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ABSTRACT

Security monitoring systems have been recognized as a fundamental com-

ponent of security management, and they provide the fundamental building

blocks of future reactive and autonomic systems that can automatically re-

spond and adapt to changes in their environment. However, operating secu-

rity monitoring systems in the complex environment of today’s organizations

is challenging. The complex structure of many organizations, the use of cloud

computing, and the complexity of attacks require monitoring systems that

can operate across the organization boundaries to integrate many types of

information. However, when multiple security domains are involved, privacy

and confidentiality problems create challenges in integrating events across

systems. Situational awareness can be impacted, and so can be the ability

of future systems to adapt to their environment.

Our thesis is that the explicit definition of policies enables the design of

multi-domain monitoring systems that protect the confidentiality and the in-

tegrity of the monitoring data. We focus on the problem of sharing dis-

crete events across organizations for detecting violations of security policies.

We identify several scenarios from real-word policies in which such a multi-

domain sharing is necessary. We introduce a novel architecture for monitoring

multi-domain systems, and we introduce two complementary approaches for

reducing the amount of information to share to a value close to the theoretical

minimum. Our results show that our approaches have adequate performance

in many monitoring scenarios, and significantly reduces the amount of infor-

mation to share. Finally, as security monitoring is a fundamental service in

modern systems, we provide a security analysis of our architecture. We ana-

lyze the impact of attacks on the integrity, availability, and confidentiality of

the monitoring data. We show that, in many cases, our monitoring system

fails gracefully in case of attacks without the causing catastrophic security

failures of centralized systems.
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CHAPTER 1

INTRODUCTION

Thesis Statement: The explicit definition of policies enables the design

of multi-domain monitoring systems that protect the confidentiality of the

monitoring data

Security monitoring systems have been recognized as a fundamental com-

ponent of security management: the National Institute of Standard and Tech-

nology (NIST) mandates the presence of security monitoring capabilities in

government’s and contractor’s systems [1]; industry standards such as the

Payment Card Industry Data Security Standard [2] mandate similar require-

ments for private organizations. Modern monitoring systems are complex

distributed systems that integrate events coming from a variety of sources

and correlate them to identify conditions that can negatively affect security.

These monitoring systems are the fundamental building blocks of future re-

active and autonomic systems that can automatically respond and adapt to

changes in their environment.

However, the environment where such systems operate is changing rapidly.

The complex structure of many organizations, the use of cloud computing,

and the complexity of attacks requires monitoring systems that can operate

across the organization boundaries to integrate many types of information.

When multiple security domains are involved, privacy and confidentiality

problems create challenges in integrating events across systems. Situational

awareness can be impacted, and so can be the ability of future systems to

adapt to their environment.

In this work, we analyze the problem of sharing information across do-

mains for the purpose of monitoring the compliance of a system to a set of

security policies. We show that current approaches for sharing data across

organizations cannot support an important use case: the sharing of discrete
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event data in dynamic multi-organization systems. While a large amount

of work has been focusing on sharing and preserving the privacy of data

sets through aggregation and anonymization [3, 4, 5], many of the data re-

quired for evaluating the security of an infrastructure is discrete and can-

not be summarized or anonymized easily. Information such as configuration

changes, failures of specific machines, or dependencies between services can-

not be aggregated easily: one single event could make the system operate in

an insecure state. Current techniques for performing such an analysis rely

on trusted central servers where information is concentrated. However, the

challenges for integrating information from multiple cloud providers, users,

and service providers into one location cannot be underestimated.

We analyze the fundamental characteristics of the problem to identify a

theoretical minimum amount of information that needs to be exchange be-

tween domains for ensuring the identification of all policy violations. We

show the tradeoffs in reaching such a minimum amount of information sharing

across multiple organizations. We introduce two complementary approaches

to the problem that minimize information sharing. Both approaches take

advantage of general characteristics of infrastructure monitoring systems to

reduce significantly the amount of information shared, while guaranteeing

that all policy violations are still detected. We implement and evaluate such

approaches by developing several techniques in the context of a novel dis-

tributed monitoring system.

The first approach uses information about the observability of the system in

the determination the events to exchange. If information about a portion of

the system can be observed completely within a domain, all policy violations

that are contained within such a portion do not require information from

other systems to be identified. We extend this intuition to develop a set of

policy rewrite algorithms that distribute part of the event processing to each

domain, and we prove the algorithm correct. Local violations are detected

with no event exchange, while global violations are detected through the use

of a distributed protocol that imports within the domain the information

necessary for validating them. Our experiments show significant reduction

in the amount of information exchanged in the case of a SNMP monitoring

system.

The second approach explicitly represents the system as a set of interacting

resources (e.g., computer systems, programs, users). As policies describe a
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relation between the states of a set of resources, we identify violations by ex-

changing information only among monitoring systems managing interacting

resources. Events are shared only if the state of the local resource potentially

contributes to a global violation. We introduce a policy-rewrite algorithm,

and we design information exchange protocols based on it. Our experiments

show that such a technique significantly reduces the information exchange,

and that the use of secure two-party computation [6] reduces even further

the exchange of events to the theoretical minimum for simple policies, and

maintains the exchange of events limited even for longer policies.

Additionally, our experiments show that our techniques are highly scalable,

as computation is distributed across multiple servers. Moreover, we show

that our architecture provides advantages in the security of the monitoring

system itself. We provide evidence of the applicability of our techniques for

designing intrusion-tolerant policy-based monitoring systems that are able

to distribute information and computation across several hosts to reduce the

effects of host compromises and of stolen credentials.

The rest of this thesis is structured as follows. Chapter 2 provides an

overview of the related work in the area of monitoring, multi-domain moni-

toring, and securing monitoring systems. Chapter 3 introduces our monitor-

ing architecture, our language for defining policies, and provides a proof of

the minimal information sharing between domains. Additionally, the chap-

ter includes several examples of using our framework for representing policies

used in regulatory documents. Chapter 4 introduces our techniques based on

observability and locality. We provide an algorithm for rewriting policies so

that locality of the information is taken into account to reduce the amount

of information shared, and we provide a protocol for exchanging information

with another organizations to ensure that the detection of violations that

cannot be detected only with local information. Chapter 5 introduces our

techniques based on the resources. We introduce two policy-rewriting algo-

rithms and protocols for selecting which information is exchanged between

organizations. Chapter 6 provides the experimental evaluation of our tech-

niques and shows how the different techniques affect the amount of event

exchanged. Chapter 7 provides a discussion of the security of the architec-

ture. We provide an experimental evaluation of specific security properties

to evaluate the impact of attacks on the infrastructure. Finally, Chapter 8

summarizes our contributions and provides several avenues for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an overview of the concept of security policy that we

use throughout this work, and provides an overview of the related work in the

area of monitoring for compliance with policies across multiple organizations.

2.1 Security Policies and Monitoring Rules

The management of the security of large infrastructure systems often relies

on defining “policies.” Policies are rules that specify high-level security re-

quirements and are used for selecting the proper states and configurations of

systems. In the past few years there has been an increasing interest for the

development of policies that apply to entire classes of industries. Regulatory

entities and industries introduced classes of policies such as PCI-DSS [2] for

credit card industries, NERC CIP [7] for power grid systems. Several of the

policies specified in NERC CIP or PCI-DSS relate to network, OS, and appli-

cation configurations. We call such policies “infrastructure security policies,”

and their goal is to specify a minimum level of security to which all systems

need to comply. Network administrators can monitor the compliance of their

systems to these policies by specifying monitoring rules. These rules validate

the configuration of security devices, of server applications, and of end-host

computer systems; they detect when infrastructure security policies are vio-

lated. For example, a completely automated monitoring for compliance with

one of NERC CIP policy requires defining rules that detect when machines

are used by the critical devices that control the power grid, and that ensure

that such machines are placed within a protected electronic perimeter (e.g.,

firewalls).

Maintaining and operating a system in compliance with such security re-

quirements is a critical issue in any large system. Even when systems are
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designed and built to be compliant to such security requirements, changes

in the configuration of the system, or changes in the security requirements

themselves make necessary a continuous process of monitoring to ensure that

the system is still operating correctly [8]. To enable automated systems to

monitor and to detect violations of the security requirements, monitoring

systems collect information about the systems’ operation from a variety of

information sources and integrate them to reconstruct a partial view of the

current system’s state. For example, software such as Splunk [9], Bro [10],

and SEC [11] integrate information collected by logs, by network packet anal-

ysis, or by SNMP systems.

The information collected by the monitoring systems can be represented

as sequences of events. Events indicate an “interesting” change in the state

of the system. Examples of events are the running of a new program, the

log-in of a user, or the detection of a potential attack by an IDS. Infras-

tructure security policies check for the co-occurrence of events to identify

when the system is operating in an undesirable state. For example, the co-

occurrence of an IDS event indicating the detection of an exploit packet and

of a vulnerability-scanner event indicating the presence of a software vulner-

able to such an exploit signifies the possible compromise of a device. The

events used by these systems are generated by a large number of devices

using a variety of sources such as SNMP data, intrusion detection systems

(IDS), and log-analysis tools.

Infrastructure security policies could define security requirements in a way

which is orthogonal to the methods used for enforcing security and they

can be used for providing an audit trace. For example, the NERC CIP

policy requirement above might be implemented using firewall systems. A

monitoring rule might monitor for events that identify critical systems and for

events that indicate the presence of connections from outside the electronic

perimeter. In the rest of the paper we use the terms monitoring rule and

policy interchangeably to indicate an event-correlation rule.

2.2 Multi-Domain Systems

Multi-domain systems are common in today’s computing infrastructure. The

services offered by cloud computing systems, critical infrastructure systems,
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or healthcare systems are often provided through the interaction of a com-

puting infrastructure managed by several organizations. For example, in a

hybrid cloud environment, services provided by the infrastructure of an or-

ganization are integrated with services managed by a cloud provider. In

intercloud systems [12], or in systems based on cloud brokers [13], multiple

cloud services are integrated to provide a service to cloud users. Such ser-

vices are provided by a variety of cloud providers, and their selection might

depend on dynamic conditions not known beforehand. Critical infrastruc-

ture systems such as the US power grid is composed of several systems that

interact to coordinate the production and distribution of electric power. In

airport systems, providing advanced network services to aircrafts requires an

interaction between infrastructure managed by airport owners, airlines, and

multiple maintenance contractors.

In such settings, it is common to have multiple independent monitoring

systems acquire information about the infrastructure. For example, in the

case of hybrid clouds, monitoring systems in the private infrastructure ac-

quire application-level information from software running on the local infras-

tructure and on cloud instances. Monitoring servers managed by the cloud

provider acquire information about the physical location of virtual machine

instances, the colocation of virtual machines with other customers, and the

load of the infrastructure. In these settings, conditions to detect violations

can be complex, and analyzing each organization’s information independently

is not sufficient to detect violations. However, sharing monitoring informa-

tion outside an organization is often undesirable. Information about the

infrastructure configurations provides details about security postures or in-

formation about the internals of an organization to competitors.

Because of the tight interaction between the infrastructure of the orga-

nizations, many security problems arise because of undesirable interactions

between devices and configurations managed by different organizations. De-

tecting such situations requires integrating and analyzing such information

across the multiple organizations. However, the boundary of each domain

poses an artificial barrier to the flow of information about the system’s state

that complicates the process of information integration.

Many regulatory documents are designed to avoid the problem of informa-

tion sharing. Different security requirements are created for each organization

involved, and each system independently monitors its own infrastructure for
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compliance. While such a solution is feasible when considering simple se-

curity requirements, the validation of complex policies requires checking for

conditions spanning multiple domains.

A significant amount of work has been performed in the development of

techniques for monitoring policy compliance and for sharing data across or-

ganization boundaries. The next section provides an overview of the state of

the art in such areas, and shows how new techniques are needed to permit the

detecting of inter-domain violations of invariants while limiting the amount

of information crossing the organization boundaries.

2.3 Related Work

The problems that we address in this thesis have been analyzed in different

contexts. This section provides a description of the work relevant to our

efforts.

In Section 2.3.1, we analyze related work in the area of policy-based moni-

toring. We show that policy-based monitoring has a significant application in

research and industry. Such related work strengthens the motivation for our

research. Our research enables the use of policy-based monitoring systems

in contexts where unrestricted information sharing is unacceptable. Sec-

tion 2.3.2 outlines the advancements in the topic of securely sharing data

across different domains. We show that the current solutions are not suited

for policy-based monitoring in dynamic environments. Section 2.3.3 outlines

the progress in creating secure monitoring systems. We show the problems

in current solutions, and we outline the advantages of our monitoring archi-

tecture. Section 2.3.4 describes the similarity of our work with the area of

distributed debugging and outlines the differences between our approach and

previous approaches in such an area.

2.3.1 Policy-based Monitoring

Policies have a long history in computer science. Work on policy has been

started in the ’70 in the context of time-sharing mainframes. Initially, policy

focused on security and were limited in defining rules according to which

access control must be regulated [14]. Later, the use of policy has been
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extended to network and to distributed system management.

The Bell-LaPadula model [15] is one of the first formalizations of security

policy. Such a security model focused on confidentiality policies and was

introduced in 1973. In 1977, Biba [16] introduced an integrity policy that

complements confidentiality policies and describes how the validity of the

data is protected from modifications. Other types of policies followed, such as

the Chinese-wall policy [17] which has been introduced for abstracting British

financial regulations. More recently, Role-based Access Control (RBAC) [18]

has gained wide acceptance in the field of access control, as it can lower the

cost and the complexity of securing large systems through a simpler and more

management definition of access control policies [19].

While the original literature on access control focused on simple systems

or single organizations, more recent work extended the approaches to sys-

tems composed of multiple domains. Earliest work focused on extending the

concepts of RBAC to multi-domain systems. Hayton et al. [20] introduces a

system that allows users to obtain from multiple domains certificates indi-

cating their roles and permissions, which can then used for obtaining access

to restricted resources. KAoS [21] is a distributed system for enforcing ac-

cess control to a distributed set of objects. It is based on ontology for the

definition of policies, and supports the use of reasoning in policies.

Approaches to access control in multi-organizations systems have been

proposed in the context of event-based systems. In event-based systems,

events are pushed to their destination often without an explicit request from

the user. While in the traditional model of access control each request can

be verified to ensure that the user is authorized to access the data, in event-

based systems events need to be filtered after creation to ensure that they are

not published outside the domain and received by unauthorized users. Singh

et al. [22] introduce a system defining explicit confidentiality policies based

on classes of events. Through such a policy, event classes containing critical

data can be stopped from being delivered outside the domain. In a similar

manner, Evans et al. [23] propose a solution in which events are tagged with

labels, and those labels are used to enforce access control.

More recently, the use of policy extended beyond pure access control, and

policies have been used for simplifying the general management of systems.

In particular, Robinson et al. [24] defines management policies as a set of

rules for achieving the scalable management of a distributed system. More
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recently, the DMTF Web Based Enterprise Management (WBEM) frame-

work [25] introduces a unified access to the configuration of each device and

provide a support for building policies that relate to the configuration of

systems. Netquery [26] provides a mechanism for integrating such informa-

tion across multiple devices and across multiple organizations using explicit

access control policies.

Policy-based approaches are found in most recent security regulations used

in different sectors of industry. For example, the Payment Card Industry

Data Security Council [27] defines a set of security regulations for organiza-

tions handling credit card data from the major credit card companies. In

addition to access control policies, such regulations includes a set of condi-

tions on the configuration of systems that ensure a minimum level of security

in an infrastructure. Other regulations follow the same structure, but apply

to different industry sectors. The National Institute of Standard and Tech-

nology (NIST) defines a set of regulations for compliance with the Federal

information Security Management Act (FISMA) [1] that specify valid con-

figurations for computer systems in organizations that interact with the US

Federal government. The North America Electric Reliability Corporation

(NERC) defines a set of standard called Critical Infrastructure Protection

(CIP) [7] that specify minimum security configurations for systems interact-

ing with the US power grid.

In this work we focus on policy-based approaches for management and we

address the problem of sharing data across domains. In our context, the

sharing of data is a consequence of the need of detecting policy violations

and it is not controlled by an explicit access control policy. Data sharing

should be limited to the information necessary for the detection of invariant

violations. Static policies which definition is based on the recipient of the

data and on the type of the information are limited in addressing our prob-

lem: very restrictive policies might not share events required for detecting a

global violation, while open data-sharing policies would reveal unnecessarily

a large amount of information to the other party. This thesis analyses the

tradeoff between sharing and detection of invariant violations. Our solutions

implicitly define dynamic sharing policies that depend on the state of the

system. The information to share changes depending on the state of the

local system, and on the state of other connected systems.

Other work takes a centralized approach to the problem of ensuring com-
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pliance. Systems have been proposed for performing specific security assess-

ments and can be used to monitor compliance with regulations. Network

scanners and security assessment tools such as TVA [28], or MulVAL [29] ac-

quire information about the configuration of the system by using port scans

or direct access to hosts. ConfigAssure [30] takes a top-down approach and

synthesizes network configurations from high-level specifications. Such an

approach is applicable within a single organization. However, when mul-

tiple organizations are involved, the approach requires a significant loss of

independence in the operations of each domain, as configuration managed is

centralized.

The fundamental problem of the centralized approach is that it relies on

central servers for performing the analysis. When multiple domains are inter-

acting, the validation of complex inter-domain policies requires integrating

all the information about the systems’ operations in a single trusted entity.

Such an action leads to several problems. First, finding a trusted central en-

tity that can receive complete access to the internal security configurations

of all the involved organizations is challenging. Second, such a centralization

creates important security risks: a single compromise can open multiple sys-

tems to attack. Third, the central system can become a bottleneck for the

analysis and a single point of failure.

Our distributed architecture does not require centralizing the data. Each

organization independently operates its own monitoring system and exchanges

information with other organizations when needed. We aim at reducing such

an exchange of information to a minimum level.

2.3.2 Anonymization and Log Protection

Collaboration between organizations for detecting attacks and other security

problems has been an important topic in research for several years. The

interdependencies between systems that we find in today’s cloud comput-

ing increase the need of such a collaboration. However, sharing information

presents several security problems. Monitoring data contain valuable infor-

mation about the organization’s computing infrastructure. Such information

can be used by attackers to find possible attack methods; and can be used

by competitors to get valuable insight in the internal operations of the orga-
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nization. For this reason, a significant amount of work has been focusing on

reducing information sharing, while still permitting the detection of complex

event patterns.

Outside the context of configuration management, several techniques focus

on hiding log information through anonymization [3, 4, 5, 31, 32, 33]. Lincoln

et al. [5], in particular, introduce a technique for removing critical data

from network traces. SEPIA [34] provides a threshold-based mechanism for

sharing aggregated data about network traffic. Denker et al. [35] use a

selective downgrade of GPS data for sharing location data. However, such

techniques generally apply to numeric information and the summarization

is strongly dependent on the semantic of the information. Our techniques

focus on discrete data that cannot be summarized without losing the ability

of detecting policy violations correctly, such as configuration changes, failures

of specific machines, or vulnerability information.

Huh and Lyle [36] discuss a trusted computing way to enable “blind log

analysis,” allowing different organizations to freely share raw log data with

the guarantees that their raw data will not be revealed to other organi-

zations. A trustworthy log reconciliation service is attested and verified,

providing assurance that all the log reconciliation and analysis is performed

blindly inside a protected virtual machine, and that only the fully processed,

privacy-preserving analysis results are made available to other organizations.

Huh and Martin [37] extend this work and propose the concept of a “blind

analysis server”, which allows privileged data analysis to be performed se-

curely and privately through a remote server. In our approach, information

leaves the security domain only if necessary. We reduce the reliance on exter-

nal software for protecting the confidentiality of data and we do not require

the entire infrastructure to support remote attestation [38]. However, if such

an infrastructure exists, we can validate remote servers and increase the con-

fidence that information does not leave the domain unnecessarily.

Other techniques focus on integrating data in a central server for analy-

sis. Australias Commonwealth Scientic and Industrial Research Organisation

(CSIRO) has developed a Privacy-Preserving Analytics (PPA) software for

analyzing sensitive healthcare data with confidentiality guarantees [39]. PPA

performs analysis on the original raw data but modifies the output delivered

to researchers to ensure that no individual unit record is disclosed. This

is achieved by removing any directly identifying information and deductive
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values that can be matched to external databases. Closely related to our

work, Lee et al. [40] introduce a framework that allows a group of organiza-

tions to share encrypted logs with a central auditor. The auditor analyzes

the encrypted logs and detects attacks or other policy violations. Our work

improves on such approaches by removing the need to store centrally the logs

collected from all organizations. While having a central authority is feasible

in certain situations, in cloud and in cloud-of-clouds systems, organizations

can integrate resources across multiple providers and provide them to dif-

ferent clients at runtime. Having all entities involved push out their logs

to a single central location is challenging. Our approach uses a distributed

mechanism for correlating data, and security domains interact directly only

when they require information about specific external resources.

2.3.3 Protecting the Monitoring Infrastructure

The increased protection provided by our system is based on the principles of

intrusion tolerance [41]. We exploit the distributed nature of the problem of

event-correlation to provide a specific intrusion-tolerant solution. Other ap-

proaches to the problem of securing monitoring systems have been proposed

over time. This section summarizes a few important milestones.

Monitoring is a widespread service in modern systems. Most monitoring

systems provide some limited protection of log data confidentiality. A basic

protection of confidentiality is provided by protecting data-in-transit. For

example, syslog-ng [42] uses TLS to transmit encrypted log data from the

devices and the monitoring servers. However, TLS encrypts data in-transit

and does not provide any protection once the log has been stored on disk or

in memory: if the monitoring server is compromised, the attacker has access

to all past logs and can capture future data.

More advanced solutions provide protection of the data-at-rest by creating

encrypted and tamper-proof audit logs that can be accessed only by autho-

rized users. One of the earliest mechanisms has been introduced by Schneier

et al. [43]. Their approach uses one-way hash chains to protect the log files

from modifications. Additionally, logs are encrypted to protect them from

unauthorized access. Other solutions (e.g., Ma et al. [44]) extend such an

approach to provide additional integrity protection. While these approaches
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are useful for protecting the integrity of the event logs and can be used in

conjunction with our algorithm to provide trusted audit logs, their confiden-

tiality protection is not suited for our scenario: as event correlation requires

performing processing on the data, events need to be accessible to the mon-

itoring server. Attackers compromising the server would have access to such

data.

The Intrusion Detection System Bro [10] provides a distributed mecha-

nism for performing event correlation. Communication between Bro nodes

is performed on top of SSL to protect data-in-transit. Correlation between

events is performed by programming policies using a pub/sub mechanism.

For example, a distributed IDS cluster built on top of Bro has been pre-

sented by Vallentin et al. [45]. They use a flow-based hashing for distribut-

ing the packet-processing load across the instances. Inter-flow correlation is

performed using the pub/sub mechanism. While the pub/sub mechanism

provides flexibility in specifying policies and in defining their evaluation,

it provides no guarantees that information about the system is distributed

across nodes. It is up to the programmer to evaluate policies without creating

such an aggregation of information. The algorithms we present in this work

provide a mechanism for selecting automatically the events that each moni-

toring server should receive and send for validating policies. Our algorithm

ensures that potential policy violations are detected and that information

about the system is distributed across a large number of hosts.

