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Abstract

Any successful software system continuously evolves in response to ever-changing requirements. Developers

regularly add new or adjust existing features, fix bugs, tune performance, etc. Thus, code change is the

heart of software development.

Nevertheless, the traditional programming environments and toolkits treat changes as a by-product of

software evolution. First, most of the tools do not offer direct access to the history of code changes and do

not allow to browse or manipulate these changes. Second, different tools represent changes differently and

thus, do not understand each other. For example, text editors treat changes to the edited document at the

character level, Version Control Systems (VCS) track changes as text line differences in the corresponding

file, and refactoring engines represent changes with high-level descriptors. Third, the most common, textual

representation of changes is inappropriate for a developer, who reasons in terms of program entities rather

than individual characters or text lines. Hence, the current tools’ support for the major activity of a

developer, code changing, is limited.

To address these limitations, we propose to make change the first-class citizen and place it at the center

of a programming environment. In our approach, we represent any change, from low-level code edits up

to high-level automated refactorings, as a program transformation. Consequently, we express a version of a

program as a sequence of such program transformations.

We developed CodingTracker, an infrastructure that captures all changes that affect a program’s code.

CodingTracker uniformly represents the raw captured changes as operations on the corresponding Abstract

Syntax Tree (AST) nodes. These AST node operations are the lowest level of program transformations

that serve as building blocks for higher level transformations. Also, CodingTracker implements a replayer

that enables a developer to browse and replay the captured code changes. We employed CodingTracker to

perform a field study and answered several important code evolution research questions that could not be

answered without such infrastructure.

As part of CodingTracker, we implemented an algorithm that infers refactorings from the AST node

operations. Refactorings are high-level program transformations that improve the underlying code’s design
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without affecting its behavior. Our algorithm infers refactorings from continuous code changes, and thus,

it could be applied on-line, assisting a developer with the refactoring process. Moreover, our refactoring

inference algorithm enabled us to perform a field study that compared the practice of manual and auto-

mated refactorings. Our findings reveal new facts about the refactoring practice that benefit code evolution

researchers, tool builders, and developers.

Finally, we augmented CodingTracker with an algorithm that helps identify high-level program trans-

formations without prior knowledge of how these transformations look. Our novel algorithm employs data

mining techniques to detect frequent code change patterns. We applied our algorithm on the data collected

in our field study and showed that it is scalable and effective. Analyzing the detected code change patterns,

we identified ten kinds of popular program transformations. Our results shed light on how developers evolve

their code as well as enable tool builders to automate common program transformations.
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Chapter 1

Introduction

1.1 Change is the Heart of Software Development

Any successful software system continuously evolves in response to ever-changing requirements [88]. De-

velopers spend most of their time changing the existing software systems, while companies spend more on

maintaining old software systems than on developing new ones. In particular, it is a known fact that at least

two-thirds of software costs are due to evolution [10,16,24,42,57,91,146], with some industrial surveys [40]

claiming 90%.

There are many kinds of changes that developers regularly perform on their code. For example, developers

add new features to expand the capabilities of a software system, fix bugs in the existing features, and

perform refactorings to improve the system’s design without affecting its behavior. Also, it is common that

one change leads to other changes in the evolving code. In particular, implementing a new feature requires

adding new tests and/or updating some of the existing tests. Fixing a bug in an already implemented

feature is another frequent activity of developers that causes a similar ripple effect on the tests. Moreover,

developers change a software system in response to changes that are external to it. For example, changes

in the underlying hardware might require re-optimizing the system’s code. Similarly, changes in the used

libraries might require adapting the system to the updated library APIs.

In spite of the pervasive nature of code changes, the modern development toolkits provide inadequate

support for them. Consequently, developers predominantly perform changes as manual text edits (refactor-

ings automated in some modern IDEs are the rare exceptions). Manual text edits are not only tedious and

error-prone, but also too low-level for browsing and understanding changes retrospectively. As a result, such

changes are never reused.

Code evolution researchers also face the problem of retrospective change understanding. Since low-level

textual changes are not suitable for such tasks, researchers [5, 43, 52, 78, 79, 82, 134, 139] designed tools that

infer structural high-level changes in the evolving code. Unfortunately, the primary source of data for this

inference are Version Control System (VCS) snapshots, which lack a significant fraction of code evolution
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information [104].

Our vision is that code change should be placed at the center of a programming environment. In

a change-oriented programming environment any change should be treated as a program transformation.

Thus, programmers would develop their code as a continuous application of program transformations, which

could be customized, combined, and easily accessed for understanding, reusing, adjusting, undoing, etc.

Our environment would enable discovery and automation of popular program transformations. However,

we envision that automating all program transformations that a developer might need is an infeasible task.

Therefore, the proposed environment should simplify crafting of custom program transformations that a

developer would create once and reuse as many times as needed. Also, a change-oriented programming

environment should provide a collection of basic program transformations and support their composition

such that developers could easily construct more high-level program transformations out of the lower-level

ones.

In the following, we present the current problems of code evolution researchers and developers in more

detail and show how we address some of these problems.

1.2 Traditional Data Sources for Software Evolution Research

are Limited

Software evolution research extracts the code evolution information from the historical data of an application.

The traditional source of this historical data is a file-based Version Control System (VCS). File-based VCSs

are very popular among developers (e.g., Git [51], SVN [127], CVS [27]). Therefore, software evolution

researchers [1,31,32,39,41,46–48,50,53,61,64,71,73,83,89,117,125,126,135,137,138,149] use VCS to access

the historical data of many software systems. Although convenient, using VCS code evolution data for

software evolution research is inadequate.

First, it is incomplete. A single VCS commit may contain hours or even days of code development.

During this period, a developer may change the same code fragment multiple times, for example, tuning its

performance, or fixing a bug. Therefore, there is a chance that a subsequent code change would override

an earlier change, thus shadowing it. Since a shadowed change is not present in the code, it is not present

in the snapshot committed to VCS. Therefore, code evolution research performed on the snapshots stored

in the VCS (like [46–48]) does not account for shadowed code changes. Ignoring shadowed changes could

significantly limit the accuracy of tools that try to infer the intent of code changes (e.g., infer refactorings [31,

32,53,135,137], infer bug fixes [62,81,84,86,116,148]). For example, if a method is renamed more than once,
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a snapshot-based analysis would infer only the last refactoring.

Second, VCS data is imprecise. A single VCS commit may contain several overlapping changes to the

same program entity. For example, many times refactorings overlap with editing sessions, e.g., a method

is both renamed, and its method body is changed dramatically. Refactorings can also overlap with other

refactorings, e.g., a method is both renamed and its arguments are reordered. This overlap makes it harder

to infer the intent of code changes.

Third, answering research questions that correlate code changes with other development activities (e.g.,

test runs, automated refactorings) is impossible. VCS is limited to code changes, and does not capture many

kinds of other developer actions: running the application or the tests, invoking automated refactorings from

the IDE, etc. This severely limits the ability to study the code development process. What is the proportion

of manual vs. automated refactorings? How often do developers commit changes that are untested? How

often do they fix assertions in the failing tests rather then fixing the system under test? These are all

examples of questions that cannot be answered using VCS data only.

