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ABSTRACT

A key challenge in censorship circumvention is being able to direct legitimate

users to redirection proxies while preventing censors, posing as insiders, from

discovering their addresses and blocking them. In this thesis, we study how to

protect and/or design censorship circumvention systems to resist the insider

attacks.

Tor is one of the most popular censorship circumvention systems; it uses

bridges run by volunteers as proxies to evade censorship. We propose rBridge–

a user reputation system for bridge distribution; it assigns bridges according

to the past history of users to limit corrupt users from repeatedly blocking

bridges, and employs an introduction-based mechanism to invite new users

while resisting Sybil attacks. Our evaluation results show that rBridge pro-

vides much stronger protection for bridges than any existing scheme. We also

address another important challenge to the bridge distribution—preserving

the privacy of users’ bridge assignment information, which can be exploited

by malicious parties to degrade users’ anonymity in anonymous communica-

tion.

We propose a new framework for censorship-resistant web browsing called

CensorSpoofer that addresses this challenge by exploiting the asymmetric na-

ture of web browsing traffic and making use of IP spoofing. CensorSpoofer de-

couples the upstream and downstream channels, using a low-bandwidth indi-

rect channel for delivering outbound requests (URLs) and a high-bandwidth

direct channel for downloading web content. The upstream channel hides

the request contents using steganographic encoding within Email or instant

messages, whereas the downstream channel uses IP address spoofing so that

the real address of the proxies is not revealed either to legitimate users or

censors. We built a proof-of-concept prototype that uses encrypted VoIP

for this downstream channel and demonstrated the feasibility of using the

CensorSpoofer framework in a realistic environment.
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CHAPTER 1

INTRODUCTION

Today, the Internet is playing an ever-increasing role in social and political

movements around the world. Activists use it to coordinate their activities

and to inform the general people of important information that is not avail-

able via traditional media channels. The role played by Twitter, Facebook,

YouTube, CNN iReport and many other websites/blogs in the recent events

in the Middle East is a great example of this [1, 2].

The free flow of information and exchange of ideas on the Internet has

been perceived as a serious threat by repressive regimes. In response, they

have imposed strong censorship on the Internet usage of their citizens. They

monitor, filter, trace, and block data flows using sophisticated technologies,

such as IP address blocking, DNS hijacking, and deep packet inspection [3,4].

For example, the “Great Firewall of China” blocks almost all popular social

networks, such as Facebook, Twitter and Flickr, and other websites that

may provide political information contrary to the state’s agenda, such as

Youtube, Wikipedia, BBC News, and CNN [5]. To exercise control over the

Internet, the Chinese government employs an Internet police force of over

30 000 people to constantly monitor the citizens’ online activities [6], and an

individual who is caught violating the laws of Chinese censorship is subject

to payment of fines [7].

A typical approach to skirting censorship is to deploy circumvention proxies

outside the censored network, which can provide indirect access to blocked

websites [8–11]. For example, Tor [11] is one of the most popular proxy-based

circumvention systems; it uses bridges run by volunteers as proxies to evade

censorship. Censors are, however, eager to discover such bridges and block

them as well. A particularly powerful approach to enumerating bridges is the

insider attack, wherein the censor colludes with corrupt users to discover and

shut down bridges; the censor can further amplify the attack by deploying a

large number of Sybils to accelerate the discovery of bridges.
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There are four desirable properties on a censorship circumvention system.

Firstly, it should require no special support from the network infrastructure.

For instance, some designs [16–18] assume that certain special routers can

be deployed by core ISPs on backbone Internet, which might not be real-

istic in practice. Secondly, it should require no special server, which could

easily be blocked by censors due to their small quantity. For example, some

circumvention circumvention systems rely on oversea Email servers that sup-

port encryption; however, only Gmail and hotmail meet the requirements.

Thirdly, it should be able to support web browsing, while some circumven-

tion systems [42–46] are not designed to support low latency communication.

Lastly, it should provide strong resistance against the insider attack. The hy-

pothesis statement of this thesis is as follows:

“It is possible to build a censorship circumvention system that does not re-

quire special server or special support from the network infrastructure, and

that provides web browsing and strong resistance to the insider attack.”

1.1 Contribution

Reputation based bridge distribution. Our first contribution is to pro-

pose rBridge [12]—a user reputation system for Tor bridge distribution in

order to improve the robustness of Tor bridges against the insider attack.

rBridge computes users’ reputation based on the uptime of their assigned

bridges, and allows a user to replace a blocked bridge by paying a certain

amount of reputation credits; this prevents corrupt users from repeatedly

blocking bridges. In addition, high-reputation users are granted opportu-

nities to invite friends into the system. The introduction-based approach

ensures the system can steadily grow the user base as recruiting new bridges,

while preventing adversaries from inserting a large number of corrupt users

or Sybils into the system. We performed extensive evaluation to show that

rBridge provides much stronger protection for bridges than any existing

scheme; for instance, the number of user-hours served by bridges in rBridge is

at least one order of magnitude more than that of the state-of-the-art proxy

distribution scheme [13].

Privacy-preserving bridge distribution. Our second contribution is

to design a privacy-preserving user reputation system for Tor bridge distribu-
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tion, i.e, privacy-preserving rBridge [12]. The key in ensuring user anonymity

in Tor is to preserve the information about each user’s selection of relays (in-

cluding bridges) in building anonymous circuits. To achieve so, the bridge

assignment information of each user must be kept secret from any parties,

including the bridge distributor. Therefore, in order to ensure anonymity

in rBridge, the bridge related information on users’ reputation profiles must

be managed by the users themselves to avoid leaking the information to

the bridge distributor. This raises the problem that malicious users could

cheat the reputation system by manipulating their records. In this thesis,

we propose a novel privacy-preserving user reputation scheme for bridge dis-

tribution, which can not only ensure the bridge distributor learns nothing

about users’ bridge assignment, but also prevent corrupt users from cheat-

ing. To our best knowledge, rBridge is the first scheme that is able to per-

fectly preserve users’ privacy in bridge distribution. We implemented the

privacy-preserving scheme, and experimental results show that rBridge has

reasonable performance.

Proxy distribution strategies by limiting the amount of information each

user gets and trying to identify compromised insiders (such as rBridge and

some existing schemes [13–15]) can partially mitigate the insider attack, be-

cause some of the proxies can still be blocked (although the proxy consump-

tion is fairly low for rBridge) and the system operator needs to keep adding

new proxies to replace blocked ones. The key issue in proxy based circumven-

tion systems is that proxies’ addresses are potentially revealed to malicious

users and thus are blockable. An alternate approach is to never reveal the

proxies’ address to legitimate users and thus be completely immune to the

insider attack. Some recent work suggests strategically placing special de-

flection routers at core Internet ISPs to transparently redirect users’ traffic

to the proxies [16–18]. Such a deployment, however requires a significant

resource investment that is likely to come only from a (pro-Internet freedom)

government agency, as well as cooperation of large ISPs.

A new censorship circumvention architecture. Our third contri-

bution is to propose a new censorship circumvention architecture, Censor-

Spoofer [19], that can be deployed using minimal resources, perhaps volun-

teered by ordinary people interested in promoting Internet freedom. (The

Tor project [11] has demonstrated the feasibility of building a successful ser-

vice with contributions from such volunteers.) Our key insight is that it is

3



possible to use IP address spoofing to send data from the proxy to a user

without revealing its actual origin. Such a spoofed channel allows communi-

cation in a single direction only; however, we can exploit the asymmetric na-

ture of web-browsing traffic, using a low-bandwidth indirect channel, such as

steganographic instant messages or Email, to communicate requests from the

user to the proxy. To avoid identification by the censor, CensorSpoofer mim-

ics an encrypted VoIP session to tunnel the downstream data, since the VoIP

protocol does not require endpoints to maintain close synchronization and

does not reveal its contents to the censor. We also explore additional steps

that need to be taken to prevent detection; namely, choosing a plausible fake

IP source address. To demonstrate the feasibility of CensorSpoofer, we built

a proof-of-concept prototype implementation and tested it in a real-world

environment. Our experiments show that our prototype can be successfully

used for browsing the web while resisting blocking efforts of the censors.

1.2 Roadmap

We present the motivation, design, and evaluation of rBridge – a user repu-

tation based Tor bridge distribution strategy in Chapter 2, and elaborate the

cryptographic construction and evaluation of a privacy-preserving version of

rBridge in Chapter 3. Chapter 4 describes a new censorship circumvention

architecture, CensorSpoofer, as well as its prototype implementation and

evaluation. We finally summarize the thesis research and discuss learned

lessons in Chapter 5.
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CHAPTER 2

A USER REPUTATION BASED
APPROACH TO SECURING TOR BRIDGE

DISTRIBUTION

Tor [11] is a popular anonymity system aiming to provide low-latency anony-

mous communication for a large scale of users. In Tor, each user uses three

randomly selected relays to build an onion encryption tunnel in order to

communicate with a remote host (e.g., a website) anonymously. As of May

4 2012, there are about 3 000 relays in the Tor network and over 500 000

directly connecting users daily [20].

Recently, Tor has been increasingly used as a censorship circumvention

tool. Users in a censored country can use Tor relays as proxies to access

blocked sites. However, since all of the Tor relays are publicly listed, many

countries (e.g., China) have blocked the public Tor relays altogether. In

response, Tor turned to private relays run by volunteers, called bridges, to

circumvent censorship. A key challenge though is to distribute the addresses

of bridges to a large number of users without exposing them to the censor.

So far, Tor has tried four different distribution strategies. First, each user

can receive a small subset of bridges based on their IP address as well as the

current time. Second, a small subset can be obtained by sending a request via

GMail. These strategies fail to protect against an adversary who has access

to a large number of IP addresses and GMail accounts; Chinese censors were

able to enumerate all bridges in under a month [21]. (McLachlan and Hopper

further showed that open proxies could be used to gain access to a large

number of IP addresses [22]). The third strategy involves distributing bridge

addresses to a few trusted people in censored countries in an ad hoc manner,

who then disseminate this information to their social networks. Fourth, an

individual can deploy a private bridge and give the bridge’s address only to

trusted contacts. These methods can resist bridge discovery but reach only

a limited fraction of the population of potential bridge users.

We propose rBridge [12]—a user reputation system for bridge distribution;

it assigns bridges according to the past history of users to limit corrupt
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users from repeatedly blocking bridges, and employs an introduction-based

mechanism to invite new users while resisting Sybil attacks. As we shall

show that, rBridge provides much stronger protection for bridges than any

existing scheme.

2.1 Related Work on Proxy Distribution

Researchers have tried to design better proxy distribution strategies [13–

15, 23]. Feamster et al. [23] proposed a keyspace-hopping mechanism for

proxy distribution, which employs computational puzzles to prevent a corrupt

user from learning a large number of proxies. However, this mechanism is

not likely to withstand an adversary who has strong computational power;

the results of [23] show that 95% of 100 000 proxies would be discovered

if the adversary can solve about 300 000 puzzles. In the scheme proposed

by Sovran et al. [15], the address of a proxy is given to a few highly trusted

people who play as internal proxies to relay other users’ traffic to the external

proxy; the addresses of these forwarders are advertised by performing random

walks on social networks. However, this scheme is unable to provide users

reliable circumvention service as forwarders may go offline from time to time;

besides, the forwarders (residing in the censored country) could receive a

severe penalty for facilitating circumvention, which may make people hesitate

to serve as forwarders.

Mahdian [14] studied the proxy distribution problem from an algorithmic

point of view, and theoretically analyzed the lower bound of the number of

proxies required to survive a certain number of malicious insiders. Neverthe-

less, their scheme is not practical, as it assumes that the number of corrupt

users is known in advance and there is no limit on the capacity of each proxy.

Recently, McCoy et al. [13] proposed Proximax, which leverages social net-

works for proxy distribution and distributes proxies based on the efficiency of

each distribution channel to maximize the overall usage of all proxies. In this

work, we explicitly compare rBridge with Proximax and show that rBridge

is able to provide much stronger protection for bridges than Proximax.
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2.2 Concept

We now present the design goals, threat model, and scope of rBridge.

2.2.1 Goals

rBridge aims to achieve the following goals:

1. Maximized user-hours of bridges: McCoy et al. [13] proposed the metric

user-hours to evaluate the robustness of a proxy distribution strategy.

It represents the sum of hours that a bridge can serve for all of its users

before being blocked.

2. Minimized thirsty-hours of users: Another important aspect, which is

overlooked by prior work, is thirstiness of honest users. We use thirsty-

hours to measure the time that an honest user has no bridge to use.

We aim to minimize it to ensure high quality of service.

3. Healthy growth of the user base: We assume the bridge distributor can

recruit new bridges from time to time, and each bridge can support up

to a certain number of users due to limited capacity. The consump-

tion of bridges is due to either new user joining or bridge blocking. By

“healthy growth of the user base”, we mean the user base can grow

correspondingly as new bridges are added to the system, without caus-

ing thirstiness of existing users. For an ineffective bridge distribution

strategy, corrupt users can drain out the bridge resource, leaving little

ability to grow the user base.

4. Privacy preservation of bridge assignment: We aim to prevent any en-

tity (e.g., a curious bridge distributor) from learning any information

about bridge assignment of a particular user; such information can be

exploited to degrade the user’s anonymity. (This property is to be

achieved in the cryptographic version of rBridge presented in Chap-

ter 3.)

We note that 4) distinguishes rBridge from prior work, as none of the

existing approaches preserves users’ bridge assignment information. For 1),
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2), and 3), we shall show that rBridge can achieve much higher performance

than any existing approach.

It is important to note that similar to prior work, we are not interested in

ensuring a single or a few important individuals can access unblocked bridges.

Instead, we aim to provide the circumvention service to the majority of

users; in other words, it is possible that a few honest users could lose all their

bridges before boosting their reputation to receive new bridges. Providing

guaranteed circumvention service to a few special users can be easily achieved

by deploying a few exclusive circumvention proxies; however, we believe it

is more valuable to provide the circumvention service to a large number of

ordinary users.

2.2.2 Threat Model

We consider a state-level adversary (i.e., the censor), who has access to rich

human resource, i.e., controlling a substantial number of potential bridge

users. In rBridge, a new user needs an invitation ticket (which is probabilis-

tically distributed to high-reputation users) to register and join the system.

A registered malicious user can block his assigned bridges by revealing them

to the censor who can later block the bridges (referred to as the insider at-

tack). Typically, the censor would like to block as many bridges as quickly as

possible, but in some instances she can adopt other strategies, such as keep-

ing known bridges unblocked for some period of time to boost the number

of insiders and later performing a massive blocking attempt in a crisis. In

general, we assume the set of malicious users is a Byzantine adversary, and

can deviate from the protocol in arbitrary ways to maximize their chance of

blocking bridges. The adversary could also launch the Sybil attack by cre-

ating a large number of fake accounts in the population of potential bridge

users. We note that, however, the Sybils can help the adversary discover

bridges only if they can get registered. In addition, we assume that the ad-

versary can access substantial network resources, e.g., a large number of IP

addresses and Email accounts, but she has bounded computational power

and is unable to subvert widely used cryptographic systems.

Unlike the existing schemes [13–15,21, 23] that assume the bridge distrib-

utor is fully trusted, we consider an honest-but-curious model for the bridge
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distributor, which is within the threat model of Tor [11]. More specifically,

we assume the bridge distributor honestly follows the protocol, but is inter-

ested in learning any private information about users, such as which bridges

are assigned to a particular user. For ease of presentation, we assume there

is a single bridge distributor, but it is straightforward to duplicate the bridge

distributor by creating multiple mirrored servers.

2.2.3 Scope

For clarity, we do not attempt to address network-level bridge discovery. We

assume the censor is able to learn bridges only from the distribution channels

(i.e., based on the knowledge of registered corrupt users and Sybils). It is

possible that the censor employs other techniques to discover bridges. For

instance, the censor could try to probe all IP addresses on the Internet to

find hosts that run Tor handshake protocols, fingerprint Tor traffic to identify

bridges, or monitor the users who connect to a discovered bridge to see what

other TLS connections these users establish and try to further verify whether

the connected hosts are bridges [21]. We note that if the censor were able

to identify bridges using such network-level bridge discovery techniques, any

bridge distribution strategy would not be able to work. Defending against

such attacks is an active research area; researchers have been proposing var-

ious defense mechanisms, such as obfsproxy [24], BridgeSPA [25], and client

password authorization [26]. We acknowledge that effective mechanisms for

resisting the network-level bridge discovery are important research problems,

but they are orthogonal to this work.

In rBridge, users’ reputation is calculated based on the uptime of their

assigned bridges, which requires a mechanism to test reachability of bridges

from censored countries. Recently, the Tor project has proposed several

methods to accurately test bridges’ availability [27], and we expect these

mechanisms to be deployed soon. To clarify, we assume the availability in-

formation of bridges can be provided by the Tor network, and how to reliably

check the bridges’ reachability is out of the scope of this work.
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2.3 The Basic rBridge Scheme

The openness of a proxy-based censorship circumvention system and its ro-

bustness to the insider attack seem to be in conflict. On the one hand,

allowing anyone to join the system and get bridges allows malicious users

to quickly enumerate all of the bridges [21]. On the other hand, applying

highly stringent restrictions on user registration and bridge distribution (e.g.,

giving bridges only to highly trusted people using social networks) enhances

robustness, but makes it hard for the majority of potential bridge users to

get bridges.

Our key insight is that it is possible to bridge the gap between the openness

and robustness of bridge distribution by building a user reputation system.

Instead of trying to keep all malicious users outside the system, we adopt a

less restrictive user invitation mechanism to ensure the bridge distribution

can reach a large number of potential users; in particular, we use a loosely

trusted social network for user invitation, and a well-behaving user can in-

vite his less close friends into the system. Meanwhile, we leverage a user

reputation system to punish blockers and limit them from repeatedly block-

ing bridges; more specifically, each user earns credits based on the uptime

of his bridges, needs to pay credits to get a new bridge, and is provided op-

portunities to invite new users only if his credit balance is above a certain

threshold.

It is important to note that our goal is not to keep bridges unblocked

forever; instead, we try to achieve a more practical goal—having bridges

serve a sufficiently long period of time so that the overall rate of recruiting

new bridges outpaces the rate of losing bridges. We also note that this is

still a very challenging problem; as will be shown by the comparison results

(Section 2.5), the existing schemes have a difficult time protecting bridges

from being blocked even for a very limited period of time.

2.3.1 Joining the System

When joining the system, a new user U receives k bridges B1, · · · , Bk as well

as a credential, which is used to verify U as a legitimate registered user. The

credential is signed by the bridge distributor D and includes the following
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information:

U∥Φ∥{Bi, τi, ϕi}ki=1

wherein Φ denotes the total credits owned by U, τi denotes the time when

Bi is given to U, and ϕi denotes the credits that U has earned from Bi. (At

the initialization, Φ = 0, ϕi = 0, and τi is the joining time). The selection of

the bridges B1, · · · , Bk is at random. D keeps counting the number of users

assigned to each bridge and stops giving a bridge’s address to new users once

the number of users assigned to the bridge reaches an upper limit (denoted

by g).

2.3.2 Earning Credits

U is given credits based on the uptime of his bridges. The credit assignment

policy should have the following properties. First, it should provide incentives

for corrupt users to keep the bridge alive for at least a certain period of

time, say T0 days, which should be long enough to make sure enough new

bridges can be recruited in time to maintain the overall bridge resources in

the system. Second, the total credits that a user earns from a bridge should

be upper-bounded, to prevent corrupt users from keeping one bridge alive to

continuously earn credits and using the earned credits to request and block

other bridges.

Now, we define the credit assignment function Credit(·). Let Tcur denote

the current time, and βi denote the time when Bi gets blocked (if Bi is not

blocked yet, βi =∞). We define t as the length of the time period from the

time when U knows Bi to the time when Bi gets blocked or the current time

if Bi is not blocked, i.e., t = min{βi, Tcur} − τi. We let ρ denote the rate of

earning credits from a bridge (credits/day) and T1 denote the upper-bound

time by which U can earn credits from the bridge. Then, the amount of

credits ϕi earned from Bi is defined as:

ϕi = Credit(t) =


0 t < T0

(t− T0) · ρ T0 ≤ t ≤ T1

(T1 − T0) · ρ t > T1

Without loss of generality, we define ρ = 1 credit/day; then, the maximum

credits that a user can earn from a bridge are (T1 − T0).
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From time to time (e.g., before requesting a new bridge), U requests D to

update his credit balance Φ with his recently earned credits, say, from Bi.

D first validates U’s credential (verifying the tagged signature), and then re-

calculates the credits ϕ̃i according to the uptime of Bi, adds the difference

ϕ̃i − ϕi to Φ, updates ϕi with ϕ̃i, and finally re-signs the updated credential.

2.3.3 Getting a New Bridge

To limit the number of bridges that a corrupt user knows, we allow each user

to have k or fewer alive bridges at any time. This is enforced by granting a

new bridge to a user U only if one of his bridges (say Bb) has been blocked.

In particular, upon a request for a new bridge in replace of Bb, D first verifies

that Bb is in U’s credential and has been blocked. D also checks whether U

has enough credits to pay for a new bridge, i.e., Φ > ϕ−, where ϕ− is the

price for a new bridge.

After giving out a new bridge B̃b, D updates U’s credential by replacing

the record {Bb, τb, ϕb} with {B̃b, Tcur, 0} and updating the total credits with

Φ̃ = Φ−ϕ−. To prevent a malicious user from re-using his old credentials that

has more credits, D keeps a list of expired credentials (e.g., storing the hash

value of the credential); once U’s credential is updated, the old credential is

added to the expired credential list and cannot be used again.

We note that temporarily blocking a bridge just to create an open spot

for a new bridge does not help a corrupt user, because he still needs to pay

the same amount of credits to get a new bridge and the availability loss of

a temporarily blocked bridge is strictly smaller than that of a permanently

blocked bridge.

2.3.4 Inviting New Users

D periodically sends out invitation tickets to high-reputation users whose

credit balances are higher than the threshold Φθ. Since the censor may let

some corrupt users behave legitimately to simply accumulate credits and

obtain invitation tickets in order to deploy more corrupt users or Sybils in

the system, we let D randomly select the recipients of invitation tickets from

qualified users. A user who has received an invitation ticket can give it to
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any of his friends, who can later use the ticket to join the system.

