
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 Long Kai 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

EMPIRICAL STUDY OF UNSTABLE LEADERS IN PAXOS 

 

 

 

 

 

 

 

BY 

 

LONG KAI 

 

 

 

 

 

 

 

THESIS 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Computer Science 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2013 

 

 

 

 

 

Urbana, Illinois 

 

 

                            Advisor: 

 

                                        Professor Nitin H. Vaidya 

 

 

 

 

 



ii 
 

ABSTRACT 

 

This thesis studies the effect of unstable leaders in Paxos protocol. Paxos 

algorithm is one of the most popular solutions for distributed consensus, and is 

often used for building replicated state machines. Safety is guaranteed by Paxos 

algorithm regardless of various machine and communication failures. However, 

the liveness is compromised when multiple Paxos leaders exist at the same time. 

Also, despite the extensive literature in the field, implementing Paxos algorithm 

for practical systems is still non-trivial. This thesis first studies the implications of 

multiple Paxos leaders in practical systems and provides an optimization by using 

leases. A complete specification of classical Paxos protocol is provided. We 

evaluate our implementation and show the effect of unstable leaders in practical 

systems. 
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CHAPTER 1: INTRODUCTION 

 

 

It is well-known to use state machine replication [2, 10] to achieve distributed 

services that require high availability and high efficiency. Consensus algorithm 

[4] can be used to guarantee that all replicas are mutually consistent [7, 14, 10]. It 

is possible to apply a consensus algorithm on a sequence of inputs, so that each 

replica can build the same log of entries. If the entries of the log are deterministic 

operations on some application state, replicas that maintain the same sequence of 

entries can eventually reach the same state. For example, the log series could be a 

sequence of storage system operations. If all replicas apply the identical series of 

operations on the same initial state, they will eventually store the same 

information. 

 

Reaching consensus is a fundamental problem in distributed systems. There are 

three conditions associated with consensus: agreement, validity, and termination. 

Given multiple replicas with the same initial state, solving a consensus among 

them implies that each replica will eventually reach the same output, while the 

three conditions are satisfied. Consensus problem has been studied extensively in 

the literature. 

 

One of the most well-known approaches is Paxos algorithm [8]. The algorithm 

only assumes a partially synchronous system, and replica has direct 
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communication channel with each other. Communication channel and machines 

may fail. Messages can be reordered, dropped, and duplicated. Machines may 

crash and restart from the stable storage. Safety is guaranteed in Paxos algorithm, 

while liveness is sacrificed. 

 

Although the original Paxos algorithm was known in the 1980’s and published in 

1998, it is difficult to understand how the algorithm works from the original 

specification. Furthermore, the original specification had a theoretical flavor and 

omitted many important practical details, including how failures are detected and 

what type of leader election algorithm is used. Filling in these details is critical if 

one wishes to build a real system that uses Paxos as a replication engine. 

 

As pointed out in [22], there exist significant gaps between theory and practice in 

Paxos, which need to be addressed by the fault-tolerant computing community. 

The Paxos algorithm is essentially designed for correctness while liveness and 

progress are not guaranteed. For example, in the classical Paxos algorithm, 

multiple leaders may be present in the system and block each other indefinitely. In 

practice, latency and throughput are critical for any system in production. Even 

though the performance of normal operations in Paxos is well understood 

theoretically and some of the benchmark results are available in the literature, the 

implications of multiple leaders and leadership transfer in real systems are still 

unclear. 
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We argue that leader election protocol and leadership management overall have 

critical impacts on the performance of Paxos in practical systems. The goal of this 

work is to clearly specify the Paxos algorithm for real implementation and study 

the liveness implications of Paxos in a practical setting. More specifically, we 

show how the system performance degrades due to multiple Paxos leaders and 

frequent leadership changes. We also provide optimizations for leadership 

management by using leases. We implemented our specification and provide 

performance results for our implementation. 

 

The rest of this thesis is organized as follows. The next two chapters expand on 

the background and related work for this project and study Paxos protocol in 

general. In Chapter 4, we provide an optimization for leadership management and 

discuss our system design. In Chapter 5, the details of our implementation of the 

system are specified. In Chapter 6, we show evaluation results of our system. 

Finally, we conclude in Chapter 7. 
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CHAPTER 2: BACKGROUND 

 

2.1. Replicated State Machines 

Replicated state machines are usually used for services requiring both high 

availability and efficiency. Availability means that requests of applications are 

processed and replied quickly. It is straightforward to use replication to increase 

the availability of the system, because the service can be provided by several 

replicas instead of just one copy. When some machines are slow or failed, the 

service remains available. 

 

Coordinating multiple servers is not trivial. The most general solution is to let 

replicas apply exactly the same operations on the same state, so that the output 

from each non-faulty replica would be the same. If 𝑓 replicas hold the same 

output, then the system overall can tolerate 𝑓– 1 faults.  

 

In this section we discuss about techniques to coordinate the replicas in a general 

and highly fault tolerant way. Then we provide background of an optimization 

called ‘leases’ that can make the coordination very efficient. 

 

Lamport proposed deterministic state machines [3] to arrange each replica to do 

the same thing. Each replica can be built as a determinist state machine, which 

means that the transition relation is a function from (state, input) to (new state, 

output). The essence of this approach is to let each replica have the same initial 



5 
 

state and receive the same series of operations and apply them deterministically. 

This becomes the problem of consensus, which informally can be described as 

reaching the same output by multiple replicas. 

 

When multiple replicas all agree on the values and order of input operations, they 

will deterministically go through the same process and eventually be in the same 

state. The failure of a single replica will not make the service unavailable. Note 

that this approach does not limit the kind of computation that each replica can do. 

To order the input operations, it is possible to make the ordering part of the input 

value. When replicas agree on the input value, the ordering of inputs is also 

contained. 

 

The kind of inputs varies from service to service. For example, a replicated 

storage service might have 𝑅𝑒𝑎𝑑(𝑥) and 𝑊𝑟𝑖𝑡𝑒(𝑥, 𝑣) inputs, and a bank account 

system might have 𝐶𝑟𝑒𝑑𝑖𝑡(𝑥) and 𝐷𝑒𝑏𝑖𝑡(𝑥) inputs. Different clients usually 

generate their requests independently, so it is necessary to agree not only on what 

the requests are, but also on the order in which to apply them. One easy approach 

is to give sequence number to each input, so that they can be ordered according to 

their sequence number. The sequence number can be assigned by a single server 

to avoid conflicts. For example, the storage service will agree on 𝐼𝑛𝑝𝑢𝑡 1 =

𝑊𝑟𝑖𝑡𝑒(𝑥, 3) and 𝐼𝑛𝑝𝑢𝑡 2 = 𝑅𝑒𝑎𝑑(𝑥). [25] 

 

2.2. Leases 
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Coordinating servers to achieve consensus is inefficient for many cases. It is 

much cheaper for a single replica to access a piece of state without interference 

from other replicas. Locks are often used for this purpose. However, lock-based 

schemes are not fault-tolerance. A failed server cannot release the lock it holds. 

And later no other server can access the piece of state protected by that lock 

anymore. A “lease” is a lock with timeout. The lock is automatically released 

when the lease expires. A server can only access that piece of state before the 

lease expires. If a server holds the lease, then it is the “owner” for that resource 

when the lease is valid. Other replicas cannot access that piece of state when they 

do not have the lease. 

 

Leasing mechanism requires the system to have synchronized clocks. The skew of 

clocks needs to be bounded. For example, if the skew between any pair of clocks 

is 𝜀. Then if the lease for one server is valid until time 𝑡, it is guaranteed that no 

other server will access the data protected by the lease before 𝑡– 𝜀 on the leaser’s 

clock. It is usually hard to provide such synchronized clocks in practical systems; 

we explore another solution to get around this requirement in chapter 4. 

 

When the owner has a valid lease on a piece of data, it can access the data either 

by reading or writing. However, it is required for writes to finish within a 

bounded duration; therefore it is ensured that the operation is finished while the 

server still holds the lease. 
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Many transaction systems make extensive use of leases. A certain transaction can 

only proceed if the server holds a valid lease. If the lease expires before the 

transaction is finished, that transaction will be aborted, which means that the state 

is reverted to the exact state before the transaction. There are many subtleties 

involved when the leases are assumed outside of the transaction. The server may 

lose the lease anytime, and the application may need to provide mechanism to 

revert the impact of an aborted transaction. For instance, the application can use 

redo or undo operations based on logs [11]. It is often required if the resource 

being leased is itself replicated. 