1.3 Code Developers Lack Tools for Effective Change

Management

Although code change is the heart of software development, the conventional programming environments

and toolkits provide inadequate support for managing change.

Common code development tools do not allow a developer to access the history of code changes. For

example, if a developer fixes a bug using a text editor, he sees only the resulting code rather than a sequence

of changes that transformed the original, buggy code into the correct one. A developer might be interested

in the changes that fix a bug for a variety of reasons. For example, similar changes might have to be applied

to an instance of the same bug in a different part of the code. Or, the developer could report this sequence

of changes to facilitate the fix review.

Eclipse [37] refactoring history is a rare example when a developer can access the sequence of a specific

kind of high-level changes, refactorings, that were automatically applied to the developed application. Un-

fortunately, this history log is static and does not allow a developer to manipulate the contained refactorings.

A developer might be interested in manipulating high-level changes in order to adjust them for a specific

task. For example, while optimizing a loop, in addition to browsing the optimizations applied to this loop, a

developer might need to manipulate some of them to achieve better performance, e.g., undo those that are

redundant or adjust such parameters as tile size or unroll factor.
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Another problem is that different tools represent changes differently. In particular, text editors treat

changes to the edited document at the character level, Version Control Systems (VCS) track changes as

text line differences in the corresponding file, and refactoring engines represent changes with high-level

descriptors. Consequently, different tools do not cooperate well. For example, traditional VCS do not

understand that a particular line is changed as a result of a refactoring. Consider the scenario in which a

single code line represents an expression involving a variable. Two developers check out the code containing

this line. One developer renames this variable, while another developer changes the expression’s operation.

Although these changes affect the same line, they are not conflicting and thus, should be merged without

problems. Nevertheless, if these two developers commit their changes to the repository (in any order), VCS

will report a spurious syntactic conflict to the second committer.

Arguably the most important problem is that the vast majority of tools represent changes in textual form.

Textual representation is too low-level and irregular. It does not express well the intent of a developer, who

reasons in terms of program entities rather than individual characters or text lines. For example, a single

textual change could represent typing a single character or inserting a whole class declaration. Moreover,

even if several textual changes are equivalent in the number of affected characters, they could have a totally

different impact on the underlying code depending on whether they represent editing a comment, typing a

long name of a single variable, or adding several short statements.

Another limitation of textual representation is that it hinders expression of high-level changes as a

composition of multiple low-level changes. Such expression is crucial to enable cooperation of tools that

operate on different levels, e.g., text editors and automated refactoring engines. Besides, flexible composition

of several changes will both allow a developer to create new kinds of changes and enable a programming

environment to effectively automate them.

Although many code changes are repetitive by nature, and thus form code change patterns, the existing

IDEs cannot identify such changes on-the-fly, i.e., when the changes are in progress. Identifying repetitive

changes on-the-fly would enable an IDE to better support them, e.g., by performing such changes auto-

matically or checking their consistency. The existing research [17, 20, 21, 66, 90, 96, 128, 130, 141, 143, 150]

predominantly detects frequent code change patterns either analyzing the static source code of an applica-

tion or comparing the application’s VCS snapshots, neither of which is suitable to learn code changes as soon

as they happen. Recent research [44,49] aimed at providing on-the-fly code change assistance to developers,

but their code change identification techniques were limited in two ways: (i) they were looking for a single

kind of code change pattern — refactorings, (ii) they considered only a small subset of previously known

kinds of refactorings.
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1.4 Thesis Statement

Our goal is to address some of the limitations of current programming environments mentioned above by

moving change to a higher level of abstraction, making it first-class citizen, and placing it at the center of

a programming environment. Our thesis is that a programming environment that focuses on code changes

rather than the code itself is implementable and has the following advantages over a traditional environment:

• It allows code evolution researchers to capture more fine-grained and precise changes to the code.

• It enables researchers to infer refactorings from manual code edits in real time.

• It makes it possible for researchers to automate the detection of frequent code change patterns that

help identify previously unknown high-level program transformations that developers repeatedly apply

to different code fragments.

Although in this dissertation we show the usefulness of placing code change at the center of a programming

environment for researchers only, we think that our approach and the developed infrastructure is the first

step to address the problems of developers as well. In particular, we have not formally evaluated the

usefulness of our record/replay infrastructure, but we think that developers would benefit from it. For

example, developers can employ this infrastructure to access the detailed history of code changes and thus,

improve their understanding of code evolution. Moreover, our infrastructure could be augmented with more

advanced UIs that will facilitate such understanding (e.g., by grouping changes along such dimensions as

time, a specific program entity, a particular developer, etc.). Additionally, our refactoring inference algorithm

can be applied on-line and thus, serve as the core of a tool that offers continuous support of a developer’s

refactoring activity. Such a tool could automatically complete a refactoring that a developer started to

perform manually or check correctness of a refactoring that the developer completed manually. Finally,

the results of our empirical studies can be used to guide the work of tool builders, e.g., they can prioritize

automation of those refactoring kinds that are popular among developers.

1.5 A Change-Oriented Programming Environment

1.5.1 Capturing and Representing Detailed Code Evolution Data

To overcome the limitations of the traditional data sources of software evolution researchers, we track all

changes that directly or indirectly affect the underlying code. We developed a tool, CodingTracker, an Eclipse

plug-in that unintrusively collects fine-grained data about code evolution of Java programs. In particular,
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CodingTracker records every code edit performed by a developer. It also records many other developer

actions, for example, invocations of automated refactorings, tests and application runs, interactions with

Version Control System (VCS), etc. The collected data is so precise that it enables us to reproduce the state

of the underlying code at any point in time.

Individual code edits collected by CodingTracker represent code-changing actions of a developer in the

most precise way, but they are too irregular to serve as a unit of change in a code evolution analysis.

Therefore, we define a unit of code change as an atomic operation on an Abstract Syntax Tree (AST) node:

add, delete, or update, where add adds a node to AST, delete removes a node from AST, and update changes

a property of an existing AST node (e.g., name of a variable). Note that move operation, which moves a

child node from one parent to another one in an AST, is not atomic, but rather consists of two consequent

AST node operations: delete and add. Thus, we do not consider move a unit of code change.

In contrast to raw code edits, AST node operations are a higher level of abstraction and can serve as

building blocks for high-level transformations in the proposed programming environment. For example, a

refactoring could be expressed either with a high-level descriptor or with a sequence of AST node opera-

tions (as well as some other basic operations like deleting or moving a source code file) that represent the

refactoring’s effects on the underlying code.

We developed a novel algorithm [104] that infers AST node operations from the collected raw code edits.

Our algorithm takes as input a sequence of code changes, infers the corresponding AST node operations,

and inserts the inferred operations in the original sequence such that every AST node operation immediately

follows the code edits from which it was inferred.

To demonstrate the benefits of capturing more detailed data about code evolution as well as quantify the

limitations of VCS snapshots, we performed a field study on 24 developers working in their natural settings.

We asked our participants to install CodingTracker in their Eclipse IDEs. During the study, CodingTracker

collected data for 1,652 hours of development, which involve 2,000 commits comprising 23,002 committed

files, and 9,639 test session runs involving 314,085 testcase runs.

