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ABSTRACT

Stability of an interconnected system consisting of two switched systems is investigated in

the scenario where in both switched systems there may exist some subsystems that are not

input-to-state stable (non-ISS). We have shown that, providing the switching signals neither

switch too frequently nor activate non-ISS subsystems for too long, a small-gain theorem

can be used to conclude global asymptotic stability (GAS) of the interconnected system.

For each switched system, with the constraints on the switching signal being modeled by an

auxiliary timer, a correspondent hybrid system is defined to enable the construction of hybrid

ISS Lyapunov functions. Apart from justifying the ISS property of their corresponding

switched systems, these hybrid ISS Lyapunov functions are then combined to establish a

Lyapunov-type small-gain condition which guarantees that the interconnected system is

globally asymptotically stable.
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CHAPTER 1

INTRODUCTION

The study of interconnected systems plays a significant role in the development of stability

theory of dynamic systems, as it allows one to investigate the stability property of a complex

system by analyzing its less complicated components. In this context, the small-gain theo-

rems have proved to be important tools in the analysis of feedback connections of multiple

systems, which appear frequently in the control literature. A comprehensive summarization

of classical small-gain theorems involving input-output gains of linear systems can be found

in [1]. This technique was then generalized to nonlinear feedback systems in [2] and [3] within

the input-output context. The notion of input-to-state stability (ISS) proposed by Sontag

[4] was naturally adopted and extended in [5] to establish a general nonlinear small-gain

theorem which guaranteed both external and internal stabilities. Instead of analyzing the

behavior of solution trajectories, Jiang et al. [6] have developed a Lyapunov-type nonlin-

ear small-gain theorem based on the construction of ISS Lyapunov functions. A variety of

nonlinear small-gain theorems were summarized in [7, Section 10.6].

In this thesis, we explore the stability property of interconnected switched systems. The

study of switched systems has attracted a lot of attention in recent years (see, e.g., [8]

and references therein). It is well known that, in general, a switched system does not

necessarily inherit the stability properties of its subsystems. For example, in [8, Part II] it is

shown that a switched system consisting of two asymptotically stable subsystems may not

be stable. In the linear system context, it was proved in [9] that such a switched system

can achieve asymptotic stability providing the switching signal satisfies a certain dwell-time

condition. This approach was then generalized to the nonlinear system context and to the

concept of average dwell-time condition in [10]. In [11], a similar result was developed

for a linear switched system with both stable and unstable subsystems by restricting the
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fraction of time in which the unstable subsystems are active. The development of stability

property inheritance in switched systems was extended to the ISS context by Vu et al.

[12] and to the IOSS (input/output-to-state stability) context by Müller and Liberzon [13],

both for nonlinear switched systems. Furthermore, in [13] the IOSS property of a switched

nonlinear system was studied also for the general case where some of the subsystems are not

input/output-to-state stable.

In this thesis, a sufficient condition is formulated to guarantee the global asymptotic

stability (GAS) of an interconnected system consisting of two switched systems. We have

considered a very general scenario: in both switched systems there may exist some subsys-

tems that are not input-to-state stable (non-ISS). It is proved that, providing the switching

signal neither switches too frequently (average dwell-time constraint) nor activates non-ISS

subsystems for too long (time-ratio constraint), a small-gain theorem can be established by

introducing an auxiliary timer and adopting hybrid system techniques. In particular, for

each switched system, a hybrid system is defined such that their solutions are correspondent

and the constraints on the switching signal are modeled by the auxiliary timer. An ISS

Lyapunov function for each hybrid system is then constructed to show that any complete

solution to the hybrid system, and therefore any solution to the switched system, is ISS.

(Although the result that a switched system with non-ISS subsystems is ISS under certain

average dwell-time condition and time-ratio condition has already been proved in [13], the

Lyapunov-type formulation in this thesis exhibits an improvement in the sense that it not

only generates an ISS Lyapunov function which is used later in the study of the intercon-

nected system, but provides means for robustness analysis as well.) With these two ISS

Lyapunov functions, a small-gain condition is then established to prove the GAS property

of the interconnected switched system.

Hybrid systems are dynamic systems that possess both continuous-time and discrete-time

features. Trajectory-based small-gain theorems for interconnected hybrid systems were first

presented in [14] and [15], while Lyapunov-based formulations were introduced in [16]. The

concept of ISS Lyapunov function was extended to hybrid systems in [17]. In our analysis

of hybrid systems, we have adopted the modeling framework proposed by Goebel et al. [18],

which proved to be general and natural from the viewpoint of Lyapunov stability theory. In
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the hybrid system context, a detailed study of small-gain theorems based on the construction

of ISS Lyapunov functions using this modeling framework can be found in [19], [20] and [21].

Comparing to [21], our result in modifying the ISS Lyapunov function to guarantee its

decrease along solutions is more general in the sense that it applies to the situation where

the original ISS Lyapunov functions are increasing not only at the jumps but also during

some of the flows. Based on the idea of restricting non-ISS subsystems’ activation time

proportion proposed in [11] and [13], an aforementioned auxiliary timer is introduced in the

construction of the hybrid system to manage the non-ISS flows.

