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Abstract

This dissertation is concerned with equivalence relations on homotopy classes of curves com-

ing from various spaces of flat metrics on a genus g ≥ 2 surface. We prove an analog of a

result of Randol (building on work of Horowitz) for subfamilies of flat metrics coming from

q-differentials. In addition we also describe how these equivalence relations are related to

each other.
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Chapter 1

Introduction

1.1 History

This thesis was motivated by the work of Horowitz [11] in 1972 and Randol [19] in 1980. In

[11], Horowitz studies representations of a free group F into SL(2, K), where K is a commu-

tative ring with 1 and characteristic 0. He gives an example to show that, except for the free

group on one generator, there are arbitrarily many distinct elements u1, . . . , un ∈ F , such

that no two elements are conjugate, or inverses of each other, and yet all have equal charac-

ters for representations of F into SL(2, K). In [19], Randol applies Horowitz’s examples to

representations of free subgroups of the fundamental group of a closed oriented surface S into

SL(2,R). As a consequence he shows that for every n > 0 there exist n distinct homotopy

classes of curves γ1, . . . , γn on S such that for every hyperbolic metric m, lm(γi) = lm(γj),

for all i, j, where lm(γk) denotes the length of the geodesic representative of γk in the metric

m.

This strange phenomenon has prompted further study of this behavior for curves on

surfaces. In [2] Anderson provides a broad discussion and references to this as well as

generalizations to other settings. For example, in 2000 Masters [14] proved that the same

statement holds for hyperbolic metrics on 3–manifolds; in 1998 Sandler [20] generalized the

construction to representations in SU(2, 1); and work of Kapovich, Levitt, Schupp, and Sh-

pilrain [12] in 2007 proved a generalization in the context of free groups acting on R–trees.

In [13], Leininger studied a generalization to the space of metrics coming from quadratic

differentials, and relates this to the case of hyperbolic metrics (2003). This is the starting

point for this dissertation.
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1.2 Main results

In [13] Leininger asks whether other families of metrics exhibit similar behaviour to the fam-

ily of hyperbolic metrics.

Question 1.2.1. [13] Do there exist pairs of distinct homotopy classes of curves γ and γ′

which have the same length with respect to every metric in a given family of path metrics.

For an arbitrary family of metrics one expects the answer to be no. In fact, as noted in

[19] for most metrics m, lm(γ) = lm(γ′) ⇒ γ = γ′. Hence, we can see that the set of all

hyperbolic metrics on S is non–generic in this respect.

Here we study Question 1.2.1 for the metrics coming from q-differentials on S, for all

q ≥ 1. More precisely, let Flat(S) denote the set of non-positively curved Euclidean cone

metrics on S and Flat(S, q) those that come from q-differentials. (See Chapter 2 for more

details.) Let C(S) denote the set of homotopy classes of nontrivial closed curves on S. For

every q ∈ Z+, define an equivalence relation on C(S) by declaring γ ≡q γ′ if and only if

lm(γ) = lm(γ′), ∀m ∈ Flat(S, q).

In [13] Leininger answers Question 1.2.1 in the affirmative for metrics in Flat(S, 2). In

fact, writing γ ≡h γ′ if and only if lm(γ) = lm(γ′), ∀m hyperbolic, he proves:

Theorem 1.2.2. [13] For every γ, γ′ ∈ C(S), γ ≡h γ′ ⇒ γ ≡2 γ
′

Consequently there are arbitrary large ≡2 - equivalence classes. Here we resolve Ques-

tion 1.2.1 for all families Flat(S, q), q ≥ 1, proving≡q is nontrivial. In fact there are arbitrary

large ≡q - classes of curves.

Theorem 3.3.1. For every q0, k ∈ Z+ there are k distinct homotopy classes of curves

γ1, . . . , γk ∈ C(S) such that γi ≡q γj, ∀i, j and ∀q ≤ q0. Thus ∀q ∈ Z+, the relation ≡q is

non-trivial.

However, in the limit this phenomenon disappears. To describe this, define γ ≡∞ γ′ if

and only if lm(γ) = lm(γ′), ∀m ∈ Flat(S, q), ∀q ∈ Z+.

Theorem 3.2.1. The equivalence relation ≡∞ is trivial.

Therefore, in general if q 6= q′, then ≡q and ≡q′ are different equivalence relations.

However we have:
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Theorem 3.1.1. For every γ, γ′ ∈ C(S), γ ≡1 γ
′ ⇔ γ ≡2 γ

′

In [13] it is also shown that the implication in Theorem 1.2.2 can not be reversed. As a

consequence of our construction we see that a similar statement is true for any q ∈ Z+.

Theorem 3.3.5. For every q ∈ Z+, ∃γ, γ′ ∈ C(S) so that γ ≡q γ′ but γ 6≡h γ′.

The outline of the dissertation is as follows. In Chapter 2 we define Euclidean cone and

flat metrics, give standard definitions and state known theorems and sketch their proofs. In

Chapter 3, Section 3.1 contains the proof of Theorem 3.1.1. In Section 3.2 we show that for

every metric m ∈ Flat(S) there is a sequence of metrics in
⋃
q∈Z+

Flat(S, q) that converge

to m and using this we prove that the equivalence relation ≡∞ is trivial [Theorem 3.2.1].

Finally, in Section 3.3 we describe constructions of curves reflecting properties of the metrics

in Flat(S, q) and we prove Theorem 3.3.1.
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Chapter 2

Flat surfaces

Let S denote a closed oriented surface of genus at least 2.

2.1 Euclidean Cone Metrics

A metric m on S is called a Euclidean cone metric if it satisfies the following properties:

(i) m is a geodesic metric (not necessaraly uniquely geodesic): the distance between 2

points is the length of a geodesic path between them.

(ii) There is a finite set X ⊂ S such that m on S\X is Euclidean, that is, locally isometric

to R2 with the Euclidean metric.

(iii) (∀x ∈ X)(∃ε > 0)Bε(x) is isometric to some cone. More precisely Bε(x) is isometric

to the metric space obtained by gluing together some (finite) number of sectors of ε

-balls about 0 in R2. Each x therefore has a well defined cone angle c(x) ∈ R+ which

is the sum of the angles of the sectors used in construction. See Figure 2.1. For any

x ∈ S\X we define c(x) = 2π.

See Figure 2.2 for an example of a Euclidan cone metric on a genus 2 surface.