The collected data enabled us to answer five research questions that could not be answered without a

tool like CodingTracker. In particular, we found that 37% of code changes are shadowed by other changes,

and are not stored in VCS. Also, developers intersperse different kinds of changes in the same commit. For

example, 46% of refactored program entities are also edited in the same commit. Both these findings provide

quantitative evidence of how incomplete and imprecise VCS data is.
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1.5.2 Accessing and Replaying the History of Code Changes

As part of CodingTracker, we implemented a replayer that enables a developer to directly access the full

history of code changes. Our replayer allows a developer to load a recorded sequence of code changes, browse

it, hide kinds of changes that the developer is not interested in (e.g., invocations of automated refactorings

or textual edits), and replay the sequence at any desired pace. CodingTracker’s replayer is an Eclipse View

that is displayed alongside other Views of an Eclipse workbench, thus enabling the developer to see the

results of the replayed changes in the same Eclipse instance. The developer can use breakpoints to stop the

replaying at specific points. Also, the developer can reset the replaying and start over as many times as

needed.

The developer can select any code change in the list and see its detailed information in the bottom pane

of the replayer. For a simple code edit, this information includes the new and the old text, the offset, and

the length of the deleted text. For an invocation of automated refactoring, this information includes the

refactoring kind, the handler of the refactored program entity, the configuration options of the refactoring,

etc. Also, for all code changes, the replayer displays the timestamp at which the corresponding change took

place.

1.5.3 Inferring Refactorings from Continuous Code Changes

Refactoring [45] is an important part of software development. Development processes like eXtreme Pro-

gramming [13] treat refactoring as a key practice. Refactoring has revolutionized how programmers design

software: it has enabled programmers to continuously explore the design space of large codebases, while

preserving the existing behavior. Modern IDEs such as Eclipse, NetBeans, IntelliJ IDEA, or Visual Studio

incorporate refactoring in their top menu and often compete on the basis of refactoring support.

Understanding the practice of refactoring helps researchers by validating or refuting assumptions that

were previously based on folklore. It can also focus research attention on the refactorings that are popular

in practice. Moreover, it can open new directions of research. For example, we discovered [101] that more

than one third of the refactorings performed in practice are applied in a close time proximity to each other,

thus forming a cluster. This result motivates new research [87,131] into refactoring composition.

Since refactoring became an integral part of the daily activity of developers, they would benefit from

better support for refactoring processes in IDEs. Let’s consider a developer performs a refactoring manually.

If a programming environment infers this refactoring on-the-fly, it will be able to better assist the developer.

For example, the environment could check the correctness of the refactoring and advise the developer of any

inconsistencies. Even if there are no problems, the environment could inform the developer about availability
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of an automated refactoring, whose invocation would spare the developer from manual burden the next time

he needs to perform this refactoring.

We infer refactorings from continuous code changes. Such inference is more accurate than the one

performed on the VCS snapshots, since it does not suffer from the incompleteness and imprecision of the data

stored in VCS (see Section 1.2). Moreover, continuous analysis allows us to correlate the inferred refactorings

with other development activities, for example, invocations of automated refactorings. Additionally, inferring

refactorings from continuous code changes can be performed on-the-fly and thus, enables an IDE to assist a

developer with refactorings while they are in progress [44,49].

In Section 1.5.1, we introduced our novel algorithm that continuously infers AST node operations —

adds, deletes, and updates — from fine-grained code edits (e.g., typing characters). To infer refactorings, we

designed and implemented an algorithm that takes as input these AST node operations. First, our refactoring

inference algorithm infers high-level properties, e.g., replacing a variable reference with an expression. Then,

from their combination it infers refactorings. For example, it infers that a local variable was inlined when

it notices that a variable declaration is deleted and all its references are replaced with the initialization

expression.

Our refactoring inference algorithm enabled us to perform a comparative study of manual and automated

refactorings. We applied our algorithm on the real code evolution data from 23 developers, working in their

natural environment for 1,520 hours. In our study, we answered seven research questions. In particular, we

found that more than half of the refactorings were performed manually, and thus, the existing studies that

focus on automated refactorings only might not be generalizable since they consider less than half of the

total picture. We also found that the popularity of automated and manual refactorings differs. Our results

present a fuller picture about the popularity of refactorings in general, which should help both researchers

and tool builders to prioritize their work.

1.5.4 Identifying Previously Unknown Program Transformations

Although inferring refactorings benefits a developer in many ways, it is still limited, because refactorings

represent only a single kind of program transformation that developers apply to their codebases. Besides,

refactoring inference tools [31, 32, 44, 49, 53, 135, 137] support only a fixed number of predefined refactoring

kinds, which narrows their usefulness even further.

We apply data mining techniques to detect previously unknown frequent code change patterns from a

continuous sequence of code changes. Since our approach works on a continuous sequence of code changes,

it can be applied either on-the-fly, or on a previously recorded sequence. An IDE that learns code change
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patterns on-the-fly (i.e., as soon as the developer types them) can (i) perform the corresponding change

automatically the next time a developer needs it or (ii) detect inconsistencies in the code changes if the

developer continues to perform them manually.

There are unique challenges posed by our problem domain of program transformations, which render

previous off-the-shelf data mining techniques [59] inapplicable. First, for program transformations, we need

to mine a contiguous sequence of code changes that are ordered by their timestamps, without any previous

knowledge of where the boundaries between patterns of transformations are. In contrast, standard data

mining techniques operate on a database of transactions with well known boundaries (e.g., the user is

checking out all items in the shopping cart). Thus, we need to divide the contiguous sequence of program

changes into individual transactions. If we make the transactions disjoint (as in the existing data mining

techniques), we will miss patterns that cross the boundaries of two transactions. To avoid missing such

patterns, we employ overlapping transactions.

Second, unlike the standard frequent itemset mining, when mining frequent code change patterns, a

high-level program transformation corresponding to a given pattern may contain several instances of the

same kind of code change. For example, Rename Local Variable refactoring involves the same change for

all references of the renamed variable. Consequently, in our mining problem, a transaction may contain

multiple instances of the same item kind, thus forming itembags rather than itemsets.

We designed and implemented a novel frequent code change pattern mining algorithm. Our algorithm

employs the vertical data format [144] to directly access the transaction identifiers while computing new

itemsets, which is crucial for effective handling of overlapping transactions and itembags. Our approach

is inspired by several ideas from CHARM [145], the state-of-the-art algorithm for frequent closed itemsets

mining that uses the vertical data format. In particular, our algorithm extends the notion of itemset-tidset

tree (IT-tree) and adapts several optimization insights of CHARM.

We applied our novel algorithm on a large corpus of real world data that we employed in our previous

study of refactoring practice [101], in which we accumulated 1,520 hours of code development from 23

developers working in their natural settings. Overall, our algorithm mined more than half a million item

instances in less than six hours. We analyzed some of the frequent code change patterns detected by our

algorithm and identified ten kinds of popular high-level program transformations. On average, 32% of the

pattern occurrences reported by the algorithm led to high-level program transformation discoveries. Thus,

our algorithm is scalable, effective, and useful.
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1.6 Contributions

This dissertation makes the following contributions:

1. Problem description. This dissertation identifies important limitations of the current code devel-

opment toolkits and traditional data sources for code evolution research.