This thesis is structured as follows. In Chapter 2, we introduce some mathematical pre-

liminaries. Our main result—the small-gain theorem for interconnected switched systems

with both ISS and non-ISS subsystems—is presented and interpreted in Chapter 3, followed

by a corollary discussing relaxations in the assumptions to conclude GAS when all subsys-

tems are ISS. A detailed proof, prefaced by an introduction to hybrid systems, is provided in

Chapter 4. Chapter 5 concludes the thesis with a short summary and an outlook on future

research.
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CHAPTER 2

PRELIMINARIES

Consider a family of dynamic systems

ẋ = fp(x, u), p ∈ P , (2.1)

where x ∈ Rn is the state, u ∈ Rm the input and P the index set (which can in principle be

arbitrary). For all p ∈ P , fp is locally Lipschitz and fp(0, 0) = 0. A switched system

ẋ = fσ(x, u) (2.2)

is generated by the family (2.1) and a switching signal σ : R≥0 → P which specifies the index

of the active system at time t. In this thesis, it is assumed that the switching signal σ is

piecewise constant, right-continuous and has no accumulation point. Thus it has at most

one switch at any time instant and finitely many switches in any finite time interval. Let

ψi (i ∈ Z>0) denote the time when the i-th switch occurs and let Ψ := {ψi : i ∈ Z>0}. A

function u is an admissible input to the switched system (2.2) if it is measurable and locally

essentially bounded.

Following Morse [9], we say that a switching signal σ satisfies the dwell-time condition if

there exists a constant τd ∈ R>0, called the dwell-time, such that for all consecutive switching

instants ψi, ψi+1 ∈ Ψ,

ψi+1 − ψi ≥ τd. (2.3)

A generalized concept was introduced by Hespanha and Morse [10]: a switching signal σ is

said to satisfy the average dwell-time condition if there exists a constant τa ∈ R>0, called
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the average dwell-time, and a constant N0 ∈ Z≥0 such that

N(t2, t1) ≤ N0 +
t2 − t1
τa

∀ t2 ≥ t1 ≥ 0, (2.4)

where N(t2, t1) denotes the number of switchings in the time interval (t1, t2]. Note that the

dwell-time condition can be interpreted as a special case of the average dwell-time condition

with N0 = 1 and τa = τd.

For two vectors x1, x2, (x1, x2) is used to denote their concatenation, that is, (x1, x2) :=

(x>1 , x
>
2 )>.

For a vector x ∈ Rn, we use |x| to denote its Euclidean norm. For a compact setA ⊂ Rn, we

use |x|A to denote the Euclidean distance from a vector x to A. For a function u : R≥0 → Rn,

‖u‖t is used to denote its essential supremum (Euclidean) norm on the interval [0, t].

A function α : R≥0 → R≥0 is of class K if α is continuous, strictly increasing and positive

definite. α is of class K∞ if α ∈ K and limx→∞ α(x) = ∞. In particular, this implies that

α is globally invertible. A function β : R≥0 × R≥0 → R≥0 is of class KL if β(·, t) ∈ K for all

fixed t and β(x, ·) is decreasing and limt→∞ β(x, t) = 0 for all fixed x.

As introduced by Sontag [4], a dynamic system from family (2.1) is called input-to-state

stable (ISS) if there exist functions γ ∈ K∞, β ∈ KL such that for all initial states x(0) ∈ Rn

and all inputs u : R≥0 → Rm,

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖t) ∀ t ∈ R≥0. (2.5)

The definition of input-to-state stability (ISS) also applies to switched systems. Note that

for an autonomous dynamic system (i.e. u ≡ 0), the ISS property (2.5) is equivalent to the

notion of global asymptotic stability (GAS) [22, Proposition 2.5].
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CHAPTER 3

MAIN RESULT

3.1 Interconnected Switched System with Both ISS and Non-ISS

Subsystems

Consider two switched systems

ẋ1 = f1,σ1(x1, u1),

ẋ2 = f2,σ2(x2, u2),
(3.1)

where, for i ∈ {1, 2}, xi ∈ Rni , ui ∈ Rmi , and σi ∈ Pi.1 Suppose these two switched systems

fulfill the same assumptions as those imposed on (2.2) in Chapter 2. If m1 = n2 and m2 = n1,

an interconnected switched system with the state (x1, x2) ∈ Rn1+n2 can be constructed by

letting u1 = x2 and u2 = x1: ẋ1
ẋ2

 =

f1,σ1(x1, x2)
f2,σ2(x2, x1)

 . (3.2)

Suppose that in the interconnected switched system (3.2), both switched systems may

contain ISS as well as non-ISS subsystems. For i ∈ {1, 2}, let Ps,i and Pu,i denote the

subsets of Pi containing the indexes of ISS and non-ISS subsystems, respectively. Then

(Ps,i,Pu,i) forms a partition of Pi (i.e., Ps,i ∪ Pu,i = Pi,Ps,i ∩ Pu,i = ∅). Following Müller

and Liberzon [13], we define Ts,i(t2, t1) as the activation time of ISS subsystems on the

time interval (t1, t2] (i.e., σi ∈ Ps,i) and Tu,i(t2, t1) that for non-ISS subsystems. Then

Ts,i(t2, t1) + Tu,i(t2, t1) = t2 − t1.

The three constraints in the following assumption are commonly used in the context of

1We use fi,σi
instead of fσi

to avoid confusion in case the two index sets P1,P2 contain common elements.
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switched systems.

Assumption 1. For all i, j ∈ {1, 2} such that i 6= j, the following constraints are satisfied:

Uniform ISS Lyapunov-Type Constraint There exists a family of positive defi-

nite C1 functions Vi,p : Rni → R≥0 (p ∈ Pi) such that the following conditions hold:

1. ∃ α1,i, α2,i ∈ K∞ such that for all xi ∈ Rni and all pi ∈ Pi,

α1,i(|xi|) ≤ Vi,pi(xi) ≤ α2,i(|xi|). (3.3)

2. ∃ φi ∈ K∞, λs,i, λu,i ∈ R>0 such that for all xi ∈ Rni , xj ∈ Rnj and all ps ∈ Ps,i, pu ∈ Pu,i,

|xi| ≥ φi(|xj|) ⇒


∂Vi,ps(xi)

∂xi
· fi,ps(xi, xj) ≤ −λs,iVi,ps(xi),

∂Vi,pu(xi)

∂xi
· fi,pu(xi, xj) ≤ λu,iVi,pu(xi).