Note that the system needs to reserve a certain fraction (e.g., 50%) of

bridge resource (i.e., the sum of the remaining capacity of unblocked bridges)

for potential replacement of blocked bridges for existing users, while using the

rest bridge resource to invite new users. The amount of reserved resource can

be dynamically adjusted according to the amount of current bridge resource

and the plans for growing the user base and recruiting new bridges.

2.4 Discussion of Other Security Threats

2.4.1 Sybil Attacks

The adversary could launch Sybil attacks by creating a large number of Sybils

in the population of potential bridge users, so that the ratio f of compromised

entities in the potential users can be dramatically increased. However, we

note that deploying a large number of Sybils does not necessarily lead to

increase in corrupt users in the system. For honest users, their invitation

tickets are given to people they know. While corrupt users give all their

received tickets to colluding entities, the number of malicious entities they can

invite is bottlenecked by the number of invitation tickets they have received,

rather than by the number of malicious entities the adversary can create in

the population of potential users.

Alternatively, the adversary could try to deploy Sybils directly in the sys-

tem, which requires the adversary to provide each Sybil with a valid cre-

dential; however, this is infeasible without knowing the bridge distributor’s

private key. We also note that it is infeasible to let corrupt users share their

credentials with the Sybils either, because the bridge distributor recycles

used credentials and the total number of bridges that can be learnt by the

adversary does not increase.

2.4.2 Blocking the Bridge Distributor

We suppose the IP address of the bridge distributor is publicly known.

Hence, the censor could simply block the bridge distributor to either pre-

vent new users from joining the system or stop existing users from receiving
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new bridges. For an existing user who has at least one unblocked bridge, he

can use the bridge to build a Tor circuit to access the bridge distributor. For

a user without any usable bridge (e.g., a new user), he can use a high-latency

but more robust circumvention tool (e.g., Email based circumvention [28])

to communicate with the bridge distributor to get the initial bridges or a re-

placement bridge. Besides, a new user could ask his inviter (i.e., the existing

user who gave him the invitation ticket) to perform the initial bootstrapping

on his behalf to get the initial bridges.

2.4.3 Well Behaving of Corrupt Users

In order to increase the number of corrupt users in the system, the adversary

could let the corrupt users behave legitimately (i.e., keeping their bridges

alive) for a certain period of time to accumulate credits in order to receive

invitation tickets. However, we note that since the invitation tickets are

randomly distributed to qualified users, corrupt users may not necessarily

receive invitation tickets even if they have saved up sufficient credits. In

addition, keeping bridges alive also allows honest users to accumulate enough

credits to become qualified to receive invitation tickets; therefore, overall, the

chance of receiving invitation tickets by corrupt users is no better than that of

honest users. Our simulation results in Section 2.5 (where the corrupt users

do not block bridges until the 225-th day) show that this attack strategy

cannot help the adversary increase of ratio of corrupt users in the system.

In addition, rBridge does not allow users to transfer credits to others, and

hence it is infeasible to deploy a few well-behaving corrupt users to help other

corrupt users by sharing their credits.

2.5 Evaluation and Comparison

We now analyze the robustness of rBridge against the following blocking

strategies, and compare it with Proximax [13]. We discuss other potential

attacks in Section 2.4.

• Aggressive blocking: The censor is eager to block discovered bridges,

i.e., shutting down the bridge once it is known to a corrupt user.
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• Conservative blocking: A sophisticated censor may keep some bridges

alive for a certain period of time to accumulate credits, and use the

credits to discover new bridges and/or invite more corrupt users.

• Event-driven blocking: The censor may dramatically tighten the control

of the Internet access when certain events (e.g., crisis) take place. We

consider such attacks by assuming that malicious users do not block any

bridges until a certain time, when suddenly all the discovered bridges

get blocked.

To evaluate rBridge under these attacks, we implemented an event-based

simulator using a timing-based priority queue, by treating each state change

of the system as an event, such as inviting a new user, getting a new bridge,

blocking a bridge, recruiting a new bridge, etc. Each event contains a time

stamp indicating when the event occurs as well as an ID of the subject indi-

cating who will carry out the event. We start with choosing the parameters

for our simulation.

2.5.1 Parameter Selection

We employ probabilistic analysis to select appropriate parameters. To sim-

plify the parameter calculation, we consider a static user group (i.e., no new

users join the system); later, we validate our parameter selection in a dynamic

setting using the event-based simulator. In practice, the bridge distributor

can periodically re-calculate the parameters (e.g., every 30 days) using the

current size of the user group.

Initial setup. Let f denote the fraction of malicious users among all

potential bridge users (note that f is not the actual ratio of malicious users

in the system). We expect a typical value of f between 1% and 5%, but we

also evaluate rBridge with much higher f to see its robustness in extreme

cases. The system starts with N = 1000 users, which are randomly selected

from the pool of all potential bridge users; for instance, D could randomly

select a number of Chinese users on Twitter (based on their profiles) as the

initial bridge users, and very likely these users are willing to use the bridge

based circumvention service because they already used some circumvention

tools to access Twitter (which is blocked in China).
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Figure 2.1: Number of initial bridges (N = 1000).

Each user is initially provided k = 3 bridges1. Suppose there are m0 initial

bridges in the system; the number of users per bridge is g0 =
N ·k
m0

on average.

Assuming a corrupt user blocks all of his bridges, the probability that an

honest user has no alive bridge is (1− (1− f)g0)k. According to Figure 2.1,

we choose m0 = 200 to make sure the majority of users can survive the initial

blocking.

g—the maximum number of users per bridge. In rBridge, when a

bridge gets blocked, all the g users sharing this bridge will be “punished”

(i.e., receive no more credits from the bridge and need to pay credits to get a

new bridge); intuitively, with a smaller g, it is easier to precisely punish the

real blocker, as fewer honest users would be punished by mistake. On the

other hand, we should make sure g is sufficiently large to avoid underusing

the bridges.

Here, we calculate the probability that a user has a certain number of

blocked bridges; this probability depends on g and determines the punish-

ment on the user. Let p denote the probability that a corrupt user blocks

a bridge he knows, and λ denote the probability that a bridge is blocked.

Then, we have λ = 1− (1− f · p)g (here we use f to approximate the ratio

of corrupt users in the system). We define Xh (or Xm) as the number of

blocked bridges of an honest (or corrupt) user. Assuming a user obtains l

1In the current bridge distribution strategy deployed by Tor, each requesting user is
given 3 different bridges.
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Figure 2.2: Number of users per bridge (p is attack probability, f = 5%).

bridges since joining the system, we get:

Pr(Xh = x) =

(
l

x

)
· (1− λ)x · λl−x (2.1)

Pr(Xm = x) =

(
l − p · l
x− p · l

)
· (1− λ)x−p·lλl−x (2.2)

We are interested in calculating Pr(Xm > Xh) —the probability that a

corrupt user has more blocked bridges than an honest user (i.e., the likelihood

that a corrupt user receives more punishment than an honest user); ideally,

this probability should be maximized. Pr(Xm > Xh) is calculated as:

Pr(Xm > Xh) =
l∑

x=p·l

Pr(Xm = x)
x−1∑
y=0

Pr(Xh = y) (2.3)

Figure 2.2 depicts Pr(Xm > Xh) with l = 10 and f = 5%. While Pr(Xm >

Xh) is maximal when g is small, we choose a fairly large value g = 40 to make

sure bridges are not underutilized.

Credit(t)—the credit assignment function. Recall that T0 and T1 rep-

resent the expected lower and upper bounds of a bridge’s life time, respec-

tively. We let Tlf denote the expected life time of a bridge, T0 ≤ Tlf ≤ T1,

and s denote the speed of recruiting new bridges. To maintain the overall
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bridge resource, we should have:

Tlf · g · s · time = N · k · time (2.4)

From this, we get:

T0 =
N · k
g · smax

, T1 =
N · k
g · smin

(2.5)

where smax and smin denote the maximum and minimum rate of recruiting

new bridges, respectively. (From May 2011 to May 2012, the Tor project

recruited about 400 new bridges [20].) In our evaluation, we set smax = 1

bridge/day and smin = 0.2 bridge/day, which implies that 70 ∼ 360 bridges

need to be recruited per year. With N = 1000, we get T0 = 75 days and

T1 = 375 days according to (2.5). Note that with a larger number of users,

the overall bridge consumption will become higher and the system needs to

recruit more bridges. However, T0 and T1 we have calculated are the worst-

case expectations; as will be shown in the simulation, the lifetime of bridges

is actually much longer than the worst-case T0 and T1, and hence the pressure

of recruiting new bridges is smaller in practice.

ϕ−—the price for getting a new bridge. The credits earned from

unblocked bridges should be roughly equal to the credits paid to replace

blocked bridges. Therefore, approximately we have:

k∑
x=0

Pr(Xh = x) · x · ϕ− = (2.6)

k∑
x=0

Pr(Xh = x) · (k − x) · (T1 − T0)

From Equation (2.1) (2.6), we get ϕ− = 45.

Φθ—the threshold of credits for invitation. To decide the value of

Φθ, we assume that a user with at least half of his bridges unblocked can be

considered to invite new users. Then, we have:

Φθ =

⌈ k
2
⌉∑

x=0

Pr(Xh = x|Xh ≤ ⌈
k

2
⌉)

·(k − x) · (T1 − T0) (2.7)

From Equation (2.1) (2.7), we get Φθ = 236.
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Figure 2.3: Probability distribution of malicious users (f = 5%).

User invitation. In our simulation, we set the rate of recruiting new

bridges as s = 1 bridge/day; we reserve 50% of bridge resource for potential

replacement of blocked bridges. Every 7 days, the bridge distributor cal-

culates the number of new users to be invited based on the current bridge

resource, and distributes the corresponding number of invitation tickets to

randomly selected users whose credit balance is higher than Φθ.

Probability distribution of malicious users. Now we consider the

probability that an invited user is malicious. We suppose each corrupt user

always gives his invitation tickets to malicious users or Sybils. For an honest

user, if he randomly selects a new user to invite, the probability that the new

user is malicious is approximately f . However, in practice, a user is inclined

to first invite the friends he trusts most; as receiving more and more invitation

tickets, the user will start to invite less trusted friends. To model this, we

assume each user ranks his friends based on trustworthiness: each friend is

assigned an index ranging from 0.0 to 1.0 according to the trustworthiness

(e.g., the most trusted one out of 100 friends has the index 1.0/100 = 0.01).

We consider two specific models to assign probabilities of malicious users.

One is staged distribution, wherein the friends are divided into two groups

(i.e., more trusted and less trusted) and all users within a group have the

same probability of being malicious. We assume 80% friends belong to the

“more trusted” group and the remaining 20% are in the “less trusted” group.

The other is linear distribution, for which the probability of being a malicious

user is a linear function of the index. We suppose the probability that the
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most trusted friend is malicious is 1%. For both distributions, the overall

ratio of malicious users is f . Figure 2.3 depicts the probability distributions

of these two models.

2.5.2 Evaluation Results

Using the event-based simulator, we measured the user-hours, thirsty-hours,

and growth of user base under different blocking strategies. We set the ratio

of malicious users in the potential user group as 5%.
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Figure 2.4: User-hours in aggressive blocking.
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Figure 2.5: % of thirsty-hours in aggressive blocking.

Aggressive blocking. We now present the simulation results for the

aggressive blocking. We can see from Figure 2.4 that when f = 5%, 80%
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Figure 2.6: User base in aggressive blocking.

of bridges can produce over 1000 user-hours, and 70% of bridges can serve

more than 10 000 user-hours, before being blocked; about 50% of bridges are

never blocked. Figure 2.5 shows that with f = 5%, over 95% of users are

never thirsty for bridges; a small fraction (about 2%) of users are unable to

get new bridges, because all of their initially assigned bridges get blocked

before they earn enough credits to request new bridges. Figure 2.6 shows

that users need some time (150 ∼ 200 days) to accumulate enough credits

to become qualified for inviting friends. After the accumulation phase, the

user base starts to steadily grow almost linearly with the number of newly

recruited bridges. We also see that rBridge performs relatively better with

the staged distribution of malicious users than with the linear distribution;

this is because for the staged distribution most invited users belong to the

“more trusted” group, for which the probability of being a malicious user is

lower than that for the linear distribution.

In addition, we evaluate rBridge with a much higher f (using the same sys-

tem configuration). We can see that rBridge can easily tolerate 10% malicious

users; even when f = 30%, the performance of rBridge is still acceptable; for

f ≥ 50%, rBridge fails to provide reasonable protection for bridges.

Conservative blocking. There are two factors related to the conservative

blocking: the probability of blocking a bridge (p), and the waiting time to

block a bridge (wait). Since the time to earn credits from a bridge is upper-

bounded by T1, we assume a corrupt user always blocks his bridges by time

T1 (i.e., wait ≤ T1). In the simulation, we consider the following cases for
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Figure 2.7: User-hours in conservative blocking.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

% thirsty hour

C
D

F

 

 

p=100%,wait=225
p=100%,wait=120
p=100%,wait=0
p=50%,wait=225
p=50%,wait=120
p=50%,wait=0

Figure 2.8: % of thirsty-hours in conservative blocking.

the waiting time: 0 day (i.e., aggressive blocking), 120 days (by which the

earned credits are sufficient to get a new bridge), and 225 days (i.e., the

middle point between T0 and T1).

We can see from Figure 2.7, Figure 2.9, and Figure 2.8 that compared with

the aggressive blocking, the conservative blocking causes less damage to the

user-hours and the growth of user base; this is because the bridges under the

conservative blocking can serve a longer time and more users can accumulate

enough credits to invite new users. We also notice that when wait = 225 days

and p = 100%, about 10% of users are thirsty for 15% of their time, which is

worse than the aggressive blocking; the reason for this is that after waiting

225 days, malicious users earn enough credits to be considered for inviting

new (malicious) users (i.e., (225 − 75) × 3 = 450 > 236), and overall they
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Figure 2.9: User base in conservative blocking.

can block more bridges, which causes more recently joined users to become

thirsty.
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Figure 2.10: Unblocked bridges in event-driven blocking.

Event-driven blocking. For event-driven blocking, we let all of the

corrupt users are synchronized to block all their bridges simultaneously on the

300-th day. Figures 2.10 and 2.11 show that right after the massive blocking,

the number of available bridges drops from 500 to 150, and the percentage

of thirsty users rises to 25%. We note that the damage of the event-driven

blocking can be effectively mitigated by keeping a small number of backup

bridges (that are never seen by any user). We can see from Figure 2.12

that with 50 backup bridges (about 10% of deployed bridges), the number of

thirsty users can be reduced by half; with 100 backup bridges, the number of
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Figure 2.11: % of thirsty users in event-driven blocking.
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Figure 2.12: % of thirsty users with backup bridges in event-driven
blocking.

thirsty users is minimized. We also notice that keeping backup bridges cannot

entirely eliminate thirsty users; this is because there are a small fraction

(about 10%) of users who join the system not long before the massive blocking

and have not accumulated enough credits to request new bridges.

2.5.3 Comparison with Proximax

W now compare rBridge with Proximax [13]—the state-of-the-art proxy dis-

tribution scheme. Using the same methodology, we developed an event-based

simulator for Proximax. Since the authors of Proximax did not provide suf-

ficient details about how to invite new users, we only consider a static set
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Figure 2.13: User-hours in comparison.
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Figure 2.14: % of thirsty-hours in comparison.

of users for the comparison. We evaluate both rBridge and Proximax under

the aggressive blocking using the same system configuration as before; for

Proximax, we set the maximum delay of distributing bridges at each hop

(i.e., from when a user receives a bridge to when he distributes the bridge to

his friends) to 1 day2.

Figure 2.13 shows that in Proximax less than 5% bridges are able to pro-

duce more than 20 user-hours, and none of the bridges can serve over 126

user-hours. In comparison, in rBridge, over 99% bridges can produce over 20

user-hours, and 57% bridges are not ever blocked and are able to continuously

generate user-hours. In addition, in Proximax 99% of users are always thirsty

2In the simulation of Proximax, we found that higher propagation delay leads to higher
user-hours; hence, we chose a fairly large value (1 day).
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Figure 2.15: User base in comparison.

for bridges, and this number is only 10% for rBridge. Since our simulation

for the comparison only considers a static user group, we are unable to eval-

uate Proximax in terms of the growth of the user base over time; instead,

we measure how many bridges are required to support different-sized user

bases for 30 days, while making sure that each existing user has at least one

unblocked bridge at any time. We can see from Figure 2.15 that Proximax

requires a substantially larger number of bridges than rBridge; for instance,

to support 200 users, Proximax requires at least 2400 bridges, while rBridge

only needs 108 bridges. We note that for all these metrics (user-hours of

bridges, thirsty-hours of users, and bridge consumption), the performance of

rBridge is at least one order of magnitude higher than that of Proximax.

Discussion. It is possible to improve Proximax by adopting a more re-

strictive distribution strategy, e.g., limiting how many people a bridge recip-

ient can share the bridge with (i.e., the width of the distribution tree) as

well as how many hops a bridge can be distributed (i.e., the depth of the

distribution tree). Figure 2.13, Figure 2.14, and Figure 2.15 also provide the

results for limiting the maximum width and depth of the distribution tree

to 5. While the restrictive distribution strategy can improve the robustness

of Proximax, it is still much worse than rBridge. More importantly, the

restrictive approach degrades the openness of the system.

The main reason that rBridge outperforms Proximax is that Proximax

calculates “reputation” at the granularity of distribution trees (or called dis-

tribution channels) rather than individual users, and the formation of each

distribution tree is fixed and thus an honest user would be permanently “in-
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fected” if he resides in a tree that contains a corrupt user. Whereas, rBridge

allows a user to join a different user group when receiving a new bridge, and

keeps track of each individual user’s records, based on which the bridge dis-

tributor can reward well-behaving users and punish blockers individually. We

note that recording each individual user’ bridge assignment leads to greater

risks of violating users’ privacy; we describe how to perfectly protect users’

bridge assignment information in the next section.

Finally, we note that computing reputation merely based on the bridges’

uptime is not the only way to design the reputation system. For instance,

it is possible to extend rBridge by including the reputations of the “intro-

ducees” as a factor to calculate the reputation of the “introducer”. However,

the increased complexity of the reputation system makes it even harder (if

possible) to design a practical privacy-preserving mechanism to perfectly pro-

tect users’ bridge assignment information. Therefore, our design philosophy

is to make the reputation system as simple as possible, while ensuring its

robustness against various blocking strategies.
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CHAPTER 3

A PRIVACY-PRESERVING USER
REPUTATION SYSTEM FOR TOR

BRIDGE DISTRIBUTION

Tor is primarily designed to provide anonymous communication service; it

uses 3 randomly selected relays to forward users’ traffic. A key design phi-

losophy of Tor is to avoid any entity knowing which relays are used by a

particular user; for instance, although each user only needs 3 relays, he has

to download all the relays’ descriptors from one of the directory authorities

to hide the selected relays from curious directory authorities.

To make it more difficult for adversaries to enumerate bridges, the bridge

distributor gives a limited number of bridges to each user. But this creates

a new privacy problem, as this information could be used to fingerprint the

user: an adversary who can monitor the bridges used for a set of anonymous

tunnels can potentially link them back to the user. As a result, the bridge

distributor becomes a fully trusted component, whereas other components of

Tor must be at most honest-but-curious.

Nevertheless, the privacy issue in Tor bridge distribution has been unfortu-

nately overlooked by all the existing schemes including those that have been

deployed by Tor. They all assume that the bridge distributor is fully trusted

and authorized to know which bridges are used by each user, which degrades

the user anonymity.

In this chapter, we first present a new attack of de-anonymizing Tor

users using bridge assignment information to demonstrate the importance

of privacy preservation in Tor bridge distribution. We then propose a novel

privacy-preserving Tor bridge distribution scheme based on rBridge [12] using

several cryptographic primitives, and provide performance evaluation results

as well as rigorous security proofs.
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3.1 Motivation of Preserving Privacy in Tor Bridge

Distribution: An Attack of De-anonymizing Tor

Users using Bridge Assignment Information

3.1.1 Anonymity in Tor

Tor is a practical system aiming to provide low-latency anonymous communi-

cation for ordinary users by using onion encryption tunnels each constructed

with three randomly picked relays. Tor aims to achieve a practical goal

regarding protecting user anonymity. In particular, it aims to achieve “end-

to-end ” anonymity, i.e., preventing attackers from learning both the initiator

(i.e., the user) and the destination (e.g., a website), as a real-world adversary

is less interested in only learning whether a particular user is using Tor or

whether a particular website is being viewed. This anonymity property is

one of a set of more formally defined anonymity properties (e.g., sender and

receiver anonymity) proposed by Ptzmann and Hansen [29]. In this work,

we focus on analyzing end-to-end anonymity of Tor.

In our threat model, we assume the adversary can control a fixed set of

malicious relays that comprise a ratio of f of all relays and can learn in-

formation about users’ traffic only from these malicious relays (for clarity,

we do not consider AS-level adversaries or malicious websites). This implies

that the adversary can learn the destination of a connection of a particular

user if and only if the exit relay is malicious. Likewise, the adversary can

directly see the user’s address if the guard (or the bridge) of the connection

is malicious.

!"#$%&'

()*"$
+#$$,& -.#/

Figure 3.1: For a compromised circuit with malicious first- and last-hop
relays, both the user’s identity and the communication destination can be
observed.

A widely used metric to evaluate Tor’s anonymity is the percentage of

“compromised” circuits, i.e., those having both malicious first- and last-hop
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relays. An illustration of compromised circuits is shown in Figure 3.1. The

ratio of compromised circuits can be roughly estimated as f2, if we do not

consider relays’ bandwidth in relay selection. For instance, when f = 20%,

about 4% of the established circuits will fail to preserve users’ anonymity, i.e.,

the adversary will be able to link the websites a user is browsing to the user.

However, as we shall show later, bridge distribution without privacy preser-

vation opens up another way for adversaries to compromise users’ anonymity,

and this attack works even when none of the user’s bridges/guards is mali-

cious and thus substantially degrades the anonymity of Tor.