2. Notion of a change-oriented environment. We present the notion of a development environment

that focuses on code changes rather than code itself. Our approach fundamentally differs from the

current state-of-the-art and overcomes its limitations.

3. Change tracking infrastructure. We developed an infrastructure that captures and replays all

changes to the evolving code as well as many other development actions. Our infrastructure represents

code changes uniformly and consistently as AST node operations. Our infrastructure serves as the

foundation of a change-oriented environment.

4. Inference of high-level program transformations. We employed our change tracking infras-

tructure to design and implement two algorithms that infer high-level program transformations from

low-level code edits. One algorithm detects known transformations like refactorings with a high ac-

curacy, while another helps identify previously unknown program transformations. Our algorithms

employ continuous change analysis, and thus, can be applied both online and offline.

5. Empirical studies. We performed empirical studies on code evolution and practice of refactoring

and answered 12 research questions that could not be answered without an infrastructure like ours.

1.7 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the infrastructure of our change-

oriented development environment. The first part introduces our tool, CodingTracker, that captures and

replays a variety of development actions. The second part presents our algorithm for inferring AST node

operations from low-level text edits. The chapter concludes with the results of our empirical study on source

code evolution.

Chapter 3 presents our algorithm that infers known high-level program transformations, e.g., refactorings,

from low-level program transformations (AST node operations) using continuous analysis. The second part

of the chapter presents the results on our comparative study of manual vs. automated refactoring practice.
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Chapter 4 presents our data mining algorithm for detecting previously unknown high-level program

transformations. The chapter concludes with an empirical evaluation of our algorithm on real-world code

evolution data that shows that our algorithm is scalable, effective, and useful.

Chapter 5 overviews related work and Chapter 6 presents future work. Chapter 7 concludes this disser-

tation.

Parts of this dissertation have been published in conference papers and technical reports: Chapter 2

is presented in an ECOOP-2012 paper [104], Chapter 3 is described in an ECOOP-2013 paper [101], and

Chapter 4 is currently under submission [102] to a top-tier software engineering conference. All these chapters

have been reorganized and augmented for inclusion in this dissertation.
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Chapter 2

Tracking Fine-Grained and Precise
Changes to the Code

2.1 Capturing and Replaying Code Changes

Our goal is to capture and replay code changes in a way that reproduces the actual development sessions

as closely as possible. Note that capturing only code changing events is not sufficient for our goal. In

particular, there are a number of code development events that define a context for code changing events.

Without capturing these related events, it is impossible to correctly replay code changes. Therefore, besides

code changing events, we track such related events as editing a file, saving a file, closing a file (with or

without saving its content), moving a resource, etc. Some code development events are not directly related

to code changes, but they still are part of code evolution, and thus, we track them to get a better insight

into development practices. Examples of such events are test runs and interactions with a Version Control

System (VCS). Table 2.1 presents the complete list of the registered events, which we split into 38 different

kinds and grouped in 10 categories.

To keep track of code development events, we developed an Eclipse plug-in, CodingTracker. Coding-

Tracker records the detailed information about each registered event, including the timestamp at which this

event is triggered. For example, for a performed/undone/redone text edit, CodingTracker records the offset

of the edit in the edited document, the removed text (if any), and the added text (if any). In fact, the

recorded information is so detailed and precise that CodingTracker’s replayer uses it to reconstruct the state

of the evolving code at any point in time.

CodingTracker’s replayer is an Eclipse View that is displayed alongside other Views of an Eclipse work-

bench, thus enabling a developer to see the results of the replayed events in the same Eclipse instance.

Figure 2.1 illustrates CodingTracker’s replayer. The replayer allows a developer to load a recorded sequence

of events, browse it, hide events of the kinds that the developer is not interested in, and replay the sequence

at any desired pace. Additionally, the replayer supports breakpoints (the row labeled with number 3 in

Figure 2.1), which cause the replaying to stop after reaching the corresponding event. The row of an event

that is about to be replayed is labeled with number 2. A developer can select any event in the list (the row
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Category Event Description

Text editing

Perform/Undo/Redo Perform/Undo/Redo a text edit
text edit in a Java editor.

Perform/Undo/Redo Perform/Undo/Redo a text edit
compare editor text edit in a compare editor.

File editing

Edit file Start editing a file in a Java editor.

Edit unsynchronized file
Start editing a file in a Java editor that is

not synchronized with the underlying resource.
New file A file is about to be edited for the first time.

Refresh file
Refresh a file in a Java editor to

synchronize it with the underlying resource.
Save file Save file in a Java editor.
Close file Close file in a Java editor.

Compare editors
Open compare editor Open a new compare editor.
Save compare editor Save a compare editor.
Close compare editor Close a compare editor.

Refactorings
Start refactoring Perform/Undo/Redo a refactoring.
Finish refactoring A refactoring is completed.

Resource
manipulation

Create resource Create a new resource (e.g. file).
Copy resource Copy a resource to a different location.
Move resource Move a resource to a different location.
Delete resource Delete a resource.

Externally modify resource
Modify a resource from outside of Eclipse

(e.g. using a different text editor).

Interactions
with Version

Control System
(VCS)

CVS/SVN update file Update a file from VCS.
CVS/SVN commit file Commit a file to VCS.

CVS/SVN initial
Commit a file to VCS for the first time.

commit file

JUnit test runs

Launch test session A test session is about to be started.
Start test session Start a test session.
Finish test session A test session is completed.

Start test case Start a test case.
Finish test case A test case is completed.

Start up events
Launch application Run/Debug the developed application.

Start Eclipse Start an instance of Eclipse.

Workspace and
Project Options

Change workspace options Change global workspace options.
Change project options Change options of a refactored project.

Project References Change referencing projects
Change the list of projects that
reference a refactored project.

Table 2.1: The complete list of events recorded by CodingTracker.
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labeled with number 1) and see its detailed information in the bottom pane. CodingTracker’s replayer uses

red, yellow, and blue colors to mark breakpoints, the event that is about to be replayed, and the selected

event correspondingly.

To ensure that the recorded data is correct, CodingTracker records redundant information for some events.

This additional data is used to check that the reconstructed state of the code matches the original one. For

example, for every text edit, CodingTracker records the removed text (if any) rather than just the length

of the removed text, which would be sufficient to replay the event. For CVS/SVN commits, CodingTracker

records the whole snapshot of the committed file. While replaying text edits and CVS/SVN commits,

CodingTracker checks that the edited document indeed contains the removed text and the committed file

matches its captured snapshot1.

Eclipse creates a refactoring descriptor for every invocation of automated refactorings. Refactoring de-

scriptors are designed to capture sufficient information to enable replaying of the corresponding refactorings.

Nevertheless, we found that some descriptors do not store important refactoring configuration options and

thus, cannot be used to reliably replay the corresponding refactorings. For example, the descriptor of Extract

Method refactoring does not capture information about the extracted method’s parameters. Consequently,

an Extract Method refactoring cannot be correctly reproduced from a descriptor recorded by Eclipse. To

overcome this issue, besides recording refactoring descriptors of the performed/undone/redone automated

Eclipse refactorings, CodingTracker records the refactorings’ effects on the underlying code. A refactoring’s

effects are events triggered by the execution of this refactoring — usually, one or more events from the Text

editing, File editing, and Resource manipulation categories presented in Table 2.1. In a sequence of recorded

events, effects of an automated refactoring are located between its Start refactoring and Finish refactoring

events as shown in Figure 2.1. To ensure robust replaying, CodingTracker replays the recorded refactorings’

effects rather than their descriptors.

