
c© 2013 KUAN-YU TSENG

ASYNCHRONOUS HARDWARE-ENFORCED MEMORY SAFETY

BY

KUAN-YU TSENG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Advisers:

Professor Ravishankar K. Iyer
Professor Zbigniew T. Kalbarczyk

ABSTRACT

Memory corruption attacks, such as buffer overflow attacks, have been threat-
ening software security for more than three decades. Despite tremendous ef-
forts by developers and researchers to prevent programs written in memory-
unsafe language (e.g., C/C++) from memory errors (the root cause of mem-
ory corruption attacks), the drawbacks and limitations of prior protection
mechanisms impede their wide deployment. Prior approaches suffer from
either (1) incomplete coverage of memory errors, (2) prohibitively high run-
time overhead, (3) weak protection for metadata used by the approach, (4)
low source compatibility to legacy code, (5) low binary compatibility to com-
piled binaries, (6) limited modularity support, or (7) low scalability for larger
programs.

This thesis presents AHEMS, an architectural support that ensures both
spatial and temporal memory safety based on the pointer-based approach
to overcome the aforementioned drawbacks. AHEMS provides three novel
features that allow for fast, flexible, and secure memory safety checking.
First, AHEMS checks memory safety asynchronously to the main processor
so that the runtime overhead is very low. Second, AHEMS can be flexibly
implemented either in a processor, as a co-processor, or as an external de-
vice, depending on the designer’s choice. Third, AHEMS provides physical
isolation for the metadata (i.e., base and bounds information) so that the
metadata cannot be tampered with by any means.

We implement an FPGA prototype for AHEMS that allows us to evaluate
its detection coverage, runtime overhead, critical path, hardware overhead,
and power consumption. Our experiment shows that AHEMS passes 676
security test cases out of 11 different CWEs (including spatial and temporal
memory errors) and only incurs as little as 10.6% runtime overhead with a
negligible impact on the critical path (0.06% overhead) and power consump-
tion (0.5% overhead).

ii

To my family and my friends, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to express my deep appreciation to my advisers, Prof. Zbigniew
Kalbarczyk and Prof. Ravishankar Iyer, for their patient guidance and valu-
able advice during my two years as a graduate student in UIUC. The thought-
provoking discussions and big pictures I got from them were extremely helpful
to the completion of this thesis. I would like to thank Prof. Deming Chen for
his generosity to lend me the FPGA board for my experiments. I also appreci-
ate Daniel Chen, who first brought me into the DEPEND group and helped
me start my research. I am indebted to my groupmates: Valentin Sidea
for the hardware knowledge he imparted and the alpha version of AHEMS
he built, Zachary Estrada for his English suggestions, and Dao Lu for his
tremendous help on the implementation of AHEMS. Many thanks also to my
other groupmates – Phuong Cao, Cuong Pham, Hui Lin, Skylar Lee, Homa
Alemzadeh, Catello Di Martino, and Keun Soo Kim – for their insightful
feedback on my research and our enjoyable group retreats.

I would like to thank my friends in UIUC – Po-Liang Wu, Kai-Wei Chang,
Chi-Yao Hung, Chia-Chi Lin, Lue-Jane Lee, Chen-Tse Tsai, Kyle Jao, Victor
Lu, Li-Lun Wang, Shih-Wen Huang, Pei-Fen Tu, Chih-Chieh Yang, Chen-
Hsuan Lin, Chang-Tse Hsieh, Wei-Fen Chen, Judy Hsu, Christine Tseng, TK
Wei, Shu-Han Chao, Jonathan Wang, Jimmy Chu, Frank Pan, Amy Chu, and
Melanie Hsu – for their company, encouragement, and cameraderie. I would
also like to thank my roommates – Fardin Abdi, Nikita Spirin, and Jason
Croft – for their support and the nonstop discussions we had.

Last, I would like to express my deep gratitude to my brother, Chun-Wei
Tseng, and my parents, Ming-Cheng Tseng and Pi-Ju Wang. My brother
encouraged me to pursue a master’s degree in the US, which led me to this
rewarding journey. My parents, although in Taiwan and far from the US,
stood by me with their love, support, and company.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions . 4
1.2 Thesis Organization . 5

CHAPTER 2 ATTACKS . 6
2.1 A General Attack Model . 6
2.2 Attack Surface . 8
2.3 Network . 9
2.4 Host . 13
2.5 Application . 17
2.6 Data . 19

CHAPTER 3 MEMORY CORRUPTION ATTACKS 22
3.1 Overview . 22
3.2 Attacks Categorized by Targets 23
3.3 Attacks Categorized by Vulnerabilities 26
3.4 Countermeasures . 31

CHAPTER 4 APPROACH . 40
4.1 Full Memory Safety Enforcement 40
4.2 Operation Overview . 41
4.3 Source Code Instrumentation 43
4.4 Hardware Architecture . 48
4.5 An Illustrative Example . 53

CHAPTER 5 IMPLEMENTATION ISSUES 57
5.1 Placement of AHEMS . 57
5.2 Main Processor . 60
5.3 Runtime Monitor . 64
5.4 Security Engine . 66

v

CHAPTER 6 EXPERIMENTAL RESULTS 71
6.1 Experimental Setup . 71
6.2 Detection Coverage . 73
6.3 Runtime Performance Overhead 74
6.4 Memory Overhead . 79
6.5 Critical Path . 81
6.6 Hardware Resource Overhead 81
6.7 Power Consumption . 82

CHAPTER 7 QUALITATIVE ANALYSIS 84
7.1 Strengths . 84
7.2 Limitations . 91

CHAPTER 8 RELATED WORK . 97
8.1 Fat-Pointer Approaches . 97
8.2 Object-based Approaches . 98
8.3 Pointer-based Approaches . 102
8.4 Other Software-only Approaches 105
8.5 Hardware Approaches . 106

CHAPTER 9 CONCLUSION AND FUTURE WORK 112
9.1 Conclusion . 112
9.2 Future Work . 113

REFERENCES . 116

vi

LIST OF TABLES

2.1 Malicious Attacks Categorized by Attack Surface 10

4.1 TID and OID Generation and Propagation Rules 50

5.1 Comparisons of Different Placements of AHEMS 61
5.2 Execution Time of Actions Performed for Each Instruction . . 67

6.1 AHEMS on Xilinx Virtex-5 ML510 Platform 72
6.2 CWEs from Juliet Test Suite Tested on AHEMS 75
6.3 Comparison of Runtime Overhead with Other Approaches . . 77
6.4 Experimental Environment for the Four Approaches 80
6.5 Device Utilization of AHEMS on Xilinx Virtex-5 ML510 . . . 82
6.6 On-Chip Power Consumption Overhead of AHEMS 83

7.1 System Specifications of an Intel Core 2 Duo Processor
Running on the SPEC2006 Benchmark 93

8.1 Comparison of Representative Memory Safety Approaches . . 111

vii

LIST OF FIGURES

2.1 The Venn Diagram of Implementation and Specification 8
2.2 Attack Surface in Depth . 9

3.1 An Example of a Control-data Attack 23
3.2 An Example of a Non-control-data Attack 24
3.3 An Example of an Information Leakage Attack 25
3.4 An Actual MySQL Error Message That Leaks Credentials . . 25
3.5 An Example of a Format String Attack 27
3.6 A Snippet of the AGP Linux Driver with Integer Overflow

Vulnerability . 29
3.7 An Example of a Double-free Attack 29
3.8 An Example of a Use-after-free Attack 30
3.9 An Example of a Zero Allocation Attack 31

4.1 AHEMS Architecture . 42
4.2 Definition of alloc() and dealloc() 43
4.3 Instrumentation of malloc() and free() 44
4.4 An Example of Local Variable Instrumentation 45
4.5 An Example of Global Variable Instrumentation 46
4.6 An Example of Sub-object Instrumentation 47
4.7 An Example of Sub-object Overflow 47
4.8 An Example of Integer-to-Pointer Instrumentation 47
4.9 Relation of Register Values, TIDs and OIDs 49
4.10 An Example outbound.c That Violates Memory Safety 53
4.11 Disassembly of the Example outbound in SPARC 56

5.1 External Device Design of the AHEMS 57
5.2 Co-processor Design of AHEMS 59
5.3 In-processor Design of the AHEMS 60
5.4 AHEMS on Leon3 Architecture 62
5.5 The Format of cpop1 and cpop2 Instructions 63
5.6 An Example Scenario of the TID Generator when N = 16 . . 65
5.7 Format of FIFO Entry for each Memory Event 66
5.8 Layout of Lookup Tables . 68
5.9 State Machines in the Security Engine 70

viii

6.1 A Test Case in CWE562: Return of Stack Variable Address . . 74
6.2 Compiler Options Used to Compile Programs for AHEMS . . 76
6.3 Runtime Overhead of AHEMS on Olden Benchmark 77

7.1 An Example Code That Causes SoftBound+CETS to Raise
False Alarms . 85

7.2 An Example Code That is Source and Binary Incompatible
If Fat-Pointers Approaches are Used 86

7.3 The Structure of S1 and S2 under Fat-pointer Approaches . . 87
7.4 An Example Program That May Cause Outdated Metadata . 88
7.5 An Illustrative Example of Mixing Two Pointers 95

ix

CHAPTER 1

INTRODUCTION

C is the most popular programming language to date, as reported by TIOBE
[1] and Programming Language Popularity [2]. It is widely used by many ap-
plications, especially system programs or performance-critical applications,
for several reasons. (1) C has good support for low-level controls on the un-
derlying data representation, which is required by many system programs.
(2) C’s manual memory management allows efficient reuse of memory when
memory is limited. (3) C runs faster than many other languages because
manual memory management also eliminates the need for the additional,
program-slowing processing done by other languages such as garbage collec-
tion or dynamic typing. However, these advantages come with a cost. In
particular, C is memory-unsafe, which means that a pointer in C may point
to an object that no longer exists or that is not the intended referent1 of
the pointer. This means the dereference of the pointer may access a memory
location not intended by the programmer. This deficiency leads to a number
of memory errors, such as buffer overflows, use-after-free, or invalid frees,
which can be exploited to construct memory corruption attacks.

Memory corruption attacks have existed for more than three decades, since
the first public discussion of memory errors in 1972 by James Anderson [3].
However, it is still ranked among the top 3 of the CWE/SANS top-25 most
dangerous software errors [4] in 2011. Memory errors can be categorized into
spatial memory errors or temporal memory errors. Spatial memory errors
occur when a pointer is used to access the memory beyond the base and
bound of its intended referent (e.g., buffer overflows). Temporal memory
errors occur when a pointer is used to access an object that no longer exists
(e.g., use-after-free errors, dangling-pointer errors, or double-free errors).

Although a plethora of countermeasures are proposed to protect different
1the intended referent of a pointer is the object to which the pointer is supposed to

point according to the semantics of C source code

1

aspects of systems from memory corruption attacks, most of them are not
comprehensive enough to defeat all such attacks. For example, protection
schemes that enforce code integrity [5–9] only prevent code-injection attacks.
Approaches that protect the program stack [5–12] or program heap [13–19]
from tampering do not prevent attacks that allow arbitrary memory writes.
Techniques that embrace the power of randomization to protect code or data
memory space [20–28] are mostly subject to information leakage attacks that
leak the keys or the layout after randomization; thus they can only be used
to enhance security, not guarantee it. Methods that employ static analy-
sis [29–34] or dynamic analysis [35–42] to ensure integer integrity can only
hamper integer-overflow attacks. Defenses that guarantee control-flow in-
tegrity [43–54] can prevent many memory corruption attacks. Unfortunately,
they cannot detect non-control-data attacks that do not divert the legal con-
trol flow. Mechanisms that ensure information-flow integrity [55–72] suffer
from numerous false positives and false negatives, which makes them im-
practical in real-world systems. Finally, data-flow integrity [73] prohibits
many memory corruption attacks but misses some attacks due to the impre-
cision of the data-flow analysis. The above-mentioned approaches all protect
against a subset of memory corruption attacks and may be orthogonal to
one another to form complete coverage of memory corruption attacks. How-
ever, the combination of different approaches may be non-trivial, so research
moves toward eliminating the memory corruption attacks at their root cause:
memory errors.

Approaches aimed to eliminate all memory errors (1) check the bounds
information to make sure no access violates spatial memory safety and (2)
check the lifetime of an object to ensure no access violates temporal mem-
ory safety. There are two main approaches to memory safety: object-based
approaches [74–86], which associate base and bounds information with each
object, and pointer-based approaches [87–98], which associate base and bound
information with each pointer. However, software implementation of these
approaches primarily suffer from various problems: (1) prohibitively high
runtime overhead, (2) limited binary compatibility (i.e., a protected code can-
not properly interoperate with unprotected binaries/libraries whose source
code is unavailable), (3) weak metadata protection, (4) incomplete mem-
ory safety, (5) limited source compatibility (i.e., manual modification to
the source code is needed) (6) limited support for modularity (i.e., com-

2

ponents cannot be handled separately), or (7) limited scalability (i.e., the
approach does not scale up to large programs). These deficiencies, especially
the high runtime overhead and limited binary compatibility, deter the de-
ployment of these approaches on real-world applications. Some hardware
approaches [93,94,97–101] further improve the runtime overhead of software
approaches. Nonetheless, those hardware approaches introduce other issues
to the system. For example, the state-of-the-art approach Watchdog [94], for
example, needs to quintuple the size of the register file in the processor to
enforce complete memory safety. The approach of Chuang et al. [98] loses
binary-compatibility due to the use of fat pointers. SafeMem [99], Mem-
Tracker [100,101], and Clause et al. [95,96] sacrifice their detection coverage
for performance. Finally, SafeProc [97] is not source-compatible.

In this thesis, we introduce AHEMS (Asynchronous Hardware-Enforced
Memory Safety), which implements a pointer-based approach in hardware
with asynchronous checking to overcome the above-mentioned deficiencies.
Asynchronous checking allows AHEMS to offload the bounds checking op-
erations occurring on each pointer dereference to the security engine, a cus-
tomized hardware that can be implemented as an on-chip extension, co-
processor, or external device such as a PCI card (See Chapter 5). The se-
curity engine can perform bounds checking asynchronously and with faster
frequency than the main processor (the processor that runs the program),
greatly improving the runtime overhead. Also, since the security engine can
be decoupled from the chip with the main processor, AHEMS can reduce
the complexity and resource overhead of the main processor. AHEMS only
needs to place a light-weight runtime monitor in the pipeline of the main
processor to send each memory event (memory load/store/allocation/deal-
location) to the security engine and propagate the metadata of each pointer
along with pointer arithmetics. Furthermore, because the metadata prop-
agation is done in hardware, AHEMS has better binary compatibility than
any software-only approach (See Chapter 7). Unlike quintupling the size of
each register as done by Watchdog (which may lengthen the critical path of
the main processor), AHEMS only needs to add logN bits for each register,
where N is the total number of registers. Finally, in contrast to all other
approaches, AHEMS stores the metadata in a dedicated physical memory
that is inaccessible by the main processor. This ensures that the metadata
cannot be tampered with by the attacker.

3

While Patil and Fischer [88] makes the first attempt to offload the checking
operations using software to another processor, their approach still incurs a
significant runtime overhead (5x slowdown). SafeProc [97] is a hardware ap-
proach that allows a checking operation to be delayed. But SafeProc cannot
delay a checking operation if there is a register dependence between instruc-
tions (See Chapter 8 for more details). To the best of our knowledge, AHEMS
is the first hardware approach that allows completely asynchronous runtime
checking to ensure both spatial and temporal memory safety with very low
overhead. Prior study [102] on memory corruption attacks reports that pro-
tection schemes that have more than roughly 10% runtime overhead do not
tend to get wide deployment in production systems. AHEMS has a better
chance to get deployed than other approaches because it incurs runtime over-
head as low as 10.6%. Although the asynchronous property of AHEMS may
result in delayed detection of an attack, we show that the detection latency
is configurable by the size of the FIFO and is generally, if not always, too
short for an attacker to launch an attack (see Section 7.2.1).

1.1 Contributions

In summary, this thesis makes the following contributions:

• We propose AHEMS, an architectural support using a pointer-based
approach that utilizes asynchronous checking to enforce both spatial
and temporal memory safety with low runtime overhead. AHEMS in-
curs an average of 10.6% overhead on Olden benchmarks, which is an
order of magnitude lower than four other compared approaches. In
addition, AHEMS has good support for binary compatibility, source
compatibility, modularity, and scalability to facilitate the progressive
deployment of AHEMS on existing applications.

• We propose three options – in-processor, co-processor, and external-
device designs – to deploy the security engine of AHEMS. This provides
system designers with the flexibility on the placement of the security
engine depending on the system requirements. We compare the pros
and cons of these three designs choices.

4

• We protect the metadata by storing them into different physical mem-
ory from that used by the main processor. This provides a stronger
guarantee on the integrity of the metadata than most existing ap-
proaches, which store metadata in the same memory as that used by
the main processor.

• We implement a prototype of AHEMS on an FPGA board to evaluate
detection coverage, runtime overhead, hardware overhead, power con-
sumption, and impact on the critical path of the main processor. Unlike
most other hardware approaches (which use only instruction-accurate
or cycle-accurate simulators), the FPGA implementation enables us to
provide more accurate (as compared with simulation) evaluation and
characterization of the proposed approach. Our experiments show that
AHEMS has a negligible impact on the critical path (0.06% overhead)
and power consumption (0.5% overhead).

1.2 Thesis Organization

This thesis is organized as follows: Section 2 introduces a general attack
model to describe different kinds of attacks in computing systems. Section
3 further focuses on memory corruption attacks and their countermeasures.
Section 4 describes the design of AHEMS and how it achieves asynchronous
memory safety checking. Section 5 gives a more detailed description of the
implementation of AHEMS and addresses some implementation issues. Sec-
tion 6 shows the experimental results on the detection coverage and addi-
tional overheads of AHEMS. Section 7 analyzes the strength and the limi-
tations of AHEMS. Section 8 compares our approach with all other related
approaches. Section 9 concludes this thesis and provides directions for the
future work.

5

CHAPTER 2

ATTACKS

In this chapter, a general attack model is defined to formalize the description
of security attacks. To show the generality of the model, different types of
attacks are given a formal (semi-formal) definition under this model.

2.1 A General Attack Model

A general attack model is one that can describe most attacks. Before defining
the attack model, we need to first define the normal behavior of a computing
system. In our model, there are two major components: users and systems.
A user can interact with a system through the interface it provides. A system
services a user’s request depending on the current privilege level of the user.
If a user wants to perform an operation that is not allowed under his/her
privilege, the computing system should dismiss the request. Specifically, a
user’s activity is a 4-tuple defined as follows:

Activity = (Sender,Receiver, Privilege, Action) (2.1)

where the Sender and the Receiver can be either the state of a user or the
state of an application in a system. The Action is expressed by a param-
eterized function. This Activity means that the Sender with the privilege
level Privilege sends a request to perform the Action on the Receiver. For
instance,

(Alice, (Linux1, shell), root, runCmd(ls)) (2.2)

means that the user Alice wants to execute an ls command on shell under
the root privilege on the Linux1 machine. A context is a list of activities
that are performed in chronological order (e.g., Activity1 happens before

6

Activity2):

Context = [Activity1, Activity2, ..., Activityn] (2.3)

For example, if Alice wants to log into the Linux1 machine through ssh and
then performs an ls command, then the context of her activities will look
like the listing 2.1.

Listing 2.1: An SSH-Login Example of a Context

1 Context = [Activityi where 1 ≤ i ≤ 6]

2 Activity1 = (Alice, (Linux1, ssh), none, requestForLogin())

3 Activity2 = ((Linux1, ssh), Alice, none, promptForIDPasswd())

4 Activity3 = (Alice, (Linux1, ssh), none, login(Alice, 123456))

5 Activity4 = ((Linux1, ssh), Alice, none, setAsAuthorized(Alice))

6 Activity5 = (Alice, (Linux1, shell), root, runCmd(ls))

7 Activity6 = ((Linux1, ls), Alice, root, returnResult(file_list))

A context is executable if it can happen under the implementation of the
system. The Implementation for the system S can be defined as the set of
all executable contexts in S:

Impl(S) = {C : C is an executable context in the system S} (2.4)

A context is legal if it obeys all the security principles: Confidentiality, In-
tegrity, Availability, Authenticity, and Non-repudiation. For example, if Alice
wants to execute Activity5 in the listing 2.1 directly without authenticating
herself (by Activity1 – Activity4), the system should return an error message
instead of executing the ls command because it violates the authenticity
principle. The Security Specification (or Specification in short) for a system
S can therefore be defined as the set of all legal contexts in S:

Spec(S) = {C : C is a legal context in the system S} (2.5)

With the above definitions, the relationships among normal behavior, attack-
s/bugs, and unimplemented features can be clearly illustrated by the Venn
Diagram of Implementation and Specification in Figure 2.1. If a context
happening among a system and its users is legal and executable, it is called a
normal behavior. A general attack can be defined as a context C in a system

7

S that is executable but not legal (i.e., C ∈ Impl(S) and C /∈ Spec(S)).
This definition of general attacks is useful because it can be used to define
many kinds of attacks.

Figure 2.1: The Venn Diagram of Implementation and Specification

2.2 Attack Surface

The attack surface of a computing system is the interfaces it provides to its
users. A system can be secured by eliminating its interfaces to reduce the
attack surface. However, once a vulnerability is found in the interfaces, an
attacker can penetrate the system, since the security of a system relies on its
weakest point.

The attack surface can be used to distinguish the impact coverage of an
attack. Some attacks may target the network layer, while some may target
the application layer. From external to internal, the attack surface can be
classified into four layers: Network, Host, Application, and Data (as shown
in Figure 2.2). Table 2.1 lists different types of attacks according to their

8

Network

Host

Application

Data

Figure 2.2: Attack Surface in Depth

representative attack surface. Note that an attack may target more than
one attack surface, so Table 2.1 categorizes an attack using its most obvious
attack surface. Table 2.1 is not an exhaustive list but an enumeration to show
representative attacks in each of the attack surface. In next four sections,
each type of attack in Table 2.1 is given a formal definition under the attack
model in section 2.1 to show the generality of the model.

2.3 Network

In this section, three attacks targeting the network layer are modeled using
our general attack model.

2.3.1 DoS (Denial of Service) Attacks

A DoS attack is an attack that tries to disrupt or interrupt the availability
of a service or resource to its target users. Since the definition of availability
may vary from system to system, the DoS attacks cannot be defined without
defining the availability of a system. Given the definition of the availability

9

Table 2.1: Malicious Attacks Categorized by Attack Surface

Attack Surface Attack Type Example Attack

Network

DoS attacks a DNS amplification attack
MITM attacks b SSL strip attack

Protocol vulnerability attacks DNS spoofing attacks
Reflection attacks

Host

Library hijacking attacks [103] LD_PRELOAD attacks [104]
Privilege escalation attacks /proc/pid/mem vulnerability [105]

Hardware vulnerability attacks DMA attacks [106]
Intel sysret attack [107]

Race condition attacks TOCTTOU attacks c [108]

Application Memory corruption attacks

Control-data attacks
Non-control-data attacks [109]
Code injection attacks
Information leakage attack
Integer overflow attacks
Format string attacks
Buffer overflow attacks
Heap spraying attacks
Return-to-libc attacks
ROP attacks d [110]
Double-free attacks [111]
Use-after-free attacks [112]
Zero allocation attacks [113]

API abuse attacks Java ClassFinder vulnerability [114]

Data

String-oriented attacks

Format string attacks [115]
XSS attacks e

CSRF attacks f

SQL injection attacks
Randomness attacks Low-entropy attacks [116]

Side channel attacks Padding oracle attacks [117]
Process footprint attacks [118]

aDenial of Service attacks
bMan-in-the-Middle attacks
cTime-of-Check-to-Time-of-Use attacks
dReturn-oriented Programming attacks
eCross-Site Scripting attacks
fCross-Site Request Forgery attacks

10

for a specific system S, the DoS attack can be defined as follows:

Availability(S) = {C ∈ Impl(S) | C is an available context}

DoSAttack(S) = {C ∈ Impl(S) | C /∈ Availability(S)}

Note that C is not just a context between a user and a system. It includes all
interactions between a system and all its users. To give a specific example,
consider a system S with the following criteria of availability:

Availability(S) ={C ∈ Impl(S) | |ServedUser(ActiveUser(C), C)|
|ActiveUser(C)|

> 0.95}

where

ActiveUser(C) = {User | ∃ (Sender,Receiver, Privilege, Action) ∈ C

s.t. User = Sender or User = Receiver}

ServedUser(U,C) = {User ∈ U | The requests of User are all served in C}

That is, C is an available context if requests from 95% of the active users in
the context are served.

2.3.2 MITM (Man-In-The-Middle) Attacks

A MITM attack is one way of eavesdropping or tampering with messages
between two endpoints by making each endpoint believe that the attacker is
the other endpoint it is communicating with. Here the attacker becomes a
hidden intermediary who can eavesdrop or manipulate messages between the
two endpoints. Since MITM attacks constitute a class of attacks, a subclass
of MITM attacks is modeled to provide a more specific example of the general
attack model.

Consider a system S with the specification that no user should be in the
middle of two communicating users. Let Alice and Bob be the two endpoints
that are communicating with each other in the system S, and let Mallory be
the attacker. Given a context C ∈ Impl(S) in the system S that involves
the activities of all participants, consider the sub-context1 C ′ that includes

1Note that a context C is originally a sequence of activities, not a set. But here the
order of activities is not important, so we treat it as a set.

11

only all activities involving Alice and Bob, as follows:

C ′ = {(Sender,Receiver, Privilege, Action) ∈ C |

(Sender = Alice or Bob) or (Receiver = Alice or Bob)}

If there exists an activity (Sender,Receiver, Privilege, Action) ∈ C ′ such
that Sender or Receiver is Mallory, it is called an MITM attack. Although
the above definition of MITM attack is specific to the system S, it shows the
effectiveness of our general model to model this kind of attacks.

2.3.3 Protocol Vulnerability Attacks

A protocol vulnerability attack is an attempt to penetrate a system by ex-
ploiting the flaws of a protocol. For example, the reflection attack is a
kind of protocol vulnerability attacks. This attack utilizes the loophole of
a challenge-response authentication system to authenticate the attacker by
tricking a legitimate user into providing the response to a challenge. These
attacks usually happen when there is a gap between the definition of a pro-
tocol (denoted by ProtoDef(S)) and its security specification (denoted by
Spec(S)). S here denotes the system that implements the protocol. As men-
tioned in Section 2.1, Spec(S) should take into account all security principles.
Therefore, a secure protocol should have the following property:

(∀C)(C ∈ ProtoDef(S)⇒ C ∈ Spec(S))

This means every possible context that can happen in the protocol defini-
tion of S is secure. A correct implementation of a protocol should have the
following property:

(∀C)(C ∈ Impl(S)⇒ C ∈ ProtoDef(S))

A protocol vulnerability attack can accordingly be defined as follows:

ProtoV ulnAttacks(S) = {C ∈ Impl(S) |C ∈ ProtoDef(S) ∧ C /∈ Spec(S)}

Formal methods are utilized to find vulnerability in network protocols by
defining the protocol in formal language and exploring contexts that may

12

violate the security specification.

2.4 Host

In this section, four attacks aimed at the host level (e.g., the OS or shared
libraries) are modeled using our general attack model.

2.4.1 Library Hijacking Attacks

A library hijacking attack (DLL hijacking attack in Windows environments)
is an attempt to override the original dynamically linked library with a ma-
licious library so that the malicious code gets executed when a function in
the library is called. A library hijacking attack causes a function to deviate
in its behavior from the original definition.

In general, a function f in the system S is a mapping from a system
state S1 to a system state S2. In the security specification of the system
S, each function f in the system S has its range2 for each input state S1.
Let Range(S, f, S1) be the set of secure output states (under the security
specification) for a function f in the system S given the input state S1.
That is, f(S1) ∈ Range(S, f, S1) if f is the original function that follows the
specification. A library hijacking attack is said to happen in a context C of
a system S if the following property becomes true:

∃ a consecutive subsequence [(Sender, (Receiver, S1), P rivilege, f),

(Sender, (Receiver, f(S1)), P rivilege, g)] in C

such that

f(S1) /∈ Range(S, f, S1)

This means that there exists a function call f in the context C that changes
the system state from S1 to S2, where the S2 is not a secure state according to
the definition of f . Note that the receiver in the above property is represented
by not only its name but its state.

2The range of a state is the set of all its possible output states.