Figure 2.1: An example of a cone angle c(x) = 3π.

xx

x

x

The holonomy homomorphism associated to m at any point x ∈ S\X is a homomorphism

ρx : π1(S\X, x)→ O(Tx(S\X))
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Figure 2.2: An example of a surface with Euclidean cone metric obtained by gluing sides of
a polygon in R2 by translations as indicated. The result is a surface of genus 2 with a single
cone point x with c(x) = 6π.
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where O(Tx(S\X)) is a group of orthogonal transformations of the tangent space of S\X at

x. This is obtained by parallel translating a vector in Tx(S\X) along a loop in S\X based

at x. Since our surface is oriented, the image is a subgroup of SO(Tx(S\X)) - the group of

rotations.

An orientation preserving isometry φ : Tx(S\X) → R2 determines an isomorphism

SO(Tx(S\X)) → SO(2) independent of the choice of isometry φ. We therefore view the

holonomy homomorphism as a homomorphism to SO(2). For a Euclidean cone metric m

define Hol = Hol(m) < SO(2) to be the image of the holonomy homomorphism.

We will construct Euclidean cone surfaces by gluing sides of polygons by maps {ρi◦τi}ki=1,

which are compositions of translations τi and rotations ρi. Given γ ∈ π1(S\X, x), ρx(γ) is

given by the composition of the rotations for the side gluings of the sides of the polygons

crossed by γ. Therefore Hol ≤ 〈ρ1, ρ2, ...ρk〉. See Figure 2.3.

Figure 2.3: Genus 2 surfaces with Hol = Id (on the left) and Hol = 〈ρπ
2
〉 (on the right).
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In fact, we can obtain any Euclidean cone surface by gluing sides of a single generalized

Euclidean polygon immersed in R2. To explain, consider a triangulation of S by Euclidean

triangles for which the vertex set is precisely the set of cone points. Such a triangulation

exists by Theorem 4.4. in [15], for example (this is actually a ∆–complex structure as in [9]

instead of a proper triangulation, but the distinction is unimportant). We get a dual graph
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of the triangulation constructed by defining a vertex for each triangle and an edge for each

pair of triangles that share an edge. See Figure 2.4. This graph has a maximal tree. Now by

cutting along the edges of the triangles whose dual edges do not belong in the maximal tree

we get a simply connected surface that is a union of Euclidean triangles which isometrically

immerses in the plane. This is the generalized Euclidean polygon, which we denote P . The

surface S can be reconstructed from P by gluing pairs of edges. See Figure 2.5. If we glue

P by translations and rotations {ρi ◦ τi}ki=1, then Hol = 〈ρ1, ρ2, . . . , ρk〉.

Figure 2.4: The dual graph of a triangulation.

Figure 2.5: A genus 2 surface obtained by gluing triangles (on the left), two polygons (in
the middle) and by gluing an immersed polygon (on the right).
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Another important tool for us is the following well known fact:

Proposition 2.1.1. (Gauss-Bonnet formula) Let R be a closed surface of genus g ≥ 0

equipped with a Euclidean cone metric m. Then

2πχ(R) =
∑
x∈X

(2π − c(x))

where X is the set of cone points.

Proof. Pick a triangulation of the surface R with triangles {∆i}Fi=1, so that cone points are

the vertices of some of the triangles {∆i}. Let the number of vertices of this triangulation
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be V, number of edges E and number of faces F. By Euler’s theorem

V − E + F = χ(R).

Each triangle has 3 edges, 2 edges are identified in pairs, therefore we get

3F = 2E.

Now we have

2V − 2E + 2F = 2χ(R)

and therefore

2V − F = 2χ(R).

This gives

2πV − πF = 2πχ(R). (1)

Denote αi, βi, γi the angles of ∆i. Since all the triangles are Euclidean we have

πF =
F∑
i=1

(αi + βi + γi).

On the other hand after gluing the triangles the sum of all angles in the triangles becomes

the sum of angles around each vertex. Let U denote the set of all vertices and X ⊂ U the

set of all cone points. We then get:

F∑
i=1

(αi + βi + γi) =
∑
x∈X

c(x) +
∑
x∈U\X

2π.

This gives us

πF =
∑
x∈X

(c(x)− 2π) +
∑
x∈U

2π =
∑
x∈X

(c(x)− 2π) + 2πV. (2)

From (1) and (2) we get our formula

2πχ(R) =
∑
x∈X

(2π − c(x)).

Note: A similar proof for compact surfaces with geometric structure of constant curvature

can be found in [17].
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2.2 Flat Metrics

A Euclidean cone metric is called NPC (non-positively curved) if it is locally CAT(0). By

the Gromov Link Condition this is equivalent to c(x) ≥ 2π for all x ∈ S (See [5]). For

example the surface in Figure 2.2 has one cone point and its angle is 6π, and so is NPC.

Define

Flat(S) = {m |m is NPC Euclidean cone metric on S}.

By a metric on S we mean a metric inducing the given topology.

We are interested in the following class of metrics: For any q ∈ Z+ define

Flat(S, q) = {m ∈ Flat(S) |Hol(m) ⊂ 〈ρ 2π
q
〉},

where ρθ is a rotation by angle θ.

Alternatively, Flat(S, q) is the space of metrics coming from the set Qq = {q–differentials

on S}. To explain this, suppose we are given a complex structure and a holomorphic q–

differential ϕ (see Chapter II of [7], for example). We can pick a small disk neighborhood U

of any point p0 ∈ S with ϕ(p0) 6= 0, containing no zeros of ϕ, and define preferred coordinates

ζ for ϕ by

ζ(p) =

∫ p

p0

q
√
ϕ.

In these coordinates ϕ = dζq. Preferred coordinates give an atlas of charts on S\{zeros(ϕ)}
to C with transition functions of the form T (z) = e

2πik
q z+w for some k ∈ Z+, w ∈ C. Pulling

back the Euclidean metric we get Euclidean metric on S\{zeros(ϕ)}. The completion of this

metric is obtained by adding back in {zeros(ϕ)} and at a zero of order k we have a cone angle

2π+ 2πk
q

. Therefore, the metric lies in Flat(S, q). Conversely, take any metric in Flat(S, q),

choose local coordinates away from the singularities which are local isometries and so that

the transition functions are translations and rotations by integer multiples of 2π
q

. Since these

are holomorphic transformations preserving dzq, this determines a complex structure and

dzq determines a holomorphic q-differential, and this extends over the singularities (compare

with [16] and [21], for example, for the case q = 2).
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To give some idea of how ”big” Flat(S, q) is, we calculate the dimension. By the

Riemann–Roch Theorem, the real dimension of the space of q–differentials is

dim(Qq) = 2(2q − 1)(g − 1).