2.2 Inferring AST Node Operations

2.2.1 Unit of Code Change

Individual code edits collected by CodingTracker are too low-level and irregular to express well the intents

of a developer, who reasons in terms of program entities rather than text characters or lines. Therefore, we

define a unit of code change as a higher level of abstraction — an atomic operation on an Abstract Syntax

Tree (AST) node: add, delete, or update, where add adds a node to AST, delete removes a node from AST,

1Note that replaying CVS/SVN commits does not involve any interactions with VCS, but rather checks the correctness of
the replaying process.
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Figure 2.1: CodingTracker’s replayer with a preloaded sequence of events.
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and update changes a property of an existing AST node (e.g. name of a variable). Note that although AST

node operations represent changes more uniformly than individual code edits, they are still too low-level to

be directly useful for a developer. In our program transformations inference infrastructure, these AST node

operations form the lowest level, from which we infer high-level program transformations (e.g., refactorings

— see Section 3.2).

We infer AST node operations from code edits collected by CodingTracker. We apply our inferencing

algorithm while replaying the collected data. CodingTracker’s replayer makes it possible to reproduce the

recorded development sessions, which helped us to improve our AST node operations inferencing algorithm

to effectively handle the variety of code development scenarios recorded by CodingTracker.

AST node operations are the lowest level of program transformations. A high-level transformation might

involve several AST node operations. For example, a Rename Local Variable refactoring involves as many

update AST node operations as the number of bindings of the renamed local variable. To reflect this struc-

tural hierarchy, we need to establish how AST node operations correlate with other actions of a developer,

e.g. whether an AST node operation is a result of an automated refactoring. Therefore, CodingTracker

inserts the inferred AST node operations in the original event sequence right after the subsequence of code

edits that produce them.

Figure 2.2 illustrates the same event sequence as Figure 2.1, but with the inferred AST node operations.

We can see the details about the selected AST operation in the bottom pane. For example, this operation

changes the node’s text from MyTestClass to MyClass. Another observation is that the displayed sequence

contains several instances of AST file operation, which is an equivalent of Edit file event for AST node

operations. That is, instead of recording the source code file that an AST node operation belongs to in every

such operation, we factor this information out into a separate AST file operation, which tracks the source

code file of all subsequent AST node operations.

2.2.2 Inferencing Algorithm

Given an edited document, a single text edit is fully described by a 3-tuple

(<offset>, <removed text length>, <added text>), where <offset> is the offset of the edit in the

edited document, <removed text length> is the length of the text that is removed at the specified offset, and

<added text> is the text that is added at the specified offset. If <removed text length> is 0, the edit does

not remove any text. If <added text> is empty, the edit does not add any text. If <removed text length>

is not 0 and <added text> is not empty, the edit replaces the removed text with the <added text> in the

edited document.
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Figure 2.2: CodingTracker’s replayer with a preloaded sequence of events, which is the same as in Figure 2.1,
except that it contains the inferred AST node operations. Note how the inferred operations appear right
after the text edits that produce them.
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int i1;
0  1  2  3  4  5  6

int i;
0  1  2  3  4  5

int ;
0  1  2  3  4

int j;
0  1  2  3  4  5

int j2;
0  1  2  3  4  5  6

(5, 1, “”) (4, 1, “”) (4, 0, “j”) (5, 0, “2”)

(a) A sequence of text edits recorded by CodingTracker for renaming variable i1 to j2.

int i1;
0  1  2  3  4  5  6

int j2;
0  1  2  3  4  5  6

(4, 2, “j2”)

(b) A coherent text edit that “glues” together all text edits shown in Figure 2.3(a).

Figure 2.3: An example of changing a variable’s name represented both as individual text edits recorded by
CodingTracker (Figure 2.3(a)) and as a single coherent text edit (Figure 2.3(b)). Each box shows the content
of the edited document. The offset of every document’s character is shown under each box. The 3-tuples
describing text edits are shown above the arrows that connect boxes.

Our inferencing algorithm converts text edits into operations on the corresponding AST nodes. First,

the algorithm assigns a unique ID to every AST node in the old AST. Next, the algorithm considers the

effect of each text edit on the position of the node in the new AST in order to match the old and the new

AST nodes. The matched nodes in the new AST get their IDs from their counterparts in the old AST. If the

content of a matched AST node has changed, the algorithm generates the corresponding update operation.

The algorithm generates a delete operation for every unmatched node in the old AST and an add operation

for every unmatched node in the new AST, assigning it a unique ID.

In the following, we describe several heuristics that improve the precision of our inferencing algorithm.

Then, we explain our algorithm in more detail and demonstrate it using an example.

Gluing

Figure 2.3(a) illustrates an example of text edits produced by a developer, who renamed variable i1 to j2

by first removing the old name using backspace and then typing in the new name. This single operation of

changing a variable’s name involves 4 distinct text edits that are recorded by CodingTracker. At the same

time, all these text edits are so closely related to each other that they can be “glued” together into a single

text edit with the same effect on the underlying text, which is shown in Figure 2.3(b). We call such “glued”

text edits coherent text edits and use them instead of the original text edits recorded by CodingTracker in

our AST node operations inferencing algorithm. This drastically reduces the number of inferred AST node

operations and makes them better represent the intents of a developer.

Intuitively, a coherent text edit combines two or more individual text edits that are consecutive both in

time and textual position. More precisely, a text edit e2 is “glued” to a preceding text edit e1, when:
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1. e2 immediately follows e1, i.e., there is no other events between these two text edits.

2. e2 continues the text change of e1, i.e., text edit e2 starts at the offset, at which e1 stopped.

Note that in the above heuristics e1 can be either a text edit recorded by CodingTracker or a coherent text

edit, produced from “gluing” several preceding text edits, while e2 is a text edit recorded by CodingTracker.

Linked Edits

Eclipse offers a code editing feature that allows simultaneous editing of a program entity in all its bindings

that are present in the opened document. Each binding of the edited entity becomes an edit box and every

text edit in a single edit box is immediately reflected in all other boxes as well. This feature is often used to

rename program entities, in particular to name extracted methods. Since text edits in a single edit box are

intermixed with the corresponding edits in other edit boxes, to apply our “gluing” heuristics presented above,

we treat edits in each box disjointly, constructing a separate coherent text edit for every edit box. When a

boxed edit is over, the constructed coherent text edits are processed one by one to infer the corresponding

AST node operations.

Jumping over Unparsable Code

The AST node operations inferencing algorithm processes coherent text edits as soon as they are constructed,

except when text edits introduce parsing errors in the underlying code. Parsing errors might confuse the

parser that creates ASTs for our algorithm, which could lead to imprecise inferencing results. Therefore,

when a text edit breaks the AST, the algorithm postpones inferencing until the AST is well-formed again.

Such postponement causes accumulation of several coherent text edits, which are processed by our inferencing

algorithm together. Figure 2.4 shows an example of code editing scenario that requires inference postponing.