3.1.2 Fingerprinting Users using Bridge Assignment
Information

Guards are first-hop relays of anonymous communication circuits, and bridges

are a special type of guards, which are used by users in censored countries

as stepping stones to circumvent censorship. In existing bridge distribution

strategies adopted by Tor, the bridge distributor knows exactly what bridges

are given to a particular user, and thus can use the bridge assignment infor-

mation as a fingerprint to identify users. For instance, assuming that each

user is given 3 bridges, if the adversary is able to learn that 3 bridges, say B1,

B2 and B3, belong to the same user, then the adversary who has access to the

bridge assignment information (e.g., by colluding with the distributor) can

easily narrow the anonymity set of the user down to a small subset of users

who are given B1, B2 and B3. As we can see in Figure 3.2 that when each

bridge/guard is selected at uniform random, over 95% of bridge/guard sets

are shared by fewer than 0.2% users, and over 70% of bridge/guard sets can

be uniquely mapped to a single user. Figure 3.3 shows the results when the

selection of bridge/guard is weighted using each bridge/guard’s bandwidth

(as the guard selection strategy currently adopted by Tor); in this case, about

60% of bridge/guard sets can uniquely identify their owners.

Therefore, besides compromising the first-hop relay of a user’s anonymous

circuit – which can be viewed as a direct way to learning the user’s identity,

the adversary can also indirectly connect an observed communication des-

tination to the user by using bridge assignment information as a link joint.

In particular, we present a long-term attack that leverages web cookie and
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Figure 3.2: CDF of percentage of users who share a common bridge/guard
set, when each bridge/guard is selected at uniform random
(#users = 1500).
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Figure 3.3: CDF of percentage of users who share a common bridge/guard
set, when bridge/guard selection is weighted using bridge/guard’s
bandwidth (#users = 1500).

bridge assignment information to de-anonymize users.

3.1.3 Grouping Bridges using Web Cookies

As we discussed above, bridge assignment information allows an adversary

to link a particular bridge/guard set to its owner (i.e., the user) with high

probability; thus, if the adversary is able to find out the bridge/guard set

and link the user’s visited websites to the bridge/guard set, she can finally

link the websites to the user.

The key of this attack is to find out which bridges/guards belong to the
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same user (i.e., in the same bridge/guard set). As we know, when the exit

relay is malicious, the adversary can see not only the communication destina-

tions (e.g., the IP address of the website) but also all of the communication

content, including web cookie, as long as the application layer protocol does

not use encryption (such as HTTPS). Web cookie is a small piece of data sent

from a website and stored in a user’s web browser while a user is browsing a

website, and when the user visits the same website again, the data stored in

the cookie will be retrieved by the website to notify the website of the user’s

previous activity.1 By keeping track of web cookies observed from malicious

exit relays, the adversary can infer that multiple circuits that share the same

cookie belong to the same user. For instance, in the example shown in Fig-

ure 3.4, the adversary can observe cookies from circuits having malicious exit

relays (i.e., C1, C3, C4 and C5); out of them, C1, C3 and C5 share a common

cookie X, and thus they belong to the same user. Furthermore, if multiple

web cookies are observed from a circuit, e.g., C1 and C3, and one of cookies

is the target cookie (i.e., X), then we can learn that the other cookies also

belong to the user and therefore can be added to the set of target cookies

(e.g., the target cookie set in this example is {X,Y, Z}). As a result, we can

infer that C1, C3, C4, and C5 belong to the target user, since they have at

least one of the target cookies.

Cookies {X, Y}

???

Cookies {Y}

Cookies {X, Z}

Cookies {X}

C1

C2

C3

C4

C5

Linkable

Figure 3.4: An example of linking circuits based on web cookies.

We note that this cookie-based circuit correlation can be carried out over

1We note that although the presented attack only works when web cookies can be
observed by malicious exit relays, our attack strategy is generic and can be applied to
cases when there are no direct observations of cookies, e.g., when users clean up web
cookies after each use of Tor. This is because our attack only requires some application-
level information that can link different web browsing transactions of the user; besides
web cookies, such application-level information could be usernames, photos, affiliations,
addresses, personal interests, etc.
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a long period of time, since web cookies can typically live in the client’s

web browser for a long time. In addition, we are less interested in the case

where the first-hop relay of a circuit is malicious, because in this case the

adversary can always learn the user’s identity due to direct connection no

matter whether bridge assignment information is available. To demonstrate

the importance of protecting bridge assignment information, we focus on

the scenario when all of the bridges/guards of the target victim user are

honest and show that even in this case an adversary with bridge assignment

information is still able to de-anonymize the user.

For a circuit having a malicious middle relay (such as C1, C2, and C4

in Figure 3.4), the bridge/guard of the circuit is observable. Therefore, if

both the exit relay and the middle relay are malicious, the adversary can

observe both the web cookies of visited websites and the bridge/guard, and

associate them together. As a result, the adversary can group the observed

bridges/guards of circuits that are linkable by target cookies. For instance,

bridges/guards of C1 and C4 can be grouped together using the target cookies

X and Y .

Although the probability of having both malicious middle and exit relays

in a circuit is low, over a long time the adversary can have a fairly good

chance to accumulate multiple circuits that share a common cookie and have

observable bridges/guards. Furthermore, we note that getting a circuit with

both malicious middle and exit relays is not the only way to link an ob-

served cookie to an observed bridge/guard. We next show how to leverage

timing information in circuit scheduling to find pairs of observed cookies and

bridges/guards. This approach can expedite grouping bridges/guards of the

target user.

3.1.4 Linking Circuits based on Timing of Circuit Scheduling

Since Tor aims to provide low-latency anonymous communication, it adopts

some mechanisms to optimize performance. For example, the client software

predicts the number and types of circuits that are likely to be needed and pre-

emptively builds them to avoid the delay of run-time circuit establishment.

In particular, throughout the online period, the client maintains two usable

circuits at any time for each port that was seen in the past hour. By “usable”,
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we refer to a circuit being able to accept new connections.2 A clean circuit

becomes dirty once a connection is relayed on it. A dirty circuit stays usable

only for 10 minutes, and a clean circuit can stay usable for 1 hour. All of the

established circuits are closed when the client goes offline.

Because of the circuit scheduling mechanism, the timing of building/closing

circuits follows specific patterns. For instance, once a circuit becomes unus-

able (i.e., 1 hour after being built for a clean circuit, and 10 minutes after

becoming dirty for a dirty circuit), it’s highly likely that the client will build

a new circuit to replace the expired circuit. Such timing information can

help the adversary decide whether two observed circuits belong to the same

user. For example, if one circuit is built right after another circuit becomes

unusable, it is very likely that they are both built by the same client.

We now define the rules of linking circuits based on the timing of circuit

scheduling. We let Tbuild, Tclose and Tdirty denote the times when a circuit is

built, closed, and becomes dirty, respectively. We assume that the adversary

can infer Tbuild, Tclose, and Tdirty of a circuit, as long as one of the relays of

the circuit is malicious. We define ϵ as a very short period of time, e.g., a

few seconds. We call two circuits Ci and Cj are highly likely to be co-resident

if the one of following conditions is satisfied:

1. Ci is clean, and Cj.Tbuild − (Ci.Tbuild + 1h) ≤ ϵ

2. Ci is dirty, and Cj.Tbuild − (Ci.Tdirty + 10m) ≤ ϵ

3. Cj.Tclose − Ci.Tclose ≤ ϵ

Our previous analysis on the example shown in Figure 3.4 is that the

adversary is able to link C1, C3, C4, and C5 together based on the common

cookie X, but only knows that the bridges/guards of C1 and C4 belong to

the target user because the first hops of C3 and C5 are not observed (in other

words, the cookies observed from C3 and C5 cannot help us infer the user’s

bridge/guard set). Whereas, the approach to linking circuits based on timing

of circuit scheduling allows us to make use of circuits (like C3) that do not

2For a connection request made by an upper-level application, the client first tries to
assign it to an existing circuit that can support the connection, i.e., the state of the circuit
is either clean or dirty & usable and the exit policies of its exit relay can support the port
of the connection. If there exist multiple suitable existing circuits, the client prefers a
dirty & usable circuit to a clean circuit; if candidate circuits are all clean, a more recently
built circuit is preferred; if candidate circuits are all dirty, a circuit that became dirty
more recently is preferred.
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have directly observed bridges/guards. For example, if there exists a circuit

that has an observable first hop (say C2 in Figure 3.4) and is highly likely

co-resident to C3 according to the three conditions presented before, we can

combine the observations from C2 and C3 (i.e., C2’s bridge/guard and C3’s

cookie X) together and use them to infer the target user’s bridge/guard set.

In this case, the adversary can infer that with high probability the observed

bridges/guards of C1, C2 and C4 belong to the target user.

3.1.5 An Attack of De-anonymizing Users using Bridge
Assignment Information

We now present the attack strategy to de-anonymize users using bridge as-

signment information. First of all, the adversary records information of each

observed circuit, including Tbuild, Tclose, Tdirty, and observed relays of the

circuit; if the observed circuit has a malicious exit relay, the adversary also

records the observed cookies and communication destinations. The adver-

sary selects an interested target user, who is the owner of one of the observed

cookies (say X) provided by a target website, and aims to find out the real

identity of the target user. As we mentioned before, we are only interested in

de-anonymizing users who have no malicious bridges/guards, which is infeasi-

ble without using bridge assignment information. Note that once the target

user is de-anonymized, the adversary learns not only this user’s browsing

histories on the website that creates the initial target cookie X, but also his

visiting records on many other websites, since the adversary can accumulate

cookies of the user over time.

The adversary keeps a list of candidate bridges/guards of this target user

with each entry on the list containing the ID of a bridge/guard that has been

discovered at least once using the two approaches we have described, i.e.,

satisfying one of the two conditions below:

1. The bridge/guard is on a circuit C that has both malicious middle and

exit relays, and at least one of the cookies observed from C is a target

cookie (and the rest cookies are added to the target cookie set).

2. The bridge/guard is on a circuit C that has a malicious relay and is

highly likely co-resident to another circuit C ′ that has a malicious exit

relay, and at least one of the cookies observed from C ′ is a target cookie.

35



Each entry also contains a counter, which records how many times this

bridge/guard has been discovered; for a candidate bridge/guard that meets

Condition 1 once, its counter value is fixed as the maximum value because

we can be sure that this bridge/guard belongs to the target user. The list is

updated as the adversary collects more observations over time. In the end,

the adversary outputs the three candidate bridges/guards with the highest

counter values (assuming each user is given three bridges/guards) as the

bridge/guard set of the target user, and then she can look up the mapping

tables between bridge/guard sets and users to identify the target user or

narrow down the anonymity set of the target user to a small number of

users.

3.1.6 Evaluation

To evaluate the effectiveness of this attack, we build a simulator by simulat-

ing the circuit scheduling and path selection mechanisms of the client-side

software of Tor. We run our simulation on a smaller sized Tor network, by

randomly selecting a subset of all Tor relays while using their original relay

descriptors (including bandwidth, tags, families, and etc.) downloaded from

Tor website3. We randomly pick 150 relays and use 1500 users, and run

the simulation for 100 days. We employ bandwidth weighted bridge/guard

selection. Each user is configured to be online for T hours every day, where

T is uniformly random in [1h, 3h], and during each online period, each user

makes connections following a poisson process with mean value 10 minutes.

According to the study in [30], we model the dwell time of each web visit

using Weibull distribution with the parameters suggested in [30] shape k = 1

and scale λ = 70s. We use the top 100 most popular websites published by

Google doubleclick4 as connection destinations, and set the initial cookie as

the one created by the most popular website.

We can see from Figure 3.5 that the number of events of discovering can-

didate bridges/guards grows almost in linear with time, and as shown in Fig-

ure 3.6, the number target cookies obtained by the adversary also increases

accordingly. Figure 3.7 shows that the number of entries on the candidate

list increases with time, but its growing rate is sublinear because the same

3https://metrics.torproject.org/data.html
4http://www.google.com/adplanner/static/top1000/
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Figure 3.6: Number of target cookies with 95% confidence interval.

bridge/guard may be discovered for multiple times.

We evaluate the accuracy of this de-anonymizing attack by computing

the probability that the true bridge/guard set is contained in the top few

entries of the candidate list. We can see from Figure 3.8 that when 20% of

relays are malicious, after 90 days of observation, the top 3 entries on the

candidate lists are the true bridge/guard set with probability of over 60%;

with 10% malicious relays, this probability is about 30%. Considering that

each bridge/bridge can be typically mapped to a very small number of users

as shown in Figure ??, there is a fairly good chance for the adversary to

de-anonymize the target user.
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3.2 Related Work on Anonymous Authentication and

Anonymous Reputation Systems

Researchers have put forward several designs for anonymous authentication

and anonymous reputation systems [31–34] that are similar to what we are

seeking. Au et al. [34] proposed a k-times anonymous authentication (k-

TAA) scheme that allows a user to be authenticated anonymously for a

bounded number of times. The work in [31, 33] extended this scheme to

allow revocation without trusted third parties. Later, Au et al. [32] further

extended the anonymous authentication schemes to support users’ reputation

management. We note that, however, none of these schemes is applicable to

bridge distribution due to inability to limit misbehavior of malicious users.
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In bridge distribution, a user’s reputation that is calculated based on the

user’s bridge assignment records should be managed by the user himself to

avoid leaking the bridge information to the bridge distributor, which raises

the risk that a malicious user could manipulate his reputation records, e.g.,

increasing his credit balance. Whereas, in the aforementioned schemes, users’

reputation is calculated by servers that are trusted to perform the reputa-

tion calculation, and thus they do not need to consider potential cheating of

malicious users.

3.3 Challenges and Requirements

Our goal is to provide perfect privacy preservation for Tor users in rBridge by

hiding bridge assignment information from any parties including the bridge

distributor.

In rBridge, a user (U) can get a bridge only if he can authenticate himself to

D by presenting a valid credential (recall that in the basic scheme, a credential

includes the following information U∥Φ∥{Bi, τi, ϕi}ki=1). Firstly, in order to

unlink the user from his assigned bridges, we should conceal the user’s

identity by replacing U’s real identity with a pseudonym on his credential

and letting him build a Tor circuit to communicate with D to hide his IP

address.

However, the above measures are not sufficient. Suppose U has received 10

bridges from D (who knows the bridges but not U’s identity), and 2 of them

are malicious and know U’s identity due to direct contact and collude with D;

then it is highly likely that D can link U to all of his bridges, since very few

users happen to know both of the malicious bridges. A natural solution to

this is using Oblivious Transfer (OT) for privacy-preserving bridge retrieval

— preventing D from learning which bridge is retrieved when U requests a new

bridge (called a transaction). However, since a user is very likely to request a

new bridge right after one of his bridges gets blocked, D can infer the blocked

bridge by checking which bridge was recently blocked. As a result, D can

learn all of U’s (blocked) bridges as long as D can link different transactions

of U. Therefore, unlinkability of transactions is required to avoid such

information leaks.

Thirdly, since we intend to hide the bridge assignment from D, the bridge
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related information in U’s credential, such as {Bi, τi, ϕi}, should be written

and updated by U, rather than by D. This raises the risk that a malicious

user could put incorrect information on his credential, e.g., by changing the

credits ϕi or replacing Bi with another bridge B′
i so that he can block Bi

without being punished. Therefore, we also need to protect the integrity of

credentials.

Although researchers have proposed several designs for anonymous authen-

tication/reputation systems [31–34], none of them is able to ensure integrity

of credentials. In this work, we propose a novel privacy-preserving user rep-

utation scheme that is specially designed for bridge distribution and satis-

fies all the three aforementioned requirements. Our design integrates OT

with several other cryptographic primitives (such as commitments and zero-

knowledge proofs) to both preserve users’ privacy and prevent misbehavior of

corrupt users. We start with introducing the cryptographic primitives used

in our construction.

3.4 Cryptographic Building Blocks

We next introduce the cryptographic primitives used in the construction of

the privacy-preserving rBridge scheme.

3.4.1 1-out-of-m Oblivious Transfer

1-out-of-m Oblivious Transfer (denoted by
(
m
1

)
-OT) is a secure two-party

computation protocol, where the sender hasm secrets and the chooser can get

1 and only 1 secret from the sender without revealing any information about

which secret is selected. We use the two-round
(
m
1

)
-OT scheme proposed

in [35] to construct rBridge due to its simplicity of implementation.

To make it hard for corrupt users to collaboratively enumerate bridges, we

let D (i.e., the sender) randomly shuffle the list of available bridges (i.e., the

secrets) before running the OT protocol with each user (i.e., the chooser),

so that the user will randomly “choose” which bridge to get. Because of

the randomized OT, it is possible that a user gets a bridge that is already

assigned to him even though the chance is very small. We show how to deal

with duplicate bridges in Appendix A.
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3.4.2 Commitment

A commitment scheme enables a party to create the digital equivalent of

an envelope for a secret. It supports two important properties: hiding

protects the secrecy of the committed message, and binding ensures it can

only be opened to the committed message. Pedersen commitments [36] are

information-theoretically hiding and binding under the discrete logarithm

assumption. We use (C,O) = CMT(M) to denote a Pedersen commitment

to a secret M , where C is the commitment and O is the opening to the

commitment.

In rBridge, we use commitments to conceal the content on a user’s cre-

dential. For instance, to hide the amount of credits Φ, U can compute a

commitment of Φ, i.e., (CΦ, OΦ) = CMT(Φ), and put CΦ in his credential.

To prevent U from manipulating his credential (e.g., increasing Φ), we let

D sign CΦ using his private key SKD, i.e., σΦ = Sign(SKD, CΦ) and tag

the signature σΦ to the credential, and U needs to prove to D that both the

commitment and the signature are valid. To prevent D from linking U’s trans-

actions based on the values of commitments and signatures, we need another

cryptographic primitive—zero-knowledge proof.

3.4.3 Zero-Knowledge Proof

In a zero-knowledge proof scheme, a prover convinces a verifier that some

statement is true while the verifier learns nothing except the validity of the

statement. A zero-knowledge proof can be converted into a corresponding

non-interactive version in the random oracle model via Fiat-Shamir heuris-

tic [37]. We follow the notation introduced by Camenisch and Stadler [38],

e.g., NIPK{(x) : y = gx} denotes a “non-interactive zero-knowledge proof of

knowledge of integer x, s.t., y = gx, and g is public and x is secret.”.

Our main use of zero-knowledge proofs is to prove knowledge of com-

mitments and possession of signatures. For instance, U can construct the

following proof:
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π = NIPK


(Φ, CΦ, OΦ, σΦ) :

Φ > Φθ∧
(CΦ, OΦ) = CMT(Φ)∧
Verify(PKD, σΦ, CΦ) = Accept


to prove that his credit balance Φ is above the threshold Φθ and is not

tampered (i.e., correctly signed), without revealing the credit balance Φ, the

commitment CΦ, the opening OΦ, or the signature σΦ (where PKD is the

public key of D, and Verify is the function to verify the signature σΦ). In our

construction, we employ the k-TAA blind signature scheme proposed by Au

et al. [34] because of its compatibility with zero-knowledge proofs.

3.5 Scheme

3.5.1 Anonymous Credential

A key concept in rBridge is the anonymous credential, which anonymously

records the user’s bridges and reputation and allows the user to anonymously

authenticate himself to D. Each part of the credential is signed by D individ-

ually, so that they can be verified and updated separately. In particular, an

anonymous credential contains the following information:

x∥{Φ, CΦ, OΦ, σΦ}∥{ω,Cω, Oω, σω}∥{Bi, τi, ϕi, Ci, Oi, σi}ki=1

where x is the secret key that is selected by U when registering the credential,

σ♣ is the signature on C♣, and ω denotes the latest time when the user re-

quests an invitation ticket (ω is used to prevent corrupt users from repeatedly

requesting tickets; we discuss this later). We note that all the information in

the credential must be kept secret from D.

To prevent a corrupt user from replacing some part of his credential with

that of others’ credentials (e.g., a higher Φ from a well-behaving colluding

user), we use x to link different parts of the credential by including x in each

of their commitments. To be specific, (CΦ, OΦ) = CMT(Φ, x), (Cω, Oω) =

CMT(ω, x), and (Ci, Oi) = CMT(Bi, τi, ϕi, x). To get a credential, a new user

runs the following registration protocol.
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3.5.2 Registration

A new user U first presents an invitation ticket to D. An invitation ticket is

an one-time token formed as tk = {r∗,HMACscrtD(r
∗)}, where r∗ is a random

number and scrtD is a secret only known to D; the ticket is verifiable to

D, and cannot be forged by anyone else. Then U runs
(
m
1

)
-OT with D to

get k initial bridges B1, · · · , Bk
5. After that, U randomly picks a secret

key x and performs the following computations: set Φ = 0 and compute

(CΦ, OΦ) = CMT(Φ, x); set ω = Tcur (recall that Tcur denotes the current

time) and compute (Cω, Oω) = CMT(ω, x); for each i ∈ [1, k], set τi = Tcur,

ϕi = 0, and compute (Ci, Oi) = CMT(Bi, τi, ϕi, x). To prevent multiple

colluding users from using the same x to share some parts of their credentials,

U is required to provide an indicator of his selected x, formed as κx = OWF(x),

to prove that x has not been used by other users while hiding x from D.

(wherein OWF(·) is simply a discrete-log based one-way function.)

Note that since D does not know the bridges received by U (i.e., {Bi}ki=1), U

couSectiold try to put other bridges on his credential, i.e., replacing Bi with

B∗
i in CMT(Bi, τi, ϕi, x), so that he can block all of {Bi}ki=1 instantly without

worrying about potential loss of credits. To prevent this attack, D needs to

verify that the bridges to be written in the credential are actually the bridges

that U received in OT. To achieve this, we let D (before running OT) generate

a pair of one-time public/private keys (denoted by PKo
D , SK

o
D), give PK

o
D to

U, use SKo
D to sign each available bridge Bj, and tag the signature σoj to Bj.