(3.4)

3. ∃ µi ∈ R≥1 such that for all xi ∈ Rni and all pi, qi ∈ Pi,

Vi,pi(xi) ≤ µiVi,qi(xi). (3.5)

Time-Ratio Constraint There exists ρi ∈ [0, 1) and T0,i ∈ R≥0 such that the

activation time of non-ISS subsystems satisfies

Tu,i(t2, t1) ≤ T0,i + ρi(t2 − t1) ∀ t2 ≥ t1 ≥ 0. (3.6)

Average Dwell-Time Constraint The switching signal σi satisfies the average

dwell-time condition (2.4) with constants τa,i ∈ R>0 and N0,i ∈ Z≥0.

Remark 1. The constraints in Assumption 1 apply to each switched system separately. More-

over, the Uniform ISS Lyapunov-Type Constraint is a constraint on the subsystems’ dynam-

ics, while the Time-Ratio Constraint and the Average Dwell-Time Constraint are constraints

on the switching signals.
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Remark 2. The Uniform ISS Lyapunov-Type Constraint in Assumption 1 is “Lyapunov-

type” in the sense that it constrains not only the ISS subsystems, but the non-ISS subsystems

as well. The existence of functions Vi,ps satisfying (3.4) for ps ∈ Ps,i follows from the fact

that these subsystems are ISS [23], while the existence of functions Vi,pu satisfying (3.4) for

pu ∈ Pu,i is equivalent to the forward completeness property of non-ISS subsystems [24].

Remark 3. The Uniform ISS Lyapunov-Type Constraint in Assumption 1 is “uniform” since

for switched system i, it is satisfied by ISS Lyapunov-type functions Vi,p for all subsystems,

with fixed functions α1,i, α2,i, φi and constants λs,i, λu,i, µi. This uniformity can be concluded

automatically for some particular types of index sets. For example, (3.3) is guaranteed if P

is finite and all subsystems are ISS [12, Remark 1]. Besides, for positive definite functions

Vi,p, the existence of the uniform ratio bound µi in (3.5) is a sufficient condition for the

existence of the uniform comparison functions α1,i, α2,i in (3.3).

Remark 4. The idea of restricting the fraction of time during which non-ISS subsystems are

active in the Time-Ratio Constraint is essentially introduced by Zhai et al. [11] and Müller

and Liberzon [13].

Our main result is stated as the following theorem.

Theorem 1. Consider an interconnected switched system (3.2). Suppose that Assumption 1

holds with constants satisfying

λs,i >
ln(µi)

τa,i
+ ρi(λs,i + λu,i) =: γi ∀ i ∈ {1, 2}. (3.7)

For all i, j ∈ {1, 2} such that i 6= j, let

Γi := N0,i ln(µi) + T0,i(λs,i + λu,i), (3.8)

and let χi ∈ K∞ be defined as

χi(r) = α2,i(φi(α
−1
1,j (r))) exp(Γi). (3.9)

Then the interconnected switched system is globally asymptotically stable if the following
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small-gain condition is satisfied:

χ1(χ2(r)) < r ∀ r ∈ R>0. (3.10)

3.2 Interconnected Switched System with Only ISS Subsystems

In the stability analysis of the interconnected switched system (3.2), a less complicated

scenario arises when all the subsystems are ISS for both of the switched systems (i.e.,

∀ i ∈ {1, 2}, Ps,i = Pi,Pu,i = ∅). In this case, the global asymptotic stability of the

interconnected switched system can be established under less restrictive assumptions, as

stated in the following assumption and corollary:

Assumption 2. For all i, j ∈ {1, 2} such that i 6= j, the following constraints are satisfied:

Uniform ISS Lyapunov Constraint There exists a family of positive definite C1

functions Vi,p : Rni → R≥0 (p ∈ Pi) such that the following conditions hold:

1. ∃ α1,i, α2,i ∈ K∞ such that (3.3) holds for all xi ∈ Rni and all pi ∈ Pi.

2. ∃ φi ∈ K∞, λi ∈ R>0 such that for all xi ∈ Rni , xj ∈ Rnj and all pi ∈ Pi,

|xi| ≥ φi(|xj|) ⇒
∂Vi,pi(xi)

∂xi
· fi,pi(xi, xj) ≤ −λiVi,pi(xi). (3.11)

3. ∃ µi ∈ R≥1 such that (3.5) holds for all xi ∈ Rni and all pi, qi ∈ Pi.

Average Dwell-Time Constraint The switching signal σi satisfies the average

dwell-time condition (2.4) with constants τa,i ∈ R>0 and N0,i ∈ Z≥0.

Remark 5. If (3.5) is satisfied with µi = 1, then the Uniform ISS Lyapunov Constraint

is equivalent to the existence of a common ISS Lyapunov function for the subsystems of

the switched system i, which guarantees the ISS of that switched system under arbitrary

switching [25].
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Corollary 1. Consider an interconnected switched system (3.2). Suppose that Assumption

2 holds with constants satisfying:

λi >
ln(µi)

τa,i
. (3.12)

For all i, j ∈ {1, 2} such that i 6= j, let χi ∈ K∞ be defined as

χi(r) = α2,i(φi(α
−1
1,j (r))) exp(N0,i ln(µi)). (3.13)

Then the interconnected switched system is globally asymptotically stable if the small-gain

condition (3.10) is satisfied.