A developer inserts brackets around the body of an if statement. The first coherent text edit adds an

opening bracket, breaking the structure of the AST, while the second coherent text edit adds a closing

bracket, bringing the AST back to a well-formed state. The inference is postponed until the second edit

fixes the AST. Note that sometimes we have to apply the inferencing algorithm even when the underlying

program’s AST is still broken, for example, when a developer closes the editor before fixing the AST. This

could lead to some imprecision in the inferred AST node operations, but our experience suggests that such

scenarios are rare in practice. In particular, only 0.4% of the inferencing algorithm applications on the data

that we collected during our empirical study on code evolution (see Section 2.3) were performed when the

edited code contained parsing errors.
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if (isReady){
  process();
}

(14, 0, “{”)if (isReady)
  process();

if (isReady){
  process();

(29, 0, “}”)

Figure 2.4: An example of two code edits: the first edit breaks the AST of the edited program, while the
second edit brings the AST back to a well-formed state.

input: oldAST, newAST, cteList // the list of coherent text edits
output: astNodeOperations
1 astNodeOperations = �;
2 matchedNodes = �;
3 coveringPosition = getCommonCoveringNodePosition(oldAST, newAST, cteList);
4 oldCoveringNode = getNode(oldAST, coveringPosition);
5 newCoveringNode = getNode(newAST, coveringPosition);
6 matchOutliers(cteList, oldCoveringNode, newCoveringNode, matchedNodes);
7 matchSamePositionNodes(oldAST, newAST, oldCoveringNode, newCoveringNode, matchedNodes);
8 createASTNodeOperations(oldCoveringNode, newCoveringNode, matchedNodes, astNodeOperations);

Figure 2.5: Overview of our AST node operations inferencing algorithm.

Pseudocode

Figure 2.5 shows an overview of our AST node operations inferencing algorithm. The algorithm takes as

input the list of coherent text edits, cteList, the AST of the edited code before the text edits, oldAST, and

the AST after the edits, newAST. The output of the algorithm is an unordered collection of the inferred

AST node operations.

The inferencing algorithm is applied as soon as a new coherent text edit is completed, unless the under-

lying code is unparsable, in which case the inferencing is postponed until the code becomes parsable again.

As long as the code remains parsable, cteList contains a single coherent text edit. If the code becomes

unparsable for some time, cteList will contain the accumulated coherent text edits that bring the code back

into the parsable state. Note that newAST represents the code that is a result of the edits in cteList applied

to the code represented by oldAST. Since replaying the edits in cteList is not a part of the inferencing

algorithm, we supply both oldAST and newAST as the algorithm’s inputs.

Each inferred operation captures the persistent ID of the affected AST node. Persistent IDs uniquely

identify AST nodes in an application throughout its evolution. Note that given an AST, a node can be

identified by its position in this AST. A node’s position in an AST is the traversal path to this node from

the root of the AST. Since the position of an AST node may change with the changes to its AST, we assign

a unique persistent ID to every AST node and keep the mapping from positions to persistent IDs, updating

it accordingly whenever a node’s position is changed as a result of code changes.

Most of the time, edits in cteList affect only a small part of the code’s AST. Therefore, the first step of

20



procedure: matchOutliers(cteList, oldCoveringNode, newCoveringNode, matchedNodes)
1 foreach (oldNode ∈ getDescendants(oldCoveringNode)) {
2 deltaOffset = 0;
3 foreach (textEdit ∈ cteList) {
4 if (affects(textEdit, oldNode, deltaOffset) {
5 continue foreach line1;
6 } else {
7 deltaOffset += getEditOffset(textEdit, oldNode, deltaOffset);
8 }
9 }
10 if (∃ newNode ∈ getDescendants(newCoveringNode) :

getOffset(oldNode) + deltaOffset == getOffset(newNode) &&
haveSameASTNodeTypes(oldNode, newNode)) {

11 matchedNodes ∪= (oldNode, newNode);
12 }
13 }

Figure 2.6: This procedure matches AST nodes that are not affected by text edits (i.e., these nodes are
outliers in respect to the edits).

the algorithm (lines 3 – 5) establishes the root of the changed subtree – a common covering node that is

present in both the old and the new ASTs and completely encloses the edits in cteList. To find a common

covering node, we first look for a local covering node in oldAST and a local covering node in newAST. These

local covering nodes are the innermost nodes that fully encompass the edits in cteList. The common part of

the traversal paths to the local covering nodes from the roots of their ASTs represents the position of the

common covering node (assigned to coveringPosition in line 3).

Next, the algorithm matches AST nodes that are not affected by the edits in cteList (line 6). Then, the

inferencing algorithm matches yet unmatched nodes by their AST node types and positions (line 7). Finally,

the algorithm creates the corresponding AST node operations for the matched and unmatched AST nodes

(line 8).

Figure 2.6 shows the details of matching AST nodes that are not affected by the edits in cteList. Ev-

ery descendant node of the common covering node in the old AST is checked against the edits in cteList

(lines 1 – 13). An edit does not affect a node if the code that this node represents is either completely

before the edited code fragment or completely after it. If a node’s code is completely before the edited

code fragment, the edit does not impact the node’s offset. Otherwise, the edit shifts the node’s offset with

<added text length> - <removed text length>. These shifts are calculated by getEditOffset and accu-

mulated in deltaOffset (line 7). If no edits affect a node, the algorithm looks for its matching node in the

new AST (line 10). Every matched pair of nodes is added to matchedNodes (line 11).

Figure 2.7 shows how our algorithm matches nodes that have the same AST node type and the same
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procedure: matchSamePositionNodes(oldAST,newAST,oldCoveringNode,newCoveringNode,matchedNodes)
1 foreach (oldNode ∈ getDescendants(oldCoveringNode) : oldNode /∈ getOldNodes(matchedNodes)) {
2 oldPosition = getNodePositionInAST(oldNode, oldAST );
3 newNode = getNode(newAST, oldPosition);
4 if (∃ newNode ∈ getDescendants(newCoveringNode) : haveSameASTNodeTypes(oldNode, newNode) {
5 matchedNodes ∪= (oldNode, newNode);
6 }
7 }

Figure 2.7: This procedure matches AST nodes by their types and positions.

procedure: createASTNodeOperations(oldCoveringNode,newCoveringNode,matchedNodes,astNodeOperations)
1 foreach ((oldNode, newNode) ∈ matchedNodes) {
2 if (getText(oldNode) 6= getText(newNode)) {
3 astNodeOperations ∪= getUpdateOperation(oldNode, newNode);
4 }
5 }
6 foreach (oldNode ∈ getDescendants(oldCoveringNode) : oldNode /∈ getOldNodes(matchedNodes)) {
7 astNodeOperations ∪= getDeleteOperation(oldNode);
8 }
9 foreach (newNode ∈ getDescendants(newCoveringNode) : newNode /∈ getNewNodes(matchedNodes)) {
10 astNodeOperations ∪= getAddOperation(newNode);
11 }

Figure 2.8: This procedure creates AST node operations for matched and unmatched nodes.

position in the old and the new ASTs. Note that at this step, the algorithm considers only yet unmatched

nodes (line 1).