After OT, U gets {Bi∥σoi }ki=1, and he needs to prove the possession of a valid

signature σoi on Bi. Intuitively, U is no longer able to replace Bi with any

other bridge (B∗
i ) that is not one of the k received bridges, because he does

not have a signature on B∗
i . In addition, we let U provide D a random nonce

nonj for each available bridge Bj; nonj is included in the computation of σoj

to prevent D from later finding out which bridges are retrieved by U using

these signatures (refer to Appendix B for details).

To get the credential, U constructs the following proof:

5U needs to run k rounds of
(
m
1

)
-OT to get k bridges. While it is possible to

invoke one round of
(
m
k

)
-OT, but its complexity is higher when k is much smaller

than m (typically k = 3).
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π1 = NIPK



(x,Φ, OΦ, ω, Oω, {Bi, τi, ϕi, σ
o
i , Oi}ki=1) :∧k

i=1 ((Ci, Oi) = CMT(Bi, τi, ϕi, x)∧
Verify(PKo

D , σ
o
i , Bi) = Accept∧

τi = Tcur ∧ ϕi = 0)∧
(CΦ, OΦ) = CMT(Φ, x)∧
κx = OWF(x)∧
Φ = 0∧
(Cω, Oω) = CMT(ω, x)∧
ω = Tcur


and sends κx∥CΦ∥Cω∥{Ci}ki=1∥π1 to D.

After verifying the validity of π1 and the freshness of κx, D signs CΦ, Cω,

and Ci (1 ≤ i ≤ k), respectively, and sends the signatures σΦ∥σω∥{σi}ki=1 to

U. Finally, D adds κx to the list of indicators of used secret keys (denoted by

elistx) to prevent other users from re-using it.

Note that in the privacy-preserving scheme, it is infeasible for D to count

the number of users who ever connected to each bridge; instead, we let each

bridge notify D once the number of users that ever connect to it exceeds the

threshold g, and then D will exclude the bridge from the list when running

OT. (The bridge could let each new user register himself upon the first

connection, e.g., by setting up a password [26], in order to count the ever

connected users.)

3.5.3 Updating Credit Balance

U can update his credit balance Φ with recently earned credits from time to

time. Suppose the credits are from Bu. The new credit balance is calculated

as Φ̃ = Φ + ϕ̃u − ϕu, where ϕ̃u = Credit(Tcur − τu). U needs to show that Bu

is not blocked. To do so, we let D compute bj = OWF(B̄j) for each of the

blocked bridges {B̄j}m̄j=1 (where m̄ is the total number of blocked bridges)

and publish {bj}m̄j=1; U needs to prove that OWF(Bu) is not equal to any of

{bj}m̄j=1.

D must record expired credentials to prevent re-use of old credentials (e.g.,

those with more credits). For this, we let U provide an indicator of Φ to

show that Φ is up-to-date. Note that we cannot use κΦ = OWF(σΦ) as the
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indicator, since D could try all of the signatures he has generated to find a

match between κΦ and σΦ to link U’s transactions. To address this, we craft

a special indicator function κΦ = Indic(σΦ) based on the feature of k-TAA

blind signature [34] (Essentially, this indicator function first converts σΦ into

another form σ′
Φ using a random factor and then applies an one-way function

to σ′
Φ to get κΦ. See Appendix B for more details.)

In particular, U constructs the following proof:

π2 = NIPK



(x,Φ, CΦ, OΦ, σΦ, Bu, τu, ϕu, Cu, Ou, σu,

ϕ̃u, Õu, Φ̃, ÕΦ) :∧m̄
j=1 (bj ̸= OWF(Bu))∧

(Cu, Ou) = CMT(Bu, τu, ϕu, x)∧
Verify(PKD, σu, Cu) = Accept∧
(CΦ, OΦ) = CMT(Φ, x)∧
Verify(PKD, σΦ, CΦ) = Accept∧
κΦ = Indic(σΦ)∧
ϕ̃u = Credit(Tcur − τu)∧
Φ̃ = Φ + ϕ̃u − ϕu∧
(C̃u, Õu) = CMT(Bu, τu, ϕ̃u, x)∧
(C̃Φ, ÕΦ) = CMT(Φ̃, x)∧


U builds a Tor circuit (using one of his bridges as the entry relay) to send

κΦ∥C̃Φ∥C̃u∥π2 to D.

D verifies π2 and checks that κΦ is not on the list of seen indicators (de-

noted by elistΦ); then, D signs C̃Φ and C̃u, sends the signatures σ̃Φ and

σ̃u to U, and adds κΦ to elistΦ. Finally, U updates his credential with

Φ̃, C̃Φ, ÕΦ, σ̃Φ, ϕ̃u, C̃u, Õu, and σ̃u.

3.5.4 Getting a New Bridge

To get a new bridge, U first needs to prove that one of his bridges (say Bb)

on his credential has been blocked and his credit balance is higher than ϕ−.

Since a user usually requests a new bridge right after one of his bridges got

blocked which allows D to figure out what Bb is by checking which bridge

was recently blocked, we do not intend to hide Bb from U. We note that

revealing Bb will not degrade the anonymity, as long as D is unable to link
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the transaction of replacing Bb with other transactions of U.

U first sends Bb to D through a Tor circuit. After verifying Bb is blocked, D

replies with βb (i.e., the time when Bb got blocked). The new credit balance

of U is Φ̃ = Φ+(ϕ̃b−ϕb)−ϕ−, where ϕ̃b = Credit(βb− τb), by considering the

credits earned from Bb and the cost for getting a new bridge. U constructs

the following proof:

π3 = NIPK



(x,Φ, CΦ, OΦ, σΦ, τb, ϕb, Cb, Ob, σb,

ϕ̃b, Φ̃, ÕΦ) :

(Cb, Ob) = CMT(Bb, τb, ϕb, x)∧
Verify(PKD, σb, Cb) = Accept∧
κb = Indic(σb)∧
(CΦ, OΦ) = CMT(Φ, x)∧
Verify(PKD, σΦ, CΦ) = Accept∧
κΦ = Indic(σΦ)∧
ϕ̃b = Credit(βb − τb)∧
Φ̃ = Φ + ϕ̃b − ϕb − ϕ−∧
Φ̃ > 0∧
(C̃Φ, ÕΦ) = CMT(Φ̃, x)


and sends κΦ∥κb∥C̃Φ∥π3 to D. Note that we use κb to make sure each blocked

bridge can be used only once to request a new bridge.

After verifying κΦ /∈ elistΦ, κb /∈ elistBb
, and π3 (where elistBb

denotes

the list of used indicators of Bb), D adds κΦ to elistΦ and κb to elistBb
.

Similar to the registration, U runs
(
m
1

)
-OT with D to obtain a new bridge B̃b

with a tagged signature σ̃ob . Then, U sets τ̃b = Tcur and ϕ̃b = 0, computes

(C̃b, Õb) = CMT(B̃b, τ̃b, ϕ̃b, x), constructs the following proof:

π4 = NIPK



(x, Φ̃, ÕΦ, B̃b, τ̃b, ϕ̃b, σ̃
o
b , Õb) :

(C̃Φ, ÕΦ) = CMT(Φ̃, x)∧
τ̃b = Tcur ∧ ϕ̃b = 0∧
(C̃b, Õb) = CMT(B̃b, τ̃b, ϕ̃b, x)∧
Verify(PKo

D , σ̃
o
b , B̃b) = Accept


and sends C̃b∥π4 to D.

D verifies π4, signs C̃Φ and C̃b, and sends σ̃Φ and σ̃b to U. Finally, U updates

his credential with Φ̃, C̃Φ, ÕΦ, σ̃Φ, B̃b, τ̃b, ϕ̃b, C̃b, Õb, and σ̃b.
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3.5.5 Inviting New Users

U can request D for an invitation ticket as long as his credit balance is higher

than Φθ. D grants the request with certain probability. Recall that ω in the

credential represents the latest time when U requested an invitation ticket.

To prevent a corrupt user from repeatedly requesting invitation tickets to

increase his chance of getting one, we let each requesting user prove that his

last time requesting a ticket is at least ωθ days ago, i.e., Tcur − ω > ωθ. In

particular, to request a ticket, U constructs the proof:

π5 = NIPK



(x,Φ, CΦ, OΦ, σΦ, ω, Cω, Oω, σω, ω̃,

Õω, ÕΦ) :

(CΦ, OΦ) = CMT(Φ, x)∧
Verify(PKD, σΦ, CΦ) = Accept∧
κΦ = Indic(σΦ)∧
(Cω, Oω) = CMT(ω, x)∧
Verify(PKD, σω, Cω) = Accept∧
κω = Indic(σω)∧
Φ > Φθ∧
Tcur − ω > ωθ∧
ω̃ = Tcur∧
(C̃ω, Õω) = CMT(ω̃, x)∧
(C̃Φ, ÕΦ) = CMT(Φ, x)


and sends κΦ∥κω∥C̃Φ∥C̃ω∥π5 to D through a Tor circuit.

After verifying κΦ /∈ elistΦ, κω /∈ elistω and π5, D signs C̃Φ and C̃ω, sends

σ̃Φ and σ̃ω to U, and adds κΦ to elistΦ and κω to elistω. Then, D flips a

coin to decide whether to grant the request: if yes, D generates a ticket for

U; otherwise, U needs to wait at least ωθ days to try again.

3.6 Security Analysis

In this section, we discuss potential attacks on the privacy-preserving rBridge

scheme. We present rigorous security proof in Section 3.8.
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3.6.1 Curious Bridge Distributor

One of the major security requirements in the privacy-preserving scheme is to

ensure different transactions of a particular user are unlinkable. A typical way

to link a user’s transactions is based on the credential content. For example,

suppose in the x-th transaction U received a new bridge BX and updated his

credential with some signed information of BX (e.g., BX , τX , and ϕX); later,

when BX gets blocked and U requests a new bridge to replace it in the y-th

transaction, U needs to use the signed information to prove that, e.g., BX was

assigned to him and a certain amount of credits should be earned from BX ;

however, such information can be utilized by D to link the two transactions.

(Similar attacks are applicable in the cases when U updates his credit balance

or requests invitation tickets.) To ensure the unlinkability of transactions,

rBridge uses commitments and zero-knowledge proofs to conceal the content

of the credential, so that D only knows the validity of the credential but learns

nothing about the content of the credential.

Although BX is revealed to D in the y-th transaction (i.e., after BX gets

blocked), D is unable to link BX to U due to the use of a Tor circuit; more

importantly, since BX is perfectly hidden in any other transactions, D cannot

use BX to link any two transactions of U.

Similarly, D can learn U’s identity (i.e., his IP address, but nothing else) in

the registration, since at that moment U has no bridge to build a Tor circuit

to hide his IP address (if he does not use any other circumvention tool or ask

an existing user to perform the registration on his behalf). Nevertheless, D

is unable to learn which bridges are retrieved because of U in OT; moreover,

since U’s IP address will be hidden in all the later transactions of U, D cannot

use U’s IP address to link his transactions.

3.6.2 Malicious Users

In the privacy-preserving scheme, a corrupt user could try to manipulate the

information on his credential, e.g., increasing the credit balance. rBridge uses

zero-knowledge proofs with the help of blind signatures to verify the correct-

ness of the credential without revealing any information in the credential.

In addition, since D does not know what bridge is retrieved by U in OT, U

could try to replace the received bridge with another one when updating his
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Table 3.1: Performance (averaged over 100 runs)

Operation
Comp. (s)

Comm. (KB)
U D

Registration 5.15 17.44 388.1
Updating credit balance 0.51 0.47 34.7
Getting a new bridge 5.35 17.62 340.1
Inviting new users 0.27 0.16 2.0

credential so that he can block the assigned bridge instantly without worrying

about potential loss of credits. To address this, we let D employ one-time

signatures to make sure the bridge written in the credential is indeed the

bridge that the user received in OT.

Furthermore, malicious users could try to re-use old credentials that have

more credits or use a blocked bridge to request more than one new bridges.

To prevent these, we let D record all the used credentials as well as the claimed

blocked bridges, and ask U to provide indicators to prove that the presented

credential or the claimed blocked bridge has not been used before.

3.7 Performance Evaluation

We implemented rBridge using Paring-Based Crytography (PBC) Library6

and GNU Multiple Precision library7 in C++, and used OpenSSL for hash

related routines. The credential system, built upon k-TAA signature, was

implemented with Type-A curves, which is defined in the PBC Library in

the form of E : y2 = x3 + x over the field Fq for some prime q. Bilinear

groups G1 and G2, both formed by points over E(Fq), are of order p for

some prime p, such that p is a factor of q + 1. Using the default setting, p

and q are 160-bit and 512-bit in length respectively. We implemented the(
m
1

)
-OT protocol in [35] using G1 as the underlying group. We consider there

are 1000 available bridges and 100 blocked bridges, and set the size of each

bridge descriptor the same as that of the current bridge descriptor (208 bits

including 32-bit IP, 16-bit port, and 160-bit fingerprint).

We measured the computational times for U and D on a Dell Precision

T3500 workstation with a quad-core 2.67 GHz Intel Xeon W3550 CPU and

6http://crypto.stanford.edu/pbc/
7http://gmplib.org/
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12 GB RAM, running Ubuntu 10.04. Table 3.1 shows that it takes only

less than 0.5 seconds for U and D to update credit balance or process an

invitation ticket request. It takes longer to perform the initial registration or

request a new bridge, which are about 5 seconds and 17 seconds for U and D,

respectively. The majority of computational times are spent on the retrieval

of new bridges. We note that these operations are quite infrequent; each

user only needs to register once, and according to our simulation results, the

averaged time interval to request new bridges is 133 days. We believe these

occasional computations can be handled by both U and D with fairly strong

computational power. In addition, we note that the user does not need to

idly wait for the server completing the cryptographic operations, because as

long as the user has an unblocked bridge he can proceed to do web browsing

after submitting the requests to the bridge distributor.

We also measured the communication costs. The operations of registration

and getting a new bridge incur 388 KB and 340 KB communication overheads

respectively, and the data transmission for any other operation is less than 35

KB. In comparison, with 2000 Tor relays, each Tor client needs to download

a 120 KB “network status document” every 3 hours, and 1.25 MB of relay

“descriptors” spread over 18 hours [39].

3.8 Cryptographic Proof

3.8.1 Security Model

The protocol of rBridge involves two parties: the bridge distributor D, and

the user U. A corrupt U aims to deceive D with false credential information,

such as manipulated credit balance, and a corrupt D aims to learn information

about U’s assigned bridges. We consider either of U and D (not both) could

be controlled by the adversary. A compromised party can perfectly collude

with the adversary by sharing information and executing instructions from

the adversary. For presentation simplicity, we consider the adversary and the

compromised party as one joint entity referred to as the “adversary”.

We use the real/ideal world paradigm to prove security. In the real world,

on inputs (or instructions) from the environment Z, the parties interact ac-

cording to the protocol ψ in the presence of a real adversary A, and the out-
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puts of the parties are handed to Z. In the ideal world, there is a “trusted”

ideal process Fψ to carry out the desired task in the presence of an ideal adver-

sary S, namely, the parties interact with each other through Fψ that provides

the desired computation results, and hand their outputs to Z. In addition,

the adversary (A or S) can interact with the environment Z throughout the

course of the protocol and influence Z generating inputs for the parties. The

protocol ψ is called secure if it “emulates” the ideal functionality Fψ. More

formally, we have:

Definition 1. The protocol ψ is secure if for any adversary A there exists

an ideal adversary S such that no environment Z can tell with non-negligible

probability whether it is interacting with A and ψ or with S and the ideal

process Fψ. We call ψ securely realizes Fψ.

The ideal functionality Fψ of rBridge is defined as below.

• At the initialization, Fψ gets a copy of the list of available bridges

{Bj}mj=1 from D.

• On input (register, tk, U) from U, where tk is an invitation ticket, Fψ
forwards it to D. D as in the protocol ψ checks the freshness and validity

of tk. If the ticket is verified, D sets b = 1 and adds tk to elisttk;

otherwise, b is set as 0. D then sends b to Fψ. If b = 1, Fψ randomly

picks k initial bridges {Bi}ki=1 from the available bridges, creates an

entry ⟨U,Φ, {Bi, τi, ϕi}ki=1⟩ in the user database, where Φ = 0, τi = Tcur,

and ϕi = 0, increments the counter count(Bi), i ∈ [1, k], which records

the number of users assigned to Bi, and finally sends {Bi}ki=1 to U.

Otherwise, Fψ sends ⊥ to U.8

• On input (update, Bu, U) from U, Fψ first checks whether U has a record

in the user database, Bu was assigned to U, and Bu is not on the list

of blocked bridges. If not, Fψ aborts by returning ⊥ to U. Otherwise,

Fψ computes ϕ̃u = Credit(Tcur− τu), Φ̃ = Φ+ ϕ̃u−ϕu, and updates ϕu,

Φ with ϕ̃u, Φ̃ in U’s record, and finally sends ⊤ to U and (update) to D,

respectively.

8Once count(Bi) reaches the capacity upper bound g, Fψ removes Bi from the list of
bridges for distribution. Fψ periodically informs D what bridges are fully occupied so that
D can make plans for new bridge recruitment.
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• On input (query, Bb), Fψ checks whether Bb is on the list of blocked

bridges. If so, Fψ returns Bb’s blocking time βb; otherwise, Fψ returns

⊥.

• On input (newbridge, Bb, U) from U, Fψ first checks whether U has a

record in the user database, Bb was assigned to U and is on the list of

blocked bridges, and Φ+ ϕ̃b−ϕb > ϕ−, where ϕ̃b = Credit(βb− τb), βb is
the time when Bb got blocked, and ϕ

− is the amount of credits to pay

for a new bridge. If not, Fψ aborts by returning ⊥ to U. Otherwise,

Fψ randomly picks an available bridge B̃b, updates U’s record with

Φ̃, B̃b, τ̃b, ϕ̃b, where Φ̃ = Φ+ ϕ̃b−ϕb−ϕ−, τ̃b = Tcur, ϕ̃b = 0, and finally

sends B̃b to U and (newbridge, Bb) to D, respectively.

• On input (ticket, U) from U, Fψ first checks whether U has a record in

the user database, his credit balance Φ satisfies Φ > Φθ, and his last

time applying for a ticket is at least ω days ago, i.e., Tcur − ω > ωθ.

If not, Fψ aborts by returning ⊥ to U. Otherwise, Fψ updates ω with

Tcur, and then flips a biased coin b to decide whether to grant a ticket

to U: if b = 1, Fψ generates a ticket tk and sends it to U and sends

(ticket) to D; otherwise, Fψ sends ⊥ to U.

3.8.2 Proof

Theorem 1. The protocol ψ of rBridge securely realizes the ideal function-

ality Fψ of rBridge.

The security proof is based on indistinguishability of the environment Z’s
views on the real adversary A and the ideal adversary S. In order to prove

the indistinguishability, we construct an ideal adversary S, which invokes a

copy of the real adversary A that interacts with a “dummy” party and in-

teracts with Fψ and the environment Z in such a way that the probability

distributions of S’s outputs and A’s outputs are computationally indistin-

guishable.

We define a series of games between the real world and the ideal world,

Game0, · · · , Gamen, where Game0 corresponds to the real world and Gamen

corresponds to the ideal world. We define Pr(Gamei) as the probability that

Z distinguishes between the distribution of outputs of Gamei and that of the
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real world, and |Pr(Gamei+1)−Pr(Gamei)| denotes the probability that Z
distinguishes between the distribution of outputs in two consecutive games.

By definition, Pr(Game0) = 0. We need prove Pr(Gamen) is negligibly

small. Since

Pr(Gamen) =
n−1∑
i=0

Pr(Gamei+1)− Pr(Gamei)

≤
n−1∑
i=0

|Pr(Gamei+1)− Pr(Gamei)|

it is sufficient to prove that each of |Pr(Gamei+1)−Pr(Gamei)|, i ∈ [0, n−1],
is negligibly small.

To prove the theorem, we divide it into several claims according to different

scenarios and prove them separately.

When Bridge Distributor Is Corrupt

Claim 1. rBridge is secure against corrupt users under the receiver’s pri-

vacy property of the OT protocol, the hiding property of the commitment

scheme, the privacy property of the blind signature scheme, and the zero-

knowledgeness property of the zero-knowledge proof scheme.

Proof. We show by constructing a series of games in such a way that the

environment Z cannot distinguish two consecutive games with non-negligible

probability.

Game0: This game corresponds to the execution of the protocol ψ in the real

world with a corrupt D and a honest U. Thus, Pr(Game0) = 0.

Game1: This game proceeds as Game0, except that it aborts if A breaks the

OT protocol and learns the bridge chosen by U in OT. Under the receiver’s

privacy property of OT, |Pr(Game1) − Pr(Game0)| = ν1(l), where l is the

security parameter, and ν1 is a function whose values are negligibly small.

Game2: This game proceeds as Game1, except that in the execution of

Updating credit balance, κΦ is replaced with a random value κ∗Φ, C̃Φ is re-

placed with a commitment to (Φ̃∗, x∗), C̃u is replaced with a commitment to

(B∗
u, τ

∗
u , ϕ̃

∗
u, x

∗), and π2 is replaced with a simulated proof 9. Since κΦ is calcu-

9Since the proof follows the standard discrete-logarithm-based Σ-protocol, S can sim-
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lated as zsΦ , where sΦ = s′Φ+s
′′
Φ and s′Φ is randomly picked by U, the distribu-

tion of κ∗Φ is indistinguishable to D (i.e., A) from that of κΦ. Under the hiding

property of the commitment protocol and the zero-knowledgeness property

of the zero-knowledge proof scheme, |Pr(Game2)− Pr(Game1) = ν2(l).

Game3: This game proceeds as Game2, except that in the execution of

Getting a new bridge, κΦ, κb are replaced with random values, C̃Φ is re-

placed with a commitment to (Φ̃∗, x∗), C̃b is replaced with a commitment

to (B̃∗
b , τ̃

∗
b , ϕ̃

∗
b , x

∗), and π3, π4 are replaced with simulated proofs. Under the

hiding property of the commitment protocol and the zero-knowledgeness of

the zero-knowledge proof, |Pr(Game3)− Pr(Game2)| = ν3(l).