 

Because a lease is valid only for a period of time, the owner needs to periodically 

renew the lease. It is also possible for the owner to forsake the lease and let other 

servers acquire it immediately. Leasing mechanism is powerful, because a failed 

owner will release its lease automatically when the lease expires. And other 

servers can compete for the lease again to access that piece of data. Clearly, a 

tradeoff exists for the duration of the lease. If the duration of the lease is short, 

then the owner needs to frequently renew the lease. However, a longer lease 

makes the data inaccessible for a long period of time when the owner fails, 

because other servers need to wait for the lease to expire first. 

 

Initially, leasing mechanism is proposed for caching shared data. For example, it 

can be used for memory cache server to process data from shared stable storage. It 
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is possible to assign read lease or write lease to its holders to make the 

coordination more efficient. [25] 

 

2.3. Consensus Problem 

In a consensus problem, each process participated in the consensus can have a 

different input value, and the consensus is reached when all non-faulty processes 

agree on a single value that must be one of the inputs. If the agreed value can be 

anything, then it is easy to construct a trivial case where every server always 

agrees on “False”. The algorithm is terminated when all non-faulty servers decide 

on the value. 

 

Standard two-phase commit algorithm selects a fixed leader to coordinate 

consensus among replicas. Also, the leader decides whether the value is 

committed or aborted. If some server fails during the process, the leader can abort 

the update. Generally speaking, in this approach, a single primary is elected to 

assign sequence number to updates and broadcast updates to other replicas. All 

initial inputs are sent to the leader, so that the leader has enough information to 

select a value. However, the algorithm does not work when the leader fails. It also 

becomes undetermined whether a value is committed. 

 

An alternative approach is to leverage a group of servers to form a quorum. The 

agreed outcome is the value chosen by a majority of servers, or the quorum. It is 

ensured that no two values will be chosen because two quorums always have an 
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intersection. There are also problems with this scheme. It is hard to coordinate a 

majority of servers to choose the same value. Also, the outcome becomes 

undetermined when a majority of servers fail at the same time. 

 

It is proved [5] that there is no algorithm for consensus in an asynchronous system 

with faults, achieving both safety and termination. It may take an arbitrary amount 

of time to deliver any message in an asynchronous system, and it is impossible to 

separate delay from faults. There are algorithms for consensus in synchronous 

systems, but they are very inefficient for practical use [13]. 

 

2.4. The Paxos Algorithm 

It is well-known that Paxos [8] is a powerful tool to achieve consensus. A similar 

idea was proposed by Liskov and Oki [7]. In this section, we introduce and 

analyze this algorithm. Paxos is usually perceived as a very complicated 

algorithm to describe and understand. 

 

Paxos protocol is resilient to various infrastructure failures. The servers can fail 

and recover from stable storage. The messages can be delayed, dropped, 

duplicated, and reordered. But safety is still guaranteed. Logically, the algorithm 

has two kinds of processes, leader and acceptor. There could be multiple leaders 

in the system coordinating a quorum of acceptors for consensus. 
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For background, we explain the classical version of Paxos in this chapter. Then, 

we provide a discussion of the optimizations in literature in Chapter 3. In later 

chapters, we propose to use leases to make the protocol more available and 

efficient for practical use. 

 

The algorithm is composed of leader processes and acceptor processes. The 

behavior of an acceptor is deterministic; an acceptor faithfully follows what the 

protocol specifies. An acceptor has persistent storage that survives crashes. The 

set of acceptors is fixed for a single run of the algorithm. The leader processes 

coordinate acceptors for consensus. Leaders can come and go freely. They are not 

deterministic, and they may not have persistent storage. 

 

The core of Paxos is based on consensus among a majority of acceptors. As 

described before, majority-based consensus algorithm stops working when a value 

cannot be chosen by a majority of acceptors; or if a majority of replicas fail so 

that it is undetermined what the outcome is. A series of views is used to get 

around this problem in Paxos. There is a single leader for each view v and it tries 

to get a majority to accept a single value vp. If the protocol is not successful in 

one view, it starts another view to propose a value from the beginning. If a value 

vp is chosen by a majority of acceptors in one view, then vp will eventually 

become the decided outcome. 
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To avoid conflicts, if two values are chosen by a majority of acceptors in two 

views, they must be the same. The core of Paxos is to solve this problem. 

 

Essentially, there is only one leader for each view, and that leader asks a majority 

of acceptors to provide information about the previously proposed values. Then, 

the leader proposes a value for the current view, based on the information from 

acceptors. If a majority of acceptors agree on the proposed value, the leader 

finally broadcasts a commit message to all servers. 

 

There are two phases of the protocol and the last half-round to broadcast the 

results. Thus, without faults, in total 2½ round trips are needed for a successful 

round. If the leader fails repeatedly, or several leaders are in conflict with each 

other, it may take many rounds to reach consensus. 

 

Views in Paxos are totally ordered, and each view can only result in two possible 

states. A view is dead if a majority of acceptors vote 𝑁𝑜 (which means vote for 

no value) for that view, or successful if a majority of acceptors have casted votes 

for a 𝑉𝑎𝑙𝑢𝑒. The algorithm needs to maintain two properties for safety:   

 

Property 1: At most one value can be proposed in a view. 

If a set of acceptors accept some values in the same view, they must be the same 

value. If a majority of acceptors accept that value, it eventually becomes the 

output of the consensus, even though it may not be visible at the time. 
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Property 2: If two views are both successful, they must have the same value. 

 

We introduce the concept of an anchored view as the following:  

A view n is anchored if only if for any view m before n, either view m is dead or 

the value of view m is the same as the value for view n. If all preceding views are 

dead, n is anchored no matter what its value is. [25] 

 

The goal of the leader is to anchor the view by finding a proper value to propose. 

First of all, the leader needs to gather enough information from acceptors to learn 

about the previous views. In Paxos, the leader broadcasts a prepare message with 

a new view number v to all acceptors. Upon receiving this message, an acceptor 

responds with all the votes that it has casted for views before v. If there are views 

before v in which the acceptor has not casted votes, the acceptor sets those votes 

to No, indicating that it will not accept any value for those views. When the leader 

receives responses from a majority of acceptors, it can find a proper value to 

propose in its view. 

 

Because the leader receives promises from a majority of acceptors, it can decide 

that a previous view is dead if a majority of acceptors voted No for that view. The 

leader ignores all the dead view. When it encounters a view v’ with a value, it 

chooses that value vp to propose in view v. The logic is that v’ is anchored by 
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assumption and since no view between v’ and v is successful, view v is also 

anchored if the value of view v is the same as the value of view v’.  

 

Only in one condition that the leader is freely to propose any value. It is when the 

leader discovers that no earlier view is successful. In this case, this is the first 

view to have a value status, thus it is also anchored no matter what the value is. 

 

After the first round, the leader proposes the value vp to all acceptors in the 

system. Upon receiving the propose message, an acceptor casts its vote for the 

value if it has not set the vote for view v to No, which implies that the acceptor 

has not promised any leader with a higher view number. If an acceptor has set the 

vote for view v to No, it ignores the accept message or responds with a rejection. 

When the leader receives positive acceptance from a majority acceptors, it can 

decide that a consensus has been reached. Finally, it notifies all the servers by 

broadcasting a commit message. Thus, in total, the algorithm requires 2 and half 

rounds to finish one instance. 

 

It is important to realize that a consensus is reached when a majority of acceptors 

cast votes in the same view. Even though at the time, the leader may not learn the 

fact and it may fail before receiving acceptance from a majority of acceptors. The 

view becomes successful when a majority of acceptors accept the value in that 

view, and no future leader will propose a different value. [25] 
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To illustrate this algorithm, we discuss two concrete cases in Table 2.1. In here, 

we have three acceptors and three previous views. In the first instance of the 

algorithm, when a leader establishes the fourth view, all previous views are dead 

because a majority of acceptors voted No. If the new leader receives information 

from all acceptors, the leader can learn that all views are dead and it is ok to 

choose any value to propose in the fourth view. However, if only acceptor a and c 

successfully delivered their promises to the leader, the leader must choose 23 to 

propose because it does not know whether view 3 is dead. 