Figure 2.8 shows how the algorithm creates an update operation for every matched node whose content

has changed (lines 1 – 5), a delete operation for every unmatched node in the old AST (lines 6 – 8), and an

add operation for every unmatched node in the new AST (lines 9 – 11).

Example

Figure 2.9 illustrates a coherent text edit that changes a variable declaration. Figure 2.10 demonstrates the

inferred AST node operations for this edit. Connected ovals represent the nodes of the old and the new

ASTs. Dashed arrows represent the inferred operations. Labels above the arrows indicate the kind of the

corresponding operations.
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(4, 9, “j = 3”)int i = 1 + 2; int j = 3;

Figure 2.9: An example of a text edit that changes a variable declaration.
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“j”

oldAST newAST

Update

Add

Delete

Figure 2.10: The inferred AST node operations for the text edit in Figure 2.9.

2.3 Empirical Study of Code Evolution

2.3.1 Introduction

To show the benefits of capturing more detailed data about code evolution as well as quantify the limitations

of VCS snapshots, we performed a field study on 24 developers working in their natural settings. Every

participant of our study installed CodingTracker in his/her Eclipse IDE. Overall, we collected data for 1,652

hours of development, which involve 2,000 commits comprising 23,002 committed files, and 9,639 test session

runs involving 314,085 testcase runs.

The collected data enables us to answer five research questions:

RQ1: How much code evolution data is not stored in VCS?

RQ2: How much do developers intersperse refactorings and edits in the same commit?

RQ3: How frequently do developers fix failing tests by changing the test itself?

RQ4: How many changes are committed to VCS without being tested?

RQ5: What is the temporal and spacial locality of changes?

We found that 37% of code changes are shadowed by other changes, and are not stored in VCS. Thus,

VCS-based code evolution research is incomplete. Second, programmers intersperse different kinds of changes
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Number of participants Programming Experience (years)
1 1 - 2
4 2 - 5
11 5 - 10
6 > 10

Table 2.2: Programming experience of the participants.

in the same commit. For example, 46% of refactored program entities are also edited in the same commit.

This overlap makes the VCS-based research imprecise. The data collected by CodingTracker enabled us to

answer research questions that could not be answered using VCS data alone. The data reveals that 40% of

test fixes involve changes to the tests, which motivates the need for automated test fixing tools [28, 29, 97].

In addition, 24% of changes committed to VCS are untested. This shows the usefulness of continuous

integration tools [6, 9, 68, 70]. Finally, we found that 85% of changes to a method during an hour interval

are clustered within 15 minutes. This shows the importance of novel IDE user interfaces [15] that allow

developers to focus on a particular part of the system.

2.3.2 Research Methodology

To answer our research questions, we conducted a user study on 24 participants. We recruited 11 professional

developers who worked on projects in different domains, including marketing, banking, business process

management, and database management. We also recruited 13 Computer Science graduate students and

senior undergraduate summer interns who worked on a variety of research projects from six research labs

at the University of Illinois at Urbana-Champaign. Table 2.2 shows the programming experience of our

participants2. In the course of our study, we collected code evolution data for 1,652 hours of code development

with a mean of 69 hours and a standard deviation of 62 hours.

To collect code evolution data, we asked each participant to install CodingTracker plug-in in his/her

Eclipse IDE. During the study, CodingTracker recorded a variety of evolution data at several levels ranging

from individual code edits up to high-level events like automated refactoring invocations, test runs, and

interactions with Version Control System (VCS). CodingTracker employed an existing infrastructure [132]

to regularly upload the collected data to our centralized repository.

To infer AST node operations from the collected raw edits, we apply our inferencing algorithm described

in Section 2.2. Our research questions require establishing how AST node operations correlate with different

developer’s actions, e.g., whether an AST operation is a result of a refactoring, whether AST operations are

followed by a commit or preceded by tests, etc. Therefore, CodingTracker inserts the inferred AST node

2Note that only 22 out of 24 participants filled the survey and specified their programming experience.
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int adjust(int v){
  int base = 5;
  return base * v;
}

int scale(int v){
  int unit = 5;
  return unit * v;
}

float scale(int v){
  float unit = 4.9;
  return unit * v;
}

float scale(int v){
  float unit = 4.89;
  return unit * v;
}

Rename Method
Rename Local Variable

Change types
Change factor value

Change factor value
(a) (b) (c) (d)

Figure 2.11: A code evolution scenario that illustrates a shadowed code change and an overlap of refactorings
with other code changes.

operations in the original event sequence right after the subsequence of code edits that produce them. We

answer every research question by processing the output of the inferencing algorithm with the question-

specific analyzer.

2.3.3 Results

RQ1: How much code evolution data is not stored in VCS?

A single VCS commit may contain hours or days worth of development. During this period, a developer

may change the same code fragment multiple times, with the latter changes shadowing the former changes.

Figure 2.11 presents a code evolution scenario. The developer checks out the latest revision of the

code shown in Figure 2.11(a) and then applies two refactorings and performs several code changes to a

single method, adjust. First, the developer renames the method and its local variable, base, giving them

intention-revealing names. Next, to improve the precision of the calculation, the developer changes the type

of the computed value and the production factor, unit, from int to float and assigns a more precise value

to unit. Last, the developer decides that the value of unit should be even more precise, and changes it

again. Finally, the developer checks the code shown in Figure 2.11(d) into the VCS.

Note that in the above scenario, the developer changes the value assigned to unit twice, and the second

change shadows the first one. The committed snapshot shown in Figure 2.11(d) does not reflect the fact that

the value assigned to unit was gradually refined in several steps, and thus, some code evolution information

is lost.

To quantify the extent of code evolution data losses in VCS snapshots, we calculate how many code

changes never make it to VCS. We compute the total number of changes that happen between each two

commits of a source code file and the number of changes that are shadowed, and thus, do not reach VCS. We

get the number of reaching changes by subtracting the number of shadowed changes from the total number

of changes. To recall, a unit of code change is an add, delete, or update operation on an AST node. For any

25



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Shadowed changes
Reaching changes

Participants
Overall

Figure 2.12: Ratio of reaching and shadowed changes.

two operations on the same AST node, the second operation always shadows the first one. Additionally, if

an AST node is both added and eventually deleted before being committed, then all operations that affect

this node are shadowed, since no data about this node reaches the commit.

Figure 2.12 shows the ratio of reaching and shadowed changes for our participants. Note that we recorded

interactions with VCS only for 15 participants who used Eclipse-based VCS clients. A separate bar presents

the data for each such participant. The last bar presents the aggregated result. Overall, we recorded 2,000

commits comprising 23,002 committed files.

The results in Figure 2.12 demonstrate that on average, 37% of changes are shadowed and do not reach

VCS. To further understand the nature of shadowed code changes, we counted separately those shadowed

changes that are commenting/uncommenting parts of the code or undoing some previous changes. If a

change is both commenting/uncommenting and undoing, then it is counted as commenting/uncommenting.

Figure 2.13 presents the results. Overall, 78% of shadowed code changes are authentic changes, i.e., they

represent actual changes rather than playing with the existing code by commenting/uncommenting it or

undoing some previous changes.