Other work focuses on protecting the monitoring system itself from com-

promises. For example, recently several secure monitoring solutions have

been using Virtual Machine Introspection (VMI) for protecting the moni-

toring software from compromises. They run the monitoring software in a

separated VM co-located with the host to monitor (e.g., Livewire [46]) and

they access information by analyzing memory and disk data without the

OS mediation. The security of these systems relies on the fact that com-

promising the monitoring VM is harder than compromising other VMs: the

monitoring VM runs a small amount of software and, hence, exposes a small

attack surface. However, while this assumption holds if the monitoring VM

is used only for acquiring events from a particular system, it does not hold in

the processing servers that correlate events across entire organizations. Such

hosts need to be accessible through the network to allow devices to send

events to them, and they need to run a substantial amount of software for

13



validating policies and for providing network administrators access to data.

Our architecture reduces the consequences of compromises of such servers.

2.3.4 Other Related Areas

Distributed system debugging is another area that overlaps with policy-based

monitoring, even if it presents significant differences. The goal of distributed

debugging is to validate that an execution of a distributed application is sat-

isfying a set of invariants defined on the program. A wide set of techniques

have been developed for enabling such debugging to scale [47, 48], and pre-

vious work used logic languages for expressing conditions on the system [49].

To the best of our knowledge, none of the distributed debugging techniques

include provisions for limiting the sharing of information across domains, as

the information collected is assumed to be free of security-critical data. How-

ever, even in distributed debugging part of the state of the application could

contain security-relevant events. In such cases, the use of our techniques

could be beneficial.
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CHAPTER 3

MONITORING POLICY AND
ARCHITECTURE

This chapter introduces the architecture and the policy language of our mon-

itoring system. We take several examples of policies from regulatory docu-

ments and we show their representation in our framework. We analyze the

theoretical limits to reducing the sharing of information. We show that our

architecture builds on top of monitoring systems independently operated

within each security domain. Organizations use the local monitoring system

to identify violations of policies that are completely internal to their own

infrastructure, and use inter-domain communication to detect problems that

span across multiple security domains.

The rest of the chapter is structure as follows. Section 3.1 provides the

overview of our distributed monitoring architecture. Section 3.2 describes our

assumptions. Section 3.3 describes our logic model for representing events

and states of the system. Sections 3.6, 3.7, 3.8 describe how policies in

industrial domains are modeled in our framework. Section 3.5 describes our

results in the determination of a minimal need-to-know set of events between

two organizations.

3.1 Architecture Overview

Monitoring of complex systems for configuration errors, security breaches, or

regulation compliance requires a large amount of information to be collected

(usually in the form of audit logs) and analyzed. In distributed environ-

ments like clouds or cloud-of-clouds [12], this monitoring may require logs

to be shared across multiple security domains to detect particular security

events. However, some of those logs might contain sensitive information

about customers or might have commercial value. Without the necessary

confidentiality and privacy guarantees, most organizations will be reluctant
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to share such privileged logs with others.

As anonymization is challenging to use in our scenario, a simple solution

would be integrating information in servers common among the organiza-

tions. However, such a solution faces several organizational challenges. As

each organization prefers to maintain its information private, the informa-

tion integration needs to occur in a third-party entity trusted by all the

organizations. Moreover, because such multi-domain systems can be created

dynamically by the addition of interactions through public APIs (e.g., in

cloud computing), such third-party entity would need to be trusted by any

new organization joining the system at runtime.

To address such a problem, our distributed architecture relies on mon-

itoring servers operated independently by each organization. Each server

acquires information about the state of the infrastructure and detects in-

dependently problems in the local infrastructure. The servers exchange in-

formation to detect policy violations caused by the interactions of events

generated by different parts of the infrastructure.

Each monitoring server acquires information about the infrastructure state

through a wide range of information sources. For example, network manage-

ment systems and system logs acquire information about configurations of

devices and their operational state; IDS acquire information about commu-

nications between systems and possible attacks; and application logs provide

semantically rich information about the software state.

For example, a simple deployment of our infrastructure includes an enter-

prise system with a monitoring server acquiring information about the ap-

plications running on its own private infrastructure and on cloud instances;

and a cloud provider with multiple monitoring servers acquiring information

about the physical location of virtual instances, the co-location of virtual

machines with other customers, and the load of the infrastructure. Events

carrying such information are already aggregated for standard system man-

agement and monitoring purposes, so we do not expect our system to require

additional monitoring.

On top of such an architecture, administrators define policies or “invari-

ants” that identify undesirable conditions of the operational state. Our dis-

tributed algorithms guide the interaction between the monitoring servers

placed within each domain to verify if the current operational condition vi-

olate one of the policies.
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Figure 3.1: Architecture of our monitoring system. Multiple monitoring
servers are placed in different security domains. Servers communicate to
detect violations of policies.

3.2 Assumptions

Our architecture and our algorithms rely on assumptions made to focus our

description on fundamental issues. We provide a list of our assumptions

below. For each assumption, we outline mitigation techniques.

1. We assume that inter-domain policies are not confidential and that are

shared among the domains, and that each monitoring server maintains

a copy of them. The distribution of new policies is performed in parallel

to the monitoring process through an external mechanism. Policy files

are signed and we rely on a Public Key infrastructure to ensure their

integrity. Such an assumption is verified when policies are mandated

from agencies such as the NIST, PCI-DSS, or NERC CIP, or when

knowledge of policies themselves do not provide competitive advantage

to other organizations.

2. We assume that the events generated by the different monitoring sys-

tems can be represented using a common ontology of events. While

different organizations can generate events with different characteris-

tics, the communication of information about systems should rely on a

common and shared ontology of events and resources. Previous work

analyzed methods for reaching such a common representation [50], and
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our system can take advantage of such research.

3. We assume that organizations behave according to the protocols and

do not provide false information about their system. Different attack

models, their implication, and mitigation techniques are described in

Chapter 7.

4. We assume that clocks are synchronized so that event timestamps are

comparable across organizations. The use of Network Time Protocol

(NTP) permits to synchronize clocks within tens of milliseconds [51].

In our experience, infrastructure security policies specified in PCI-DSS

or FISMA do not require strict synchronization between events.

3.3 Event Representation

Data sources within each domain generate events to provide information

about the state of the system. Examples of events are information about

changes in the configurations of systems, detection of network flows, or fail-

ures of specific machines. We use Datalog with negation as the common

language for representing event data and policies. Datalog with negation

is able to represent policies defined over a large class of relational calculus

formulas [52]. These formulas can contain existential quantifiers, universal

quantifiers, conjunctions, disjunctions, and negations. Policies might need

to be expressed using multiple rules. In our analysis of the policies cur-

rently available in standard document, such language has been sufficient for

representing all policies.

We use two representations of the data: an event-based representation and

a state-based representation. Using the event-based representation, security

administrators define sequences of events that cause a violation of invariants.

Events are expressed using the Resource Definition Framework (RDF), and

the temporal relation between events is expressed using interval logic. The

state-based representation provides a simpler alternative for expressing con-

straints. As many of the policies defined in regulations such as PCI-DSS and

NERC CIP specify directly state of the system that violate the policy, in the

state-based representation we express constraints directly on a reconstructed

partial state of the system. For example, we can easily express policies such
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as “vulnerable systems should not run critical services” without having to

represent explicitly the events involved and their relations.

Table 3.1 provides an example of a policy, and includes a list of the events

or states which are involved in the detection of a violation. The next sections

show how such a policy can be encoded using an event-based representation

and a state-based representation.

3.3.1 Event-based Model

Using the event-based representation, each piece of information generated

by information sources is directly represented as an individual event. Such

events are collected and analyzed in the local monitoring servers. Using the

event-based representation, policies express sequences of events satisfying a

set of conditions. Such a representation permits great flexibility in represent-

ing temporal conditions of the systems.

An event is characterized by an unique ID and by a set of parameters

(e.g., event type, event source, and event-specific data). We represent each

event as multiple logic statements. Without loss of generality, we use the

Resource Definition Framework (RDF). In RDF, each statement is a tuple

(id, property, value) composed of three parts. The first part is an event

ID, which identifies uniquely the event throughout the system. The second

part indicates the name of an event property and represents the type of

information provided by the statement (e.g., the property instance indicates

id of an virtual instance). The last part contains the value for the given

Policy example Events Source Res Description
Not run a criti-
cal service on a
physical server
which is send-
ing malicious
traffic

criticalService Private
Infras-
tructure

P, I Critical service P
is running on a
VM instance I

instanceAssigned Cloud
Provider

I, S VM Instance I
launched on ma-
chine S

badTraffic Cloud
Provider

S Malicious traffic
detected from S

Table 3.1: Example of a multi-domain policy and events required for the
detection of a violation. For each event, we list its source and the
information it carries.
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property. An event is composed of multiple statements having the same event

ID. In our example, we represent an event with ID e1 of type criticalService

providing information that a VM instance identified with m is running a

program p as follows:

1 : (e1, type, criticalService), (e1,pname, p), (e1, instance,m),

2 : (e1, startTime, ts), (e1, endTime, te),
(3.1)

where criticalService is the type of the event; and the rest of the state-

ments on line 1 provide information about the content of the event. The

statements on line 2 indicate start time and end time of the event.

A policy identifies a sequence of events by expressing conditions over the

logic statements in each event. We represent a policy using a Datalog rule.

The body of the rule is composed of two sets of conditions: event conditions

and temporal condition. Event conditions specify a conjunction of event prop-

erties. We express that two properties need to assume the same value for the

policy to be satisfied by using the same variable name in both conditions.

Temporal conditions express the temporal relations between start and end

times of events. We use seven constraints (and their negation) to represent

all possible temporal conditions between events [53]. The conditions are sum-

marized in Table 3.2. For example, we can specify that an event e1 “takes

place before” e2, or that an event e1 “overlaps with” e2. Such temporal con-

ditions can be related using boolean conjunctions, and negations (disjunction

of conditions can be represented by creating multiple rules). The head of the

rule is a conjunction of logic facts that are created when the conditions of

the rule body are satisfied. We use uppercase characters to identify variables

and lowercase characters represent constants and ground terms. The verifi-

cation of the policies is performed using a RETE-based reasoning engine [54]

enhanced with support for interval logic [55].

As an example of a policy, we consider an event indicating that a physical

server running the instance is receiving malicious traffic. The event contains

the id of the physical server and the time. We represent the event as follows.

(e2, type, badTraffic), (e2, server, ps),

(e2, instance,m1), (e2, instance,m2), (e2, startTime, ts1)
(3.2)

The policy of our example defines relations between two events. First,

we define an equality relation between the value of the property instance
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Constraint Description
precedes x+ < y−

meets x+ == y−

overlaps x− < y− < x+, x+ < y+

during x− > y−, x+ < y+

starts x− == y−, x+ < y+

finishes x+ == y+, x− > y−

equals x− == y−, x+ == y+

Figure 3.2: Temporal policy
constraints. x− the starting time of
an event x, and x+ is its end time.

1 : (E1, type, criticalService),
2 : (E1, instance, I), (E1, pname, P ),
3 : (E2, type, instanceAssigned),
4 : (E2, instance, I), (E2, server, S),
5 : (E3, type, badTraffic),
6 : (E3, server, S),
7 : [E1duringE2]∧
8 : ([E2overlapsE3] ∨ [E2duringE3])
9 :→ (v1, violation, I)

Figure 3.3: Policy requiring to
not run a critical service on a
physical server which is receiving
malicious traffic.

by setting it to the same variable name, M . Second, we define temporal

conditions by using the condition within square brackets which specifies that

the two events should overlap (i.e., the start time of E1 is less than the

start time of E2, and E1 ends after the start of E2 but before the end of E2).

If two events satisfy both the event and the temporal conditions, the policy

is violated. Fig. 3.3 shows the formal representation of the example policy

of Table 3.1. The policy uses the same variable names in the values of the

properties instance and server to define an equality relation between such

properties in events E1, E2 and E2, E3. Temporal conditions are expressed

within square brackets, as shown in lines 7-8. The policy is violated if three

events satisfy all conditions.

Each monitoring system collects events into a local knowledge base KB

for detecting policy violations. A violation v is detected if KB ` v. To

avoid unbounded growth in the knowledge base, events are removed from it

when, according to the constraints, they do not contribute to the detection

of new violations [55]. We require rules to respect a set of conditions typical

of Datalog¬ programs [56]. First, we require rules to be safe-range: variables

appearing in the body or head of a rule need to appear at least once in a

non-negated statement pattern in the body of the rule. Second, negation

needs to be stratified: such a constraint imposes certain restrictions on the

use of negation with recursion. Even with these constraints, the language is

still able of representing complex policies.
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3.3.2 State-based Model

The analysis of the policies contained in regulatory documents such as PCI-

DSS [27] shows that many security constraints can be expressed as conditions

on the state of the system at any single point in time. For example, a policy

might require critical computer systems to be deployed in network protected

by firewalls; another policy might require that instances of virtual machine

running security-critical services to be running on approved data centers.

If the state of the system at any time violates such conditions, we have a

violation of the policy. While it is possible to express these policies using

events and temporal conditions, the state-based model provides a simpler

way to represent and to check for compliance to such rules.

The state-based representation is based on expressing conditions on the

reconstruction of a partial view of the system’s state. The state of the sys-

tem is represented as a knowledge base (KB) of Datalog “facts.” Events

represent changes in such a KB. A policy is a Datalog rule defined over on

the KB. Each condition of the Datalog rule is an event pattern. For exam-

ple, we can represent the policy in Table 3.1 using three states. We indicate

that a critical service P is running on a VM machine I at the current time

using a Datalog fact criticalService(P, I). We indicate that an instance

I has been launched on a physical server S using instanceAssigned(I, S).

We indicate that a physical server S is receiving bad traffic using the fact

badTraffic(S).

We represent the policy using the following rule.

criticalService(P, I),instanceAssigned(I, S),

badTraffic(S)→ violation(I).
(3.3)

Events add or remove statements from the knowledge base to indicate

changes in the state of the system. We associate two events to each statement:

a start event, indicating that the given fact becomes true in the system; and

a end event, indicating that the fact is now not true anymore and should

be removed from the knowledge base. Such an handling of events and the

restriction in the specification of temporal constraints (i.e., it represent a

current state) makes the specification of state-based policies easier.

A policy compliance monitoring system receives events from the infor-

mation sources and applies the changes to a local knowledge base KB. A

violation v exists when KB ` v.
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3.4 Multi-Organization Representation

The event-based and the state-based representations maintain the knowledge

about the system in a knowledge base K. While the two representation

model facts and transitions in different ways, the different is just syntactical.

Any set of facts in the state-based presentation can be represented using the

event-based representation. Rules play a fundamental rule for detecting the

presence of violations. Rules define explicitly new facts about the system

that can be inferred from the given data. Such new facts can either define

new complex events or policy violations.

We define formally the concept of violation the ability to infer a “violation

statement” from the current state of the system. More formally:

Definition 1. Consider K+ the fixpoint model of K with the rules R. Given

a rule r ∈ R which rule head is a statement v indicating a violation, we say

that a violation v exists in a system if K+ ` v. If v exists, we say that the

infrastructure is not compliant to the policy r.

When it is possible to infer the presence of a violation, we say that the

infrastructure is not compliant to a given rule. Generally, a violation state-

ment contains information useful for describing the type of violation and the

entity involved. Administrators use information from the violation statement

to address the problem identified by the monitoring system.

In a multi-organization scenario, each monitoring system maintains a knowl-

edge base for the events collected locally. We focus on the case of two organi-

zations, A and B, sharing their infrastructure. We indicate with KA and KB

the sets of events collected by the monitoring system of each organization,

and with K = KA∪KB the set of events collected by both systems. R is the

common set of rules defining violations and complex events.

Applying reasoning independently in each organization KB leads to in-

complete and incorrect results.

1. Incomplete: A violation that exits in the system cannot be detected.

Formally, there exists a violation v such that K ` v, but neither KA ` v
nor KB ` v. An incomplete reasoning occurs, for example, if parts of

the events causing violation v are stored in KA, and the others are

stored in KB.
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2. Incorrect: A violation that does not exist in the system is detected.

Formally. there exists a violation v such that KA ` v or KB ` v, but

K 6` v. An incorrect reasoning occurs, for example, if the violation

requires the non-existence of an event e. If the event is stored only on

KB, KA might incorrectly assume that the event does not exists.

The lack of completeness and correctness are a consequence of the closed-

world assumption used by Datalog reasoning. In the closed-world assump-

tion, if an event e is not found in the local knowledge base, then such an

event does not exists. However, in our case, the event can still exists and it

can be stored in KB. Our goal is to obtain a complete and correct reasoning

while limiting the amount of information transferred across organizations.

3.5 Need-to-Know Events

We define the minimum amount of information that needs to be transferred

between organizations to detect a violation v. We call such a set of events

need-to-know event set. For two organizations, we formally define it as fol-

lows.

Definition 2. Given an organization A and a violation v such that K+ ` v,

we define a set of facts E ⊂ KB as a need-to-know set when KA ∪ E ` v,

and there is no set E ′ ⊂ E such that KA ∪ E ′ ` v.

The set of facts E contains the minimal amount of information that needs

to be shared by organization B to allow the detection of a violation v. The

set E can be empty if no additional information is needed to detect v (i.e.,

KA ` v), or if there is no violation in the overall system. In other cases, the

minimum amount of information depends on the policies and on the violation

detected.

In our system, policies are known to all parties. Hence, once a system

knows that a specific violation exists, it is possible to identify univocally the

set of conditions occurred in the overall system that leads to the given viola-

tion. We show that, in such conditions, the minimum amount of information

to share is the information that can be inferred from the knowledge of the

existence of a violation. We prove such a result below.
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Theorem 1. We take an organization A and we consider a ground statement

θh indicating a violation, so that K+ ` θh. The statement θh is consequence

of a rule b1, . . . , bn → h and a substitution θ that satisfies the body of the

rule. We assume that no other rule has a consequence the statement θh. We

divide the statements in the body of the rule in two sets B1 and B2. The set

B1 contains statement patterns so that θB1 refers to events local to A, while

θB2 refers to external events.

We take a subset θh of the substitution θ by considering only variables that

appear in the head of the rule h. The minimum need-to-know information

for the organization A and the violation θh is θhB2.

Proof. We provide the theorem by contradiction. Let’s assume that the set

E that A needs to know for KA ∪E ` θhh is a strict subset of θhB2. Hence,

some statement contained in θhB2 is not known in KA ∪ E, but still θh is

true.

By assumption, organization A is in charge of detecting the violation.

Hence, A needs to know the presence of the violation in the system, which

we represent as θvh (the head of the rule and the values of all the vari-

ables that appear in such a statement). In our system, we assume that the

rules generating violations are known to all parties, hence A knows the rule

b1, . . . , bn → h. Because θhh, if true, could only be implied by the rule

b1, . . . , bn, we have that there must be a substitution θ′ ⊇ θh that satisfies

the body of the rule. Based on such information, we infer that the events

θ′B1 and θ′B2 are in KA ∪E. Hence, we have a contradiction, as we assume

that KA ∪ E does not contain events matching θhB2.

The set of facts E might contain only partial information from events, as of-

ten part of the information carried by an event is not needed for the detection

of a violation. We can reduce information by removing the name of some re-

sources mentioned in the event. An event relates n resources with each other

under a specific relation. For example, the event runs(host1, pid1, apache)

relates the resource host1 with the PID pid1 and with the software apache.

Often, we can detect a violation by knowing that a relation exists between a

resource and an undefined resource with specific characteristics. For exam-

ple, we can consider a rule violation(P )←runs(H,PID , P ), vulnerable(P )

and assume that A maintains a list of vulnerable programs, while B provides

the actual services. If A knows vulnerable(apache), the only information
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missing from B is the knowledge about the existence of at least one host

that runs such a service. As organization A is only interested in knowing

which vulnerable programs are run and not the actual name of the host run-

ning them (i.e., the host name is not part of the parameters of violation),

we can remove the host name from the events passed to A.

In first order logic we represent the existence of a host running apache using

existential quantification as in ∃H,P : runs(H,P, apache). This statement

expresses the fact that runs is true for some value of H,P . Multiple pieces

of partial information can be related to each other to express that two events

are related to the same resource. For example, we can express that some

critical server runs apache using ∃H,P : critical(H) ∧ runs(H,P, apache).
We define knowledge units to be existentially quantified expressions in the

form ∃V1, . . . , Vn : e1 ∧ . . . ∧ ek. In our Datalog framework, we represent

knowledge units using Skolemization: we substitute the existential quantified

variables with unique constants. As Skolemization preserves satisfiability, if

a violation exists, we can find it in the Skolemized version of the system.

3.6 Policy Example: PCI-DSS

PCI-DSS v2.0 has been introduced by the major credit card companies to

raise the level of security of merchants working with cardholder data. Such a

regulation is composed of six control objectives, with each objective divided

into groups of high-level requirements, as show in Table 3.2. For each high-

level requirement, the document specifies in more detail policies that should

be respected in the configuration and operation of the infrastructure.

First, we analyze the different requirements to identify the ones containing

infrastructure security policies. We find that such requirements are con-

tained in the control objectives “Build and Maintain a Secure Network” (Re-

quirements 1 and 2) and “Maintain a Vulnerability Management Program”

(requirements 5 and 6). Additionally, a limited number of requirements in

“Implement Strong Access Control Measures” applies to configurations of

the network. The remaining policies cover requirements about access control

(Protect Cardholder Data, requirements 3 and 4; and part of “Implement

Strong Access Control Measures”, requirements 7, 8, and 9) and they can

be monitored through a proper access control mechanism. Additionally, the
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Table 3.2: Overview of PCI-DSS: Control objectives and requirements

Build and Maintain a Secure Network
Requirement 1: Install and maintain a firewall configuration to protect cardholder data
Requirement 2: Do not use vendor-supplied defaults for system passwords and other secu-
rity parameters

Protect Cardholder Data
Requirement 3: Protect stored cardholder data
Requirement 4: Encrypt Transmission of cardholder data across open, public networks

Maintain a Vulnerability Management Program
Requirement 5: Use and regularly update anti-virus software or programs
Requirement 6: Develop and maintain secure systems and applications

Implement Strong Access Control Measures
Requirement 7: Restrict access to cardholder data by business to need to know
Requirement 8: Assign a unique ID to each person with computer access
Requirement 9: Restrict physical access to cardholder data

Regularly Monitor and Test Networks
Requirement 10: Track and monitor all access to network resources and cardholder data
Requirement 11: Regularly test security systems and processes

Maintain an Information Security Policy
Requirement 12: Maintain a policy that addresses information security for all personnel

control objectives “Regularly Monitor and Test Networks” and “Maintain an

Information Security Policy” relate mainly to human processes and not in-

frastructure systems. Hence, we see that a significant portion of the policies

defined in the PCI-DSS requirements are related to infrastructure security

policies.

As a case study, we consider three policies taken from requirement 1, re-

quirement 2, and requirement 6, and we focus on defining concrete monitoring

rules that can be checked at runtime using an event-based system. We show

our example policies in Table 3.3. For each policy, we list the information

sources providing information for the validation of the policy.

First, we identify the events needed for the runtime validation of compli-

ance. Such events are examples of possible information generated by the

infrastructure, and they are not the only possible events that can be gen-

erated. Different monitoring system can generate a different set of events.

Additionally, for simplifying policies, a few events represent “high-level” data

inferred from lower level details.

The first policy requires “restricting inbound and outbound traffic to that
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Table 3.3: Example of PCI-DSS policies. For each policy, we list the
information sources that we assume available for its monitoring.

ID Description Sources

1.2.1 Restrict inbound and outbound traffic to that
which is necessary for the cardholder data envi-
ronment.

network, config-
urations

2.2.1 Implement only one primary function per server
to prevent functions that require different security
levels from co-existing on the same server.