Remark 6. For an interconnected switched system (3.2) in which only one of the two switched

systems contains non-ISS subsystems, the global asymptotic stability can be established

if Assumption 1 is satisfied by this switched system, while Assumption 2 is satisfied by

the other, and the small-gain condition (3.10) is satisfied with the functions χ1, χ2 defined

according to (3.9) and (3.13), respectively.

Remark 7. Suppose that in one of the two switched systems, instead of the average dwell-time

condition (2.4), the switching signal satisfies the dwell-time condition (2.3) with dwell-time

τd,i. Then the same result holds if the average dwell-time τa,i in (3.7) (or (3.12), in case this

switched system consists of only ISS subsystems) is substituted by τd,i and the constant N0,i

in (3.9) (or (3.13)) is equal to one.
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CHAPTER 4

PROOF OF THE MAIN RESULT

In this chapter, a detailed proof of Theorem 1 is presented. We start by introducing some pre-

liminaries for hybrid systems in Section 4.1. In Section 4.2, a correspondent interconnected

hybrid system is constructed for the interconnected switched system under Assumption 1.

An ISS Lyapunov function for each hybrid system is defined in Section 4.3. In Section 4.4,

the ISS property of each hybrid system is proved.1 Section 4.5 concludes the proof of Theo-

rem 1 by showing that the interconnected hybrid system, and therefore the interconnected

switched system, is GAS.

4.1 Preliminaries for Hybrid Systems

Following Goebel et al. [18, Chapter 2], a hybrid system with inputs can be modeled as ż ∈ F (z, u), z ∈ C,

z+ ∈ G(z, u), z ∈ D,
(4.1)

where z ∈ Rn is the state, u ∈ Rm the input, C ⊂ Rn the flow set, D ⊂ Rn the jump

set, F : Rn × Rm ⇒ Rn the flow map and G : Rn × Rm ⇒ Rn the jump map.2 (In this

model, if z ∈ C ∩D, then there are two possible cases: either the state does not jump and

ż ∈ F (z, u), or the state jumps to a state z+ ∈ G(z, u) and continues from there.) Similarly

to the assumptions imposed on the switched system (2.2), in this thesis we assume that a

solution to the hybrid system (4.1) jumps at most once at any time instant and finitely many

times in any finite time interval. H = (C,F,D,G) is called the data of the hybrid system.

1This section is not directly related to the proof of Theorem 1 but considered as an independent result.
2We use ”⇒” to denote a set-valued mapping.
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The solutions of the hybrid system are defined on the so-called hybrid time domain. A set

E ⊂ R≥0 × Z≥0 is a compact hybrid time domain if

E =
J⋃
j=0

([θj, θj+1], j) (4.2)

for some finite sequence of times 0 = θ0 < θ1 < · · · < θJ+1. E is a hybrid time domain if for

all (T, J) ∈ E, E ∩ ([0, T ]×{0, 1, . . . , J}) is a compact hybrid time domain. A hybrid arc is

a function z : dom z → Rn defined on a hybrid time domain such that for each fixed j ∈ Z≥0,

z(·, j) is locally absolutely continuous on {t : (t, j) ∈ dom z} =: Θz
j . A hybrid input is a

function u : domu→ Rm defined on a hybrid time domain such that for each fixed j ∈ Z≥0,

u(·, j) is Lebesgue measurable and locally essentially bounded on {t : (t, j) ∈ domu}. A

hybrid arc z : dom z → Rn is a solution to a hybrid system H = (C,F,D,G) with hybrid

input u : domu→ Rm if the following conditions hold:

1. dom z = domu.

2. For all j ∈ Z≥0 and almost all t ∈ Θz
j , z(t, j) ∈ C and ż(t, j) ∈ F (z(t, j), u(t, j)).3

3. For all (t, j) ∈ dom z such that (t, j + 1) ∈ dom z, z(t, j) ∈ D and z(t, j + 1) ∈

G(z(t, j), u(t, j)).

With proper assumptions on the data H, one can establish the local existence of solutions

to the hybrid system, which may not be necessarily unique (see, e.g., [18, Proposition 2.10]).

A solution to a hybrid system is complete if its domain is unbounded.4

Following Cai and Teel [17], for a function defined on a hybrid time domain z : dom z → Rn,

the essential supremum (Euclidean) norm up to hybrid time (t, j) is denoted by ‖z‖(t,j) and

defined as

‖z‖(t,j) = max

{
ess sup

(s,k)∈dom z\J(z), s≤t, k≤j
|u(s, k)|, sup

(s,k)∈J(z), s≤t, k≤j
|u(s, k)|

}
,

3Here z(t, j) represents the state of the system at time t and after j jumps.
4In this thesis, since we assume that a solution to the hybrid system (4.1) jumps at most once at any

time instant and finitely many times in any finite time interval, a complete solution is a solution with infinite
time horizon.
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where J(z) is the set of all (s, k) ∈ dom z such that (s, k + 1) ∈ dom z. ‖z‖A,(t,j) is used

to denote the essential supremum Euclidean distance to a compact set A up to hybrid time

(t, j).