13

2.4.2 Privilege Escalation Attack

A privilege escalation attack is an attempt by an attacker to gain elevated ac-
cess by exploiting a software or design vulnerability in the system. It enables
the attacker to perform unauthorized operations. This attack happens when
there exists an action that is authorized by the implementation of the system
but not authorized by the security specification of the system. Specifically,
let S be a system, User be an user, and State be a system state. The set
of actions that User is authorized to perform under the specification or the
implementation of S, respectively, can be defined as follows:

AuthorizedActions(User, State, Spec(S)) =

{PA = (Privilege, Action) ∈ Actions(S) |

User is authorized to perform PA under the specification of S}

AuthorizedActions(User, State, Impl(S)) =

{PA = (Privilege, Action) ∈ Actions(S) |

User is authorized to perform PA under the implementation of S}

where the tuple (Privilege, Action) represents an action Action that is per-
formed with the privilege Prvilege, and Actions(S) is the set of all possible
actions in the system S. A privilege escalation attack is said to happen in
the context C when the following condition is true:

∃ an activity (Sender, (Receiver, RecvState), P rivilege, Action) ∈ C

such that

1. (Privilege, Action) is executed in C

2. (Privilege, Action) ∈ AuthorizedActions(Sender,RecvState, Impl(S))

3. (Privilege, Action) /∈ AuthorizedActions(Sender,RecvState, Spec(S))

The above condition means that there exists an Action in the context C
requested by the Sender and executed on the Receiver with the privilege
Privilege when the receiver’s state is ReceiverState, and the action is au-
thorized under the implementation of the system S but not authorized under
the security specification of S. Therefore, the attacker performs an unautho-
rized action.

14

2.4.3 Hardware Vulnerability Attacks

A hardware vulnerability attack is an attempt to attack the system by trig-
gering the design flaws or bugs in the hardware used by the system. This
attack is possible when there exists a semantic gap between the hardware im-
plementation of the system S (denoted by HardImpl(S)) and its hardware
security specification (denoted by HardSpec(S)). Note that HardImpl(S) is
slightly different from the Impl(S) defined in Section 2.1 in that only primi-
tive hardware contexts that are needed to compose all contexts in Impl(S) are
included in HardImpl(S), while all possible contexts in the implementation
of the system S are included in Impl(S). That is, any context C ∈ Impl(S)
can be decomposed into a concatenation of primitive hardware contexts:

∀C ∈ Impl(S),∃ C1, C2, ..., Cn ∈ HardImpl(S)

such that C = [C1 : C2 : ... : Cn]

where [A : B] is a context composed by the concatenation A and B

For example, if C ∈ Impl(S) is a context that a user logs into the system via
SSH. Each of C1, C2, ..., Cn ∈ HardImpl(S) will become one assembly in-
struction in the hardware, and C1 through Cn together perform the same
functionality as C does. One obvious corollary is that HardImpl(S) ⊂
Impl(S) because Impl(S) includes any possible context. The relationship
between HardSpec(S) and Spec(S) is similar to that between HardImpl(S)
and Impl(S). With the above definition, a hardware-vulnerability attack
happens if

∃ C = [C1 : C2 : ... : Cn] ∈ Impl(S) and C1, C2, ..., Cn ∈ HardImpl(S)

such that

(∃Ci where 1 ≤ i ≤ n)(Ci ∈ HardImpl(S) and Ci /∈ HardSpec(S))

This means that one of the primitive hardware contexts that compose the
context C is executable but not legal.

15

2.4.4 Race Condition Attacks

A race condition attack is an attack that utilizes an unexpected behavior of
race conditions in a system to achieve the attacker’s goal. A race condition
in the software system means that the resultant system state of an execution
is dependent on the order or timing of other uncontrollable executions. To
model the race-condition attacks, we need to define the PossibleExecPath
of a context. In a system with a concurrent environment (concurrent users
or concurrent threads), an execution of a functionality can have different
resultant contexts due to the race condition. Listing 2.2 shows an example
of one execution having two different resultant contexts:

Listing 2.2: One Execution Having Two Different Resultant Contexts

1 Context 1:

2 A1 = (Bob, (Linux1, program1), Bob, read(A))

3 A2 = (Alice, (Linux1, program2), Alice, write(B, 10))

4 A3 = (Bob, (Linux1, program1), Bob, read(B))

5 A4 = (Bob, (Linux1, program1), Bob, write(C, A+B))

6 Context 2:

7 A1 = (Bob, (Linux1, program1), Bob, read(A))

8 A2 = (Bob, (Linux1, program1), Bob, read(B))

9 A3 = (Bob, (Linux1, program1), Bob, write(C, A+B))

10 A4 = (Alice, (Linux1, program2), Alice, write(B, 10))

Thus, the PossibleExecPath(C) is defined as the set of all possible resultant
contexts having the same execution as the context C. In the example of
Listing 2.2, Context 1 ∈ PossibleExecPath(Context 2) and Context 2 ∈
PossibleExecPath(Context 1). A race-condition attack is said to happen
in the context C if

1. C ∈ Impl(S) ∧ C /∈ Spec(S)

2. ∃ C ′ ∈ PossibleExecPath(C) such that C ′ ∈ Impl(S) ∩ Spec(S)

The first condition implies that there is an attack in the context C because
C is executable but not legal. The second condition further implies that
the attack is caused by the race condition because there exists a possible
execution path that does not violate the security specification.

16

2.5 Application

In this section, two application-level attacks are modeled using our general
attack model.

2.5.1 Memory Corruption Attacks

A memory corruption attack is an attempt to overwrite the contents of a
memory location by exploiting the weakness of the programming language
used by the program such as the memory unsafety 3 of C/C++ (e.g., array
out of bound, use-after-free, or dangling pointers). The property of memory
safety requires

1. a memory region is allocated before its access

2. no memory access is allowed after a memory region is deallocated

3. each memory region is associated with a (base, bound) and every mem-
ory access should happen in the region (base, base + bound)

Given a context C in the system S, we need to extract all memory activities
from the context C to examine its memory safety. The memory activities
are one of the following activities:

1 M = (Sender, Receiver, Privilege, malloc(obj, base, bound))

2 R = (Sender, Receiver, Privilege, read(obj, offset))

3 W = (Sender, Receiver, Privilege, write(obj, offset, data))

4 F = (Sender, Receiver, Privilege, free(obj))

where malloc(obj, base, bound) allocates a memory region (base, base
+ bound) for the object obj; read(obj, offset) reads the data from obj

with the offset offset; write(obj, offset, data) writes data into the obj
with an offset offset; free(obj) deallocates the memory region allocated
to obj.

3See Chapter 3 for the definition of memory safety.

17

With the above definition, a context C is memory safe if

∀R = (Send1, Recv1, P riv1, read(obj1, offset1)) ∈ C

1. ∃M1 = (Sender1, Recv1, P riv1,malloc(obj1, base1, bound1)) ∈ (C before R)

2. @D1 = (Send1, Recv1, P riv1, free(obj1)) ∈ (C between M1 and R)

3. 0 ≤ offset1 ≤ bound1

and

∀W = (Send2, Recv2, P riv2, write(obj2, offset2, data2)) ∈ C

1. ∃M2 = (Send2, Recv2, P riv2,malloc(obj2, base2, bound2)) ∈ (C before R)

2. @D2 = (Send2, Recv2, P riv2, free(obj2)) ∈ (C between M2 and R)

3. 0 ≤ offset2 ≤ bound2

where (C before R) is the set of all Activities in C that happen before the
Activity R; similarly, (C between M1 and R) is the set of all Activities in C
that happen between M1 and R.
The above definition of memory safety means that every memory access

to a particular object should reside within its base address and boundary,
and the object being accessed should be allocated and not deallocated at the
time of access. A memory corruption attack is said to happen in the context
C if C ∈ Impl(S) and C is not memory safe.

2.5.2 API Abuse Attacks

Some APIs in the system are not well designed and can be used to attack the
system by manipulating the arguments provided to the APIs. This is called
an API-abusing attack. One example is the Java ClassFinder vulnerability
[114], in which several APIs are abused to enable the attacker to execute
arbitrary Java code. Let APIs(S) be the set of all API functions in the
system S and Params(func) be the set of possible parameter lists for the

18

function func. A system S is vulnerable to API-abusing attacks if

∃ a context C = [A1, A2, ..., An] ∈ Impl(S) where

Ai = (Senderi, Receiveri, P rivi, API_funci(Pi)) where

API_funci ∈ APIs(S), Pi ∈ Params(API_funci)

such that C /∈ Spec(S)

This means that there exists a combination of API calls with crafted argu-
ments that can violate the security specification of the system S (e.g., execute
arbitrary code provided by the attacker).

2.6 Data

In this section, we model three attacks that are launched by manipulation of
data.

2.6.1 String-oriented Attacks

A string-oriented attack is an attempt to feed the victim system with specially
crafted inputs that can evade the sanitization policy of the system and thus
subvert the system. For example, XSS and CSRF attacks usually exploit the
incompleteness of HTML sanitization to embed scripts on a website, while
SQL Injection attacks often manipulate the HTTP parameters to inject SQL
code. String-oriented attacks are still a great threat in Web Security since
fields are often left unsanitized.

Let Params(func) be the set of all possible parameter lists for the function
func under the implementation of S. And let LegalParams(func, S) be the
set of all legal parameters lists for the function func under the specification
of S. A string-oriented attack is said to happen in the context C if

∃ (Sender,Receiver, Privilege, func(P)) ∈ C such that

P ∈ Params(func) ∧ P /∈ LegalParams(func, , SS)

This means that there exists a malicious input P to the func that will violate
the security specification of S.

19

2.6.2 Randomness Attacks

A randomness attack is an attempt to find a valid token used in the sys-
tem (e.g., password or session id) by exploiting its low-entropy property to
perform unauthorized actions. For instance, Argyros and Kiayias [116] show
that the PHP system is vulnerable to randomness attacks due to the low
entropy of its pseudo-random number generator. There are many types of
randomness attacks. Here we model a randomness attack that involves only
an attacker and a victim system. The activities between the attacker and the
victim are abstracted into the following two activities to simplify the model:

Request = (Attacker, V icim, Privilege, send(request_msgs))

Reply = (V ictim,Attacker, Privilege, reply(response_msgs))

A token in the system S is vulnerable to randomness attacks if there exists a
context C = [A1, A2, ..., An] ∈ Impl(S) between the attacker and the victim
where Ai is of the form of Request or Reply such that the information from
AllResponses(C) can reduce the entropy of the token into solvable4 range
where

AllResponses(C) = {response_msgs |

(V ictim,Attacker, Privilege, reply(response_msgs) ∈ C}

The above definition of randomness attack means that there exists a context
where the response from the victim can reveal enough information for the
attacker to guess the token. The information can be revealed either by wrong
trials of tokens or any additional message sent back by the victim. For
example, the system time that is usually used as a seed for the pseudo-
random number generator may be revealed to the attacker.

2.6.3 Side Channel Attacks

A side channel attack is an attack that utilizes the information gained from
the indirect sources of the system, to acquire private information or perform
unauthorized actions. For instance, the padding oracle attack is a kind of side

4Solvable here means that the token can be guessed given reasonable trials and time.

20

channel attack [117] that uses the difference of response time as the indirect
information to guess the tokens in the system. Let Observable(C,User) be
the set of all activities in the context C that can be observed by the User.
A side channel attack regarding the private_information happens in the
context C ∈ Impl(S) if

∃ a user User in the system S such that

Observable(C,User) reveals information about the private_information

The above means that a side channel attack happens if combining all the
activities observable to the User makes possible for the User to recover the
private_information that should not be known to the User.

21

CHAPTER 3

MEMORY CORRUPTION ATTACKS

This chapter introduces the concepts of memory errors and memory safety
and their relations with memory corruption attacks. Following that, we
describe different types of memory corruption attacks to help frame the scope
of this thesis. Finally, a variety of defense mechanisms are discussed to
delineate the challenges faced by current researchers.

3.1 Overview

A memory corruption attack is achieved by exploiting the memory errors in
a program to corrupt the memory contents targeted by an attacker aiming to
gain control over the program. A memory error occurs when a pointer being
dereferenced does not point to its intended object. That is, the pointer may
point to an invalid memory location, a wrong object, or a deallocated mem-
ory location. Programming languages, such as C/C++, that support manual
memory management (memory allocation/deallocation, pointer arithmetics)
are vulnerable to memory errors, while other languages that employ au-
tomatic memory management (e.g., garbage collection), such as Java, are
memory-safe. A program free of memory errors is memory-safe. Memory
safety and memory errors are complementary concepts. Memory safety of
a program can be further divided into spatial memory safety and temporal
memory safety. Spatial memory safety requires each dereferenced pointer
in a program be initialized and stay within its base address and boundary.
Temporal memory safety requires each dereferenced pointer in a program
point to an object that still exists (i.e., allocated but not deallocated yet)
at the time of dereference. This thesis focuses on enforcing the full memory
safety of a program to prevent memory corruption attacks. In the following
two sections, we introduce different types of memory corruption attacks that

22

violate either spatial or temporal memory safety.

3.2 Attacks Categorized by Targets

In general, a memory corruption attack can be classified into one of the
following categories depending on their attack targets: control-data attacks,
non-control-data attacks, code injection attacks, and information leakage at-
tacks. The avenue through which an attack overwrites the targets is irrelevant
in this categorization.

3.2.1 Control-data Attacks

A control-data attack aims to hijack the control flow of the program by
overwriting its control data, including return addresses, function pointers,
virtual function tables, GOT (Global Offset Table), PLT (Procedure Linkage
Table), and exception-handler pointers. Figure 3.1 is an example program
that is vulnerable to control-data attack. The strcpy(temp, str1) may
overflow the buffer temp and therefore overwrite the return address in the
stack with the attacker-controlled value. The return address is the most
common target among all memory corruption attacks since the return address
in the stack of x86 is adjacent to the local buffer and can be easily overwritten
if the buffer is overflowed.

1 void copy_str(char *str1, char *str2) {
2 char temp[100];
3 strcpy(temp, str1);
4 temp[99] = ’\0’;
5 strcpy(str2, temp);
6 }

Figure 3.1: An Example of a Control-data Attack

23

3.2.2 Non-control-data Attacks

A non-control-data attack [109] attempts to control the program execution
flow by overwriting the decision-making variables, program configuration,
user identity, or input data. The difference between a non-control-data at-
tacks and a control-data attacks is that the former does not violate the con-
trol flow integrity because it does not introduce a new execution path, while
the latter may not follow the original control flow of the program. There-
fore, it is usually harder to detect non-control-data attacks, since control
flow integrity does not help. Figure 3.2 is an example of a non-control-data
attack. In Figure 3.2, the local decision-making variable authenticated

may be overwritten by the instruction strcpy(user,hash(username)), since
hash(username) may return a string with length larger than 100. Therefore,
by overwriting authenticated with value 1, the attacker can login without
a correct password.

1 int auth(char *username, char *password) {
2 int authenticated = 0;
3 char *user[100];
4 authenticated = strcmp(password, get_pw(username));
5 strcpy(user, hash(username));
6 return authenticated;
7 }

Figure 3.2: An Example of a Non-control-data Attack

3.2.3 Code Injection Attacks

A code injection attack tries to overwrite the code section of a program so that
the injected code will be executed when the program counter points to that
section. However, most modern operating systems prevent this kind of attack
by enforcing code integrity that allows any page to be either writable or exe-
cutable but not both. Therefore, the executable code section is not writable
by the attacker. Unfortunately, self-modifying code or JIT-compiled code
(Just-In-Time-compiled code) is still vulnerable to code injection attacks
since there is still a short time window in which the code is writable.

24

3.2.4 Information Leakage Attacks

Instead of corrupting critical data, an information leakage attack [28] at-
tempts to acquire system data or debugging information from the program,
such as the address of the system() function or the environment variable
PATH, so to find vulnerability in the program. The information gained from
this attack is usually utilized in another attack to gain control over the pro-
gram or the system. This attack becomes an important step when ASLR
(Address Space Layout Randomization) [20, 23] is deployed in the system.
This is because ASLR randomizes the stack, the heap, and the address of
each function such that the attacker may need some information leaked from
the program to position the attack target or reuse the code in the program.
Figure 3.3 is an example of code that is vulnerable to information leakage at-
tacks because it may leak too much information about how the program fails
when there is an exception. The attacker can launch an attack that targets
the weakness of the program leaked by the stack trace of the exception. For
example, Figure 3.4 is an actual MySQL error message from the example in
CWE-201 [119].

1 try {
2 do_sth();
3 } catch(Exception ex) {
4 ex.printStackTrace();
5 }

Figure 3.3: An Example of an Information Leakage Attack

1 Warning: mysql_pconnect():
2 Access denied for user:’root@localhost’(Using password: N1nj4)
3 in /usr/local/www/wi-data/includes/database.inc on line 4

Figure 3.4: An Actual MySQL Error Message That Leaks Credentials

25

3.3 Attacks Categorized by Vulnerabilities

In this section, memory corruption attacks are categorized by the vulnera-
bility they exploit.

3.3.1 Buffer Overflow Attacks

A buffer overflow attack attempts to overrun the boundary of a buffer due to
insufficient bounds checking. The attacker writes an amount of data larger
than the buffer size, aiming to overwrite the memory region adjacent to that
buffer, such as return addresses, function pointers, or decision-making data.
If the target buffer is on the stack of a program, it is called stack-based buffer
overflow. If the target buffer is in the heap of a program, it is called heap-
based buffer overflow. A buffer overflow attack violates spatial memory safety
because the pointer to the buffer goes out of bounds. Many mechanisms are
proposed to mitigate buffer-overflow attacks. We discuss them in Section 3.4.
The examples in Section 3.2.1 and 3.2.2 are both stack-based buffer overflow
attacks.

3.3.2 Format String Attacks

Format string attacks occur when an unchecked user input is evaluated as the
format parameter of the printf() family functions so that the attacker can
use %n to corrupt any memory location or use %x to acquire some system in-
formation. It was first discovered by Miller, Fredriksen, So [120] during their
fuzz testing for UNIX utility in 1990. In contrast to buffer overflow attacks,
which are sequential access and only allow the attacker to overwrite sequen-
tial memory regions, format string attacks allow the attacker to overwrite
an arbitrary memory location without corrupting other memory locations.
This attack also violates spatial memory safety. Figure 3.5 is an example
of code that is vulnerable to format string attacks because the argv[1] can
contain control sequences such as %n or %x to corrupt memory locations or
read system information:

26

1 int main(int argc, char *argv[]) {
2 printf(argv[1]);
3 return 0;
4 }

Figure 3.5: An Example of a Format String Attack

3.3.3 Heap Spraying Attacks

Heap spraying is a technique that injects code or data in the heap so that
arbitrary code execution becomes possible. It is usually achieved by a com-
bination of memory deallocation and allocation operations to clean up the
heap and spray the attacker-controlled code/data all over the heap so that
the chance that the sprayed data/code gets used is higher. A heap spraying
attack needs another vulnerability to trigger the use of the code/data sprayed
on the heap. Heap Spraying attacks are mostly seen in the exploits of web
browsers, since an attacker can use JavaScript to spray the heap and trigger
the vulnerability in the browser to use the sprayed data/code.

3.3.4 Return-to-libc Attacks

A return-to-libc attack, which is a type of code reuse attack, is a technique
to defeat the protection of non-executable stack1 by overwriting the return
address with the address of one of the library functions that exists in the
program (e.g., the system() function) and then overwriting the parameters
passed to that function to achieve the attacker’s goal. The attacker must
know the addresses of needed library functions to launch this kind of attack.
This becomes very difficult when ASLR is enabled in a 64-bit system since
the addresses of library functions are randomized [24]. In 2005, instead of
reusing a whole library function, Krahmer [121] starts to reuse a short code
snippet to launch an attack, which is the first one that touches the idea of
ROP (Return-Oriented Programming) attacks. A return-to-libc attack is a
special case of a ROP attack as discussed in the next section.

1Non-executable stack prohibits the attacker from executing the shellcode injected on
the stack.

27

3.3.5 ROP Attacks

ROP (Return-Oriented Programming) attacks, proposed by Shacham [110]
in 2007, are inspired by the idea of return-to-libc attacks that reuse the code
existing in a program. A ROP attack is a technique that enables arbitrary
code execution even under the protection of a non-executable stack or code
signing. It manipulates the call stack in a program to call small gadgets
(carefully-chosen machine instruction sequences) that are part of the library
code. Although each gadget performs a simple operation, such as addition, all
gadgets together can form a program of Turing-complete functionality [122]
[123]. There are even compilers that help translate programs into gadgets
[124]. A ROP attack is a kind of control-data attack, so although it can evade
the protection of a non-executable stack, it can be alleviated if control-flow
integrity [125] is enforced.

3.3.6 Integer Overflow Attacks

An integer overflow occurs when the result of an arithmetic operation goes
out of the available range that can be materialized in the storage space. For
example, the addition of the two 32-bit integers 2147483647 and 1 becomes
-2147483648 because it wraps around when it overflows. An integer overflow
attack attempts to bypass sanity checks for integers that are used as offsets
or sizes of memory access or memory allocation (e.g., the length argument of
strncpy()) by triggering the overflow of integers. Integer overflow attacks
usually cause violations of spatial memory safety. Figure 3.6 is a snippet
of code from the Linux AGP Driver that is vulnerable to integer overflow
attacks as reported in CVE-2011-1745 [126]. If Line 7 of Figure 3.6 does
not exist, pg_start from the user space (controlled by the user) may be so
large as to make pg_start + mem->page_count overflow. This may cause
the sanity check to be passed and the subsequent uses of pg_start as the
memory offset to violate spatial memory safety.

3.3.7 Double-free Attacks

A double-free attack occurs when free() is called twice for the same allo-
cated memory location. The first free() deallocates the memory, while the

28

1 int insert_mem(agp_memory *mem, off_t pg_start, int type) {
2 int num_entries;
3 size_t i; off_t j;
4 // ... (omitted)
5 // line 7 is added to prevent integer overflow attacks
6 if (((pg_start + mem->page_count) > num_entries) ||
7 ((pg_start + mem->page_count) < pg_start))
8 return -EINVAL;
9 // ... (omitted)

10 for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
11 // POTENTIAL FLAWS:
12 // The following write may use unsanitized j, which
13 // is initialized as the pg_start from user space
14 writel(
15 bridge->driver->mask_memory(bridge,
16 page_to_phys(mem->pages[i]),
17 mask_type),
18 bridge->gatt_table+j);
19 }
20 }

Figure 3.6: A Snippet of the AGP Linux Driver with Integer Overflow
Vulnerability

1 void double_free() {
2 char *ptr1, *ptr2;
3 ptr1 = malloc(SIZE1);
4 ptr2 = ptr1;
5 ...
6 free(ptr1);
7 free(ptr2);
8 }

Figure 3.7: An Example of a Double-free Attack

29

1 void use_after_free() {
2 int fail = 0;
3 char *ptr1 = malloc(SIZE);
4 ...
5 if (fail) {
6 free(ptr1);
7 }
8 ...
9 printf("%s", ptr1);

10 }

Figure 3.8: An Example of a Use-after-free Attack

second one corrupts the data structure of the heap metadata. This allows
an attacker to perform arbitrary memory overwrites or buffer overflow by
manipulating the heap metadata and subsequent allocations of memory with
the same size [127]. A double-free attack violates temporal memory safety,
since the second free() uses deallocated memory. Figure 3.7 is an example
code that is vulnerable to double-free attack.

3.3.8 Use-after-free Attacks

An use-after-free attack occurs when an allocated memory location is used
after it is freed. As in the double-free attack, the attacker can control the
freed memory (through the use after it is freed) that may be later treated as
another object in the program. Hence, the content of the object is controlled
by the attacker. This also violates temporal memory safety, since the memory
is used after it is deallocated. CVE-2012-4792 [128] is an use-after-free attack
in 2012 for Internet Explorer 6 through 8 that allows the attacker arbitrary
code execution. Figure 3.8 is an example of code that is vulnerable to use-
after-free attacks.

3.3.9 Zero Allocation Attacks

A zero allocation attack [113] attempts to overwrite certain memory location
by triggering the program to call malloc() with size 0, which is an unde-
fined behavior in C. If a malloc() is called with size 0, then the returned

30

1 struct user *gen_new_obj(int value) {
2 user_data = read_user_data();
3 if (user_data.len > MAX_LEN) {
4 return NULL;
5 }
6 size = user_data.len; // size may be 0
7 new_user_data = (struct user) malloc(size);
8 new_user_data.val = value; // Buffer overflow may occur
9 return new_user_data;

10 }

Figure 3.9: An Example of a Zero Allocation Attack

pointer may be NULL or a small chunk of memory, depending on the compiler
used. However, when this happens, the returned pointer usually does not
point to a memory as large as expected by the programmer, which may later
lead to buffer overflow. Integer overflow attacks can also be used to cause the
malloc() to be called with size 0. Figure 3.9 is an example of code that is vul-
nerable to zero-allocation attacks: In Figure 3.9, if the user_data.len is 0, it
can pass the sanity check in line 3 and thus be used as the malloc() param-
eter, which causes 0-sized memory allocation. Supposing that the malloc()
returns a 4-byte chunk of memory while each struct user object is 20 bytes,
a buffer overflow may occur in line 8. This is because the offset of val in
struct user is out of the bound of the 4-byte memory, which allows an
attacker to corrupt memory using the attacker-controlled value.

3.4 Countermeasures

In this section, we discuss protection mechanisms against a subset of memory
corruption attacks. These mechanisms usually prevent a specific avenue that
memory corruption attacks go through to reduce the attack surface as much
as possible. However, whenever a new protection comes out, a new attack
is soon crafted to defeat it. For example, when a non-executable stack is
deployed in the system, return-to-libc attacks and ROP attacks are proposed
to bypass this protection. The root cause of memory corruption attacks is
the violation of memory safety. This thesis attempts to solve this problem

31

by AHEMS, which ensures both spatial and temporal memory safety.

3.4.1 Stack Integrity

The call stack of a program is one of the most common targets for memory
corruption attacks. Many approaches are proposed to enforce stack integrity.
The non-executable stack mechanism prevents the attacker from executing
any code injected on the stack of the program. It was first developed by
Solar Designer [129] in 1997 for the Linux kernel. Following that, the non-
executable stack evolves into the more general policy that enforces a page
to be either writable or executable but not both. Under the protection of
this policy, code and data sections need to be separated. This protection
is currently supported by hardware, so it incurs very low runtime overhead.
Therefore, this protection has been deployed on most of the modern operating
systems (PaX [5,6] in Linux, ExecShield [7] in Red Hat, DEP [8] in Windows,
and W⊕X [9] in BSD). However, the protection is still vulnerable to some of
the code reuse attacks such as return-to-libc or ROP, since these attacks do
not rely on an executable stack to succeed.

Another protection mechanism for the stack is the use of canary value.
This is a random value inserted at the end of a buffer on the stack to be
checked against a copy whenever a function returns in runtime, making sure
no buffer is overrun. This mechanism relies on the property of sequential
access of buffer overflow to protect the stack. Therefore, it is still susceptible
to attacks that allow arbitrary memory writes (e.g., format string attacks,
double-free attacks). StackGuard [10] implements the canary value approach.
StackShield [11] further improves the protection of return addresses by copy-
ing the return address to an unoverflowable location when a function is en-
tered, and then copying the return address back before a function returns.
This guarantees that the return address is always correct, even if buffer is
overrun. ProPolice (Stack Smashing Protector) [12] is a low-overhead GCC
extension built on StackGuard. It improves StackGuard by protecting not
only the return address but all the registers saved in function’s prologue and
by rearranging array variables to make overflow harder. Unfortunately, these
protection schemes cannot defend against information leakage attacks that
leak the canary value or the memory location of the return address.

32

3.4.2 Code Integrity

The code integrity can be ensured by enforcing writable-xor-executable pages
with the page protection scheme mentioned in Section 3.4.1. The protec-
tion scheme is supported by most modern operating systems in software and
modern processors in hardware. The hardware support for code integrity en-
ables its wide deployment because it incurs negligible performance overhead.
Unfortunately, although the protection scheme can hamper code injection
attacks, it does not prevent code reuse attacks or code injection attacks for
JIT-compiled code or self-modifying code.