 

In the second instance illustrated in Table 2.1, only view 2 is successful. Even 

though both view 1 and view 3 are dead, the new leader in view 4 will always 

learn about the value in view 2, which is 23. The leader will not consider view 2 

dead and will propose the same value as in view 2. As this case illustrated, a 

successful view will mandate all future views to propose the same value. And thus 

when a majority of acceptors accept a value in the view, a consensus is reached. 

 

The Paxos algorithm is robust, because the only requirement for the underlying 

communication channel is that the contents of messages are intact. The 

communication network can drop, delay, reorder, and duplicate messages, but the 

algorithm is still correct. Servers can fail and recover from stable storage to 

restore previous state.  
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2.5. Tables 

Table 2.1 Examples for Paxos 

 Acceptor a Acceptor b Acceptor c 

View 1 53   

View 2   53 

View 3   23 

 

 Acceptor a Acceptor b Acceptor c 

View 1 53   

View 2  23 23 

View 3  23  
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CHAPTER 3: RELATED WORK 

 

3.1. Alternative State Machine Replication Protocols 

As described in Chapter 2, state machine replication [2, 10] is used to establish 

several replicas that maintain the same data structures and are updated in the same 

way. This is done by applying the same deterministic operations in the same order 

on all replicas. It is also assumed that these replicas have the same initial state, 

thus they will end up having the same outcome. Replicated state machine is often 

used for distributed storage system or distributed database system. The abstraction 

is powerful, which allows the application to perceive the several replicas as one 

copy of the data. The system may allow applications to generate concurrent 

operations on multiple replicas as the same time, but the operations are serialized, 

which means that the parallel execution of multiple operations has the same effect 

of the serial execution on a single copy. 

 

Several protocols have been proposed for achieving this goal. One of the most 

popular algorithms is the two-phase commit protocol [1]. As briefly discussed in 

Chapter 2, the two-phase commit protocol (2PC) relies on the primary leader to 

assign sequence numbers to updates. The protocol stops working if the leader 

fails. When the leader fails, the transaction cannot be simply aborted, because the 

outcome is undetermined. This can become a serious problem, because all the 

replicas need to block until the leader is restarted and restored.  
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The Three-Phase Commit (3PC) protocol [24] adds another around to the classical 

2PC protocol to get round the problem of leader failures. In 3PC, when the leader 

fails, a majority of replicas can still make progress. However, if more than one 

server fails, 3PC may still need to block a majority of replicas to wait for the 

servers to restart and restore. There is another version of the protocol called the 

enhanced three-phase commit (e3PC), which allows any set of servers that 

constitutes a majority to make progress, even though other servers may fail. 

However, the protocol is even more expensive than 3PC. [26] 

 

3.2. Alternative Paxos Specifications 

Several papers have attempted to specify and clarify the Paxos algorithm since its 

original presentation by Lamport. 

 

3.2.1. Paxos revisited 

De Prisco, Lampson, and Lynch [15] specify and prove the correctness of the 

protocol using Clocked General Timed automata to model the processes and 

channels in the system. The Clock GTA is an extension to General Timed 

Automaton with the notion of a Clock that models the local time at each process. 

Clock GTA provides a systematic way to describe partially asynchronous 

systems. These types of systems normally exhibit synchronous behavior but 

occasionally will violate those timings bounds. 
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The authors introduce automaton for failure detection, leader election and then 

combine those into a system which performs Paxos. The BASICPAXOS 

automaton is further split into three components: BPLEADER, BPAGENT, and 

BPSUCCESS. 

 

The algorithm is then explained using info-quorums, accepting-quorums and the 

invariants that the algorithm keeps. They emphasize that the key points in the 

algorithm are that 1) the info-quorums and the accepting-quorums always have 

one process in common and 2) the leader who selects the value to propose 

maintains the consistency of the round. 

 

Then they assume that when the system stabilizes that actions by processors are 

bounded by 𝑙 time and messages are bounded by 𝑑 time. With these assumptions, 

they prove that Paxos in the worst case terminates in 24𝑙 + 10𝑛𝑙 + 13𝑑 time and 

10𝑛 messages when there are 𝑛 processors. 

 

3.2.2. Deconstructing Paxos 

[18] decomposes Paxos into three abstractions: round-based register, round-based 

consensus, and weak leader election. [18] also introduces four variants of Paxos, 

one of these is FastPaxos and will be discussed in Section 3.3.2. 

 

The round-based register supports 𝑟𝑒𝑎𝑑() and 𝑤𝑟𝑖𝑡𝑒() operations with an integer 

round number and may commit or abort those operations. Round-based consensus 
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is a shared object which supports the 𝑝𝑟𝑜𝑝𝑜𝑠𝑒() operation. 𝑝𝑟𝑜𝑝𝑜𝑠𝑒() can 

commit a round or abort. The weak leader election abstraction is a shared object 

that elects a leader among a set of processes and supports the 𝑙𝑒𝑎𝑑𝑒𝑟() operation 

which returns the process identifier for the current leader. 

 

[18] then deconstructs the Paxos algorithm using the three abstractions, along 

with totally ordered broadcast and deliver primitives. Round-based consensus 

captures the sub-protocol used in Paxos to agree on a total order and uses the 

round-based register. Weak leader election encapsulates the way Paxos chooses a 

process that decides on the ordering of the messages. 

 

3.2.3. Paxos Register 

[23] introduces the Paxos Register to explain Paxos and other similar protocols, 

such as Byzantine Paxos. The Paxos Register is a write-one register that exposes 

two abstractions: 1) write and read operations which correspond to proposing and 

deciding and 2) tokens that guarantee agreement despite partial failures.  

 

Processes play any of three roles: proposer, acceptor, or learner. Proposers 

propose values by writing to the register while acceptors implement the register 

abstraction. Learners decide values by observing what have been written to the 

register. 

 

3.3. Theoretical Optimizations for Paxos 
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3.3.1. Cheap Paxos 

[19] introduces an optimization to Paxos that reduces the number of active 

processors needed to achieve state machine replication in a system. The main idea 

is that 𝑓 of the 2𝑓 + 1 processors which are usually a part of Paxos can be used as 

auxiliary processors. They can remain idle until one of the main processors fails. 

Once a main processor fails, the auxiliary processors take part in reconfiguring 

the system to replace the failed processor. The recovery step involves the 

auxiliary processors as acceptors to allow the system to continue progress. 

However, the algorithm can only guarantee liveness when the set of main 

processors does not change quickly. This is a weaker liveness condition than the 

Classic Paxos algorithm. 

 

The intuition of being able to not use f of the processors is that in the Classic 

Paxos algorithm if we have all of the working processors form a quorum, the 

processors not in the quorum do not have to do anything in order for there to be 

progress. 

 

3.3.2. FastPaxos 

The FastPaxos algorithm of [18] reduces the communication during stable periods 

of the system. The protocol is optimized to provide one round-trip communication 

to agree on a given order for a request. 
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The round-based consensus consists of a read and write phase. When the system 

is in a stable state, the read phase can be skipped. 

 

As shown in [17] the optimal message delay that is needed to solve asynchronous 

consensus is two rounds. However, [21] points out that typically the processors in 

Paxos that propose values are not the same that choose them. One example is that 

typical Basic Paxos deployments usually have remote clients contacting a group 

of Paxos servers. This extra communication from the client to the server 

introduces an extra message delay. 

 

[21] is an algorithm which removes the extra message delay in most instances. 

[17] showed that it is not possible for a general consensus algorithm to learn a 

value in two message delays in all instances. When there are concurrent 

competing proposals, extra communication must be had in order to maintain 

safety. 

 

In the paper, there are also two recovery protocols describes, coordinated and 

uncoordinated recovery. Coordinated recovery involves the acceptors sending 

their phase 2𝑏 messages to the coordinator and having the coordinator detect that 

there might have been a collision. The coordinator will treat those messages as the 

next rounds phase 1𝑏 messages instead. Uncoordinated recovery involves the 

acceptors broadcasting their phase 2𝑏 messages to the rest of the acceptors and 

then appropriately picking a value. 
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The recovery cost can potentially add four extra message delays. Additionally the 

fast rounds require that the acceptors quorum size be larger than the simple 

majority of Classic Paxos. 

 

3.4. Practical Study of Paxos 

The most closely related work is [22], which also takes a practical approach. 