4.2 A Correspondent Hybrid System

Consider the following interconnected hybrid system with state (z1, z2): for i, j ∈ {1, 2} such

that i 6= j, zi = (x̃i, σ̃i, τi) ∈ Rni × Pi × [0,Γi] =: Zi and the system dynamics are żi ∈ Fi(zi, zj), zi ∈ Ci,

z+i ∈ Gi(zi), zi ∈ Di,
(4.3)

where

Fi(zi, zj) :=




{fi,σ̃i(x̃i, x̃j)}

{0}

[0, γi]

 , if σ̃i ∈ Ps,i,


{fi,σ̃i(x̃i, x̃j)}

{0}

{γi − (λs,i + λu,i)}

 , if σ̃i ∈ Pu,i,

Ci := Rni × Pi × [0,Γi],

Gi(zi) := {x̃i} × (Pi\{σ̃i})× {τi − ln(µi)},

Di := Rni × Pi × [ln(µi),Γi],

and γi, Γi are constants defined in (3.7) and (3.8). We will show that the following proposition

holds.

Proposition 1. For each solution (x1, x2) to the interconnected switched system (3.2) with

the switching signals σ1, σ2, if σ1, σ2 satisfy the Time-Ratio Constraint and Average Dwell-

Time Constraint in Assumption 1, there is a complete solution (z1, z2) (zi = (x̃i, σ̃i, τi),

i ∈ {1, 2}) to the interconnected hybrid system (4.3) such that

x̃i(t, j) = xi(t) ∀ (t, j) ∈ dom zi,∀ i ∈ {1, 2}.
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Proof. Suppose (x1, x2) is a solution to the interconnected switched system (3.2) with the

switching signals σ1, σ2. For all i ∈ {1, 2}, let Ψi = {ψi,k : k ∈ Z>0} be the set of the switching

times of σi and define ψi,0 = 0. For all T ∈ R≥0, let KT := max{k ∈ Z≥0 : ψi,k ≤ T} and

ET :=

(
KT−1⋃
k=0

([ψi,k, ψi,k+1], k)

)
∪ ([ψKT

, T ], KT ), (4.4)

then ET is a compact hybrid time domain. Consider the hybrid arc zi = (x̃i, σ̃i, τi) defined

such that for all T ∈ R≥0,

• dom zi ∩ ([0, T ]× {0, 1, . . . , KT}) = ET ;

• ∀ (t, k) ∈ ET , x̃i(t, k) = xi(t) and σ̃i(t, k) = σi(ψi,k);

• ∀ (t, k) ∈ ET ,

τi(t, k) =


Γi, if k = 0,

min{Γi, τ̄s,i(t, k)}, if k > 0, σi(ψi,k) ∈ Ps,i,

τ̄u,i(t, k), if k > 0, σi(ψi,k) ∈ Pu,i,

where

τ̄s,i(t, k) := τi(ψi,k, k − 1)− ln(µi) + γi(t− ψi,k),

τ̄u,i(t, k) := τ̄s,i(t, k)− (λs,i + λu,i)(t− ψi,k).

We will show that, if the switching signals σ1, σ2 satisfy the Time-Ratio Constraint and

Average Dwell-Time Constraint in Assumption 1, (z1, z2) is a complete solution to the in-

terconnected hybrid system (4.3).

Indeed, by construction, (z1, z2) satisfies the dynamic equations (4.3) and thus is a solution

to the hybrid system. For all i ∈ {1, 2}, zi is complete if dom zi has infinite time horizon

and ∀ (t, j) ∈ dom zi, zi(t, j) ∈ Zi, which amount to showing the following three properties:

1. x̃i ∈ Rni is equivalent to the fact that xi has no finite escape time, which is guaranteed

by the Uniform ISS Lyapuno-Type Constraint in Assumption 1. By construction, this
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property also implies that dom zi is unbounded.

2. σ̃i ∈ Pi is guaranteed by construction.

3. τi ≤ Γi is guaranteed by construction, and τi ≥ 0 is shown in the following: For all (t, k) ∈

dom zi, let (t0, k0) := arg max(s,l)∈dom zi{s + l ≤ t + k : τi(s, l) = Γi}. Then according to

the Time-Ratio Constraint and Average Dwell-Time Constraint in Assumption 1 and the

definitions of γi in (3.7) and Γi in (3.8), we have

τi(t, k) = τi(t0, k0)−N(t, t0) ln(µi) + Ts,i(t, t0)γi + Tu,i(t, t0)(γi − (λs,i + λu,i))

≥ Γi − (N0,i + (t− t0)/τa,i) ln(µi) + (t− t0)γi − (T0,i + ρi(t− t0))(λs,i + λu,i)

= Γi −N0,i ln(µi)− T0,i(λs,i + λu,i) + (γi − ln(µi)/τa,i − ρi(λs,i + λu,i))(t− t0)

= 0.

Therefore, the hybrid arc (z1, z2) constructed above is a complete solution to the intercon-

nected hybrid system (4.3).5

4.3 ISS Lyapunov Functions for the Hybrid Systems

Consider the interconnected hybrid system (4.3). For all i ∈ {1, 2}, define a function

Vi : Zi → R≥0 as

Vi(zi) = Vi,σ̃i(x̃i) exp(τi). (4.5)

For all zi = (x̃i, σ̃i, τi) ∈ Zi, since Vi,σ̃i(x̃i) is C1 with respect to x̃i, Vi(zi) is continuously

differentiable with respect to x̃i and τi. We will show that, for all i ∈ {1, 2}, Vi satisfies the

following ISS Lyapunov conditions.