Game4: This game proceeds as Game3, except that in the execution of Invit-

ing new users, κΦ, κω, are replaced with random values, C̃Φ is replaced with

a commitment to (Φ∗, x∗), C̃ω is replaced with a commitment to (ω∗, x∗),

and π5 is replaced with a simulated proof. Under the hiding property of

the commitment protocol and the zero-knowledgeness of the zero-knowledge

proof, |Pr(Game4)− Pr(Game3)| = ν4(l).

Game5 (the ideal world): This game proceeds as Game4 except that the

actual participants are U and S, who interact with each other through Fψ,
and S has black-box access to A by simulating a dummy user following the

protocol ψ. In more details, Game5 works as follows.

• Registration: Upon receiving (register, tk, U) from U, Fψ forwards it to

S, who further hands it to A. S receives the verification result b from

A and forwards it to Fψ. In addition, S simulates a dummy user to

perform OT with A, receiving {B∗
i }ki=1 and a credential with {B∗

i }ki=1

and a randomly picked secret x∗ on it.

• Updating credit balance: Upon receiving (update) from Fψ, S simulates

a dummy user as described in Game2 to interact with Z.

• Getting a new bridge: Upon receiving (newbridge, Bb) from Fψ, S first

hands Bb to A who replies with βb. S then simulates a dummy user as

described in Game3 to interact with Z.

ulate this Σ-protocol in the two standard ways: (1) rewind the adversary (interactive
proof) or (2) use its control over the random oracle (non-interactive proof). To prevent
any rewinding difficulties, this protocol should be executed sequentially.
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• Inviting new users: Upon receiving (ticket) from Fψ, S simulates a

dummy user as described in Game4 to interact with Z.

The distribution produced in Game5 is identical to that of Game4, i.e.,

|Pr(Game5)−Pr(Game4)| = 0. By summation, we have Pr(Game5) ≤ ν(l),

where ν(l) = ν1(l) + ν2(l) + ν3(l) + ν4(l).

When User Is Corrupt

Claim 2. rBridge is secure against a corrupt bridge distributor under the

collision-resistant property of the hash function, the sender’s privacy property

of the OT protocol, the unforgeability property of the blind signature scheme,

and the binding property of the commitment scheme.

Proof. We construct a series of games between the real world and the ideal

world.

Game0: This game corresponds to the execution of the protocol ψ in the real

world with a corrupt U and a honest D. Thus, Pr(Game0) = 0.

Game1: This game proceeds as Game0, except that the public key PKD of

D is replaced with PK∗
D , which is obtained using the same key generation

algorithm. Since PK∗
D has the same distribution as PKD, |Pr(Game1) −

Pr(Game0)| = 0.

Game2: This game proceeds as Game1, except that it aborts if A generates a

valid ticket that has not been given to A without knowing the secret scrtD of

D. The probability thatGame2 aborts is bounded by ν1(l) due to the collision-

resistant property of the employed hash function. Therefore, |Pr(Game2)−
Pr(Game1)| = ν1(l).

Game3: This game proceeds as Game2, except that it aborts if A obtains

more than one bridge in the
(
m
1

)
-OT protocol. Under the sender’s privacy

property of OT, |Pr(Game3)− Pr(Game2)| = ν2(l).

Game4: This game proceeds as Game3, except that it aborts if A generates a

valid one-time blind signature on a bridge that is not the one received in OT

(e.g., σo∗i on B∗
i ). Under the unforgeability property of the blind signature,

|Pr(Game4)− Pr(Game3)| = ν3(l).
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Game5: This game proceeds as Game4, except that it aborts if A finds

another indicator κ∗x, s.t., κ
∗
x = OWF(x) and κ∗x ̸= κx. Since κx is uniquely

calculated as zx, |Pr(Game5)− Pr(Game4)| = 0.

Game6: This game proceeds as Game5, except that it aborts if any of the

following cases takes place in Registration: (i) (Oi, Bi, τi, ϕi, x) is a correct

opening of Ci, but τi ̸= Tcur or ϕi ̸= 0; (ii) (OΦ,Φ, x) is a correct opening

of CΦ, but Φ ̸= 0; (iii) (Oω, ω, x) is a correct opening of Cω, but ω ̸= Tcur.

Under the binding property of the commitment protocol, |Pr(Game6) −
Pr(Game5)| = ν4(l).

Game7: This game proceeds as Game6, except that it aborts if A generates

a valid blind signature on a commitment (e.g., σ∗
Φ on C∗

Φ or σ∗
u on C∗

u) in-

dependently of D. Under the unforgeability property of the blind signature,

|Pr(Game7)− Pr(Game6)| = ν5(l).

Game8: This game proceeds as Game7, except that it aborts if A finds

another indicator κ∗♢, ♢ ∈ {Φ, b, ω}, s.t., κ∗♢ = Indic(σ♢) and κ
∗
♢ ̸= κ♢. Since

κ♢ is uniquely calculated as zs♢ , where σ♢ = (A♢, e♢, s♢), |Pr(Game8) −
Pr(Game7)| = 0.

Game9: This game proceeds as Game8, except that it aborts if in Updating

credit balance when (Ou, Bu, τu, ϕu, x) is a correct opening of Cu, (OΦ,Φ, x)

is a correct opening of CΦ, (Õu, Bu, τu, ϕ̃u, x) is a correct opening of C̃u, and

(ÕΦ, Φ̃, x) is a correct opening of C̃Φ, we have ϕ̃u ̸= Credit(Tcur − τu) or

Φ̃ ̸= Φ + ϕ̃u − ϕu. Under the binding property of the commitment protocol,

|Pr(Game9)− Pr(Game8)| = ν6(l).

Game10: This game proceeds as Game9, except that (x,Bu) are extracted

from the zero-knowledge proof π2
10. This fails with negligible probability,

|Pr(Game10)− Pr(Game9)| = ν7(l).

Game11: This game proceeds asGame10, except that it aborts if the following

condition happens for the proof π3 in Getting a new bridge: (Ob, Bb, τb, ϕb, x)

is a correct opening of Cb, (OΦ,Φ, x) is a correct opening of CΦ, and (ÕΦ, Φ̃, x)

is a correct opening of C̃Φ, but ϕ̃b ̸= Credit(Tcur − τb), Φ̃ ̸= Φ + ϕ̃b − ϕb −
ϕ−, or Φ̃ ≤ 0. Under the binding property of the commitment protocol,

10A simulator with black-box access to the adversary can extract the values of hidden
variables in a zero-knowledge proof by rewinding the adversary, as long as the the protocol
is executed sequentially.
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|Pr(Game11)− Pr(Game10)| = ν8(l).

Game12: This game proceeds asGame11, except that it aborts if the following

condition happens for the proof π4 in Getting a new bridge: (ÕΦ, Φ̃, x) is a

correct opening of C̃Φ and (Õb, B̃b, τ̃b, ϕ̃b, x) is a correct opening of C̃b, but

τ̃b ̸= Tcur or ϕ̃b ̸= 0. Under the binding property of the commitment protocol,

|Pr(Game12)− Pr(Game11)| = ν9(l).

Game13: This game proceeds as Game12, except that x is extracted from the

zero-knowledge proof π3. This fails with negligible probability, |Pr(Game13)−
Pr(Game12)| = ν10(l).

Game14: This game proceeds as Game13, except that it aborts if in Inviting

new users when (OΦ,Φ, x) is a correct opening of CΦ, (Oω, ω, x) is a correct

opening of Cω, (ÕΦ, Φ̃, x) is a correct opening of C̃Φ, and (Õω, ω̃, x) is a correct

opening of C̃ω, we have Φ ≤ Φθ, Tcur−ω ≤ ωθ or ω̃ ̸= Tcur. Under the binding

property of the commitment protocol, |Pr(Game14)−Pr(Game13)| = ν11(l).

Game15: This game proceeds as Game14, except that x is extracted from the

zero-knowledge proof π5. This fails with negligible probability, |Pr(Game15)−
Pr(Game14)| = ν12(l).

Game16 (the ideal world): This game proceeds as Game15 except the actual

participants are D and S, who interact with each other through Fψ, and S has

black-box access to A by simulating a dummy bridge distributor following

the protocol ψ. In more details, Game16 works as follows.

• Registration: Upon receiving tk from A, S sends (register, tk, U) to Fψ,
and obtains {Bi}ki=1. S then invokes a simulator of OT to interact with

A using {Bi}ki=1 and m − k random values for the rest bridges (such

a simulator always exists for a sender privacy preserving OT scheme).

After that, S simulates a dummy bridge distributor to verify π1 and

provides A a simulated credential. Finally, S stores ⟨U, x⟩.

• Updating credit balance: Upon receiving κΦ∥C̃Φ∥ C̃u∥π2 from A, S first

extracts (x,Bu) from π2, and locates the owner of this credential (i.e.,

U) by looking up the stored records using x (note that A could use

the credentials of other corrupt users). S then sends (update, Bu, U) to

Fψ. After that, S simulates a dummy distributor with A following the

protocol ψ.
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• Getting a new bridge: Upon receiving Bb from A, S sends a query

(query, Bb) to Fψ, and forwards the query result (either βb or ⊥) to A.
If A decides to proceed by sending κΦ∥κb∥C̃Φ∥π3, S extracts x from

π3 and uses it to locate U, and then sends (newbridge, Bb, U) to Fψ and

receives B̃b. After that, S runs a OT simulator to give B̃b to A, and
finally uses her private key SK∗

D to generate signatures σ̃b and σ̃Φ.

• Inviting new users: Upon receiving κΦ∥κω∥C̃Φ∥ C̃ω∥π5 from A, S finds

U using x that is extracted from π5, and sends (ticket, U) to Fψ, and
finally sends the output received from Fψ (either tk or ⊥) to A.

The distribution produced in Game16 is identical to that of Game15, i.e.,

|Pr(Game16) − Pr(Game15)| = 0. By summation, we have Pr(Game16) ≤
ν(l), where ν(l) =

∑12
i=1 νi(l).
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CHAPTER 4

A NEW CENSORSHIP CIRCUMVENTION
ARCHITECTURE USING ASYMMETRIC
COMMUNICATION AND IP SPOOFING

In this chapter, we present a new censorship circumvention architecture –

CensorSpoofer [19], which hides the redirection proxy’s address from any

user, thus fundamentally resisting to the insider attack, while providing low-

latency censorship circumvention service. Our key insight is that it is feasi-

ble to apply IP spoofing to send downstream traffic from the proxy to users

while concealing the proxy’s IP address, and due to the asymmetric nature of

web browsing traffic, we can use a separate low-bandwidth indirect channel

(such as Email or Instant Messaging) with steganography to communicate

the user’s messages (e.g., URLs) to the proxy. This asymmetric communi-

cation architecture allows the censorship circumvention system deviate from

need of specially support from the network infrastructure as many existing

systems [16–18] require, and allows ordinary people to set up their circum-

vention systems to help people in censored countries.

We start with introducing the related work on censorship circumvention

systems, and present our system models and design goals. We then describe

the CensorSpoofer framework and give a concrete example of designing a

circumvention system based on this framework. We lastly show the prototype

implementation and evaluation results.

4.1 Related Work on Censorship Circumvention

Systems

In response to Internet censorship, many pragmatic systems such as Dy-

naweb/freegate [8], Ultrasurf [9], Psiphon [10], and Tor [11] have been de-

veloped to help people bypass censorship. All these systems are based on a

simple idea: let the user connect to one of the redirection proxies deployed

outside the censor’s network, which can fetch blocked webpages for the user.

59



Table 4.1: Comparison of censorship circumvention systems

P1 P2 P3 P4
Redirection proxy based [8–11,13–15,23,40] X X X 7

Infrastructure assisted [16–18] X 7 X X
Email based [28,41] 7 X X X

Anti-censorship content sharing [42–46] X X 7 X
CensorSpoofer [19], rBridge [12] X X X X

P1: Require no special server (By “special server”, we mean the number of
such servers on the Internet is much smaller than that of ordinary servers.
An example of special servers is external Email servers that provides
encrypted communication; right now, only Gmail and Hotmail satisfy this
requirement to Chinese users.)
P2: Require no special support from core ISPs
P3: Support low-latency communication, e.g., web browsing
P4: Strong resistance against the insider attack

To hide the nature of the traffic, the communications with the proxy are

encrypted. Infranet [47] takes things a step further, embedding the real com-

munication inside a cover web session, using covert channels to communicate

the request and image steganography to return the data. However, while

escaping detection by outsiders, these designs are vulnerable to the insider

attack, where the censor pretends to be an ordinary user to learn the location

of the proxies and then block them.

Several researchers have tried to design better relay distribution strate-

gies [13–15, 23] that aim to identify users who are likely to lead to a relay

being blocked using past history and directing new relay information towards

other users. However, these designs are not likely to withstand a censor who

controls a large number of corrupt users.

TriangleBoy [40] is a circumvention system that is similar in spirit to Tor-

bridge and also uses IP spoofing. In TriangleBoy, a user connects to one

of the TriangleBoy proxies run by volunteers, and the proxy forwards the

user’s URLs to a SafeWeb server, which fetches the web pages and sends

them back to the user by spoofing the source IP address with the proxy’s

IP. The only difference between Tor-bridge and TriangleBoy is that in Tor

the downstream traffic takes the same route (through several relays) as the

upstream traffic, while in TriangleBoy the server sends the downstream traffic
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to the user directly using IP spoofing to improve efficiency. Note that, in

spite of using IP spoofing, the TriangleBoy proxies are still exposed to users,

which renders the same problem to the insider attack as Tor bridges; whereas,

CensorSpoofer adopts a different architecture by using IP spoofing to conceal

the proxy’s IP address, and hence perfectly resists the insider attack.

Similar to CensorSpoofer, another school of prior research tries to funda-

mentally resist the insider attack, i.e., tolerating any fraction of corrupted

users, by hiding the relay’s IP from any user and therefore the censors. One

way to achieve that is to utilize indirect channels, i.e., relaying the traffic

sent to/by the relay through one or more intermediate nodes. For example,

MailMyWeb [41] and FOE [28] utilize Email as the indirect channel. For

these systems, users are required to be able to access foreign servers that

support encryption (e.g., Gmail), in order to avoid being detected by the

censor. Nevertheless, considering the Chinese government once temporarily

blocked Gmail [48], we can envision the censor would again block the few

special Email providers, once finding out they are popularly used to bypass

censorship.

It is important to note that, while an indirect channel is also used in Cen-

sorSpoofer, we only use it for sending outbound messages (e.g., URLs), which

are usually very small (especially after encoding URLs into small numbers)

and easy to hide into any indirect channel using steganography. This al-

lows us to obviate the need for special servers (e.g., external Email providers

supporting encryption) to provide a secured and high-bandwidth indirect

channel. Consequently, the cost of blocking the outbound channel of Censor-

Spoofer is significantly higher: the censor has to block all overseas indirect

communication (e.g., overseas Email and IM) even though the users only use

the local Email and IM providers controlled by the censor.

More recently, researchers proposed several infrastructure-assisted circum-

vention systems, including Telex [17], Decoy routing [16], and Cirripede [18].

Although these systems can support low-latency communication and per-

fectly resist the insider attack, they require a significant investment of ef-

fort by core Internet ISPs. By contrast, CensorSpoofer is an infrastructure-

independent circumvention system, allowing individuals to deploy their own

anti-censorship systems without requiring any additional support from net-

work infrastructure.

Instead of aiming to provide low-latency communication service, some

61



anti-censorship systems are designed to achieve censorship-resistant content

sharing and/or distribution. For example, some works leverage peer-to-peer

(P2P) networks to provide privacy-preserving file sharing, e.g., Freenet [43],

membership concealing overlay network [44], and darknet [45, 46]. Col-

lage [42] let users stealthily exchange censored information with an external

relay via a website that can host user-generated content (e.g., Flickr) using

steganography.

Table 4.1 summarizes the requirements and capabilities of the representa-

tive censorship-circumvention systems.

4.2 Concept

4.2.1 Threat Model

We consider a state-level adversary (i.e., the censor), who controls the net-

work infrastructure under its jurisdiction. The censor has sophisticated ca-

pabilities of IP filtering, deep packet inspection, and DNS hijacking, and can

potentially monitor, block, alter, and inject traffic anywhere within or on the

boarder of its network. However, the censor is motivated to allow citizens

to normally access basic Internet services, such as IM, Email and VoIP, as

blocking such services would lead to economic losses and political pressure.

More specifically, we assume the censor is unwilling to interfere with the In-

ternet connections of a user, e.g., an ongoing VoIP conversation, unless it has

evidence that a particular connection is being used for bypassing censorship.

Furthermore, we assume the censor generally allows people to use com-

mon encryption protocols to protect their online privacy, e.g., SRTP [49]

or ZRTP [50] for secure VoIP communication.1 Thus far, this assumption

has held true for most existing cases of Internet censorship, and the use of

encrypted protocols such as SSL/TLS have formed the foundation of most

existing anti-censorship systems [8–11, 16–18, 28, 41]. Once again, blocking

encrypted traffic reduces the security of normal citizens using the Internet

for personal or business reasons, and thus censors are motivated to allow

1Although much of VoIP traffic is currently unencrypted, the trend is towards more
widespread use of secure VoIP protocols; for example, a number of VoIP software
clients [51–57] and VoIP phones [58,59] have encryption functionality.
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such traffic through. There have been important exceptions to this, includ-

ing Iran’s blocking of all encrypted traffic prior to the 33rd anniversary of

the Islamic Revolution [60] and Egypt’s complete disconnection of the Inter-

net in response to nationwide protests [61]. Such drastic censorship requires

fundamentally different circumvention approaches that are out of scope of

our work.

We assume the censor can utilize its governmental power to force local IM,

Email, and VoIP providers to censor their users’ communication. We also

assume that the censor can block any foreign Internet website or service,

such as an Email or instant messaging provider, if it has reason to believe

that it is being used to circumvent censorship. The censor can rent hosts

outside of its own network, but otherwise has no power to monitor or control

traffic outside its borders. Finally, we assume that the censor has sufficient

resources to launch successful insider attacks, and thus is aware of the same

details of the circumvention system as are known to ordinary users.

Similar to many existing systems [11,16–18,42,47], our approach requires

that users run specialized circumvention software on their computers. We

assume that users are able to obtain authentic copies of the software without

alerting the government to this fact through some form of out-of-band com-

munication. (We acknowledge, however, that secure and reliable mechanisms

for distributing such software are an important area of future research.)

4.2.2 System Goals

CensorSpoofer aims to achieve the following goals:

Unblockability: The censor should not be able to block CensorSpoofer with-

out incurring unacceptable costs.

Unobservability: The censor should not be able to tell whether a user is

using CensorSpoofer without incurring unacceptable costs.

Perfect resistance to insider attack: The censor should not be able to break

unblockability or unobservability of CensorSpoofer even if nearly all users are

corrupted.

Low latency: CensorSpoofer should be able to fetch and delivery the web

pages for users with low latency. For clarity, CensorSpoofer does not aim to

support highly interactive web applications, such as Javascript.
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Figure 4.1: The CensorSpoofer framework. The user pretends to
communicate with an external dummy host legitimately, and sends URLs
to the spoofer via a low-bandwidth indirect channel (e.g., steganographic
IM/Email). The spoofer fetches blocked webpages according to the received
URLs, and injects censored data into the downstream flow towards the user
by spoofing the dummy host’s IP.

Deployability: CensorSpoofer should be deployable by people with limited

resources, without requiring any support from network infrastructure.

4.3 CensorSpoofer Framework

4.3.1 Overview

In censored countries, users cannot visit blocked websites directly and have

to connect to some external relays to access these websites. These relays’

IP addresses are exposed to users who connect to them, and therefore can

be easily blocked by the censor who colludes with corrupt users. A natural

solution to this is to employ indirect channels to hide the relay’ IP. For

example, MailMyWeb [41] and FOE [28] use Email as the indirect channel

for which the intermediate nodes are Email servers.

To carry voluminous downstream traffic (e.g., web content), the indirect

channel must have high bandwidth. This requirement excludes steganographic

indirect channels, such as steganographic IM/Email. As a result, the circum-

vention system has to rely on an encrypted indirect channel so as to utilize

full capacity of the indirect channel while ensuring unobservability of the

transmission of censored data. This requires the intermediate nodes of the

indirect channel to support encryption (e.g., TLS/SSL) and reside outside
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the censor’s network (to avoid eavesdropping by corrupt intermediate nodes).

Currently, only a few Email providers can meet this requirement: Gmail,

Hotmail, and Yahoo! Mail. However, due to their limited user base in the

censored country, the censor could simply block them altogether, as witness

when Gmail was blocked in China in 2011 [48].

Our insights. We notice that for web browsing, the outbound traffic

(e.g., URLs) is much lighter-weight than the inbound traffic. If an indirect

channel is only used to send outbound messages, high bandwidth is no longer

required for the indirect channel. This allows us to use any indirect channel

with steganography to transmit outbound data. Besides, by using steganog-

raphy, users can even use local IM or Email providers that potentially collude

with the censor to access our circumvention system without being detected.

The elimination of requiring special servers to construct the indirect chan-

nel makes it substantially harder for the censor to block our circumvention

system as all overseas Email and IM communication has to be prohibited.

As for the inbound channel, since the relay’s IP (i.e., source IP) is not

used in packet routing, we can adopt IP spoofing to conceal the relay’s IP

address. This eliminates the need for an indirect channel to hide the relay’s

IP, allowing us to use direct channels, which are more common and higher-

bandwidth, to send voluminous inbound traffic.

Our design. Based on these insights, we design a new circumvention

framework for web browsing, which uses asymmetric communication with

separate inbound/outbound channels. In particular, a user who requires

circumvention service first starts or pretends to start a legitimate commu-

nication session (e.g., a VoIP call) with a dummy host residing outside the

censor’s network, and the relay (called spoofer) injects censored data into the

downstream flow sent to the user by spoofing the dummy host’s IP, so that

the censor believes the user is legitimately communicating with the dummy

host only. The dummy host does not need to actively cooperate with the

user or the spoofer, but should look legitimate to the censor, e.g., its port

for VoIP should “seem open” if the cover session is a VoIP call. Meanwhile,

the user sends outbound messages containing URLs to the spoofer through

a low-bandwidth indirect channel, such as steganographic IM/Email. An

illustration of the framework is provided in Figure 4.1.