SNMP, configu-
rations

5.2 Ensure that all anti-virus mechanisms are cur-
rent, actively running, and generating audit logs.

SNMP, vendor
data

which is necessary for the cardholder data environment.” The monitoring

for compliance to such a policy requires obtaining information about net-

work flows, about the machines that are part of the cardholder data environ-

ment, and about explicitly approved flows. Information about the network

flow is generated by network monitoring systems, while the other pieces of

information are generated by software management systems.

The second policy requires “implementing only one primary function per

server to prevent functions that require different security levels from co-

existing on the same server.” Such a policy requires obtaining the list of

services deployed on each server, and their security requirements. We obtain

the list of software deployed on each server through a software management

system, and we verify that such software is running using SNMP. The security

levels are defined as attributes in the software management system.

The third policy requires “ensuring that all anti-virus mechanisms are

current, actively running, and generating audit logs.” Such a policy requires

obtaining the list of software deployed on a machine, information about the

latest version of software, and the presence of audit logs. We show a summary

of the events in Table 3.4. While this is not the only set of events that can

be generated to validate policies, the listed events are generally obtainable

through standard systems.

We use the defined events to encode the first policy “restrict inbound and

outbound traffic to that which is necessary for the cardholder data environ-

ment” using the following rules. We use the state-based representation.
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Table 3.4: Monitoring events for the validation of PCI-DSS policies

.

Event and parameters Description

netflow(IPs, Ps, IPd, Pd, Proto) Detected a network flow from IPs on port
Ps to IPd on port Pd with protocol Proto.

cardEnv(H) A host H is part of the cardholder data
environment.

hasIP(H, IP ) A host M has been assigned the network
address IP .

okFlow(IPs, Ps, IPd, Pd, Proto) The flow between IPs on port Ps and IPd
on Pd for protocol Proto is allowed.

runs (H, Sw, Hash) Host H is running a software with name
Sw and identified by Hash

primarySw(Sw, Hash, F , Sec) The software Sw is a primary software
for the function F (e.g., httpd for web
server) and runs at security level Sec

antiVirus(Sw, Hash) The software Sw, Hash is classified as an
anti-virus software

latestAv(Sw, Hash) The software Sw with a binary Hash
is the latest version of the AV software
available from the software provider.

netflow(IPs, Ps, IPd, Pd, P roto),hasIP(H, IPd),

cardEnv(H),¬okFlow(IPs, Ps, IPd, Pd, Port)

→violations(IPd, Pd)

netflow(IPs, Ps, IPd, Pd, P roto),hasIP(H, IPs),

cardEnv(H),¬okFlow(IPs, Ps, IPd, Pd, Port)

→violations(IPd, Pd).

(3.4)

The second policy, “implement only one primary function per server to

prevent functions that require different security levels from co-existing on

the same server,” can be specified using alternative rules, depending on the

semantic that we want to enforce. We use the following policy to enforce the

application of a single primary function for each server, independently from

the security level.

primarySw(Sw1, Hash1, F1, SecLev1),primarySw(Sw2, Hash2, F2, SecLev2),

runs(H,Sw1, Hash1),runs(H,Sw2, Hash2),

→violation(H).

(3.5)
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We can relax this policy so that it is violated only if the two services are

of different “security levels” (e.g., a cardholder service and an email server).

We use the following policy.

primarySw(Sw1, Hash1, F1, SecLev1),primarySw(Sw2, Hash2, F2, SecLev2),

runs(H,Sw1, Hash1),runs(H,Sw2, Hash2),

notEqual(SecLev1, SecLev2)→ violation(H).

(3.6)

The predicate NotEqual is true when the values of the two variables are

different. The third policy, “ensure that all anti-virus mechanisms are cur-

rent, actively running, and generating audit logs” is represented using the

following conditions.

runs(H,Sw,Hash),antivirus(Sw,Hash, F, SecLev),

¬latestAV(Sw,Hash)→violation(H).
(3.7)

In general, we see how these policies require the correlation of only a limited

amount of events. The first two policies require four events, while the third

policy only three events. Our experience show that such a case is common for

other infrastructure policies, even if our system can support more complex

policies.

3.7 Policy Example: XDS and ATNA

The Integrating the Healthcare Enterprise initiative [57] provides a set of stan-

dards and protocols for interoperability between enterprises operating in the

health care domain. The initiative is structured in a set of profiles, each pro-

viding interoperability in a specific portion of the health-care interaction. For

example, a profile specifies protocols and workflows for sharing radiology data

across enterprises, and another profile for cardiology. Our analysis focuses

on two interconnected parts of such an initiative: the Cross-Enterprise Docu-

ment Sharing (XDS) and the Audit Trail and Node Authentication (ATNA)

integration profile. The XDS provides the architecture and the protocols for

the exchange of information, while the ATNA profile provides protocols for

the authentication of hosts and for creating audit logs. Such two initiatives

provide a significant example of interactions between organizations and of

30



!"#$%&'()

*'"+,%) -.$"/&)

0,1'2"3)

0,1'2"4)

Figure 3.4: IHE Architecture for accessing health record stored in multiple
locations.

the need for integrating audit logs generated by multiple sources.

The architecture for XDS is shown in Figure 3.4. When a client requests

access to information for a patient, it looks up its ID in a common registry.

The result of the query contains the patient’s unique ID in the system, and

the list of locations (i.e., document sources) containing information about the

user. This information is then passed to a broker (i.e., the document reposi-

tory) which does not contain any document, but acts as an intermediary for

containing the original systems containing the patient data. The document

repository acquires the information from the document sources and provides

it to the client as response to the request.

We use an event-based representation and we provide examples of two

policies.

The first policy specifies that a client needs to have a relation with a patient

in order to access the patient ID (e.g., the ID requested needs to be a patient

seeking healthcare services from the client). If the registry is in charge of

monitoring for compliance to such a policy, information about the patient

relation needs to be shared by the client.

We consider two entities: the client and the registry. We assume that the

registry creates a local audit event indicating that a request for a patient id

pid is submitted by a client c. We indicate such an event as follows.

(E,type,Patient Identity Feed),

(E,userId, c), (E,patientId, pid)
(3.8)

The client maintains audit logs indicating the patients with which it has

a relation. For example, a relation between patient and client is inferred by

the presence of a patient record in the client’s database. We are interested
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in the final audit event containing such information, and we represent it as

follows.

(E,type,Patient Relation),

(E,userId, c), (E,patientId, pid)
(3.9)

We define the policy that requires the first event to occur only while the

relation exists. Hence, we represent it as follows.

(E1,type,Patient Identity Feed),

(E1,userId, C), (E1,patientId, Pid)

(E2,type,Patient Relation),

(E2,userId, C), (E2,patientId, Pid)

¬E2 ∧ [E1DURINGE2]→ violation(Pid, C).

(3.10)

The second example policy we consider related to the ATNA protocol for

acquiring documents from the document sources. The main requirement of

the ATNA profile is to allow for hosts to pre-fetch healthcare documents

before the authorized users logs into the host. Such a pre-fetching is useful

to reduce the waiting time for doctors while they are visiting patients, or

in case of emergency or overload situations, where the network operation is

limited or destroyed. Using such a protocol, documents are transferred in

advanced and removed only they are no longer needed.

Using the ATNA protocols, secure nodes in different domains authenticate

using host-authentication and exchange health data. The data is stored

locally, and then made available to users within a domain according to access

control policies. We consider a process for auditing a connection between

servers and ensure that the interaction is compliant with the security policy.

We use audit logs to detect unauthorized access of restricted information

from one of the secure nodes.

We consider the following four audit events. First, an event userAuth

specifying the successful authentication of a user in the local enterprise sys-

tem. Second, an event nodeAuth to specify the successful authentication of a

node. Third, an event queryImage to indicate that that an image has been

requested. Forth, an event retrieveImage to indicate the request of retrieval

of an image.

The policy can be violated in multiple ways. A violation is an access to

an image from a user which has not received local authentication. Figure 3.5
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(E1,type,retrieveImage), (E1,status,success), (E1,user, U),
(E1,fromSecureNode, N1), (E1,image, I)

(E2,type,retrieveImage), (E2,status,success)
(E2,node, N1), (E2,fromSecureNode, N2), (E2,image, I)

(E3,type,nodeAuth), (E3,status,Success),
(E3,node, N1), (E3,bySecureNode, N2)

(E4,type,userAuth), (E4,status,Success)
(E4,user, U), (E4,bySecureNode, N1)

[E4beforeE1] ∧ [E3beforeE2] ∧ [E2beforeE1]
¬E4 →violation(N1, N2, I)

Figure 3.5: Policy for validation ATNA profile compliance.

shows the encoding of such a policy in our event-based representation.

The rule specifies that there is a violation if a user U accesses to the image

I acquired by an authorized node, but an event that authorized the user in

the local domain is not found. Administrators can define further policies to

cover different situations that would create violations.

The events used for the validation of the ATNA policy are generated by

different organizations. While the ATNA profile currently requires all access

to the logged in an audit log for analysis, our approach is able to coordinate

the sharing of such events and automatically ensure that only event relevant

to the violation of the policy are shared across the organization boundaries.

3.8 Policy Example: Aerospace Domain

A recent vision in commercial aviation is the e-Enabled aircraft that oper-

ates as an intelligent, mobile node in the Internet [58]. Safety, security, en-

vironmental, efficiency and economic benefits are provided to airlines, crew,

ground personnel, passengers and business stakeholders. The performance

of future eEnabled fleets, however, depends on the correct operation of net-

work services provided by airport infrastructure [59]. As the complexity of

airport infrastructure increases and changes become more frequent, manual

control and operation become ineffective. Unintended or malicious changes

in the configuration of a single system could introduce errors in the overall
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Figure 3.6: Architecture of the infrastructure of a future airport system

infrastructure configuration that might remain invisible and degrade or dis-

rupt operations. Hence, for preserving performance gains of e-Enabling, such

errors must be timely detected to prevent systems from operating in insecure

or inefficient states.

A policy-based approach can provide such a detection. However the net-

work infrastructure of airports supports several applications, from intercon-

necting devices at check-in desks and gates to supporting the communica-

tion between aircraft and airline systems. Such applications involve multiple

organizations that closely interact. We focus on the interactions between

e-Enabled fleets, maintenance personnel, and airport infrastructure services.

Figure 3.6 provides an abstract view of the system architecture that we con-

sider representative of the e-Enabled airline system architecture at airport.

To support the maintenance of the e-Enabled fleet, four classes of devices

interact in the airport infrastructure:

1. Aircraft Hardware Maintenance: Portable devices located on the tar-

mac that access aircraft systems to perform net-enabled operations

(e.g., hardware inspection/repair, sensor readings). These typically

belong to organizations that are leased or owned by airlines.

2. Connectivity: Fixed wireless/wired network access points (e.g., WiFi,

WiMAX, cellular, and power line) that interconnect e-Enabled aircraft

with off-board systems on the Internet. These typically are owned by

third party service providers.
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Table 3.5: Examples of policies specified to ensure safety of aircraft.

A.1. SAFETY RELATED POLICIES

(1) Approaching aircraft must establish a broadband wireless link when it
enters weight-on-wheels condition.
(2) Airplane accessing a ground-only airline application must be in weight-
on-wheels condition.
(3) Airplane must be parked at gate when accessing airline application Y.
(4) RFID tags in cabin must not be read when airplane is not parked at
gate.

3. Airline Maintenance Applications: Portable devices that are used in

the cabin and gate to communicate directly with aircraft systems for

airline maintenance applications (e.g., software update, cabin access).

These are typically owned/leased by the airlines.

4. Tarmac Security Monitoring: Physical security services provided by

CCTV camera, automatic door locks, and emergency devices. These

are typically owned by the airport authority.

For supporting maintenance, we consider crew devices that (i) maintain

the aircraft RFID-tagged hardware; (ii) manage software, and multimedia;

and (iii) manage gates and control access to the aircraft cabins. Addition-

ally, our system model considers other IT infrastructure that interacts with

these devices. We include the interfaces with airline back-office servers that

reside remotely and provide information, software and multimedia for the

airline fleet. Security monitoring includes all physical security devices such

as cameras or devices that enforce crew access control in restricted areas of

/ around the aircraft. Such devices communicate using the network infras-

tructure provided by the airport.

Policies defined to ensure the correct operation of the entire infrastruc-

ture can be organized in several classes. A few examples developed in col-

laboration with Boeing Research and Development are listed in Tables 3.5,

Table 3.6, Table 3.7, and Table 3.8.

Monitoring for compliance to such policies requires interacting across sev-

eral security domains. Airport systems are heterogenous, and several organi-

zations interact to provide the necessary services (e.g., airport management,

airlines, maintenance contractors). The information required for validating

such policies comes from devices under the control of different entities and
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Table 3.6: These policies are specified to prevent unauthorized access to
aircraft.

A.2. ACCESS CONTROL POLICIES

(5) Maintenance device must be disconnected from Internet when accessing
aircraft systems.
(6) Maintenance crew must login with proper credentials (such as pass-
words) in order to be able to use maintenance laptop to perform assign-
ments.
(7) Users logged in maintenance laptop as maintenance crew cannot access
files or perform security actions privileged to administrator only.
(8) Maintenance crew and device credentials must be authorized and au-
thenticated before interacting with airplane systems.
(9) Maintenance crew and device must be located on airport tarmac when
accessing external access point of aircraft.
(10) Maintenance crew and device must be located inside cabin when ac-
cessing internal access point of aircraft.

Table 3.7: These policies are specified to minimize operational costs of
aircraft while maintaining quality of network connection.

A.3. BUSINESS RELATED

(11) Aircraft must automatically choose the most cost-effective wireless
data link available that satisfies the minimum bandwidth requirement.
(12) When current bandwidth drops below the minimum bandwidth thresh-
old, aircraft must automatically search for the next cheapest available wire-
less data link.
(13) Maintenance devices should use the cheapest available wireless net-
work access point to connect to Internet.
(14) RFID tag must not respond to a query issued less than a threshold
distant to protect airlines proprietary data.
(15) While taxing, for a period of time, an airplane is allowed to be asso-
ciated with two access points for smooth handover.
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Table 3.8: These policies are specified to enable efficient resource allocation
at the airport.

A.4. AIRPORT OPERATION RELATED

(16) Technology based requirement. Examples:
Airplane using WiFi technology must not use Terminal T1.
Airplane using Cellular technology must use Gates G1-G5 at Terminal T2.
Airplane using WiMAX must use runway R1 for takeoff.
(17) Airport layout based requirement. Examples:
Airplane using Gates G10 to G20 must use WiMAX technology.
Airplane using runway R2 must not use WiMAX technology.
Crew at tarmac below Gates 30-35 must not use Cellular.
(18) Time-based (network/airport demand based) requirement. Examples:
Airplane using the airport computer network at terminal T3 between time
t1 to time t2 must use WiMAX.
Airplane using the airport computer network at Gates G40-G45 must not
use WiFi.

needs to be integrated while respecting the privacy of the each organization.

In the aerospace domain, the increasing reliance of modern aircrafts on

the airport infrastructure requires such systems to operate securely, safely,

and efficiently. Infrastructure policies can be used to monitor that the in-

frastructure is operating in a good state. For example, the new e-Enabled

fleets require services that need to be provided by the airport infrastructure,

such as Internet connectivity, aircraft software update services, and access to

maintenance services.

We analyze the opportunity of creating policies in such a context. An

example policy can mandate that approaching airplane must establish wire-

less link after they land (i.e., weight-on-wheels condition) so that software

updates can be downloaded, as following.

(A,landed, R), (R, part of, AIR), (N, part ofAIR),

¬(A, connected to, N)→ (policy1, violation, A),
(3.11)

where the statement (A, landed, R) indicates that the aircraft A landed

on runway R, the statement (K, part of, J) indicates that an entity K is

part of the system J , and the statement (A, connected to, N) indicates that

the system A is connected to a network N . The consequence of the rule,

(policy1, violation, A) indicates that a violation of policy1 has been detected

and it involves the aircraft A.

37



Additionally, we can monitor that airplane must be parked at gate when

accessing certain airline applications, as following:

(A, logged on, P ), (P, provided by,M),

(M, part of, airline), (P, use, gate restricted),

¬(A, located at, L), (L, location type, gate)

→ (policy2, violation, A),

(3.12)

where the statement (A, logged on, P ) indicates that the aircraft A is ac-

cessing application P , (P, provided by,M) indicates that the host M is run-

ning the application P , (A, locate at, L) states that the aircraft A is lo-

cated at location L. The last two statements, (L, location type, gate) and

(P, use restricted, gate) state that L is a airport gate, and that P can be

used only by an aircraft located at the gate.

All these example policies require integrating information across multiple

devices for assessing compliance. The first policy requires integrating infor-

mation from the aircrafts or the control tower with information generated

by network monitoring devices, while the second policy requires integrating

again information from the aircraft and information generated by airline ap-

plications. However, none of these policies requires access to the entire state

of the system. Our architecture enabled an organization to acquire informa-

tion from the devices it manages, and exchange a limited set of events with

other organizations to ensure overall compliance.
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CHAPTER 4

LOCALITY-BASED APPROACHES

For ensuring the completeness and the correctness of the monitoring process,

an organization needs to ensure that the need-to-know events are among

the events shared with the other organization. However, identifying such a

minimal set is challenging, as it depends on the effect of each event on the

compliance state of the other organization. We have a tradeoff in sharing:

the more an organization shares information about its events, the better

the other organization can reduce the events to share by better identifying

the need-to-know events. Generally, more information than the minimum

need-to-know needs to be exchanged across organizations.

In this thesis, we present several techniques to guide the interaction be-

tween organizations and limit the information exchanged between organi-

zations. Our techniques are based on two fundamental concepts. The first

concept is locality of information. We use the description of what information

is completely observable within a single system to identify which violations

are identified locally, and to summarize locally information to reduce the in-

formation shared. The second concept is resource. A resource is any entity

within a computer infrastructure system, such as computer systems, virtual

instances, users, or programs. Violations of policies can be seen as condi-

tions regarding a limited set of interacting resources that operate outside the

conditions specified in the policy. Our technique identifies such subset of

resources and limits the exchange of information only across those.

This chapter focuses on the first concept: locality. We identify the pol-

icy violations that need to be detected within each organization, and we

use meta-data about the information collected by each monitoring system to

identify the information to collect from other external entities. Based on such

knowledge, we introduce two protocols for obtaining the remaining informa-

tion from other organizations and ensure that policy monitoring detects all

violations.
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Additionally, we show that such a locality-based approach can be extended

also within each organization to reduce significantly the information collected

by the monitoring systems. We introduce an algorithm that uses meta-

data about the information collected by each device to distribute information

processing across the network.

4.1 Overview

The locality-based approaches are based on exploiting knowledge about the

types of information collected from the monitoring system. If the events that

validate a portion of the policy are all observable locally and cannot be gen-

erated by any other organization, there is no need of exchanging information

with other organizations to ensure the completeness and the correctness of

such a portion of the policy.

This section provides a rule-rewrite techniques for separating rules into

a local portions that can be completely validated within an organization.

Information exchange is necessary only for the parts of the policy that are

not local. We focus on the case of two organizations and we introduce two

protocols that guide the interaction between organizations for the validation

of policies. In the first protocol, an organization acquires from the other or-

ganization all the information required for the validation of a policy without

revealing information about its state. In the second protocol, each organi-

zation shares some information about its own state to validate the overall

compliance.

The process of detecting violations is as follows. An organization A in-

terested in detecting a set of violations VA analyses its policies and its past

events to create a set of persistent queries P over the stream of events of the

other organization. Events in B matching queries are continuously sent back

to A. Collectively, these events form a set of events E ′ that is guaranteed to

contain E.
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4.2 Policy Violations of Local Resources

In the context of infrastructure monitoring, monitoring systems such as net-

work management systems, IDS, or anti-viruses generate events that carry

information about some resources in the system. The monitoring system

of an organization A receives a portion of the events of the entire system.

In particular, it receives events that carry information about the resources

under the control of organization A.

An organization is generally interested in detecting policy violations that

relate to its own resources. For example, in the case of a simple policy requir-

ing a host-based IDS to be running on each machine, an organization might

be interested in receiving violations only for the machines that it manages.

We associate each resource in the system to a domain. We assume that each

resource has a unique name (i.e., a URI). We define a set U containing all

resources in the overall system, and its subsets DA and DB representing the

sets of resources owned or managed by each organization.

A policy defined over the entire set of resources U can be rewritten into

two (or more) local policies, each of them restricting the values of certain

variables in the domains DA or DB.

An organization defines the violations of interest by specifying—in the pol-

icy itself—the domains over which variables are quantified. For example, a

policy can specify that a violation occurs if a device running a critical ser-

vice connects to a server that is vulnerable. A monitoring system can collect

events from multiple information sources. In our example, the state of the

system is represented as the following set of facts. The software running

on a device (e.g, runs (host1, pid1,111, apache2.4)), the network connections

that are open by the given programs (e.g., connects (pid111, host2, 3111)),

and the service running on specific ports (e.g., binds (host2, pid2,321, 3111))

are collected using SNMP monitoring. The presence of a vulnerability in

the software (e.g., vulnerable(mysql5.0)) is collected from the National Vul-

nerability Database (NVD) [60]. Finally, the list of critical software (e.g.,

critical(apache)) is provided by the user using an online system. The over-

all rule is represented as follows.
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violation← runs(X,P1, S1), critical(S1),

connects(X,P1, Y, PORT ), binds(Y, P2, PORT ),

runs(Y, P2, S2), vulnerable(S2)

(4.1)

Such a rule specifies that a violation exists if there is a machine X running

a critical software S1 that is connected to a vulnerable program P2 running

on another machine Y . We can add domains to such a policy to specify that

organization A is interested in receiving all violations about its own machines

as follows:

∀X ∈ DA, ∀PX , SX , Y, PY , SY ,PORT ∈ U

violation(X,SX)← runs(X,PX , SX), critical(SX),

connects(X,PX , Y,PORT ), binds(Y, PY ,PORT ),

runs(Y, PY , SY ), vulnerable(SY ),

(4.2)

where X and Y are hosts; PX and PY are PIDs of processes; SX and SY

are identifiers of software packages; and PORT is a network port number.

We identify the interest in violations involving resources of organization A

by restricting the value of the variable X to DA. However, we cannot restrict

the domain of other variables. For example, restricting the domain of Y to

DA would make the policy identify only violations that involve connections

between two hosts within A. By restricting only the domain of the variables

in the head of the rule (i.e., in the violation statement), we ensure that we

find all violations in K+ that relate to resources in DA.

4.3 Completeness of Local Information

The monitoring system of an organization focuses on acquiring events from a

specific set of resources: the resources under the control of the organization.

For such resources, we might be able to acquire complete information. For

example, we can consider a simple event in a monitoring system that indicates

if a network card is overloaded with data (i.e., it is losing a significant amount

of packets becomes of intense traffic). A monitoring system can indicate

such as situation by generating events overloaded(H). The set of events

overloaded(H), with H ∈ Di, is complete if it is monitoring the state of all

hosts in Di. If a monitoring system collects all information about resources

in its domain, Di would be equal to DA. In such a case, if a policy needs
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to match events overloaded(H) with H ∈ DA, all the relevant events can

be found on the local knowledge base KA. Hence, for complete statements,

the closed-world assumption of Datalog holds in the local KB and reasoning

based on them is correct and complete.