Proposition 2. For all i, j ∈ {1, 2} such that i 6= j, the following conditions hold:

5By Goebel et al. [18, Proposition 2.10], for a hybrid system with local existence of solutions, a solution is
complete if it has no finite escape time and does not jump out of the union of the jump set and the closure of
the flow set. Unfortunately, we cannot apply this result since in the hybrid system (4.3), the local existence
of solutions is not satisfies everywhere. In particular, at zi = (x̃i, σ̃i, 0) where σ̃i ∈ Pu,i, the condition (VC)
in [18, Proposition 2.10] does not hold. However, the hybrid arcs we constructed will not arrive at such
points.
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1. ∃ αi, αi ∈ K∞ such that

αi(|zi|Ai
) ≤ Vi(zi) ≤ αi(|zi|Ai

) ∀ zi ∈ Zi, (4.6)

where

Ai := 0ni × Pi × [0,Γi]. (4.7)

2. ∃ λi ∈ R>0 such that

|zi|Ai
≥ φi(|zj|Aj

) ⇒ ∂Vi(zi)

∂zi
· vi ≤ −λiVi(zi) ∀ vi ∈ Fi(zi, zj),∀ zi ∈ Ci, zj ∈ Zj.

(4.8)

3. We have

Vi(z
+
i ) ≤ Vi(zi) ∀ z+i ∈ Gi(zi),∀ zi ∈ Di. (4.9)

Proof. For all i, j ∈ {1, 2} such that i 6= j,

1. Let αi(r) := α1,i(r), αi(r) := α2,i(r) exp(Γi), then (4.6) is satisfied according to (3.3).

2. Let λi := λs,i − γi, then λi > 0 by (3.7). For all zi ∈ Ci, zj ∈ Zj and all vi ∈ Fi(zi, zj),

since Vi(zi) is continuously differentiable with respect to x̃i and τi, the inner product in

(4.8) is well defined. Then, according to (3.4), |zi|Ai
≥ φi(|zj|Aj

) implies

(a) if σ̃i ∈ Ps,i,

∂Vi(zi)

∂zi
· vi ≤

∂Vi(x̃i, σ̃i, τi)

∂x̃i
· fi,σ̃i(x̃i, x̃j) +

∂Vi(x̃i, σ̃i, τi)

∂τi
· γi

≤ ∂Vi,σ̃i(x̃i)

∂x̃i
· exp(τi)fi,σ̃i(x̃i, x̃j) + Vi,σ̃i(x̃i) exp(τi)γi

≤ −(λs,i − γi)Vi,σ̃i(x̃i) exp(τi)

= −λiVi(zi).
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(b) if σ̃i ∈ Pu,i,

∂Vi(zi)

∂zi
· vi =

∂Vi(x̃i, σ̃i, τi)

∂x̃i
· fi,σ̃i(x̃i, x̃j) +

∂Vi(x̃i, σ̃i, τi)

∂τi
· (γi − (λs,i + λu,i))

=
∂Vi,σ̃i(x̃i)

∂x̃i
· exp(τi)fi,σ̃i(x̃i, x̃j) + Vi,σ̃i(x̃i) exp(τi)(γi − (λs,i + λu,i))

≤ (λu,i + γi − (λs,i + λu,i))Vi,σ̃i(x̃i) exp(τi)

= −λiVi(zi).

Thus (4.8) is satisfied.

3. For all zi ∈ Di and all z+i ∈ Gi(zi), according to (3.5),

Vi(z
+
i ) = Vi,σ̃+

i
(x̃+i ) exp(τ+i )

≤ µiVi,σ̃i(x̃i) exp(τi − ln(µi))

= Vi,σ̃i(x̃i) exp(τi)

= Vi(zi).

Thus (4.9) is satisfied.

4.4 Digression on ISS of the Switched Systems

In this section, we will show that, for all i ∈ {1, 2}, the ISS Lyapunov function Vi defined

in (4.5) can be conveniently used to prove the ISS property of the switched system i. While

not directly related to the proof of Theorem 1, this result is presented here to show the

advantage of our method in comparison with that of [13].

For all i ∈ {1, 2}, let αi ∈ K∞, βi ∈ KL be defined asαi(r) = α−1i (αi(φi(r))),

βi(r, t) = α−1i (αi(r) exp(−λit)),
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then we have the following proposition:

Proposition 3. Suppose (z1, z2) is a complete solution to the interconnected hybrid system

(4.3), then

|zi(t, k)|Ai
≤ βi(|zi(0, 0)|Ai

, t) + αi(‖zj‖Aj ,(t,k)) ∀ (t, k) ∈ dom zi,∀ i, j ∈ {1, 2} : i 6= j,

(4.10)

where A1, A2 are sets defined in (4.7).

Proof. For all i, j ∈ {1, 2} such that i 6= j, according to (4.8) and (4.9), for all (t, k), (t0, k0) ∈

dom zi such that t+ k ≥ t0 + k0,

|zi(s, l)|Ai
≥ φi(‖zj‖Aj ,(s,l)) ∀ (s, l) ∈ dom zi ∩ ([t0, t]× {k0, k0 + 1, . . . , k})

implies

Vi(zi(t, k)) ≤ Vi(zi(t0, k0)) exp(−λi(t− t0)). (4.11)

From here, our proof follows similar argument to the proof of [17, Proposition 2.7]. Consider

the following cases:

1. |zi(t, k)|Ai
≤ φi(‖zj‖Aj ,(t,k)). Then according to (4.6),

|zi(t, k)|Ai
≤ φi(‖zj‖Aj ,(t,k))

≤ α−1i (αi(φi(‖zj‖Aj ,(t,k))))

= αi(‖zj‖Aj ,(t,k))

≤ βi(|zi(0, 0)|Ai
, t) + αi(‖zj‖Aj ,(t,k)).