Next, we discuss the upstream and downstream channels in more details.
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4.3.2 Downstream Channel

1) To conceal the spoofer’s IP address, we apply IP spoofing in the down-

stream flow. Then, the first question is what kind of traffic (TCP or UDP)

is suitable for IP spoofing?

Generally, hijacking TCP with IP spoofing is difficult. In TCP, end hosts

maintain connection state and acknowledge received data. Suppose the client

has established a TCP connection with the dummy host, and the spoofer

knows the dummy host’s IP address and sequence number and tries to inject

packets containing censored data into the downstream flow. First of all, the

TCP connection with the dummy host must be kept alive; otherwise, the

dummy host will send RST packets in response to the client’s packets, which

can be easily detected by the censor. In addition, if the spoofer sends more

data to the client than the dummy host (i.e., the sequence number of the

spoofer is higher than that of the dummy host), the censor can detect the

inconsistency of the sequence numbers as long as the dummy host sends any

packet to the client2. Thus, the spoofer has to use the sequence numbers that

have already been used by the dummy host (i.e., injecting packets as “resent

packets”). However, in this case a censor with packet-recording capability

can detect the injected packets by comparing the contents of packets with

the same sequence number.

In contrast, UDP is a connectionless protocol and easier to hijack. Unlike

TCP, end hosts of UDP do not maintain any connection state or acknowledge

received data. Hence, if the dummy host remains “quiet” and the client and

the spoofer cooperate closely by sharing initial information and following a

proper traffic pattern, it is feasible to deceive a smart censor into believing

that the client is legitimately communicating with the dummy host over a

duplex UDP channel. In this work, we focus on UDP traffic for IP spoofing.

We present a concrete example of hijacking UDP in Section 4.4.

2) To ensure unobservability, the communication between the client and

the spoofer (and the dummy host) should look like a normal UDP session

of a legitimate Internet application. So, the second question is what carrier

applications should be used?

UDP is mainly used for time-sensitive applications, such as VoIP, video

2An active censor can check the dummy host’s current sequence number by replaying a
client’s packet that is outside the dummy host’s receiving window; in this case the dummy
host will reply an ACK packet containing its current sequence number.
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conferencing, multi-player online games, webcam chat, online TV, etc. These

applications usually have high-bandwidth channels. Some other UDP appli-

cations, such as DNS and SNMP, have very limited bandwidth and thus are

not suitable to carry voluminous inbound traffic.

We can further divide these applications into two classes based on their

communication manner: (i) client-to-server communication, e.g., multi-players

online games and online TV, and (ii) client-to-client communication, e.g.,

VoIP and video chat. To achieve better robustness to blocking, we prefer

the applications in the second class, since for these applications the pool of

dummy hosts is significantly larger (e.g., the dummy hosts could be any VoIP

client on the Internet), making it much harder to block them altogether.

3) In CensorSpoofer, we use a dummy host as a cover to stealthily transmit

censored data. The third question is how to select plausible dummy hosts?

The selection of dummy hosts is decided by the carrier application. For

example, if the carrier application is VoIP, then each dummy host should be

a potential VoIP client. Note that an active censor can use port scanning

(e.g., using nmap [62]) to check if a dummy host is actually running the

application, i.e., listening on a particular port (e.g., port 5060 for SIP-based

VoIP). In response, we can use port scanning as well to obtain the list of

dummy hosts. According to our experience, a dummy host is “quiet” (i.e.,

not sending any reply packet) to incoming UDP packets sent to a specific

port, as long as this port is not “closed” on the dummy host. In many

cases, port scanning is unable to determine whether a particular application

is running on a target machine, since the target machine could be behind a

firewall that is configured to filter probe packets. For example, nmap returns

“open|filtered” or “closed|filtered” when it cannot tell whether the port is

open/closed or the probe is filtered. This ambiguity plays in our favor as it

makes a larger number of hosts appear to be plausible VoIP endpoints.

4) Finally, we note that not all Internet hosts can launch IP spoofing.

Some ASes apply ingress and/or egress filtering to limit IP spoofing. The

MIT ANA Spoofer project [63] has collected a wide range of IP spoofing test

results, showing that over 400 ASes (22%) and 88.7M IPs (15.7%) can be

used to launch IP spoofing. Therefore, we need to deploy our spoofer in the

ASes where IP spoofing is not prohibited. We can utilize some tools, such as

nmap and the spoofing tester developed by the Spoofer project [63], to test

whether a host can perform IP spoofing.
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4.3.3 Upstream Channel

To send outbound requests, we use a steganographic channel embedded in

communications such as IM or Email. Note that URLs are typically quite

short and can be easily embedded into a small number of messages. Com-

munication requirements can be further reduced by using a pre-agreed list

of censored URLs and sending just the index of the desired site. Likewise,

navigation within a site can use relative link numbering, requesting, e.g., the

3rd link from the front page of www.cnn.com. Note that steganography re-

quires the use of a secret encoding key to remain invisible; this process can

be made resilient to insider attacks by having each user register a separate

pairwise key when joining the system. Specific steganographic constructions

and their security are beyond the scope of this work. An important challenge

that we must address, however, is the possibility that the censor will perform

blocking based on the recipient’s IM identifier or Email address; we discuss

a solution in Section 4.4.

4.4 A Design of CensorSpoofer

The CensorSpoofer framework can be instantiated using a number of protocol

choices. In this section, we present a concrete design based on VoIP. We start

with some background about VoIP systems.

4.4.1 Background of SIP-based VoIP

VoIP is an Internet service that transmits Voice over IP-based networks. It

employs session control protocols, such as SIP, MGCP, and H.323, to setup

and tear down calls. SIP is one of the most widely-used VoIP signal protocols,

because of its light weight. In this work, we focus on SIP-based VoIP systems.

SIP is an application layer protocol. It can run on either UDP or TCP.

There are three main elements in SIP systems: user agents, location services,

and servers.

• User agents are the end devices in a SIP network. They originate SIP

requests to establish media session, and send and receive media. A user

agent can be a physical SIP phone or SIP client software running on a
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computer (also called softphone). A user agent needs a SIP ID, which

is signed up at a SIP provider, in order to make and receive SIP calls.

• Location service is a database that contains information about users,

such as SIP IDs, the latest login IP addresses, preferences, etc. Location

services generally do not interact directly with user agents.

• Servers are intermediary devices that are located within the SIP net-

work and assist user agents in session establishment. There are two

main types of SIP servers: registrar and proxy. A registrar receives SIP

registration requests and updates the user agent’s information (such as

the login IP address) into the location service. A SIP proxy receives SIP

requests from a user agent or another proxy and forwards the request

to another location.

Here is an example to show how a user (Alice) calls another user (Bob).

Suppose Alice has signed up a SIP ID alice@atlanta.com at the SIP provider

atlanta.com, and Bob got his SIP ID bob@biloxi.com from biloxi.com,

and Alice knows Bob’s SIP ID.

When Bob comes online, he first sends a registration request to the reg-

istrar of biloxi.com with its current IP address. So does Alice to register

herself at the registrar of atlanta.com.

The SIP call initialization process is shown in Figure 4.2. First, Alice

sends an INVITE message (M1), which contains her SIP ID and IP address,

Bob’s SIP ID, her supported media codecs, etc., to the proxy of atlanta.com

(note that at this point Alice does not know Bob’s IP address). The local

proxy performs a DNS lookup to find the IP address of the proxy serving

Bob’s domain, i.e., biloxi.com, and then forwards the INVITE message

(M2) to the remote proxy. At the meantime, the local proxy sends a Trying

response (M3) back to Alice, indicating that the INVITE has been received

and is being routed to the destination. Upon receiving the INVITE message,

the proxy of biloxi.com sends a query to its location service to look up

the registered IP address of Bob, and then it forwards the INVITE message

(M4) to Bob. The user agent of Bob sends a Ringing response (M6) to the

proxy indicating that Bob’s phone is ringed. If Bob decides to answer the

phone, an OK message containing Bob’s current IP (M9) is sent towards

Alice; otherwise, a Reject response is returned (not shown in the figure).

From the received OK message, Alice learns Bob’s IP address, and sends
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proxy
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Figure 4.2: An example of a SIP session (registrars and location services
are not shown).

an ACK message towards Bob (M12, M13, M14). At this point, the SIP

initialization session is done, and Alice and Bob start the media session by

sending each other audio data directly. At the end of the media session,

either party can send a BYE message (M15) to close the call.

The media session uses Real-time Transport Protocol (RTP) to transmit

audio data, and Real-time Transport Control Protocol (RTCP) to provide

out-of-band statistic and control information for the RTP flow. Both RTP

and RTCP run on top of UDP. VoIP clients can use SRTP/SRTCP [49]—

an encrypted version of RTP/RTCP—to encrypt their voice communication.

SRTP/SRTCP only requires the user to install a user agent that has encryp-

tion features, and does not require VoIP servers to support encryption. This

implies that the user can use any VoIP provider, including local providers
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that collude with the censor, to access our circumvention system. The en-

cryption key for SRTP/SRTCP can be either established beforehand, e.g.,

via MIKEY [64], or negotiated on the fly using ZRTP [50]. In this work, we

consider using pre-established keys for SRTP/ SRTCP.

4.4.2 Censorship Circumvention

A sketch of the circumvention procedure is as follows. The client first ini-

tializes a SIP session with the spoofer by sending out a normal INVITE

message. Upon receiving the INVITE message, the spoofer randomly selects

a dummy host and replies with a manipulated OK message that looks like

originating from the dummy host. When the OK message arrives, the client

starts to send encrypted RTP/RTCP packets with random content to the

dummy host, and the spoofer starts to send encrypted RTP/RTCP packets

to the client by spoofing the dummy host’s IP address. Meanwhile, the client

sends URLs through a steganographic IM/Email channel to the spoofer. The

spoofer fetches the webpages, puts them into RTP packet payloads and sends

them to the client. To terminate the circumvention session, the client sends

a termination signal to the spoofer over the outbound channel, and then the

spoofer sends a BYE message (with IP spoofing) to the client to close the

call.

Invitation-based Bootstrapping

Since the censor can learn the callee SIP ID from the INVITE message,

the user cannot use a common callee SIP ID to call the spoofer (otherwise,

he/she will be detected once the censor learns the spoofer’s SIP ID from

corrupt users). There is a similar issue for the steganographic IM/Email

channel: the censor can detect users sending IMs or Emails to the spoofer

based on the recipient’s IM ID or Email address (generally referred to as

upstream ID).

To address this, we let the spoofer use a unique callee SIP ID and a unique

upstream ID to communicate with each client. Hence, the SIP IDs and

upstream IDs of the spoofer learned by corrupt users cannot be used to

detect honest users. To avoid the bottleneck of having the spoofer create a

large number of SIP and upstream IDs by itself, we let each client sign up a
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callee SIP ID and an upstream ID on behalf of the spoofer, and give them

to the spoofer when joining the system. We achieve this by introducing an

invitation-based bootstrapping process.

In particular, if a user Alice wants to join the circumvention system, she

needs an invitation and help from an existing CensorSpoofer user (say Bob).

Alice must trust Bob (e.g., Bob is a friend of Alice); otherwise, Bob could sim-

ply report Alice to the censor for attempting to access circumvention service.

(We note that similar invitation-based bootstrapping strategies have already

been adopted by some real-world circumvention systems, e.g., Psiphon [10].)

First, Alice needs to sign up two SIP IDs and two upstream IDs. One pair

of SIP ID and upstream ID is for herself, and can be obtained from her lo-

cal SIP and IM/Email providers (which potentially collude with the censor).

The other pair is for the spoofer, and must be signed up at abroad SIP and

IM/Email providers (not necessarily supporting encryption). If all external

SIP, IM, or Email providers are blocked by the censor, Alice can ask Bob

to use his already-established circumvention channels to sign up these IDs

for her. Then, Alice encrypts the following registration information with the

spoofer’s public key:

caller SIP ID | master key |
callee SIP ID | passwd for callee SIP ID |
upstream ID | passwd for upstream ID

The master secret is used to derive SRTP/SRTCP session keys (and the

key for the steganographic outbound channel if necessary), and the passwords

are for the spoofer to login the callee SIP ID and the upstream ID.

To complete the bootstrapping, Alice needs to deliver the encrypted regis-

tration information to the spoofer. Alice could ask Bob to forward the whole

registration information to the spoofer through his outbound channel. To

reduce the bandwidth consumption of Bob’s outbound channel, Alice could

let Bob only forward the encrypted upstream SIP ID and password to the

spoofer; once her outbound channel is established, she can send the rest

registration information to the spoofer by herself.

Note that our unique-ID-assignment strategy cannot be applied to existing

proxy-based circumvention systems, such as Tor, to improve the robustness

against the insider attack. This is because the “ID” in CensorSpoofer is

an application-level ID, and it is fairly easy to get a large number of them;
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whereas, in Tor, the “ID” is the relay’s IP address, and IP addresses are

commonly viewed as a scarce resource and it is hard to get a large number

of spare IP addresses.

For the spoofer, it needs to run multiple SIP IDs and multiple upstream

IDs at the same time (possibly with a common service provider). In general,

IM/Email servers and SIP registrars do not limit the number of accounts

registered from a common IP address, because it is possible that multiple

legitimate clients are behind a NAT sharing the same IP address. We did

some tests on two real-world VoIP providers ekiga.net and mixvoip.com

with 100 different SIP IDs running on one of our lab machines, respectively. It

turned out for both providers, all these SIP IDs can be registered and receive

calls successfully. We also did tests on Gtalk with 10 different accounts on

the same machine and all of them worked properly.

Manipulating the OK Message

Once the bootstrapping is done, the client can initialize a circumvention

session by calling the spoofer using the previously registered callee SIP ID.

In the SIP protocol, the callee’s IP address is written into the OK message

(more specifically, the enclosed SDP message [65], which is used to negotiate

the session format, such as codecs, ports, IP, etc.), and later is used by the

caller to send RTP/RTCP packets to the callee. Since the OK message can

be eavesdropped by the censor, the spoofer cannot put its real IP into the

OK message.

For this, we use a trick to hide the spoofer’s IP address. According to the

IETF standards [65, 66], the SDP messages are not checked by SIP proxies.

This means the spoofer can put the dummy host’s IP, instead of its own IP,

into the OK message, without influencing the OK message being forwarded

back to the client. Since the registered IP of the callee SIP ID (kept by the

location service of the spoofer’s VoIP provider) is unknown to the censor,

the manipulated OK message is still plausible to the censor. To verify the

feasibility of replacing the spoofer’s IP address in the OK message in prac-

tice, we utilized netfilter queue [67] to modify the OK message on the

fly, and tested it with two VoIP providers ekiga.net and mixvoip.com and

an unmodified VoIP softphone PJSUA [54]. We found all manipulated OK

messages were successfully delivered to the client and the client-side soft-
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phone started to send RTP/RTCP packets to the replaced IP address after

receiving the OK message.

Selection of Dummy Hosts

A SIP client listens on TCP and/or UDP port 5060 for SIP signalling, and

the ports for RTP/RTCP are selected randomly on the fly (usually RTP

uses an even port and RTCP uses the next higher odd port). To check the

legitimacy of a dummy host, the censor could apply port scanning to test

if the ports used by VoIP are open on the dummy host. In response, we

can also use port scanning to get the list of dummy hosts. As we mentioned

before, in many cases, port scanning can only return an ambiguous result.

For nmap [62] (the state-of-the-art port scanning tool), the possible prob-

ing results include “open”, “closed”, “filtered”, “unfiltered”, “open|filtered”,
“closed|filtered”, and “host seems down”. Only “closed” can clearly tell the

censor that a particular application is not running on the target machine.

When the status is “host seems down”, it is very likely that the target host

is offline. For safety, we also exclude “host seems down” from the acceptable

probing states. Therefore, we let the spoofer periodically run port scan-

ning with randomly selected IPs outside the censor’s network to get a list of

acceptable ⟨ip, rtp port⟩ (see Algorithm 1).

Another strategy for the censor to check legitimacy of the dummy host is

to compute the AS path of the spoofing traffic and compare it against the

observed entry point of the inbound traffic (i.e., where it enters the censor’s

network). If the dummy host is located far from the spoofer, it is likely that

the entry point of the spoofing traffic is inconsistent with its claimed AS path.

To deal with this, we first use traceroute to compute the AS path from the

spoofer to the client (called reference AS path), and then choose a dummy

host whose predicted AS path to the client is consistent with the reference AS

path with respect to their entry points. Researchers have proposed several

AS-path inference algorithms with high predication accuracy (such as [68]).

In addition, since the port status on a probed host may change over time,

we let the spoofer keep track of the previously found dummy hosts and

maintain a list of alive dummy hosts. When a circumvention request arrives,

the spoofer picks a dummy host from the alive-host list, and keeps checking

the VoIP ports of this dummy host during the circumvention session. If the
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Input: IP range // outside censored networks
Output: dum hosts
dum hosts← {} ;
unaccepted← {closed, host seems down} ;
foreach ip ∈ IP range do

if port scan(ip, sip port) /∈ unaccepted then
rtp port← rand even port() ;
rtcp port← rtp port+ 1 ;
if port scan(ip, rtp port) /∈ unaccepted and
port scan(ip, rtcp port) /∈ unaccepted then

add ⟨ip, rtp port⟩ to dum hosts ;
end

end

end
Algorithm 1: Port scanning algorithm to find a list of candidate dummy
hosts

spoofer detects any port of SIP, RTP and RTCP on the dummy host is closed

before the circumvention session ends, it sends a BYE message to the client

immediately to terminate the SIP session. If the client wants to presume

the circumvention session, it needs to initialize another SIP session with the

spoofer.

Traffic Pattern and Bandwidth

To resist traffic-pattern-analysis attack, the client and the spoofer should

follow certain patterns of legitimate VoIP traffic when sending RTP/RTCP

packets. For VoIP, both RTP and RTCP packets are of the same size and

sent periodically3. The packet size and sending frequency are defined by the

audio codec, which is negotiated during the SIP initialization session. The

codec determines the bandwidth of the inbound channel (∼ pkt size×freq).
Some codecs that are used to achieve better voice quality can provide higher

bandwidth (e.g., 64 Kbps with G.711), while others provide lower bandwidth

(e.g., 16 Kbps with iLBC). Note that the same bandwidth is consumed at

the dummy host, due to the dummy traffic sent by the client. We can use

some bandwidth estimation tools (e.g., packet-trains [69]) to figure out

3Some softphones have the option of Voice Activity Detection (VAD), which can avoid
unnecessary coding and transmission of silence voice data. With VAD, the RTP packet
size and sending interval may variate. In this work, we assume no VAD is used at the
spoofer or the client for simplicity.
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how much available bandwidth the dummy host has, and based on that, we

choose an appropriate codec to avoid consuming too much bandwidth of the

dummy host.

Packet Loss

UDP does not provide reliable transmission. A RTP packet containing data

of a blocked webpage could be lost during transmission, causing failure of

reconstructing the webpage at the client. To tolerate packet loss, we can use

Forward Error Correction (FEC) codes (e.g., Reed-Solomon code [70]) inside

the inbound channel, so that the client can recover the webpage as long as a

certain number of packets are received.

4.5 Prototype Implementation

4.5.1 The Spoofer

Our spoofer prototype is mainly composed of the following components: a

SIP message handler, a RTP/RTCP transmitter, an outbound message re-

ceiver, and a prefetching proxy.

SIP Message Handler

We use PJSUA v1.12 [54] as an out-of-box tool to register the callee SIP IDs.

We choose PJSUA because we can easily register multiple SIP IDs using the

--config-file option with different configuration files. To prevent the user-

agent fingerprinting attack, we use tcpdump to pre-record the OK response

messages generated by different softphones, and use them as templates to

generate corresponding OK messages to response to different INVITE mes-

sages. In our implementation, we create a profile based on the softphone of

Ekiga [71].

When starting the spoofer, the SIP message handler first launches PJSUA

to register callee SIP IDs, so that the SIP proxies can forward INVITE mes-

sages related with these SIP IDs to the spoofer. We use netfilter queue [67]

to capture incoming INVITE messages. (Since PJSUA requires to bind port
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5060, we do not create a socket bound to port 5060 to receive INVITE

messages.) For each received INVITE message, the SIP message handler

generates a corresponding OK message, by extracting the session related

information (such as the caller’s SIP ID, IP address, tags, etc.) from the

INVITE message and putting them and the IP address of a dummy host into

the pre-recorded OK message. Once the OK message is sent out, the spoofer

creates a thread for the RTP/RTCP transmitter for this client.

RTP/RTCP Transmitter

The RTP/RTCP transmitter needs to send RTP and RTCP packets period-

ically with IP spoofing. For this, we use a UDP raw socket, which allows

us to put an arbitrary IP into the source IP field in the IP header. To en-

crypt RTP/RTCP packets, we use AES-128 of OpenSSL v1.0.0 [72] with a

pre-shared key. Since the sending frequency of RTCP packets is much lower

than that of RTP packets, we only use RTP packets to carry censored data

and send RTCP packets with randomly generated payloads.

To handle packet loss, we implemented a simple XOR-based encoder and

decoder. The RTP/RTCP transmitter partitions the flow of each task (i.e.,

downloading a particular webpage) into fixed-sized data blocks (smaller than

the RTP payload), and multiplex the blocks of different tasks of the same

client into one stream, which is further divided into groups of size λ (e.g.,

λ = 10 blocks). For each group, the transmitter generates a redundant block

by XORing all λ blocks in the group, so that any λ out of the λ+1 blocks are

sufficient to recover the whole group. Whenever a RTP packet needs to be

sent, the transmitter checks if there are any available blocks (including XOR

blocks) in the buffer for this client. If so, it writes one block into the RTP

payload and sends it out; otherwise, the RTP packet is stuffed with random

data.