3.4.3 Heap Integrity

There are three main types of attacks that target the heap of a program: (1)
buffer overflow attacks that overwrite adjacent objects in a heap, (2) corrup-
tion of heap management metadata, and (3) heap spraying attacks. In the
following, we discuss different techniques that protect a program from these
heap-based attacks.
Non-executable heap is widely deployed in modern operating systems to
prevent code injection attacks that execute code on the heap. However, it
does not prevent code reuse attacks, such as heap spraying attacks that spray
control or non-control data on the heap.
Canary-based heap protections, such as HeapSentry [13] and Cruiser
[14], are proposed to prevent buffer overflow attacks on the heap, but they
still do not protect the heap from use-after-free or double-free attacks that
violate temporal memory safety by corrupting heap metadata.
Heap metadata protections. Younan et al. [15] place heap metadata in a
protected space separated from the allocated memory to protect them from
being overwritten. Nonetheless, this does not stop the use of one allocated
buffer to overwrite the data of the neighboring buffer in the heap.
Heap layout reorganization. Some defense mechanisms reorganize the
heap layout to harden heap integrity. HeapShield [16] replaces the common
freelist-based heap with the layout that (1) each chunk is a multiple of mem-
ory pages (i.e., page-aligned), (2) each chunk consists of objects of the same
size, and (3) there is a page directory that maintains heap metadata. In this
way, HeapShield can efficiently calculate the remaining size for each pointer

33

that points into the heap. So HeapShield can provide a safe version of those
vulnerable libc functions, such as strcpy() or gets(), by instrumenting
them with code that checks the remaining size of the buffer. DieHard [17]
is a probabilistic protection that, for each object in the heap, allocates M
times as large as the maximum required size for that object where M is a
random value in runtime. In this way, the objects in the heap are far apart
from one another, which reduces the success rate of buffer overflow attacks.
If multiple replicas of a program are run and their results are voted, the
success rate for an attack is even lower, as different replicas have different
M . Archipelago [18] trades the abundant virtual address space of 64-bit
systems for heap integrity. All objects are allocated far from each other
in virtual address space to prevent buffer overflow attacks, while usage of
physical memory remains the same. DieHarder [19] further releases the re-
quirement of large memory and widens the attack coverage of DieHard by
introducing three new features: Sparse Page Layout, Address Space Sizing,
and Destroy-on-free, where the idea of Sparse Page Layout is similar to that
of Archipelago. Unfortunately, although reorganization of heap layout helps
to avoid buffer overflow attacks, the attacker can still corrupt any content in
a heap by combining information leakage attacks that reveal the target data
location and attacks that allow arbitrary memory writes.

3.4.4 Randomization

Randomizing a program’s address space is a probabilistic method to defend
against memory corruption attacks, especially code reuse attacks, since an
attacker cannot easily find the gadgets or attack targets due to randomiza-
tion. However, if one part of the program is not randomized, an attacker
may still undermine the program. In the following, we discuss different ap-
proaches that emphasize randomization of different key areas in a program.
Code randomization. ISR (Instruction-Set Randomization) [21] was orig-
inally proposed to defeat code injection attacks. Nonetheless, the writable-
xor-executable page protection (as mentioned in Section 3.4.1) later makes
ISR unnecessary. IPR (In-place Code Randomization) [22] randomizes basic
blocks in the code to defend against ROP attacks with minimal overhead.
Address Space Layout Randomization (ASLR). ASLR [20,23] random-

34

izes the addresses of heap, stack, library, and code sections of a program each
time a program is loaded. It is now widely deployed in modern operating
systems to restrict an attack’s ability to find the correct address of data or
code. Although ASLR is effective in 64-bit systems, ASLR is still vulnerable
to derandomization attacks [24] in 32-bit systems due to the low entropy of
randomization. Furthermore, if a program is not compiled as a PIE (Position
Independent Executable), the code section of the program is not randomized.
Unfortunately, most Linux programs are not compiled as PIEs to avoid the
additional performance overhead [25]. Since most legacy programs are not
compiled as PIEs, Binary-stirring [26] extends the coverage of ASLR to ran-
domize the main code section of a legacy program. Binary-stirring rewrites
the legacy program’s binary and develops a customized program loader that
enables randomization of the main code section without the existence of
source code.
Data Space Randomization (DSR). Bhatkar and Sekar propose DSR [27]
to randomize the representation of data in the memory by encrypting all
variables in a program with multiple keys. DSR can defend against both
control-data and non-control-data attacks. Also, DSR has high enough en-
tropy even in the 32-bit systems, as opposed to ASLR. However, DSR re-
quires inter-procedural pointer analysis, which makes it unable to compile
different modules of a program separately. Besides, all libraries used by a
DSR-protected program need to be recompiled for DSR to work correctly.

Overall, the effectiveness of all randomization approaches rely on the as-
sumption that the content of some data or code cannot be located or recov-
ered by an attacker. However, information leakage attacks may break this
assumption and thus bypass these protections [28].

3.4.5 Integer Integrity

There are four main classes of mechanisms that aim to guarantee integer
integrity: static analysis, dynamic analysis, language support and library
support.
Static analysis. Static analysis on the source code of a program can find
the integer errors without providing any input to the program. This is be-

35

cause static analysis evaluates every possible execution flow. This has the
advantage that even corner cases of integer errors can be found, while the
drawbacks are (1) static analysis may report too many false positives (be-
nign integer errors that programmers are aware of or intend to have) and
(2) some static analysis approaches are not scalable enough to check inte-
ger errors on the Linux kernel. Examples of static analysis approaches are
KLEE [29], PREfix + Z3 [30], SmartFuzz [31], IntScope [32], LLBMC [33],
and KINT [34].
Dynamic analysis. Dynamic analysis instruments programs with checks
to detect the integer errors in runtime. In contrast to static analysis, dy-
namic analysis approaches produce fewer false positives and thus give more
accurate results. However, the detection coverage of integer errors is not
100% and depends on the representativeness of the input fed to the profil-
ing programs that are inserted with checkers. Mechanisms that employ dy-
namic analysis include blip [35], ARCHERR [36], UQBTng [37], RICH [38],
IntFinder [39], IntPatch [40], and IOC [41]. GCC also has an option -ftrapv

and a size_overflow plugin [42] to detect integer overflows.
Language support. Some languages, such as Python, support infinite-
precision integers that can eliminate all integer errors. However, infinite-
precision integers may not be suitable for all programs because the imple-
mentation incurs more performance overhead than fixed-width integers.
Library support. There are also libraries (e.g., SafeInt [130], IntegerLib
[131]) that help programmers avoid integer errors if they use the APIs pro-
vided by the libraries to perform integer arithmetics. The libraries perform
checks for the programmers to detect integer errors and call default handlers
when there is an integer error.

3.4.6 Control Flow Integrity (CFI)

Control Flow integrity (CFI) ensures that any execution path of a program
in runtime conforms to the control flow graph computed according to its
source code semantics. In fact, only indirect control transfers (e.g., indirect
calls/jumps/returns) need to be checked for CFI if code integrity is enforced.
This is because the target addresses of direct control transfers are fixed in
the read-only code segment. CFI can hamper any attack that attempts to

36

divert a program’s control flow to an illegal one, especially control-data at-
tacks and ROP attacks. However, depending the accuracy of the CFI, some
return-to-libc attacks can evade the protection of CFI. Also, CFI cannot de-
feat non-control-data attacks, since non-control-data attacks do not take an
illegal execution path in runtime. Challenges of CFI are (1) performance
overheads, (2) false positives and negatives, (3) source code availability, and
(4) binary compatibility. Although numerous techniques are proposed to
address these issues, there is no solution that resolves all of them. Exam-
ples are Program Shepherding [43], CFI [44, 45], WIT [46], HyperSafe [47],
Control-flow locking [48], CPM [49], CFIMon [50], MoCFI [51], FPGate [52],
CCFIR [53], and Total-CFI [54]. SFI (Software Fault Isolation) [132–135]
enforces data sandboxing that allows control transfers only to targets within
the sandbox, which can be viewed as a weak version of CFI.

3.4.7 Data Flow Integrity (DFI)

Similar to but different from CFI, data flow integrity (DFI) [73] enforces
that the flow of data in runtime conforms to the data flow in the control flow
graph statically computed by reaching definition analysis. For each use of
a variable (the statement that loads the variable), only a specific set of the
variable’s definitions (the statement that stores value to the variable, defs for
short) can reach it in the control flow graph. DFI aggregates those defs in
the same group and assigns it an ID. Therefore, for each use of a variable,
that variable should always be defined by defs in the same group (i.e., have
the same ID) when there is no memory error. In this way, DFI only needs
to associate the group ID to a variable when a variable is defined. It then
checks at each use of a variable to see if the group ID of variable is in the set
of the acceptable group IDs specific to that use. This enforcement ensures
each use of a variable reads the value written by the correct group of defs,
which prevents most memory corruption attacks. However, the imprecision
caused by treating different defs as the same group may allow the attacker to
craft an attack that escapes detection. If a store instruction at some point of
the program is the def for many different variables, those variables share the
same group ID and thus the store instruction can be utilized by an attacker
to overwrite the variable of the same group that is not intended by the

37

program. For example, the system calls write() and read() are called very
often to read and write files. The store instructions in write() are usually
allowed to write to many variables, which can be exploited by the attacker.
Furthermore, unmodified libraries cannot interoperate with DFI-protected
binaries, which makes incremental deployment difficult.

3.4.8 Information Flow Integrity

Information Flow Integrity (IFI) enforces that no direct information from
user inputs is propagated to the critical data, such as return addresses or func-
tion pointers, by employing Dynamic Information Flow Tracking (DIFT) [55].
For example, to prevent control-data attacks, a user’s input should never be
dereferenced as an address. DIFT taints every piece of data that comes from
user input, since they are untrusted and can be malicious. Then DIFT prop-
agates the taints depending on the operations performed on the tainted data
and the policy used by an approach. If the taint reaches critical data that
should not be tainted, DIFT raises an alarm. However, if DIFT propagates
for every operation, it may cause too many false positives, whereas it may
have false negatives if the propagation policy is too restrictive [136–138].
Raksha [58] attempts to address this issue by proposing an architecture sup-
port that allows flexible configuration of information flow policies and enables
the detection of high-level attacks, such as SQL injections or XSS (Cross-Site
Scripting). Nonetheless, Raksha cannot totally eliminate false positives and
false negatives when multiple applications with different design assumptions
are run concurrently. For example, suppose there are two applications run-
ning concurrently. During a table lookup, one of them should propagate
taints to avoid false negatives, while the other should not propagate taints
to avoid false positives. In this case, Raksha must generate either false posi-
tives or false negatives. Furthermore, DIFT incurs prohibitively high perfor-
mance overhead if done purely in software. Even the fastest dynamic tainter,
Minemu [68], incurs a slowdown of 2.4x for SPECINT 2006. Although archi-
tecture supports for DIFT (e.g., Minos [56], RIFLE [57], Chen et al. [139], In-
foshield [140] and Raksha [58,59]) are proposed to speed up dynamic tainting,
no hardware vendor has adopted these approaches yet. Hence, many research
efforts are still devoted to improving the performance and the accuracy of

38

DIFT in software, including TaintCheck [60], LIFT [61], HiStar [62], Taint-
Trace [63], Dytan [64], Speck [65], Aftersight [66], PTT [67], Minemu [68],
DTA++ [69], TaintEraser [70], Taint-exchange [71] and libdft [72],

3.4.9 Memory Safety

Full memory safety, including spatial memory safety and temporal memory
safety, requires that no memory error occurs in a program. This can pre-
vent all types of memory corruption attacks. For the past three decades, a
plethora of approaches have been proposed to enforce full or partial memory
safety. However, they still suffer from either prohibitively high performance
overhead, low source compatibility, low binary compatibility, no modular-
ity support2, or incompleteness of memory safety, so that none of them is
widely adopted in real-world applications. AHEMS, proposed in this thesis,
attempts to address these issues by guaranteeing both spatial and temporal
memory safety for a program with low performance overhead, high source
compatibility, high binary compatibility and modularity support. Chapter 8
discusses and compares memory safety approaches in detail.

2Modularity support means that independent components can be processed separately,
which enables incremental deployment of the approach. For example, modified binaries
can be used with unmodified libraries.

39

CHAPTER 4

APPROACH

In this chapter, we first describe the concepts adopted by AHEMS to en-
force memory safety. Secondly, a high-level operation overview of AHEMS
is outlined to show how AHEMS works as a whole. Thirdly, the detailed
mechanisms of AHEMS are described to concretize the design. Finally, an
illustrative example is given to demonstrate the working scenarios and the
effectiveness of AHEMS.

4.1 Full Memory Safety Enforcement

Full memory safety for a program requires that

1. a memory region is allocated before it is accessed,

2. no memory access to a memory region is allowed after it is deallocated,
and

3. each memory region is associated with a base address and a boundary,
denoted by (base, bound), when it is allocated, and every memory
access should occur between (base, base + bound).

The first two points depict temporal memory safety, while the third point
describes spatial memory safety. In the following, we focus on memory safety
in the C language because C is the most widely used programming language
that is notoriously memory-unsafe. According to C semantics, each object,
if stored in the memory, should have a base address and a boundary, which
identify the memory region used by the object. The object can be

1. a primitive type of data (e.g., 5 (int num), ’a’ (char ch)),

2. a pointer (e.g., 0xDEADBEEF (int* ptr)),

40

3. a struct (e.g., {"Toyota", "Corolla"} (struct car)), or

4. an array (e.g., {1, 2, 3, . . . , 100} (int ary[100])).

Each object is accessed by reference, including

1. direct access (sum = num + 5; ch = ’c’;),

2. pointer dereferences (sum = *ptr + 10;),

3. struct field access (e.g., car.brand = "Honda";), or

4. array access (e.g., ary[1] = ary[2] + ary[3];).

Every reference has its own intended object. If a reference is used to access an
unintended object, it violates spatial memory safety, whereas if a reference is
used to access an object that is dead (i.e., uninitialized or deallocated) at the
time of access, it violates temporal memory safety. Consequently, to enforce
full memory safety, AHEMS conceptually does the following three things:
(1) associates each reference with the (base, bound) of the intended object
when the object is live (allocated and not deallocated), (2) associates the
reference with an invalid (base, bound) when the intended object is dead,
and (3) checks in the case of an object dereference whether the associated
(base, bound) is valid and whether the accessed memory address is within
the (base, base + bound); This is to guarantee temporal memory safety
and spatial memory safety, respectively.

4.2 Operation Overview

AHEMS has two major parts: (1) the hardware that is responsible for the
efficient runtime checking for memory safety, and (2) the source-code in-
strumentation that establishes the interface between the program and the
hardware. Figure 4.1 illustrates the architecture of AHEMS. Here we briefly
describe how the hardware and the instrumented code are coordinated for
memory safety checking.
Source Code Instrumentation. Before a program is compiled, its source
code needs to be instrumented with alloc and dealloc instructions by the
CIL source-to-source compiler [141]. This is to enable the runtime notifica-
tion of the hardware about the memory allocation and deallocation events.

41

AHEMS Framework

Hardware Architecture

Source Code Instrumentation

GCC Compiler C Source CodeBinary
Executable

Security Engine

Checker Memory

Memory

Network

Main Processor

Runtime
Monitor

Example Program
SSH Server
HTTP Server

Running on

CIL
Source-to-Source

Compiler

memory events
exceptions

Instrumented
C Source Code

Figure 4.1: AHEMS Architecture

The instrumented code is then compiled with the GCC compiler to generate
a binary executable.
Hardware. There are three main hardware components: main processor,
runtime monitor, and security engine. The main processor is responsible
for executing the program. When a program is being executed, the runtime
monitor, which is embedded in the main processor, collects every memory
event, including memory load/store/allocation/deallocation and sub-object
creation, from the main processor and sends that event to the security en-
gine for memory safety checking. The security engine keeps track of memory
events and checks whether each memory operation is legal (i.e., whether an
access is out of bound or whether the accessed object exists). If a violation
of memory safety is detected, the security engine raises an exception, which
is communicated to the main processor to either stop the program or invoke

42

1 // return the new pointer associated with (base, bound)
2 void* alloc(void *base, size_t bound);
3 // mark the reference as dead
4 void dealloc(void *reference);
5 // Create a pointer to an sub-object associated
6 // with (subbase, subbound)
7 void* subcreate(void *subbase, size_t subbound);

Figure 4.2: Definition of alloc() and dealloc()

an exception handler. Note that the main processor does not need to wait
for any information from the security engine except for the exceptions, which
are rare in normal (i.e., error-free) execution. This enables the security en-
gine to perform the checking asynchronously and greatly reduces the runtime
overhead.

4.3 Source Code Instrumentation

The goal of source code instrumentation is to inform the hardware about
the range and the lifetime of each reference in a C program, including birth
(allocation), death (deallocation), and range (base and bound). Therefore,
three utility functions alloc(...), dealloc(), and subcreate(...) are
created to notify the hardware about each memory allocation, memory deal-
location, and sub-object creation, respectively. (see the definition in Figure
4.2.) alloc(base, bound) notifies the hardware to associate the pointer
base with the range (base, bound) and then returns the newly associ-
ated pointer. dealloc(reference) notifies the hardware that the pointer
reference is not valid anymore. subcreate(subbase, subbound) further
shrinks the base and bounds of the sub-object subbase in a structure to
(subbase, subbound). The CIL compiler [141] is utilized to instrument the
source code. CIL is a source-to-source compiler that facilitates static anal-
ysis, transformations, and optimizations of C programs. To track the birth
and death of every reference, we need to instrument (1) the malloc() and
free() functions for tracking the dynamically allocated references, (2) local
variables and function parameters, (3) global and static variables, (4) the
sub-objects in a structure, and (5) integer-to-pointer casts. Note that these

43

1 void *malloc(size_t size) {
2 // ... (omitted)
3 // compute the return value ret_val
4 return alloc(ret_val, size);
5 }
6 void free(*ptr) {
7 // ... (omitted)
8 dealloc(ptr);
9 }

Figure 4.3: Instrumentation of malloc() and free()

instrumentations do not open potential security holes because they simply
wrap around those references with alloc(), dealloc() and subcreate()

functions.

4.3.1 malloc() and free()

AHEMS instruments the malloc() and free() functions with alloc() and
dealloc(), respectively, as in Figure 4.3. In this way, the hardware is in-
formed of every memory allocation and deallocation event.

4.3.2 Local Variables and Function Parameters

To track local variables and function parameters, AHEMS (1) inserts an
additional local pointer ptr for each local array, each local variable whose
address is taken1, and each function parameter whose address is taken, (2)
inserts alloc() in the prologue of the function to initialize ptr with base and
bound, (3) replaces all uses of the local array with the added local pointer that
points to the local array, (4) replaces each use of local variable or function
parameter where its address is taken with the added pointer that points to
the local variable or function parameter, and (5) inserts dealloc() in the
epilogue of the function to mark ptr as dead. Note that AHEMS does not
track local variables or function parameters whose addresses are not taken
because their access are always memory-safe. Figure 4.4 shows an example

1In C, the address can be taken using the & operator.

44

void foo(int in1) {
int lvar = 5, *ptr, *ptr2;
int lary[100];

ptr = &lvar;
ptr2 = &in1;
sum = lary[5];
// use sum and ptr

}

(a) Before Instrumentation

void foo(int in1) {
int lvar = 5, *ptr;
int lary[10];
int lptr1 = alloc(&lvar, 4);
int lptr2 = alloc(lary, 40);
int lptr3 = alloc(&in1, 4);
ptr = lptr1;
ptr2 = lptr3;
sum = lptr2[5];
// use sum and ptr

}

(b) After Instrumentation

Figure 4.4: An Example of Local Variable Instrumentation

program for local variable and function parameter instrumentation.

4.3.3 Global Variables and Static Variables

The tracking of global or static variables is similar to that of local variables
except for the insertion positions of the alloc() functions and there being
no need to insert dealloc() functions. Global or static variables are live
through the program execution time, so the alloc() functions are inserted
in the prologue of the main function instead of in the function where variables
are located. Also, global or static variables do not need to be marked as
dead in the epilogue of the main function. To give an example, Figure 4.5
illustrates how AHEMS instruments the global variables.

4.3.4 Sub-objects in the Structure

AHEMS instruments a sub-object of a structure with the subcreate() func-
tion when the sub-object is an array or the address of the sub-object is taken;
this associates the sub-object with a sub-base and sub-bound. The lifetime
of a sub-object is the same as that of its parent object, so dealloc() is
not needed for sub-objects. Figure 4.6 shows an example program before
and after the sub-object instrumentation. Associating the sub-base and sub-
bound for a sub-object can prevent sub-object overflows, which occur when

45

int gary[100];
int gvar;
int main () {

int *ptr = &gvar;
int sum = gary[5];
// use sum and ptr
return 0;

}

(a) Before Instrumentation

int gary[100], *gptr1;
int gvar, *gptr2;
int main () {

gptr1 = alloc(gary, 400);
gptr2 = alloc(&gvar, 4);
int *ptr = gptr2;
int sum = gptr1[5];
// use sum and ptr
return 0;

}

(b) After Instrumentation

Figure 4.5: An Example of Global Variable Instrumentation

one field in a structure overflows another field in the structure. For example,
in line 9 of Figure 4.7, node.id[11] overflows the internal array of Node and
overwrites the value of node.ptr. However, some common programming id-
ioms may intentionally overflow sub-objects. Figure 4.7 shows an example
of intentional sub-object overflows. In line 12 of Figure 4.7, the memcpy()

may use a pointer of type char* to iterate through the entire structure of
node to copy each byte of node to the allocated memory pointed by node2,
which overflows all sub-objects of node and node2. Therefore, to eliminate
false alarms, AHEMS omits some instrumentation of subcreate() at places
where intentional sub-object overflows may happen.

4.3.5 Integer-to-pointer Casts

For some low-level C code, such as kernel code or device drivers, integer-to-
pointer casts are needed to hardcode some fixed addresses used by the kernel
or the device. However, this may cause false alarms in AHEMS because an
integer is by default associated with an invalid (base, bound). When an in-
teger is converted into a pointer and dereferenced, the (base, bound) of the
integer is checked and thus results in a false alarm. To allow some use cases
of integer-to-pointer casts, AHEMS allows programmers to manually insert
the alloc() function to notify AHEMS that this integer is a valid address
with a programmer-specified base and bound. Figure 4.8 shows an example
of instrumentation that safely casts integers to pointers with alloc().

46

struct Node {
int nm[10];
int *ptr;
int value;

};
void foo() {

struct Node n;

n.nm[5] = 3;
}

(a) Before Instrumentation

struct Node {
int nm[10];
int *ptr;
int value;

};
void foo() {

struct Node n;
struct Node *np;
int (*nmp)[10];
np = alloc(&n, sizeof(n));
nmp = subcreate(&np->nm,40);
(*nmp)[5] = 3;

}

(b) After Instrumentation

Figure 4.6: An Example of Sub-object Instrumentation

1 struct Node {
2 int num[10];
3 int *ptr;
4 int value;
5 };
6 void foo() {
7 struct Node node;
8 // an example of sub-object overflows
9 node.num[11] = ...;

10 // an example of intentional sub-object overflows
11 struct Node *node2 = malloc(sizeof(struct Node));
12 memcpy(node2, &node, sizeof(node));
13 }

Figure 4.7: An Example of Sub-object Overflow

void foo() {
int *ptr;
ptr = (int*) 0x12345678;
ptr[5] = 0xDEADBEEF;

}

(a) Before Instrumentation

void foo() {
int *ptr;
ptr = alloc(0x12345678, 40);
ptr[5] = 0xDEADBEEF;

}

(b) After Instrumentation

Figure 4.8: An Example of Integer-to-Pointer Instrumentation

47

4.4 Hardware Architecture

AHEMS instruments the source code of a program so that each memory-
unsafe reference in a C program is materialized as a pointer with (base,

bound). The goal of the hardware architecture is to ensure that, for each
executed load or store instruction, the accessed memory address, which comes
from a pointer in the register plus an offset, is within the (base, base +

bound). The following subsections describe the hardware design of AHEMS
to achieve this goal.

4.4.1 alloc, dealloc, and subcreate Machine Instructions

To implement the alloc(), dealloc(), and subcreate() functions that
notify the hardware about the memory events, AHEMS adds the three new
machine instructions alloc, dealloc, and subcreate to the main processor.
(see next chapter for implementation details.) This enables the runtime
monitor to know about every memory allocation, memory deallocation, and
sub-object creation event when the alloc, dealloc, subcreate instructions
are executed, respectively. (see Table 4.1 for the detail functionality of alloc,
dealloc and subcreate instructions.)

4.4.2 Temporary Identifier and Object Identifier

Each register in the main processor is associated with an temporary identifier
(TID). If a register contains a pointer in the program, its TID is used by
the security engine to identify the object to which the register is pointing.
Specifically, the security engine uses the TID to look up the object identifier
(OID), which is unique for an object, in the security engine’s TID2OID lookup
table. Figure 4.9 illustrates the relationship between the register values, the
TIDs, and the OIDs. If two registers point to different objects, they should
have different OIDs in the TID2OID table. Conversely, if two registers point
to the same object, they may have different TIDs, but they should have the
same OID even if their offsets into the object are different. With the TID for
each register and the TID2OID table, the security engine can easily identify
the object pointed to by a register when the register is used as an address for
a load or store instruction. The security engine can then find the object’s

48

Object with OID 15 Object with OID 7

0x4E000280%g1 20
reg value TID

0x4E000384%g2 13
reg value TID

0x4E000578%g3 2
reg value TID

0x4E000200 0x4E000400 0x4E000500 0x4E000600

...

13

...
2

15

...

...

7

20
OID

15

TID
TID2OID Table

Figure 4.9: Relation of Register Values, TIDs and OIDs: register %g1 and
%g2 point to different offsets of the same object with OID 15, while register
%g3 points to a different object with ID 7. From the TID2OID table, it can
be seen that although %g1 and %g2 have different TIDs, they are linked to
the same OID.

(base, bound) to check whether the pointer is within legal range to enforce
memory safety. Hence, the key point is how to maintain the validity of the
TID and the TID2OID table efficiently at any point within a program.

4.4.3 TID and OID Generation and Propagation Rules

For each of the six operations in the main processor (memory allocations,
pointer arithmetics, memory deallocations, sub-object creations, loads, and
stores), additional actions need to be executed along with the original oper-
ation to maintain the relationship between OID and TID and to check for
memory safety. Table 4.1 summarizes these actions and their actors. In the
following, we describe each of the actions in detail.
Memory allocation. When an object (or a region of memory) is allocated,
an alloc instruction is executed to (1) associate the pointer that points to
the object with a new TID (Step 1 in Table 4.1), (2) notify the security engine
to assign a new OID to that object and map the new TID to the new OID
in TID2OID table (Step 2 in Table 4.1), and (3) associate (base, bound,

NOPARENT) information of the object with the OID in the OID2BaseBound

table, where NOPARENT means that this object is not a sub-object. These
actions provide the first pointer 2 that points to an object with a new TID.
The security engine can use this TID to look up the status of the object by

2the pointer obtained at the time of allocating memory for a given object

49

Table 4.1: TID and OID Generation and Propagation Rules

alloc Instruction Actor
ALLOC rd, base, bound Main Processor
1. rd.tid = tid = tid_gen(); Runtime Monitor
2. TID2OID[tid] = oid = oid_gen(); Security Engine
3. OID2BaseBound[oid] = (base, bound, NOPARENT);

Pointer Arithmetics Actor
ADD rd, rs1, rs2 Main Processor
if rs1.tid != INVALID then rd.tid = rs1.tid; Runtime Monitor
else rd.tid = rs2.tid;
ADD rd, rs1, imm Main Processor
rd.tid = rs1.tid; Runtime Monitor
MOV rd, rs Main Processor
rd.tid = rs1.tid; Runtime Monitor

dealloc Instruction Actor
DEALLOC rd Main Processor
1. oid = TID2OID[tid];

Security Engine2. OID2BaseBound[oid] = INVALID;
3. TID2OID[tid] = INVALID;

subcreate Instruction Actor
SUBCREATE rd, subbase, subbound Main Processor
1. rd.tid = tid = tid_gen(); Runtime Monitor
2. parent_oid = TID2OID[subbase.tid];

Security Engine3. TID2OID[tid] = oid = oid_gen();
4. OID2BaseBound[oid] = (subbase,subbound,parent_oid);

store Instruction Actor
STORE [addr], rs Main Processor
1. addr_oid = TID2OID[addr.tid];

Security Engine

2. (base,bound,parent_oid) = OID2BaseBound[addr_oid];
3. if (base,bound,parent_oid) = INVALID

then raise exceptions
4. if (parent_oid != NOPARENT and

OID2BaseBound[parent_oid] == INVALID)
then raise exceptions

5. if (addr < base) or addr > (base + bound)
then raise exceptions

6. MEM2OID[addr] = TID2OID[rs.tid];
load Instruction Actor

LOAD rd, [addr] Main Processor
1. rd.tid = tid_gen(); Runtime Monitor
2. addr_oid = TID2OID[addr.tid];

Security Engine

3. (base,bound,parent_oid) = OID2BaseBound[addr_oid];
4. if (parent_oid != NOPARENT and

OID2BaseBound[parent_oid] == INVALID)
then raise exceptions

5. if (base, bound) = INVALID
then raise exceptions

6. if (addr < base) or addr > (base + bound)
then raise exceptions

7. TID2OID[rd.tid] = MEM2OID[addr];

50

the TID2OID and OID2BaseBound table when the pointer is dereferenced.
Pointer arithmetics. To make sure each pointer is associated with the cor-
rect object, AHEMS needs to propagate the TID when pointer arithmetics
is performed. (see Table 4.1.) For example, if the instruction “ADD rd, rs,

imm” is performed (i.e., rd = rs + imm) and rs represents a pointer to an
object, the destination register rd should also point to the same object as rs.
Therefore, the TID of rs should be copied to the TID of rd. Since source
code instrumentation enforces that all subsequent pointers that point to an
object are derived from the first pointer to the object, every subsequent ac-
cess to the object can always use the propagated TID to look up the OID in
TID2OID table for checking the object’s liveness and boundary.
Memory deallocation. When an object is freed, the dealloc instruc-
tion is executed to invalidate the object pointed by the pointer so that
subsequent access to the object triggers an alarm in AHEMS. Specifically,
dealloc instruction notifies the security engine to mark TID2OID[tid] and
OID2BaseBound[oid] as invalid. If more than one TID is mapped to the same
object with OID oid such as the example in Figure 4.9 and the object is deal-
located, then all of those TIDs will turn out mapping to an invalidated object.
This is because the security engine looks up the entry OID2BaseBound[oid]

to see if the object with OID oid is invalidated. Since all of those TIDs map
to the same oid, the object pointed by those TIDs is invalidated.
Sub-object creation. Creating an pointer to a sub-object is similar to
memory allocation except that the sub-object should also be associated with
the OID of its parent object (steps 2 and 4 in Figure 4.1) so that the secu-
rity engine can use the OID of its parent object (denoted by parent_oid)
to determine the lifetime of the sub-object on loads and stores by checking
if OID2BaseBound[parent_oid] is INVALID. Therefore, the OID of the sub-
object is associated with (base, bound, parent_oid) instead of (base,

bound, NOPARENT) in the OID2BaseBound table.
Store. Two additional actions are required along with a store instruc-
tion: (1) checking the liveness and boundary of the accessed object and
(2) mapping in MEM2OID table the memory address (addr) to the OID of
the object pointed by the register rs. For the first action, the informa-
tion of the accessed object is found by going through the lookup process:
addr.tid → oid → (base, bound) (steps 1 and 2 in Table 4.1). Then the
validity of (base, bound, parent_oid) is checked to see if the object is

51

still live (steps 3 and 4 in Table 4.1). Finally, addr is compared with the
(base, bound) to see if it is within the range of the object (step 5 in Table
4.1). If the object is not live or the addr is out of bound, the security engine
raises an exception. For the second action (step 6 in Table 4.1), the MEM2OID
table enables the security engine to recover the mapping between TID and
OID when the register being stored into the memory is loaded back to the
register. (see next paragraph for details.)
Load. A load instruction checks the liveness and boundary of the accessed
object in the same way the store instruction does. In addition, two other
actions are performed: (1) associating the destination register (rd) with a
new TID (step 1 in Table 4.1) and (2) associating the new TID with the OID
of the pointer stored at the memory address addr (step 7 in Table 4.1). The
load instruction loads the pointer stored at addr into the destination register
(rd). These two actions recover the association between the stored pointer
and the object pointed to by the stored pointer so that the AHEMS can
continue to keep track of a pointer even if the pointer is stored into memory
and loaded back for later use.