We model the completeness of knowledge acquired by the monitoring sys-

tem with a completeness KB (CKB). A CKB describes patterns of events

about which the local monitoring system ensures that we have complete

knowledge. A CKB depends on the structure of the local monitoring sys-

tem and it is composed of two types of statements: simple completeness

statements and conditional completeness statements.

A simple completeness statement is a pattern defining events for which we

have complete local knowledge. If a policy is looking for a certain pattern of

events and such a pattern can be described by a simple completeness state-

ment, then all events matching it can be found in the local KB. A simple

completeness statement is expressed by a statement and by the domains of its

variables. We indicate it with the syntax ∀Vi ∈ D : st(V1, . . . , Vn). A state-

ment bi(U1, . . . , Un) matches a simple completeness statement st(V1, . . . , Vn)

when bi = st and for all i, 1 ≤ i ≤ n, domain(Ui) ⊆ domain(Vi). For ex-

ample, the simple completeness statement for the overloaded event above is

∀H ∈ DA : overloaded(H).

A conditional completeness statement provides a restricted notion of com-

pleteness of an event pattern. For example, we can define a set of events

critical(P ) indicating that a particular software P is currently critical to

the organization operations. By using simple completeness statements, we

would be able to express that, given any program P , a monitoring system

has generated events indicating if such program is critical to the system as a

whole. However, most monitoring systems would be able to decide only which

programs are critical to the local organization, and might not be aware of the

critical programs for the other organization. We represent such restriction

of knowledge by using conditional completeness statements. In our example,

we express that a monitoring system generates such critical events only

for the programs that are currently running on its devices by specifying the

following: ∀X ∈ DA,∀P ∈ D : critical(P ) ← runs(X,P ). Such statement

indicates that, given a policy containing an event pattern critical(P ), we

can consider the pattern local only if the values of P are restricted to the pro-

grams running on the machines in the domain DA. In general, we represent
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∀X ∈ DA : overloaded(X)
∀X ∈ DA, P,PID ∈ U : runs(X,PID , P )
∀X ∈ DA,PID , P ∈ U : critical(P )← runs(X,PID , P )

Figure 4.1: Example of completeness KB for organization A containing
simple and conditional completeness statements

conditional completeness statements as ∀Vi ∈ D : st← c1, . . . , cm.

Given a policy, our information sharing strategies start by performing a

completeness analysis to identify the information provided by the local mon-

itoring system. The completeness analysis takes a policy v ← p1, . . . , pn, a

completeness knowledge base CKB , and determines which statements pi can

be found completely on the local knowledge base Ki. We call such state-

ments local-complete. We indicate the set of local-complete statements with

SL, and use SR to indicate the others. A non-empty SR indicates that events

affecting the result of the policy compliance process might be stored in KB.

For example, the following policy can be answered completely in the knowl-

edge base subject to the CKB in Figure 4.1.

∀M ∈ D1,∀S ∈ D

overloaded(M),runs(M,PID , S),critical(S)

→violation(M,S).

(4.3)

The statements overloaded and runs are complete because of the sim-

ple completeness conditions in the CKB . The statement critical is com-

plete because of the conditional completeness statement critical(. . .) ←
runs(. . .). In this case, SR = ∅ and SL = {overloaded(M), runs(M,PID , S),

critical(S)}.
If the set SR is not empty we need to acquire all relevant events from

KB. We introduce two strategies for defining the set of persistent queries

that provide a complete and correct detection of all policy violations. The

first strategy, called asymmetric pull strategy, creates a set of queries P from

the set SR. Such a set of persistent queries is independent from the events

contained in KA and does not provide B any information about events. The

second strategy, a symmetric push-pull strategy determines the queries in P

using both SR and the current state KA of the system. Added or removed

events in KA can add or remove queries. Using the symmetric strategy, A

can reduce the amount of events requested from B at the cost of revealing
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some of its internal state.

4.4 Asymmetric Pull Protocol

The first protocol uses the set SR to acquire from KB all events relevant to

the policy. If the statements in SR = {p1, . . . , pn} are simple events, creating

a set of queries P = {(p1), . . . , (pn)} is sufficient for ensuring completeness

and correctness: all events matching any of the statements relevant for the

policy that cannot be found completely on KA are sent back to A. Such

a process guarantees that all events potentially relevant to the process are

known by A.

When the statements in SR are complex events, we need to analyze recur-

sively the policy to identify all simple and complex events that can contribute

to it. In our proofs, we take advantage of the connection between complex

event processing and relational algebra formalized by Bry et al. [61]. Given

a knowledge base K, we use the symbol σpi(K) to indicate a knowledge base

obtained by selecting only statements in K for which there exists a substi-

tution of variables that unify with the given statement pi. Given a set of

statements B, we define the extended set B′ by adding to the set B the

statements dj contained in the rules h ← d1, . . . , dm where a pi ∈ B unifies

with h. We continue until we analyzed all statements in B′.

Lemma 1. We take a violation v, a rule v ← p1, . . . , pn, a knowledge base K

containing ground statements and the sets of rules R. We consider a set B =

p1, . . . , pn and its extended set B′. We have that K ` v ⇔ ∪bi∈B′σbi(K) ` v.

Proof Sketch. Proving (⇐) is simple:
⋃
bi
σbi(K) is a subset of K, so if it

can prove v then K can prove v. The other direction can be proven by

contradiction: assume that there is an event not in B′ that is necessary in the

proof of v. This event is either part of the policy or generated to contribute

eventually to the policy. However, events of this type are included in B′ by

definition.

Theorem 2. Given two sets KA, KB, a rule V = {v ← p1, . . . pn} with

a body containing SL = {p1, . . . , pr−1} statements and SR = {pr, . . . , pn}
statements. Let S ′R be the extension of SR on the rules R.

For every v we have that (KA ∪ (
⋃
bi∈S′

R
σbi(KB)) ∪R) ` v ⇔ K+ ` v.
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Proof Sketch. For P = SL ∪ S ′R, the lemma implies (
⋃
pi∈P (σpi(KA ∪KB)) ∪

R) ` v ⇔ K+ ` v. By definition of completeness, for each pi ∈ SL, we

have that σpi(KA ∪ KB) = σpi(KA). Hence, we can rewrite the first part

of the expression as
⋃
pi∈P σpi(KA)

⋃
pi∈S′

R
σpi(KB) ∧ R. Because KA is a

superset of
⋃
pi∈P KA, we can rewrite the entire expression and obtain (KA∪

(
⋃
pi∈S′

R
(KB)) ∪R) ` v ⇔ K+ ` v

4.5 Symmetric Push-Pull Protocol

The second protocol uses the set SR and the events in KA to create a set

of persistent queries P selecting a narrower set of events E ′. This narrower

selection is obtained by providing to B some limited information about KA

so that only events that are potentially relevant to a violation are delivered

to A.

Intuitively, the strategy is based on selecting the events matching on KA

the local part of the policy to determine a set of specific “missing events”

that, if present in KB, would create a violation. In particular, we consider

the set SL = {p1, . . . , pr−1} as a query L = (p1 ∧ . . . ∧ pr−1). For each

set of events matching the query, we substitute the values of the variables

(substitution γi) in the non-local statements SR. After this process, we call

statements in γi(SR) that now have at least a ground parameter boundary

statements. These statements are submitted as persistent queries to organi-

zation B. Events matching these queries are returned to A. A then adds the

new values for the variables to each substitution γi and repeats the process

until all statements are considered.

1. We take a policy v ← p1, . . . , pn. We assume that all pi are simple

events. We will see below how to generalize it to complex events.

2. Starting from SR and SL of the policy, we compute the set SB of state-

ments in SR that share at least one variable with statements in SL.

SB is the boundary set which represents the remote information about

which the local statements have partial knowledge. If we indicate with

XL the variables used in SL and with XR the variables used in SR, we

can determine the set of shared variables XB = XL ∩ XR. If XB = ∅
but SR 6= ∅, no variables are shared and we revert to the pull algorithm.
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3. We construct a local query on KA by taking the conjunction of the

statements in SL and projecting the result on the variables XB. We

substitute the variables in SB = {p1, . . . , pb} with the substitution γi

and we create a set of queries P = {(γi(p1)), . . . , (γi(pb))}. The queries

P are submitted to organization B.

4. When new events are received from B, we add the results in the knowl-

edge base and create a new CKB′ where we add a conditional com-

pleteness condition
∧
li∈SL li → pi for each pi ∈ SB where pl,i ∈ SL. We

repeat the algorithm with the new CKB′ until SR = ∅

If an event pi is a complex event, we add an additional step to the process.

We consider the rule heads that unify with pi, and we apply the algorithm

recursively to the respective rules.

The correctness and completeness of this process can be shown with a few

considerations. First, if we cannot find a substitution γi satisfying SL on

KA, we have that K+ 6` v. This comes from the local completeness of SL:

events in SL can be found only in KA or they do not exist in K. If we

have a substitution γi, we can consider it a partial match of a rule. If we

can find events matching the statements pj ∈ SR in KB that are compatible

with the substitution γi, then we have found a set of events matching the

condition of the rule. By submitting the persistent queries we obtain such a

result: either the event occurs and it is delivered to A and added to a K ′A,

or it does not occur. In either case, K ′A is now complete in respect to the

new events. As we send queries for all γi, we can add a new completeness

statement
∧
li∈SL li → pj.

Lemma 2. Given a policy v ← p1, . . . , pn, two sets SL = {p1, . . . , pr−1} and

SR = {pr, . . . , pn}, a set SB = {pr, . . . , pb}, a completeness KB CKB, and a

set of substitution γi obtained by performing the query p1 ∧ . . .∧ pr−1 on KA.

We have that K ′A = KA

⋃
pj∈SB

⋃
i σγi(pj)(KB) is complete with respect with

CKB ′ = CKB ∪ (
∧
li∈SL li → pj).

Proof Sketch. For pj to be conditionally complete in K ′A we need to ensure

that for all events matching pj for which there are a set of connected events∧
li∈SL li, we have that K ′A ` pj ⇔ K ` pj. First, we show that if K `

pj ⇒ K ′A ` pj. We have that for all γi such that γi(SL) ⊂ KA, we submit a

query to KB and we obtain γi(pj). In this way we obtain all pj for which the
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condition
∧
li∈SL li are true. Similarly, K ′A ` pj ⇒ K ` pj because the set of

queries can also identify the lack of the event.

Theorem 3. Given a policy v ← p1, . . . , pn, two sets SL = {p1, . . . , pr−1}
and SR = {pr, . . . , pn}, and a completeness KB CKB, the push-pull protocol

is complete, correct, and terminates.

Proof Sketch. The core of the proof proceeds by induction. Because of space

restrictions, we provide only a sketch. Each step of the protocol creates a

set SiB and acquires the set of events
⋃
pj∈SiB

⋃
k σγk(pj)(KB) from KB. From

Lemma 2, the new knowledge base Ki
A is complete for CKBi = CKBi−1 ∪

(
∧
lk∈SL lk → pj). Because of the conditional completeness, we have that

SiL = Si−1L ∪ Si−1B (computed with the new CKBi). We use the new SiL to

compute a new SiR and SiB. By induction, SiL will increase in size by some

nonzero amount for each i since SiB contains disjoint events by definition.

Similarly, SiR will decrease in size. If SiB 6= ∅ during the protocol, eventually

SiR = ∅ and the validation of compliance is performed locally on Km
A , which

is complete and correct by definition. If at any point SiB = ∅, the Ki
A is

obtained by running the pull algorithm, which is known to be complete from

Theorem 1. Since the universe of events is finite, SiL is finite and the protocol

will eventually terminate.

4.6 Device-based Rewrites

The pull and push-pull protocols can be used across organizations to collect

the information required for identifying violations. The remaining part of

this chapter introduces Odessa, a monitoring system that extends the use

of locality and local processing across a large set of devices. Information

about violations is processed locally by each device collecting data. Such

a distributed processing can significantly reduce the information that needs

to be stored in the centralized monitoring systems within each organization.

This locality-based rewrite is used on each device generating information to

identify portions of the policy that can be found locally. When an event

source is observing a complete set of events for a subset of the policy, then

processing can be done locally to reduce the load on the monitoring server,

and to not store unnecessary information in a central location.
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Figure 4.2: Architecture of Odessa. End-hosts are organized in predicate
groups. Verifiers register to the root of the group.

The objective of Odessa is to check if the state of the infrastructure as

a whole is compliant to all policies defined by the organization and repre-

sented as Datalog rules. The architecture of the system was designed to

distribute the evaluation of these rules in a scalable manner. To achieve

this, Odessa uses a distributed evaluation protocol which includes a set of

monitoring agents that monitor the configuration of hosts and validate local

portions of the organizations’ policies and a set of distributed verifiers that

validate global rules. The scalable coordination between monitoring agents

and verifiers is performed using distributed index structures called predicate

groups.

Agents represent the state of hosts using Datalog statements and share

statements relevant to global policies with verifiers. Distributed verifiers in-

tegrate information across multiple hosts and perform the validation of poli-

cies with configuration information gathered from multiple machines. For

a subset of policies critical to the security of the infrastructure, we require

configuration information to be acquired independently from multiple agents

and we replicate the policy validation on several verifiers which use Byzantine

fault tolerance [62] to reach an agreement. By virtue of using FreePastry [63],

our system inherits secured SSL communications and heartbeat-based live-

ness measurement. The architecture of Odessa is depicted in Figure 4.2.
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4.6.1 Monitoring Agents

Monitoring agents run in a secure environment on each host. We developed

agents running in the Dom0 VM of a Xen system [64]. Virtual machines

running on the same physical hosts are monitored using VM introspection

[65]. Traditional hosts are monitored remotely by one of the agents using

standard protocols. TPM can be used with SSL to provide a root of trust

and validate the authenticity of the agent. The set of policy violations that

our system detects depends on the type of information that monitoring agents

can acquire from the systems.

With the increasing use of virtualization in modern systems, running a

monitoring agent in a separated virtual machine is becoming easier. When

virtualization is used internally within an organization to consolidate differ-

ent servers, the deployment of Odessa only requires installing the monitoring

agent in a separated monitoring VM (i.e., Dom0) co-located with the mon-

itored hosts. The deployment of monitoring agents in environments where

monitoring VMs are not controlled directly by the organization can be per-

formed through the use of solutions that have been proposed in the research

literature. One solution is to use nested layers of virtualization to create a vir-

tualized monitoring VM that has control of the other VMs of the same user

[66]; another solution is to have the cloud provider run monitoring agents

and expose interfaces that can be used by the cloud customer to acquire

monitoring data [67].

Monitoring agents maintain a list of policies defined by the organization.

Such a list is periodically updated through a software update process orthog-

onal to the monitoring process.

4.6.2 Verifiers

The verifiers are the machines under the control of the security administra-

tors that have the task of detecting violations of policies. Verifiers are hosts

that securely collect information shared by monitoring agents in order to

validate rules. Each verifier manages a subset of the rules of the organiza-

tion. The set of rules is partitioned across verifiers to minimize the overlap

between the information required by each verifier. Critical rules are analyzed

redundantly by multiple verifiers. Verifiers interact with predicate groups to
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receive information about the system by “subscribing” to events relevant to

its rules.

4.6.3 Predicate Group

To link monitoring agents and verifiers, we use predicate groups. Each pred-

icate group connects monitoring agents that share a specific type of configu-

ration statements and, hence, participate in the evaluation of the same rules.

These groups distribute the processes of disseminating information about

new verifiers, integrate new hosts, and monitor their liveness.

The first task of a predicate group is to permit a connection between the

verifiers and the agents holding the information needed for the verification

of compliance. A verifier monitors compliance to a subset of the rules in the

system, so each verifier is interested in receiving only a portion of the state

change events generated by monitoring agents. We identify such a subset by

considering the types of facts contained in each rule: if an event of type p

is used in a rule, then the verifier is interested in receiving all state event

changes related to p.

Example 1. We can consider a simple rule which specifies that critical

servers should not run applications with known vulnerabilities without an

exception. By acquiring information about the running program on each

machine, annotations about the importance of each server, and informa-

tion about vulnerabilities, we represent this rule by specifying that we have

a violation if a critical server provides a vulnerable service as following: (S,

istypeserver, true), (A, istypeservice, true), (S, provides, A), (S, criticality,

high), (A, hasvuln, V ), ¬(S, hasexception, true) → (r1, violation, V ).

Example 2. If we consider the rule in Example 1, a verifier can check com-

pliance by receiving the events of type istypeserver, istypeservice, provides,

criticality, hasvuln, and hasexception (next section will show how these

events can be reduced by performing local processing).

We organize predicate groups around predicates by associating a predi-

cate group Tp to each predicate p. Membership in the group is distributed

to several hosts by organizing agents into trees: each host maintains knowl-

edge about a few other agents and monitors their liveness. The processes of
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constructing and maintaining these trees are inspired by the Scribe dissem-

ination trees [68]. Communications are built on a Pastry Distributed Hash

Table (DHT) [69] system, and the agent assigned to the DHT key H(p) is the

root of the tree for predicate p. Such assignment is dynamic and depends on

the availability of the agents. If the agent on which the key H(p) is currently

assigned becomes unavailable, the underlying DHT infrastructure automati-

cally remaps the key to another agent in the system. Such new agent starts

receiving the messages directed to H(p).

Each monitoring agent joins predicate groups related to the statements

contained in the configuration of the hosts they monitor. Using the simple

example from the previous section, we have predicate groups for the types of

predicates istypeserver, istypeservice, provides, criticality, hasvuln, and

hasexception (in a real configuration, the number of predicates is larger).

The agent is part of multiple predicate groups, one for each predicate p

contained in the configuration, and maintains local information about each

of them. This information includes the list of verifiers interested in the given

predicate and the addresses of a few other agents in the same predicate group.

On an agent a, we represent such information as T ap = (V a
p , U

a
p , C

a
p ). V a

p is

a list of verifiers interested in receiving changes in the agent’s state that

relate to the given predicate; Ua
p is the address of an agent that is considered

the parent of the a is the predicate group tree structure; and Ca
p is a list

of agents within the same predicate group that are considered children of

current agent.

When a new agent joins the system (e.g., a new physical host is added

to a virtualized network), the agent needs to be included in the predicate

trees. As in other peer-to-peer systems, we maintain a partial list of other

long-lived agents in the system as a configuration of the agent. Once at least

one live agent is found, the DHT reconfigures itself and obtains the addresses

of other agents, if needed.

Predicate-group join protocol: For each predicate p in the configura-

tion, the new monitoring agent joins a predicate group Tp by submitting a

subscribe request message directed to H(p) (i.e., the root of the tree for Tp).

As in the Scribe protocol, such request is routed through the DHT toward

the agent assigned to the key H(p) and it is forwarded until it encounters an

agent a′ which is part of the same predicate group (in the worst case, a′ is

the tree root H(p)). More details can be found in Castro et al. [68]. Upon
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reception, a′ responds by sending its list of verifiers V a′
p and by adding the

agent a to its list of agents Ca′
p . Upon reception of the response message,

a sets its verifier list V a
p to V a′

p and sets its parent node Ua
p to a′. Now a

knows the verifiers interested in receiving information about its state. Hence,

a sends its state to them and can keep them up-to-date about relevant state

changes.

The membership in predicate groups is updated upon changes in the types

of predicates monitored by an agent. When a new predicate p′ is created in

the configuration of one of the monitored hosts (e.g., because of a state change

or because of the addition of a new monitoring capability), the monitoring

agent joins the predicate group related to p′ and receives the list of verifiers

interested in such an information.

Verifier dissemination protocol: Verifiers interested in receiving infor-

mation about a predicate p submit requests to the root node H(p). The

request contains the query and the address of the verifier so that responses

can be routed directly to the destination. Once the request is received by

H(p), the agent disseminates the request to all monitoring agents through

the tree structure of the predicate group: each agent a receiving the request

resends it to the agents in its Ca
p . Once a monitoring agent receives the re-

quest, they add the new verifiers to their verifier list V a
p . a sends its system

state to the new verifier and continues to update the verifier in case of state

changes. In this way, new verifiers can be easily added to the system: when

a new verifier joins the system, it only needs to submit requests to the root

of the predicate groups of interest.

Liveness monitoring: Parents and children hosts in a predicate group

provide a distributed mechanism for checking the liveness of a monitoring

agent. Maintaining correct information about liveness is critical for the ver-

ification of policies: if a host becomes inactive, its state should be removed

from the system. For example, a policy could specify that the traffic of a sub-

net should be verified by an IDS. If the IDS fails, the policy would be violated.

Detecting such a violation in a centralized system can be performed using

periodic keep-alive. However, when the scale of the infrastructure becomes

large, the frequency of keep-alive messages needs to be low to not overload

the centralized server with network traffic. A low keep-alive frequency nec-

essarily increases the time required for detecting failures and, hence, policy

violations. By distributing the task of checking for liveness to a subset of
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the hosts in a predicate group, the load on the centralized servers is reduced

while the frequency of keep-alive checks can remain high. Parents and chil-

dren in the predicate-group dissemination tree have knowledge of the verifiers

interested in the state of the host and can notify them in case of failures.

The failure detection process is distributed through the exchange of keep-

alive messages between parent agents and child agents at each level of the

predicate group. When a failure is detected, an agent-failure message is

sent to all verifiers in V a
p . The verifiers check that the detected failure is

not a false positive by attempting a communication with the agent. If such

a communication is not possible, they remove the agent’s state from the

knowledge base.

In addition to the notification of failures to verifiers, the liveness monitoring

is used to maintain the structure of the predicate group. When a child agent

detects a failure of its parent, it executes the join protocol again to identify a

new parent agent. Additionally, agents near the predicate group root detect

if failures or additions of new agents triggered a reassignment of the root

agent role. In such cases, the old state of the predicate group is preserved by

having the child agent send it to the new root agent.

4.6.4 Rule Decomposition and Validation

To be scalable, our policy validation process detects policy violations through

the coordination of monitoring agents and monitoring servers. We use our

rule decomposition algorithm (RDA) to transform the organization’s rules

into an equivalent set of rules which takes advantage of information locality.

This process allows Odessa to push a partial execution of the rules to each

monitoring agent and hence, reduces configuration information transferred

between machines.

The intuition behind the algorithm is to use information about the source

of configuration statements (i.e., which agents can generate a particular con-

figuration statement) for limiting the places where possible configurations

that can trigger the body of a rule can be found. For example, if we are

checking for the presence of a particular application on a host h1, we know

that information about running applications is generated only by host h1.

Using this locality rationale, we identify a portion of each rule. The exe-
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cution of this portion that considers only local statements on each agent is

equivalent to an execution that considers all statements in the system. Such a

portion is executed independently on each agent where the state information

is acquired, and only the results are shared with the rest of the system.

Our validation process is composed of two phases: decomposition and

execution. The decomposition phase uses the RDA algorithm to integrate

information about the locality of agents’ configuration statements with the

rules of the organization. The result of this process is a decomposition of

each rule into local sub-rules and aggregate sub-rules. In the execution phase,

monitoring agents use local sub-rules to perform partial processing of the rule

and use predicate groups to send processed state information. Verifiers use

aggregate sub-rules to control the process of aggregating information acquired

from multiple agents.

Decomposition

The decomposition phase takes a rule and information about the statements

generated by agents to decompose the rule into local and aggregate sub-rules.

This process uses an RDF-graph representation of the rules which is more

suitable for our analysis. Each rule is transformed in a rule graph, a directed

multigraph describing the explicit relationship between variables, resources,

and predicates used in the rule. The graph has a node for each resource or

variable and an edge from subject to object for every statement pattern.