Since Qq is a vector bundle over the Teichmüller space, and since every two q–differentials

that differ by some rotation define the same metric on S, we get the real dimension of

Flat(S, q):

dim(Flat(S, q)) = dim(Qq) + dim(T (S))− 1

= 2(2q − 1)(g − 1) + 6g − 7.

For every q ∈ Z+, Flat(S, q) ⊂ Flat(S) and lim
q→∞

dim(Flat(S, q)) =∞. Thus,

dim(Flat(S)) =∞.

2.3 Closed curves

Given a metric m and a homotopy class of curve γ ∈ C(S) we define the length function

lm(γ) = inf{lm(c) | c ∈ γ}.

For every curve γ ∈ C(S) there is a geodesic (that is, a length minimizing) representative

on S due to the Arzela–Ascoli theorem. Therefore lm(γ) is the length of its m-geodesic

representative.

Proposition 2.3.1. For m in Flat(S), a curve γ ∈ C(S) is an m-geodesic if and only if γ

is a closed Euclidean geodesics or a concatination of Euclidean segments between cone points

such that angles between consecutive segments are ≥ π on each side of the curve γ. (See

Figure 2.6.)

Proof. Assume γ is a geodesic. Away from cone points m is Euclidean, thus in the comple-

ment of the cone points geodesics are straight Euclidian segments. If γ enters a cone point

x and exits at an angle less than π we can find a path shorter than γ in the neighborhood

of the cone point. Therefore all geodesics have to make an angle greater than equal to π on

both sides around a cone point.
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Figure 2.6: A geodesic through a cone point (on the left), a closed geodesic with no cone
points (in the middle) and a closed self-intersecting geodesic containing a cone point (on the
right). See Figure 2.2 for the gluings.

Conversely, because of the non-positive curvature, to see that paths satisfying this con-

ditions are geodesics we just need to show that they locally minimize the length. For this

we only need to check the cone points. Let x be a cone point on γ and denote each ray of

γ coming out of x inside a small ball B around x containing no other cone point, with γ−

and γ+. Construct two different straight line rays starting at x and making angles π
2

with

γ− on either side, and do the same for γ+. See Figure 2.7. Notice that these rays define

two non-intersecting neighborhoods of γ− and γ+ since angles on each side of γ at x are

greater than or equal to π. Now define a projection inside B in the following way. Every

point in the region bounded by the two neighborhoods of γ− and γ+ project orthogonally

onto γ, and every other point maps to x. This projection is distance non-increasing since

orthogonal projection and projection to a point do not increase distances. Therefore γ is a

local geodesic and that completes the proof.

Figure 2.7: Projection onto γ.

xπ
2

π
2

π
2

π
2

γ− γ+

If an m-geodesic representative of a curve in C(S) is not unique in its homotopy class then

the set of geodesic representatives foliates a cylinder in S, and each geodesic representative
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has the same length in m. (See Figure 2.8.)

Figure 2.8: A cylindar on a genus 2 surface foliated by closed geodesics. See Figure 2.2 for
the gluings.

For two curves α, β ∈ C(S) we can define the geometric intersection number, i(α, β) =

minimum number of double points of intersection of any two representatives of α and β. For

hyperbolic metrics geodesic representatives realize geometric intersection number.

Define S(S) ⊂ C(S) to be the set of homotopy classes of simple closed curves on S.

2.4 Measured foliations

A measured foliation F is a foliation with singularities such that every point in S\X (where

X is a finite set of singular points) has a chart ϕ : U → R2, such that ϕ−1(y = const)

consists of leaves of F|U and the transition functions are ϕij(x, y) = (φij(x, y),±y + c). In

these charts the transverse measure is given by |dy|. Around each point x ∈ X (called the

singular set of F) there is a chart ϕ : U → R2 carrying U ∩ F to Wk, a k-prong singularity

for some k ≥ 3 (see Figure 2.9). See [8] for more details.

Figure 2.9: W4, a k-prong singularity for k=4.

For γ ∈ C(S),
∫
γ
F is a total variation of the y-coordinate of p ∈ γ as p traverses γ with

11



respect to any chart. Define

I(F , α) = inf
α0∈α

∫
α0

F .

The measured foliations F1 and F2 are called measure equivalent (also called Schwartz

equivalent) if I(F1, α) = I(F2, α), for every α ∈ S(S). Denote MF the set of measure

equivalence classes of measured foliations.

We say that two foliations are Whitehead equivalent if one foliation may be transformed

to the other by isotopies and elementary deformations called Whitehead moves as in Fig-

ure 2.10. As proved in [8] measured foliations are Schwartz equivalent if and only if they are

Whitehead equivalent. Thus, MF can also be considered as the set of Whitehead equiva-

lence classes.

Figure 2.10: A Whitehead move.

Thurston constructed an embedding R+ × S(S) ↪→ MF(S), so that for β ∈ S(S) and

(1, β) 7→ Fβ,

t i(β, α) = I(tFβ, α),

where α ∈ C(S), t ∈ R+, and tFβ is Fβ with measure scaled by t. We use this to identify

S(S) (= {1} × S(S)) with its image in MF , writing β = Fβ ∈MF .

A consequence of Thurston’s [8], [18] and Bonahon’s [4] work on measured laminations,

closed curves and intersection number is the following:

Theorem 2.4.1. Given any separating simple closed curve β ∈ S(S), there is a sequence

{(tn, βn)}∞n=1 ⊂ R+ × S(S) where each βn is non-separating, so that for all α ∈ C(S),

tni(βn, α)→ i(β, α) as n→∞.

Sketch of the proof. Let τ be a non-separating simple closed curve on S that intersects β

twice. Define a sequence of simple closed curves βn = T nβ (τ), where Tβ is a Dehn twist
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around β. See Figure 2.11. It follows that βn is non-separating.

For each simple closed curve σ, we have the following formula (see [8]):

∣∣i(T nβ (τ), σ)− n i(τ, β)i(β, σ)
∣∣ ≤ i(τ, σ).

Since i(τ, β) = 2, by multiplying both sides by 1
2n

we get∣∣∣∣ 1

2n
i(βn, σ)− 1

2n
n 2 i(β, σ)

∣∣∣∣ ≤ 1

2n
i(τ, σ).