4.4.4 Asynchronous Checking

The reason AHEMS needs both the TID and OID is that they make the asyn-
chronous checking of memory safety possible. With asynchronous checking,
the main processor does not need to stall to wait for the result of checking or
for the storing/loading of metadata before it can move on to execute the next
instruction. The processor only stalls when the queue for checking is full. If
each register is associated directly with an OID instead of a TID, the main
processor needs to wait for the loading of the OID from the MEM2OID table to
the destination register rd when a load instruction is executed. Otherwise
the register rd is not associated with the correct OID. To solve this problem,
a new TID tid is generated and assigned to rd.tid when a load instruc-
tion is executed. This enables the main processor to continue its execution
without worrying about the OID. The tid is then asynchronously associated
with the OID loaded from the MEM2OID table by security engine to help rd

find the OID of its associated object.

52

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {
4 int *a = (int *) malloc(sizeof(int) * 15);
5 int *b = a + 20;
6 printf("%08X\n", *b);
7 return 0;
8 }

Figure 4.10: An Example outbound.c That Violates Memory Safety

4.5 An Illustrative Example

In this section, we will demonstrate how AHEMS tracks the execution of
the program outbound.c in Figure 4.10 to detect the violation of memory
safety. The program outbound.c is an example that has an out-of-bounds
memory access in line 6 of Figure 4.10. AHEMS should raise an excep-
tion when the program reaches line 6. Figure 4.11 is the assembly code of
outbound.c on SPARC Architecture.
The step-by-step execution is as follows:

1. 40001924: save %sp, -104, %sp

Allocates a stack frame for main function.

2. 40001928: mov 0x3c, %o0

Sets %o0 to 0x3c to prepare the first argument for the malloc function.

3. 4000192c: call 400019bc <malloc>

Calls the malloc function with %o0 as the size and returns the address
of the allocated memory in %o0. Let’s assume the function returns
0x50000000.

4. 40001930: nop

Do nothing.

5. 40001934: mov %o0, %g1

Moves the return value %o0 to %g1. That is, %g1 = %o1 = 0x50000000.

6. 40001938: alloc %g1, 0x3c, %g1

(a) %g1.tid = tid_gen() = #1;

53

(b) TID2OID[#1] = oid_gen() = #1;

(c) OID2BaseBound[1] = (%g1, 0x3c, NOPARENT)

= (0x50000000, 0x3c, NOPARENT);

7. 4000193c: st %g1, [%fp + -8]

(a) addr_oid = TID2OID[#fp_tid];

(b) OID2BaseBound[addr_oid] = IGNORE_CHECK

(c) The boundary checking for the frame pointer is ignored because
source code instrumentation enforces that the frame pointer can only
be used for memory access that is guaranteed safe. All unsafe memory
accesses should use other registers as the address. In this example, the
accesses to the variable *a (stored at [%fp + -8]) and *b (stored at
[%fp + -4]) are safe because their addresses are never taken.
(d) MEM2ID[%fp + -8] = TID2OID[#1] = #1;

8. 40001940: ld [%fp + -8], %g1

(a) %g1.tid = tid_gen() = #2;

(b) addr_oid = TID2OID[#fp_tid];

(c) OID2BaseBound[addr_oid] = IGNORE_CHECK

(d) The boundary checking for the frame pointer is ignored.
(e) TID2OID[#2] = MEM2OID[%fp + -8] = #1;

9. 40001944: add %g1, 0x50, %g1;

(a) %g1.tid = %g1.tid = #2

(b) %g1 = %g1 + 0x50 = 0x50000050;

10. 40001948: st %g1, [%fp + -4]

(a) addr_oid = TID2OID[#fp_tid];

(b) OID2BaseBound[addr_oid] = IGNORE_CHECK

(c) The boundary checking for the frame pointer is ignored.
(d) MEM2ID[%fp + -4] = TID2OID[#2] = #1;

11. 4000194c: ld [%fp + -4], %g1

(a) %g1.tid = tid_gen() = #3;

(b) addr_oid = TID2OID[#fp_tid];

(c) OID2BaseBound[addr_oid] = IGNORE_CHECK

(d) The boundary checking for the frame pointer is ignored.
(e) TID2OID[#3] = MEM2OID[%fp + -4] = #1;

54

12. 40001950: ld [%g1], %g1

(a) addr_oid = TID2OID[%g1.tid] = TID2OID[#3] = #1;

(b) (base, bound, parent_oid)

= OID2BaseBound[#1] = (0x50000000, 0x3c, NOPARENT)

(c) parent_oid == NOPARENT, so no need to check parent object.
(d) Since %g1 = 0x50000050 is not within (0x50000000,

0x5000003c), so the security engine raises an exception.

From the step-by-step execution, we can see that the first pointer to the
allocated buffer is created and put into the %g1 register at Steps 3-6. During
the execution, even if the pointer in %g1 is stored to the memory (Step 7 and
Step 10), its association with its pointed object is not lost. The AHEMS can
recover the association when the pointer is loaded back to the register %g1
using the MEM2OID and TID2OID table (Step 8 and Step 11). Finally, AHEMS
successfully detects the violation of memory safety in outbound.c at Step
12.

55

1 40001924 <main>:
2 #include <stdio.h>
3 #include <stdlib.h>
4 int main()
5 40001924: 9d e3 bf 98 save %sp, -104, %sp
6 int *a = (int *)malloc(sizeof(int) * 15);
7 40001928: 90 10 20 3c mov 0x3c, %o0
8 4000192c: 40 00 00 22 call 400019b4 <malloc>
9 40001930: 01 00 00 00 nop
10 40001934: 82 10 00 08 mov %o0, %g1
11 40001938: 83 b8 40 22 alloc %g1, 0x3c, %g1
12 4000193c: c2 27 bf f8 st %g1, [%fp + -8]
13 int *b = a + 20;
14 40001940: c2 07 bf f8 ld [%fp + -8], %g1
15 40001944: 82 00 60 50 add %g1, 0x50, %g1
16 40001948: c2 27 bf fc st %g1, [%fp + -4]
17 printf("%08X\n", *b);
18 4000194c: c2 07 bf fc ld [%fp + -4], %g1
19 40001950: c2 00 40 00 ld [%g1], %g1
20 40001954: 05 10 00 2d sethi %hi(0x4000b400), %g2
21 40001958: 90 10 a0 70 or %g2, 0x70, %o0
22 4000195c: 92 10 00 01 mov %g1, %o1
23 40001960: 40 00 02 1e call 400021d4 <printf>
24 40001964: 01 00 00 00 nop
25 return 0;
26 40001968: 82 10 20 00 clr %g1
27 }
28 4000196c: b0 10 00 01 mov %g1, %i0
29 40001970: 81 e8 00 00 restore
30 40001974: 81 c3 e0 08 retl
31 40001978: 01 00 00 00 nop

Figure 4.11: Disassembly of the Example outbound in SPARC

56

CHAPTER 5

IMPLEMENTATION ISSUES

In this chapter, the pros and cons of the three possible placements of AHEMS
are discussed. Following that, the implementation details of AHEMS on the
main processor, the runtime monitor, and the security engine are described.

5.1 Placement of AHEMS

Due to AHEMS’ asynchronous operation with respect to the main processor,
the security engine can be flexibly implemented as an external device, as a
co-processor, or as part of the main processor. Below we discuss the pros
and cons of each option.

5.1.1 External Device Design

Figure 5.1 shows the architecture of AHEMS where the security engine is
implemented as an external device (e.g., a PCI Express card) pluggable to
the motherboard. The runtime monitors still need to reside in the cores of
the main processor to keep track of every memory event (i.e., loads, stores,
allocations, deallocations, and sub-object creations). The security engine

Security Engine

Checker Memory

Main Processor

Memory

Network

Core 1
Runtime
Monitor

Core 2
Runtime
Monitor

PCI Express

Figure 5.1: External Device Design of the AHEMS

57

receives memory events from the runtime monitor through the PCI Express
Bus, which can reach as high as 31.51GB/s throughput when using the PCI
Express 4.0 with 16 lanes. The security engine needs to have its own memory
to maintain MEM2OID, TID2OID, and OID2BaseBound tables. To show that
PCI Express 4.0 is fast enough to transmit the memory events coming from
the runtime monitor, the following is an estimation of the size of the events.
If a processor runs at 3GHz with an average IPC = 2 (Instructions Per Cycle)
and 40% of the executed instructions are alloc, dealloc, subcreate, load,
store instructions, then the expected size of memory events per second would
be 3 GHz × 2 instrs/cycle × 40% * 8 bytes/event = 19.2GB/s, which is
transmittable by PCI Express 4.0.

The advantages of an external-device design are (1) the changes on the
main processor are the least among the three designs because only the run-
time monitor needs to be placed in the main processor, (2) the security engine
has a separate memory on the PCI card so that the metadata is physically
separated from attackers and the security engine does not need to share the
memory bandwidth with the main processor, (3) the security engine can be
easily upgraded or replaced if there are fixes for bugs or updates for the new
features, and (4) the security engine may be produced by different vendors
with different features and performance variations.

The disadvantages are (1) the data transmission rate of PCI Express is the
slowest among the three designs, so the detection latency and performance
overhead are higher, (2) the power consumption is high because the data
transmission is going on all the time, (3) the resource overhead is the highest
among the designs because the security engine needs additional hardware and
memory, and (4) using the PCI Express Bus to communicate information on
memory events may compete for the bandwidth with other devices that use
the PCI Express to communicate, such as GPUs.

5.1.2 Co-processor Design

Figure 5.2 illustrates the co-processor design of AHEMS architecture. It is
similar to the design for an external device except that in the co-processor
design, the security engine is a co-processor on the motherboard and the
communication between the main processor and the co-processor is inter-

58

Security
Engine

Checker

Main Processor

Memory

Network

Core 1
Runtime
Monitor

Core 2
Runtime
Monitor

Inter-Processor Communication

Memory

Figure 5.2: Co-processor Design of AHEMS

processor communication. Also, the security engine can optionally have a
dedicated memory to store metadata.

The advantages of the co-processor design are (1) the changes on the main
processor are smaller than for the in-processor design, (2) the co-processor
can optionally have a dedicated memory to increase memory bandwidth and
support physical separation of program data and security metadata to pre-
vent attackers from targeting AHEMS, (3) the performance overhead and
detection latency are lower than in the external device design because the
data transmission rate can be higher.

The disadvantages are (1) the power consumption is still higher than in
the in-processor design, (2) the resource overhead is similar to that of the
external-device design, and (3) using inter-processor communication channels
to communicate information on memory events may compete with other
processors that use the channel.

5.1.3 In-processor Design

Figure 5.3 shows the in-processor design of AHEMS. It integrates the whole
security engine into the cores of the main processor so that no data transmis-
sion is needed and the security engine directly performs the memory safety
checking in the main processor.

The advantages of in-processor design are (1) the power consumption is
the lowest among these three designs because no data transmission is needed,
(2) the resource overhead is the lowest because no additional hardware or
memory is needed, (3) the performance overhead and the detection latency
are lower compared with the external-device design, and (4) there is more

59

Main Processor

Memory

Network

Core 1
Runtime
Monitor

Security
Engine

Core 2
Runtime
Monitor

Security
Engine

Figure 5.3: In-processor Design of the AHEMS

efficient support for multi-core processors, since each core can have its own
security engine, i.e., one security engine does not need to process metadata
for different cores.

The disadvantages are (1) the security engine needs to share the memory
bandwidth with the main processor, which slows down the security engine,
(2) the design requires significant changes to the main processor since it em-
beds the whole security engine into the main processor, which may affect
the critical path of the main processor and thus affect the processor’s maxi-
mum frequency, (3) the design is less flexible than the external-device design,
and (4) the security engine needs to run in the same frequency as the main
processor, losing the chance to speed up the checking.

5.1.4 Comparison

Table 5.1 summarizes the differences between the three designs of AHEMS.
Each has its advantages and disadvantages. The designer should take into
account the system requirements to decide which design option to use based
on the tradeoffs involved. In this thesis, we implement the co-processor design
to have an average result in all aspects. We use it as a proof-of-concept to
demonstrate the effectiveness and efficiency of AHEMS.

5.2 Main Processor

To demonstrate AHEMS in a practical way, instead of using instruction-
accurate simulator such as Simics [142], we build AHEMS on top of the open-

60

Table 5.1: Comparisons of Different Placements of AHEMS

Type External Device Co-processor In-processor
Data Transmission Overhead High Moderate None

Flexibility High Moderate Low
Power Consumption High Moderate Low
Detection Latency High Moderate Low
Resource Overhead High Moderate Low
Changes in Processor Low Moderate High
Effects on Critical Path Low Low High

Physical Separation of Data Yes Yes No
Multi-core Support Low Low High

source Leon3 Architecture developed by Aeroflex Gaisler AB [143]. Leon3
architecture is a full system that includes processors, caches, networks, and
other peripherals. The Leon3 processor is a 32-bit processor compliant with
SPARC V8 architecture and is a 7-stage-pipeline in-order processor with sup-
port for FPU and SRMMU (SPARC Reference Memory Management Unit).
Leon3 architecture is a synthesisable VHDL model that is more accurate
than any simulator and enables us to even evaluate the critical path, power
consumption, and hardware resource overhead of our hardware design.

Figure 5.4 illustrates implementation of AHEMS on the Leon3 architec-
ture. The Leon3 processor communicates with the main memory or network
through the bus AMBA 2.0 [144]. The runtime monitor is embedded in the
main processor to generate and propagate the TID. It also sends the memory
events to the security engine via a FIFO buffer with configurable size. The
security engine maintains the metadata in its dedicated memory and checks
to see whether any memory event violates memory safety. It raises an excep-
tion to notify the runtime monitor if it detects a violation.

5.2.1 TID Propagation.

To support TID propagation, each register in the main processor is widened
by log2(N) bits (i.e., the number of bits per register is increased by log2(N)

bits) to record its associated TID, where N is the total number of registers
in the main processor. A TID needs at least log2(N) bits because, in the
worst case, every register points to an object that is not pointed to by any
other register, which means each register has a unique TID. Also, objects not

61

Security
Engine

Checker

Main
Memory Network

Leon3 Processor

Runtime
Monitor

Metadata
Memory

AMBA 2.0 Bus

FIFO

memory events

AMBA 2.0 Bus

exceptions

Cache

Figure 5.4: AHEMS on Leon3 Architecture

currently pointed to by any register do not need TIDs. Hence, the maximum
required number of TID is N . However, a good TID generator (i.e., one
which avoids TID collision) is needed to efficiently generate a TID unused
by any register at the time of generation. The next section will describe our
design of the TID generator.

The ALU (Arithmetic Logic Unit) of the Leon3 processor also needs to be
modified to support the propagation of the TID, along with those instructions
used for pointer arithmetics. Specifically, the inputs and outputs of the ALU
are widened to take the widened registers as inputs and compute a widened
result as an output. The resultant TID is computed in the ALU according
to the propagation rules in Table 4.1. Since the computation of the TID is
in parallel with the original computation, this modification does not require
more cycles to run although it may slightly increase the complexity of the
ALU.

5.2.2 alloc, dealloc and subcreate Instructions

The alloc, dealloc, and subcreate machine instructions are implemented
by reinterpreting the co-processor instructions cpop1 and cpop2 in the Leon3
processor. Originally, the co-processor instructions defined by SPARC archi-
tecture are used to control the co-processor. Leon3 Processor implements
cpop1 and cpop2 instructions but treats them as nop instruction by default.

62

1 cpop1 opc, rs1, rs2, rd
2 cpop2 opc, rs1, rs2, rd

Figure 5.5: The Format of cpop1 and cpop2 Instructions

Figure 5.5 shows the format of cpop1 and cpop2. The opc is the opcode
given to the co-processor. rs1, rs2, and rd are source register 1, source
register 2, and destination register, respectively. We modified the Leon3
Processor to treat the cpop2 with opc=0x01 as the alloc instruction, cpop2
with opc=0x02 as the dealloc instruction, and cpop2 with opc=0x03 as the
subcreate instruction. Specifically, the three single-bit signals is_alloc,
is_dealloc, is_subcreate are added to the decoder of the Leon3 processor
to notify the runtime monitor in the decoding stage of the occurrence of the
alloc, dealloc, subcreate instructions, respectively. If one of those sig-
nals is set, the runtime monitor will read the data coming from the register
file in the register access stage. In the case of the alloc and subcreate

instructions, the runtime monitor reads the base information from the rs1

register and the bounds information from the rs2 register. In the case of
the dealloc instruction, the runtime monitor only reads the pointer to be
deallocated from the rs1 register. For the alloc instruction, the runtime
monitor also generates a new TID in the execution stage, and the ALU of the
Leon3 processor is modified to use the base address from rs1 and the new
TID as the widened result. In the exception stage, the widened result from
the ALU is written back to the rd register, and the new TID along with
base and bound information are sent to the security engine by the runtime
monitor through FIFO to notify the allocation event. For the dealloc in-
struction, no data needs to be written back to the rd register. The runtime
monitor directly sends the pointer to be deallocated to the security engine
through FIFO in the exception stage to notify it of the deallocation event.
The handling of the memory allocation and deallocation event by the secu-
rity engine is described in Section 5.4. The implementation of the subcreate
instruction is similar to that of the alloc instruction. However, at this stage
of development, our implementation prototype does not support subcreate.
We leave it to future work. In the following sections, the implementation of
sub-object creation is omitted.

63

5.3 Runtime Monitor

The runtime monitor is responsible for TID generation and data transmission
to the security engine. The implementation details are described below.

5.3.1 TID Generation

A new TID is defined as a TID that does not exist in any register in the
main processor. It is generated and associated with the destination register
rd when a load or alloc instruction is executed. The TID generation process
is represented by id_gen() in Table 4.1. To generate a new TID efficiently,
the TID Generator is developed to keep track of the count of each TID and
generate the TID with count = 0. The TID Generator monitors the pipeline
of the Leon3 processor to update its count table when an old TID value
old_tid is being overwritten by a new TID value new_tid in the register file.
Specifically, the TID Generator decrements the count of the TID old_tid

and increments the count of the TID new_tid to maintain the count table.
With the count of each TID, it uses Algorithm 1, which is similar to a binary
search, to find the TID with count = 0. In Algorithm 1, the for-loop

Input: count[tid]: the count of the tid in the register file
1 N : the total number of registers
Output: A new TID that does not exist in any register

2 for tid← 0 to N − 1 do
3 iszero[tid]← (bitwise-AND all bits of count[tid]);
4 end
5 cur ← iszero;
6 for i← 0 to (logN − 1) do
7 newtid[i]← (bitwise-AND the first half of cur);
8 if newtid[i] = 0 then // tid w/ count=0 is in 1st half
9 cur ← the first half of cur;

10 else // tid w/ count=0 is in 2nd half
11 cur ← the second half of cur;
12 end
13 end
14 return newtid

Algorithm 1: Generation of a New TID

in lines 2-4 can be done in parallel, and the loop in lines 6-13 has only

64

4 1362 1153 8 149 1270 1 1510
8 294 603 1 23 221 2 37

TID counts in the register file
TID

count

1111111111011111

AND all bits of
a count

1
AND all bits of left and
right part respectively

11011111
0

1
1101

0

1
01

0

The ID with count = 0 is 5
10 10

AND all bits of left and
right part respectively

AND all bits of left and
right part respectively

L1 R1

L2 R2

L3 R3

L4 R4

L4

L3

L2

L1

Figure 5.6: An Example Scenario of the TID Generator when N = 16

dlogNe iterations. Therefore, Algorithm 1 can finish in (dlogNe + 1) levels
of propagations. In our implementation, N is 136 so the algorithm can finish
in 9 levels of propagations, which can fit in one cycle of our implementation.
If faster implementation is required, the for-loop in lines 6-13 can be pipelined
to achieve higher performance. Figure 5.6 shows a working scenario of the
TID Generator with N = 16. In the example, TID 5 is the only one whose
count is 0. For each count of each TID, all bits of the count are ANDed
to compute the iszero array. The goal of the TID Generator is to find the
TID whose iszero entry is 0. After 4 levels of binary search, with each level
deciding one bit of the answer, the TID Generator finally computes 5 as the
TID with count=0.

5.3.2 Data Transmission

In our implementation, the Leon3 processor is connected to the security
engine through a FIFO with configurable size. The size of the FIFO may
affect the detection latency of the memory safety violation, which we discuss
in Chapter 7. Each entry of the FIFO contains the necessary metadata of a
memory event needed by the security engine. Specifically, Figure 5.7 shows
the format of the FIFO entry for each memory event in our implementation.
When an alloc/dealloc/store/load instruction is executed, the runtime

65

PCaddr.tidaddrrs.tidstore 00

PCaddr.tidaddrnewtidload 10

PCboundbasenewtidalloc 01

PCUnusedUnusedrs.tiddealloc 11

Figure 5.7: Format of FIFO Entry for each Memory Event: newtid is the
TID generated by TID Generator. rs.tid is the TID associated with the
source register of the store instruction. addr is the address value of the
load or store instruction. addr.tid is the TID associated with the
address. PC is the address of the instruction.

monitor pushes a new entry to the FIFO. On the other side, the security
engine pops an entry whenever it is ready to check the event. Note that
the execution frequency of the main processor does not need to be the same
as that of the security engine, which makes asynchronous checking more
beneficial. The security engine 1 can typically run faster than the main
processor because the functionality of the security engine is much simpler
than the main processor’s.

5.4 Security Engine

The security engine is responsible for checking the memory safety and main-
taining the consistency of the three tables TID2OID, OID2BaseBound, and
MEM2OID with the program execution state. The security engine is imple-
mented as a state machine in hardware. Each time the state machine pops
out a memory event from the FIFO, the event is processed according to the
rules defined in Table 4.1.

1In our implementation prototype, we do not make the execution frequency of the
security engine different from the main processor’s.

66

Table 5.2: Execution Time of Actions Performed for Each Instruction

Instruction Type Execution Time
load instruction 5 cycles + 2 memory accesses
store instruction 4 cycles + 2 memory accesses
alloc instruction 3 cycles + 1 memory accesses

dealloc instruction 4 cycles + 2 memory accesses

5.4.1 Lookup Tables

Figure 5.8 shows the layout of each table. In the following, we describe the
implementation of these three tables.
TID2OID table. In our implementation, there are 136 registers in the main
processor. Therefore, the TID2OID needs 136 entries, and each entry contains
a 32-bit wide OID. In total, the TID2OID table needs 136× 4 = 544 bytes of
storage space. Since the TID2OID table can fit in the size of a register file, it
is implemented as a register file to speed up the lookup process.
OID2BaseBound table. The number of objects in a program can easily exceed
the limit of a register file. Therefore, the OID2BaseBound table needs to
reside in the dedicated memory of the security engine. The OID, which is
defined to be 32 bits wide in our implementation, can be directly used as the
address of the dedicated memory to locate the (base, bound). Each entry
of the OID2BaseBound table is 8 bytes with 4 bytes each for base and bound,
respectively. We currently employ a naive OID Generator, which uses a
counter starting at the address 0x40000000 as the new OID and increments
the counter by 0x8 each time a new OID is generated. The MSB (Most
Significant Bit) of the bound is used to indicate whether this entry is valid.
MEM2OID table. The MEM2OID table also resides in the dedicated memory
ranging from 0x50000000 to 0x5FFFFFFF, with each entry containing an
OID that is 32 bits wide. In our implementation, when the security engine
uses an address addr to lookup the MEM2OID table, it first replaces the most
significant nibble of addr with 0x5. It then uses the modified address as the
index of the MEM2OID to fetch the OID, so that the index is always within
(0x50000000, 0x5FFFFFFF). For example, if the addr is 0x70095580, this is
translated to 0x50095580 for an index. To avoid collisions between addresses,
one can employ an MMU to translate the addr into the index of the MEM2OID
table. We leave the use of MMU to future work.

67

136

4bits 32bits

135 0x40011010
134 0x40001000

0x40000000

...

0x40000050

OID

...

0
TID

1
......

(a) TID2OID Table

32bits 32bits

0x50000004

0x5FFFFFF0

0x50000000

0x400100F8
...

0xFFFFFFFF

...
...

0x40000008
0x40000018

MEM

...

0x5FFFFFF8

OID

......

(b) MEM2OID Table

32bits 32bits 32bits

0x00xFFFFFFFF0x4FFFFFF8 0
0x4FFFFFF0 0x50010x12345680

....

....

V

1
.

0x200
0x00095580

Base

...
0x40000008
0x40000000

...

BoundOID
0x3c

...
0x001FCFA0

1

(c) OID2BaseBound Table

Figure 5.8: Layout of Lookup Tables

68

5.4.2 State Machine

The actions performed along with each alloc/dealloc/load/store instruc-
tion are implemented by hardware state machines in the security engine.
Some actions require memory access, while others require only register file
access. Figure 5.9 illustrates the state machine for each instruction. Each
white box takes one cycle to finish, while each gray box takes the time of a
memory access to finish. For example, actions performed along with a load

instruction take 5 cycles + 2 memory accesses to finish. Table 5.2 summarizes
the execution time of actions performed for each instruction.