Paxos algorithm is used as the base for a framework that implements a fault-

tolerant database. This building block is used as the heart of Chubby [20]. Despite 

the existing literature on the subject, building a production system turned out to be 

a non-trivial task for a variety of reasons: 

 

• “While Paxos can be described with a page of pseudo-code, the complete 

implementation contains several thousand lines of C++ code. Converting 

the algorithm into a practical, production-ready system involved 

implementing many features and optimizations – some published in the 

literature and some not. 

• “The fault-tolerant algorithms community is accustomed to proving short 

algorithms (one page of pseudo code) correct. This approach does not 

scale to a system with thousands of lines of code. To gain confidence in 

the “correctness” of a real system, different methods had to be used. 

• “Fault-tolerant algorithms tolerate a limited set of carefully selected faults. 

However, the real world exposes software to a wide variety of failure 
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modes, including errors in the algorithm, bugs in its implementation, and 

operator error. Designers had to engineer the software and design 

operational procedures to robustly handle this wider set of failure modes. 

• “A real system is rarely specified precisely. Even worse, the specification 

may change during the implementation phase. Consequently, an 

implementation should be malleable. Finally, a system might “fail” due to 

a misunderstanding that occurred during its specification phase.” [22] 

 

Essentially, their work demonstrates the significant gaps between the description 

of the Paxos algorithm and the needs of a real-world system. In order to build a 

real-world system, an expert needs to use numerous ideas scattered in the 

literature and make several relatively small protocol extensions. The cumulative 

effort will be substantial and the final system will be based on an unproven 

protocol. Another interesting factor is that they provided insights about testing 

fault-tolerant systems. 

 

The core algorithms work remains relatively theoretical and many practical tools 

and shortcomings still need to be addressed. [22] 
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CHAPTER 4: SYSTEM DESIGN FOR IMPROVEMENT 

 

4.1. System Overview 

 

4.1.1. System Model 

For the system model, our assumption is that the system contains multiple 

replication servers and they communicate with each other over unreliable 

communication network. The only assumption about the network is that the 

content of the message is not corrupted. Messages can be delayed, reordered, 

dropped, or duplicated. Network partitioning may happen, which means a set of 

servers can be cut off from the rest of the system. 

 

Servers in the system may stop completely and recover from stable storage. We 

assume there is no Byzantine failure and servers faithfully perform operations 

according to the protocol. Servers can be slow and crash for arbitrary times, but a 

stable storage must be available to maintain some server state. 

 

Operations in servers are all deterministic. If two servers apply the same operation 

on the same state, they should end up in the same state as well. As described in 

previous chapters, we use Paxos to order application updates and deliver the same 

set of updates to replication servers. Servers in the system should have the same 

initial state. And when they apply the same set of operations ordered by Paxos, 

they should eventually be in the same state. 
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An application proxy is implemented locally in each Paxos server. Application is 

responsible for implementing the communication channel of its choosing between 

remote application clients and local application servers. Clients introduce updates 

for execution by initiating them on Paxos servers. Updates should have different 

and unique identifiers. Update id should contain two values, the id of the client 

that issues the update and a monotonically increasing sequence number that is 

maintained by the client. A single client cannot issue multiple concurrent updates. 

A client can only issue a new request after all its previous updates are 

acknowledged. 

 

4.1.2. Architecture and API 

We implement our service as a replicated log service and use Paxos algorithm as 

the heart of the protocol to add and order entries in the log. The system consists of 

multiple replication servers and each replica contains a copy of the entire log. 

Applications issue entries to be added to the log. Replicas communicate with each 

other through Paxos protocol, so that each replica can record the same sequence 

of entries. 

 

We present the API of our service in Figure 4.1. Application submits requests by 

invoking a local function in replicas and the service will automatically add that 

entry to all replicas. When the entry is added, replicas invoke a local callback 

function to notify the application. 
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Multiple requests from different clients and applications can be submitted at the 

same time. The system can process multiple concurrent requests.  

 

4.2. Problems with Classical Paxos Protocol 

The core Paxos protocol does not specify the algorithm for leader election. As 

analyzed in previous chapters, the core Paxos protocol is designed to guarantee 

safety. In fact, the existence of multiple leaders does not compromise the 

correctness of Paxos. However, the performance of the replication system can still 

benefit significantly from having a single leader in the system. In the following 

sections, we analyze three motivations for having a single leader in the system 

and propose a solution for improvement. 

 

4.2.1. Multiple leaders 

As discussed in the Paxos paper, “it is easy to construct a scenario in which two 

leaders each keep issuing a sequence of proposals with increasing numbers, none 

of which are ever chosen. Leader 𝑝 completes phase 1 for a proposal number 𝑛1. 

Another leader 𝑞 then completes phase 1 for a proposal number 𝑛2 > 𝑛1. Leader 

p’s phase 2 𝑎𝑐𝑐𝑒𝑝𝑡 requests for a proposal numbered 𝑛1 are ignored because the 

acceptors have all promised not to accept any new proposal numbered less than 

𝑛2. So, leader 𝑝 then begins and completes phase 1 for a new proposal number 

𝑛3 > 𝑛2, causing the second phase 2 𝑎𝑐𝑐𝑒𝑝𝑡 requests of leader 𝑞 to be ignored. 

And so on.” [16] 
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The only way to ensure liveness in Paxos is to select a single leader in the system 

and only allow that server to propose values. If the system contains only one 

leader and a majority of replicas are alive, the system is guaranteed to make 

progress. When the leader is elected, it can learn the highest committed sequence 

number from replicas, and propose values with higher sequence numbers. Without 

conflicts from other leaders, replicas will accept the values from the single leader. 

 

From the discussion above, the system needs a leader election protocol to make 

sure there is at most one leader to guarantee liveness of Paxos. However, if the 

election protocol fails to guarantee the single leader, the safety property of Paxos 

is not compromised. 

 

4.2.2. Multi-Paxos 

A complete instance of Paxos requires five writes to the stable storage, for each of 

the prepare, promise, propose, accept, and commit messages. The server needs to 

finish the write to the stable storage before proceeding to the next step. Without 

any optimization, the Paxos protocol requires five consecutive writes to disk for 

each update. This can easily become the bottleneck of the system and be the 

major contributor to the overall latency. 

 

A popular optimization for the basic Paxos protocol is called multi-paxos [16]. 

Multi-paxos lets the leader to propose multiple values concurrently, which means 
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the first phase of the protocol (prepare and promise) is run only once for multiple 

Paxos instances. As long as the leader does not change, a new value only requires 

the second phase (propose and accept) to be delivered to replicas. The safety 

property of the basic Paxos algorithm is not compromised, because a view with 

higher sequence number can still be established by another server. With this 

optimization, the disk write of prepare and promise messages are ignored for most 

of the updates. And the remaining disk write of propose and accept can be done in 

parallel because they are performed in different servers (leader and acceptor). 

However, to benefit from this optimization, a single leader should be elected and 

maintained for long periods of time. 

 

In the classical Paxos algorithm, when the leadership is transferred to another 

process, the new leader only needs to rerun the last instance of Paxos for 

completion and notification to other replicas. With the optimization of Multi-

Paxos, however, a new leader needs to detect all unfinished Paxos instances of the 

previous leader and rerun them all.  

 

4.2.3. Expensive Read 

The core Paxos algorithm does not differentiate reading operations and writing 

operations, and reads need to be globally ordered in the same manner as writes. 

Otherwise, the consistency guarantee does not hold. In a simplified example, if 

replicas are allowed to serve reads locally without coordination with other 
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replicas, a client can read from a more up-to-date replica first and then read from 

a stale replica. Clearly, the sequential ordering of the replicated state is violated. 

 

The classical Paxos protocol does not consider the reading operations, which 

often dominate in a typical storage system. If the classical Paxos algorithm is used 

directly to implement a replicated storage system, reads need be serialized to 

ensure the no stale state is returned to the application. Especially, the leader 

cannot serve the reads locally because it may not contain the most up-to-date 

information. In the classical Paxos algorithm, the leader is not aware whether it 

still holds the leadership. When a new leader is selected in the classical Paxos, 

there is no way for acceptors to notify the previous leader. Thus, if the leader can 

serve the reads locally, it is possible that an old leader may return stale state to the 

application. Reads in classical Paxos protocol are very expensive. 

 

4.3. System Optimizations 

The solution is to guarantee that there is at most one leader in the system at any 

time, and the leader always holds the most up-to-date information locally. In this 

way, the progress of Paxos is not suspended by the conflicts of multiple leaders. 