Definition 3. Given a rule R composed of a set of resources and variables

N and a set of statement patterns S, the rule graph GR is an directed

multigraph GR = (N,S, s, o), where N and S are the resources and statement

patterns used in the rule, s : S → N is a function mapping each statement

pattern to the subject of the statement, and o : S → N is a function mapping

each statement pattern to the object of the statement.

The statement pattern h defined in the rule head is marked as the head

edge. The conversion of the rule in Example 1 into a rule graph is shown in

Figure 4.3.

Locality: For an agent a, we say that a statement pattern is local if all

its potential matching statements are always found locally, independently

from the current state of the system. For identifying the local portion of the
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rule, we formalize our knowledge about the locality of the statement patterns

using a RDF graph we call the locality graph. One of the nodes of the graph,

called the anchor, identifies a specific type of agent as the information source

(e.g., Host).

Definition 4. A locality graph is a directed multigraph L = (N,S, s, o)

where N is a set of variables or resources, S a set of statement patterns, and

s and o defined as before. A specific element s ∈ N is defined as anchor

node.

The locality graph depends on the structure of the monitoring system and

it is defined at design time. To verify if a statement pattern is in the locality

graph, we start from the anchor node. We substitute the anchor node value

with the name of the local resource l (e.g., if the local resource is an host,

we take as a value of the anchor node the name of the host). A statement

pattern (l, p, o) is part of the locality graph if all events matching the given

pattern are generated locally on the agent a.

Example 3. For the rule in Example 1, if we consider a monitoring system

able to obtain information about the servers running on a host, the event

pattern (S, provides, A) is part of a locality graph defined on an anchor node

S of type Host. This can be checked by considering that, given a host h1, all

event patterns (h1, provides, A) can be found locally: the monitoring system

is able to provide information about all services running on a generic machine

h1. Similarly, we can consider the statement pattern (S, istypeserver, true)

as part of the locality graph.

The notion of locality can be generalized to paths in the graph. Each

undirected path starting from the anchor node represents a conjunction of

statement patterns: all the statements matching such a combination of pat-

terns are found locally on each agent.

Example 4. If we continue to analyze our example, we can consider the

predicate pattern (A, hasvuln, V ). Now, we consider a monitoring system

on the agent that queries the NVD database about its running programs to

identify vulnerabilities. Hence, if a program is vulnerable, the local agent is

able to identify the vulnerability. Because of this new local knowledge, we can

consider the conjunction (S, provides, A) ∧ (A, hasvuln, V ). For a host h1,
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all events (h1, provides, A) are local and, for each local program a1, we have

that (a1, hasvuln, V ) is found locally. Hence, we can add to the locality graph

an edge (A, hasvuln, V ). Similarly, we can consider the statement pattern

(A, istypeservice, true) as part of the locality graph, as an agent can identify

that a resource A matching the previous constraints is a service. The locality

graph for this example is shown in Figure 4.4(a).

Locality graphs are constructed at design time and rarely change: they

depend on the capability of the monitoring system. A locality graph needs

to be updated only when new monitoring capabilities are added. Statements

used in the validation of critical policies should not be part of the locality

graph.

Using the locality graph we can identify subgraphs of the rule graph which

can be processed locally on the agent collecting data. For clarity, we consider

only one type of anchor, Host. We consider a rule graph GR. For each

resource r of type Host, we generate a agent-local subgraph as follows. As r

corresponds to the anchor node of the locality graph, we can start a recursive

visit of the locality graph. If an edge appears both in the rule graph and in

the locality graph, the statement pattern associated with the edge might be

processed locally and it is added in the agent-local subgraph (we use Datalog

unification to match edges when they contain variables). Once the visit to

the graph is completed, each agent-local subgraph contains a set of statement

pattern that can be completely validated locally, for a given host.

Example 5. Consider our locality graph containing the nodes N = {S, A, V,
true, true} and the edges (S, provides, A), (A, hasvuln, V ), (A, hasvuln, V ),

(S, istypeserver, true), (A, istypeservice, true). We can consider the rule

graph associated with our the rule in Example 1. The processing starts by

taking all nodes of type Host—S, in our case. We recursively visit the

locality graph and we see that all edges (S, provides, A), (A, hasvuln, V ),

(S, istypeserver, true), and (S, istypeservice, true) are contained both in the

locality graph and in the rule graph. For this reason, they are added to an

agent-local graph. The agent-local graph for our example is shown in Fig-

ure 4.4(b).

Without loss of generality, for every agent we choose one of the agent-

local subgraph to be local. Certain agent-local subgraphs could have anchors
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which are not local for an agent. For example, given a locality graph (H, p,A)

and a rule (h2, p, A)→ (h2, violation,A), the subgraph is local only for host

h2. Such kind of agent-local subgraphs can be considered local only in the

appropriate agents.

Transformation into sub-rules: Once the local subgraph is identified,

we generate local and aggregate sub-rules to use for the distributed rule

processing. These sub-rules specify the location of the computation for the

validation of rules and the structure of the communication between agents

and verifiers.

A sub-rule is a pair < β → η, µ > formed by a rule β → η (β is the body,

η the conclusion) and a query µ. For local sub-rules, the rule β → η repre-

sents a portion of the original rule, and the query µ identifies the statements

generated by local processing which are sent to verifiers. For aggregate sub-

rules, the query identifies the information received by the agents, and the

rule identifies the remaining portion of the policy validation.

Local sub-rules: For each rule graph we consider its local subgraphs.

There are several cases. (i) If the local subgraph covers the entire rule β → η,

then we create a sub-rule < β → η, ∅ >. In this case, the entire processing of

the rule can be local and the agent only needs to raise an alarm for violations.

(ii) If only the head η statement of the rule graph is not part of the local

subgraph, we create a local sub-rule < β → η, η >. i.e., we locally compute

the entire rule, and we share with the verifiers only the consequences. (iii) If

the local subgraph covers only a portion of the rule, then we create several

local sub-rules. For each edge π of the rule graph not in the local subgraph,

we create a local sub-rule < ∅, π >, and we generate a single local sub-rule

< βl → ηl, µl > for the entire local subgraph as follows.

The body of the rule βl is constructed by taking all edges in the local

subgraph and converting them into a conjunctive query of predicate patterns.

Because all edges are part of the local subgraph, all statements that match

the body of the rule are found locally. For example, each match of a rule

body (A, p1, B), (B, p2, C) creates a tuple (A,B,C) containing the values of

the variables. These tuples need to be shared with the verifiers to complete

the validation of the rule. However, we do not need to share the entire set of

variables, but only the variables which are used in statement patterns outside

the local subgraph. Their variables are identified by considering the nodes

at the boundary of the local subgraph (i.e., nodes which have an edge in the
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local subgraph and an edge outside it). For example, if only the variables A

and C are used in statements outside the local subgraph, we only need to

share the tuple (A,C).

This tuple, which represents the information to share, is used as the head

ηl of the rule. However, because the size of the tuple can change depending

on the number of variables in the body, we represent the head using a variable

number of statements which share the same RDF blank node as the subject.

We can think of blank nodes as resources with a unique name generated

automatically by the system. We identify an RDF black node with a resource

name starting with the character : (e.g., : k is a blank node). The object

of each statement is one of the variables in the body, and the name of the

predicate depends on the rule and on the name of the variable. We call

these statements rulematch statement patterns and they are identified with

a predicate rmr,v where r is an id of the rule, and v is the name of the variable

to which they refer.

Example 6. Continuing with Example 1, the locality graph only covers

a portion of the rule. The local subgraph is converted into a single local

sub-rule. The body of the rule is (S, istypeserver, true), (S, provides, A),

(A, hasvuln, V ), (A, istypeservice, true). The head of the rule is composed

of a set of rule match statement, one for each variable that used in the rest

of remaining part of the rule: ( : k, rmr,′S′ , S), ( : k, rmr,′A′ , A). The blank

node : k is substituted with the same random string for all statements, r

is a unique identifier of the rule and ′A′ and ′C ′ are strings representing the

variable names. The head of the rule is also the query µ for the local sub-rule.

The non-local statements in the rule are converted into local sub-rules with

an empty rule. In particular, we obtain the following queries: (S, criticality,

high), (S, hasexception, true). The conversion result is shown in Fig-

ure 4.4(b).

The body βl of the local sub-rule represents only a portion of the body of

the original rule. Because of this, there are corner cases when the βl might

not be “safe” as the statement patterns containing the non-negated variable

in the original “safe” rule might not be included in the local rule. If, for

the rule under analysis, such a condition occurs, we consider only a reduced

subgraph that does not contain the edges covering the unsafe portion of the

rule and any subsequent edges so that the local βl is always safe.
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Aggregate Sub-Rules: The analysis for the generation of aggregate sub-

rules is similar to the generation of local sub-rules. Even if aggregate sub-

rules are executed on verifiers, we still use the concept of “locality” as locality

for the agents. For edges π = (A, p,B) not in the local subgraph we create

an aggregate sub-rule with only a query < ∅, π >. This aggregate sub-rule

specifies that all statements matching this pattern should be delivered to

the verifier. If the rule graph ρ does not have a local subgraph, we add

an aggregate sub-rule < ρ, ∅ > which introduces the rule in the verifier’s

KB. Hence, for rules with no local subgraphs, the verifiers simply collect all

statements matching any of the statement patterns of the rules and performs

local reasoning.

For rule graphs with a local subgraph, we need to account for the partial

processing performed on the agents. We create an aggregate sub-rule with a

rule ρ′ where the local subgraph edges have been substituted with rulematch

statements, and we create a set of queries that collects such statements.

Example 7. Continuing with Example 1, we account for the local processing

performed on the agent and we obtain the aggregate sub-rule ( : k, rmr,′S′ , S),

( : k, rmr,′A′ , A), (S, criticality, high), ¬(S, hasexception, true) → (r1,

violation, V ).

Execution

The execution is driven by local sub-rules and aggregate sub-rules. For each

aggregate sub-rule < ρ, µ > the verifier adds the rule ρ to its local KB. On

the agents, for each local sub-rule < ρ, µ > we add the rule ρ to the local

KB and we select all statements matching µ. The execution phase is based

on the predicate group mechanism introduced in Section 4.6.3. Agents join

the predicate groups based on the predicates defined in the queries of the

rewritten ruleset, and verifiers use the body of the generated rule-sets to

select the predicate groups to use for receiving updates.

For the validation of critical policies, we require verifiers to collect state-

ments from a minimum number of different agents. A Byzantine agreement

on the result is reached by broadcasting the result of local validations to

other verifiers.

The DHT infrastructure supports the monitoring for liveness. Each mon-
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itoring agent is registered to several predicate groups, and the agents pe-

riodically send heartbeat messages to their neighbors. When the failure of

an agent is detected, a message is sent to the registered verifiers so that all

statements that had been generated by the failed agent are removed from the

verifiers’ state. As each host is registered to several trees, even the failure of

all the hosts in a branch of the tree are detected by the parent hosts in other

trees.

Proof of Correctness

The proof of correctness of our algorithm requires the definition of a formal

model of our monitoring system. The state of the system that we are inter-

ested in monitoring is represented as a knowledge base G that contains all

the known facts about the system. During the execution, such knowledge is

distributed across the monitoring agents Li. Verifiers place data they receive

from the agents in a set of aggregated knowledge bases Vi. For simplicity,

we assume a uniform set of monitoring agents with the same locality graphs

and we assume a single verifier V that aggregates data from the agents.

The goal of a compliance monitoring system is to detect all policy viola-

tions present in the known state of the system. The global verification for the

presence of policy violations is performed by analyzing the presence of state-

ments indicating violations in a knowledge base G+R obtained by applying

consequence finding to the knowledge base G using the global set of rules R.

In our system, we avoid performing such a centralized inference by distribut-

ing the computation across the distributed knowledge bases managed by the

monitoring agents (Li) and by the verifiers (Vi). The proof of correctness

needs to show that the distributed inference performed using our rule de-

composition algorithm finds all violations that are found by the application

of the original set of rules on the global state G.

The proof is composed of four parts. First, we show that if we use the

RDA algorithm to decompose a ruleset R into the two sets RL and RG, the

ruleset RL ∪RG preserves the original properties of safeness and of stratified

negation. Second, we show that RL ∪ RG is equivalent (for our purposes)

to R. We represent statements indicating a violation with a pattern n (e.g.,

(∗, violation, ∗)) and we define an operator of selection σn that selects only

statements matching the pattern n. R is equivalent to RL∪RG if the two rule-
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sets used over the same knowledge base find the same set of violations. For-

mally, we show that σnG+R = σnG+RL∪RG . Third, we show that the execution

of the local rules on each local knowledge base is equivalent to the execution

of the local rules on the global knowledge base. Hence,
⋃(
L+RL
i

)
= G+RL .

Last, we show that by creating a knowledge base V by filtering predicates

V =
⋃
σV

(
L+RL
i

)
, we have that V+RG = G+R . This last step provides the

complete proof of the algorithm.

First, we prove that the new set of rules RL ∪ RG preserve the original

properties of safeness and stratified negation of the original set R.

Lemma 3. Given a set of rule R which is safe and is with stratified negation

and two sets of rules RL and RG generated using the RDA algorithm, we

have that:

• RL is safe

• RG is safe

• RL ∪RG is safe and is with stratified negation

Proof. To prove such conditions we analyze the operations of the algorithm.

We show that every rule rl ∈ RL is safe by construction by looking at the

three cases considered in the algorithm: 1) the rule is entirely local; 2) the

rule has a local body and a global head; and 3) the body of the rule is partially

local. For cases 1) and 2), the body βl of the sub-rule is equal to the body β

of the original rule, hence βl is safe as β is safe. In 3), the algorithm reduces

the local portion of the rule until a safe rule is found. Hence, it is safe by

construction. Each rule rg ∈ RG is obtained by substituting a subset of

the original rule r with rulematch statements. The rulematch statements are

non-negated statement patterns that contain all the variables shared between

the considered subset of the statement patterns and the remaining part of

the rule. As the substitution only adds non-negated statement patterns and

the shared variables are preserved, the rule we obtain is still safe.

Last, we show that RL ∪RG is safe and is with stratified negation. Safety

immediately follows from our previous result, as every rule in the set is

safe. As the rewriting does not add negated statements, the rewrite still

preserves the same stratification of the rules. Hence, as the original ruleset

has stratified negation, the resulting ruleset preserves the same property.

63



Second, we show that RL ∪RG and R identify the same set of violations.

Lemma 4. Given a set of rules R and two sets of rules RL and RG obtained

with the RDA algorithm, we have that σnG+R = σnG+RL∪RG .

Proof. We prove this lemma by contradiction. First, we show that if a viola-

tion v is present in G+R , then v is also present in G+RL∪RG . We assume that

there exists a violation v in G+R that does not appear in G+RL∪RG . Because

v is true, there must exists a rule r : β → v in R so that there exist an

assignment θ of the variables in the body of β that makes each statement

pattern in β match with a statement in G (or not match, if the statement

pattern is negated). On RL ∪ RG, it can be the case that r is preserved

during the rewrite and placed in either RL or RG. In such a case, it is trivial

to see that the same assignment of variables would make v true in G+RL∪RG ,

hence leading to a contradiction. A more interesting case is when the rule r

is rewritten in a local rule (βl → p) and a global rule (p, βg → v). However,

even in such a case we have a contradiction. The assignment θ would also

make all the statement patterns in βl and βg be true. As we have the rule

βl → p, we can infer that p is true. Hence, the entire body of the global

rule (p, βg → v) is true, from which we can infer that v is true and reach a

contradiction.

The opposite direction of the implication is verified in a similar way. If

we consider a violation v ∈ G+RL∪RG , then we have a substitution θg that

makes true every statement pattern in the body of the rule (p, βg → v). As

p is generated only by a rule rl ∈ RL, there must exist another substitution

θl so that the body βl of a rule (βl → p) is true. Because p contains all

the variables shared between βg and βl, we can create another substitution

β = βl ∪ βg without conflicts on the values of the variables. As the original

rule in r is in the form (βl, βg → v), we have that the substitution β makes

the body of the rule r true. This fact leads to a contradiction and proves the

lemma.

Third, we prove that performing local reasoning using RL independently

on each of Li is equivalent to using RL on the global knowledge base G.

Lemma 5. We consider a system composed of a set entities ai (identified by

anchor resources) able to perform local reasoning. Each anchor resource ai

is associated with a knowledge base Li. Given a set of rules RL created using
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the RDA algorithm and the completeness graph C, we have that
⋃(
L+RL
i

)
=

G+RL .

Proof. We consider a rule rl ∈ RL created from C and an anchor resource

ai. Becase the rule rl : βl → p is local, it has a variable A that is associated

with the anchor resource ai. Hence, we can create a substitution θa = A/ai.

By definition of the completeness graph, we know that if there is a set of

statement patterns βc that can be generated with a path in the graph C and

a substitution θa, any set of statements matching θa(βc) is going to be found

locally on Li. As the body βl of the rule is a generated from a subgraph of

C, we have that G+θa(βl→p) = L+θa(βl→p)

i .

Given these conditions, we consider each direction of the implication. First,

given a statement p and a rule rl : βl → p, we show that if p ∈ G+rl then we

have that p ∈
⋃(
L+rl
i

)
. We can consider a substitution θg that makes the

βl true in G. Because βl is a subset of C rooted by an anchor resource, we

have that θg must contain a substitution θa = A/ai, where ai is an anchor

resource. As each anchor resource is associated with a knowledge base Li,
we have that all statements matching θa(βl) are found locally on Li. Hence,

there exist an Li on which p is proven as true. As the head of a rule rl is

always a non-negated statement, we have that the union over all Li preserves

the truth of the statement. Proving the other direction is simpler. G is, by

definition, composed of the union of all Li. By our problem statement, we

assume that there is no conflicting information contained in Li (such conflicts

can indicate security problems and are managed through a different process

that selects the valid information to use). Hence, if there exist a substitution

θg that makes a rule βl true in one of the Li, the substitution also makes βl

true in G.

Finally, we show the overall correctness of the algorithm.

Theorem 4. We consider two rulesets RL and RG generated using RDA from

a ruleset R, a set of local knowledge bases Li, and the global knowledge base

G. Also, we consider a knowledge base V obtained by acquiring from the local

agents the statements that have predicates matching any of the predicates in

the rule body of the rules in RG (i.e., we define a query V is a query obtained

by putting in OR all statements patterns in any of the rules, and we define

V =
⋃
σV (L+RL

i )). We have that V+RG is equivalent to G+R
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Proof. First, we substitute the knowledge base V with its definition. In this

way, we rewrite the previous formula as
⋃
σV (L+RL

i )+RG . Using Lemma 5 we

rewrite again the expression as σV (G+RL )+RG . σV selects, by construction, all

statement patterns that are used in the body of any rule in RG. As statement

patterns not selected by σV do not have any effect on the final inference, we

can simplify the expression as (G+RL )+RG .

We show that by applying the inference rules in RL and then, on the result-

ing sets, applying the rules defined in RG is equivalent to applying the ruleset

obtained by RL ∪ RG. This is not true in the general case: the consequence

of a rule in RG might be used in the body of a rule in RL. Applying the

inference sequentially would lead to an incorrect inference. However, in our

case, we have that the body of every rule in RL can only match statements

generated locally by a device (by construction). It cannot contain any state-

ment inferred from information in the global state, as such information would

not be local and, hence, not be part of the completeness graph. Because of

this, we can rewrite the expression as G+RL∪RG . By applying Lemma 4, we

prove our theorem.
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CHAPTER 5

RESOURCE-BASED APPROACHES

In infrastructure monitoring systems, policies describe conditions on the state

of resources such as computer systems, networks, or users. A violation is

identified when a limited set of resources violates such conditions. Our second

theme for the definition of monitoring algorithms is based on the intuition

that events taking part in a policy violation are related to each other as they

provide information about a limited set of resources that, together, create the

violation of the policy. For example, we can consider a policy that specifies

that a user in a computer lab should not be logged on two machines at the

same time. A monitoring system could generate an event when a user logs

into a machine and when the user logs out. A violation would be represented

by two logins of the same user on different computers. The two events, if

creating a violation, are related to each other as they provide information

about the same user. Our system finds violations through the identification

of a sequence of events that corresponds to incorrect or invalid changes in

the state of such resources. We split the problem into a set of steps. At each

step, we find events related to a single resource that is potentially involved in

the violation. Using the relation between resources, we integrate such partial

sequences with events involving other resources to reconstruct the complete

sequence of events in the violation.

This chapter describes two approaches based on resource-based sharing.

Both approaches reduce the information shared across domains and require

information sharing only among servers managing resources potentially re-

lated in a violation. The first part of the chapter describes a rule-rewriting

approach that distributes the computation across a set of peer monitoring

servers managing different resources. For each resource, the system defines

a single server managing it. While different servers can manage different re-

sources, a resource is always managed by a single server. All events related

to such a resource are aggregated in such a server which checks if the state
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of such a resource can potentially contribute to a violation. If it is the case,

information about such an occurrence is shared with servers managing an-

other resources potentially involved in the same violation, until a complete

violation is found.

Aggregating all events about a resource in a single monitoring server can

itself be challenging. It is often the case that the entire state of a resource

is not known by a single domain. For example, in a cloud computing sce-

nario, information about a virtual machine instance is partially collected by

the cloud provider (e.g., placement of the virtual machine, physical network

connections, relation with other user’s virtual machines) and partially by the

cloud user (e.g., running software, application configurations). Aggregating

information in a single server under the control of either of the two domain

would create a large sharing of information not contributing to violations.

For this reason, our second approach removes the requirements that all data

about a resource be collected in a single server. In such an approach, multiple

monitoring servers can maintain partial information about resources. We in-

troduce a distributed algorithm for correlating such data. Our solution takes

advantage of cryptography techniques to reduce the amount of information

shared at the minimum need-to-know for simple policies.

5.1 Distributed Detection of Policy Violations

In our first approach, we define a distributed algorithm for the detection of

policy violations. The algorithm defines both where information is stored in

monitoring servers, and what information is exchanged among the servers for

detecting all violations.

We distribute the detection of violations across a set of peer monitoring

servers that we call brokers. In such an architecture, monitoring servers

within each organization receive information about the resources within their

system. To map uniquely each resource to a specific monitoring server, we use

a hash function that takes a resource name and maps it to a single monitoring

server across the entire system. When multiple organizations are involved,

such a function attempts to respect domain boundaries by assigning resources

managed within each domain to one of the monitoring systems within the

same domain.
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Our algorithm validates compliance by aggregating events in a series of

steps. Each step correlates events related to a single resource. If the single-

step correlation identifies that the resource can potentially contribute to a

violation, we send a summary to the next step so that it can be correlated

with additional resources.

We distribute resources across brokers using the hash function. If the

entire policy is defined on a single resource r, then the policy is validated

completely in the broker managing r. Events about r are directly deliv-

ered to the broker and inserted into a local knowledge base. For example,

we can take the resource hosta (associated to a broker x) and the policy

critical(A), poweroff(A) → violation. The two events critical(hosta)

and poweroff(hosta) are delivered to the broker x and inserted in its local

knowledge base. The knowledge base matches both events and finds a viola-

tion. It is easy to prove that if two single-resource events are correlated by a

policy, both events are always sent to the same broker.