Now let n→∞. It follows that

lim
n→∞

∣∣∣∣ 1

2n
i(βn, σ)− i(β, σ)

∣∣∣∣ ≤ lim
n→∞

1

2n
i(τ, σ) = 0.

Thus,

lim
n→∞

1

2n
i(βn, σ) = i(β, σ), ∀σ ∈ S(S).

Identifying simple closed curves with their embedding in the space of measured foliations we

see that 1
2n
βn → β in MF(S).

Now chose tn = 1
2n

. By continuity of Bonahon’s intersection number i, for every curve

α ∈ C(S), we have lim
n→∞

tni(α, βn) = i(α, β).

Figure 2.11: A Dehn twist around β.

τ

β T 2
β (τ)

T 2
β

We say that γ and γ′ ∈ C(S) are simple intersection equivalent, γ ≡si γ′, if i(γ, α) =

i(γ′, α) for every α ∈ S(S).

We will also need the next fact.

Theorem 2.4.2. [13] For every γ, γ′ ∈ C(S), γ ≡h γ′ ⇒ γ ≡si γ′ ⇔ γ ≡2 γ
′.

13



We will use the implication γ ≡si γ′ ⇒ γ ≡2 γ
′. We sketch the proof here:

Sketch of the proof. Assume γ ≡si γ′. We know that S(S)× R+ = MF(S) (see [8]).

Therefore if i(γ, α) = i(γ′, α) for every α ∈ S(S) then i(γ,F) = i(γ′,F) for every measured

foliation F ∈MF , by continuity of i. Let m ∈ Flat(S, 2) and let νθ ∈MF(S) be a straight

line foliation of (S,m) in the direction θ ∈ [0, π]. From [6] we know

lm(γ) =
1

2

∫ π

0

i(νθ, γ)dθ,

lm(γ′) =
1

2

∫ π

0

i(νθ, γ′)dθ.

Therefore, since we have i(γ, νθ) = i(γ′, νθ), for every θ ∈ [0, π], it follows lm(γ) = lm(γ′).

The metric m ∈ Flat(S, 2) was arbitrary, so γ ≡2 γ
′.

14



Chapter 3

Equivalent curves on flat surfaces

3.1 Relations ≡1 and ≡2

We now turn to the proof of

Theorem 3.1.1. For every γ, γ′ ∈ C(S), γ ≡1 γ
′ ⇔ γ ≡2 γ

′

Proof. Given γ, γ′ ∈ C(S), we have

γ ≡si γ′ ⇒ γ ≡2 γ
′ ⇒ γ ≡1 γ

′

by Theorem 2.4.2 and the fact Flat(S, 1) ⊆ Flat(S, 2). We want to prove

γ ≡1 γ
′ ⇒ γ ≡si γ′.

We claim that if γ ≡1 γ
′, then i(α, γ) = i(α, γ′) for every non-separating curve α. Then

if β is a separating curve, by Theorem 2.4.1 there is a sequence of non-separating curves

βn and positive real numbers tn such that tni(γ, βn) → i(γ, β) and tni(γ
′, βn) → i(γ′, β).

Since tni(βn, γ) = tni(βn, γ
′) by the claim, we will have i(β, γ) = i(β, γ′) for every separating

simple closed curve β, hence every β ∈ S(S), and thus γ ≡si γ′.

For any g ≥ 2, we can construct a closed genus g surface by gluing the arcs in the bound-

ary of a cylinder so that in the resulting surface the core curve is non-separating. Moreover,

this construction can be carried out on a Euclidean cylinder so that the resulting Euclidean

cone metric has trivial holonomy. See Figure 3.1.

Suppose S has genus g and let α be a non-separating curve on S. Let Xε
g be the surface

of genus g obtained by gluing a rectangle as in Figure 3.1 with horizontal side length 1 and

vertical side length ε > 0. Let αg be the core nonseparating curve of the cylinder See Fig-

ure 3.2. We assume that the obvious affine map from the 1× 1 square to the 1× ε rectangle

descends to a homeomorphism fε : X1
g → Xε

g. Choose homeomorphisms f : S → X1
g so that

15



Figure 3.1: Examples of genus 2 and 3 surfaces. Gluing top sides to the bottom sides results
in a cylinder, the rest of the gluing produces the closed surfaces.
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2

1

α is sent to αg and let hε = fε ◦ f : S → Xε
g. Write mε

α ∈ Flat(S, 1) to denote the metric

obtained by pulling back via hε.

Figure 3.2: The surface Xε
2 and curve αg.

αg

1

ε

1

2

3

3

2

1

Let γ be a curve on S. The geodesic representative of γ in mε
α is sent by hε to a union

of straight lines running from one side of the rectangle to another and along the vertical

boundary curves as in Figure 3.3.

Figure 3.3: The geodesic representative of γ in mε
α. See Figure 3.2 for the gluings.

Thus we have

lmεα(γ) ≥ i(α, γ) · 1 (1)

since each geodesic segment that crosses the cylinder contributes 1 to intersection number

and at least 1 to the length.
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The curve γ is homotopic to a curve γ̄ which is sent by hε to a union of straight line

segments parallel to the side of length 1 of the rectangle and some segments of the vertical

ε-length sides as in Figure 3.4.

Figure 3.4: The representative γ̄ in mε
α. See Figure 3.2 for the gluings.

From this we get

lmεα(γ) ≤ length(γ̄) ≤ i(α, γ) · 1 + nγε (2)

where nγ is the number of vertical segments of γ̄.

Now suppose γ ≡1 γ
′. Then for every ε > 0 we have lmεα(γ) = lmεα(γ′). By (1) and (2)

lmεα(γ)− nγε ≤ i(α, γ) ≤ lmεα(γ)

and

lmεα(γ′)− nγ′ε ≤ i(α, γ′) ≤ lmεα(γ′).

Letting ε→ 0 we get i(α, γ) = i(α, γ′), proving the claim.

Hence γ ≡si γ′, completing the proof.

Corollary 3.1.2. ∀q ∈ Z+, γ ≡q γ′ ⇒ γ ≡2 γ
′.

Proof. Since Flat(S, 1) ⊂ Flat(S, q) for every q, we have

γ ≡q γ′ ⇒ γ ≡1 γ
′ ⇒ γ ≡2 γ

′.
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3.2 The equivalence relation ≡∞
Next we will prove

Theorem 3.2.1. The equivalence relation ≡∞ is trivial.