69

IDLE

1. Read FIFO
2. Req TID2OID[addr.tid]

1. Read TID2OID[addr.tid]
2. Req OID2BaseBound[addr_oid]

1. Check base bound when applicable
2. Req TID2OID[rs.tid]

1. Read TID2OID[rs.tid]
2. Req write MEM2OID[addr]

 Read OID2BaseBound[addr_oid]

Invalid
addr.tid

Invalid
addr_oid

 Finish write MEM2OID[addr]

(a) load instruction

IDLE

1. Read FIFO
2. Req TID2OID[addr.tid]

1. Read TID2OID[addr.tid]
2. Req OID2BaseBound[addr_oid]

1. Check base bound validity
2. Req MEM2OID[addr]

1. Read MEM2OID[addr]
2. Write TID2OID[rd.tid]

 Read OID2BaseBound[addr_oid]

Invalid
addr.tid

Invalid
addr_oid

(b) store instruction

IDLE

1. Read FIFO
2. Req write TID2OID[tid]

 Req write OID2BaseBound[oid]

 Finish write OID2BaseBound[oid]

(c) alloc instruction

IDLE

1. Read FIFO
2. Req TID2OID[reg.tid]

1. Read TID2OID[reg.tid]
2. Req OID2BaseBound[reg_oid]

1. Raise exception if
 OID2BaseBound[reg_oid] == INVALID
2. Req write OID2BaseBound[reg_oid]

 OID2BaseBound[reg_oid] = INVALID

 Read OID2BaseBound[reg_oid]

(d) dealloc instruction

Figure 5.9: State Machines in the Security Engine

70

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we experimentally assess the detection coverage of AHEMS
and evaluate the runtime performance overhead, hardware resource overhead,
power consumption, and critical path on our implementation prototype. In
addition, results are compared with prior approaches to show that AHEMS
achieves high attack coverage and low performance overhead.

6.1 Experimental Setup

To evaluate the effectiveness and efficiency of AHEMS, we have implemented
a prototype of the co-processor-version AHEMS (see Section 5.1.2) on top
of the open-source Leon 3 processor [143], which is a synthesizable VHDL
design. The prototype is synthesized and run on the FPGA board Xilinx
Virtex-5 FXT ML510 [145] with 80 MHz CPU frequency and two DIMMs
of 512 MB DDR2 Memory (one as the main memory for the main processor
and the other as the metadata memory used by the security engine). Table
6.1 summarizes the details of the experimental setup. For source code in-
strumentation, the CIL compiler is used to instrument the source code with
alloc() and dealloc() functions so that each memory event is tracked. At
this stage of research, our instrumentation has a few limitations: (1) it does
not instrument global or static variables, and (2) it does not support the
detection of sub-object overflows. However, these are not the limitations of a
full-fledged AHEMS (recall the descriptions in Chapter 4 for how we handle
global/static variables and sub-objects). Our implementation prototype only
works as a demonstration of the efficacy and efficiency of AHEMS.

71

Table 6.1: AHEMS on Xilinx Virtex-5 ML510 Platform

FPGA Platform
Model Name Xilinx Virtex-5 ML510
FPGA XC5VFX130T-2FFG1738CES
Memory Two 72-bit 512MB DDR2 RAM

(one for the main processor and the
other for the metadata memory)

Ethernet Two on-board 10/100/1000 Ethernet
PHYs (MII/RGMII and SGMII)

AHEMS System in FPGA
GRLIB Version 1.1.0 - B4113
ISA Architecture SPARC V8
CPU Leon3 7-stage in-order processor
ALU One Hardware Multiplier & Divider,

No FPU
CPU Frequency 80 MHz
Memory Frequency 160 MHz
AHEMS FIFO Size 16 bytes × 1024 entries
Register File 136 32-bit registers, 8 windows
L1 Data Cache 16KB, 4-way associativity, 16-byte line
L1 Instruction Cache 32KB, 4-way associativity, 32-byte line
Instruction TLB 8 entries, fully-associative
Data TLB 8 entries, full-associative
Operating System Snapgear Linux 2.6.21.1
Compiler sparc-linux-gcc 3.4.4
Synthesis Tool Xilinx ISE 13.4

72

6.2 Detection Coverage

AHEMS ensures both spatial and temporal memory safety, which prevents
most memory corruption attacks. Specifically, AHEMS not only detects
control-data attacks, non-control-data attacks, and code reuse attacks by
checking the address of each store instruction, but also detects information
leakage attacks by checking the address of each load instruction. To evaluate
the detection coverage of our AHEMS prototype, we employ the Juliet Test
Suite Version 1.2 [146] provided by NIST (National Institute of Standards
and Technology). The Test Suite contains a total of 61,387 test cases from
118 different CWEs (Common Weakness Enumerations) for C/C++. Since
(1) not all of the test cases are related to memory corruption attacks, (2)
there are many similar test cases, and (3) the testing cannot be automated
(AHEMS prototype stalls the main processor when a violation is detected),
we assess the AHEMS prototype by running only representative test cases
from each of the CWEs that lead to memory corruption attacks. We select
only those test cases different enough from one another as our representative
test cases. Note that those test cases that are written in C++ or that use
ALLOCA() to initialize local variables are not included because our prototype
does not support C++ and the instrumentation of ALLOCA() function. Ta-
ble 6.2 summarizes the test cases we run on AHEMS. In Table 6.2, the first
8 CWEs are caused by spatial memory errors, while the last 3 CWEs are
caused by temporal memory errors. These 10 CWEs cover most of the sit-
uations that lead to memory corruption attacks. In particular, these CWEs
assess defenses against stack-based overflow attacks, heap-based overflow at-
tacks, integer overflow attacks, use-after-free attacks, double-free attacks and
dangling-pointer attacks. We have tested a total of 677 test cases with only
one case undetected. The undetected test case overflows a sub-object in
a structure to overwrite the pointer in the next field of the structure (see
Chapter 7 for more details). Although the detection of sub-object overflow
is currently not supported by our AHEMS prototype, it is not a limitation
of AHEMS.

Compared with other approaches, AHEMS has better coverage on the
CWE562 Return of Stack Variable Address, which is a temporal memory
error also known as the dangling-pointer vulnerability. Our AHEMS pro-
totype can catch the temporal violations caused by the two cases in the

73

1 static char *helperBad() {
2 char charString[] = "helperBad string";
3 /* FLAW: returning stack-allocated buffer */
4 return charString;
5 }
6
7 void CWE562_bad() {
8 // printLine() takes a string pointer as input and
9 // prints out the string

10 printLine(helperBad());
11 }

Figure 6.1: A Test Case in CWE562: Return of Stack Variable Address

Juliet Test Suite, whereas other state-of-the-art memory safety tools, in-
cluding SoftBound+CETS (revision 183880) [89, 90], SAFECode (revision
183880) [81, 82], AddressSanitizer (in clang v3.2 release) [84], mudflap (in
GCC 4.4.7) [79], and memcheck (in valgrind v3.7) [147], are unable to de-
tect the two cases of CWE 562. Figure 6.1 shows a snippet of one of the
CWE562 test cases. In Figure 6.1, using the stack buffer charString as the
parameter of printLine()1 after helperBad() returns is a temporal memory
error because the memory allocated for charString is not preserved once the
program is outside the scope of helperBad(). However, SoftBound+CETS,
mudflap, AddressSanitizer and memcheck miss the error and print out a
garbage string in line 10 of Figure 6.1. SAFECode also does not raise an
exception to this error, although the program prints out the correct string in
line 10. One guess we make about this behavior is that the buffer happens to
not be overwritten by subsequent uses of the stack. Unlike all of the above
approaches, AHEMS successfully detects both of the CWE562 test cases.

6.3 Runtime Performance Overhead

In this section, we evaluate our prototype on the Olden benchmarks [148] and
compare the runtime overhead of our approach with other related approaches.

1printLine() function accesses the memory pointed by charString inside its function
body.

74

Table 6.2: CWEs from Juliet Test Suite Tested on AHEMS

Spatial Memory Errors
CWE No. Description Tested Detected
CWE121 Stack-based Buffer Overflow 209 208
CWE122 Heap-based Buffer Overflow 18 18
CWE124 Buffer Underwrite 102 102
CWE126 Buffer Overread 145 145
CWE127 Buffer Underread 33 33
CWE588 Attempt to Access Child of Non-

structure Pointer
34 34

CWE680 Integer Overflow to Buffer Overflow 38 38
CWE761 Free Pointer Not at Start of Buffer 38 38

Subtotal 617 616
Temporal Memory Errors

CWE No. Description Tested Passed
CWE415 Double-free 38 38
CWE416 Use-after-free 20 20
CWE562 Return of Stack Variable Address 2 2

Subtotal 60 60
Total 677 676

6.3.1 Runtime Overhead on Olden Benchmark

We measure the runtime performance overhead of our AHEMS prototype
on Olden benchmarks [148], since the benchmarks contain pointer-intensive
programs with an average of 711 LOCs (Lines of Code) and many prior
researchers [81–83, 87, 91, 93] have adopted Olden benchmarks for their per-
formance evaluation; this enables the comparison of our approach with prior
researches. Since the Olden benchmarks available on the author’s website
is outdated and thus cannot be directly compiled, we use the SGI version
of Olden benchmarks available in the test-suite of the LLVM compiler [149].
There are ten programs in the Olden benchmarks. We are able to instrument
those ten programs without any modification to the source code, whereas
some approaches still require a significant amount of manual modification
for their approaches to work, such as CCured [75] and SafeProc [97]. Figure
6.2 shows the compiler options we use to compile all benchmark programs for
AHEMS. cilly is the CIL compiler. --gcc=sparc-linux-gcc tells the CIL
compiler to use sparc-linux-gcc as the underlying compiler. --merge tells
it to merge all files before transformation. --doAHEMS tells it to instrument

75

1 cilly --gcc=sparc-linux-gcc \
2 --merge \
3 --doAHEMS \
4 -O3 -static \
5 -msoft-float -mv8 \
6 -Wl,--wrap,malloc \
7 -Wl,--wrap,free \
8 -Wl,--wrap,calloc \
9 -Wl,--wrap,realloc \

10 code1.c code2.c ... -o executable

Figure 6.2: Compiler Options Used to Compile Programs for AHEMS

the programs with alloc() and dealloc() functions. -O3 tells the GCC
compiler to optimize the code. -static tells it to statically link the library.
-msoft-float tells it to perform floating points computation without hard-
ware FPU. -mv8 tells it that the ISA is SPARC V8. -Wl,--wrap,malloc

tells it to replace the original malloc() function with our instrumented
malloc() functions and so on for -Wl,--wrap,free, -Wl,--wrap,calloc
and -Wl,--wrap,realloc. We are able to run all ten programs without any
false alarm. Figure 6.3 shows the runtime overhead of our AHEMS prototype
on Olden benchmarks. It achieves an average of 10.6% runtime overhead with
the maximum overhead being 38.4%.
The benefit of AHEMS is that it can overlap the time spent on memory

safety checking with non-memory-access execution time. Because AHEMS
is asynchronous to the execution of the main processor, the security engine
can have more time to perform checking if the main processor does not send
jobs to the security engine (i.e., the main processor is running non-memory
operations). For most of the programs in Olden, the security engine overlaps
memory safety checking with main processor execution time very well, so the
runtime overhead is low. However, for programs that are memory-intensive
such as bisort, which spends more than 50% of execution time running
Bimerge() function (a function with high density of memory operations),
the security engine may not have enough time to perform memory safety
checking. This is because memory safety checking for loads and stores needs
two memory accesses while a load/store instruction only needs one. This
causes the main processor to be stalled to wait for the security engine because

76

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

bh bisort em3d health mst perimeter power treeadd tsp voronoi AVG

Runtime Overhead of AHEMS on Olden Benchmark

0.2%

38.4%

10.5%

17.0%

4.3%

22.2%

0.0%

8.6%

0.0%

4.6%

10.6%

Figure 6.3: Runtime Overhead of AHEMS on Olden Benchmark

Table 6.3: Comparison of Runtime Overhead with Other Approaches

Programs Parameters AHEMS Mudflap Softbound SAFECode Address-
+CETS Sanitizer

bh 2000 5 0.2% 13655.2% – – 41.9%(false alarm) (compile error) (runtime error)
bisort 2000000 38.4% 3114.0% 341.1% 154.3% 74.7%
em3d 256 250 35 1 10.5% 705.0% 473.0% 192.1% 89.5%
health 9 20 1 17.0% 13343.9% 737.8% 943.2% 361.5%
mst 5000 4.3% 1169.2% 395.1% 644.1% 92.2%
perimeter 11 22.2% 32317.8% 443.1% 212.7% 142.8%
power None 0.0% 263.9% 1.2% 1.0% 2.7%
treeadd 22 8.6% 106008.1% 448.1% 518.8% 398.7%
tsp 102400 0.0% 1404.9% 206.9% 57.5% 76.8%

voronoi 10000 20 4.6% 2224.2% – – 156.5%32 7 (false alarm) (runtime error)
Average 10.6% 17420.6% 380.8% 340.5% 143.7%

the consumption rate of memory events by the security engine is lower than
the production rate of memory events by the main processor. Note that the
fact that AHEMS allows the program to continue execution before memory
safety checks are done may result in detection latency. The implication of
detection latency is discussed in the next chapter.

6.3.2 Performance Comparison

To compare AHEMS with state-of-the-art memory safety approaches, we
run the following four approaches on Olden benchmarks: Mudflap, Soft-
bound+CETS, SAFECode, and AddressSanitizer. Mudflap, SAFECode, and
AddressSanitizer are object-based approaches, while Softbound+CETS is a

77

pointer-based. We choose these four approaches because: (1) they are pub-
licly available, (2) they have levels of memory safety enforcement similar
to AHEMS, and (3) they cover two major categories of memory safety ap-
proaches. Since these approaches are software approaches, all runs are per-
formed on a Linux machine with details shown in Table 6.4. Table 6.4 also
shows the approach version, compiler version, and compile options used.
In Table 6.3, the runtime overhead of our AHEMS prototype is compared
with these four approaches. It can be seen that the runtime overhead of
AHEMS is an order of magnitude lower than that of any of the other ap-
proaches. AHEMS has an average of only 10.6% overhead, while Mudflap,
Softbound+CETS, SAFECode and AddressSanitizer have 17420.6%, 380.8%,
340.5%, and 143.7% overheads, respectively. Note that all approaches are run
on Olden benchmarks with the same parameters to enable fair comparison.
However, the overhead may not be consistent with the overhead reported by
the authors of the approaches because: (1) the parameters used may be dif-
ferent, (2) the authors may employ other unreported optimizations, (3) the
approaches have been updated since they were published, and (4) the host
machine is different.

In comparison with other software approaches with the same level of mem-
ory safety enforcement, AHEMS has the lowest runtime overhead on Olden
benchmarks. For object-based approaches, J&K [78] has average 5–6x slow-
down, while CRED [80] has 11–12x slowdown. For pointer-based approaches,
CCured [75] has an average 28% overhead, Patil and Fischer [75] has an av-
erage of 538%, MSCC [87] incurs an average of 99% overhead, and MemSafe
[91, 92] incurs 29%. Although some software approaches such as WIT [46],
BBC [83], and PAriCheck [85] average only 4%, 6%, and 4.5% overheads,
respectively, all of them trade off the completeness of memory safety for per-
formance. For example, BBC and PAriCheck do not detect dangling pointers
that point to reallocated memory (one kind of temporal memory error), and
WIT does not prevent any spatial or temporal memory error that occurs on
load instructions. In contrast, AHEMS protects against both spatial and
temporal memory errors on all memory accesses.

For hardware approach, Arora et al. [150] have 10% and 100% overhead
on em3d and health, respectively, higher than the respective overheads of
AHEMS. SafeProc [97] achieves an average of 9% overhead, which is slightly
lower than AHEMS. However, it requires non-trivial source code modifica-

78

tion, which may impede its deployment. Although HardBound [93] has an
average of 9% overhead when using a 4-bit external pointer encoding scheme
and 7% when using a 4-bit internal pointer encoding scheme, it only enforces
spatial memory safety. Watchdog [94] extends HardBound to further ensure
temporal memory safety, but the authors of Watchdog do not report run-
time overhead on Olden benchmarks. Their average runtime overhead on 20
SPEC benchmarks is 24%. Clause et al. [95, 96] do not report overhead on
Olden benchmarks. Their runtime overhead on SPEC benchmarks ranges
from 5% to 21% depending on the number of used taint marks. Increas-
ing the taint marks increases the overhead. However, Clause et al. suffer
from false positives and false negatives if the number of taint marks is too
small. Chuang et al. [98] have an average of 21.2% overhead on SPEC bench-
mark. Despite the fact that SafeMem [99] has an average of 6.3% overhead
on non-standard benchmarks and MemTracker [100,101] has 2.7% on SPEC
benchmarks, their protections on memory safety are much less comprehen-
sive than AHEMS. For example, SafeMem does not detect attacks that allow
arbitrary memory writes, while MemTracker fails to detect buffer overflow
that overwrites decision-making variables in the stack to launch non-control
data attacks.

In summary, AHEMS has very low performance overhead compared with
other software and hardware approaches of the same level of memory safety
enforcement. For those that have overhead slightly lower than AHEMS, they
either have incomplete protection on memory safety or have false positives
and false negatives compared to AHEMS.

6.4 Memory Overhead

Our AHEMS prototype uses one dedicated DIMM of memory to store base
and bounds metadata. Therefore, our prototype has a fixed amount of mem-
ory overhead over all programs. In our case, the memory overhead is 512MB.
The benefit of a dedicated memory is that it provides higher memory band-
width and physical isolation for the metadata. If one DIMM of memory is
too much overhead, the system designer can also arrange for AHEMS to store
metadata in the same memory as the main processor, with the tradeoff in
terms of memory bandwidth and metadata protection.

79

Table 6.4: Experimental Environment for the Four Approaches

Host Machine
CPU Intel Core i5-3470 CPU @ 3.40GHz x 4
Memory 2 x 4 GB DDR3 1600MHz RAM
OS Ubuntu 12.04 LTS

Mudflap
Version Mudflap module in GCC 4.4.7
Compiler GCC 4.4.7
Compile Options -g -O3 -fmudflap -lmudflap

Softbound+CETS
Softbound+CETS Version safecode revision 183880
Compiler clang v3.2 release (r183906)
Compile Options -g -O3 -fsoftbound

SAFECode
SAFECode Version safecode revision 183880
Compiler clang v3.2 release (r183906)
Compile Options -g -O3 -flto -use-gold-plugin -fmemsafety

AddressSanitizer
AddressSanitizer Version clang v3.2 release (r183906)
Compiler clang v3.2 release (r183906)
Compile Options -g -O3 -fsanitize=address

80

6.5 Critical Path

The critical path of a processor is crucial in determining the maximum fre-
quency of the processor. In other words, the critical path affects the runtime
performance overhead. However, prior work on hardware approaches seldom
estimates the impact of the approach on the critical path of the main pro-
cessor. The reason is that most of the previous studies use simulator that
does not model the critical path. In contrast, we implement AHEMS on
FPGA in RTL level so that the impact on the critical path can be estimated.
The Leon3 Processor running on Xilinx Virtex-5 ML510 has a default execu-
tion frequency of 80 MHz. Although our AHEMS implementation prototype
adds the security engine and the runtime monitor to the Leon3 System, the
modified Leon3 System is still able to work with the same frequency of 80
MHz without breaking any timing constraints. Specifically, we synthesize
the Leon3 System with and without AHEMS to compare their post-place-
and-route static timing using the Xilinx ISE tool. The delay of the critical
path with and without AHEMS is 12.470 ns (equivalently, 80.192 MHz) and
12.463 ns (equivalently, 80.238 MHz), respectively. This shows that AHEMS
poses negligible impact on the critical path of the Leon3 System (only 0.06%
increase) and thus does not affect the performance of the main processor.

6.6 Hardware Resource Overhead

We estimate the hardware resource overhead of our AHEMS implementa-
tion prototype by comparing the FPGA hardware utilizations of the Leon3
System synthesized with and without AHEMS enhancement. Table 6.5 lists
the hardware overhead on each type of FPGA resource. The definition of
Slice in Virtex-5 FPGA is a collection of 4 flip-flops, 4 6-input LUTs, wide-
function multiplexers, and carry logic. Therefore, the increased number of
Slice Registers, Slice LUTs, and LUT Flip Flop pairs, which are 20%, 25.1%,
and 19.3%, respectively, represent the additional logic used to implement
the security engine, the runtime monitor, and the metadata propagation in
the pipeline. In addition, the number of occupied Slices, which increases by
13.8%, represents the additional Slices needed by AHEMS. However, these
Slices are not necessarily fully utilized (i.e., Some flip-flops and LUTs in a

81

Table 6.5: Device Utilization of AHEMS on Xilinx Virtex-5 ML510

Name Leon3 Leon3 Overheadw/o AHEMS w/ AHEMS
Number of Slice Registers 13323 15988 20.0%
Number of Slice LUTs 22443 28079 25.1%
Number of Route-thrus 450 625 38.9%
Number of Occupied Slices 10730 12211 13.8%
Number of LUT Flip Flop pairs Used 27892 33279 19.3%
Number of Bounded IOBs 440 440 0.0%
Number of BlockRAM/FIFO 33 40 21.2%
Total Memory Used 1062 KB 1278 KB 20.3%
Number of BUFG/BUFGCTRLs 21 21 0.0%
Number of IDELAYCTRLs 6 6 0.0%
Number of BSCANs 2 2 0.0%
Number of DCM_ADVs 7 7 0.0%
Number of DSP48Es 4 4 0.0%
Average Fanout of Non-clock Nets 4.38 4.6 3.0%

Slice are unused). Finally, the increased number of BlockRAM/FIFO and
total memory used, which are 21.2% and 20.3%, respectively, are due to
the use of FIFO, TID2OID table, and widened register file in the AHEMS
prototype. Since the Leon3 System is a relatively simple architecture, the
hardware resource overhead may seem high. However, the absolute hardware
usage of AHEMS is small compared to commercial processors such as Intel
processors. Note that this is a rough estimation, since the synthesis result
for FPGA may be different from the synthesis result for ASIC design. To get
more accurate results, we can port our AHEMS design from Xilinx ML-510
to the ASIC version of the Leon3 System and synthesize it with an ASIC de-
sign compiler, such as Synopsis Design Compiler [151], to get more accurate
hardware resource usage data, such as gate counts. We leave this to future
work.

6.7 Power Consumption

To estimate the power consumption overhead of our AHEMS prototype, we
synthesize the Leon3 System with and without AHEMS enhancement and
analyze the designs with the Xilinx XPower Analyzer. Table 6.6 summarizes
the power consumption for each component of the synthesized design. From
the table, we can see that AHEMS has 94.3% and 22.3% overhead on signals

82

Table 6.6: On-Chip Power Consumption Overhead of AHEMS

On-Chip Leon3 w/o AHEMS Leon3 w/ AHEMS Overhead
Clocks 421.33 mW 447.11 mW 6.1%
Logic 12.36 mW 15.11 mW 22.3%
Signals 15.32 mW 29.77 mW 94.3%
IOs 6188.84 mW 6187.63 mW 0.0%
BRAMs 48.60 mW 51.58 mW 6.1%
DCMs 523.73 mW 523.73 mW 0.0%
DSPs 0.00 mW 0.01 mW 0.0%
Quiescent 2630.21 mW 2632.40 mW 0.1%
Total 9839.99 mW 9887.34 mW 0.5%

and logic, respectively. The overhead from signals is mostly due to the use of
flip-flops in the TID generator to keep the counts of each TID in the register
file (see Section 5.3.1). In spite of the high overhead of AHEMS on signals
and logic, the total power consumption overhead is only 0.5%, as signals and
logic take up a very small portion of the total power consumption. Instead,
IOs dominate power consumption. Therefore, the impact of signals and logic
is negligible. This measurement shows that AHEMS incurs very little power
consumption overhead, which enables AHEMS to be deployed on mobile
devices, such as smartphones, to prevent malicious attacks.

83

CHAPTER 7

QUALITATIVE ANALYSIS

In this chapter, different properties of AHEMS are analyzed to show its
strengths and limitations.

7.1 Strengths

In this section, we discuss the following properties of AHEMS to show its
strengths: (1) completeness of memory safety, (2) source compatibility, (3)
binary compatibility, (4) modularity support, (5) scalability, (6) physical
metadata isolation, and (7) FPGA implementation.

7.1.1 Completeness of Memory Safety

AHEMS is a hardware approach that adopts an idea of source code instru-
mentation similar to that of SoftBound + CETS [89, 90] (see Chapter 8 for
more details), which is a state-of-the-art solution and proven to enforce com-
plete memory safety under some assumptions (e.g., the integer-to-pointer
casts are all annotated by programmers). Due to the similarity, AHEMS
can detect all spatial and temporal memory errors covered by SoftBound
+ CETS. In addition, AHEMS handles metadata propagation better than
SoftBound + CETS so that fewer false positives are generated. In particular,
AHEMS can handle the case of dereferencing a pointer even if the pointer is
copied by memcpy()-like operations, (i.e., byte-by-byte instead of all at once).
SoftBound + CETS loses track of the pointer’s metadata in that case due to
the byte-by-byte operations and generates false alarms. Figure 7.1 shows an
example program that causes SoftBound + CETS to raise false alarms, while
AHEMS handles the program correctly. The program in Figure 7.1 copies
the pointer b to the pointer a in line 12 using memcpy-like function called

84

1 void my_memcpy(char *to, char *from, size_t size) {
2 int i;
3 for (i = 0; i < size; i++) {
4 to[i] = from[i];
5 }
6 }
7 main() {
8 int ary[100] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
9 int input;

10 int i, *a, *b;
11 b = ary;
12 my_memcpy(&a, &b, sizeof(b)); // equivalent to a = b
13 printf("%d\n", a[9]); // SoftBound+CETS raises false alarms
14 }

Figure 7.1: An Example Code That Causes SoftBound+CETS to Raise
False Alarms

my_memcpy. Because SoftBound + CETS does not know how to propagate
the metadata when the pointer is copied byte by byte, the metadata in b

is not properly propagated to a. Therefore, SoftBound + CETS will raise
a false alarm in line 13, which is in fact a legal access. On the other hand,
AHEMS always propagates the metadata that belongs to the pointer, even
if one byte of the pointer is loaded from or stored into the memory. This
allows AHEMS to propagate the metadata properly.

Finally, AHEMS achieves an order of magnitude lower runtime overhead
than SoftBound + CETS by employing hardware to perform metadata prop-
agation on pointer arithmetics and to perform runtime checking on pointer
dereferences. AHEMS also enables the runtime checking to be performed
asynchronously to the execution of the main program, which greatly reduces
the runtime overhead. To sum up, AHEMS has the same level of memory
safety enforcement (spatial and temporal memory) as SoftBound + CETS,
but AHEMS has fewer false positives and better performance.

7.1.2 Source Compatibility

An approach is source compatible if: (1) the approach does not break the
assumptions made by programmers for an existing program and (2) it does

85

1 // Let’s assume a 32-bit architecture
2 struct S1 {
3 size_t v1; // offset 0
4 void * v2; // offset 4
5 size_t v3; // offset 8
6 };
7 struct S2 {
8 size_t v1; // offset 0
9 size_t v2; // offset 4

10 size_t v3; // offset 8
11 };
12
13 void func(struct S1 *s1) { // A precompiled function
14 struct S2 *s2 = (struct S2 *) s1;
15 ... = s1->v3;
16 s2->v3 = 5678;
17 // the offset of v3 in S1 and the offset of v3 in S2
18 // are different in fat-pointer approaches
19 }

Figure 7.2: An Example Code That is Source and Binary Incompatible If
Fat-Pointers Approaches are Used

not require manual modifications or annotations to the source code.
Some approaches, such as fat-pointer technique [74–76] (see Chapter 8)

change the memory layout of a program in a programmer-visible way, which
may violate an assumption made by a programmer and in turn break the
execution of the program. Figure 7.2 shows an example program that is
not source compatible if fat-pointer approaches are used. In Figure 7.2,
the memory layout of struct S1 and struct S2 are assumed to be the
same by the programmer of the func() function. Therefore, the programmer
performs a cast in line 14 to typecast struct S1 to struct S2 and then
accesses the value of v3 in line 16, hoping to modify the value of v3 in
S1. However, if fat-pointer approaches are applied to func(), the memory
layout of S1 will be changed into the structure shown in Figure 7.3. Let’s
assume the program is compiled for a 32-bit architecture. The offset of
v3 in S1 is 8 without the use of fat pointers, while the offset of v3 is 16
when fat-pointer approaches are used, since the pointer v2 takes up 12 bytes.
Hence, the assignment in line 16 of Figure 7.2 corrupts the metadata of

86

1 struct FAT_PTR {
2 void *ptr;
3 void *base;
4 size_t bound;
5 };
6 struct S1 { // memory layout is changed
7 size_t v1; // offset 0
8 FAT_PTR v2; // offset 4
9 size_t v3; // offset 16

10 };
11 struct S2 { // nothing changed
12 size_t v1; // offset 0
13 size_t v2; // offset 4
14 size_t v3; // offset 8
15 };

Figure 7.3: The Structure of S1 and S2 under Fat-pointer Approaches

v2 instead of modifying the correct value of v3. This corruption is caused
by the first requirement of source compatibility mentioned above. AHEMS
maintains the metadata in its dedicated memory, isolated from user data, so
that it does not change any memory layout or break any assumption made
by programmers. Also, the source code instrumentation of AHEMS is fully
automated. AHEMS uses the CIL compiler to instrument global, static,
and local variables to keep track of the allocation and deallocation of those
variables. The tracking of heap variables is handled by instrumenting the
malloc()-family and free() functions, which does not need to change from
program to program. Therefore, AHEMS is fully source compatible.

