+1
4k−1

. δ
−24k2+6k

4k+1
+ 6−18k

28k+7
−

from the Katz-Tao estimate. We now use these estimates, and the fact that the measures

above are probability measures. From the Wolff estimate we get

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
8k+2
4k−1 (BR)

. Rε3µδ
k

8k+2λ−1/2k (3.38)
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and from the Katz-Tao estimate we get

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
8k+2
4k−1 (BR)

. Rε3µδ
5k−4
28k+7λ−1/2k. (3.39)

For k = 2, (3.38) is better, and in this case we can write

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
18
7 (BR)

. Rε3µδ
1
9λ−1/4 . Rε3µδ

1
9λ−3/4, (3.40)

and we combine this with previous estimates to get

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
18
7 (BR)

. Rε3 min(µδ
1
9λ−3/4, λ1/36µ−1/27)

. Rε3δ
1

9·28 .

Let λ0 ≈ R−100n, µ ≈ R100n, be two dyadic numbers. Then we may write

‖
( ∑
τ∈Eδ

(φτgτ )
2
)1/2‖

L
18
7 (BR)

≤
∑
λ≤λ0

∑
µ

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
18
7 (BR)

+
∑
λ>λ0

∑
µ>µ0

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
18
7 (BR)

+
∑
λ>λ0

∑
µ≤µ0

‖
( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
18
7 (BR)

The first term in the sum above can be shown to satisfy . Rε3λ0 using (3.36), while the

second term is bounded by . Rε3µ
− 1

27
0 . Clearly both of these terms satisfy . Rε2δ

1
9·28 . The

last term only has about C log2R terms, thus it, too, is dominated by the same expression.

Hence

‖
( ∑
τ∈Eδ

(φτgτ )
2
)1/2‖

L
18
7 (BR)

. Rε2δ
1

9·28 .
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Since we also have

‖
( ∑
τ∈Eδ

(φτgτ )
2
)1/2‖

L
5
2 (BR)

. Rε2δ
−1
10 .

Interpolation yields an improvement of

5

1764
.

We turn to k ≥ 3 case. In this case (3.39) is better, and

‖max
Eδ

( ∑
τ∈Eδ

(φτ,µgτ,λ)
2
)1/2‖

L
8k+2
4k−1 (BR)

. Rε3 min(µδ
5k−4
28k+7λ−1/2k, λ

1
k(8k+2)µ−

1
(2k−1)(4k+1) )

. Rε3 min(µδ
5k−4
28k+7λ−

2k−1
2k , λ

1
k(8k+2)µ−

1
(2k−1)(4k+1) )

. Rε3δ
5k−4

(28k+7)(8k2−2k) .

Then from the same arguments, the improvement improvement is

(5k − 4)(2k + 1)

(4k2 − k)(28k + 7)(4k2 − k)
.

3.3.2 Estimates on the Linear Term

In this term the scale is about R−1/2, and this permits use of the more direct method of

conservation of mass presented in Lemma 1. We will combine this method with the methods

already introduced above.

‖
[∑
τ∈E

(φρbρ)
2
]1/2

‖
L

4k+2
2k (BR)

. R
2k−1

2(4k++2)

[∑
ρ

∫
BR

(φρbρ)
4k+2
2k

] 2k
4k+2

.
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In the last term ρ ranges over a partition into caps of size γ of all of S. We use the technique

in (3.35) to obtain

. R
2k−1

2(4k++2)
+ε4
[∑

ρ

∫
BR

(bρ)
4k+2
2k

] 2k
4k+2

.

Due to size of our caps we have bρ . R−3k−1/2+ε5 . Using this we have

. R
2k−1

2(4k++2)
+ 1−3k

4k+2
+ε3
[∑

ρ

∫
BR

(bρ)
2
] 2k

4k+2
.

We now use the conservation of mass property. To this end we expand

∫
BR

(bρ(ξ))
2dξ .

∫
BR

( ∫
|Tρf(ξ − ζ)|βγ,ρ(ζ)dζ

)2
dξ

.
∫ ( ∫

BR

|Tρf(ξ − ζ)|2dξ
)
βγ,ρ(ζ)dζ.

To the inner integral we apply conservation of mass. We have

∫
BR

|Tρf(ξ − ζ)|2dξ . R
3−3k

2
+ε5 .

Thus what we have [∑
ρ

∫
BR

(bρ(ξ))
2dξ
] 2k

4k+2
. R

2k
4k+2

+ε5 .

Hence we finally get

. R
1

2(4k+2)
+ε2 .

This time we will obtain estimates in the space L
8k+2
4k−1 first without using the Kakeya

maximal function estimate and then using it. We decompose φρ into φρ,µ exactly as before.
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Then

‖
[∑
ρ∈E

(φρ,µbρ)
2
]1/2

‖
L

8k+2
4k−1 (BR)

≤ R
2k−1
8k+2

(∑
ρ

∫
BR

(φρ,µbρ)
8k+2
4k−1

) 4k−1
8k+2

. R
2k−1
8k+2

+ε4µ−
1

(2k−1)(4k+1)
(∑

ρ

∫
BR

(bρ)
8k+2
4k−1

) 4k−1
8k+2

. R
2k−1
8k+2

+ 1−3k
4k+1

+ε3µ−
1

(2k−1)(4k+1)
(∑

ρ

∫
BR

(bρ)
2
) 4k−1

8k+2

. Rε2µ−
1

(2k−1)(4k+1) .

Now we will employ the Kakeya maximal function bounds. We will follow exactly the same

procedure as in the multilinear case. Thus we first write

bρ . bρ ∗ γ3k+1χρ′ .

Expanding the right hand side and using the Hölder inequality, we have for ξ ∈ BR

(bρ)
2(ξ) . γ3k+1

∫
(bρ)

2(ζ)χρ′(ξ − ζ)dζ = γ3k+1

∫
B2R

(bρ)
2(ζ)χρ′(ξ − ζ)dζ

= γ3k+1

∫
(bρ)

2(ζ)χB3R
(ζ)χρ′(ξ − ζ)dζ.

We consider (bρ)
2(ζ)χB3R

(ζ)dζ as a measure, and we want to replace it with a probability

measure supported in B5R. Thus we wish to estimate its total mass. From conservation of

mass we have ∫
B3R

(bρ)
2(ξ)dξ . R

3−3k
2

+ε5 .

Hence

(bρ)
2(ξ) . R−3k+1+ε4

∫
χρ′(ξ − ζ)dµρ(ζ).
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Thus

‖
[∑
ρ∈E

(φρ,µbρ)
2
]1/2

‖
L

8k+2
4k−1 (BR)

≤ µ‖
[∑

ρ

(bρ)
2
]1/2

‖
L

8k+2
4k−1 (BR)

. R
1−3k

2
+ε4µ sup

ζρ

‖
∑
ρ

χρ′(· − ζρ)‖1/2
4k+1
4k−1

. min(R
1−3k

2
+ 1

4
24k2−3k−2

4k+1
+ε3 , R

1−3k
2

+ 1
4

(
24k2−6k

4k+1
+ 6−18k

28k+7

)
+ε3)µ

with different powers of R coming from different Kakeya estimates introduced before. Now

for k = 2 the first is better, and comparison with the other method, and interpolation shows

that improvement is again

5

1764
.

For k ≥ 3 the second is better, and we still have the same improvement:

(5k − 4)(2k + 1)

(4k2 − k)(28k + 7)(4k2 − k)
.

As from both linear and multilinear cases we obtain the same improvements we have

Theorem 2.
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