To prove this we first prove a weaker statement. Define another equivalence relation on

C(S) by declaring γ ≡R γ
′ if and only if lm(γ) = lm(γ′) for every m ∈ Flat(S).

Theorem 3.2.2. The equivalence relation ≡R is trivial.

Proof. To prove this theorem we will show that for every γ, γ′ ∈ C(S) there is m ∈ Flat(S)

so that lm(γ) 6= lm(γ′).

Let γ and γ′ ∈ C(S). Pick a hyperbolic Riemannian metric g on S. If the geodesic

representatives of γ and γ′ have the same length in g, let ε > 0 be small enough so that

γ′ does not intersect ε-ball around a point x ∈ γ. Let ϕ : S → R be a smooth function so

that ϕ ≡ 0 on S\Bε(x), ϕ(x) = 1 and ϕ(S) = [0, 1]. For δ > 0 consider the Riemannian

metric gδ = g(1 − δϕ). The metric gδ is negatively curved for δ sufficiently small and the

gδ-length of γ is smaller than the g-length, while the length of γ′ is not changed. Thus, for

any two curves γ and γ′ ∈ C(S) there is a negatively curved Riemannian metric m′ such

that lm′(γ) 6= lm′(γ′). In fact there are negatively curved metrics where there are no closed

curves with the same length (see [19], [1], [3] for more general result).

Pick a geodesic triangulation of the surface S so that the geodesic representatives of γ

and γ′ are unions of edges of triangles. Being a locally CAT (k) space, k < 0, implies also

being locally CAT (0). Now build a Euclidean cone metric m on S by replacing the triangles

with Euclidean triangles with the same length sides. By the CAT (0) property the angles of

the Euclidean triangles are larger than the angles in the triangles they replaced. The vertices

of the triangles are the only possible cone points. There are finitely many of them, and their

angles are therefore ≥ 2π. Hence m ∈ Flat(S).

The curves γ and γ′ in the new metric become concatinations of Euclidean segments

(sides of triangles). Since the sum of angles of a cone point on one side of the curve in the

metric m is greater than or equal to the sum of the angles in the metric m′ we get that the

angle around every cone point on each side of γ and γ′ is ≥ π. Therefore γ and γ′ are also

geodesic in the metric m.
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Figure 3.5: Part of a triangulation of a genus 3 surface with curves γ and γ′ as unions of
edges of the triangles.

Bε(x)

γγ γ′

Figure 3.6: Euclidean triangles and a geodesic segment containing edges of the triangles.

θ′1 θ
′
2

θ′3
θ′4
θ′5

θ′1 + θ′2 ≥ θ1 + θ2 = π

θ′3 + θ′4 + θ′5 ≥ θ3 + θ4 + θ5 = π

We have

lm(γ) = lm′(γ) 6= lm′(γ′) = lm(γ′),

and we proved our theorem.

Theorem 3.2.3.
⋃
q∈Z+

Flat(S, q) = Flat(S). More precisely, for every m ∈ Flat(S), ∃mn ∈⋃
q∈Z+

Flat(S, q), so that id : (S,mn)→ (S,m) is Kn-bilipschitz and Kn → 1 as n→∞.

Proof. Let m ∈ Flat(S). Take a triangulation of S by Euclidean triangles with all vertices

being cone points. Using this triangulation, view S as obtained from a generalized Euclidean

polygon P isometrically immersed in R2 by gluing the edges in pairs by isometries as in Sec-

tion 2.1. Orient the edges si using the boundary orientation coming from the immersion into

R2. Let zi be a complex number that represents the edge si and θi the argument of zi. We

have z1 + z2 + ...+ z2n = 0. Assume, by rotating if necessary, that θ1 = 0 and by relabeling if

necessary that z2i−1 and z2i correspond to the edges that are glued together, ∀i = 1, . . . , n.

We have |z1| = |z2|, |z3| = |z4|, . . . , |z2n−1| = |z2n|. See Figure 3.7.

If z2i−1 = −z2i, ∀i = 1, . . . , n then Hol(S) = {Id} and therefore m ∈ Flat(S, 1) and we

set mn = m for all n.

Therefore we assume that there is some i so that z2i−1 6= −z2i. After changing indices

if necessary we may assume z2n−1 6= −z2n. Fix 0 < ε <
|z2n−1 + z2n|

2
. We will construct an
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Figure 3.7: An immersed polygon in R2 with one edge on the x-axis.

x

y

isometrically immersed polygon Pε so that the angles the sides of Pε make with the real axis

are all in Qπ, and Pε → P as ε→ 0.

Denote τ = −z1− . . .− z2n−2. Since τ = z2n−1 + z2n it follows that |τ | > 2ε. Let z̃1 = z1.

For 2 ≤ j ≤ 2n − 4 choose z̃j so that |zj| = |z̃j|, θ̃j ∈ Qπ and |zj − z̃j| < ε
2n

. Now, choose

z̃2n−3, z̃2n−2 so that |z̃2n−3| = |z̃2n−2|, θ̃2n−3, θ̃2n−2 ∈ Qπ, |zi− z̃i| < ε
2n

for i = 2n− 3, 2n− 2,

and also so that the angle of z̃1 + . . . + z̃2n−3 + z̃2n−2 is in Qπ. We arrange this in the

following way: First construct z′i, i = 2n− 3, 2n− 2, so that their arguments are in Qπ and

|z′i| = |zi|, |z′i − zi| < ε
4n

for i = 2n − 3, 2n − 2. Then construct z̃i, i = 2n − 3, 2n − 2, so

that Arg(z′i) = Arg(z̃i), |z′i − z̃i| < ε
4n

and the angle of z̃1 + . . .+ z̃2n−3 + z̃2n−2 is in Qπ. See

Figure 3.8.

Figure 3.8: Changing the angle of z̃1 + . . .+ z̃2n−3 + z̃2n−2 keeping |z̃2n−3| = |z̃2n−2|.
z′2n−3

z′2n−2

z̃2n−3

z̃2n−2

z̃1 + . . .+ z̃2n−4

z̃2n−3 + z̃2n−2
z′2n−3 + z′2n−2

Denote τ̃ = −z̃1 − . . . − z̃2n−2. By the triangle inequality |τ − τ̃ | ≤
2n−2∑
j=1

|zj − z̃j| < ε.