Note that some blocks may contain data less than their capacity (e.g., the

last block of a task), and blocks may arrive at the client in different order

than being sent out; besides, the client should be able to differentiate blocks

for different tasks. To handle these, we use the first 4 bytes of the RTP

payload to carry a block sequence number (2 bytes), a task number (1 byte),

and block size (1 byte). These fields are encrypted together with the rest

RTP payload.
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Outbound Message Receiver

For this prototype, we use Gtalk as the outbound channel, although our

system in no way depends on encrypted indirect channels like Gtalk. Gtalk

employs XMPP [73] as the transmission protocol. We implemented a simple

Gtalk client using a python API xmpppy [74] to send and receive Gtalk

messages. The Gtalk ID of the spoofer is pre-given to the user. Each Gtalk

message contains a URL, the user’s IP address, and a task number (also

contained in the RTP payload). The outbound message receiver forwards the

received Gtalk message to the prefetching proxy by sending a UDP packet,

and then the prefetching proxy will start downloading the webpage according

to the URL.

Prefetching Proxy

For normal web browsing, a user inputs a URL in its web browser, and the

browser will then fetch the html file of the webpage as well as the objects

used by the webpage, such as figures and video clips. The browser downloads

each object by sending a separate HTTP request.

Since each CensorSpoofer client only sends one URL (instead of separate

HTTP requests) to the spoofer, the spoofer needs to prefetch the whole

webpage on the behalf of the client. This means that the spoofer needs to

first download the html file of the webpage, parse the html file to figure out

the missing objects, and then send separate HTTP requests to fetch these

objects, and finally send all the downloaded data to the client over the RTP

channel.

We built a prefetching proxy (PFP) for this purpose. Instead of imple-

menting a html parser and fetching embedded objects (which are essentially

the operations of a web browser) from scratch, we use an open-source lay-

out engine QtWebKit [75], which is a port of the popular WebKit4 layout

engine into the Qt application development framework. We choose QtWebKit

because it provides a simple QtWebPage type that significantly reduces our

development effort. Given a URL to load, a QtWebPage performs all the nec-

essary network operations, including parsing, Javascript execution, etc., in

order to render the webpage. The PFP obtains all the raw HTTP responses

4http://www.webkit.org/
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for HTTP requests that the QtWebPage makes. As soon as PFP receives a

full HTTP response, it sends the request-response pair to the client over the

RTP channel. When the QtWebPage finishes loading the entire webpage, the

PFP sends an “End-of-Page” marker to the client, to inform that there will

be no more request-response pair for this webpage.

There are some limitations with our current PFP implementation. The

QtWebPage on the PFP is a distinct browser instance from the client’s browser,

so the HTTP requests it generates are likely different from what the client’s

browser generates. This is a certainty in the presence of cookies because

the cookies of the client’s browser and all HTTP request headers are not

forwarded to the PFP. Another limitation is that the current PFP disables

Javascript on the QtWebPage because Javascript execution might generate

additional HTTP requests after the page has “finished” loading (as notified

by the QtWebPage), making it hard for the PFP to determine when to send

the “End-of-Page” marker.

4.5.2 The Client

To avoid the censor detecting CensorSpoofer users based on the fingerprint

of their softphones, we do not implement our own softphone for the clients;

instead, we let the client use any existing softphone to access CensorSpoofer

(i.e., for registration and sending SIP messages). Again, we use PJSUA for

the client prototype without special reasons.

When running the client, PJSUA is first launched to register the user’s SIP

ID. Note that most softphones (including PJSUA) do not support making

calls outside the user interfaces. In order to call the spoofer automatically

inside our client program, we use tcpdump to pre-record the INVITE and

ACK messages, and send them during the ongoing SIP initialization session

with the spoofer (the ACK message needs to be updated according to the

OK message before being sent out).

Once the SIP initialization is done, the client creates a UDP socket to

receive RTP/RTCP packets from the spoofer and send RTP/RTCP packets

to the dummy host. The client uses the pre-shared key to decrypt received

packets and stores the decrypted blocks into a buffer. Once a sufficient

number of blocks in a group are received, the client uses the XOR-based
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decoder to recover the original group.

We implemented a client-side HTTP proxy (CSP) to handle the HTTP

requests made by the user’s browser and the HTTP responses received from

the RTP channel. When the CSP receives the first HTTP request for a page,

it forwards the URL of the page to the spoofer via the Gtalk channel, but

will not forward subsequent requests for other objects of the page. Instead,

the CSP will “collect” in memory the HTTP request-response pairs received

from the spoofer, and will serve to the client’s browser the appropriate HTTP

responses from its memory when the browser makes a HTTP request.

We note that any web browser supporting HTTP proxies, such as Mozilla

Firefox5, can use the CSP because the CSP provides an HTTP proxy com-

pliant interface. Therefore, we do not have to modify existing web browsers

or implement a new one. However, for ease of automating experiments, we

implement a minimal browser application (totalling 150 lines of code) that

is simply a wrapper around QtWebPage to load the webpages. This browser

application also outputs various statistics useful for our evaluation.

4.6 Evaluation

We evaluate the performance of CensorSpoofer in a realistic environment,

and compare it with other circumvention systems. Then, we measure the

selection of dummy hosts.

4.6.1 Performance Evaluation

The spoofer was deployed on an Emulab machine (located in Utah, U.S.),

which has 3.0 GHz 64-bit Duel Core CPU with 1 GB cache and 2 GB of

RAM and runs Ubuntu 11. We deployed 8 clients on Planetlab, which are

all located in China. Since we aim to evaluate the performance of our system,

we let the clients share the same dummy host, which was randomly selected

and located in Illinois, U.S.

To handle packet loss, we made the spoofer add a redundant XOR packet

for every 10 packets. We chose the most commonly used VoIP codecs G.726-

40, G.722-64, G.711, and iLBC, and set the corresponding RTP packet size

5http://www.mozilla.com/firefox
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Table 4.2: Bandwidths for different VoIP codecs.

Codec
BW of inbound Consumed BW of
channel (Kbps) dummy host (Kbps)

G.711 64 87.2
G.722-64 64 87.2
G.726-40 40 54.7
iLBC 15.6 26.6

and sending interval according to the standard specifications in [76]. The

bandwidth provided by each codec and the consumed bandwidth of the

dummy host are provided in Table 4.2.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time to download the html file (sec)

C
D

F

 

 

G.711/G.722−64
G.726−40
iLBC

Figure 4.3: Time to download the HTML file only.

Each client was configured to repeated download the webpage of wikipedia.

org (which is about 160 KB) for 20 times. For each download, we measured

the downloading time for the entire webpage and the HTML file of the web-

page. (Note that once the HTML file is downloaded, the user’s web browser

will display the basic frame and the text of the webpage, and the user can

start reading the text-based content.) We found that the clients were able

to successfully download the page of wikipedia.org (which was blocked in

China) using CensorSpoofer. The results of downloading times are provided

in Figure 4.3 and Figure 4.4. We can see that with the codec G.711 or G.722-

64, the downloading time for the whole page was 27 seconds, but it only took

about 6 seconds to load the HTML file.

In addition, we compared the performance of CensorSpoofer with that

of existing circumvention systems. We installed a Tor client on one of the
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Figure 4.4: Time to download the full webpage.
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Figure 4.5: Comparison of downloading time for the HTML file only.

Planetlab nodes, and made it connect to a bridge in U.S. to download the

webpage of wikipedia.org for 50 times. Additionally, we ran the same ex-

periment by making the client connect to a public proxy of NetShade6 (a

proxy-based circumvention & anonymity system), which is located in U.S.

Figure 4.5 and Figure 4.6 show that it did take longer time for CensorSpoofer

to download the pages than the other two circumvention systems, but the

downloading time for small web contents, such as HTML files, for Censor-

Spoofer is still acceptable.

We note that the performance of CensorSpoofer can be improved by fixing

some limitations of our current implementation. For example, our current

6http://www.raynersoftware.com/netshade/
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Figure 4.6: Comparison of downloading time for the full webpage.

prototype of the spoofer does not start sending any packet to the client

until it has fully received a HTML file or an object. We believe removing

these limitations can reduce the downloading time. Similarly, the current

prototype of the client-side proxy does not deliver HTTP data to the client’s

web browser until the full HTML file or object is downloaded. The can be

provided by pushing received data to the browser instantly.

In addition, we notice that the main performance bottleneck of Censor-

Spoofer is the RTP channel that carries the voice data. We believe by using

a higher-bandwidth downstream channel, such as video streaming, the per-

formance of CensorSpoofer can be much improved.

4.6.2 Measurement of Dummy-Host Selection

To evaluate the easiness of finding dummy hosts, we implemented the port

scanning algorithm (i.e., Algorithm 1 in Section 4.4) using nmap [62]. We

considered China as the censored country. We randomly selected 10 000 IPs

from the entire IP space, which are located outside China, according to an

IP-geolocation database [77]. We finally found 1213 IPs that can meet our

requirements, and the percentage of satisfactory IPs is 12.1%. This indicates

that there are a potentially large number of usable dummy hosts on the

Internet.

Furthermore, we computed the percentage of appropriate dummy hosts

for a specific client based on their predicted AS paths to the client. We
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Table 4.3: Usable dummy hosts based on AS paths (Spoofer-ASN = 38).

DST-ASN
% of

Entry-ASN
# of usable % of usable

direct IPs dummy hosts dummy hosts
4134 39.4% 4134 225 100%
4837 19.8% 4839 225 100%
9394 8.3% 9394 217 96.4%
4538 7.1% 23911 41 18.2%

implemented a widely used AS path inference algorithm [68] that is based on

AS relationships [78]. We considered the top four ASes in China in terms of

the number of covered direct IPs (according to [79]), and selected a random

IP (i.e., the client) from each of the ASes. We randomly picked 225 dummy

hosts out of the 1213 candidate dummy hosts, and computed the AS paths

between them and the four clients. Then, we compared the output paths with

the AS paths from the spoofer to the clients (computed using traceroute),

and filtered the dummy hosts with inconsistent entry points. The results are

shown in Table 4.3. We can see that for a specific client, there are enough

dummy hosts to use, especially for the clients located in large ASes.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Length of staying usable (hour)

C
D

F

Figure 4.7: CDF (Note that the CDF plot is truncated to
max len stay usable = 6 hours, since many dummy hosts stay usable for a
very long time).

In addition, we measured the stability of dummy hosts over time. Ideally,

the dummy host should stay “usable” (i.e., none of its VoIP ports becomes

“closed” or “host seems down”) during the circumvention session, so that the

user does not need to re-initialize the SIP session to change dummy hosts. To
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Figure 4.8: Stability of dummy hosts over a long period of time.

justify this, we randomly selected 100 dummy hosts out of the 1213 candidate

dummy hosts, kept sending RTP packets to each of them and checking the

states of their VoIP ports. Figure 4.7 depicts the CDF of length of staying

usable for a dummy host. We can see that over 90% dummy hosts can stay

usable for more than 2 hours, and over 80% can stay usable for longer than

6 hours. This means in most cases, the users only need to establish one SIP

session throughout their web browsing.

We also measured the stability of dummy hosts over a longer period of

time. We kept track of the states of 100 randomly selected dummy hosts

from Feb. 9th 2012 to Feb. 16th 2012. To simulate the practical scenario

when the dummy hosts are used by our system to receive VoIP traffic, we kept

sending RTP packets to each dummy host periodically, with 1-hour sending

period and 1-hour sleeping period. Figure 4.8 depicts the number of usable

dummy hosts along the time. We can see that the total number of dummy

hosts is almost stable, indicating that the overall pool of candidate dummy

nodes does not shrink over time.

4.7 Security Analysis

We next discuss the security properties of CensorSpoofer against potential

passive and active attacks.
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4.7.1 Geolocation Analysis

Since the callee’s SIP ID and IP address contained in the OK message are

transmitted in plaintext, a sophisticated censor could record all the IP ad-

dresses that have been bound to a particular callee SIP ID over time, and try

to discover abnormality based on the geolocations of these IPs. For instance,

a SIP ID would look suspicious if its registered IPs for two closely conducted

SIP sessions are geographically far from each other (e.g., the SIP ID is first

registered with an IP in U.S. and 1 hour later it is registered again with

another IP in Europe).

To deal with this, instead of picking dummy hosts randomly, the spoofer

can choose a set of dummy hosts, which are geographically close, for a par-

ticular callee SIP ID, according to an IP-geolocation database (such as [77]).

In particular, for the first-time use of a callee SIP ID, the spoofer randomly

selects a primary dummy host for it, and keeps this information in the user

database. For subsequent SIP sessions calling this SIP ID, the spoofer pref-

erentially assigns its primary dummy host for it. If the port status of the pri-

mary dummy host becomes “closed”, the spoofer then preferentially chooses

a dummy host from those that have been assigned to this SIP ID (which are

also stored in the user database). If none of them is available, the spoofer

selects a new dummy host that is geographically close to the primary dummy

host for this SIP ID. (Note that the spoofer should make sure that a par-

ticular dummy host is not being used by two or more callee SIP IDs at the

same time.)

Furthermore, each user can create multiple callee SIP IDs. When a cir-

cumvention session is carried out very close to the previous one, or when the

spoofer cannot find a suitable dummy host for a callee SIP ID, the user can

choose another callee SIP ID instead.

4.7.2 User Agent & Operating System (OS) Fingerprinting

The SIP protocol defines the basic formats of SIP messages, but allows user

agents (i.e., softphones or SIP phones) to add optional information into the

SIP messages, such as the user’s display name, timestamps, and the soft-

ware/hardware information of the user agent. In addition, SIP messages

(e.g., INVITE and OK) contain some random identifiers, such as “To tag”
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and “From tag”, which are generated by the user agent with self-defined

length. Additionally, the SIP messages also contain the codecs that are sup-

ported by the user agent.

The above information allows a sophisticated censor to fingerprint a par-

ticular user agent. As a result, the censor may detect users communicating

with the spoofer based on the user-agent fingerprint of the spoofer. To ad-

dress this, the spoofer can create a number of user-agent profiles based on

the popular SIP phones and softphones, and assign one of them to each callee

SIP ID. For a SIP session calling a particular SIP ID, the spoofer generates

corresponding SIP messages based on the user-agent profile of the SIP ID.

Note that some softphones are only available for certain OSes. For ex-

ample, SFLphone [52] can only be used on Linux, and Blink [51] is only

available for Windows and Mac users. Hence, a sophisticated censor can use

OS fingerprinting tools (e.g., the OS detection of nmap [62]) to check if the

dummy host’s OS is consistent with its user agent (learnt from the user-agent

fingerprint). To handle this, the spoofer can also use the OS fingerprinting

tool to detect the dummy host’s OS and assign an appropriate user-agent

profile.

4.7.3 Traffic Manipulation

The censor can also try to manipulate traffic flows in order to detect users

accessing our circumvention system.

In anonymous communication systems (e.g., Tor [11]), an attacker could

use traffic analysis to detect if two relays are on the same path of a flow,

by injecting a specific traffic pattern at one relay (e.g., by delaying certain

packets) and detecting the same pattern at the other relay [80]. If applying

the same attacking philosophy to CensorSpoofer, the censor could delay the

packets sent by the user, and detect if there are any changes of the traffic

pattern in the downstream flow. However, this attack is based on the precon-

dition that the flows sent and received by the remote host are correlated, and

this is not true for VoIP, since each VoIP client sends RTP/RTCP packets

periodically, independent of the incoming flow.

Another way to manipulate traffic is to drop packets. Since the spoofer

does not actually receive any RTP/RTCP packets from the user, the censor
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can drop the user’s packets without even being noticed by either the spoofer

or the user. The VoIP phones can tolerate a small number of random packet

loss; but if there are no RTP/RTCP packets received for a certain period

of time (e.g., 30 seconds), they will drop the call automatically. Hence, a

censor can adopt the following strategy to detect a CensorSpoofer user: it

blocks all the RTP/RTCP packets sent to the callee, and checks if the callee

still sends packets to the client after a certain period of time. However, the

price of mounting this attack is very high. Since the censor is unable to tell

which flow carries censored data, it has to drop all VoIP flows unselectively,

causing normal VoIP conversations being interrupted.

The censor can also alter, reorder, inject or replay RTP/ RTCP packets

sent to the callee (i.e., the dummy host). However, since a normal VoIP

client running the SRTP protocol can simply filter the invalid packets, such

attacks cannot help the censor detect if the callee is a real SIP client or a

dummy host.

4.7.4 SIP Message Manipulation

The censor can attempt to manipulate SIP messages. For instance, the censor

can manipulate the IP of the callee (i.e., the dummy host) in the OK message,

and then check if there are any RTP/RTCP packets sent to the user. Similar

to the packet-dropping attack, this attack will make legitimate users unable

to make and receive VoIP calls. As we explained in our threat model, we

believe censors are unwilling to mount such intrusive attacks by interrupting

ordinary users’ communication.

4.7.5 SIP Probing Attack

Houmansadr et al. [81] recently proposed a SIP probing attack to detect

dummy hosts used in CensorSpoofer from genuine SIP VoIP users. In our

design, we consider that sophisticated censors could use port scanning tools

to check whether the SIP/VoIP ports on a suspected dummy host have le-

gitimate status, and we employ port scanning as well to find legitimately

looking dummy hosts. Houmansadr et al. found that, besides port scan-

ning, a censor could apply SIP probing to check the status of dummy hosts,
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since a genuine SIP client should reply with a SIP message in response to

a SIP probe message. Because of the SIP probing attack, the percentage of

candidate dummy hosts (which have legitimate status to both port scanning

and SIP probing) in all of the Internet hosts would be much smaller, which

implies that we need to spend more time on probing and testing in order to

find a usable dummy host. We note that the SIP/VoIP based CensorSpoofer

scheme is just one design instance of the CensorSpoofer architecture. It is

interesting to explore other applications, such as video call, web chat, and

etc., to design censorship circumvention systems based on this asymmetric

communication architecture, and multiple circumvention systems can be po-

tentially used jointly to increase the set of candidate dummy hosts.
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Research

Censoring the Internet is a means adopted by many repressive regimes to

control the information that their citizens can access on the Internet. Many

websites that allow people to exchange political ideas (e.g., Facebook, Twit-

ter, and Flickr) or may provide political information contrary to the state’s

agenda (e.g., YouTube, Wikipedia, and CNN) have been blocked by the re-

pressive governments [5].

A typical approach to skirting censorship is to deploy circumvention prox-

ies outside the censored network, which can provide indirect access to blocked

websites. However, the redirection proxies are potentially exposed to mali-

cious users and subject to blocking by the censor. In this thesis, we studied

how to protect and/or design censorship circumvention systems against such

insider attacks. We tackled this problem by two approaches: one is to design

security mechanisms to improve robustness of existing censorship circum-

vention systems against the insider attack, and the other is to design new

censorship circumvention systems that can fundamentally resist the insider

attacks.

In particular, we proposed rBridge [12], a user reputation system for Tor

bridge distribution. rBridge addresses two key challenges to bridge distribu-

tion: protecting bridges from being blocked by corrupt users, and preserving

bridge assignment information of each user. rBridge makes use of users’ rep-

utation to punish blockers and limit them from repeatedly blocking bridges,

and adopts an introduction-based mechanism to invite new users while re-

sisting Sybil attacks. Our simulation results show that rBridge is able to

provide much stronger protection for bridges than any existing scheme. In

addition, we addressed privacy preservation in rBridge by concealing users’
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bridge assignment information. Such information can be explored to de-

grade users’ anonymity in anonymous communication. We designed a novel

privacy-preserving reputation system for bridge distribution using several

cryptographic primitives. To our best knowledge, rBridge is the first scheme

that is able to perfectly preserve users’ privacy in bridge distribution. We im-

plemented a prototype of rBridge, and the experiments showed that rBridge

has reasonable performance.

In addition, we proposed a new censorship circumvention framework –

CensorSpoofer [19], by exploiting the asymmetric nature of web browsing.

CensorSpoofer decouples the upstream and downstream channels, using a

low-bandwidth indirect channel for delivering URLs and a high-bandwidth

direct channel for downloading web content. The upstream channel hides

the requests using steganography within Email/IM, whereas the downstream

channel uses IP spoofing to conceal the proxy’s real address. Unlike some ex-

isting circumvention systems, CensorSpoofer does not require any additional

support from network infrastructure. We implemented a proof-of-concept

prototype for CensorSpoofer, and the experimental results showed that Cen-

sorSpoofer has reasonable performance for real-world usage.

5.2 Lessons Learned

The first lesson we learned from the thesis study is that nowadays censors

are not simply relying on cyber techniques to achieve censorship, but are

able to deploy a significant amount of human resources to help enforcing the

censorship. For instance, according to the study by Zhu et al. [82], on weibo.

com, a Chinese version of twitter.com, keywords blocking is employed as the

basic tool to screen users’ posts that contain politics sensitive content, and

besides, there are over 4000 human censors, who manually check the posts

that cannot be unambiguously flagged by automatic censorship mechanisms.

In addition, human censors also follow threads on major forum websites

to learn about available censorship tools or redirection proxies in order to

block them. The capability of deploying a large force of human censors

raise a big challenge to designing robust censorship circumvention systems,

because we need to fight against not only censors who have full control of

the local network infrastructure, but also potentially malicious users who are
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indistinguishable from genuine users.

In addition, we learnt that it is not rare to see massive blocking driven by

events, such as crisis. For example, Iran blocked all encrypted traffic prior

to the 33rd anniversary of the Islamic Revolution [60] and Egypt completely

disconnected the Internet in response to nationwide protests [61]. It is a

challenging problem to design censorship circumvention systems that can

survive such drastic censorship, and when we evaluate security of certain

anti-censorship systems, it is desirable to measure their robustness under

such event-driven blocking.

Lastly, we have seen a long term arm race between censors and people

in support of anti-censorship. As new censorship circumvention systems are

built and become popular, censors eagerly study them and try to figure out

how to block them. The censors have proved that they are capable of quickly

evolving their censorship weapons using newly developed cyber techniques.

It can be envisioned that such an arm race between censorship and anti-

censorship will continue, and we should be prepared to face more advanced

censorship techniques in the future.
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APPENDIX A

DEALING WITH DUPLICATE BRIDGES
IN THE PRIVACY-PRESERVING

RBRIDGE SCHEME

Suppose U receives a duplicate bridge Bd in the randomized
(
m
1

)
-OT, which

is identical to one of his existing bridges Be. We allow U to get a new bridge

(by running
(
m
1

)
-OT again) to replace Bd as long as he can prove that he has

valid signatures for both Bd and Be.