2. ∀ (s, l) ∈ dom zi ∩ ([0, t] × {0, 1, . . . , k}), |zi(s, l)|Ai
> φi(‖zj‖Aj ,(s,l)). Then by (4.11)

we have

Vi(zi(t, k)) ≤ Vi(zi(0, 0)) exp(−λit).
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According to (4.6),

|zi(t, k)|Ai
≤ α−1i (αi(|zi(0, 0)|Ai

) exp(−λit))

= βi(|zi(0, 0)|Ai
, t)

≤ βi(|zi(0, 0)|Ai
, t) + αi(‖zj‖Aj ,(t,k)).

3. ∃ (t0, k0) ∈ dom zi∩ ([0, t]×{0, 1, . . . , k}) such that |zi(t0, k0)|Ai
= φi(‖zj‖Aj ,(t0,k0)) and

∀ (s, l) ∈ dom zi ∩ ([t0, t] × {k0, k0 + 1, . . . , k})\{(t0, k0)}, |zi(s, l)|Ai
> φi(‖zj‖Aj ,(s,l)).

Then by (4.11) we have

Vi(zi(t, k)) ≤ Vi(zi(t0, k0)) exp(−λi(t− t0)).

According to (4.6),

|zi(t, k)|Ai
≤ α−1i (αi(|zi(t0, k0)|Ai

) exp(−λi(t− t0)))

≤ α−1i (αi(|zi(t0, k0)|Ai
))

= αi(‖zj‖Aj ,(t0,k0))

≤ βi(|zi(0, 0)|Ai
, t) + αi(‖zj‖Aj ,(t,k)).

Thus (4.10) is satisfied.

Combining Propositions 1 and 3 gives that, for each solution (x1, x2) to the interconnected

switched system (3.2), if Assumption 1 holds,

|xi(t)| ≤ βi(|xi(0)|, t) + αi(‖xj‖t) ∀ t ∈ R≥0, ∀ i, j ∈ {1, 2} : i 6= j. (4.12)

Remark 8. Notice that for all i, j ∈ {1, 2} such that i 6= j, if we substitute xj by an admissible

input u to the switched system (2.2) in all assumptions and results, all the proofs remain

valid. Therefore, we have the following corollary, which has been first proved by Müller and

Liberzon [13] using trajectory analysis.
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Corollary 2 ([13, Theorem 2]). Consider a switched system (2.2) where x ∈ Rn, u ∈ Rm and

σ ∈ P. Let Ps,Pu denote the sets of indexes of the ISS and non-ISS subsystems, respectively,

and Tu(t2, t1) the length of activation time of non-ISS subsystems in a time interval (t1, t2].

Suppose the following constraints are satisfied:

Uniform ISS Lyapuno-Type Constraint There exists a family of positive definite

C1 functions Vp : Rn → R≥0 (p ∈ P) such that the following conditions hold:

1. ∃ α1, α2 ∈ K∞ such that for all x ∈ Rn and all p ∈ P,

α1(|x|) ≤ Vp(x) ≤ α2(|x|). (4.13)

2. ∃ φ ∈ K∞, λs, λu ∈ R>0 such that for all x ∈ Rn, all u ∈ Rm and all ps ∈ Ps, pu ∈ Pu,

|x| ≥ φ(|u|) ⇒


∂Vps(x)

∂x
· fps(x, u) ≤ −λsVps(x)

∂Vpu(x)

∂x
· fpu(x, u) ≤ λuVpu(x)

. (4.14)

3. ∃ µ ∈ R≥1 such that for all x ∈ Rn and all p, q ∈ P,

Vp(x) ≤ µVq(x). (4.15)

Time-Ratio Constraint The switching signal σ satisfies (3.6) with constants ρ ∈ [0, 1)

and T0 ∈ R≥0.

Average Dwell-Time Constraint The switching signal σ satisfies the average dwell-

time condition (2.4) with constants τa,i ∈ R>0 and N0,i ∈ Z≥0.

Then the switched system is input-to-state stable if

λs >
ln(µ)

τa
+ ρ(λs + λu). (4.16)
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4.5 GAS of the Interconnected Switched System

As shown by Jiang et al. [6], by (3.10) there exists a K∞ function δ such that

χ−11 (r) > δ(r) > χ2(r) ∀ r ∈ R>0, (4.17)

and δ is C1 on R>0.

Let z = (z1, z2) ∈ Z1 × Z2 =: Z be the state of the interconnected hybrid system (4.3)

and define a function V : Z → R≥0 as

V (z) = max{δ(V1(z1)), V2(z2)}. (4.18)

Since for all i ∈ {1, 2}, Vi is continuously differentiable with respect to x̃i and τi, and δ is

K∞ and C1 and (0,∞), V is locally Lipschitz and thus absolutely continuous and almost

everywhere differentiable with respect to x̃1, x̃2, τ1 and τ2 (Rademacher’s theorem [26]). We

will show that, according to Proposition 2, V satisfies the following Lyapunov conditions:

1. ∃ α, α ∈ K∞ such that

α(|z|A) ≤ V (z) ≤ α(|z|A) ∀ z ∈ Z, (4.19)

with A := A1 × A2, where A1, A2 are sets defined in (4.7).

Indeed, let α(r) := min{δ(α1(r/
√

2)), α2(r/
√

2)},

α(r) := max{δ(α1(r) exp(Γ1)), α2(r) exp(Γ2)},
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then (4.19) is satisfied according to (4.6). In particular, for all z ∈ Z,

α(|z|A) = min{δ(α1(|z|A/
√

2)), α2(|z|A/
√

2)}

≤ min
{

max{δ(α1(|z1|A1)), δ(α1(|z2|A2))},max{α2(|z1|A1), α2(|z2|A2)}
}

≤ max{δ(α1(|z1|A1)), α2(|z2|A2)}

≤ max{δ(V1(z1)), V2(z2)}

= V (z).