Observe that τ̃ 6= 0, because if τ̃ = 0 then 2ε < |τ | < ε, which is a contradiction.
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Since τ 6= 0, the point z2n−1 is on the perpendicular bisector l of the vector τ . Let l̃ be the

perpendicular bisector of the vector τ̃ . Let δ = 2dist(z2n−1, l̃). Note that as ε → 0, δ → 0.

Now choose z̃2n−1 ∈ l̃ ∩ B(z2n−1, δ) so that the argument of z̃2n−1 is in Qπ. See Figure 3.9.

Set z̃2n = τ̃ − z̃2n−1. Since z̃2n−1 is on the perpendicular bisector of τ̃ then |z̃2n−1| = |z̃2n|
and since Arg(τ̃) = 1

2
(θ̃2n−1 + θ̃2n), it follows that θ̃2n ∈ Qπ.

Figure 3.9: Constructing the vector z̃2n−1.

τ

τ̃

z2n−1

z̃2n−1

B(τ, ε)

B(z2n−1, δ)

We have z̃1 + . . .+ z̃2n = 0 and θ̃i ∈ Qπ for every i. Therefore for ε > 0 sufficiently small

{z̃i}2ni=1 determines an isometrically immersed polygon Pε with all sides having angles being

rational multiples of π.

For sufficiently small ε there is a bilipschitz homeomorphism fε : P → Pε, which is linear

on edges. For example, when ε > 0 is sufficiently small, we can take a triangulation of Pε

with the same combinatorics as the one used to construct P . Map each triangle of P linearly

to the corresponding triangle of Pε. That way we get a map fε which is linear, and thus

bilipschitz, on each triangle. It follows that fε is bilipschitz on P and as ε → 0 bilipschitz

constant K(fε)→ 1. The surface S is obtained by gluing the polygon P , so S = P/∼ where

t ∼ ϕ(t) and ϕ : ∪si → ∪si is the gluing map. Define ϕε = fεϕf
−1
ε : ∪fε(si) → ∪fε(si).

The map fε descends to f̄ε : P/∼ → Pε/∼ε where t ∼ε ϕε(t). Define a Euclidean cone metric

mε on S by pulling back the metric on Pε/∼ε by f̄ε. The holonomy of mε is generated by

rotations through angles in Qπ. Therefore there is qε ∈ Z+ so that mε ∈ Flat(S, qε) and

mε → m as ε→ 0.

Theorem 3.2.1 now follows easily from the previous theorem.

Proof of Theorem 3.2.1. Suppose that we are given curves γ, γ′ ∈ C(S) so that γ ≡∞ γ′.

By Theorem 3.2.3 it follows that ∀m ∈ Flat(S), there is a sequence of metrics {mn ∈
Flat(S, qn)}∞n=1 such that id : (S,mn) → (S,m) is Kn-bilipschitz and Kn → 1 as n → ∞.
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Thus lim
n→∞

lmn(γ) = lm(γ) and lim
n→∞

lmn(γ′) = lm(γ′). Since lmn(γ) = lmn(γ′) by assumption

then lm(γ) = lm(γ′). That implies γ ≡R γ
′ which is a contradiction by Theorem 3.2.2.

Using the same idea as in Theorem 3.2.3 we can prove a stronger statement.

Theorem 3.2.4. For every infinite sequence of distinct positive integers {qi}∞i=1,

∞⋃
i=1

Flat(S, qi) = Flat(S).

Proof. The proof of this theorem follows the proof of Theorem 3.2.3 if we approximate angles

θj with angles θ̃j ∈ Z2π
ql

for appropriately chosen ql � 0.

In contrast to Theorem 1.2.2 we observe the following.

Corollary 3.2.5. For all but finitely many q ∈ Z+ there exist curves γ, γ′ ∈ C(S) so that

γ ≡h γ′ but γ 6≡q γ′.

Proof. Assume that there exist infinitely many qi ∈ Z+ so that ∀γ, γ′ ∈ C(S), γ ≡h γ′ ⇒
γ ≡qi γ′. Then, since the relation ≡h is non-trivial, there are two distinct curves γ and γ′ so

that γ ≡qi γ′ for some infinite sequence {qi}∞i=1 of positive integers, which is a contradiction

to Theorem 3.2.4.
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3.3 Curves in q-differential metrics and relations ≡q
In this section we prove:

Theorem 3.3.1. For every q0, k ∈ Z+ there are k distinct homotopy classes of curves

γ1, . . . , γk ∈ C(S) such that γi ≡q γj, ∀i, j and ∀q ≤ q0. Thus ∀q ∈ Z+, the relation ≡q is

non-trivial.

The proof uses the following two lemmas.

Lemma 3.3.2. For any q0 ∈ Z+, there is a curve γ ∈ C(S) such that for every m ∈
Flat(S, q), q ≤ q0 the geodesic representative γm of γ contains a cone point and [γ] 6= 0 in

H1(S).

Proof. Fix a hyperbolic metric on S and identify the universal cover as H2 → S. Fix q0 ∈ Z+,

and take q0 + 1 geodesics α1, . . . , αq0+1 in H2 meeting at 0. See Figure 3.10.

Figure 3.10: Projecting α1, . . . , αq0+1 into the surface S.

By ergodicity of the geodesic flow, there is a dense geodesic on S [10]. Given ε > 0, we

can therefore construct an ε-dense closed geodesic.

From this it follows that we can construct a closed geodesic γ on S with lifts α̃1, . . . , α̃q0+1

having tangent vectors within ε distance from the tangent vectors of α1, . . . , αq0+1 at 0. For

ε sufficiently small the end points of α̃1, . . . , α̃q0+1 pairwise link in the same pattern as
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Figure 3.11: Lifts of γm to H2.

α1, . . . , αq0+1. In particular, every pair α̃i, α̃j intersects. For every m ∈ Flat(S, q) and

m-geodesic representative γm of γ in m there are lifts (γ̃1)m, . . . , (γ̃q0+1)m which are quasi-

geodesics in H2, with the same endpoints as α̃1, . . . , α̃q0+1, and hence with endpoints that all

pairwise link. See Figure 3.11.

If [γ] = 0 in H1(S), we replace γ with a different curve as follows. Let δ be any curve

with [δ] 6= 0 in H1(S) that intersects γ. Construct a new curve which runs n times around

γ, then at the intersection point switches and runs once around δ. If n is large enough, this

constructs a curve which maintains the property of having q0 + 1 lifts with endpoints that

pairwise link. This new curve is homologous to δ, and so we replace γ with this curve.