When events are related to multiple resources, the problem becomes more

complex. For example, a policy that relates IDS events with the presence

of vulnerable programs running on a computer system requires integrating

events about several resources such as computer systems, software, and spe-

cific network flows. In general, events involved in a violation cannot be

related to a single resource. For example, an event could state that a com-

puter system hosta is running a program runs(hosta, p) that is untrusted

untrusted(p). Another event could specify that a system hostb is critical for

the system critical(hostb). A third event could state that there is a connec-

tion between hosta and hostb, connection(hosta, hostb). Even if these events

are related to each other, no single resource is shared across all of them.

5.2 Rule Rewriting

Our algorithm performs the distributed resource-based correlation by rewrit-

ing monitoring rules. We analyze a policy and create an equivalent set of rules

that we call resource ruleset. Each rule requires information about a single

resource and represents a partial violation of the policy. If a partial violation

of the policy is found, a new event is generated. We forward the event to the

broker managing one of the resources connected to the potential violation.
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For example, a policy could specify that there is a violation if a machine

connected to an internal network receives a connection directed to a vulner-

able program. We represent this policy as connected(H,N), internal(N),

runs(H,S), vulnerable(S), conn(H,S, IP ) → violation(H,S, IP ). We can

rewrite the policy as follows:

runs(H,S),vulnerable(S)→partialS(H,S)

internal(N),connected(H,N)→ partialN (H)

partialS(H,S),partialN (H),conn(H,S, IP )→
violation(H,S, IP )

(5.1)

The first rule relates events about the resource identified by the value of the

variable S. The second rule relates events about the resource identified by the

value of the variable N . The third rule relates the partial information from

the previous rules with events about the resource H. The conclusions of the

first two rules are events of type partial representing a partial processing

of the original rule. This new set of rules generates the same statements

violation(H,S, IP ) as the original statements, but it is formulated as a

sequence of rules that filter events in different steps.

As the body of each new rule relates events about a specific resource, we

can find all of its conclusions by aggregating in the same broker all events

about such a resource. For example, if the two events internal(net1) and

connected(H,net1) (for all H) are sent to the broker associated with the

resource net1, such a broker is able to compute all the couples of resources

(net1, H) that match the body of the rule. We summarize the partial eval-

uation with the statements partialN(H). Changing the value net1 (i.e.,

value of the variable N) changes the broker in charge of the correlation.

For example, if we consider N = net2, the two events internal(net2) and

connected(H,net2) are sent to a different broker associated with the resource

net2. The partial conclusions computed by each broker are forwarded to the

brokers managing the resource identified by the value of the variable H of

partialN . On the brokers associated with the different values of the vari-

able H, we perform the same process and we integrate the partial events

partialN , partialS, and the event conn. Using our algorithm, brokers share

data only if such an interaction is necessary for detecting a possible violation.
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Figure 5.1: (a) Policy graph. Dashed lines are added during the conversion
process; (b) Policy tree generated by choosing H as root. Dotted lines are
graph edges removed during the conversion process.

5.3 Distributed Correlation Algorithm

The process of rule rewriting starts with the identification of the resources

used in the rule. We represent this information in a policy graph. The policy

graph is a bipartite graph where one set of nodes represents variables and

constants used in the rule, and the other represents predicates. We create an

edge between a predicate node and a variable node if the predicate contains

the variable. A policy graph for an example policy is shown in Fig. 5.1(a).

The policy graph shows the relation between variables and events. If the

graph is not connected we modify the policy by adding a common fictitious

resource that connects the two parts of the policy. However, we believe that

unconnected polices are rare as they would be the equivalent of a SQL join

of two tables without a “where” condition.

Using the graph, a policy is rewritten as a resource ruleset in two steps.

First, we choose an order for the correlation steps by computing a spanning

tree of the graph that we call policy tree. Then, we generate the resource

ruleset from the tree. As the root of the spanning tree represents the final step

of the correlation process, we choose the root to be one of the resources that

appear in the final violation notification message, so that information about

such a resource is readily available for creating the notification. Fig. 5.1(b)

provides an example of the conversion of a policy graph to a policy tree. The

steps necessary for such a conversion are as follows.

1. We remote variable nodes connected to only one predicate node. In

Fig. 5.1(a), we remove the node IP .
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2. We explicitly represent the relations between resources by adding edges

between variable nodes. We create a new edge between variable nodes

of distance 2 (i.e., we ignore predicate nodes and we connect directly

neighboring variable nodes). In our example of Fig. 5.1(a), we mark

such edges with dashed lines.

3. We compute the spanning tree by selecting a root and by removing

redundant edges. For each predicate node, we maintain only one edge.

We select the edge to ensure that each variable node is connected to at

least one event containing a reference to the variable node’s parent. In

Fig. 5.1(b), we mark the removed edges with dotted lines.

This transformation connects each predicate node (i.e., events) to a vari-

able representing one of the resources contained in the event. Events are

forwarded to the broker managing the resource represented by the value of

the variable. For example, we can take a predicate connected(H,N) with

an edge to N . An event connected(host1, net1) is forwarded to the broker

managing net1. For the rest of the section we indicate with N the resource

associated with the value of the variable N .

A broker managing a resource N can perform a partial matching of the

policy. For each variable node, we create a rule of the resource ruleset by

considering the incoming edges. At the lower heights of the tree, all in-

coming edges of a variable node are connected to predicate nodes. These

predicate nodes all share the same variable H. For example, the body of

the rule associated with the variable node N in Fig. 5.1(b) is internal(N),

connected(H,N). For a violation of the policy to exist, the variable N must

have the same value on all predicates contained in the policy. As the broker

managing N receives all events that share the same value for the variable,

the partial matching is complete. The head of the partial rule is a predicate

that has the variables used in the partial rule as parameters. In this case, the

result is encoded with partialN(H,N). This predicate is treated as a new

event, and it is forwarded up in the tree. In our example, the event is sent to

the broker H. Step 3 in the conversion of the graph to the tree ensures that

the broker always has at least one event that carries both the information

about the current resource and about the resource one level higher in the

tree.
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A variable node can have incoming edges connected to other variable nodes.

These edges are considered as connected to events representing the partial

execution. In our case, the node H is associated to the rule partialS(H,S),

conn(H,S, IP ), partialN(H,N). If the variable node is the root, the rule

is directly associated with the presence of a violation. When multiple poli-

cies are present, each policy uses a different name for the partial execution

predicates.

During the execution of this algorithm there is no single broker managing

the resolution for an entire policy: depending on the resources mentioned

in the events, different brokers are in charge of the different steps of the

aggregation and of the final identification of violations.

5.3.1 Remove unnecessary information

We remove unnecessary data from partial execution statements to reduce

the amount of information sent to other brokers. If a variable is not used

anywhere else in the rule, we can drop it from a partial statement without

affecting the equivalence to the original policy. For each variable node V , we

build a set of variables we call shared set. The shared set is constructed by

removing the subtree of V from the policy tree and by taking all variables

used in the remaining tree. We drop from the partial execution statements

of V the variables that do not appear in the shared set.

5.3.2 Distribute information about critical resources

A pure resource-based distribution of events offers little protection against

attackers interested in acquiring information about a specific critical resource

in the system. An attacker can acquire these events by identifying the broker

managing such a resource and by compromising it. Our algorithm provides

a protection against this type of attack by spreading events about critical

resources across multiple brokers. As different types of events about the same

resource are generally used in different policies, we add a policy-dependent

prefix in the selection of the broker. When a resource is identified as critical,

instead of relying only on the resource name r for the identification of the

broker H(r), we add a prefix pi that depends on the policy in which the
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resource is used. Different types of events about a critical resource are sent

to different brokers H(pi|r).
We consider critical all resources representing data about the monitoring

servers. In this way, we limit the possibility that an attacker could use infor-

mation collected from the compromise of a monitoring server to compromise

another server.

5.4 Correctness Argument

Our algorithm is correct and complete if it identifies the same set of violations

that would be identified if all events were integrated in a global KB. We show

the equivalence in two steps. First, we show that the processing of each rule

in the resource ruleset on a broker is equivalent to the processing of the same

resource-ruleset rule in a global knowledge base. Second, we show that the

combination of the resource ruleset is equivalent to the original rule.

All predicates in a resource-ruleset rule share a common variable V . For

any instantiation V = v, the rule is triggered only if events have the same

value v for the variable V . Our algorithm ensures that if a predicate p is part

of the resource-ruleset rule for a variable V , all events having V = v are sent

to the same broker. Hence, such a broker can identify all inference for which

V = v. As the same rule is repeated in all brokers, we obtain the same result

for every value of V .

Second, we show the equivalence between the resource ruleset and the

original rule by noticing that the rewrite algorithm is, in fact, a simple logical

manipulation of the rule. The rule-generation algorithm can be seen as a set

of rewriting steps that preserve the equivalence. We choose a variable V1 and

create a rule ruleV1 that has a body containing all the predicates predi(Ai)

(where Ai is a set of variables) such that V1 ∈ Ai. The head of the rule is

a new predicate partialv1(AV1) where AV1 = {∪Ai|V1 ∈ Ai} . We remove

the selected predicates from the body of the original rule and we substitute

them with the partialv(Av). For each rulev, because the predicate partialv

is unique for the rule, we have that a particular assignment of partialV1(AV1)

is possible if and only if all predicates predi(Ai) in the rule body are also true.

Hence, at the end of the rewrite process, the initial rule has been rewritten

as partialV1(AV1), . . . , partialVk(Ak)→ violation(A). Because each of the
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partialv is true if one only if the body of its rule is true, and AV1 , . . . , AVk still

represent the entire set of variables, we have that violation(A) is generated

if and only if it is generated by the original rule.

5.5 Garbled Circuit-based Processing

Our second approach generalizes our previous approach by permitting each

organization to declare the resources managed by each monitoring system,

and improves it by introducing a cryptography-based mechanism for reduc-

ing the amount of information shared across domains [70]. Our distributed

algorithm identifies portions of such event sequences within each domain, and

uses a distributed naming system to identify monitoring systems potentially

containing other portions of the event sequence causing a violation. We use

secure two-party computation to connect such partial sequences across do-

mains, so that we can identify the existence of the complete event sequence

while limiting the amount of information revealed to the other party.

5.5.1 Policy Analysis

Violations of policies are rare events. Because of this, monitoring system col-

lect a large amount of information that does not contribute to violations.

Our distributed event-correlation algorithm identifies which events might

contribute to violations and shares only those with other security domains.

A violation of a policy is the presence of a particular state on a set of related

resources (e.g., in Table 3.1, the resources are a VM instance I, a software

P , and a physical machine M). Our system finds violations through the

identification of a sequence of events that provide information about changes

in the state of such resources. The interaction between monitoring servers in

such an example is shown in Figure 5.2.

The structure of the monitoring policy provides the basic intuition support-

ing our sharing strategy. We see that each event provides information about

a set of resources. We can take advantage of the relation between resources

to simplify the detection process: we split the problem into a set of steps.

At each step, we find events related to a single resource that are potentially

involved in the violation. Using the relation between resources, we integrate

75



Figure 5.2: Architecture of our monitoring system. Multiple monitoring
servers are placed in different security domains. Servers communicate to
detect violations of policies.

such partial sequences with events about other resources to reconstruct the

complete sequence of events in the violation.

In our case, we consider three resources I, S, and P , where the VM instance

I is assigned to the server S, and I runs the program P . In the first step, we

integrate the events badTraffic and instanceAssigned related to the phys-

ical server S on the cloud provider system. In the second step, we consider

the VM instance I associated to the physical server, and we integrate the

remaining events criticalService generated by the private infrastructure.

Next section generalizes such an intuition. We use a policy-rewrite process

to determine the steps in the event correlation, and we introduce a distributed

protocol for identifying with monitoring servers are involved in the detection.

5.5.2 Rule Rewrite

Monitoring servers identify violations by analyzing events related to the re-

sources they manage and by connecting them with events stored in other

monitoring servers. We make the relation between resources and events ex-

plicit by rewriting the original policy into an equivalent set of rules called

resource-based rules.

A resource-based rule identifies a sequence of two events potentially con-

tributing to a violation. Our algorithm constructs resource-based rules en-

suring that both events in the rule have a resource in common. Because of

such a common resource, once a server finds an event matching a portion

of the rule, all other events satisfying the remaining part of the rule need
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to provide information about the common resource. We use a distributed

naming system to identify the monitoring servers storing events about each

resource.

As resources involved in a policy violation are related to each other, some

events contributing to a violation carry information about two or more of the

resources involved. Our system uses these events to connect resource-based

rules together and reconstruct the complete sequence of events that may lead

to a violation1. Fig. 5.3 describes a greedy version of the algorithm we use in

the policy rewrite. Intuitively, the algorithm takes a policy P and selects two

events with a resource in common (line 2). The two events are substituted

with a new logic statement partiali containing all the information from the

previous events (line 4), and a new resource-based rule PR is created (line

5) by taking the two events and the time constraints timec involving both

of them. If the resulting policy P is composed of two events, the algorithm

is complete (line 6), otherwise the execution continues recursively (line 13).

If the remaining policy does not have any common variable, a new one is

created (lines 8-10). The correctness of the rewrite is shown in Lemma 6

Lemma 6. We take a set of rules R generated through the application of

Algorithm 5.3 to a policy P . We have that a set of events e1, . . . , en creates

a violation of P iif it creates a violation of the set of rules R.

Proof Sketch. The rewrite of the formula P creates a tree structure, where

each node is a rule, and two nodes are connected if the consequence of a rule

is a condition in the other node. We prove the correctness using induction

on the height of the tree. If the height of the tree is 1, then the condition

is trivially satisfied as we have only one rule and r = P . Assuming that the

height of the tree is n, we prove that the condition is satisfied for n + 1. In

the n + 1 tree, we have an additional rewrite that substituted two events

e1, e2 and their conditions with a partialj statement, and created a new rule

rj. The rule rj contains only a subset of the constraints, and because the set

of events satisfies the rules for height n, as the rule rj is satisfied by the same

set of events. Because the statement partial maintains all the information

about matched events, all conditions that were not taken and placed in rj

1Such a semantic condition is common among monitoring policies: if no relation ex-
ists between events, any occurrence of certain unrelated events could create a violation.
However, our algorithm handles the case of disconnected events.
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1: function SubPolicy(V, P, PR)
2: for all e1, e2 ∈ P sharing variable V do
3: V L = vars(e1) ∪ vars(e2) // we select all variables used in the

two events
4: P = (P \ e1 \ e2) ∪ partiali(V L)
5: PR = e1 ∧ e2 ∧ [timec(e1, e2)]→ partiali(V L);
6: if size of P is 2 then return P
7: else
8: if P has no shared variable then
9: take two events ek, en ∈ P and generate a new random

resource r
10: add a property to ek and en to connect them to r
11: end if
12: V ′ = choose a shared variables
13: P’= SubPolicy(V’, P, PR)
14: return P ′

15: end if
16: end for
17: end function

Figure 5.3: Policy rewrite algorithm pseudocode.

can still be validated in the original node. Hence, no constraints have been

eliminated in this process, and all events that satisfy the rules also satisfy

the original policy.

As an example, we apply the rewrite algorithm to our example policy of

Fig. 3.3. First, we choose the variable S and we consider the two events

instanceAssigned and badTraffic to create the following resource-based

rule.

1 : (E2, type, instanceAssigned), (E2, instance, I), (E2, server, S),

2 : (E2, startTime, E2sT ), (E2, endTime, E2eT ),

3 : (E3, type, badTraffic), (E3, server, S),

4 : (E3, startTime, E3sT ), (E3, endTime, E3eT ),

5 : ([E2overlapsE3] ∨ [E2duringE3])

6 :→ partial1(I, S,E2sT,E2eT,E3sT,E3eT )

(5.2)

When two events matching all the given conditions are found, the state-

ment partial1 is added to the knowledge base to indicate the detection of
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a partial sequence of events. The variables EisT and EieT represent the

start time and end time of the events. We rewrite the initial policy using

the partial1 statement. As the new statement contains all information from

the selected events, all temporal constraints and event conditions can still be

applied. The result is as follows.

1 : partial1(I, S,E2sT,E2eT,E3sT,E3eT ),

2 : (E1, type, criticalService), (E1, instance, I), (E1,pname, P ),

3 : (E1, startTime, sE1sT ), (E1, endTime, sE1eT ),

4 : [E1duringE2]→ (v1, violation, I)

(5.3)

Each resource-based rule represents a step in the correlation process by

finding a partial sequence of events. The step is performed within a server or

through the interaction of two monitoring servers. Next section shows how

our system uses such rules.

5.5.3 Event correlation

Our distributed correlation algorithm splits the process of building subse-

quences of events potentially violating the policy across multiple servers.

Each monitoring server registers for managing a set of resources in a dis-

tributed naming service, and constructs the sequences of events related to

them. Servers receive events about the resources for which they are regis-

tered.

The system distributes the load while respecting organization boundaries

by using different strategies for distributing resources to monitoring servers.

For example, each organization unit can decide to allocate all its resources

to a monitoring server; or resources for each organization can be distributed

randomly across a cluster of monitoring servers within the organization. We

use a distributed naming registry based on Zookeeper [71] for maintaining an

assignment between resources and monitoring servers with each organization,

and we expose such an assignment to external organizations through a DNS-

based interface: a server obtains the monitoring servers managing a resource

through the resolution of a name containing a short hash of the resource.

Each couple of events satisfying the constraint of a resource-based rule

increases the length of a possible violation sequence. A resource-based rule
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connects two events having a common resource in one of their properties.

Hence, once a server receives an event matching a part of the rule, other

relevant events are found by checking which servers registered for the com-

mon resource. For each identified server, our system checks the presence of

an event satisfying the rest of the rule using a privacy-preserving matching

protocol. If a match is found, the event is sent to the remote server. The new

event triggers resource-based rules on the remote servers and ensures that

the correlation process continues.

However, as monitoring is distributed, events about a resource might be

stored in multiple systems that are not “registered” for the resource. Our

algorithm uses a “subscription” process to keep track of such servers. When

a server s receives an event relevant to r that matches a rule, it contacts the

registered server for r to search for matching events. Even when matching

events are not found, the registered server maintains a reference to s, as it is

known now that such a server contains events relevant to r. When new events

are received, the registered servers contacts s for correlation. Additionally,

when another server s′ requests a correlation for r, the address of s is shared

so that s′ can correlate its events with s directly. The proof below describes

how the reference is used in our protocol.

Theorem 5. If events e1, . . . , en satisfies all conditions of a policy, the dis-

tributed protocol identifies the presence of a violation.

Proof. We assume that there exists a sequence of common resources that

connects all events, i.e., r1, . . . , rn such that ∀ei∃rk, ej : rk ∈ ei, rk ∈ ej.

Lemma 6 shows the equivalence between the resource-based rules and the

policy. Hence, it is sufficient to show that our algorithm identifies the exis-

tence of the two events matching each resource-based rule. By construction,

such events have a resource r in common. Hence, given an event e, we need

to ensure that a server finds all events e′ that share the same resource r. We

have three cases.

1. Both events e and e′ are received by servers registered for the resource

r. According to our algorithm, when an event is received, the server

interacts with all servers registered for such a resource. As both servers

are registered, the last event received would interact with the server

storing the first event.
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2. Event e received by a server s registered for r, and event e′ received by a

non-registered server s′. If the server receives the events in the sequence

(e, e′), the arrival of e′ triggers a look up on the naming registry that

leads to the identification of the server containing e. If the sequence is

(e′, e), the server of e is identified, however correlation protocol returns

false as e is not present yet, and the event e′ is not shared. In this case,

s saves the reference for s′. When the event e is received, s runs the

correlation protocol with s′ again and identifies the event e′.

3. Both events e and e′ are received by two non-registered servers s and

s′. In such a case, the first event triggers a lookup in the naming

system that leads to the identification of a server sr registered for the

resource r. The correlation process creates the reference to s in the

server. The reception of the event e′ triggers the same process. This

time, sr saves the reference to s′ and returns the reference to s. The

correlation process between s and s′ identifies the matching events.

5.5.4 Privacy-preserving Matching Protocol

The privacy-preserving matching protocol is initiated between two monitor-

ing servers: one peer, called the gc-client, initiate the process by picking a

resource-based rule and an event e for which it wants to find a match. The

other peer, called the gc-server, considers all local events satisfying the local

condition of the rule and, for each event e′, it executes a two-event match-

ing protocol. To speed up the process, the system executes the two-event

matching sessions for all couples (e, e′) in parallel.

We use garbled circuits [6] to implement the two-event matching proto-

col. Garbled circuits are a cryptographic mechanism for performing secure

two-party computation. Without the use of cryptography, one server needs

to acquire data about both events to validate all constraints (temporal and

others) specified in the rule. However, such an approach would reveal a large

amount of information to the other party, as all relevant events need to be

stored on one server. Using secure two-party computation, each party pro-

vides part of the input data and collaborates with the other party through a

distributed protocol to determine if two events satisfy the constraints of the

81



1 : partial1(I, E2sT,E2eT ),
2 : (E1, instance, I),
5 : [E1duringE2]

Figure 5.4: (left) Simplified resource-based rule containing only constraints
requiring input from both events; the partial statement is simplified to
include only variables used in the condition; (right) circuit blocks
implementing the resource-based rule.

rule. The data provided by each party remains hidden, while both parties

only know the result of the computation. In the last several years, garbled

circuits have been shown to be one of the most efficient methods for perform-

ing secure two-party computation [72].

Garbled circuit protocols require encoding the computation to perform as

a binary circuit. Our system encodes events into binary strings and gener-

ates a combinatorial circuit based on the conditions of each resource-based

rule. Circuits are created by connecting using AND, OR, or NOT gates sub-

circuit blocks that depend on the type of constraints specified in the policy.

We consider only constraints that require input from both events, as other

constraints are validated locally.

The sub-circuit blocks in our implementation cover all temporal constraints

in Fig. 3.2, equality, and less-than. More circuits can be created for other

types of constraints. For the resource-based rule in Eq. 5.3, the transforma-

tion maintains the equality constraint between the values of the variable I

used in the event and the statement, and the during temporal constraint, as

shown in Fig. 5.4(left). Fig. 5.4(right) shows the encoding of the policy.

Our system uses a recent implementation of the garbled circuit protocol

[72] to execute the circuit. The gc-client sends the id of the rule to check,

and interacts with the server to construct the garbled circuit. The gc-server

uses an Oblivious Transfer (OT) protocol [73] to ask the gc-client to encrypt

its input, and uses such data to execute the encrypted circuit locally. The

encrypted output of the circuit is sent to the client for decryption. If a match

is found, the gc-client sends the matched event unencrypted. The gc-server

adds the event in its local storage, which might triggers other two-server

event correlation protocols.
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The system executes the privacy-preserving matching protocol for each

couple of events. As each couple is checked independently from the others,

parallelism increases significantly the throughput of the system. The garbled

circuit computation requires several communication round trip for the ex-

change of data, so the parallelization allows a better utilization of the CPU

which would be otherwise idle waiting to receive events.

In our interactions, the gc-server returns to the gc-client the number of

events satisfying the local conditions to determine the number of times the

privacy-preserving matching protocol is executed. If such a number reveals

information about the state of the infrastructure, the monitoring server can

report any number larger than the given value so that the number of events

cannot be used to make any inference. Once the local events are exhausted,

additional computations are performed with invalid values to ensure that no

matching is possible.

5.5.5 Privacy Consideration and Limitations

From a privacy-perspective, the security property of the 2-event matching

protocol shows that, for two-event policies, we only share events that create

violations. Such a metric is the minimum level of information sharing that we

can have between two organizations [74]. However, when the complexity of

the policy increases and multiple resource-based rules are needed, sequences

of events matching a single resource-based rule need to be shared to process

the next resource-based rule. In such a situation, we limit the information

to share by selecting, when possible, resource-based rules that are matched

rarely.