2. There exists a positive definite function h : R≥0 → R≥0 such that

∂V (z)

∂z
· v ≤ −h(V (z)) ∀ v ∈ F (z),∀ z ∈ (C1 × C2)\Ω, (4.20)

where

F (z) :=

F1(z1, z2)

F2(z2, z1)

 ,
and Ω is a set of Lebesgue-measure zero which contains all points at which V is not

differentiable.

Indeed, let h be defined as

h(r) = min{δ′(δ−1(r))λ1δ−1(r), λ2r}.

As δ is K∞ and C1 on (0,∞), h is positive definite. For all z ∈ Z and all v = (v1, v2) ∈

F (z), consider the following three cases:

(a) δ(V1(z1)) > V2(z2). Then V (z) = δ(V1(z1)) and, according to (4.17),

V1(z1) ≥ δ−1(V2(z2)) > χ1(V2(z2)). (4.21)

By (3.3) and the definition of χ1 in (3.9), V1(z1) ≥ χ1(v2(z2)) implies |z1|A1 ≥
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φ1(|z2|A2). Thus by (4.8),

∂V (z)

∂z
· v = δ′(V1(z1))

(
∂V1(z1)

∂z1
· v1
)

≤ −δ′(V1(z1))λ1V1(z1)

= −δ′(δ−1(V (z)))λ1δ
−1(V (z))

≤ −h(V (z)).

(b) δ(V1(z1)) < V2(z2). Then V (z) = V2(z2) and, according to (4.17),

V2(z2) ≥ δ(V1(z1)) > χ2(V1(z1)). (4.22)

By (3.3) and the definition of χ2 in (3.9), V2(z2) ≥ χ2(v1(z1)) implies |z2|A2 ≥

φ2(|z1|A1). Thus by (4.8),

∂V (z)

∂z
· v =

∂V2(z2)

∂z2
· v2

≤ −λ2V2(z2)

= −λ2V (z)

≤ −h(V (z)).

(c) δ(V1(z1)) = V2(z2). Then V (z) = δ(V1(z1)) = V2(z2) and (4.21) and (4.22)

are both satisfied. By (4.8) and the fact that δ is K∞, the set {(z1, z2) ∈ Z :

δ(V1(z1)) = V2(z2)} has Lebesgue-measure zero.

Thus (4.20) is satisfied.

3. For all z, z+ such that z ∈ D1×Z2, z
+ ∈ G1(z1)×{z2} or z ∈ Z1×D2, z

+ ∈ {z1}×G2(z2)

or z ∈ D1 ×D2, z
+ ∈ G1(z1)×G2(z2),

V (z+) ≤ V (z). (4.23)
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Indeed, for all z+ = (z+1 , z
+
2 ) and all z in the sets above, according to (4.9),

V (z+) = max{δ(V1(z+1 )), V1(z1), V2(z
+
2 ), V2(z2)}

≤ max{δ(V1(z1), V2(z2)}

= V (z).

Thus (4.23) is satisfied.

Let z = (z1, z2) be a complete solution to the interconnected hybrid system (4.3). By

definition, z(t, k) is absolutely continuous in t on Θz
k = {t : (t, k) ∈ dom z} for all k ∈ Z≥0.

According to (4.20) and the fact that V is almost everywhere differentiable with respect to

x̃1, x̃2, τ1 and τ2, by virtue of [27, Lemma 1], for all k ∈ Z≥0, V (z(t, k)) is locally absolutely

continuous in t on Θz
k and

dV (z(t, k))

dt
≤ −h(V (t, k)) a.e. on Θz

k. (4.24)

Define V : R≥0 → R as

V (t) = V (z(t, kt)) +
kt∑
l=0

(V (z(θl, l − 1))− V (z(θl, l))),

where kt = max{k : (t, k) ∈ dom z} and ∀ l ∈ {0, 1, . . . , kt}, θl = min Θz
l . By definition, V is

locally absolutely continuous on R≥0. According to (4.23) and (4.24), it satisfies

V (t) ≥ V (z(t, k)) ≥ 0 ∀ (t, k) ∈ dom z,

and

V̇ (t) ≤ −h(V (t)) a.e. on R≥0.

Thus, according to [22, Lemma 4.4], there exists βV ∈ KL such that

V (t) ≤ βV (V (0), t) ∀ t ∈ R≥0,
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and therefore

V (z(t, j)) ≤ βV (V (z(0, 0)), t) ∀ (t, j) ∈ dom z.

Let x̃ = (x̃1, x̃2) and define β ∈ KL as

β(r, t) = α−1(βV (α(r), t)).

Then, according to (4.19) and the definition of the set A,

|x̃(t, j)| ≤ β(|x̃(0, 0)|, t) ∀ (t, j) ∈ dom z.

Finally, let x = (x1, x2) be a solution to the interconnected switched system (3.2). Then,

according to Proposition 1,

|x(t)| ≤ β(|x(0)|, t) ∀ t ∈ R≥0,

that is, the interconnected switched system (3.2) is globally asymptotically stable.
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

We have studied the stability property of an interconnected system consisting of two switched

systems in the scenario where in both switched systems there may exist some subsystems

that are not input-to-state stable. We have proved a small-gain theorem as a sufficient

condition that guarantees the global asymptotic stability of the interconnected system via

the hybrid system approach and the construction of appropriate ISS Lyapunov functions.

In this thesis, for each switched system, we have categorized its subsystems by their ISS

property (i.e., ISS or non-ISS). On the other hand, we have only assumed an upper-bound

on the effect of the switches (i.e., (3.5)). This lack of symmetry has drawn our attention and

could possibly become a future research topic.
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