7.1.3 Binary Compatibility

Binary compatibility (or backwards compatibility) requires that (1) the pro-
tected code can interoperate with unprotected binaries (e.g., a third-party
or precompiled library whose source code is unavailable for instrumentation)
and (2) no false positive is generated, and partial memory safety can still be
enforced on unprotected code.
Some approaches, such as fat-pointer techniques, may also make a program

fail to interoperate with precompiled binaries. Let’s use the same example as

87

1 int* libf(int *ptr) {
2 int k, *rp;
3 ... = *(ptr + 100);
4 ...
5 rp = ptr + k;
6 return rp;
7 }

Figure 7.4: An Example Program That May Cause Outdated Metadata

in Figure 7.2 and assume func() is a library function in a precompiled binary
that is oblivious to fat-pointer approaches. If a user function protected by
fat-pointer approaches calls the unprotected func() and passes a pointer
that points to an instance of S1 to func() as the argument, func() will end
up getting the wrong value of v3 in line 15. This is because the offset of v3
in S1 known by the func() is 8, while the offset of v3 in S1 used by the user
function is 16.
Other approaches [46,82,91,92,152] that change the interfaces of functions

(e.g., the number of arguments) may also have problems interoperating with
the precompiled binaries. This is because a function f() may be pointed to
by a function pointer *fp that is used by a function g() in a precompiled
binary. In this case, if the interface of f() is changed, g() is unable to
correctly pass the arguments to f() when using *fp to call f(). AHEMS
does not change any memory layout or the interface of any function, so it
can interface with third-party libraries in precompiled binaries without any
problem or manual change.
Furthermore, most of the software-only approaches fail to maintain their

metadata during the execution of unprotected code. Thus the metadata be-
come outdated after the execution, which can cause false positives and false
negatives. Figure 7.4 shows an example program that may cause software-
only approaches to lose track of metadata. Let’s assume libf() in Fig-
ure 7.4 is an unprotected function in a precompiled binary. Software-only
approaches cannot propagate the metadata for the pointer arithmetics per-
formed in line 5 of Figure 7.4. Therefore, these approaches must either
treat the returned pointer rp of libf() as an unbounded pointer to remove
false positives (pointer-based approaches, see Chapter 8) or risk rp going

88

out of bounds (object-based approaches). Either case weakens the security
guarantee enforced by these approaches. Furthermore, most of software-
only approaches cannot perform bounds checking within unprotected code.
Therefore, if an out-of-bounds access occurs in line 3 of Figure 7.4, these
approaches do not detect the violation. On the other hand, hardware ap-
proaches such as AHEMS can still propagate the metadata associated with
the input parameter ptr, even in the unprotected code, so that the returned
pointer is still associated with the correct metadata and a memory safety
violation happening in line 3 of Figure can be caught. 7.4.

In summary, AHEMS has better binary compatibility than any other ap-
proach except for dynamic instrumentation, which is extremely slow and
inapplicable to real-world programs. The binary compatibility of AHEMS
enables its incremental deployment on existing systems.

7.1.4 Modularity Support

An approach is said to have modularity support if it can handle independent
modules separately. Modularity support allows users to process each file in-
dividually and combine them later to save compilation time. For example, if
a user changes only a couple of files in the code base, he or she only needs
to compile the modified files into intermediate results and then link the new
intermediate results and existing ones to get the working executable. Modu-
larity support is important for an approach to be widely adopted because it
saves developers’ time.

AHEMS has modularity support. It utilizes the CIL compiler to instru-
ment each source file separately and then uses the GCC compiler to compile
the instrumented source files, which produces the final executable.

7.1.5 Scalability

In this thesis, scalability is defined as the size of the source code an approach
can efficiently and effectively process. Some approaches such as SAFE-
Code [81, 82] and MemSafe [91, 92] perform whole-program analysis, such
as inter-procedural pointer analysis, to reduce runtime overhead. However,
they suffer from scalability issues, since whole-program analysis is an expen-

89

sive operation and may also hurt the support for modularity. The source
code instrumentation of AHEMS does not require whole-program analysis.
AHEMS only needs to instrument the allocation and deallocation of all au-
tomatic variables, which is mostly an intra-procedural transformation except
for global and static variables. Although the instrumentation of global and
static variables is a global transformation, the transformation is still very
efficient.

7.1.6 Physical Metadata Isolation

The integrity of metadata is a problem that is ignored by many approaches.
For example, the inline metadata of fat-pointer approaches may be corrupted
due to arbitrary type casts, as discussed in Section 7.1.2. Ignoring the
integrity of metadata makes a protection scheme lose comprehensive pro-
tection. To protect metadata, existing approaches either (1) disallow the
use of arbitrary type casts, (2) introduce extra data structures, or (3) put
the metadata in the shadow memory. The first method makes an approach
source-incompatible, while the second method may incur significant runtime
overhead. The third method works only if the shadow memory is perfectly
protected (i.e., there is no illegal way to modify the metadata). However,
complete memory safety does not guarantee there is no vulnerability in the
program or the system. For example, memory safety does not forbid an at-
tacker from allocating an object of one type and using it as another type,
which may allow the attacker to manipulate the metadata. To address the
metadata integrity problem, AHEMS imposes a physical isolation on the
metadata. The metadata of each pointer are stored on a dedicated memory
managed by the security engine. The dedicated memory is invisible and in-
accessible to the main processor, which strongly guarantees the integrity of
the metadata.

7.1.7 FPGA Implementation

Some prior hardware approaches [93, 94, 153] use instruction-accurate sim-
ulators, such as Simics [142], to conduct their experiments. Some other
hardware approaches [95–97,100] use cycle-accurate simulators, such as Sim-

90

pleScalar [154] or SESC simulator [155], to perform more accurate perfor-
mance evaluations. However, the use of such simulators is unable to evaluate
the impact of the proposed hardware on critical paths, hardware resource
overhead, and power consumption, which are also crucial to the feasibility
and the deployment of the proposed hardware. In contrast, we build an
FPGA implementation prototype of AHEMS on real hardware, which shows
the practicality of our design and our ability to measure more metrics on the
performance and resource overhead of the hardware.

7.2 Limitations

In this section, we discuss the following limitations of AHEMS and the po-
tential solutions to them: (1) detection latency, (2) memory overhead, (3)
type unsafety, and (4) mixture of multiple pointers.

7.2.1 Detection Latency

The downside of an asynchronous approach is that memory violation detec-
tion may be delayed. The larger the FIFO is, the better the performance
of AHEMS is, since AHEMS can overlap more of its processing time with
the execution time of the main processor. To analyze the detection latency
of AHEMS, we can estimate the detection latencies of AHEMS both when
the FIFO is empty (minimum detection latency) and when the FIFO is full
(maximum detection latency). Given a processor with AHEMS enabled, let
FIFOSize be the number of entries in the FIFO, IPC be the average number
of instructions per cycle, MemLatency be the average number of cycles for
a memory access (taking into account the effect of caches), and DetectT ime
be the average number of cycles it takes for the security engine to process an
FIFO entry. Since load and store instructions take up most of the FIFO
entries (the other two instructions, alloc and dealloc, are much less fre-
quent), we use the average time of processing load and store instructions
to approximate DetectT ime (see Table 5.2 for the processing time of each

91

FIFO entry). Therefore, we have

DetectT ime = ((5 + 2×MemLatency) + (4 + 2×MemLatency))/2

= 4.5 + 2×MemLatency (7.1)

When the FIFO is empty and an entry E is being pushed into the FIFO, the
entry E is processed immediately and so the detection latency for the entry
E in terms of number of instructions is

DetectLatencyempty =
DetectT ime

IPC

=
(4.5 + 2×MemLatency)

IPC
(7.2)

On the other hand, when the FIFO is full and an entry E is being pushed
into the FIFO, the detection latency for the entry E in terms of number of
instructions is

DetectLatencyfull =
DetectT ime× FIFOSize

IPC

=
(4.5 + 2×MemLatency)× FIFOSize

IPC
(7.3)

The MemLatency for a processor with L1 and L2 caches can be calculated
as follows:

MemLatency = L1 Cache Hit Time

+ L1 Cache Miss Rate× L2 Cache Hit Time (7.4)

+ L1 Cache Miss Rate× L2 Cache Miss Rate× L2 Cache Miss Time

To give a real-world example, we calculate the detection latency of AHEMS
on the Intel Core 2 Duo E6400 processor with system specifications [156–158]
listed in Table 7.1. By plugging values into Table 7.1, we get

MemLatency = 5.715 (cycles) (7.5)

DetectLatencyempty = 16.42 (instructions) (7.6)

DetectLatencyfull = 16816.82 (instructions) (7.7)

An attacker can only exploit the time windows caused by the detection

92

Table 7.1: System Specifications of an Intel Core 2 Duo Processor Running
on the SPEC2006 Benchmark

Attribute Value
CPU Intel Core 2 Duo E6400 (2 x 2.13GHz)
L1 Cache 32 KB X 2, 8 way, 64–byte cache line

size, write-back
L2 Cache 2MB shared cache (2MB x 1), 8-way,

64-byte line size, non-inclusive with L1
cache

Memory 2GB (1GB x 2) DDR2 533MHz
FSB 1066MHz Data Rate 64-bit
FSB Bandwidth 8.5GB/s
L1 Cache Hit Timea 3 cycles
L2 Cache Hit Time 12 cycles
L2 Cache Miss Penalty 165 cycles
IPC (Instruction Per Cycle)b 0.97
L1 Miss Rate 2.25%
L2 Miss Rate 0.41%
AHEMS FIFO Size 1024 entries × 16 bytes

aCache hit time is the time to access a data when the data is already in the cache.
bThe IPC and cache miss rates of a processor depend on the workload of the executed

program. Therefore, we use SPEC2006 benchmarks as the representative programs to
approximate the IPC and cache miss rates of real-world programs.

latency to launch an attack. This means that an attacker has an average
of 16.42 instructions to launch an attack when the FIFO is empty and an
average of 16816.82 instructions when the FIFO is full. In terms of time,
16816.82 instructions take only 7.66 µs to execute, which means that the
detection latency is not even sensible by human. On the one hand, some
attacks have two stages. The first stage is to exploit the vulnerability of
systems and launch a shell, and the second stage requires an attacker to
perform further inspection to successfully compromise a system. In this case,
the attacker does not have enough time to react, since the attack is detected
within a second. For example, there are attacks that launch a shell with root
privilege for an attacker. However, the attacker still needs time to explore
the system for at least more than one second to steal sensitive information or
cause damage. On the other hand, even if the attack is fully automated, it
may still take more than 7.66 µs to finish. To give an idea of how short 7.66

93

µs is, even a call to system("")1 with an empty string as a command takes
more than 1 ms on a machine with the Intel Core i5-3470 3.2 GHz CPU. This
means that a shell cannot be launched within 7.66 µs. More importantly,
the FIFO size is configurable so that system designers can adjust the size
of the FIFO based on the tradeoff between performance and the length of
detection latency. If the size of the FIFO is set to 1, then AHEMS can detect
a memory error in less than 16.42 instructions, which is too small to launch
an attack.

7.2.2 Memory Overhead

Since AHEMS uses a dedicated memory to store its metadata, AHEMS pro-
vides physical metadata isolation and dedicated memory bandwidth for meta-
data. The tradeoff is that the amount of memory overhead is fixed no matter
how small the executed program is. In our implementation prototype, we
dedicate a DIMM of memory to the metadata. Nonetheless, the in-processor
design of AHEMS can share memory with the main processor, which trades
off the physical metadata isolation and performance for reduced memory us-
age. System designers can determine which design of AHEMS to use based on
the available memory resource on the system, the intended level of security,
and the desired performance.

7.2.3 Type Unsafety

AHEMS is designed to enforce memory safety, which prohibits attacks that
exploit memory errors. However, AHEMS does not detect some class of type
safety violations such as treating one object as another object of equal or
smaller size. This error cannot be detected by most of the memory safety
approaches, either. We leave this issue to future work.

7.2.4 Mixture of Multiple Pointers

Since AHEMS associates the base and bound information for each pointer
(which is 4 bytes long in 32-bit architecture) instead of each byte, an at-

1system("command") is a libc function that executes the command in shell.

94

0x12345678

0x1234ABCD

0x50

0x90

First load the upper half

Then load the lower half

......

TID OID
5
9

1
2

0x12 0x34 0xAB 0xCD2
TID

...

OID
0x1000

9

Base
0x12345000

Bound

0x10000x1234A000
5

register %g1
......

MEM OID
5
9

0x50
0x90

Figure 7.5: An Illustrative Example of Mixing Two Pointers

tacker may be able to craft a pointer that is a mixture of multiple pointers.
Figure 7.5 illustrates a pointer crafted by an attacker using a mixture of two
pointers, trying to make a pointer point to an object that is not the intended
referent. In Figure 7.5, let’s assume that the register %g1 is supposed to con-
tain the pointer that points to the object inhabiting within (0x12345000,

0x12346000). We can see that the attacker manages to make %g1 point to
another object that resides in (0x1234A000, 0x1234B000) by loading the
upper half of the pointer at 0x50 to the upper half of %g1 and loading the
lower half of the pointer at 0x90 to the lower half of %g1. In this way, the
attacker creates a pointer that is a mixture of pointers at 0x50 and 0x90.
The crafted pointer is associated with the base and bound information of
the pointer loaded by the last load instruction, which is the pointer at 0x90.
However, %g1 is not supposed to be associated with the base and bound in-
formation of the pointer at 0x90, which leads to a potential problem. We
argue that creating a mixture of multiple pointers is very difficult and does
not help the attacker much for the following reasons. First of all, the attacker
does not have control over the executed code to intentionally perform this
kind of operation. Second, loading each part of different pointers to a single
register is very uncommon in real-world code because that kind of operation
is rarely required in C. Third, even if the attacker can craft a pointer, the
crafted pointer still need to stay within the base and bound of the pointer
loaded by the last load instruction; this guarantees the crafted pointer still
accesses a valid object, although maybe not its intended object. Therefore,
for an attack like this to succeed, the attacker needs to find the code that
has the above-mentioned rare operation and the code must happen to have

95

a vulnerability even when all pointers point to valid objects. We believe the
chance of launching an attack like this is very low if not nonexistent. Besides,
this limitation is not specific to our approach; all approaches that keep one
metadatum for a 4-byte or 8-byte pointer have the same limitation. One po-
tential solution is to use byte-granularity metadata (i.e., associate each byte
with a metadatum). Then only if all bytes in a pointer point to the same
valid object can the pointer be dereferenced. This guarantees that no use
of mixed pointers is allowed. We leave it as future work to add support for
byte-granularity metadata.

96

CHAPTER 8

RELATED WORK

In this chapter, we discuss software and hardware approaches previously pro-
posed to enforce either spatial memory safety, temporal memory safety, or
both. Challenges encountered by previous approaches are (1) incomplete
memory safety, (2) need for manual annotation or modification to source
code, (3) inability of the protected modules to interoperate with unprotected
modules, (4) lack of modularity support, (5) prohibitively high runtime over-
head, and (6) no physical metadata isolation. Table 8.1 summarizes the
comparison of representative approaches with the AHEMS.

8.1 Fat-Pointer Approaches

Some approaches, such as SafeC [74], Cyclone [76, 159], CCured [75], and
Fail-Safe C [86], introduce the concept of a fat pointer for bound checking.
Compared with a regular pointer, a fat pointer contains not only the address
of its intended object but also the base and bound. That is, a fat pointer
is a 3-tuple (address, base, bound). The base and bound are propagated
along with pointer arithmetics and are checked against the address when
the pointer is dereferenced. This is an efficient data structure that is used
by type-safe languages, such as Java, to perform bound checking. However,
since the representation of a pointer in the memory is changed, fat-pointer
approaches are not binary-compatible with precompiled binaries, which sig-
nificantly impedes the deployment of these approaches on existing programs.

CCured [75] performs a type inference algorithm on the whole program to
identify pointers that do not need bound checking. It categorizes each pointer
as either SAFE, SEQ, or WILD, where a SAFE pointer does not need bound
checking because it is proven to be in bounds by the algorithm. CCured
then inserts runtime bound checks for SEQ and WILD pointers to enforce spa-

97

tial memory safety. It ignores explicit deallocation and employs a dynamic
garbage collector to enforce temporal memory safety. Although CCured en-
forces complete memory safety with an average of 28% overhead on Olden
benchmarks1, CCured requires non-trivial manual annotation and modifica-
tion to the source code to reduce the number of inefficient WILD pointers and
fix the compatibility issue caused by fat pointers.

Cyclone [76, 159] is a safe dialect of C similar to CCured. It performs
static analysis on source code and inserts runtime checks at places where
a pointer cannot be statically determined to be safe. Cyclone also requires
a programmer to modify the source code, which makes it hard to deploy
on large existing programs. It also suffers from fat-pointer problems, even
though it reports a moderate runtime overhead (an average of 38% runtime
overhead on their 12 tested programs).

Fail-Safe C [86] is a memory-safe compiler of the full ANSI C language. It
employs the concept of fat pointers, fat integers, typed memory blocks, virtual
offsets and safe memory management (i.e., garbage collection) to ensure full
memory safety that supports casts, unions, arbitrary pointer arithmetics,
function pointers, and variable-number arguments. However, it incurs ex-
cessively high runtime overhead (an average of 364% on Olden benchmarks)
and is not binary compatible and not source compatible due to fat-pointer
design.

8.2 Object-based Approaches

Due to the backward compatibility issue of fat-pointer approaches, object-
based approaches associate bound information with an object so that the
memory layout of each pointer does not need to be changed. This makes
the protected code backward compatible with unprotected code, such as the
dynamically-linked libraries.
Purify [77] is a commercial tool that detects memory leaks and memory

errors. It instruments a program at the object code level at link time, so it
does not require any source code changes and has good binary compatibility.
Purify conceptually associates a 2-bit status for each byte of the memory to

1Olden benchmarks are 10 medium-size programs that are pointer-intensive and used
by many approaches for performance evaluation.

98

track whether the byte is (1) unallocated, (2) allocated but uninitialized, or
(3) allocated and initialized. Purify inserts runtime checks at each memory
load and store to ensure every store writes to allocated memory and every
load reads from allocated and initialized memory. However, Purify fails to
detect an out-of-bounds pointer that points to a valid object that is not
its intended referent. Also, Purify has very limited protection on stack ob-
jects. More importantly, Purify is more of a debugging tool, since it incurs
significant runtime overhead (148.44x slowdown on Olden benchmarks).

Jones and Kelly (J&K) [78] propose an object-based technique that main-
tains an object table, implemented as a splay tree, to keep track of all live
objects at any point of execution. When a pointer is dereferenced, the value
of the pointer is used to look up the intended referent to retrieve the base
and bound information for bound checking. To ensure that a pointer does
not point to a valid object that is not the intended referent of the pointer, the
approach also needs to make sure the pointer does not go out of bound when
pointer arithmetics is performed. This is where object-base approaches get
complicated. Because ANSI C Standard allows a pointer to point to the very
next byte after an array, the J&K approach needs to pad each object in the
program (except for function parameters) to prevent false alarms. The value
of a pointer is substituted as an ILLEGAL value whenever the pointer goes
out of the bound (i.e., goes after the padded byte). However, many existing
programs sometimes use an out-of-bounds pointer to compute an in-bounds
address, which makes the J&K approach inapplicable to those programs.

CRED [80], building on top of the J&K approach, introduces the OOB
object (Out-Of-Bounds object) to solve this problem. Instead of assigning
an ILLEGAL value to an out-of-bounds pointer, CRED associates each out-
of-bounds pointer with an OOB object that contains the information of the
pointer’s intended referent. When pointer arithmetics is performed on an
out-of-bounds pointer, the result is recorded in the OOB object, so that if
an out-of-bounds pointer goes back in bounds again, it can be set as an in-
bounds pointer without raising false alarms. Although the J&K approach and
CRED solve the binary compatibility issue, they still suffer from significant
runtime overhead (5-6x slowdown for J&K and 11-12x slowdown for CRED
on Olden benchmarks). This is because the object lookup is an expensive
operation that searches for the object whose address range contains the value
of a given pointer.

99

Mudflap [79] is a GCC extension that implements the J&K approach,
inheriting its pros and cons. The additional benefits of Mudflap are that (1)
it uses a lookup cache to improve the object lookup operations, and (2) it
uses some heuristics to enhance its binary compatibility with precompiled
libraries. However, Mudflap has an average of 175.2x slowdown on Olden
benchmarks as measured in our experiment.

SAFECode [81,82], adopting the approach of J&K and CRED, greatly re-
duces runtime overhead (an average of 12% overhead on Olden benchmarks)
by (1) employing the Automatic Pool Allocation to speed up object lookup
operations and (2) introducing a level of indirection for the OOB objects to
eliminate the need for runtime checks on all load/store instructions. Nonethe-
less, SAFECode requires inter-procedural, context-sensitive pointer analysis
to effectively reduce runtime overhead, which constrains scalability. Since
SAFECode needs to modify function interfaces and function calls to include
the pool descriptor as a parameter, external code that calls internal functions
may allow memory safety violations to occur. The reason is that the exter-
nal code (e.g., precompiled library), which is unavailable to the SAFECode
compiler, can only call the unprotected versions of the internal functions due
to binary incompatibility. This reduces the detection coverage of memory
safety in SAFECode.

Baggy Bound Checking (BBC) [83,160], which also builds on top of J&K,
further reduces the runtime overhead of the object lookup operations by al-
locating memory using buddy memory allocation and enforcing pointers to
stay within the allocation bounds instead of the actual bounds of an object.
Specifically, BBC only allocates memory regions of sizes that are powers of
2, so that the allocation size can be represented by only one byte. Because
BBC makes each allocated memory region align to its size, the base address
of an object can be computed by clearing the log2 (s) least significant bits of
a pointer, where s is the size of the object pointed by the pointer. Since the
base address of an object can be computed, the object table only needs one
byte for each object to store the bound. With the above setup, the object
table can be just a contiguous array, which makes the object lookup very
efficient. BBC even removes all bound checks on pointer dereferences and
only perform checks on pointer arithmetics to optimize performance. Al-
though BBC achieves low runtime overhead (an average of 6% overhead on
Olden benchmarks), it trades the completeness of memory safety for perfor-

100

mance because it allows more temporal memory errors than J&K due to not
checking on pointer dereferences. Further, BBC does not interoperate with
precompiled libraries that may call the functions it protect because BBC
changes the stack frame layout.

AddressSanitizer [84] represents another class of object-based approaches
that has weaker guarantee on spatial memory safety than J&K. These ap-
proaches use a larger padding (called redzones) to reduce the possibility of
a pointer going out of bounds to reach another valid object that is not the
intended referent of the pointer. With the protection of large paddings at the
beginning and the end of each object, all runtime checking on pointer arith-
metics is removed and only pointer dereferences are checked. AddressSani-
tizer adopts this technique and dedicates one eighth of the virtual memory
as the object table for efficient object lookup. Similar to BBC, AddressSan-
itizer makes all allocated objects align to 8 bytes. Each 8-byte region has
an entry, which is only one byte, in the object table to represent how many
bytes in this 8-byte region are valid. With this setup, the AddressSanitizer
can look up the object table with only one binary shift and one addition.
Although AddressSanitizer has reasonable performance overhead (144% on
Olden benchmarks in our experiments2), it has the same binary compatibility
problem as BBC does, since it also changes the stack frame layout.
In contrast to AddressSanitizer, PAriCheck [85] inserts runtime checks only

on pointer arithmetics instead of only on pointer dereferences. PAriCheck
adopts the approach of CRED but improves the speed of object lookup by
storing a unique ID instead of bounds in the object table and aligning all
allocated objects to 2k bytes, where k is configurable so that the size of
the object table becomes small enough to fit in a contiguous array. During
pointer arithmetics, one only needs to check whether the ID associated with
the original location pointed by the pointer matches the ID of the resultant
location. This gives PAriCheck an even lower performance overhead than
BBC (average 4.5% overhead on Olden). However, without the runtime
checking on pointer dereferences, PAriCheck has the same problem as BBC:
smaller coverage on temporal memory errors (i.e., use-after-free or use of
dangling pointers).
In general, object-based approaches can detect most of spatial memory
2The runtime overhead measured in our experiments is generally higher than that

reported by the authors due to the reasons discussed in Chapter 6.

101

errors except for sub-object overflows. However, they only provide limited
protection for temporal memory errors. For example, if the intended referent
of a pointer p is freed and subsequent allocation reuses the same memory
region as the freed object to create an unrelated object, the access to the
unrelated object using the pointer p causes a temporal memory error that
evades the detection of object-based approaches.

8.3 Pointer-based Approaches

In contrast to object-based approaches, pointer-based approaches associate
base and bounds metadata with the pointer instead of the object. Metadata
are propagated along with pointer arithmetics, and runtime checks are per-
formed only on pointer dereferences, since an out-of-bounds pointer does not
harm anything as long as it is not dereferenced. The benefits of pointer-based
approaches are that (1) detection of sub-object overflows becomes possible
because a pointer can be associated with only the sub-base and sub-bound
of the sub-object, (2) no padding needs to be added to the end of an object
because there is no need to determine which object a pointer points to during
pointer arithmetics, (3) the cost of object table lookup is generally lower than
that of object-based approaches, since an object table can be implemented
as a hash table or a contiguous array, and (4) it is possible to ensure both
spatial and temporal memory safety without combining with other methods.
However, pointer-base approaches are not perfect. The binary compatibil-
ity of software pointer-based approaches is still limited. Since pointer-based
approaches need to propagate the base and bound metadata along with the
pointer arithmetics but the propagation of metadata is not performed in the
unprotected code, the metadata of a pointer may become outdated after a
function call to unprotected code. For example, if a pointer is passed as
an argument from protected code to unprotected code and the pointer is
modified in the unprotected code, the metadata of the pointer are outdated
and subsequent dereferences of the pointer may allow memory errors to oc-
cur. In contrast, AHEMS has much better binary compatibility in that the
metadata can be updated even in the unprotected code since propagation
is handled by the hardware. Furthermore, AHEMS can perform the bound
checks on pointer dereferences of those pointers generated by protected code

102

and used in the unprotected code. Now we will discuss some representative
pointer-based approaches and their limitations.

SafeC [74] is a pointer-based approach that uses fat-pointer representation
to associate the metadata of base, bound, storage class, and capability with
the pointer to enforce complete memory safety. However, it is not binary
compatible with precompiled libraries, since programmers or systems may
make assumptions about the size of a pointer. SafeC is not source compati-
ble because it requires users to manually translate the declaration of pointers,
use of pointers, and calls to malloc() and free() to their MACROs, which
impedes deployment. Furthermore, the runtime overhead of SafeC is rela-
tively high (130%-540% on Olden benchmarks).

The Patil and Fischer [88] approach, closely related to the approach of
SafeC, automates the insertion of runtime checks and separates the metadata
from the pointer to achieve better source compatibility and binary compati-
bility, respectively. Also, they improve the performance by (1) faster tempo-
ral safety checks with the lock address and key technique, (2) customization,
and (3) shadow processing. For temporal safety, each pointer is associated
with a pair of lock address and key. The pair of lock address and key is
propagated along with pointer arithmetics. When a pointer is created, the
value stored in the lock address is set to the value of key. When the object
pointed to by the pointer is deallocated, the value in the lock address is set as
invalid. All pointers pointing to the same object have the same lock address
and key. Therefore, the object pointed to by a pointer is live as long as the
value in the lock address matches the key associated with the pointer. The
customization throws away computations not relevant to runtime checking,
while the shadow processing offloads the runtime checking to another idle
processor to be performed in the background. Although customization and
shadow processing make original programs that offload the runtime checking
run with less than 10% overhead, their customized shadow processes that
perform the runtime checking for the original programs still have an average
of 518% slowdown, as reported in their experiments, which is even higher
than that of SafeC. Furthermore, the backward-compatibility of the Patil
and Fischer approach is limited because their approach needs to change the
interfaces of functions, which causes the same problem as in SAFECode.
Memory Safety C Compiler (MSCC) [87] also uses the technique concep-

tually similar to that of Patil and Fischer except for shadow processing (i.e.,

103

MSCC does not offload runtime checks to idle processors). MSCC adds
another security feature to prevent unsafe downcasts by maintaining RTTI
(Runtime Type Information) with each object. MSCC further improves the
performance overhead of SafeC and the Patil and Fischer approach, reduc-
ing the runtime overhead to an average of 99–133% on Olden benchmarks.
However, MSCC’s optimization makes it lose the ability to detect sub-object
overflows.