Now assume that there is m ∈ Flat(S, q), q ≤ q0 so that γm does not go through a cone

point. Then there is an isometrically immersed Euclidean cylinder S1× [0, a]→ S, for some

a > 0, such that the image of S1 × {a
2
} is the geodesic γm and the image of S1 × [0, a]

does not contain any cone points. It follows that γm has only finitely many transverse self

intersecting points. Because the holonomy group of m is in 〈ρ 2π
q
〉, the angles of intersections

are integer multiples of 2π
q

.

Lifts of γm have lifted cylinders which are strips isometric to R × [0, a] in the universal

cover. We consider the q0 + 1 lifts (γ̃1)m, . . . , (γ̃q0+1)m as above and fix one of the lifts (γ̃1)m

and a strip about it. Let P ∈ (γ̃1)m ∩ (γ̃2)m be the point of intersection of (γ̃2)m with

(γ̃1)m. For every j ≥ 3 parallel transport the tangent vector to γ̃j at the point of intersection

(γ̃1)m ∩ (γ̃j)m inside the strip to P . The point P is not a cone point and there are no cone

points inside the strip. If (γ̃1)m, (γ̃i)m, (γ̃j)m do not intersect in a common point then they

form a triangle in S̃. Since S̃ is a CAT (0) space the angle sum of a triangle is less than π,

and hence (γ̃i)m and (γ̃j)m cannot make the same angle with (γ̃1)m. Hence no two tangent

vectors get transported to the same vector. See Figure 3.12.
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Figure 3.12: Strips in the universal cover.

P

By the holonomy condition all angles of intersections are integer multiples of 2π
q

, which

is greater than or equal to 2π
q0

. On the other hand we have q0 + 1 vectors based at P , no two

of them equal, therefore there is a pair of vectors with the angle between them less than 2π
q0

.

It follows that for some j, (γ̃1)m and (γ̃j)m make an angle which is not an integer multiple

of 2π
q0

. This is a contradiction and thus proves that γm has to contain at least one cone point

for every m ∈ Flat(S, q), q ≤ q0.

Lemma 3.3.3. Let γ be the curve constructed in Lemma 3.3.2, and let m be a metric in

Flat(S, q). Given two lifts γ̃, γ̃0 with linking endpoints and stabilizers generated by h and

g, respectively, let w ∈ γ̃ ∩ γ̃0. Then the m-geodesic from h(q+2)(w) ∈ γ̃ to any point along

γ̃0 must run along a positive length segment of γ̃. Moreover, this geodesic meets γ̃0 on

[g−(q+2)(w), g(q+2)(w)] ⊂ γ̃0.

Proof. It could happen that lm(γ̃0∩ γ̃) > 0 as in Figure 3.13. We first claim that lm(γ̃0∩ γ̃) <

lm(γ). To show this let v, u be cone points at each end of γ̃0 ∩ γ̃. If lm(γ̃0 ∩ γ̃) ≥ lm(γ) then

since the translation length of g and h is equal to lm(γ), we have g(v) = h(v) or g−1(v) = h(v)

which is a contradiction as π1(S) acts freely on S̃.

Now let v1, . . . , vn be all the different cone points along [h(q+1)w, h(q+2)(w)) ⊂ γ̃ and let θi

be the angles γ̃ makes at vi all on one side of γ̃, and let θ′i be all the angles at vi on the other

side. Observe that there is some i so that θi > π. Otherwise there is a small neighborhood

of one side of γ̃ with no cone points and we can find a geodesic homotopic to γ with no cone

points by doing a straight line homotopy as shown in Figure 3.14. Similarly, there is j so

that θ′j > π.
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Figure 3.13: Two lifts of γ to the universal cover.

γ̃0

γ̃

h
g

w
v u

Figure 3.14: Homotopy.

Let v = vi with θi > π and v′ = vj with θ′j > π. Let σ be the continuation of the

geodesic segment [h(q+2)(w), v] ⊂ γ̃ to a geodesic ray starting at h(q+2)(w) and at every cone

point past v having angle π on the right. See Figure 3.15. We define σ′ similarly as the

continuation of [h(q+2)(w), v′] ⊂ γ̃ with angle π on the left.

Claim: The rays σ and σ′ do not intersect γ̃0.

Proof. Assume that σ ∩ γ̃0 6= ∅. Then γ̃, γ̃0 and σ form a triangle in S̃. Denote the

angles of the triangle by β1, β2 and β3. See Figure 3.16.

Take two copies of the given triangle and glue them together to get a sphere R with an

induced Euclidean cone metric. See Figure 3.16. The Euler characteristic of R is 2, and by

the Gauss-Bonnet formula (see Proposition 2.1.1)

−2πχ(R) =
∑
x∈X

(c(x)− 2π),

where X is the set of all cone points of R. Three cone points come from the triangle vertices
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Figure 3.15: Geodesic rays as continuations of the geodesic segment γ.

γ̃v
h(q+2)(w)

π
π

π
π

π

π
π

σ

σ′

Figure 3.16: Gluing two triangles to get a sphere.

β1β2

β3

β1β2

β3

β1 β2

β3

and they have cone angles 2βl, l = 1, 2, 3. The rest come from cone points along the sides

or the inside of the triangles and have cone angles > 2π. In particular we have cone points

h−1(vj), . . . , h
−q(vj) with cone angles 2θj, j = 1, . . . , n. Therefore we get the following

inequality:

−4π =
∑
x∈X

(c(x)− 2π) ≥
q∑
i=1

n∑
j=1

(2θj − 2π) + (2(β1 + β2 + β3)− 6π).

It follows that

π − (β1 + β2 + β3) ≥
q∑
i=1

n∑
j=1

(θj − π).

The holonomy for every metric in Flat(S, q) is a rotation through an angle of the form 2π
q
k,
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k ∈ Z. Therefore we get
n∑
j=1

(θj−π) =
2π

q
k for some integer k > 0, and so

n∑
j=1

(θj−π) ≥ 2π

q
.

It follows that

q∑
i=1

n∑
j=1

(θj − π) = q
n∑
j=1

(θj − π) ≥ q
2π

q
= 2π, and thus:

π − (β1 + β2 + β3) ≥ 2π

which is a contradiction. Therefore σ ∩ γ̃0 = ∅. The same argument shows σ′ ∩ γ̃0 = ∅.
This proves the claim.