We note that, however, a sophisticated D may try to infer U’s bridges by

constructing the list of available bridges used in OT with a single bridge (say

B∗), and see if later U requests replacement of a duplicate bridge; if yes, D

can be sure that B∗ is one of U’s existing bridges. To prevent this, we let D

compute (Cj, Oj) = CMT(Bj) for each available bridge Bj, and publish all

the Cj’s; before running
(
m
1

)
-OT, U randomly picks Cp, Cq, p ̸= q, and asks D

to prove that Bp and Bq are different. D constructs the following proof:

π6 = NIPK


(Bp, Op, Bq, Oq) :

(Cp, Op) = CMT(Bp)∧
(Cq, Oq) = CMT(Bq)∧
Bp ̸= Bq


Then, U runs

(
m
1

)
-OT to get Od; using Od, U is able to open Bd from Cd.

If Bd is duplicate, U constructs the following proof:

π7 = NIPK



(x,Bd, τd, ϕd, Cd, Od, σd, Be, τe, ϕe,

Ce, Oe, σe) :

(Cd, Od) = CMT(Bd, τd, ϕd, x)∧
Verify(PKD, σd, Cd) = Accept∧
κd = Indic(σd)∧
(Ce, Oe) = CMT(Be, τe, ϕe, x)∧
Verify(PKD, σe, Ce) = Accept∧
Bd = Be


and sends κd∥π7 to D though an established Tor tunnel.
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D verifies κd /∈ elistBd
and π7, runs

(
m
1

)
-OT to provide a new bridge B̃d,

and adds κd to elistBd
. After receiving Bd, U constructs the proof:

π8 = NIPK



(x,Bd, τd, ϕd, Cd, Od, σd, B̃d, τ̃d, ϕ̃d, Õd) :

(Cd, Od) = CMT(Bd, τd, ϕd, x)∧
Verify(PKD, σd, Cd) = Accept∧
κd = Indic(σd)∧
τ̃d = Tcur ∧ ϕ̃d = 0∧
(C̃d, Õd) = CMT(B̃d, τ̃d, ϕ̃d, x)


and sends C̃d∥π8 to D. Note that we include the commitment and signature

of the duplicate bridge Bd in π8 to prevent U from giving this opportunity of

receiving a replacement bridge to another (colluding) user. Finally, D verifies

π8, signs C̃d, and sends σ̃d to U.
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APPENDIX B

CRYPTOGRAPHIC CONSTRUCTION
DETAILS OF THE PRIVACY-PRESERVING

RBRIDGE SCHEME

Let (G1, G2) be a bilinear group pair and Gp be a group of order p where

DDH is intractable with ê : G1 × G2 → Gp, s.t., ê(P
a, Qb) = ê(P,Q)ab, for

all P ∈ G1, Q ∈ G2, a, b ∈ Zp.

B.1 Key Generation

Let g0, g1, g2, g3, g4, g5 be generators of G1, and h be a generator of G2. D

chooses sk
R←− Z∗

p as the private key, and computes pk = hsk. Let z denote a

random element in G1. The public key is (g0, g1, g2, g3, g4, g5, z, h,G1, G2, Gp,

ê, pk). In addition, D chooses a random secret scrtD from Z∗
p to generate

invitation tickets.

B.2 Registration

U first picks a list of nonces y′j
R←− Z∗

p , 1 ≤ j ≤ m, computes Y ′
j = g

y′j
1 ,

constructs the following proof:

π0 = NIPK

{ (
{y′j}mj=1

)
:∧m

j=1

[
Y ′
j = g

y′j
1

] }
and sends {Y ′

j }mj=1∥π0 to D.

D verifies π0, and then chooses a pair of one-time keys sko
R←− Z∗

p , pk
o =

hsk
o
. For each available bridge Bj, D randomly selects eoj , y

′′
j

R←− Z∗
p , computes

Aoj = (g0g
y′′j
1 Y

′
j g

Bj

3 )
1

eo
j
+sko , and tags (Aoj , e

o
j , y

′′
j ) to Bj.

After OT, U receives {Bi∥(Aoi , eoi , y′′i )}ki=1. For each i ∈ [1, k], U computes

soi = y′i + y′′i , and sets σoi = (Aoi , e
o
i , s

o
i ). To prove possession of these signa-

tures, U picks r
(1)
i , r

(2)
i

R←− Z∗
p , and computes A

(1)
i = g

r
(1)
i

1 g
r
(2)
i

2 , A
(2)
i = Aoi g

r
(1)
i

2 ,
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δ
(1)
i = r

(1)
i eoi , δ

(2)
i = r

(2)
i eoi . To get the initial credential, U sets Φ = 0 and

ω = Tcur, picks s
′
Φ, s

′
ω

R←− Z∗
p , and computes CΦ = g

s′Φ
1 gx2g

Φ
3 , Cω = g

s′ω
1 g

x
2g

ω
3 ;

for each i ∈ [1, k], U sets τi = Tcur, ϕi = 0, picks s′i
R←− Z∗

p , and computes

Ci = g
s′i
1 g

x
2g

Bi
3 g

τi
4 g

ϕi
5 (where s′♠ is the opening to C♠). Then, U computes the

proof:

π1 = NIPK



(x,Φ, s′Φ, ω, s
′
ω, {Bi, τi, ϕi, e

o
i , s

o
i , s

′
i,

r
(1)
i , r

(2)
i , δ

(1)
i , δ

(2)
i }ki=1) :∧k

i=1

[
A

(1)
i = g

r
(1)
i

1 g
r
(2)
i

2 ∧

(A
(1)
i )e

o
i = g

δ
(1)
i

1 g
δ
(2)
i

2 ∧
ê(A

(2)
i ,pko)

ê(g0,h)
= ê(A

(2)
i , h)−e

o
i ê(g2, y)

r
(1)
i

ê(g2, h)
δ
(1)
i ê(g1, h)

soi ê(g3, h)
Bi∧

τi = Tcur ∧ ϕi = 0∧
Ci = g

s′i
1 g

x
2g

Bi
3 g

τi
4 g

ϕi
5

]
∧

CΦ = g
s′Φ
1 gx2g

Φ
3 ∧

κx = zx∧
Φ = 0∧
Cω = g

s′ω
1 g

x
2g

ω
3∧

ω = Tcur


and sends κx∥CΦ∥Cω∥{A(1)

i , A
(2)
i , Ci}ki=1∥π1 to D.

After verifying π1 and κx, D picks eΦ, s
′′
Φ, eω, s

′′
ω

R←− Z∗
p , and computes AΦ =

(g0g
s′′Φ
1 CΦ)

1
eΦ+sk , Aω = (g0g

s′′ω
1 Cω)

1
eω+sk . For each i ∈ [1, k], D picks ei, s

′′
i

R←− Z∗
p ,

and computes Ai = (g0g
s′′i
1 Ci)

1
ei+sk . Then D sends (AΦ, eΦ, s

′′
Φ)∥(Aω, eω, s′′ω)∥

{(Ai, ei, s′′i )}ki=1 to U.

U computes sΦ = s′Φ + s′′Φ, sω = s′ω + s′′ω, and si = s′i + s′′i , 1 ≤ i ≤ k, and

sets σΦ = (AΦ, eΦ, sΦ), σω = (Aω, eω, sω), and σi = (Ai, ei, si), 1 ≤ i ≤ k.

B.3 Updating Credit Balance

Suppose U wants to update his credit balance with the credits earned from Bu.

U needs to prove possession of σu and σΦ. For that, U picks r
(1)
u , r

(2)
u , r

(1)
Φ , r

(2)
Φ

R←−
Z∗
p , and computes A

(1)
u = gr

(1)
u

1 gr
(2)
u

2 , A
(2)
u = Aug

r
(1)
u

2 , δ
(1)
u = r

(1)
u eu, δ

(2)
u = r

(2)
u eu,

A
(1)
Φ = g

r
(1)
Φ

1 g
r
(2)
Φ

2 , A
(2)
Φ = AΦg

r
(1)
Φ

2 , δ
(1)
Φ = r

(1)
Φ eΦ, δ

(2)
Φ = r

(2)
Φ eΦ. In addition,
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U needs to show that Bu is not blocked by proving that bj ̸= zBu for each

bj = zB̄j , where {B̄j}m̄j=1 is the list of blocked bridges.

To update the credential, U calculates ϕ̃u = Credit(Tcur − τu) and Φ̃ =

Φ+ ϕ̃u−ϕu; then, he picks s̃′u, s̃′Φ
R←− Z∗

p , and computes C̃u = g
s̃′u
1 g

x
2g

Bu
3 gτu4 g

ϕ̃u
5 ,

C̃Φ = g
s̃′Φ
1 gx2g

Φ̃
3 . After that, U constructs the following proof:

π2 = NIPK



(x,Φ, CΦ, eΦ, sΦ, s
′
Φ, r

(1)
Φ , r

(2)
Φ , δ

(1)
Φ , δ

(2)
Φ ,

Bu, τu, ϕu, Cu, eu, su, s
′
u, r

(1)
u , r

(2)
u , δ

(1)
u , δ

(2)
u ,

Φ̃, s̃′Φ, ϕ̃u, s̃
′
u) :∧m̄

j=1

[
bj ̸= zBu

]
∧

Cu = g
s′u
1 g

x
2g

Bu
3 gτu4 g

ϕu
5 ∧

A
(1)
u = gr

(1)
u

1 gr
(2)
u

2 ∧
(A

(1)
u )eu = gδ

(1)
u

1 gδ
(2)
u

2 ∧
ê(A

(2)
u ,pk)

ê(g0,h)
= ê(A

(2)
u , h)−eu ê(g2, y)

r
(1)
u

ê(g2, h)
δ
(1)
u ê(g1, h)

su ê(g2, h)
x

ê(g3, h)
Bu ê(g4, h)

τu ê(g5, h)
ϕu∧

CΦ = g
s′Φ
1 gx2g

Φ
3 ∧

A
(1)
Φ = g

r
(1)
Φ

1 g
r
(2)
Φ

2 ∧

(A
(1)
Φ )eΦ = g

δ
(1)
Φ

1 g
δ
(2)
Φ

2 ∧
ê(A

(2)
Φ ,pk)

ê(g0,h)
= ê(A

(2)
Φ , h)−eΦ ê(g2, y)

r
(1)
Φ

ê(g2, h)
δ
(1)
Φ ê(g1, h)

sΦ ê(g2, h)
xê(g3, h)

Φ∧
κΦ = zsΦ∧
tu = Tcur − τu∧[(
tu < T0 ∧ ϕ̃u = 0

)
∨(

tu ≥ T0 ∧ tu ≤ T1 ∧ ϕ̃u = ρ(t− T0)
)
∨(

tu > T1 ∧ ϕ̃u = ρ(T1 − T0)
)]
∧

Φ̃ = Φ + ϕ̃u − ϕu∧
C̃u = g

s̃′u
1 g

x
2g

Bu
3 gτu4 g

ϕ̃u
5 ∧

C̃Φ = g
s̃′Φ
1 gx2g

Φ̃
3 ∧


and sends κΦ∥A(1)

Φ ∥A
(2)
Φ ∥A

(1)
u ∥A(2)

u ∥C̃Φ∥C̃u∥π2 to D.

D verifies π2 and κΦ, picks ẽΦ, s̃
′′
Φ, ẽu, s̃

′′
u

R←− Z∗
p , and computes ÃΦ =

(g0g
s̃′′Φ
1 C̃Φ)

1
ẽΦ+sk , Ãu = (g0g

s̃′′u
1 C̃u)

1
ẽu+sk . Then D sends (ÃΦ, ẽΦ, s̃

′′
Φ)∥(Ãu, ẽu, s̃′′u)

to U.

U computes s̃Φ = s̃′Φ + s̃′′Φ, s̃u = s̃′u + s̃′′u, sets σ̃Φ = (ÃΦ, ẽΦ, s̃Φ), σ̃u =
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(Ãu, ẽu, s̃u), and updates his credential with Φ̃, C̃Φ, s̃
′
Φ, σ̃Φ, ϕ̃u, C̃u, s̃

′
u, and σ̃u.

B.4 Getting a New Bridge

Suppose U wants to replace a blocked bridge Bb with a new bridge. U sends

Bb to D through an established Tor tunnel, and D verifies Bb is indeed blocked

and then replies with the blocking time βb of Bb.

U needs to prove possession of the signatures σb and σΦ. For this, U picks

r
(1)
b , r

(2)
b , r

(1)
Φ , r

(2)
Φ

R←− Z∗
p , and computes A

(1)
b = g

r
(1)
b

1 g
r
(2)
b

2 , A
(2)
b = Abg

r
(1)
b

2 , δ
(1)
b =

r
(1)
b eb, δ

(2)
b = r

(2)
u eb, A

(1)
Φ = g

r
(1)
Φ

1 g
r
(2)
Φ

2 , A
(2)
Φ = AΦg

r
(1)
Φ

2 , δ
(1)
Φ = r

(1)
Φ eΦ, δ

(2)
Φ =

r
(2)
Φ eΦ.

U can earn ϕ̃b = Credit(βb − τb) credits in total from Bb, and the resulting

credit balance after paying for the new bridge is Φ̃ = Φ + ϕ̃b − ϕb − ϕ−. U

picks s̃′Φ
R←− Z∗

p , computes C̃Φ = g
s̃′Φ
1 gx2g

Φ̃
3 , constructs the following proof:
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π3 = NIPK



(x,Φ, CΦ, eΦ, sΦ, s
′
Φ, r

(1)
Φ , r

(2)
Φ , δ

(1)
Φ , δ

(2)
Φ , τb,

ϕb, Cb, eb, sb, s
′
b, r

(1)
b , r

(2)
b , δ

(1)
b , δ

(2)
b , Φ̃, s̃′Φ) :

Cb = g
s′b
1 g

x
2g

Bb
3 gτb4 g

ϕb
5 ∧

A
(1)
b = g

r
(1)
b

1 g
r
(2)
b

2 ∧

(A
(1)
b )eb = g

δ
(1)
b

1 g
δ
(2)
b

2 ∧
ê(A

(2)
b ,pk)

ê(g0,h)
= ê(A

(2)
b , h)−eb ê(g2, y)

r
(1)
b

ê(g2, h)
δ
(1)
b ê(g1, h)

sb ê(g2, h)
x

ê(g3, h)
Bb ê(g4, h)

τb ê(g5, h)
ϕb∧

κb = zsb∧
CΦ = g

s′Φ
1 gx2g

Φ
3 ∧

A
(1)
Φ = g

r
(1)
Φ

1 g
r
(2)
Φ

2 ∧

(A
(1)
Φ )eΦ = g

δ
(1)
Φ

1 g
δ
(2)
Φ

2 ∧
ê(A

(2)
Φ ,pk)

ê(g0,h)
= ê(A

(2)
Φ , h)−eΦ ê(g2, y)

r
(1)
Φ

ê(g2, h)
δ
(1)
Φ ê(g1, h)

sΦ ê(g2, h)
xê(g3, h)

Φ∧
κΦ = zsΦ∧
tb = βb − τb∧[(
tb < T0 ∧ ϕ̃b = 0

)
∨(

tb ≥ T0 ∧ tb ≤ T1 ∧ ϕ̃b = ρ(tb − T0)
)
∨(

tb > T1 ∧ ϕ̃b = ρ(T1 − T0)
)]
∧

Φ̃ = Φ + ϕ̃b − ϕb − ϕ−∧
Φ̃ > 0

C̃Φ = g
s̃′Φ
1 gx2g

Φ̃
3 ∧


and sends κΦ∥κb∥A(1)

Φ ∥A
(2)
Φ ∥A

(1)
b ∥A

(2)
b ∥C̃Φ∥π3 to D.

D verifies π3, κb, and κΦ. Similar to the OT in the registration, U sends D

a list of nonces, and D chooses a pair of one-time keys to sign each available

bridge using the corresponding nonce. Running OT, U obtains B̃b∥σ̃ob , where
σ̃ob = (Ãob, ẽ

o
b, s̃

o
b).

To update the credential with the new bridge B̃b, U sets τ̃b = Tcur and ϕ̃b =

0, picks s̃′b
R←− Z∗

p , and computes C̃b = g
s̃′b
1 g

x
2g

B̃b
3 gτ̃b4 g

ϕ̃b
5 . To prove possession

of σ̃ob , U picks r̃
(1)
b , r̃

(2)
b

R←− Z∗
p , and computes Ã

(1)
b = g

r̃
(1)
b

1 g
r̃
(2)
b

2 , Ã
(2)
b = Ãobg

r̃
(1)
b

2 ,

δ̃
(1)
b = r̃

(1)
b ẽob, δ̃

(2)
b = r̃

(2)
b ẽob. Then, U constructs the following proof:
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π4 = NIPK



(x, Φ̃, s̃′Φ, B̃b, τ̃b, ϕ̃b, ẽ
o
b, s̃

o
b, s̃

′
b, r̃

(1)
b , r̃

(2)
b ,

δ̃
(1)
b , δ̃

(2)
b ) :

C̃Φ = g
s̃′Φ
1 gx2g

Φ̃
3

τ̃b = Tcur ∧ ϕ̃b = 0∧
C̃b = g

s̃′b
1 g

x
2g

B̃b
3 gτ̃b4 g

ϕ̃b
5 ∧

Ã
(1)
b = g

r̃
(1)
b

1 g
r̃
(2)
b

2 ∧

(Ã
(1)
b )ẽb = g

δ̃
(1)
b

1 g
δ̃
(2)
b

2 ∧
ê(Ã

(2)
b ,pk)

ê(g0,h)
= ê(Ã

(2)
b , h)−ẽ

o
b ê(g2, h)

r̃
(1)
b

ê(g2, h)
δ̃
(1)
b ê(g1, h)

s̃ob ê(g3, h)
B̃b


and sends Ã

(1)
b ∥Ã

(2)
b ∥C̃b∥π4 to D.

D verifies π4, picks ẽΦ, s̃
′′
Φ, ẽb, s̃

′′
b

R←− Z∗
p , and computes ÃΦ = (g0g

s̃′′Φ
1 C̃Φ)

1
ẽΦ+sk ,

Ãb = (g0g
s̃′′b
1 C̃b)

1
ẽb+sk . Then D sends (ÃΦ, ẽΦ, s̃

′′
Φ)∥(Ãb, ẽb, s̃′′b ) to U.

U computes s̃Φ = s̃′Φ + s̃′′Φ, s̃b = s̃′b + s̃′′b , sets σ̃Φ = (ÃΦ, ẽΦ, s̃Φ), σ̃b =

(Ãb, ẽb, s̃b), and updates his credential with Φ̃, C̃Φ, s̃
′
Φ, σ̃Φ, ϕ̃b, C̃b, s̃

′
b, and σ̃b.

B.5 Inviting New Users

A user U who requests an invitation ticket needs to prove that his credit

balance is higher than the threshold, i.e., Φ > Φθ, and the last time he

applied for an invitation ticket is at least ωθ days ago, i.e., Tcur −ω ≥ ωθ. In

addition, U needs to prove possession of the signatures σΦ and σω. Hence, U

constructs the following proof:
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π5 = NIPK



(x,Φ, CΦ, eΦ, sΦ, s
′
Φ, r

(1)
Φ , r

(2)
Φ , δ

(1)
Φ , δ

(2)
Φ , ω,

Cω, eω, sω, s
′
ω, r

(1)
ω , r

(2)
ω , δ

(1)
ω , δ

(2)
ω , ω̃, s̃′ω, s̃

′
Φ) :

CΦ = g
s′Φ
1 gx2g

Φ
3 ∧

A
(1)
Φ = g

r
(1)
Φ

1 g
r
(2)
Φ

2 ∧

(A
(1)
Φ )eΦ = g

δ
(1)
Φ

1 g
δ
(2)
Φ

2 ∧
ê(A

(2)
Φ ,pk)

ê(g0,h)
= ê(A

(2)
Φ , h)−eΦ ê(g2, y)

r
(1)
Φ

ê(g2, h)
δ
(1)
Φ ê(g1, h)

sΦ ê(g2, h)
xê(g3, h)

Φ∧
κΦ = zsΦ∧
Cω = g

s′ω
1 g

x
2g

ω
3∧

A
(1)
ω = gr

(1)
ω

1 gr
(2)
ω

2 ∧
(A

(1)
ω )eω = gδ

(1)
ω

1 gδ
(2)
ω

2 ∧
ê(A

(2)
ω ,pk)

ê(g0,h)
= ê(A

(2)
ω , h)−eω ê(g2, y)

r
(1)
ω

ê(g2, h)
δ
(1)
ω ê(g1, h)

sω ê(g2, h)
xê(g3, h)

ω∧
κω = zsω∧
Φ > Φθ∧
Tcur − ω > ωθ∧
ω̃ = Tcur∧
C̃ω = g

s̃′ω
1 g

x
2g

ω̃
3∧

C̃Φ = g
s̃′Φ
1 gx2g

Φ
3


and sends κΦ∥κω∥A(1)

Φ ∥A
(2)
Φ ∥A

(1)
ω ∥A(2)

ω ∥C̃Φ∥C̃ω∥π5 to D.

After verifying π5, κΦ and κω, D picks ẽΦ, s̃
′′
Φ, ẽω, s̃

′′
ω

R←− Z∗
p , computes ÃΦ =

(g0g
s̃′′Φ
1 C̃Φ)

1
ẽΦ+sk , Ãω = (g0g

s̃′′ω
1 C̃ω)

1
ẽω+sk , and sends (ÃΦ, ẽΦ, s̃

′′
Φ)∥(Ãω, ẽω, s̃′′ω) to

U. . Then, D flips a biased coin to decide whether to give an invitation ticket

to U; if so, D generates an one-time ticket tk = {r∗,HMACscrtD(r
∗)}, where

r∗
R←− Z∗

p , and sends it to U.

Regardless of receiving an invitation ticket, U computes s̃Φ = s̃′Φ + s̃′′Φ,

s̃ω = s̃′ω + s̃′′ω, sets σ̃Φ = (ÃΦ, ẽΦ, s̃Φ), σ̃ω = (Ãω, ẽω, s̃ω), and updates his

credential with C̃Φ, s̃
′
Φ, σ̃Φ, ϕ̃ω, C̃ω, s̃

′
ω, and σ̃ω.
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