SoftBound [89] and CETS (Compiler-Enforced Temporal Safety) [90] are
also pointer-based approaches that protect spatial memory safety and tem-
poral memory safety, respectively. They adopt an idea similar to that of Patil
and Fischer but further improve both detection coverage and performance
overhead. SoftBound can detect sub-object overflows that may be missed by
MSCC and allows arbitrary casts between pointers that are not handled by
MSCC or Patil and Fischer. SoftBound + CETS together has been proven to
guarantee complete memory safety. In terms of performance, SoftBound +
CETS achieves an average of 116% runtime overhead on 17 benchmarks se-
lected from SPECINT and SPECFP3, as reported by the authors, and 380%
overhead on Olden benchmarks in our experiment. Although SoftBound +
CETS enforce complete memory safety with moderate performance overhead,
they still suffer from the binary compatibility issue of all software approaches,
as discussed above.

MemSafe [91, 92] models temporal errors as spatial errors so that one
runtime check for each pointer dereference is enough for both spatial and
memory safety. In particular, MemSafe transforms a program on memory
deallocations and pointer stores so that each pointer assignment is a direct
assignment4. For the memory deallocation, each free(*ptr) function call
is appended by ptr = INVALID so that memory deallocation is treated as a
pointer assignment. This essentially transforms temporal errors into spatial
errors. For the pointer stores, MemSafe inserts a %-function (like a φ-function
in SSA form) after each pointer load to indicate all possible direct objects
that can be pointed by the pointer. For example, if q is of type int**

that can possibly point to a or b of type int*, then MemSafe will insert
3SPEC benchmarks [161] are large-size programs that are standards for performance

evaluation
4A direct assignment is an assignment whose right hand side is directly the object being

assigned (i.e., not a pointer dereference).

104

c = %(a, b) after the assignment c = *q. The above two transformations
allow MemSafe to compute a Data Flow for Pointers Graph (DFPG) that
can speed up the runtime checking of MemSafe. Although MemSafe enforces
both spatial and memory safety while incurring low runtime overhead (an
average of 87% overhead on Olden, PtrDist [74], and SPEC benchmarks), it
requires whole-program analysis to perform the transformations, which limits
its modularity support and scalability.

8.4 Other Software-only Approaches

Yong and Horwitz [152] proposes a technique to ensure each write via an
unsafe pointer always writes to appropriate targets of the write. They first
perform static analysis on the source code to identify unsafe pointers and
their points-to sets. Each byte of allocated memory is associated with a bit
to indicate whether the byte is appropriate for some unsafe pointer. When a
write via an unsafe pointer occurs, the associated bits of the memory location
being written for all appropriate targets of the unsafe pointer are checked
to see if the write is allowed. They also do the runtime checking on each
call to free() to ensure a limited temporal memory safety. However, since
their approach requires static analysis, modularity support and scalability
are limited. Their binary compatibility is also limited because they may
generate false positives when interoperating with unprotected code. Also,
the points-to sets computed statically are conservative, so an attacker can
still have a limited ability to write as long as the attack target happens to be
in the same points-to set of the manipulated write. More importantly, they
do not check all reads, which may allow information leakage attacks. Their
average runtime overhead on Olden benchmarks is 37%.
WIT [46] is an approach similar to that of Yong and Horwitz. WIT im-

proves the detection coverage by using more than just one bit to reduce
the possibility of an attacker writing to an object that is not the intended
referent of the write but happens to be in the same points-to set of the
intended referent. WIT also inserts canaries after each allocated object to
detect buffer overflows, and it enforces control-flow integrity to compensate
the imprecise points-to sets. With all the above checks added, WIT still has
lower performance overhead (average 4% overhead on Olden) than that of

105

Yong and Horwitz. However, it inherits some deficiencies from the approach
of Yong and Horwitz, including the limited modularity support, scalability,
and binary compatibility.

SymPLAID [162] is a formal technique that utilizes symbolic execution to
statically identify all variables that are vulnerable to insider attacks (a su-
perset of memory corruption attacks) at each attack point (the specific point
in the execution of a program where such an attack may happen). For each
attack point, SymPLAID assigns a symbolic value to one of the variables and
then continue execution by treating the symbolic value as any possible value.
Thus the execution may fork during branch instructions, since both paths
are possible. The symbolic value can be constrained when compared to some
known value. For example, if sym_val < 10 is encountered and sym_val

is a symbolic value, then the execution forks into two executions with one
having the constraint of sym_val < 10 and the other having the constraint
of sym_val >= 10. By checking whether the result of the execution is as ex-
pected, SymPLAID can identify those variables that are vulnerable to insider
attacks. Although SymPLAID can find memory errors statically, it suffers
from a scalability issue: it essentially enumerates all possible states and the
number of explored states grow exponentially with the program’s size and
address space.

8.5 Hardware Approaches

SafeMem [99] utilizes the ECC bits existing in memory to detect memory
leaks and some classes of memory errors. It proposes an approach similar
to page protection but with finer granularity (cache-line granularity instead
of page granularity), which reduces the amount of false sharing and padding
space. Specifically, SafeMem temporarily disables the ECC protection and
flips 3 bits on the data to make ECC code invalid. This enables the operat-
ing system to be notified whenever the data is accessed, since the ECC code
does not match the one computed from the new data. Although ECC code
is checked on memory reads but not on memory writes, the use of cache in
modern systems enables SafeMem to read the memory before every write by
flushing the cache line of the protected zone to the memory. This is because
in this case every write to the protected zone must first load the memory to

106

the cache line, which triggers the ECC check. SafeMem detects buffer over-
flows by padding redzones around a buffer and uses ECC to catch the access
of redzones caused by buffer overflow. SafeMem also detects invalid access
to freed memory by using the ECC protection to watch all freed memory.
An invalid access to freed memory will invoke the ECC fault handler. The
advantages of SafeMem is that it does not need additional hardware to be in-
stalled and it can achieve low runtime overhead (an average of 6.3% overhead
on 3 non-standard benchmarks). However, due to the limitations of ECC,
SafeMem fails to prevent some classes of attacks, such as the attacks that
allow arbitrary writes. Also, if the data being modified by an attacker is not
yet written back to the memory (i.e., the data stays in the cache), SafeMem
may miss or delay the detection of the attack. Such an attack would be the
non-control data attacks launched by overflowing a decision-making data in
a program stack.

MemTracker [100, 101] is a hardware-programmable state machine resid-
ing in memory that associates each byte of memory with a state and treats
each access to the memory as an event. When an event is triggered, the
state machine can transition to the next state according to a Programmable
State Transition Table (PSTT). MemTracker implements three example pro-
tections to protect (1) allocation/deallocation of heap memory, (2) return
address, and (3) heap buffer overflow. Although MemTracker achieves as low
as 2.7% runtime overhead on SPEC benchmark, it only detects the above-
mentioned three classes of memory errors and fails to detect other memory
corruption attacks.
Clause et al. [95,96] associate each pointer and each byte of memory with a

taint mark and require that only pointers having the same taint mark as the
memory can access the memory. When a region of memory is allocated, each
byte of the memory is tainted with a unique taint mark. When a pointer is
initialized to point to some memory, the pointer is tainted with the same taint
mark as the memory. During pointer arithmetics, taint marks of pointers are
propagated. When a pointer is dereferenced, the taint mark of the pointer is
checked to see if it matches that of the pointed byte of the memory. Clause
et al. implement the taint propagation rules and taint checks in hardware to
reduce runtime overheads. They achieve an average of 13% runtime overhead
on SPEC2000 benchmarks when 256 different taint marks are used. However,
the approach of Clause et al. may have false negatives because the number

107

of taint marks is limited. Besides, they may also incur significant runtime
overhead if large memory allocation and deallocation are very frequent, as
their approach needs to set a unique taint mark for each byte of allocated or
deallocated memory.

Arora et al. purpose an architectural support on embedded processors
to reduce the performance overhead of CCured. They extend the ISA with
XCHECK instructions that allow the processor to efficiently perform the run-
time checking on SAFE, SEQ, and FSEQ, and WILD pointers. Arora et al.
implement their approach on a cycle-accurate simulator of the Xtensa [163]
processor that enables them to evaluate the hardware overhead, which is
less than 10%. However, although they improve the performance overhead
of CCured by an average of 2.3x on Olden benchmark, their approach still
inherits the deficiencies of CCured, as discussed above.

SafeProc [97] extends the ISA of a processor with safety instructions and
adds architectural support to the processor to help detect memory errors.
SafeProc conceptually employs the pointer-based approach by maintaining
a table in hardware to keep track of the base and bound information for
each pointer. The lookup table is implemented as three CAMs (Content-
Addressable Memories) on chip and a BRS (Backup Record Storage) that
resides in off-chip memory and stores the entries evicted by CAMs. The
search for a pointer is hierarchical: if the base and bound information of a
pointer cannot be found in the CAMs, the BRS is searched. Memory deal-
location becomes an expensive operation because SafeProc needs to search
all entries to delete all entries associated with the deallocated memory. Safe-
Proc also proposes an optimization to delay memory error detection whenever
possible, which is similar to the asynchronous property of AHEMS. However,
the degree of asynchrony in SafeProc is very limited compared with AHEMS
because SafeProc cannot delay the detection if dependency between instruc-
tions exists, which is not uncommon. For example, if %g1 is the destination
register of one instruction as well as the source register of the next instruc-
tion, the memory errors detection cannot be delayed. Otherwise, the base
and bound of %g1 may not be properly propagated. Also, SafeProc requires
manual modification of a program to insert safety instructions, which is an
obstacle for deploying SafeProc on existing programs. The average runtime
overhead of SafeProc is 9% on Olden benchmarks.

Chuang et al. [98] accelerate the metadata lookup of the pointer-based

108

approach similar to SafeC to improve performance overhead. They store
metadata inline with objects or pointers just like a fat pointer or a fat ob-
ject so that hardware does not need to take care of metadata propagation
during pointer arithmetics (i.e., the compiler takes care of metadata prop-
agation). Chuang et al. introduce a meta-check instruction in the ISA to
bind a check operation to a virtual register. The meta-check instruction no-
tifies the hardware what type of check should be performed when the virtual
register is dereferenced. They evaluate the performance overhead for both
the case of associating metadata with objects and associating metadata with
pointers. They conclude that associating metadata with objects is better in
terms of performance. Chuang et al. also evaluate the performance when
the metadata is compressed so that there are fewer loads or stores needed
for the metadata. In their experiment, they achieve around 21.2% runtime
overhead on SPECINT benchmark. However, the use of fat pointers or fat
objects makes the approach of Chuang et al. not binary-compatible since the
memory layout is changed.

HardBound [93] is essentially a hardware implementation version of Soft-
Bound that enforces spatial memory safety. In contrast to Chuang et al.,
HardBound separates the metadata from the pointer when a pointer is stored
into the memory. HardBound widens each register in the processor with a
base and a bound so that the base and bound are propagated along with
pointer arithmetics in hardware without requiring additional cycle. When
a pointer is created, HardBound instruments a setbound instruction in the
source code to set up the base and bound for the pointer. When a pointer
is dereferenced, HardBound checks whether the pointer is within the base
and bound to check spatial memory safety. When a pointer is stored into
or loaded from the memory, its base and bound need to be stored into or
loaded from the shadow memory. Therefore, HardBound can be optimized
by encoding the base and bound information in the 4 MSBs of a pointer to
reduce the number of loads and stores needed for base and bound in common
cases. HardBound incurs an average of 7-9% overhead on Olden benchmarks.

Watchdog [94], which is the state-of-the-art hardware approach, improves
HardBound by implementing a hardware version of CETS that ensures tem-
poral memory safety, so as to achieve full memory safety when combining with
HardBound. In addition to the base and bound, Watchdog further associates
each register with a pair of lock address and key. Watchdog inserts µops for

109

each load, store, call, return, malloc, free, and pointer arithmetics op-
eration in the processor to maintain and check the validity of lock address and
key. Similar to HardBound, Watchdog also has a shadow memory to contain
those metadata when a pointer is stored into or loaded from the memory.
Watchdog incurs only 24% performance overhead on SPEC benchmarks for
complete memory safety. Compared with Watchdog, AHEMS achieves the
same level of complete memory safety and runtime overhead as Watchdog
while having additional advantages over Watchdog. First, AHEMS is more
practical because it only needs to widen the size of each register by log2 n

bits where n is the number of registers in a processor, while Watchdog needs
to quintuple the size of each register to keep 4 additional metadata base,
bound, lock address and key. This means that Watchdog needs to add an
additional 256 bits to each register in a 64-bit architecture. This is not only
a prohibitively high hardware resource overhead to the on-chip memory, but
it is lethal to the critical path of the processor. Second, we have a real FPGA
implementation of AHEMS that shows that AHEMS is a realistic design and
allows us to measure more accurate performance, hardware resource, and
power consumption overhead of our prototype than an instruction-accurate
simulator used by Watchdog. Our experiment also shows that AHEMS has
very little impact on the critical path of the main processor. Third, AHEMS
provides physical isolation of the metadata that prevents the attackers from
modifying the metadata by exploiting other vulnerabilities of the system.

110

Table 8.1: Comparison of Representative Memory Safety Approaches

Approach Spatial
memory
safety

Temporal
memory
safety

Source
compat.

Binary
compat.

Modular
support

Scalability Physical
meta-
data
isolation

Slowdowna

Fat-pointer Approaches
SafeC [74] Yes Yes No No Yes Yes No 2.3x-6.4x
CCured [75] Yes Yes No No No No No 1.28x
Cyclone [76] Yes Yes No No No No No 1.38x

(non-standard)
Object-based Approaches

Purify [77] Yes Incomplete Yes Yes Yes Yes No 148.44x
J & K [78] Yes Incomplete Yes Yes Yes Yes No 5x-6x
Mudflap [79] Yes Incomplete Yes Yes Yes Yes No 175.20x
CRED [80] Yes Incomplete Yes Yes Yes Yes No 11x-12x
SAFECode
[81,82]

Yes Incomplete Yes Yes Yes Limited No 1.12xb

BBC [83,160] Yes Incomplete Yes Limited Yes Yes No 1.06x
Address Sani-
tizer [84]

Yes Incomplete Yes Limited Yes Yes No 2.44x

PAriCheck
[85]

Yes Incomplete Yes Limited Yes Yes No 1.05x

Fail-Safe
C [86]

Yes Yes No No Yes Yes No 4.64x

Pointer-based Approaches
MSCC [87] Yes Yes Yes Limited Yes Yes No 1.99x-2.33x
Patil & Fis-
cher [88]

Yes Yes Yes Limited No Yes No 6.18x
(non-standard)

SoftBound
[89]

Yes No Yes Limited Yes Yes No 1.67x-1.93x
(Olden+SPEC)

CETS [90] No Yes Yes Limited Yes Yes No 1.48x
(SPEC)

SoftBound +
CETS

Yes Yes Yes Limited Yes Yes No 4.8x

MemSafe [91,
92]

Yes Yes Yes Limited Limited Limited No 1.29x

Other Software-only Approaches
Yong and Hor-
witz [152]

Only
writes

Limited Yes Limited Limited Limited No 1.37x

WIT [46] Only
writes

Limited Yes Limited Limited Limited No 1.04x

Hardware Approaches
SafeMem [99] Incomplete Incomplete Yes Yes Yes Yes No 1.06x

(non-standard)
MemTracker
[100,101]

Incomplete Incomplete Yes Yes Yes Yes No 1.03x
(SPEC)

Clause et al.
[95, 96]

Incomplete Incomplete Yes Yes Yes Yes No 1.05x-1.21x
(SPEC)

Arora et al.
[150]

Yes Yes No No No No No 1.5x
(non-standard)

SafeProc [97] Yes Yes No Limited Yes Yes No 1.09x
Chuang et al.
[98]

Yes Yes Yes No Yes Yes No 1.21x
(SPEC)

HardBound
[93]

Yes No Yes Yes Yes Yes No 1.07x-1.09x

Watchdog [94] Yes Yes Yes Yes Yes Yes No 1.24x
(SPEC)

AHEMS Yes Yes Yes Yes Yes Yes Yes 1.11x

aThe runtime overhead is reported by the authors for Olden benchmarks unless otherwise specified.
bNote that the runtime overhead of SAFECode is different from the overhead measured in our experi-

ments due to the reasons explained in Section 6.3.2.

111

CHAPTER 9

CONCLUSION AND FUTURE WORK

In this chapter, we draw a conclusion for this thesis and discuss some possible
directions for the future work.

9.1 Conclusion

This thesis presents AHEMS, an architectural support for asynchronous
checking to ensure both spatial and temporal memory safety. AHEMS is a
pointer-based approach that associates each pointer with a base and bound
metadata, propagates the metadata during pointer arithmetics, and checks
the bounds and lifetime of the accessed object during pointer dereference.
Asynchronous checking is accomplished by the coordination of a runtime
monitor (embedded in the main processor) and a security engine that can
be deployed inside the processor, as a co-processor, or as an external de-
vice. The runtime monitor synchronously keeps track of each memory event
(allocation/deallocation/load/store), maintains the validity of the TID (an
in-processor metadatum) of each register, and notifies the security engine of
each memory event. The security engine asynchronously processes each re-
ceived event to update the TID2OID, MEM2OID and OID2BaseBound tables and
to check the base and bound of each memory load and store using these three
tables. AHEMS enables system designers to flexibly decide where to place
the security engine, depending on system requirements. Asynchronous check-
ing greatly reduces the runtime overhead caused by memory safety checking,
since checks can be performed asynchronously and with different frequency
from the main processor. Finally, the metadata are stored in a different
physical memory to guarantee the integrity of the metadata. To sum up,
AHEMS enforces spatial and temporal memory safety with low runtime over-
head (10.6% overhead on Olden benchmarks), negligible impact on critical

112

path (0.06% overhead) and power consumption (0.5% overhead), physical
metadata isolation, high flexibility, high scalability, and support for source
compatibility, binary compatibility, and modularity.

9.2 Future Work

In the following, we discuss some future directions that continue or extend
the idea of AHEMS, along with some possible improvements to our imple-
mentation prototype.

9.2.1 Non-pointer Load/Store Instructions

One way to improve the runtime overhead of AHEMS is to reduce the number
of load and store events sent to the security engine. If the ISA of the main
processor can be extended by introducing new opcodes to indicate whether
a load/store instruction accesses a pointer, AHEMS can skip the steps that
maintain the MEM2OID table for those non-pointer load/store instructions
because the MEM2OID table is only used to keep track of in-memory pointers.
One can profile the execution of a program and modify the compiler to mark
those load/store instructions that do not access pointers as non-pointer
ones using the extended opcodes, so that, in runtime, the security engine
can skip some steps for those loads/stores.

9.2.2 Checking for Only Critical Functions

If AHEMS can be extended to protect only critical functions and skip mem-
ory safety checking on trusted functions, the runtime overhead can be even
lowered while maintaining the memory safety of those critical functions.
AHEMS can then fully utilize the execution time of trusted functions to
perform the checking, due to its asynchronous property. This can potentially
be achieved by introducing two machine instructions, stop_checking and
start_checking, and instrumenting the source code with a stop_checking

before each trusted function call and with a start_checking after each un-
protected function call. The same idea can be applied on trusted kernel
functions and context switches.

113

9.2.3 Checking for Type Safety

To prevent an object of one type from being treated as an object of another
type, AHEMS needs to be enhanced to ensure type safety. One potential
solution is to associate not only the base and bound information but also
the type information with each pointer. Also needed are checks in pointer
arithmetics as to whether the type of the source pointer can be upcast1 to the
type of the destination pointer. A new instruction needs to be introduced to
explicitly perform type casting so that the type associated with an pointer
can be changed according to the source code. The source code should also
be instrumented with the new instruction to notify the runtime monitor
about each type casting. The challenges here are how to maintain the source
compatibility and binary compatibility of AHEMS, since many programs are
written in ways that violate type safety.

9.2.4 Cache for the Security Engine

In our implementation prototype, we do not use a cache to speed up the
memory access of metadata. If a cache can be added between the security
engine and the dedicated memory for metadata, the performance of safety
checking can definitely be sped up. The MEM2OID table has similar locality as
the memory footprints of the executed programs and thus can benefit from
the cache.

9.2.5 Multiprocess Support

At this stage of development, our implementation prototype only enforces
memory safety for one process at a time. The process can be multithreaded
because the prototype recognizes the process by the specific identifier used
by an MMU to differentiate process address spaces. To support memory
safety checking for multiple processes, an MMU can be added to the security
engine to put MEM2OID tables of different processes into different address
spaces. During context switches, the security engine needs to switch from

1One type T1 can be upcast to another type T2 if some prefix structure of T1 con-
tains the structure of T2. For example, struct Audi {char *type; float price; char
*model} can be upcast to struct Car {char *type; float price;}.

114

the old MEM2OID table to the new MEM2OID table and reload TID2OID table
for the to-be-executed process. All processes can share one OID2BaseBound

table since OID can be unique among all processes.

9.2.6 In-processor Design and External-device Design

In this thesis, we describe three possible placements of the security engine,
each of which has its advantages and disadvantages. We have compared
those three designs qualitatively and evaluated the co-processor design using
our implementation prototype in Chapter 6 and Chapter 7. It would be
beneficial to also implement prototypes of the in-processor design and the
external-device design to compare their pros and cons quantitatively, which
will help system designers make better decisions when deploying AHEMS
on their systems. For example, one can examine the runtime overhead and
hardware overhead of the in-processor design on an out-of-order processor,
or measure the communication overhead on PCI-E caused by the external-
device design.

115

REFERENCES

[1] TIOBE Software BV, “TIOBE programming community index,”
2013. [Online]. Available: http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html

[2] DedaSys LLC, “Programming language popularity,” 2011. [Online].
Available: http://langpop.com/

[3] James P. Anderson, “Computer security technology planning study,”
Deputy for Command and Management Systems, Tech. Rep. ESD-TR-
73-51, Oct. 1972.

[4] “CWE/SANS top 25 most dangerous software errors,” 2011. [Online].
Available: http://cwe.mitre.org/top25/

[5] The PaX Team, “The original design & implementation of PAGE-
EXEC,” Tech. Rep., 2000.

[6] The PaX Team, “paging based non-executable pages,” Tech. Rep., 2003.

[7] Arjan van de Ven, “New security enhancements in red hat enterprise
linux v.3, update 3,” Red Hat Inc., Tech. Rep., 2004. [Online]. Available:
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

[8] Microsoft, “A detailed description of the data execution prevention
(DEP) feature in windows XP service pack 2, windows XP tablet
PC edition 2005, and windows server 2003,” 2006. [Online]. Available:
http://support.microsoft.com/kb/875352

[9] Theo de Raadt, “The OpenBSD 3.3 release,” 2003. [Online]. Available:
http://www.openbsd.org/33.html

[10] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang,
“StackGuard: automatic adaptive detection and prevention of buffer-
overflow attacks,” in Proceedings of the 7th USENIX Security Sympo-
sium, 1998.

[11] Stack Shield, “A stack smashing technique protection tool for linux,”
1999. [Online]. Available: http://www.angelfire.com/sk/stackshield/

116

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://langpop.com/
http://cwe.mitre.org/top25/
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://support.microsoft.com/kb/875352
http://www.openbsd.org/33.html
http://www.angelfire.com/sk/stackshield/

[12] Hiroaki Etoh, “GCC extension for protecting applications from
stack-smashing attacks,” 2001. [Online]. Available: http://www.
research.ibm.com/trl/projects/security/ssp/

[13] Nick Nikiforakis, Frank Piessens, and Wouter Joosen, “HeapSentry:
kernel-assisted protection against heap overflows,” in 10th Conference
on Detection of Intrusions and Malware & Vulnerability Assessment,
2013.

[14] Q. Zeng, D. Wu, and P. Liu, “Cruiser: concurrent heap buffer over-
flow monitoring using lock-free data structures,” in Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation (PLDI’11), June 2011, p. 367–377.

[15] Y. Younan, W. Joosen, and F. Piessens, “Efficient protection against
heap-based buffer overflows without resorting to magic,” in Proceedings
of the 8th international conference on Information and Communica-
tions Security (ICICS’06). Berlin, Heidelberg: Springer-Verlag, 2006,
p. 379–398.

[16] Emery D. Berger, “HeapShield: library-based heap overflow protection
for free,” University of Massachusetts Amherst, Tech. Rep., 2006.

[17] E. D. Berger and B. G. Zorn, “DieHard: probabilistic memory safety for
unsafe languages,” in Proceedings of the 2006 ACM SIGPLAN confer-
ence on Programming language design and implementation (PLDI’06),
June 2006, pp. 158–168.

[18] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn, “Archipelago:
trading address space for reliability and security,” in Proceedings of the
13th international conference on Architectural support for programming
languages and operating systems (ASPLOS’08), Mar. 2008, pp. 115–
124.

[19] G. Novark and E. D. Berger, “DieHarder: securing the heap,” in Pro-
ceedings of the 17th ACM conference on Computer and communications
security (CCS’10). New York, NY: ACM, 2010, p. 573–584.

[20] J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent runtime randomization
for security,” in 22nd International Symposium on Reliable Distributed
Systems, 2003. Proceedings, Oct. 2003, pp. 260 – 269.

[21] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proceedings
of the 10th ACM conference on Computer and communications security
(CCS’03). New York, NY, USA: ACM, 2003, p. 272–280.

117

http://www.research.ibm.com/trl/projects/security/ssp/
http://www.research.ibm.com/trl/projects/security/ssp/

[22] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proceedings of the 33rd IEEE Symposium on
Security and Privacy (SP’12), San Francisco, CA, 2012, p. 601–615.

[23] The PaX Team, “Address space layout randomization,” 2001. [Online].
Available: http://pax.grsecurity.net/docs/aslr.txt

[24] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in Proceedings of the 11th ACM conference on Computer and
communications security (CCS’04), Washington, DC, 2004, p.
298–307.

[25] Payer, Mathias, “Too much PIE is bad for performance,” ETH Zurich,
Department of Computer Science, Tech. Rep., 2012.

[26] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: self-randomizing instruction addresses of legacy x86 binary
code,” in Proceedings of the 19th ACM conference on Computer and
communications security (CCS’12), Raleigh, NC, 2012, p. 157–168.

[27] S. Bhatkar and R. Sekar, “Data space randomization,” in Proceedings
of the 5th international conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA’08). Berlin,
Heidelberg: Springer-Verlag, 2008, p. 1–22.

[28] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System Security (EUROSEC’09),
Nuremberg, Germany, 2009, p. 1–8.

[29] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX conference on Operating
systems design and implementation (OSDI’08), Berkeley, CA, 2008, p.
209–224.

[30] Yannick Moy, Nikolaj Bjorner, and Dave Sielaff, “Modular bug-finding
for integer overflows in the large: Sound, efficient, bit-precise static
analysis,” Microsoft Research, Tech. Rep. MSR-TR-2009-57, 2009.
[Online]. Available: http://research.microsoft.com/apps/pubs/?id=
80722

[31] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation
to find integer bugs in x86 binary linux programs,” in Proceedings of
the 18th conference on USENIX security symposium, ser. SSYM’09.
Berkeley, CA, USA: USENIX Association, 2009, p. 67–82.

118

http://pax.grsecurity.net/docs/aslr.txt
http://research.microsoft.com/apps/pubs/?id=80722
http://research.microsoft.com/apps/pubs/?id=80722

[32] Tielei Wang, T. Wei, Zhiqiang Lin, and Wei Zou, “IntScope: auto-
matically detecting integer overflow vulnerability in x86 binary using
symbolic execution,” in Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS’09), 2009.

[33] F. Merz, S. Falke, and C. Sinz, “LLBMC: bounded model checking
of c and c++ programs using a compiler IR,” in Proceedings of
the 4th international conference on Verified Software: theories, tools,
experiments (VSTTE’12). Berlin, Heidelberg: Springer-Verlag, 2012,
p. 146–161.

[34] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek,
“Improving integer security for systems with KINT,” in Proceedings
of the 10th USENIX conference on Operating Systems Design and
Implementation (OSDI’12), Hollywood, CA, 2012, p. 163–177.

[35] Oded Horovitz, “Big loop integer protection,” Phrack Magazine,
vol. 11, no. 60, 2002. [Online]. Available: http://www.phrack.com/
issues.html?issue=60&id=9

[36] Ramkumar Chinchani, Anusha Iyer, Bharat Jayaraman, and Shambhu
Upadhyaya, “ARCHERR: runtime environment driven program safety,”
in Proceedings of the 9th European Symposium on Research in Com-
puter Security, Sophia Antipolis, France, 2004, pp. 385–406.