Now we’ll show that every geodesic from h(q+2)(w) to γ̃0 has to share a positive length

geodesic segment with γ̃.

There is a unique geodesic between any 2 distinct points in S̃, since it is a CAT (0) space.

Let ζ be a geodesic from h(q+2)(w) to some point on γ̃0. Let σ0 = σ − γ̃ and σ′0 = σ′ − γ̃.

Assume ζ does not share a positive length geodesic segment of γ̃. By the previous claim ζ

must intersect one of σ0 and σ′0. See Figure 3.17. Without loss of generality assume that

A ∈ ζ ∩ σ0 is such a point. The path from h(q+2)(w) to v following the geodesic segments on

γ̃ and then from v to A along σ0 is a geodesic by construction since all cone angles are ≥ π

on both sides of the path. Since the initial arc of ζ to A provides a different geodesic, this

contradicts the uniqueness of geodesics in S̃ and we can see that ζ cannot cross either of σ0

or σ′0 and hence must share a positive length segment with γ̃.

Figure 3.17: A geodesic segment from γ̃ to γ̃1.

w v h(q+2)(w)

A

γ̃

γ̃0
σ′0

σ0

v′

For the same reason the geodesics from g(q+2)(w) or g−(q+2)(w) to γ̃ must share a positive
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length segment with γ̃0. Therefore every geodesic from h(q+2)(w) to a point on γ̃0 meets γ̃0

on [g−(q+2)(w), g(q+2)(w)].

Now we can prove the main theorem.

Proof of Theorem 3.3.1. Let γ ∈ C(S) be as in Lemma 3.3.2. Let γ̃ and γ̃0 be lifts of γ with

endpoints that link. Suppose the stabilizer of γ̃ is generated by h. Let γ̃−1 and γ̃1 be defined

by γ̃i = hi(q+2)(γ̃0), i = ±1. See Figure 3.18. Denote h−1 and h1 conjugate elements of π1(S)

that generate the stabilizers of γ̃−1 and γ̃1 respectively.

Figure 3.18: Lifts of γ.

γ̃−1 γ̃1

h
h−1 h1

Let F (a, b) denote the free group on two generators a and b. Define φ : F (a, b)→ π1(S)

by a→ h
2(q+2)
−1 and b→ h

2(q+2)
1 .

Claim: The φ–images of the words

w0 = (ab)k, w1 = (ab)k−1(ab−1), . . . , wk−1 = (ab)(ab−1)k−1

represent distinct elements in C(S) and have the same length in every metric m ∈ Flat(S, q),
q ∈ Z+.

Let m ∈ Flat(S, q). Let (γ̃i)m, (γ̃)m be corresponding lifts of the m-geodesic repre-

sentatives of γ. We have (γ̃1)m = h2(q+2)((γ̃−1)m). Let z′ be a point on (γ̃)m so that

(γ̃i)m ∩ (γ̃)m ∈ [hi(q+1)(z′), hi(q+2)(z′)], i = ±1. From Lemma 3.3.3 we know that every

geodesic from z′ to (γ̃i)m, i = ±1, has to run along positive line segment of (γ̃)m and meet

(γ̃i)m on [h
−(q+2)
i (z′), h

(q+2)
i (z′)].
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Figure 3.19: The m-convex hull of (γ̃−1)m and (γ̃1)m on the right, and the 2-complex Γ′ on
the left.

hq+2
−1 (w−1) hq+2

1 (w1)

h
−(q+2)
−1 (w−1) h

−(q+2)
1 (w1)

e+−1

e−−1 e−1

e+1

e0

It follows that the m–convex hull of (γ̃−1)m and (γ̃1)m consists of (γ̃−1)m∪ (γ̃1)m together

with an arc of (γ̃)m and two (possibly degenerate) triangles. Choose a point wi ∈ (γ̃)m∩(γ̃i)m

for i = ±1 and consider the point h
±(q+2)
i (wi) along (γ̃i)m. Let Γ′ be the metric 2-complex

with two (possibly degenerate) triangles and five edges determined by h
±(q+2)
i (wi) as shown

in the Figure 3.19 and view this as mapping into S̃. Let Γ denote the metric 2-complex

obtained by gluing h
−(q+2)
i (wi) to h

(q+2)
i (wi), for i = ±1. The inclusion Γ′ → S̃ descends to

a locally convex, local isometry f : Γ → S. Identifying π1(Γ) = F (a, b) as shown in Figure

26 we have f∗ = φ.

Figure 3.20: Constructing 2-complex Γ from the curve γ.

a b

Γ
S̃

S

f

By the previous construction [f∗(a)] = [f∗(b)] = ±2(q + 2)[γ] in H1(S). It follows that
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[f∗(wj)] = ±2(q + 2)(2k − 2j)[γ]. By construction [γ] 6= 0, thus {f∗(wj)}k−1j=0 are distinct

classes of non-null homotopic curves. Since f is a locally convex, local isometry, by measuring

lengths on Γ instead of S we can see lm(f∗(wj)) = lm(f∗(wi)) for every i, j = 0, . . . , k−1.

Corollary 3.3.4. Let q1, q2 ∈ Z+. If q1|q2 then ≡q2 ⇒ ≡q1. The reverse implication is not

true in general.

Proof. If q1|q2 then Flat(S, q1) ⊂ Flat(S, q2). Thus the first part of the statement follows.

Assume the reverse statement is true for all q1|q2. Let q ∈ Z+. Then ≡q ⇒ ≡qi for

every positive integer i. By Theorem 3.3.1 there are two distinct curves γ, γ′ ∈ C(S) so that

γ ≡q γ′. By assumption we get γ ≡qi γ′, ∀i. This is in contradiction to Theorem 3.2.4 if we

take our infinite sequence to be {qi}∞i=1.

Theorem 3.3.5. For every q ∈ Z+, ∃γ, γ′ ∈ C(S) so that γ ≡q γ′ but γ 6≡h γ′.

Proof. Let γ and γ′ be from the construction in Theorem 3.3.1. If γ ≡h γ′ then γ and γ′ can

be oriented so that they represent the same homology class [13]. In our construction γ and

γ′ have different homology representatives, thus those curves can not be h-equivalent.
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Mathématique de France, Paris, 1991. Séminaire Orsay, Reprint of Travaux de Thurston
sur les surfaces, Soc. Math. France, Paris, 1979 Astérisque No. 66-67 (1991).
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