Even though the progress still cannot be guaranteed in practice because a majority 

of replicas can be failing at the same time, or the network can be partitioned, but 

these infrastructure failures are much less likely. Another benefit from having a 

single leader is that the leader can store the most up-to-date state and serve reads 

locally. Because all updates are sequenced by the single leader, conceptually it 
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can insert reads into the global order and guarantee consistency without extra 

coordination with other replicas. 

 

To guarantee there is at most one leader in the system at any time. The leader 

election protocol needs to be strong, which means that at most one leader can be 

elected in each instance of the election protocol. However, leader election alone is 

not sufficient to provide the guarantee of a single leader, because it does not 

concern the condition of leadership transition. For example, a new instance of 

leader election can be initiated while the old leader is still valid. Because fault-

tolerant election protocols do not require the participants of all replicas, it is 

possible to elect a new leader regardless of the existence of a valid old leader. 

 

To ensure that no concurrent leaders are valid when a leader is elected, a leasing 

mechanism is used in our system. When the current leader is valid, a majority of 

replicas promise that they will not initiate or participate in any leader elections. 

And thus, no leader can be successfully elected while the current leader is still 

valid. In short, the election protocol selects at most one leader in each election 

round, and the leasing mechanism guarantees that no election will be successful 

when the old leader is still valid. 

 

4.3.1. Leader election 

As described above, Paxos is coordinated by a leader server, which assigns 

sequence numbers to client updates and proposes the assignments for global 
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ordering. The servers use a leader election protocol to elect this leader. To 

simplify the system and reuse the development structures, we see the leader 

election as a consensus problem, which is solved by Paxos itself. 

 

The inputs of the election are server id of each participant. Eventually, replicas 

reach consensus on a single input and a new view is subsequently installed in the 

system. It is straightforward to use a variant of the basic Paxos protocol to achieve 

the required election protocol. From a high-level perspective, each participant 

proposes a new view in Paxos. But multiple participants can propose at the same 

time and block each other with repeated attempts. To avoid conflicts in a best-

effort manner, each participant timeouts before making another proposal with 

higher view number when its previous proposal is not successful. An unsuccessful 

participant will wait long enough before retrying to reduce the likelihood of being 

conflict with the current leader, if exists. Once a value is successfully committed 

in this election protocol, no other participants can establish new views, except the 

elected leader. 

 

The Paxos-based leader election faces the same liveness challenge as we 

discussed before. We briefly discuss an optimization in this section. But for 

simplicity of reasoning, this optimization is not realized in our implementation. A 

more sophisticated solution is to use a weak election protocol to elect a 

coordinator for leader election. A weak election protocol does not guarantee 

single leader for each election, but the protocol is guaranteed to proceed with 



32 
 

reasonable performance. Multiple coordinators may result from the weak election 

protocol, but a weaker election protocol has more flexibility to be efficient and 

avoid conflicts. Only the coordinator(s) can propose new leadership contestants to 

replicas. Because the number of coordinators is small, and most of the time one, 

the blocking conflicts for the leader election is greatly reduced. 

 

Because of the leasing mechanism which is discussed in the next section, the 

leader election can only be initiated when a majority of Paxos servers consider the 

current leader to be failed and therefore invalid. Intuitively, when the leader 

election is initiated, it is impossible for the old leader to be valid at the same time, 

because a majority of replicas deny its leadership. Thus, the new leader elected 

from the election will not have conflict with the old leader. And at most one 

leader exists in the system at any time. The leasing mechanism is discussed in the 

next section.  

 

4.3.2. Leader Lease 

Leases are a well-known solution usually used for ensuring at most one server at a 

time can access a piece of data [20]. Originally, lease is a contract that gives the 

holder certain rights over some property for a bounded amount of time. In our 

context, a lease grants its holder leadership control within the term of the lease. A 

server must first acquire the leader lease before proposing values to other replicas 

in the system. 
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Before processing reading requests locally and responding to writing requests, it 

is required for the leader to obtain a valid leader lease from replicas. When a 

server is elected as leader during the election, other replicas also grant a lease 

ensuring that they will not elect a new leader during the lease term unless the 

leaseholder forsake its lease. After the lease expires, an operation on the shared 

state requires that the server first extends the lease for leadership, refreshing the 

local copy if the leadership has been transferred since the lease expired. When a 

client sends a request about the shared state, the server must defer the request 

until the leadership lease is obtained and forward the requests to the server that 

holds the lease. 

 

The semantics for our implementation of the leader leases [9] are the following: 

while the server has a valid leader lease, it is impossible for other servers to 

successfully propose a value. When a server becomes the leader, it catches up 

with the leading replicas. Thus, it is guaranteed that while a server has a valid 

leader lease, it also has the most up-to-date information in its local copy of the 

shared state. This copy can be used to serve reads locally without interacting with 

multiple replicas in the system. We let the leader extend its leader lease 

periodically before the lease expires, so that the leadership does not need to 

change for long periods of time. 

 

Acceptors in our system only process the messages from the server that they 

believe holds a valid leader lease. Any message sent from a server without a valid 
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lease will be ignored or rejected. To ensure there is no problem resulted from 

clock drift, the lease term in the leader is shorter than that granted by the 

acceptors. Thus, the lease always expires sooner in the leaseholder. The leader 

periodically extends its lease by submitting a renewal request to Paxos. 

 

4.3.3. Leader Library 

The leader initiates a Paxos round trying to extend leader leases every 10 seconds 

from Paxos replicas. In our system, we set the leader lease to be 30 seconds. Thus, 

a majority of acceptors have to miss two consecutive renewal requests before the 

lease is spuriously expired. We assume that if the leader is able to send out 

renewal request, then it is alive to process application requests. In our 

implementation, we prevent a restarted leader from continuously holding the lease 

it previously held. If the lease is still valid, the leader must invalidate the lease 

and compete for the leadership again. The reason is that during the crash and 

recovery, the memory state in the leader is lost. To ensure that a restarted leader 

does not mistake lease extension by acceptors from lease grant, the grant message 

is different from extension message. When a restarted leader receives lease 

extension from other servers, it rejects the extension and notify other servers that 

the leadership is free to compete. 

 

4.3.4. Dealing with Clocks 

Implementing leases usually requires loosely synchronized clocks in the system. 

However, even this is hard to achieve in practical systems. To get around this 
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problem, we use a technique demonstrated in Figure 4.2, and proposed by Liskov 

[12]. The assumption for this mechanism is clock rate synchronization, which 

means that if the clock in one server advances by 𝑇, there is no other server whose 

clock advances by more than 𝑇(1 + 𝜀). The exact clock drift can be undetermined 

and unbounded. As the Figure 4.2 demonstrated, the leader holds the lease for less 

amount of time than that granted by other replicas. 

 

The leader acquires the leader lease when it receives acknowledgements from 

other servers. However, the lease period on the leader server starts before it sends 

out the request for lease. Thus, the lease period in the leader starts earlier with 

shorter length, compared to other replicas. As long as the rate synchronization 

assumption is satisfied, the lease always expires sooner in leader than in other 

replicas. 

 

4.3.5. Reconciliation 

Reconciliation is important for replicas to actually execute the updates, instead of 

just agreeing on the order. The classical Paxos algorithm only solves the problem 

of reaching consensus on the set of updates and their order. However, during the 

protocol, updates are not guaranteed to reach all replicas. A replica cannot execute 

any update if an early update is not delivered. To solve this problem, we need to 

add a reconciliation mechanism to get the lagging replicas up-to-date. 
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For simplicity of design and reasoning, in our system, the reconciliation happens 

only between the leader and replicas. The complete set of decided sequence 

numbers are piggybacked on the messages between the leader and replicas during 

the lease request and renewal. When the leader lease is granted by a majority of 

replicas, the leader also receives a complete set of decided sequence numbers 

from the same majority of replicas. The leader starts reconciliation with 

corresponding replicas if the leader is lagging behind. When the leader holds the 

most up-to-date information, it can begin to serve reads locally. On the other 

hand, during lease renewal, the replicas learn the complete set of decided 

sequence numbers from the leader periodically. If the replica is lagging behind, it 

initiates reconciliation with the leader to catch up. 

 

It is possible to extend the protocol to allow reconciliation happen between peer 

and peer. This may be useful because the leader can easily become the bottleneck 

of the entire system. By issuing reconciliation with peers, the load on the leader is 

reduced. For example, the peers can randomly gossip with each other to learn 

about the missing updates and request committed updates from each other. 