The interaction between monitoring servers leaks additional information

that can be used to make inference on the state of the remote party, even

if no explicit sharing occurs. The request for a two-party correlation reveals

the hash of the common resource and the policy involved. The hash is kept

intentionally short, so that conflicts and false positives are possible, making

the identification of the resource id hard. The presence of an interaction,

even if leads to no matched events, can still reveal that a subsequence of

events matching a portion of the policy is present on the server. To counter

such an inference, we add spurious requests with random events to ensure

83



that such knowledge cannot be inferred.

The implementation of secure two-party computation used in our system

relies on the assumption of honest-but-curious attacker [6]. Such attack

model assumes that the two parties interact according to the protocol, and

do not provide false information about their own systems. In the interaction

between organizations, additional mechanisms can ensure that false informa-

tion is not provided. The periodic auditing currently performed for ensuring

compliance to regulations could also validate recoded logs of the interac-

tions. Such logs create an audit trail that could dissuade organizations from

providing false information. In addition, techniques have been proposed to

validate the received information through independent information sources

[75] to ensure its correctness. Moreover, progress has been made for build-

ing secure two-party computation that apply to semi-honest adversary [76].

Such advancements can be integrated in our solution.
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CHAPTER 6

EXPERIMENTAL EVALUATION

In this chapter, we evaluate our approaches for information sharing to mea-

sure the reduction in the amount of information shared between organiza-

tions. First, we evaluate our locality-based approach in Section 6.1. Then,

we evaluate our resource-based approach in Section 6.2. In both cases, we can

significantly reduce the information shared with other organizations. With

the use of our resource-based approach, we reduce information sharing to the

minimum need-to-know for simple policies composed of two events.

6.1 Locality in Multi-Organization Systems

We perform a set of experiments to measure the ability of our information

sharing strategies to reduce the data sent between the two organizations. We

quantify the data by measuring the amount of basic information units shared.

An information unit is a piece of information that associates a resource with a

predicate. For example, an event computer(host1) associates the resource host1

with the predicate computer. We count this event as one information unit. A

predicate hasIP(host1, ip1) relates the resources host1 and ip1 to hasIP and we

consider it composed of two information units. This measure is representative

of the information shared and does not depend on the specific definition of

the event parameters.

We consider an event dataset collected by monitoring the SNMP state

of 10 research hosts for 30 days. These hosts include a mix of laptops,

development machines, and a web server. We consider 14 types of messages

providing information about resources in the system. The dataset includes

information about 500 distinct running programs (associated to 20000 PIDs),

70000 distinct network connections, 50 distinct network services, and 4100

IP addresses. We scale the dataset to represent a larger set of machines by
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constructing probabilistic models of the events. The sequence of events in

each organization is created by generating events which parameter values are

taken from such distributions. Events are timestamped and added to each

knowledge base.

As the type of policies that can be specified in a real system can vary

widely depending on the interests of the administrators, we evaluate the

performance of our approach using a wide range of policies. We randomly

generate valid policies which correlate types of events that are semantically

related to each other by sharing the values of some variables. We ensure that

the shared values are semantically meaningful (e.g., the value for an IP in

an event is correlated to the value of IP on another event) by constructing

a graph where resource types are nodes, and event types are edges. Starting

from a resource type node, we randomly select an event and add it to the

policy. We continue until we reach a predefined length of the policy. If we

reencounter the same resource type node multiple times, we randomly decide

if the event needs to refer to the previous resource (i.e., use the same variable

name), or if we expect the event to refer to a different resource (i.e., different

variable names).

We create a completeness KB that is consistent with the information col-

lected by our SNMP-based monitoring system. This completeness KB is

shown in Table 6.1. The KB of each organization is populated by generating

events according to the dataset distribution. We track each resource used in

the events and assign it to either D1 or D2. The completeness KB allows

us to distribute events so that each KB contains the events that would be

collected by a monitoring system described by such a completeness KB.

First, we show that our solution limits the overall exchange of information.

Without the use of the completeness KB, organization A acquires all events

in organization B which are relevant to any of the predicates in the rule.

The first experiment measures the fraction of information shared with the

increase of the length of the rule. The fraction of information shared is

measured as the ratio of information shared over the information relevant to

the rule (i.e., events which names appear in the rule). Its results are shown in

Fig. 6.1. When we increase the length of the rule, the fraction of information

shared remains almost constant in all cases. For small rule lengths, most of

the information is found locally in organization A. Using the completeness

KB and a pull strategy, we can reduce the number of events that need to be
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Domain Event
M ∈ DA TCPService(M,S)
M ∈ DA port(S, P ) ← TCPService(M,S)
M ∈ DA UDPService(M,S)
M ∈ DA port(S, P ) ← UDPService(M,S)
M ∈ DA TCPConn(M,C)
M ∈ DA LocalPort(C,PORT ) ←

hasTCPConn(M,C)
M ∈ DA RemotePort(C,PORT ) ←

hasTCPConn(M,C)
M ∈ DA LocalIP(C, IP)← hasTCPConn(M,C)
M ∈ DA RemoteIP(C, IP) ← hasTCPConn(M,C)
M ∈ DA software(C, SW ) ←

hasTCPConn(M,C)
M ∈ DA connState(C, ST ) ←

hasTCPConn(M,C)
. . . . . .

Table 6.1: Portion of the CKB of our SNMP-backed monitoring system.

transferred by not requiring information about the local portion of the rule.

In our SNMP case, this approach approximately halves the number of events

shared by organization B. The push-pull strategy further reduces the amount

of information to share. In the SNMP case, we reduce the information sharing

to about 20% of the information shared in a full sharing strategy (i.e., no

completeness KB). To obtain this reduction, organization A needs to share to

organization B about the same amount of information. The optimal amount

of information shared from B to A can be obtained by transferring all data

from organization A. We see that the minimal number of complete events

that needs to be shared to identify all violations is about 10% of the relevant

information. If we share only partial events (i.e., single information units),

we can further reduce this amount to about 1% of the relevant information.

In this case, it is sufficient for organization B to share enough information

to pinpoint which resource in A is in violation, without revealing any of its

own events that contribute to the actual violation.

The second experiment measures the fraction of information shared with

the increase in the amount of events considered in the organizations. We

consider a rule of length 5, and we see that the fraction of information that

needs to be transferred remains constant and consistent with the previous
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Figure 6.1: Information shared with the increase in the length of the rule.

set of experiments. This data is shown in Fig. 6.2.

Next, we evaluate the overhead introduced by running our information-

sharing algorithms. We measure the average amount of persistent queries

that are placed on the organization B event stream for selecting the events

to share with organization A. For the case of the pull strategy, the number

of queries is proportional only to the length of portion of the rule that cannot

be evaluated locally. For the case of the push-pull strategy, the number of

queries depends also on the size of the events in organization A that we

consider. In the push-pull case, the amount of queries is limited to a few

hundred. This data is shown in Fig. 6.3.

In summary, our experiments show that our techniques can significantly

reduce the number of events to be transferred across the two organizations

without significantly increasing the overall load on the system.

6.2 Resource-based Approaches

Our evaluation measured the reduction in the amount of information ex-

changed when our event-correlation method was used, and the event rate
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Figure 6.2: Information shared with the increase in the number of events
generated by the two organizations. We fix the rule size to 5.

obtained with our two-event matching protocol. We implemented the sys-

tem in Java and used a garbled circuit protocol implementation by Huang

et al. [72], with modifications performed to improve significantly parallelism.

We ran our experiments on Amazon EC2 m1.large instances (7.5 Gb mem-

ory, 4 compute units), an instance type which computation capabilities fall

in the middle of the EC2 spectrum.

6.2.1 Reduction of Event Sharing

We measured the reduction in the information shared between domains.

Resources were partitioned across servers, and events were distributed ran-

domly. Information sharing occurs when events about the same resource are

stored in different domains. As the occurrence of such a condition is policy-

and event- dependent, we evaluated our solution in different points in the

space by changing three critical parameters. The first one is the frequency at

which two events in different domains create a partial policy violation. The

second parameter is the fraction of the infrastructure under the control of

each organization. The third parameter is the number of security domains

89



 0

 50

 100

 150

 200

 250

 2  3  4  5  6  7  8

q
u
e
ri
e
s

rule length

pushpull - 1000
pushpull - 500
pushpull - 250

pull

Figure 6.3: Number of persistent queries placed on organization B.

managing the infrastructure.

We measured the performance of our encrypted communication (encr)

with rules of different complexity (2-event rule, 4-event rule). We com-

pared it with a clear-text solution (clear-txt) that sends events related to a

resource to the monitoring servers managing it (even if they are in a different

domain) [77], and with the minimum need-to-know information (min).

First, we analyzed how the frequency with which events create partial

policy violations affects the amount of information shared. We created events

so that each pair of events in a policy has a given probability of referring

to the same resource, and we randomly distributed them across domains.

We show the results in Fig. 6.4. Our system significantly outperformed the

baseline (i.e., clear-txt) solution and, for two-event polices, the fraction

remained equal to the theoretical minimum (min). As we measure events

shared over total events, the theoretical minimum number of events for the

4-event rules is smaller than the one for the 2-event rule: in the optimal case,

a single interaction can summarize information about multiple events and it

is counted as one event.

The distribution of resources across domains affects the fraction of events

shared, as shown in Fig. 6.5. To test the system under less than ideal condi-
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Figure 6.4: Probability of matching events affects the fraction of events
shared.

tions, we created events that partially matched policies with a probability of

75% and we distributed them randomly to each server. The highest informa-

tion sharing occurred when each organization had half of the resources, while

the amount of event shared is reduced when more resources are managed by

a single domain.

We measured the fraction of events stored at each server under different

conditions (see Fig. 6.6). We considered both complete events and events

that can be inferred from the presence of partial statements. We saw that

increasing the number of security domains reduced the average number of

events stored in each server, and that, in all cases, our system provided a

significant improvement compared to a clear-text solution.

To summarize, our experiment showed that while the performance of the

system depends on the conditions of the policy and the frequency of matching

events, our solution still outperforms a baseline solution. In many cases,

the amount of information shared is close to the minimum possible. Best

conditions occur when events in different domains creating a policy violations

are not frequent, and when a significant fraction of interacting resources are

stored within the same security domains, so that most violations can be found

locally.
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6.2.2 Performance Evaluation

To evaluate computation overhead, we measured the average number of se-

cure two-party computations performed by each server, as shown in Fig. 6.7.

We varied the number of domains. We considered the ratio between two-event

correlations and events received. We saw that increasing the number of se-

curity domains increases the number of two-event correlations performed, as

it increases the likelihood that interacting resources are managed by external

servers.

We measured the ability of parallelizing and of distributing the computa-

tion by measuring the average number of computation per-server, as shown

in Fig. 6.8. We injected a constant number of events into the system and

we measured the ratio between the average number of two-event correlations

performed on each server and the total number of events. When we increase

the number of monitoring servers within each domain, the average number of

per-server two-event correlations decreases as resources are distributed across

the multiple servers.

To demonstrate the practical feasibility of our system, we measured the

event rate achievable using our prototype implementation on an Amazon

EC2 deployment. We used 64 bits for representing the resource name in bi-
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nary form, and 32 bits for representing each event timestamp. Such values

are sufficient to reduce collisions and to maintain low circuit complexity. Be-

cause the performance of garbled circuit protocols depends on the round-trip

communication delays, we measured the performance between two servers

within the same geographical region, and between servers in different re-

gions. The former represents conditions found when monitoring servers are

co-located within the same provider, while the latter when servers are at

different providers.

We measured the throughput in event correlation per second and we show

the results in Fig. 6.9. The remote dataset was split into groups of 100 events,

and the processing of each group occurred in parallel. When using multiple

threads, we increased the rate up to 400 correlations per second on a single

server.

We evaluated the effects of the policy constraints on the system’s through-

put. We evaluated two circuits: one checking for an equivalence between

properties and for a constraint after ; and a more complex circuit checking

for an equivalence and a constraint during. The first one had an input size

of 192 bits: 64 bits for each property name and 64 bits for two timestamps.

The second circuit used 256 bits: 64 bits for each property name, and 128

bits for the four timestamps. The complex circuit reduced the throughput

by about 30%.

We evaluated the effect of colocation of servers on event throughput. We

considered servers co-located in the us-east region, and servers placed in

us-east and us-west. Without concurrency, co-located servers for the after

constraints obtained a rate of 9.5 event/second. When servers are located in

different regions, the rate went down to 1.4 event/second. However, increas-

ing the concurrency significantly increased the event rate. With 500 concur-

rent executions, co-located servers obtained a rate of 435 event/second, while

servers in different regions obtained 337 event/second, with a performance

reduction by about 22%. The before constraint had similar results.

In summary, our experiments demonstrated that our system can obtain a

performance of hundreds of correlation per seconds on each server, and we

can distribute the process across multiple servers.
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CHAPTER 7

EVALUATION OF THE SECURITY OF
THE ARCHITECTURE

Monitoring systems are at the core of the security of organizations. Malicious

manipulation and access to the information collected by a monitoring system

can create significant challenges in the management of systems. In the previ-

ous chapters we focused on an honest-but-curious attack model. In such an

attack model, organizations interact by behaving according to the protocols

while attempting to learn information amount the other parties during the

process. Such a collaboration is realistic in several situations. First, when

organizations have an advantage in collaborating, for example for protecting

against attacks or for detecting other problems that would affect their in-

frastructure. In such a situation, deviating from the protocol would inhibit

the ability of the overall system to operate correctly. Second, the honest-but

curious model is appropriate when regulatory agencies mandate collabora-

tion to rules, and implement periodic auditing to ensure that systems are

behaving according to the protocols.

In this chapter analyses the effect of relaxing our assumption about honest-

but-curious attackers by analyzing situations where monitoring systems within

each organization are compromised. While our architecture cannot provide

a complete protection against such attacks, we show that, in several situa-

tions, our architecture is able to limit their impact to only a subset of the

system. A single compromise cannot compromise the security of the entire

architecture.

The compromise of servers in the monitoring system causes two problems:

it reduces situational awareness by injecting false data, and it provides attack-

ers important information useful for additional attacks. We analyze security

by determining the effects on the monitoring architecture of attacks on in-

tegrity, confidentiality, and availability of the data. The first three sections

focus on integrity and on availability. Section 7.1 analyses the possible goals

of attacks directed toward the integrity and the availability of the monitor-

96



ing data. Section 7.2 defines attack models targeting integrity. Section 7.3

uses such models to analyze the security of our system. Additionally, the

section describes countermeasures that we implement in our architecture for

defending against such attacks.

The remaining sections in the chapter describe the resilience of our archi-

tecture toward attacks against the confidentiality of the data stored in the

monitoring system. Section 7.4 defines attack models targeting confidential-

ity. Section 7.5 analyses the advantages of our architecture in such scenarios.

Section 7.6 presents an experimental evaluation of such a protection.

7.1 Integrity and Availability of the Monitoring

Information

Compromising the integrity or the availability of the monitoring system can

significantly affect the ability of the system to detect threats and to respond

to them.

When the availability of the monitoring system is compromised, the system

loses the ability of detecting new attacks or problems in the infrastructure.

For example, an attacker could affect temporarily the availability of the mon-

itoring system to hide malicious actions that could indicate the compromise

of systems. Additionally, an attacker could disable the monitoring system to

reduce the ability of responding to attacks in situations such as Denial-of-

Service attacks, where fast online response is required.

Compromising the integrity of a system has similar effects, but the problem

is intensified by two facts. First, there is an increase difficulty in detecting

that the attack against the monitoring system is even occurring. While avail-

ability attacks can be detected using failure detectors in distributed systems,

integrity attacks require more complex detection mechanisms that are gen-

erally harder to implement. Second, an attacker can inject false information

in the monitoring system to trigger an inappropriate response. For example,

during the response to a DDoS attack, a compromised monitoring system

could provide false information that points the operator to the wrong cause

of the problem. In such a situation, an operator might stop legitimate net-

work flows believing that they are part of the attack.

Our security analysis focuses on the effects of compromises of parts of the
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infrastructure. While an attack to the availability of the infrastructure is

easier to succeed than an attack to the integrity, its effects on the monitoring

system are a subset of the effects of a compromise of the integrity of the

data. If the integrity of a device is compromised, an attacker can decide to

make it stop operating. Hence, our analysis focuses on integrity attacks as a

worst-case scenario.

7.2 Integrity Threat Scenario

We model an attacker interested in compromising a policy-based monitoring

system. We assume that the attacker is interested in affecting the operation

of the monitoring system by hiding violations or by injecting false violations.

Hiding violations would allow the attacker to operate in the system with-

out detection, while injecting violations would allow the attacker to trigger

indirectly specific security responses.

We classify the attacker’s goals in two categories, as follows.

1. INT RESOURCE: An attacker is interested in controlling violations

regarding a specific resource.

2. INT ALL: An attacker is interested in creating or hiding violations

without any specific preference for the resources involved.

The INT RESOURCE attack is a targeted attack directed at modifying

specific information about a resource. For example, attackers could modify

information about the programs running on a machine for hiding malicious

software, or they could modify traffic flows to hide malicious communications.

The INT ALL attacker is interested in disrupting the monitoring system by

injecting false information, independently from the resources involved. At-

tackers with such a goal are interested in maximizing the number of violations

that can be hidden or created by attackers.

We provide a quantification of the difficulty of the attack by making a

few simplifying assumption. Such quantification is useful for comparing the

security of the two solutions. First, we define a model for the attack. We

assume that an attacker can compromise a system by taking some effort

(e.g., sending fishing emails, installation of malware). Such an effort could be
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composed of multiple tries, multiple steps, and can be distributed over time.

We assume that there is a probability pc of such an effort being successful and

resulting in the compromise of the target monitoring server. Additionally, we

assume that each effort has a probability pd of being detected. For simplifying

formulas, we assume that the probabilities are the same in the centralized

solution and in the distributed solution: in both cases, the servers should be

secured according to best practices.

7.3 Availability and Integrity of the Monitoring Data

We analyze the effects of compromises on the integrity of the monitoring

process, and we propose a set of countermeasures that can alleviate the

problem through the use of redundant sensors and redundant servers. We

consider two basic types of attacks to the infrastructure. The first type

of attack focuses on compromising information sources (e.g., end-hosts, IDS

systems) that provide security information to monitoring servers. The second

type of attack focuses on compromising the monitoring servers.

7.3.1 Compromise Information Sources

An attacker can compromise directly the information sources providing in-

formation about the target resource. For example, an attacker interested in

hiding network traffic can compromise the IDS node collecting information

about flows. If the attacker can prevent the security information reaching the

monitoring servers, all violations that rely on the compromised information

are under the control of the attacker.

With this type of attack, INT RESOURCE attackers can focus their efforts

on compromising the information sources monitoring the resources they are

targeting. An INT ALL attacker can maximize the number of information

sources that need to be compromised. Increasing the information sources

that are compromised increases the violations that can be controlled by the

attacker.
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7.3.2 Mitigations

We mitigate the effects of attacks to the information sources in two ways:

hardening of information sources, and redundant monitoring.

A large amount of work has been developed on hardening information

sources so that they are less vulnerable to attacks. Recent approaches use

Virtual Machine Introspection (VMI) (e.g., Garfinkel et al. [46]) to separate

the monitoring infrastructure from the monitored system, so that attacks to

the latter does not affect the former. In our implementation, we use such

techniques when monitoring running processes and network connections in a

virtual machine environment.

Redundancy in the information sources is another method for protecting

the system from compromises. In several situations, information about a

resource can be acquired through multiple independent sources. For example,

network flow information is observed both by IDS systems and by the hosts

that are part of the connection. As each information source creates events

independently, the monitoring servers can integrate such information and

detect suspicious situations (e.g., an event is received from one information

source instead from all redundant information sources).

7.3.3 Compromise of Monitoring Servers

Another attack vector is the compromise of the monitoring servers. By com-

promising servers, attackers have complete access to all the resource infor-

mation managed by the server. For example, an attacker can change the

processing code and inject false information in the system, or prevent vio-

lations from being detected. We estimate the resilience to compromises by

evaluating the effects of attacks on availability and integrity of the system.

We consider an architecture based on multiple monitoring servers placed

in different security domains. We compare the security of our solution with a

centralized solution where all information are integrated on a single common

server for analysis.

For a INT RESOURCE attacker, the different between the two systems is

limited. In both cases, obtaining control of the monitoring server control-

ling a resource requires compromising one single monitoring server. In the

centralized solution, such a server is the common server, while in our dis-
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tributed solution, such a server is the server within a security domain that is

managing such a resource. In our attack model, in the centralized solution,

we have that a single successful effort for obtaining access to the machine

gives complete control to the monitoring system. Hence, the probability of

having the system compromised is pc, and the probability of detecting such

an attack is pd. The result for the distributed solution is the same. There

is a probability pc that a specific server in one of the security domains is

compromised, and a probability pd that the attack is detected.

For a INT ALL attacker, the effects of attacks on the two architectures

are different. In the centralized architecture, a single compromise would per-

mit users to obtain complete control of all resources in the system. In the

distributed architecture, obtaining such a complete control requires compro-

mising all servers in the different security domains. In our attack model,

such a complete compromise in a system with n servers has a probability of

success of pnc , and a probability of detection of (1 − pnd) (i.e., at least one

security domain detects the attack).

When moving to a distributed solution, we can have partial compromises

of the system: some resources can be under the control of an attacker, while

others are not compromised. Because the INT ALL attacker is not interested

in compromising a specific server, it can take advantage of the increased

attack surface for increasing the success of partial attacks. If we assume that

resources are uniformly distributed across servers, controlling a portion r of

the resources requires compromising any single server.

Hence, the probability of having exactly r resources under the control of

an attacker can be modeled as the success of at least one of the compromise

efforts. We express such a probability using Bernulli trials as follows.(
n

1

)
pc(1− pc)n−1 (7.1)

As the effort is spread across multiple organizations, the probability of de-

tecting the attack increases. The attack is detected if any of the organizations

detects the attack as (1− pc)n.

To evaluate the impact of controlling resources on the detection of viola-

tions, we consider the resource-based algorithm for the distributed detection

of violations. In such an algorithm, the communication between monitoring

servers for each violation is organized in a tree-like structure. The monitoring
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servers involved in the violation are the nodes of such a tree.

Once an attacker has control of a resource, she can hide real violations or

create fictitious ones by injecting false information into the processing flow of

the distributed algorithm. For hiding an existing violation, it is sufficient to

suppress a message specifying the partial match of the policy. For creating a

new violation, an attacker can create a new message indicating the presence

of partial matches. If the condition of the other resources involved is correct,

then a fictitious violation is detected.

In summary, the impact of attacks targeted to a specific resource remains

similar in the centralized and the distributed architecture. However, catas-

trophic failures where all the monitoring system is under the control of an

attacker are harder to obtain. The system can fail partially, while containing

to work for the majority of the resources involved.

7.3.4 Mitigations

As in the previous section, we use redundancy to limit the impact of attacks.

We implement redundancy in the processing of the algorithm by having mul-

tiple monitoring servers manage each resource.

The redundant servers receive, directly from the event sources, information

for the resources they monitor. Each server integrates such information with

the partial results generated from other servers, and forwards the computed

results to the next servers according to the distributed algorithm.

Two main changes are introduced for supporting a redundant computa-

tion. First, we use a majority voting for accepting partial computation re-

sults coming from other servers: if the same partial result is received from a

majority of the redundant servers, the server adds it to the knowledge base.