[37] Rafal Wojtczuk, “UQBTng: a tool capable of automatically finding
integer overflows in win32 binaries,” in Proceedings of the 22nd Chaos
Communication Congress, Berlin, Germany, 2005.

[38] David Brumley, Tzi-cker Chiueh, Rob Johnson, Huijia Lin, and Dawn
Song, “RICH: automatically protecting against integer-based vulnera-
bilities,” in the 14th Annual Network and Distributed System Security
Symposium (NDSS’07), San Diego, California, 2007.

[39] P. Chen, H. Han, Y. Wang, X. Shen, X. Yin, B. Mao, and
L. Xie, “IntFinder: automatically detecting integer bugs in x86
binary program,” in Proceedings of the 11th international conference
on Information and Communications Security (ICICS’09). Berlin,
Heidelberg: Springer-Verlag, 2009, p. 336–345.

[40] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou, “IntPatch:
automatically fix integer-overflow-to-buffer-overflow vulnerability at
compile-time,” in Proceedings of the 15th European conference on
Research in computer security (ESORICS’10). Berlin, Heidelberg:
Springer-Verlag, 2010, p. 71–86.

119

http://www.phrack.com/issues.html?issue=60&id=9
http://www.phrack.com/issues.html?issue=60&id=9

[41] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in C/C++,” in Proceedings of the 2012 International
Conference on Software Engineering (ICSE’12), Piscataway, NJ, 2012,
p. 760–770.

[42] Emese Revfy, “Inside the size overflow plugin,” 2012. [Online].
Available: https://forums.grsecurity.net/viewtopic.php?f=7&t=3043

[43] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution
via program shepherding,” in Proceedings of the 11th USENIX Security
Symposium, 2002, p. 191–206.

[44] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security (CCS’05). New York, NY, USA: ACM,
2005, p. 340–353.

[45] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity principles, implementations, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 13, no. 1, Nov. 2009.

[46] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in Proceedings of the 29th IEEE
Symposium on Security and Privacy (SP’08), Oakland, CA, May 2008,
pp. 263–277.

[47] Z. Wang and X. Jiang, “HyperSafe: a lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proceedings of the 31st
IEEE Symposium on Security and Privacy (SP’10), Oakland, CA,
2010, p. 380–395.

[48] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks
with control-flow locking,” in Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC’11), Orlando, FL, 2011, p.
353–362.

[49] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lachmund,
and T. Walter, “Code pointer masking: hardening applications
against code injection attacks,” in Proceedings of the 8th international
conference on Detection of intrusions and malware, and vulnerability
assessment (DIMVA’11). Berlin, Heidelberg: Springer-Verlag, 2011,
p. 194–213.

[50] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: detecting violation
of control flow integrity using performance counters,” in Proceedings of
the 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’12), June 2012, pp. 1 –12.

120

https://forums.grsecurity.net/viewtopic.php?f=7&t=3043

[51] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi, “MoCFI: A framework to mitigate
control-flow attacks on smartphones,” in Proceedings of the 19th Annual
Symposium on Network and Distributed System Security (NDSS’12),
2012.

[52] C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant, and L. Szekeres,
“Protecting function pointers in binary,” in Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications
security (ASIACCS’13), Hangzhou, China, 2013, p. 487–492.

[53] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou, “Practical control flow
integrity & randomization for binary executables,” in Proceedings of
34th IEEE Symposium on Security & Privacy (SP’13), San Francisco,
CA, 2013.

[54] A. Prakash, H. Yin, and Z. Liang, “Enforcing system-wide control
flow integrity for exploit detection and diagnosis,” in Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and
communications security (ASIACCS’13), Hangzhou, China, 2013, p.
311–322.

[55] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proceedings of the
11th international conference on Architectural support for programming
languages and operating systems (PLDI’04), Oct. 2004, p. 85–96.

[56] J. R. Crandall and F. T. Chong, “Minos: Control data attack preven-
tion orthogonal to memory model,” in Proceedings of the 37th Inter-
national Symposium on Microarchitecture (MICRO’04), Dec. 2004, pp.
221– 232.

[57] N. Vachharajani, M. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. Blome, G. Reis, M. Vachharajani, and D. August, “RIFLE: an
architectural framework for user-centric information-flow security,” in
Proceedings of the 37th International Symposium on Microarchitecture
(MICRO’04). IEEE, 2004, pp. 243–254.

[58] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible
information flow architecture for software security,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture
(ISCA’07), June 2007.

[59] M. Dalton, H. Kannan, and C. Kozyrakis, “Real-world buffer overflow
protection for userspace & kernelspace,” in Proceedings of the 17th
Conference on Security Symposium (SS’08), Berkeley, CA, 2008, p.
395–410.

121

[60] James Newsome and Dawn Song, “Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploit attacks
on commodity software,” in Proceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS’05), Feb. 2005.

[61] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “LIFT: a
low-overhead practical information flow tracking system for detecting
security attacks,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06), 2006, p.
135–148.

[62] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” in Proceedings of
the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’06), 2006.

[63] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “TaintTrace: efficient
flow tracing with dynamic binary rewriting,” in Proceedings of the
11th IEEE Symposium on Computers and Communications (ISCC’06),
2006, p. 749–754.

[64] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic
taint analysis framework,” in Proceedings of the 2007 international
symposium on Software testing and analysis (ISSTA’07), 2007, p.
196–206.

[65] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn, “Parallelizing
security checks on commodity hardware,” in Proceedings of the 13th
international conference on Architectural support for programming
languages and operating systems (ASPLOS’08), Mar. 2008, p. 308–318.

[66] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling dynamic
program analysis from execution in virtual environments,” in USENIX
2008 Annual Technical Conference on Annual Technical Conference
(ATC’08), 2008, p. 1–14.

[67] A. Ermolinskiy, S. Katti, S. Shenker, L. L. Fowler, and M. McCauley,
“Towards practical taint tracking,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2010-92, Jun 2010.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2010/EECS-2010-92.html

[68] E. Bosman, A. Slowinska, and H. Bos, “Minemu: the world’s fastest
taint tracker,” in Proceedings of the 14th international conference
on Recent Advances in Intrusion Detection (RAID’11). Berlin,
Heidelberg: Springer-Verlag, 2011, p. 1–20.

122

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-92.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-92.html

[69] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn
Song, “DTA++: dynamic taint analysis with targeted control-flow
propagation,” in Proceedings of the 18th Annual Network and Dis-
tributed System Security Symposium (NDSS’11), San Diego, California,
Feb. 2011.

[70] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
protecting sensitive data leaks using application-level taint tracking,”
SIGOPS Oper. Syst. Rev., vol. 45, no. 1, p. 142–154, Feb. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1945023.1945039

[71] A. Zavou, G. Portokalidis, and A. D. Keromytis, “Taint-exchange:
a generic system for cross-process and cross-host taint tracking,”
in Proceedings of the 6th International conference on Advances in
information and computer security (IWSEC’11). Berlin, Heidelberg:
Springer-Verlag, 2011, p. 113–128.

[72] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
practical dynamic data flow tracking for commodity systems,” in
Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments (VEE’12), 2012, p. 121–132.

[73] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operating
systems design and implementation (OSDI’06), 2006, p. 147–160.

[74] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all
pointer and array access errors,” in Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation
(PLDI’94), 1994, p. 290–301.

[75] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems, vol. 27, no. 3, pp. 477–526,
May 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1065892

[76] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang, “Cyclone: A safe dialect of c,” in Proceedings of the
General Track of the annual conference on USENIX Annual Technical
Conference (ATEC’02), 2002, p. 275–288.

[77] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks
and access errors,” in Proceedings of the USENIX Winter Technical
Conference, 1992, pp. 125–136.

123

http://doi.acm.org/10.1145/1945023.1945039
http://dl.acm.org/citation.cfm?id=1065892
http://dl.acm.org/citation.cfm?id=1065892

[78] R. W. M. Jones, P. H. J. Kelly, M. C, and U. Errors, “Backwards-
compatible bounds checking for arrays and pointers in c programs,”
in Third International Workshop on Automated Debugging, 1997, p.
255–283.

[79] Frank Ch. Eigler, “Mudflap: Pointer use checking for C/C++,” in GCC
Developer’s Summit, 2003.

[80] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow de-
tector,” in In Proceedings of the 11th Annual Network and Distributed
System Security Symposium (NDSS’04), 2004, p. 159–169.

[81] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: enforcing alias
analysis for weakly typed languages,” in Proceedings of the 2006
ACM SIGPLAN conference on Programming language design and
implementation (PLDI’06), June 2006.

[82] D. Dhurjati and V. Adve, “Backwards-compatible array bounds
checking for c with very low overhead,” in Proceedings of the 28th
international conference on Software engineering (ICSE’06), ser. ICSE
’06, 2006, p. 162–171.

[83] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds
checking: an efficient and backwards-compatible defense against
out-of-bounds errors,” in Proceedings of the 18th conference on
USENIX security symposium, ser. SSYM’09. Berkeley, CA, USA:
USENIX Association, 2009, p. 51–66.

[84] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: a fast address sanity checker,” in Proceedings of the
2012 USENIX conference on Annual Technical Conference (ATC’12),
2012.

[85] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “PAriCheck: an efficient pointer arithmetic checker for c
programs,” in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’10), 2010, p.
145–156.

[86] Y. Oiwa, “Implementation of the memory-safe full ANSI-C compiler,”
in Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation (PLDI’09), 2009, p. 259–269.

[87] W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and backwards-
compatible transformation to ensure memory safety of c programs,” in
Proceedings of the 12th ACM SIGSOFT international symposium on
Foundations of software engineering, vol. 29, Oct. 2004, p. 117–126.

124

[88] H. Patil and C. Fischer, “Low-cost, concurrent checking of pointer and
array accesses in c programs,” Softw. Pract. Exper., vol. 27, no. 1,
p. 87–110, Jan. 1997. [Online]. Available: http://dx.doi.org/10.1002/
(SICI)1097-024X(199701)27:1<87::AID-SPE78>3.0.CO;2-P

[89] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
highly compatible and complete spatial memory safety for c,” in
Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation (PLDI’09), 2009, p. 245–258.

[90] S. Nagarakatte, J. Zhao, M. M. Martin, and Steve Zdancewic, “CETS:
compiler enforced temporal safety for c,” in Proceedings of the 2010
international symposium on Memory management (ISMM’10), June
2010, p. 31–40.

[91] M. Simpson and R. Barua, “MemSafe: ensuring the spatial and tem-
poral memory safety of c at runtime,” in 2010 10th IEEE Working
Conference on Source Code Analysis and Manipulation (SCAM’10),
2010, pp. 199–208.

[92] M. S. Simpson and R. K. Barua, “MemSafe: ensuring the spatial and
temporal memory safety of c at runtime,” Softw. Pract. Exper., vol. 43,
no. 1, p. 93–128, Jan. 2013.

[93] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“Hardbound: architectural support for spatial safety of the c
programming language,” in Proceedings of the 13th international
conference on Architectural support for programming languages and
operating systems (ASPLOS’08), Mar. 2008, p. 103–114.

[94] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog:
hardware for safe and secure manual memory management and full
memory safety,” in Proceedings of the 39th International Symposium
on Computer Architecture (ISCA’12), June 2012, p. 189–200.

[95] J. Clause, I. Doudalis, A. Orso, and M. Prvulovic, “Effective
memory protection using dynamic tainting,” in Proceedings of the
22nd IEEE/ACM international conference on Automated software
engineering (ASE’07), 2007, p. 284–292.

[96] I. Doudalis, J. Clause, G. Venkataramani, M. Prvulovic, and A. Orso,
“Effective and efficient memory protection using dynamic tainting,”
IEEE Transactions on Computers, vol. 61, no. 1, pp. 87 –100, Jan.
2012.

125

http://dx.doi.org/10.1002/(SICI)1097-024X(199701)27:1<87::AID-SPE78>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-024X(199701)27:1<87::AID-SPE78>3.0.CO;2-P

[97] S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal, and C. Waxman,
“Architectural support for low overhead detection of memory
violations,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE’09). 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2009, p. 652–657.

[98] W. Chuang, S. Narayanasamy, and B. Calder, “Accelerating meta data
checks for software correctness and security,” Journal of Instruction
-Level Parallism, vol. 9, 2007.

[99] F. Qin, S. Lu, and Y. Zhou, “SafeMem: exploiting ECC-memory for de-
tecting memory leaks and memory corruption during production runs,”
in 11th International Symposium on High-Performance Computer Ar-
chitecture (HPCA’11), 2005, pp. 291–302.

[100] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic,
“MemTracker: efficient and programmable support for memory access
monitoring and debugging,” in Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architecture
(HPCA’07), 2007, p. 273–284.

[101] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic,
“MemTracker: an accelerator for memory debugging and monitoring,”
ACM Trans. Archit. Code Optim., vol. 6, no. 2, p. 5:1–5:33, July 2009.
[Online]. Available: http://doi.acm.org/10.1145/1543753.1543754

[102] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song, “Eternal war
in memory,” in Proceedings of the 34th IEEE Symposium on Security
and Privacy (SP’13), San Francisco, CA, 2013.

[103] Chris Sanders, “Analyzing DLL hijacking attacks,” 2010. [On-
line]. Available: http://www.windowsecurity.com/articles-tutorials/
windows_os_security/Analyzing-DLL-Hijacking-Attacks.html

[104] “CVE-2011-1658,” 2011. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-1658

[105] “CVE-2012-0056,” 2012. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-0056

[106] F. L. Sang, V. Nicomette, and Y. Deswarte, “I/O attacks in intel
PC-based architectures and countermeasures,” in SysSec Workshop
(SysSec), 2011 First. IEEE, July 2011, pp. 19–26.

[107] “CVE-2012-0217,” 2012. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-0217

126

http://doi.acm.org/10.1145/1543753.1543754
http://www.windowsecurity.com/articles-tutorials/windows_os_security/Analyzing-DLL-Hijacking-Attacks.html
http://www.windowsecurity.com/articles-tutorials/windows_os_security/Analyzing-DLL-Hijacking-Attacks.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1658
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1658
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0056
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0056
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0217
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0217

[108] J. Wei and C. Pu, “TOCTTOU vulnerabilities in UNIX-style file
systems: an anatomical study,” in Proceedings of the 4th conference
on USENIX Conference on File and Storage Technologies (FAST’05),
2005.

[109] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer,
“Non-control-data attacks are realistic threats,” in Proceedings of the
14th conference on USENIX Security Symposium, ser. SSYM’05, 2005,
pp. 177–192.

[110] H. Shacham, “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security (CCS’07).
New York, NY, USA: ACM, 2007, p. 552–561.

[111] “CVE-2003-0015,” 2003. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2003-0015

[112] “Beginners guide to use after free exploits IE6
0-day exploit development,” 2012. [Online]. Avail-
able: http://www.garage4hackers.com/content/143-beginners-guide-
use-after-free-exploits-ie-6-0-day-exploit-development.html

[113] J. Vanegue, “Zero-sized heap allocations vulnerability analysis,” in
Proceedings of the 4th USENIX conference on Offensive technologies
(WOOT’10), Aug. 2010, pp. 1–8.

[114] “CVE-2012-4681,” 2012. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=2012-4681

[115] M. Payer and T. R. Gross, “String oriented programming: when ASLR
is not enough,” in Proceedings of the 2nd ACM SIGPLAN Program
Protection and Reverse Engineering Workshop (PPREW’13), 2013, p.
2:1–2:9.

[116] G. Argyros and A. Kiayias, “I forgot your password: randomness
attacks against PHP applications,” in Proceedings of the 21st USENIX
conference on Security symposium, 2012.

[117] J. Manger, “A chosen ciphertext attack on RSA optimal asymmetric
encryption padding (OAEP) as standardized in PKCS #1 v2.0,” in
Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO’01). London, UK, UK:
Springer-Verlag, 2001, p. 230–238.

[118] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in Proceedings of the 33rd IEEE Symposium on Security
and Privacy (SP’12), May 2012, pp. 143 –157.

127

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0015
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0015
http://www.garage4hackers.com/content/143-beginners-guide- use- after- free- exploits- ie-6-0- day- exploit- development.html
http://www.garage4hackers.com/content/143-beginners-guide- use- after- free- exploits- ie-6-0- day- exploit- development.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-4681
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-4681

[119] “CWE-201: information exposure through sent data,” 2008. [Online].
Available: http://cwe.mitre.org/data/definitions/201.html

[120] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12, p.
32–44, Dec. 1990. [Online]. Available: http://doi.acm.org/10.1145/
96267.96279

[121] Sebastian Krahmer, “x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique,” Tech. Rep., Sep. 2005.

[122] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,” in
ACM Trans. Info. & Sys. Security, 2012.

[123] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the expressiveness of return-into-libc attacks,” in Proceedings of
the 14th international conference on Recent Advances in Intrusion
Detection (RAID’11). Berlin, Heidelberg: Springer-Verlag, 2011, p.
121–141.

[124] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: exploit hardening
made easy,” in Proceedings of the 20th USENIX conference on Security,
2011.

[125] Martin Abadi, M. Budiu, U. Erlingsson, and Jay Ligatti, “Control-flow
integrity principles, implementations, and applications,” in Proceedings
of the 12th ACM Conference on Computer and Communications Secu-
rity (CCS’05), 2005.

[126] “CVE-2011-1745,” 2011. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-1745

[127] Matthew Conover, “Double free vulnerabilities,” 2007. [On-
line]. Available: http://www.symantec.com/connect/blogs/double-
free-vulnerabilities-part-1

[128] “CVE-2012-4792,” 2012. [Online]. Available: http://www.cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2012-4792

[129] Solar Designer, “Linux kernel patch to remove stack exec permission,”
1997. [Online]. Available: https://lkml.org/lkml/1997/4/12/7

[130] David LeBlanc, “Integer handling with the c++ SafeInt class,” 2004.
[Online]. Available: http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dncode/html/secure01142004.asp

[131] Robert C. Seacord, The CERT C Secure Coding Standard, 1st ed.
Addison-Wesley Professional, Oct. 2008.

128

http://cwe.mitre.org/data/definitions/201.html
http://doi.acm.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1745
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1745
http://www.symantec.com/connect/blogs/double-free-vulnerabilities-part-1
http://www.symantec.com/connect/blogs/double-free-vulnerabilities-part-1
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4792
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4792
https://lkml.org/lkml/1997/4/12/7
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure01142004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure01142004.asp

[132] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” SIGOPS Oper. Syst.
Rev., vol. 27, no. 5, p. 203–216, Dec. 1993. [Online]. Available:
http://doi.acm.org/10.1145/173668.168635

[133] S. McCamant and G. Morrisett, “Evaluating SFI for a CISC
architecture,” in Proceedings of the 15th conference on USENIX
Security Symposium (SS’06), 2006.

[134] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in Proceedings of the 30th IEEE
Symposium on Security and Privacy (SP’09), Oakland, CA, 2009, pp.
79–93.

[135] M. Payer, T. Hartmann, and T. R. Gross, “Safe loading - a foundation
for secure execution of untrusted programs,” in Proceedings of the 33rd
IEEE Symposium on Security and Privacy (SP’12), 2012, p. 18–32.

[136] A. Slowinska and H. Bos, “Pointless tainting? evaluating the
practicality of pointer tainting,” in ACM European conference on
Computer systems, 2009.

[137] M. Dalton, H. Kannan, and C. Kozyrakis, “Tainting is not pointless,”
ACM SIGOPS Operating Systems Review, vol. 44, no. 2, p. 88–92,
Apr. 2010. [Online]. Available: http://doi.acm.org/10.1145/1773912.
1773933

[138] A. Slowinska and H. Bos, “Pointer tainting still pointless: (but
we all see the point of tainting),” ACM SIGOPS Operating
Systems, vol. 44, no. 3, p. 88–92, Aug. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1842733.1842748

[139] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and
Ravishankar K. Iyer, “Defeating memory corruption attacks via
pointer taintedness detection,” in Proceedings of the 2005 International
Conference on Dependable Systems and Networks (DSN’05), 2005, p.
378–387.

[140] W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang, and J. Yang, “In-
foShield: a security architecture for protecting information usage in
memory,” in Proceedings of the 12th International Symposium on High-
Performance Computer Architecture (HPCA’06), 2006, pp. 222–231.

129

http://doi.acm.org/10.1145/173668.168635
http://doi.acm.org/10.1145/1773912.1773933
http://doi.acm.org/10.1145/1773912.1773933
http://doi.acm.org/10.1145/1842733.1842748

[141] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
intermediate language and tools for analysis and transformation of
c programs,” in Proceedings of the 11th International Conference on
Compiler Construction (CC’02). London, UK, UK: Springer-Verlag,
2002, p. 213–228.

[142] Wind River, “Wind river simics.” [Online]. Available: http:
//www.windriver.com/products/simics/

[143] Aeroflex Gaisler AB, “Leon3 processor.” [Online]. Available: http:
//www.gaisler.com/index.php/products/processors/leon3

[144] ARM Ltd., “AMBA open specifications.” [Online]. Avail-
able: http://www.arm.com/products/system-ip/amba/amba-open-
specifications.php

[145] Xilinx Inc., “Virtex-5 FXT ML510 embedded development platform.”
[Online]. Available: http://www.xilinx.com/products/boards-and-
kits/HW-V5-ML510-G.htm

[146] National Institute of Standards and Technology, “Juliet test suite for
C/C++.” [Online]. Available: http://samate.nist.gov/SRD/testsuite.
php

[147] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation (PLDI’07), June 2007, p. 89–100.

[148] M. C. Carlisle, “Olden: parallelizing programs with dynamic data struc-
tures on distributed-memory machines,” Ph.D. dissertation, Princeton
University, Princeton, NJ, USA, 1996, UMI Order No. GAX96-27387.

[149] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed
and runtime optimization (CGO’04). Washington, DC, USA: IEEE
Computer Society, 2004.

[150] D. Arora, A. Raghunathan, S. Ravi, and N. K. Jha, “Architectural
support for safe software execution on embedded processors,” in
Proceedings of the 4th international conference on Hardware/software
codesign and system synthesis (CODES+ISSS’06), 2006, p. 106–111.

[151] Synopsys, Inc., “Synopsis DC ultra.” [Online].
Available: http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/DCUltra/Pages/default.aspx

130

http://www.windriver.com/products/simics/
http://www.windriver.com/products/simics/
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.xilinx.com/products/boards-and-kits/HW-V5-ML510-G.htm
http://www.xilinx.com/products/boards-and-kits/HW-V5-ML510-G.htm
http://samate.nist.gov/SRD/testsuite.php
http://samate.nist.gov/SRD/testsuite.php
http://www.synopsys.com/Tools/Implementation/ RTLSynthesis/DCUltra/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/ RTLSynthesis/DCUltra/Pages/default.aspx

[152] S. H. Yong and S. Horwitz, “Protecting c programs from attacks
via invalid pointer dereferences,” Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering,
vol. 28, no. 5, p. 307–316, Sep. 2003. [Online]. Available:
http://doi.acm.org/10.1145/949952.940113

[153] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos, “Flexible hardware acceleration for instruction-grain
program monitoring,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture (ISCA’08), 2008, p. 377–388.

[154] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, p. 13–25, June 1997.
[Online]. Available: http://doi.acm.org/10.1145/268806.268810

[155] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,” 2005.
[Online]. Available: http://sesc.sourceforge.net

[156] David Levinthal, “Cycle accounting analysis on intel core
2 processors,” Intel Corporation, Tech. Rep. [Online]. Avail-
able: http://software.intel.com/sites/products/collateral/hpc/vtune/
cycle_accounting_analysis.pdf

[157] Anand Lal Shimpi, “The clarkdale review: Intel’s core i5 661, i3 540 &
i3 530,” 2010. [Online]. Available: http://www.anandtech.com/show/
2901/2

[158] T. K. Prakash and L. Peng, “Performance characterization of spec
cpu2006 benchmarks on intel core 2 duo processor,” ISAST Trans.
Comput. Softw. Eng, vol. 2, no. 1, pp. 36–41, 2008.

[159] M. Hicks, G. Morrisett, D. Grossman, and T. Jim, “Experience with
safe manual memory-management in cyclone,” in Proceedings of the
4th international symposium on Memory management (ISMM’04),
2004, p. 73–84.

[160] B. Ding, Y. He, Y. Wu, A. Miller, and J. Criswell, “Baggy bounds
with accurate checking,” in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2012, pp.
195–200.

[161] “SPEC benchmarks.” [Online]. Available: http://www.spec.org/

131

http://doi.acm.org/10.1145/949952.940113
http://doi.acm.org/10.1145/268806.268810
http://sesc.sourceforge.net
http://software.intel.com/sites/products/collateral/hpc/vtune/ cycle_accounting_analysis.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/ cycle_accounting_analysis.pdf
http://www.anandtech.com/show/2901/2
http://www.anandtech.com/show/2901/2
http://www.spec.org/

[162] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “Discovering
application-level insider attacks using symbolic execution,” in
Emerging Challenges for Security, Privacy and Trust, D. Gritzalis
and J. Lopez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, vol. 297, pp. 63–75. [Online]. Available: http://dblp.uni-
trier.de/rec/bibtex/conf/sec/PattabiramanNKI09

[163] Cadence Design Systems, Inc., “Xtensa customizable proces-
sors.” [Online]. Available: http://www.tensilica.com/products/xtensa-
customizable

132

http://dblp.uni-trier.de/rec/bibtex/conf/sec/PattabiramanNKI09
http://dblp.uni-trier.de/rec/bibtex/conf/sec/PattabiramanNKI09
http://www.tensilica.com/products/xtensa-customizable
http://www.tensilica.com/products/xtensa-customizable

	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	Contributions
	Thesis Organization

	CHAPTER 2 Attacks
	A General Attack Model
	Attack Surface
	Network
	DoS (Denial of Service) Attacks
	MITM (Man-In-The-Middle) Attacks
	Protocol Vulnerability Attacks

	Host
	Library Hijacking Attacks
	Privilege Escalation Attack
	Hardware Vulnerability Attacks
	Race Condition Attacks

	Application
	Memory Corruption Attacks
	API Abuse Attacks

	Data
	String-oriented Attacks
	Randomness Attacks
	Side Channel Attacks

	CHAPTER 3 Memory Corruption Attacks
	Overview
	Attacks Categorized by Targets
	Control-data Attacks
	Non-control-data Attacks
	Code Injection Attacks
	Information Leakage Attacks

	Attacks Categorized by Vulnerabilities
	Buffer Overflow Attacks
	Format String Attacks
	Heap Spraying Attacks
	Return-to-libc Attacks
	ROP Attacks
	Integer Overflow Attacks
	Double-free Attacks
	Use-after-free Attacks
	Zero Allocation Attacks

	Countermeasures
	Stack Integrity
	Code Integrity
	Heap Integrity
	Randomization
	Integer Integrity
	Control Flow Integrity (CFI)
	Data Flow Integrity (DFI)
	Information Flow Integrity
	Memory Safety

	CHAPTER 4 Approach
	Full Memory Safety Enforcement
	Operation Overview
	Source Code Instrumentation
	malloc() and free()
	Local Variables and Function Parameters
	Global Variables and Static Variables
	Sub-objects in the Structure
	Integer-to-pointer Casts

	Hardware Architecture
	alloc, dealloc, and subcreate Machine Instructions
	Temporary Identifier and Object Identifier
	TID and OID Generation and Propagation Rules
	Asynchronous Checking

	An Illustrative Example

	CHAPTER 5 Implementation Issues
	Placement of AHEMS
	External Device Design
	Co-processor Design
	In-processor Design
	Comparison

	Main Processor
	TID Propagation.
	alloc, dealloc and subcreate Instructions

	Runtime Monitor
	TID Generation
	Data Transmission

	Security Engine
	Lookup Tables
	State Machine

	CHAPTER 6 Experimental Results
	Experimental Setup
	Detection Coverage
	Runtime Performance Overhead
	Runtime Overhead on Olden Benchmark
	Performance Comparison

	Memory Overhead
	Critical Path
	Hardware Resource Overhead
	Power Consumption

	CHAPTER 7 Qualitative Analysis
	Strengths
	Completeness of Memory Safety
	Source Compatibility
	Binary Compatibility
	Modularity Support
	Scalability
	Physical Metadata Isolation
	FPGA Implementation

	Limitations
	Detection Latency
	Memory Overhead
	Type Unsafety
	Mixture of Multiple Pointers

	CHAPTER 8 Related Work
	Fat-Pointer Approaches
	Object-based Approaches
	Pointer-based Approaches
	Other Software-only Approaches
	Hardware Approaches

	CHAPTER 9 Conclusion and Future Work
	Conclusion
	Future Work
	Non-pointer Load/Store Instructions
	Checking for Only Critical Functions
	Checking for Type Safety
	Cache for the Security Engine
	Multiprocess Support
	In-processor Design and External-device Design

	REFERENCES