However, this is beyond our implementation. 
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4.4. Figures 

Figure 4.1 System Architecture 
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Figure 4.2 the Lease Protocol between the Leader and Replicas 
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CHAPTER 5: SPECIFICATION FOR CLASSICAL PAXOS 

 

5.1. Overview 

For evaluation, we implemented two versions of the fault-tolerance log system. 

The simple version is faithful to the classical Paxos algorithm [8] with minimum 

modification for development. We also implemented a complete version with 

leases and reconciliation as described in Chapter 4. However, the specification for 

the complete version is rather complicated and we understand that many 

alternative implementations exist to develop leases and reconciliation. Therefore, 

in this Chapter we only present the specification for classical Paxos algorithm. 

We use pseudo code to show the important variables and basic structures of the 

actual code. All variables and procedures in section 5.5 are taken from the code, 

but greatly simplified. 

 

As described in previous chapters, a replication system built from Paxos lets 

replicas agree on the same set of updates and their ordering. By starting with the 

same initial state, replicas execute the same sequence of operations and eventually 

reach the same state. The fault-tolerance log service runs multiple Paxos instances 

in parallel, and each Paxos update is assigned a unique sequence number. When a 

replica receives consecutive updates, it executes them in the order of their 

sequence numbers. 

 



40 
 

Leaders are selected by successfully establishing views among acceptors. Each 

view has a unique view sequence number and there is only one leader associated 

with each view. A view is established in the first phase of the Paxos protocol, by 

exchanging prepare and promise messages between the leader and acceptors. A 

leader considers itself elected when it receives ⌊𝑁/2⌋ promise messages. 

Subsequently, it orders application updates and begins to propose values by 

broadcasting propose messages. A consensus is reached when the leader receives 

⌊𝑁/2⌋ accept messages.  

 

To make the protocol more efficient, a leader concurrently proposes multiple 

values to acceptors. The first phase of the Paxos protocol is performed only when 

the leadership needs to be changed. While the leader is not changed, each new 

update directly invokes the second phase of the protocol. 

 

Actions in servers are triggered by events. Essentially, an action can be triggered 

either by a received message or a timer running out. The leader receives requests 

from applications and messages from acceptors. It retries after timeout when 

certain actions are not successful. Acceptors only receive messages from the 

leader. They try to compete for the leadership when the current leader is not 

responsive for long enough. 
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The following sections are organized in this way. We first discuss the data 

structures and message types used in our implementation. The Paxos protocol is 

divided into prepare phase and propose phase, and we present them separately. 

 

5.2. Data Structures and Message Types 

Data structures reflect the state of each server in the system. The state of a server 

is generally divided into two categories, memory state and disk state. The data 

structures presented in this section are all stored in memory. In Figure 5.1, we lay 

out the essential variables associated with prepare phase, and propose phase. The 

updates are ordered, delivered, and stored in propose phase. Especially, the 

variable History contains all accepted and committed updates received by this 

replica. History is indexed by the update sequence number, and it is also 

maintained in the disk. Lastly, we also show the variables we use for client 

handling. This is useful for update execution.  

 

The leader and acceptors communicate by exchanging messages. The message 

types are showed in Figure 5.2. Clients invoke the protocol by sending Update 

messages to the leader. In the prepare phase of the protocol, the leader sends 

Prepare message to acceptors, who reply with Promise message. In the propose 

phase of the protocol, the leader broadcasts Propose message to acceptors, while 

acceptors send back Accept messages. In the end, the leader sends out Commit 

message to notify that an update is committed. 
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Upon receiving a message, a server first checks whether the message should be 

processed, as specified in Figure 5.3. Because the underlying communication 

infrastructure is unreliable, the messages could be reordered and delayed. It is 

possible for servers to receive stale or duplicated messages. Thus all incoming 

messages need to be checked before being processed. Messages failed the check 

are ignored by the receiver. If the check is passed, the server proceed to apply the 

message to its local state according to the rules described in Figure 5.4.  

 

5.3. Prepare Phase 

The Prepare phase is the first round of the Paxos protocol. In classical Paxos, this 

round is used to establish a new view associated with one leader. The pseudo code 

for this phase is showed in Figure 5.5. During this phase, the leader establishes a 

new view identified by a view sequence number. To guarantee that this view has 

no conflict with previous views, the leader needs to have enough information 

from the acceptors to learn about the previous views. This information is provided 

when the acceptor replies the leader with a promise message. In our 

implementation, a leader can propose multiple values in the same view. 

 

In the protocol, a new view sequence number needs to be selected by the leader. 

In our implementation, this view sequence number contains two values, the 

identifier of the leader and a monotonically increasing local sequence number. 

The local sequence number is the same as the system timestamp when the view is 

generated. Thus this number must be monotonically increasing. The view 
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sequence numbers are ordered first by their local sequence number. When their 

local sequence numbers are the same, they are ordered by their server identifiers. 

Besides the view sequence number, the prepare message also contains a 

committed sequence number for updates. This update sequence number indicates 

the highest number among all consecutively committed updates received by the 

leader. After broadcasting the Prepare message to acceptors, the leader waits for 

their responses. 

 

When an acceptor receives a prepare message from the leader, it checks whether 

the contained view sequence number is the highest it has encountered so far. A 

prepare message without the highest sequence number is rejected. If the sequence 

number is indeed the highest, the acceptor modifies the local state and constructs 

a Promise message. A Promise message contains all the information that this 

acceptor can provide to help the leader learns about previous views. The acceptor 

provides information for updates that the leader are not aware of. If the acceptor 

received Propose message or Commit message beyond the committed sequence 

number provided by the leader, these messages are included in the Promise 

message replied to the new leader. 

 

When at least ⌊𝑁/2⌋ Promise messages are delivered to the leader for the view it 

prepares, the leader successfully establishes the view. From the information 

provided in those Promise messages, the leader is able to find the highest used 
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update sequence number and catch up with the leading replica. The leader shifts 

to the Propose phase subsequently. 

 

5.4. Propose Phase 

The leader only responds to client requests when it is shifted to the propose phase. 

The updates received from clients are added to pendingUpdates queue. The client 

requests are ignored in non-leader servers. In this phase, the leader coordinates 

acceptors to reach consensus on the values added to the log and their order. The 

pseudo code for this phase is showed in Figure 5.6. 

 

When the pendingUpdates queue is not empty, the leader takes a value from the 

queue and proposes the value through starts_propose call. The leader picks the 

first uncommitted sequence number and checks the information sent by acceptors 

in the Prepare phase. If a value has been accepted in previous views for that 

sequence number, the leader will propose that value. Otherwise, the value from 

the pendingUpdates queue will be proposed for that sequence number.  

 

When an acceptor receives a Propose message from the leader, it checks weather 

the message belongs to the view that it promised. If the view sequence number is 

valid, the acceptor will store the message in disk and reply with an Accept 

message.  
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Upon receiving ⌊𝑁/2⌋ accept messages for the value it proposes, the leader is 

certain that a consensus is reached for this value. The leader notifies acceptors 

about the consensus by broadcasting a Commit message. This allows the acceptor 

to execute the update. An acceptor cannot execute an update if it has not received 

a commit message for that update. 
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5.5. Figures 

Figure 5.1: Data Structures 
Leader: 
/* Server State variables */ 
1. int myServerId - a unique identifier for this server 
2. State - one of {UNSTARTED, PREPARING, PROPOSING, CLOSED} 
 
/* View State variables */ 
1. ViewSeq attemptedView – the view that the leader attempts to  
       establish 
 
/* Prepare Phase variables */ 
1. boolean[] promises - array of promises received from acceptors,  
       indexed by serverId 
 
/* Propose Phase variables */ 
1. UpdateSeq committedSeq - the highest sequence number of all  
       consecutively committed updates 
2. UpdateSeq availableSeq - the lowest sequence number that has not  
       been proposed and committed 
3. Map history - map of updates, with sequence number as the key, and  
       each slot contains: 
4.   String value – the value of this update, if any 
5.   boolean committed – whether the value of this update is committed 
6.   ViewSeq viewOfValue – the highest view in which this value is  
         proposed 
7.   boolean[] acceptVotes – array of acceptance received from  
         acceptors, indexed by serverId 
 
/* Client Handling variables */ 
1. Queue<String> pendingUpdates – queue of client update messages that  
       have not been processed 
 