Otherwise, the result is ignored until enough votes are received. Second, the

partial results generated by the server are submitted to all monitoring servers

registered for the resource.

Through such a use of redundancy, creating or hiding violations requires

compromising a majority of the servers at each level. The tradeoff is an

increase number of servers used in the processing, and an n-fold increase in

the number of messages exchanged in the system.
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7.4 Confidentiality of the Monitoring Data

The effect of distributing the computation across multiple systems helps re-

ducing the impact of compromises on the confidentiality of the data con-

tained in the monitoring system. Instead of concentrating information in a

single system, we distribute knowledge about the infrastructure into multi-

ple monitoring servers that collaborate for detecting violations of security

policies. The centralization of information used in other monitoring systems

relies on the assumption that securing a single system is simpler than se-

curing multiple systems. However, recent compromises of critical systems

such as certification authorities [78], targeted attacks [79], and the presence

of zero-days vulnerabilities challenge such an assumption. For example, the

exploitation of a single zero-day vulnerability in the monitoring server would

allow an attacker to acquire all information about the infrastructure. In

our system, the exploitation of a single monitoring server would reveal only

limited information.

7.4.1 Confidentiality Threat Scenario

We define an attacker, Eve, interested in acquiring more information about

the state and the structure of the infrastructure system. We assume that the

attacker has a limited initial knowledge and she is interested in compromising

the monitoring system to acquire more knowledge. While compromising the

monitoring system is not the only method for acquiring more information

about the system’s structure (e.g., she could compromise a set of servers

in the network and monitor traffic and communications), we assume that

attacking it maximizes the efficiency of the attack. We assume that the

attacker has knowledge about the monitoring system.

First, we make a few reasonable assumptions about the capability of the

attacker for compromising hosts. We assume that attackers can compromise

monitoring servers, but these compromises are rare events. We assume that

some effort is required for compromising an additional monitoring server

(i.e., an attacker cannot compromise all servers at the same time with no

effort). Such an effort can represent the difficulty of acquiring an additional

set of credentials, or the difficulty of compromising another machine located

in the network of the monitoring server so that firewall protections can be
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circumvented.

Then, we define more clearly the goals of the attackers. We assume that

the attacker is interested in both the presence of policy violations and in the

raw events collected by the monitoring system. Policy violations indicate

directly possible venues for attacks, but they are generally fixed quickly by

network administrators. This provides a limited window of opportunity to

attackers. Other data can be used to identify critical systems or plan the

next step of the attack.

The type of raw events interesting to an attacker can change depending

on the type of monitoring performed by organizations. We consider multiple

types of attackers interested in acquiring different types of information from

the monitoring system. We classify attackers as follows:

1. MAX ALL: An attacker wants to maximize her overall knowledge about

the system.

2. MAX RESOURCE CRITICAL: An attacker wants to maximize her

knowledge about a limited set of critical resources.

3. MAX TYPE CRITICAL: An attacker wants to maximize her knowl-

edge about specific critical types of events (e.g., the presence of a vul-

nerability on machines).

We evaluate the protection provided by our system to these different types

of attackers, and we show that our resource-based distribution of events

provides a better protection than other solutions.

7.5 Protecting Data from Attacks

Distributing the knowledge about the system to multiple monitoring servers

improves the security of the system toward our attack model for several

reasons. First, the fact that a single compromise is not sufficient anymore

for acquiring the information searched by attackers forces them to perform

multiple actions. The increased activity gives multiple opportunities to IDS

systems to detect such malicious behavior. To get a qualitative idea of this

effect, we use a simple probability model. If we consider the probability of
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detecting an attack at each action independent pa, we have that the probabil-

ity of detection pdt grows with the number of servers k as pdt = 1− (1− pa)k.
With no distribution, this number is constant and equal to pa.

Second, a centralized monitoring system provides a simple target for at-

tack. While rare, zero-day vulnerabilities or stolen credentials can be used

by an attacker for compromising the system and, hence, accessing the entire

monitoring information. In our distributed approach, we rely on monitoring

servers managed by different organization units. The servers are placed in

different networks and they are managed using different credentials. In such

a configuration, accessing the entire state of the system requires compro-

mising multiple credentials or exploiting multiple zero-days vulnerabilities

to communicate with the different servers. Even when a single monitoring

server is compromised, such an exploit has limited effects on the amount of

information obtained by the attacker.

We can qualitatively estimate the effects of this advantage. For ease of

calculation, we consider a simplified attack model where we assume that an

attacker has a probability p of successfully compromising a host. Such a

probability is related to a simplified notion of the “effort” required for com-

prising an additional server: p represents the probability of success given a

constant effort. In the centralized case, the probability pc of compromising

the central server is equal to p and represents the probability that the en-

tire knowledge about the system is compromised. In our case, an attacker

that wants to have access to the information needs to compromise multiples

servers. We call pd the probability of compromising at least k servers over

the n monitoring servers, and we define it as follows:

pd =
n∑
i=k

(
n

i

)
pi(1− p)(n−i) (7.2)

Distributing the information across n servers is better than centralizing it if

pd < pc, i.e., if the probability pd of compromising at least k servers containing

the information searched by the attacker is lower than the probability pc of

compromising the centralized server. To maximize the difference between

the pd and pc we need to have a high value of k: we need to force attackers

to compromise multiple machines to find the information they need. Such a

number k does not need to be very large: if we have 20 monitoring servers

and we consider a probability p = 0.01 for an attacker to compromise one of
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the monitoring servers, a value of k = 3 leads to a probability pd = 0.001.

This value is robust to changes in probability p. For example, we can consider

the common belief that “securing one server is easier than securing multiple

machines.” To analyze its effects, we can assume that compromising the

centralized monitoring server is twice as hard as compromising one of the

monitoring servers. Even in this case, if we take a probability pc = 0.01 and

a probability of compromising one of the monitoring servers as p = 0.02, the

probability pd with k = 3 is 0.007. With k = 4, this probability goes down

to 0.0006.

Hence, while distributing the information increases the attack surface and

might make finding one single vulnerable monitoring server more likely, at-

tackers need to compromise multiple machines to acquire the information

relevant for their attacks. The multiple steps of the attack make it easier to

detect and less likely to succeed completely. Based on this observation, we

build our policy-based monitoring system so that information is distributed

uniformly across several monitoring nodes. Our experiments show that we

can maintain the value k large for the attack models we consider.

The process of matching events within each monitoring host is performed

by a service called “broker.” A broker is a software service that can run in a

dedicated machine or can be co-located with other services. Each broker re-

ceives events related to a limited subset of the resources of the organization.

They use our algorithm for exchanging information and, hence, for finding

all violations presents in the system. In this way, event load and information

about the system are distributed across a large number of hosts. Resources

are assigned to brokers at random, so that no single host concentrates the

knowledge about the resources of a critical organization unit. Each monitor-

ing server can subscribe to violations of specific rules or to violations involving

specific resources. These subscriptions are distributed across brokers. Once a

broker finds a violation, it delivers a notification to the subscribed monitoring

servers. We limit the amount of subscriptions that each server can submit.

While communication between brokers is necessary, such communication is

limited only to the event-correlation service. Other services can be isolated

through firewalls to reduce the attack surface. An architecture supporting

our algorithm is shown in Fig. 3.1.
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Figure 7.1: Internal structure of our broker implementation. It receives
events and adds them to the appropriate resource-based KB. The Datalog
resource rulesets are added to the KB obtained by the union of the
resource-based KBs. The events generated by the rules are forwarded to the
appropriate brokers. In case of a changes in the availability of other
brokers, the neighbors monitor sends and receives resource-based KBs from
other brokers.

7.6 Experimental Evaluation of the Confidentiality

Protection

We implement the policy compliance algorithm in our distributed monitoring

system. Our agent-based system provides monitoring of SNMP data, running

processes, network connections, and logged users. Information is integrated

in a set of monitoring servers communicating using a 1-hop DHT. The hash

of the resource name is used for mapping resources to brokers. The system

is implemented in Java. Rules are distributed to the servers before starting

the process.

Each broker analyses the policies and creates resource rulesets and queries.

Events received by brokers are placed in a resource-KB depending on the

resources contained in the event. Rulesets and queries are applied on the

KB obtained by taking the union of all resource-KBs. Once inference is

performed, the monitoring server applies the queries defined from the rules

and creates the set of events to send to other brokers. Such events contain

the partial executions of the policies or specify the detection of a violation.

If a violation is detected, the broker forwards it to the brokers subscribed to

receiving violation notifications about the rule or about the resources involved

(e.g., the monitoring server in the sub-organization managing the resources).

Mapping between resources and brokers can change over time (e.g., because
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we add a new broker). A component, the neighbors’ monitor, detects when

a resource becomes mapped to another broker and moves the proper part of

the knowledge base to such a broker.

Failures of a broker are handled by remapping automatically resources to

new brokers. Such a process is managed by the neighbors monitor. How-

ever, when a broker fails, its current knowledge base is lost. For the cases

in which events are correlated within a limited time window, a failure would

only affect temporarily the ability of detection violations until the time win-

dow is passed. After such a time, the new broker would have received all

relevant events and the event correlation becomes complete again. For the

cases in which correlation requires to store longer term information, devices

are configured to send periodically such information about the state to bro-

kers. For example, SNMP information is generally long-lived. A device could

periodically (e.g., every 10 minutes) send again its entire state to the bro-

kers. A proper handling of timestamps (such as the one described in Walzer

et al. [55]) ensures that policy violations that occurred during the downtime

are still detected, even if with a delay. An architectural description of a

broker is shown in Fig. 7.1.

The evaluation of our system requires having policies and events to cor-

relate. To evaluate our system in a wide range of realistic conditions, we

generate events from publicly available data traces and from monitoring a

set of systems in our research infrastructure. The first dataset we use is a

network trace collected during the three days of the 2010 Network Warfare

Competition [80]. We use Snort1 to analyze the trace and generate 60152

security-relevant events carrying information such as type of alert, source

IP, destination IP, protocols, and ports. The second dataset is composed

of syslog data collected by monitoring the wireless network infrastructure of

Dartmouth college [81]. It is composed of 30 million syslog entries describing

the state of the wireless access points. It reports events such as association

of wireless devices to access points, interactions between access points, and

errors. The third dataset contains SNMP data about configurations of hosts,

network connections, running services, and running programs. We collected

this dataset by monitoring using SNMP the state of different types of ma-

chines: servers, development desktops, and laptop computers. We choose

1http://www.snort.org
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IDS Resource Cardinality With type Avg Msgs stddev
Event type 24 24 4.17% 12.0%
Src port 180 357 0.556% 1.97%
Dst port 249 704 0.402% 1.31%
Src IP 75 742 1.33% 4.64%
Dst IP 171 1299 0.585% 1.93%
ICMP type 6 108 16.7% 29.9%
Wireless Resource Cardinality With type Avg Msgs stddev
Event type 42 42 6.67% 17.2%
Access point ID 544 8944 0.184% 0.451%
MAC address 9251 59473 0.010% 0.100%
SNMP Resource Cardinality With type Avg Msgs stddev
Event type 14 14 7.14% 24.8%
Host IP 4145 4147 0.024% 0.457%
Program 493 493 0.20% 1.50%
Network Port 20770 24222 0.00480% 0.20%
Services 56 56 1.79% 4.51%

Table 7.1: Resources and their distributions in the datasets. We consider
the average number of messages for each resource and its stddev. The
values are normalized by the total number of messages dealing with the
specified type of resource.

the datasets to show the applicability of our technique to different data used

in policy compliance: network traffic data, network management data, and

security management data.

7.6.1 Event Dataset Analysis

We start our evaluation by analyzing the characteristics of the events gener-

ated in network management and intrusion detection. Such an analysis shows

that a resource-based mapping can provide a more uniform distribution of

data than a mapping based on event-type.

First, we analyze our datasets to characterize the distribution of events and

of resources. We identify event types and resource types. We have 24 types of

events in the IDS dataset, 42 in the wireless management dataset, and 14 in

the SNMP dataset. Each dataset has several types of resources. We identify

source ip, dest ip, source port, dest port, and ICMP type as different resources

for the IDS dataset2. We identify access point IDs and MAC addresses for the

2We consider source and destination IPs and ports as different resources to better
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wireless dataset, and we identify IP, programs, network ports, and services

as resources for the SNMP motoring dataset.

We show that the distribution of the number of messages is more flat if

we distribute messages by resource, while it is far from uniform when we

distribute messages by type (i.e., each resource has a similar number of mes-

sages related to them, while there are type of events that are much more

frequent than other types). We compute the standard deviation of the nor-

malized distribution of the number of messages by type and by resource. For

each event type and resource, we compute its fraction of the total messages.

We compute the stddev of this distribution and we represent the value as

a percentage. This value is much larger when messages are aggregated by

event types, while it remains low (in most cases) when events are aggregated

by resource. We summarize this data in Table 7.1.

A graphical representation of the CDF of this message distribution for the

Dartmouth dataset is shown in Fig. 7.2. The y-axis of the graph represents

the fraction of resources (or message type) that are mentioned in at least

the fraction of messages specified in the x-axis. We see that we have a large

number of messages for each event type, while most resources are mentioned

in a small fraction of the messages. Hence, a distribution of messages by

resource could provide a more uniform distribution of information.

7.6.2 Deployment on EC2

We run the system on EC2 spot instances to test the system in a real dis-

tributed environment. One of the instances generates events according to

the distributions specified in our datasets to model a stream of events from

a real system. We performed several experiments by changing the number

of policies, the length of the policies, and the number of brokers. Each data

point is the average of at least 5 executions. Each time new policies have

been generated to consider different variations of rules and events.

We compare our system with systems presenting a different distribution

of events. Centralized solutions do not provide any protection against the

attack, as all information is compromised as soon as the main server is com-

promised. For this reason, we do not consider it in our evaluation. Instead,

understand the dataset characteristics.
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Figure 7.2: Event distribution for the Dartmouth dataset. We show the
fraction of resources (y-axis) receiving at least the fraction “x” of the
messages.

we consider a distribution of events based on event-type.

Distribution based on event type is used in pub-sub policy-based event sys-

tems for filtering events (e.g., [82]). The processing of a policy is distributed

across brokers by processing the policy in groups of two event types. For

example, a policy in the form A ∧B ∧C → violation is split into two parts:

A ∧ B → partialAB and partialAB ∧ C → violation. A broker b1 receives

events of type A and B and send to a broker b2 the resulting events of of type

partialAB. Broker b2 integrates the events partialAB with events of type C

to identify all policy violations. While at first glance this splitting of the rule

is similar to the one we describe in this paper, this process does not consider

in the mapping the value that the variables assumes and groups events only

based on their predicates (i.e., their type).

To the best of our knowledge, current pub-sub policy-based systems do

not address the problem of limiting the knowledge maintained at each bro-

ker. Allocating rules and events to brokers in this solution is a challenging

problem. A solution that minimizes the overall number of events would re-

quire mapping rules containing similar set of predicate types on the same
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brokers. However, by doing such an allocation, the maximum knowledge on

brokers becomes large, as each different rule might require a slightly different

set of predicates. To provide a fair comparison, we perform an explicit allo-

cation of type-based policies to brokers so that the knowledge in each broker

is reduced. We allocate in the same broker partial rules that manage the

same events, and we balance the remaining rules across brokers to balance

the maximum knowledge.

The evaluation of our solution needs to analyze the behavior of the system

with a wide range of policies. While there are already a limited number of

policies specified in regulatory documents, the way to map these abstract

policies in rules that rely on information acquired from the system depends

on the organization. An evaluation that focuses only on these policies would

be limited in evaluating the system for the future types of complex policies.

For this reason, we evaluate our system using a set of semantically meaningful

but randomly generated polices. We use the semantic relations between the

events in our datasets to construct policies that preserve these relations. We

create such policies by defining a graph that relates events and resources:

nodes in the graph are the resources; edges of the graph are the events

generated in our datasets. Each policy is constructed by a random walk

through the graph. The semantic graphs we used in the evaluation of the

SNMP data is shown in Fig. 7.3. We use the SNMP dataset as it provides

the most diverse set of events for the construction of complex policies.

We quantify the amount of information obtained by an attacker using

the number of events, as each event represents an atomic piece of informa-

tion about the system. The distributed execution of the rules, both in the

resource-based solution and in the type-based solution, creates partial re-

sults in form of events. These events might not carry complete information

about the system’s condition. For example, we can consider a resource ruleset

p1(A,B), p2(B,C)→ partialB(C) and partialB(C), p3(C,D)→ violation(C).

The knowledge of the event partialB(r) can be used to infer that there exist

two events in the form p1(ua, ub), p2(ub, r). However, the exact values for

the resources ua and ub are unknown. Even if such information is partial, it

might still be useful to an attacker. In our evaluation we consider this type

of inference. As we do not know the usefulness of partial events, we consider

the events that can be inferred by the knowledge of partialB as complete

events. Hence, we might be overestimating the knowledge acquired by an
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Figure 7.3: Semantic relations between resources and events. We use this
graph to generate random policies that preserve a valid meaning.

attacker. This type of “backward-inference” is measured by inverting the

direction of all the rules in the resource ruleset. In our example, we measure

the number of events in a knowledge base containing the rules partialB(C)→
p1(ua, ub), p2(ub, C) and violation(C) → p3(C, ud), partialB(C). In this KB,

the knowledge of the event violation(C) allows the attacker to infer three

other events. We only count these events if they are not already known by

the attacker because of other information contained in the same KB.

We evaluate the ability of the system to distribute information across the

brokers. For estimating the protection provided by the system against a

MAX ALL attacker we measure the number of events stored in each broker.

We see that brokers, on average, store less than 10% of the events. At the

most, we have one broker that stores about 17% of the events. The effects of

increasing the number of rules are limited: the information about resources is

reused across the execution of multiple rules. The effects of inference are also

limited. By performing inference we can obtain a few additional predicates

about resources in the system. We see that a type-based solution requires

storing a larger number of events in brokers for all cases. Fig. 7.4 shows the

normalized number of events stored in each broker when the number of rules

increases.

We measure the normalized maximum number of events stored in a broker

with the increase of the length of the rules. Having longer rules creates the

need to match a larger number of predicate combinations. This increases

the number of events to store both in the resource-based solution and in the

type-based solution. However, the number of events in the resource-based

solution remains significantly lower. For all cases, the maximum is obtained

as the average maximum amount of events across multiple executions. These
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Figure 7.4: Average and maximum number of events in each broker. 20
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results are shown in Fig. 7.5.

Another measure of the protection provided toward a MAX ALL attacker

is the cumulative effects of the compromises of multiple brokers. We consider

brokers in decreasing number of events to consider the worst case. We see

that our resource-based approach distributes the load so that compromises of

multiple brokers still have limited effects. These results are shown in Fig. 7.6.

Next, we measure the effects of our event distribution against an attacker

interested in knowing all events of a specific type (i.e., a MAX EVENT TYPE

attacker). We randomly select an event type and declare it “type-critical”.

We measure the maximum fraction of “type-critical events” that an attacker

obtains when compromising a broker. As the event-type distribution uses

event-type for its distribution, our technique provides a better protection

against this type of attack. These results are shown in Fig. 7.7. We see that

for a type-based distribution of events the totality of events of a specific type

can be found on a specific node. Hence, the value is 1 for all cases. In our

resource-based distribution, the number of type-critical events stored in each

broker is limited.

We measure the effects of our approach against an attacker interested in
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obtaining information about a specific set of resources (i.e., a MAX EVENT

CRITICAL attacker). We randomly marked 10% of the resources as critical.

We define as “resource-critical” the events that relate to one (or more) of

such critical resources. Our goal is to minimize the amount of events related

to critical resources acquired by the attacker. We measure the max value of

critical events stored in each broker for our resource-based distribution and

for an event-type distribution. We show that the resource-based distribution

limits the number of critical events stored in each broker. These results are

shown in Fig. 7.8.

However, for attackers targeting a specific resource, a pure resource-based

mapping algorithm provides weak guarantees: an attacker only need to com-

promise a specific broker to access all information about the resource. A

better strategy for deployment can take advantage of a mix-mechanism for

distributing data. This method distributes events about a critical resource to

multiple brokers instead of concentrating them in a single broker. However,

it also increases the overall distribution of information, as it reduces the reuse

of events across multiple rules. We show the effects of this distribution in

Fig. 7.8 with the suffix -opt.
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The multi-step validation has limited negative effects on the performance of

the system. The distributed correlation process adds a delay in the detection

of problems. The result of the processing in one broker needs to be forwarded

to other nodes before a complete detection is performed. We measure the

average delay in the detection introduced by our system. We see that the

delay introduced is within a second even for long rules. The slightly lower

delay in the 40-host solution is created by a lower average communication

delay in the 40-host network configuration of our EC2 deployment. We show

this results in Fig. 7.9. The load of receiving event messages is distributed

across servers in a way proportional to the amount of events stored in each

broker.

In summary, our solution provides a better distribution of information

and, hence, a better protection against attacks toward the confidentiality of

the monitoring system than other previous solutions for the distribution of

information.
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CHAPTER 8

CONCLUSION

In this thesis, we analyzed the problem of sharing data across organizations

for detecting violations of security policies. We identified several scenarios

from real-word policies in which such a sharing is necessary. We formalized

the problem as an event-sharing problem, and we introduced two representa-

tions for events and rules: an event-based representation and a state-based

representation. Based on such a framework, we computed the theoretical

minimal amount of information that needs to be shared (i.e., need-to-know)

for detecting all policy violations.

We introduced two approaches for reducing the amount of information

shared to a value close to the theoretical minimum. We developed algorithms

and protocols based on such approaches, and we implemented them in a novel

monitoring system architecture.

The first approach uses knowledge about the complete observability of the

information observed by each organization to determine which events should

be shared. If all events necessary for validating a policy are found locally,

then no sharing is necessary. Otherwise, some information is shared to ensure

the detection of violations.

The second approach uses the intuition that monitoring systems collect

events providing information about the state of resources in the system, such

as computer systems, users, or software programs. By taking advantage of

such an intuition, we developed a distributed reasoning algorithm that limits

the interactions between organizations: the only systems sharing informa-

tion are the ones managing resources potentially involved in a violation. We

introduced a distributed protocol based on garbled circuits that, for simple

policies, limits the amount of information shared to the theoretical mini-

mum. We evaluated all techniques in different scenarios, and we showed that

the application of our approaches reduces the amount of information shared

across the organization boundaries, when compared to other solutions.
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At last, we provided a security analysis of our monitoring architecture. As

security monitoring is a fundamental service in modern systems, its security is

fundamental to enable proper response to attacks and proper configuration of

systems. We analyzed the impact of attacks on the integrity, availability, and

confidentiality of the monitoring data. We showed that in many cases, our

monitoring system fails gracefully without the causing catastrophic security

failures of centralized systems.

Future work should focus on extending this work in several directions.

Many optimizations can be introduced in our distributed reasoning algo-

rithm. Such optimization should take into account the frequency of events

and their relative important to the organization to minimize dynamically the

amount of information shared.

Additionally, future work should improve the resilience of our architecture

to attacks. In our current model, we assume that organizations are behav-

ing correctly and providing a trustworthy representation of the information

collected by their monitoring systems. If a monitoring system is acting mali-

ciously, our distributed processing limits the impact of the compromise, but

our architecture does not include mechanisms for validating that the infor-

mation provided by an organization is, in fact, a trustworthy representation

of the state of the system.
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