Acceptor: 
/* Server State variables */ 
1. int myServerId - a unique identifier for this server 
 
/* View State variables */ 
1. ViewSeq promisedView - the highest view this server promised, all  
       messages of lower views are rejected 
 
/* Prepare Phase variables */ 
1. (disk) Message prepare - the Prepare message from the last promised  
       view, if received 
 
/* Propose Phase variables */ 
1. UpdateSeq committedSeq - the locally highest sequence number of all  
       consecutively committed updates 
2. Map history - map of updates, with sequence number as the key, and  
       each slot contains: 
3.   String value – the value of this update, if any 
4.   boolean committed – whether the value of this update is committed 
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Figure 5.1 (cont.) 
5.   ViewSeq viewOfValue – the highest view in which this value is  
         proposed 
6. (disk) Message Propose – the propose messages accepted by this  
       server 
7. (disk) Message Commit – the commit messages received by this server 
 
/* Client Handling variables */ 
1. UpdateSeq appliedSeq – the sequence number of the last applied  
       update 
2. (disk) AppStateManager applicationState – An object that applies  
       committed updates to the application by writing updates to the  
       disk 
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Figure 5.2: Message Types 
1. Update - contains the following fields: 
2.   clientId - unique identifier of the sending client 
3.   clientUpdateSeq - client sequence number for this update 
4.   value - the update being initiated by the client 
 
1. Prepare - contains the following fields: 
2.   senderId - unique identifier of the sending server 
3.   view - the view number being prepared 
4.   committedSeq - the locally committed sequence number of the leader 
 
1. Promise - contains the following fields: 
2.   senderId - unique identifier of the sending server 
3.   promiseView - the view number that the acceptor promised 
4.   committedSeq - the highest sequence number of all consecutively  
         committed updates 
5.   info – a portion of the acceptor history that helps to bring the  
         leader up-to-date  
 
1. Propose - contains the following fields: 
2.   senderId - unique identifier of the sending server 
3.   view - the view in which this Propose is being made 
4.   updateSeq - the sequence number of this Propose 
5.   value - the update value being bound to updateSeq in this Propose 
 
1. Accept - contains the following fields: 
2.   senderId - unique identifier of the sending server 
3.   view - the view for which this message applies 
4.   updateSeq - the sequence number of the associated Propose 
5.   isAccepted – a false value notifies the leader of a higher view,  
         so the leader can quit 
 
1. Commit - contains the following fields: 
2.   senderId - unique identifier of the sending server 
3.   updateSeq - the sequence number of the update that was ordered 
4.   value - the update value bound to updateSeq and globally ordered 
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Figure 5.3: Conflict checks to run on incoming messages. 
Messages for which a conflict exists are discarded or 

rejected. 
Leader: 
boolean Conflict(message): 
// The leader only handles promise message when its state is  
// PREPARING. This method also checks whether the promise message is  
// meant for the same view. 
1. Promise(senderId, promiseView, committedSeq, info): 
2.   if state ≠ PREPARING 
3.     return TRUE 
4.   if promiseView ≠ attemptedView 
5.     return TRUE 
6. return FALSE 
 
// The leader only handles accept message when its state is PROPOSING.  
// The leader also checks the view sequence number and update sequence  
// number to rule out stale messages.  
1. Accept(senderId, view, updateSeq, isAccepted): 
2.   if state ≠ PROPOSING 
3.     return TRUE 
4.   if view ≠ attemptedView 
5.     return TRUE 
6.   if history[updateSeq] does not contain an update 
7.     return TRUE 
8. return FALSE 
 
Acceptor: 
boolean Conflict(message): 
// Checks whether this acceptor has promised a higher view. If so,  
// ignores this message. 
1. Prepare(serverId, view, committedSeq): 
2.   if view < promisedView 
3.     return TRUE 
4. return FALSE 
 
// Checks whether this acceptor has promised a higher view. If so,  
// ignores this message. 
1. Propose(senderId, view, updateSeq, value): 
2.   if view < promisedView 
3.     return TRUE 
4. return FALSE 
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Figure 5.4: Rules for updating the local state. 
Leader: 
Update Data Structures(message): 
// Records that the acceptor with senderId has promised, and  
// updates information about previous views based on info. 
1. handle_promise_msg(senderId, promiseView, committedSeq, info): 
2.   if promises[senderId] is true 
3.     ignore this message 

4.   promises[senderId] ← true 
5.   for each entry e in info 
6.     Apply e to local data structures 
 
// If the update has not been committed, records that the acceptor with  
// senderId has accepted this update. 
1. handle_accept_msg(senderId, view, updateSeq, isAccepted): 
2.   if history[updateSeq].committed is true 
3.     ignore this message 
4.   if history[updateSeq].acceptVotes already contains ⌊N/2⌋ Accept  
         messages 
5.     ignore this message 
6.   if history[updateSeq].acceptVotes[senderId] is true 
7.     ignore this message 

8.   history[updateSeq].acceptVotes[senderId] ← true 
 
Acceptor: 
Update Data Structures(message): 
// Updates local promiseView variable. 
1. handle_prepare_msg(serverId, view, committedSeq): 

2.   promiseView ← view 
 
// Updates promiseView variable if this message has a higher view.  
// Records this update if updateSeq is not already committed. 
1. handle_propose_msg(senderId, view, updateSeq, value): 
2.   if promiseView < view 
3.     promiseView = view 
4.   if history[updateSeq].committed is true 
5.     ignore this message 
6.   else 

7.     history[updateSeq].value ← value 

8.     history[updateSeq].viewOfValue ← view 
 
// Updates local history variable. 
1. handle_commit_msg(senderId, updateSeq, value): 

2.   history[updateSeq].value ← value 

3.   hisotry[updateSeq].committed ← true 
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Figure 5.5: Prepare Phase 
Leader: 
// Updates local state varaible. Constructs a new prepare message and 
// broadcasts to all acceptors. 
1. starts_prepare () 

2.   state ← PREPARING 

3.   attemptedView ← {myServerId, System.currentTimeMillis} 

4.   prepare ← Construct_Prepare(attemptedView, committedSeq) 
5.   broadcast to all acceptors: prepare 
 
// If promise messages are received from a majority of acceptors, the  
// leader shifts to propose phase. 
1. Upon receiving Promise(senderId, promiseView, committedSeq, info) 
2.   Apply to data structures 
3.   if getMajorityPromises(attemptedview) 

4.     availableSeq ← committedSeq.getNextSeq() 

5.     state ← PROPOSING 
6.     starts_propose() 
 
// Helper function to count whether this leader has received promise  
// from a majority of acceptors. 
1. bool getMajorityPromises(ViewSeq view) 
2.   if promises[] contains ⌊N/2⌋ + 1 entries, p, with p.view = view 
3.     return TRUE 
4.   else 
5.     return FALSE 
 
Acceptor: 
// Replies the leader with a promise message. 
1. Upon receiving Prepare(serverId, view, committedSeq) 
2.   if promiseView < view /* Establish the view */ 
3.     Apply Prepare to data structures 

4.   Promise ← Construct_Promise(view, committedSeq, history) 
5.   {Write to disk} 
6.   SEND to leader: Promise 
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Figure 5.6: Propose Phase 
Leader: 
// Adds the update request to the pendingUpdates queue. 
1. Upon receiving Client_Update(clientId, clientSeq, value): 
2.   pendingUpdates.enqueue(value) 
3.   starts_propose() 
 
// Keeps proposing updates until the pendingUpdates is empty. 
1. starts_propose() 
2.   while(pendingUpdates.isEmpty() = false) 
3.     if (history[availableSeq].value = null) 

4.       history[availableSeq].value ← pendingUpdates.pop() 
5.     do_propose(availableSeq) 

6.     availableSeq ← availableSeq.next() 
7.     while(history[availableSeq].committed = true) 

8.       availableSeq ← availableSeq.next() 
 
// Constructs a propose message for updateSeq and broadcasts to all  
// acceptors. 
1. do_propose(updateSeq) 

2.   Propose ← Construct_Propose(myServerId, view, updateSeq, value) 
3.   Apply Propose to data structures 
4.   broadcast to all acceptors: Propose 
 
// Records that the acceptor with senderId has accepted updateSeq. If  
// accepts from a majority of acceptors are received, commits updateSeq  
// and broadcasts the commit message. 
1. Upon receiving Accept(senderId, view, updateSeq, isAccepted): 
2.   if (isAccepted = false) 

3.     state ← CLOSED 
4.     quit this view and return 
5.   Apply Accept to data structures 
6.   if getMajorityAcceptVotes(updateSeq) 

7.     history[updateSeq].committed ← true 
8.     while(history[committedSeq.next].committed) 

9.       committedSeq ← committedSeq.next 

10.    Commit ← Construct_Commit(updateSeq) 
11.    broadcast to all acceptors: Commit 
 
// Helper function to check whether the leader has received accepts  
// from a majority of acceptors. 
1. bool getMajorityAcceptVotes(UpdateSeq seq) 
2.   if history[seq].acceptVotes contains ⌊N/2⌋ Accepts from the same  
         view 
3.     return TRUE 
4.   else 
5.     return FALSE 
 
Acceptor: 
// Replies the leader with an accept message. 
1. Upon receiving Propose(senderId, view, updateSeq, value): 
2.   Apply Propose to data structures 
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Figure 5.6 (cont.) 
3.   accept ← Construct_Accept(senderId, view, updateSeq) 
4.   {Write to disk} 
5.   SEND to the leader: accept 
 
// Records that updateSeq is committed. Executes the update if all  
// previous committed updates are received. 
1. Upon receiving Commit(senderId, updateSeq, value): 
2.   Apply Commit to data structures 
3.   while(history[committedSeq.next].committed = true) 

4.     committedSeq ← committedSeq.next 
5.     apply history[committedSeq].value to the application 
6.     {Write to disk} 
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CHAPTER 6: EXPERIMENTAL RESULTS 

 

6.1. System Setup 

We built a fault-tolerance log service based on Paxos algorithm, as described in 

Chapter 4 and Chapter 5. In this section we evaluate our implementation and 

demonstrate how the system performance is affected by various factors. 

 

For our tests, we ran the replicated log service on multiple physical machines 

(typical Pentium-class machines). The servers are connected via a switch. We 

tested various number of machines, but for each run, the set of servers is fixed. 

All communication is point-to-point via UDP. Our implementation incorporates 

disk operations to tolerate crashes. Servers recover states from the stable storage 

on start.  

 

We are especially interested in two metrics, latency and throughput, as they 

generally reflect the performance of a distributed service. The latency is measured 

as the duration from the time a client request is acknowledged by our system to 

the time the corresponding update is executed. Since an update is eventually 

executed on all replicas, we only count the first execution of such update as the 

ending point of the corresponding request. Throughput is measured as the number 

of successful Paxos operations per second. A successful Paxos operation is a 

Paxos instance that successfully writes an entry to the replicated log. 
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We used a single process to simulate a large number of clients to generate load on 

the servers. The client requests are made locally, so that no request is dropped in 

the network. Requests are made in each server, but only the leader will 

acknowledge the requests and proceed to process them. However, we always 

generate overload requests to test the performance of the system. Our system has 

a flow control mechanism at the leader. The leader has a window with 

preconfigured window size, which limits the number of outstanding proposals at 

any given time. We tuned this window size for each configuration to achieve the 

highest throughput without overloading the physical machine. Requests made 

beyond the service capabilities are dropped by the replicated log service 

automatically, before they can overload the underlying infrastructure. 

 

The clients only make write requests to the service, because read requests are 

handled by the leader locally and do not invoke Paxos algorithm or any 

communication with other servers. Each client keeps writing entries to the log 

service continuously. We intentionally keep the size of each update small, 

typically 100KB for each. Therefore the overall latency reflects the overhead of 

Paxos instead of the delay for transmitting large files over the network. 

 

Our system is by no means optimized for performance. For example, our system 

does not aggregate requests. Aggregation is a technique to bundle multiple 

requests into one Paxos update and disseminate the update in one Paxos instance. 
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Without aggregation, the throughput reflects the number of updates that can be 

ordered per second.  

 

6.2. Evaluation 

Figure 6.1 shows the latency achieved by Paxos in configurations ranging from 2 

to 5 servers with a single leader. The single leadership is guaranteed by leases as 

described in Chapter 5. The results are demonstrated as cumulative distribution 

function. In the experiment, servers order 10,000 updates in each trial. The 

window size in this set of tests is 20. 

 

It can be observed that the latency increases steadily when more servers join the 

system. The average latency with 2 servers is 85.1 milliseconds, while the average 

latency with 5 servers is increased to 273.1 milliseconds. We tuned the size of 

window to achieve highest throughput in the system. When the system is reaching 

the maximum throughput, the leader usually becomes the bottleneck of the system 

because it needs to exchange messages with every acceptor in the system. The 

degradation in performance with more servers in the system verified this idea. 

 

This effect can also be demonstrated in terms of throughput. In Figure 6.2, we 

show the throughput of the replication service with the number of servers ranging 

from 2 to 5. The window size is set to 20. Again, the performance is negatively 

affected when more servers join the system. This also shows that the leader is 
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saturated. When there are more servers, the bottleneck effect in the leader 

becomes more severe. 

 

If the load on the leader is reduced, can the latency of requests be improved? In 

this set of experiments, we change the size of rate window in the leader to test 

latency under various load. Figure 6.3 shows the latency with different rate 

window size. Rate window is our mechanism to control the rate of updates. The 

window size is the maximum number of outstanding requests that the leader can 

generate. If the window is full, the leader can only issue new requests when some 

requests within the window are finished. In this experiment, 5 servers participated 

in Paxos, and we also use lease to guarantee a single leader in the system. The 

lease duration is 30 seconds, but the overhead for lease renewal is very small and 

the leader never loses its lease. 

 

From Figure 6.3, it is clear that the latency improves dramatically with smaller 

window size. Especially, when the window size is 5, the average latency is 80.05 

millisecond, which is even smaller than the average latency with 3 servers (85.1 

millisecond) in Figure 6.1. When the load on the leader is reduced, the system can 

achieve similar latency even with more servers in the system. 

 

To examine the impact of multiple leaders, in this experiment, we disable the 

lease and allow two servers to compete for leadership freely. In Paxos, a new 

leader with a greater view number always supersedes the current leader, thus the 
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two servers in our system become leader in rotation. The server competes for the 

leadership again roughly 2 seconds after it loses the leadership. 3 acceptors 

participate in Paxos. 

 

Figure 6.4 shows the latency of updates in this experiment. It can be easily 

observed that the latency increased dramatically compared to the latency in Figure 

6.1. For 3 servers, the average latency is increased from 144.7 milliseconds in 

Figure 6.1 to 1389.4 milliseconds in Figure 6.4. The throughput, as measured, is 

dropped to 14.9 ops/s, from 43 ops/s in Figure 6.2. 
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6.3. Figures 

Figure 6.1 Update Latency with Single Leader 
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Figure 6.2 Throughput with Single Leader 
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Figure 6.3 Latency with Different Request Rate 
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Figure 6.4 Latency with Two Leaders 
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CHAPTER 7: CONCLUSION 

 

In this thesis, we studied the liveness implications of multiple leaders in Paxos. 

We argued that the performance of a practical system built from Paxos can be 

significantly improved if there is at most one leader at any given time, for three 

reasons: 

1) Theoretical progress condition is satisfied when there is a single leader in 

the system; 

2) The system benefits from multi-paxos optimization when the leadership 

does not change for longer periods of time;  

3) The single leader can maintain the most up-to-date information and serve 

reads locally; 

 

We proposed an optimization to achieve the single leader guarantee in Paxos by 

using leases. A leader is elected through Paxos and replicas grant the leader a 

lease during the election. A server can only function as the leader when it holds a 

valid lease. The lease is used like a lock with time-out to ensure there is at most 

one server holding a valid lease at any given time. Therefore, with this 

optimization, the system can have at most one leader. 

 

We also provided a specification for classical Paxos algorithm and developed a 

replicated log service using Paxos. During the development, we found that there 

are significant gaps between theoretical study of Paxos and its practical 



64 
 

deployment. The implementation of Paxos needs to address various problems, like 

leader election, reconciliation, rate control, and client handling. The choices for 

these protocols can greatly impact the guarantees and performance of Paxos. 

 

Lastly, we showed the evaluation of our system and experimental results. It is 

observed that the leader can easily become the bottleneck of the system, 

especially when more servers participate in the consensus. It is also verified in 

experiments that the performance is significantly worsened when multiple leaders 

are present in the system. 
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