Our results reveal that more than a third of all changes do not reach VCS and the vast majority of these

lost changes are authentic. Thus, a code evolution analysis based on snapshots from VCS misses a significant

fraction of important code changes, which could lead to imprecise results.
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Figure 2.13: Composition of shadowed changes. The fifth bar is missing, since there are no shadowed changes
for this participant.

RQ2: How much do developers intersperse refactorings and edits in the same

commit?

Many tools [31, 32, 53, 79, 135, 137] compare a program’s snapshots stored in VCS to infer the refactorings

applied to it. As the first step, such a tool employs different similarity measures to match the refactored

program entities in the two compared snapshots. Next, the tool uses the difference between the two matched

program entities as an indicator of the kind of the applied refactoring. For example, two methods with differ-

ent names but with similar code statements could serve as an evidence of a Rename Method refactoring [32].

If a refactored program entity is also changed in the same commit, both matching it across commits and

deciding on the kind of refactoring applied to it become harder. Such code evolution scenarios undermine

the accuracy of the snapshot-based refactoring inference tools.

Figure 2.11 shows an example of such a scenario. It starts with two refactorings, Rename Method and

Rename Local Variable. After applying these refactorings, the developer continues to change the refactored

entities – the body and the return type of the renamed method; the type and the initializer of the renamed

local variable. Consequently, versions (a) and (d) in Figure 2.11 have so little in common that even a human

being would have a hard time identifying the refactored program entities across commits.

To quantify how frequently refactorings and edits overlap, we calculate the number of refactored program

entities that are also edited in the same commit. Our calculations employ the data collected by CodingTracker
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Figure 2.14: Ratio of purely refactored methods and those that are both refactored and additionally changed
before being committed to VCS.

for ten participants who both used Eclipse-based VCS clients and performed automated refactorings. Note

that we do not consider manual refactorings since they cannot be directly captured by our data collector,

but rather need to be inferred from the collected data as an additional, non-trivial step.

First, we look at a single kind of program entities – methods. Figure 2.14 shows the ratio of those methods

that are refactored only once before being committed (pure refactored methods) and those methods that are

both refactored and edited (e.g., refactored more than once or refactored and edited manually) before being

committed to VCS. We consider a method refactored/edited if either its declaration or any program entity

in its body are affected by an automated refactoring/manual edit. Figure 2.14 shows that on average, 58%

of methods are both refactored and additionally changed before reaching VCS.

Next, we refine our analysis to handle individual program entities. To detect whether two refactorings

or a refactoring and a manual edit overlap, we introduce the notion of a cluster of program entities. For

each program entity, we compute its cluster as a collection of closely related program entities. A cluster

of a program entity includes this entity, all its descendants, its enclosing statement, and all descendants of

its enclosing statement, except the enclosing statement’s body and the body’s descendants. For example, a

cluster of a StringLiteral node inside a conditional expression of an if statement includes all nodes that

are part of the conditional expression and the if statement itself, but does not include any nodes that are

part of the if statement’s body. We consider a program entity refactored/edited if any of the entities of

its cluster is affected by an automated refactoring/manual edit. Figure 2.15 demonstrates that on average,
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46% of program entities are both refactored and additionally changed in the same commit.
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Figure 2.15: Ratio of purely refactored program entities and those that are both refactored and additionally
changed before reaching a commit.

Our results indicate that most of the time, refactorings are tightly intermixed with other refactorings or

manual edits before reaching VCS. This could severely undermine the effectiveness of refactoring inference

tools that are based on VCS snapshots [31,32,53,79,135,137].

RQ3: How frequently do developers fix failing tests by changing the test itself?

In response to ever-changing requirements, developers continuously add new features or adjust existing

features of an application, which could cause some unit tests to fail. A test that fails due to the new

functionality is considered broken since making it a passing test requires fixing the test itself rather than the

application under test. Developers either have to fix the broken tests manually or use recent tools that can

fix them automatically [28,29,97].

Figure 2.16 presents a unit test of a parser. This test checks that the parser produces a specific number

of AST nodes for a given input. A new requirement to the system introduces an additional parsing rule.

Implementing this new feature, a developer breaks this test, because the number of elements in the same

input has changed. Thus, the developer needs to update the broken test accordingly.

We justify the need for automated test fixing tools by showing how often such scenarios happen in

practice, i.e., how many failing tests are fixed by changing the test itself. We look for these scenarios in the

data collected for 15 participants who ran JUnit tests as part of their code development process. Overall,
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public void testElementsCount(){
  Parser p = new Parser();
  p.parse(getSource());
  assertEquals(p.getCount(), 5);
}

Figure 2.16: A unit test of a parser that checks the total number of elements in the parser’s result.
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Figure 2.17: Ratio of test fixes involving and not involving changes to the tests.

we recorded 9,639 test session runs, involving 314,085 testcase runs. We track a failing test from the first

run it fails until the run it passes successfully. Each such scenario is counted as a test fix. If a developer

changes any classes in the test’s package during this time span, we consider that fixing this failing test

involves changing the test’s code.

Figure 2.17 shows the ratio of test fixes involving and not involving changes to the tests. Our results

show that on average, 40% of test fixes involve changes to the tests. Another observation is that every

participant has some failing tests, whose fix requires changing them. Hence, a tool like ReAssert [29] could

have benefited all of the participants, potentially helping to fix more than one third of all failing tests.

Nevertheless, only a dedicated study would show how many of the required changes to the failing tests could

be automated by ReAssert.

RQ4: How many changes are committed to VCS without being tested?

Committing untested code is considered a bad practice. A developer who commits untested code risks break-

ing the build and consequently, disrupting the development process. To prevent such scenarios and catch
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Figure 2.18: Ratio of tested and untested code changes that reach VCS.

broken builds early, the industry adopted continuous integration tools (e.g., Apache Gump [6], Bamboo [9],

Hudson [68], and Jenkins [70]), which build and test every commit before integrating it into the trunk. Only

those commits that successfully pass all the tests are merged into the trunk. Nevertheless, these tools are

not yet pervasive. In particular, most projects that we studied did not employ any continuous integration

tools. Therefore, we would like to quantitatively assess the necessity of such tools.

To assess the number of untested, potentially build-breaking changes that are committed to VCS, we

measure how much developers change their code between tests and commits. Our measurements employ

the data collected for ten participants who both used Eclipse-based VCS clients and ran JUnit tests. We

consider each pair of consecutive commits of a source code file. If there are no test runs between these

two commits, we disregard this pair of commits3. Otherwise, we count the total number of code changes

that happen between these two commits. Also, we count all code changes since the last test run until the

subsequent commit as untested changes. Subtracting the untested changes from the total number of changes

between the two commits, we get the tested changes.

Figure 2.18 shows the ratio of tested and untested changes that reach VCS. Although the number of

untested changes that reach a commit varies widely across the participants, every participant committed at

least some untested changes. Overall, 24% of changes committed to VCS are untested. Figure 2.19 shows

that 97% of the untested changes are authentic, i.e., we discard undos and comments.

3We are conservative in calculating the number of untested changes in order to avoid skewing our results with some corner
case scenarios, e.g., when a project does not have automated unit tests at all (although this is problematic as well).
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Figure 2.19: Composition of untested changes that reach VCS.

Note that even a small number of code changes may introduce a bug, and thus, break a build (unless

the code is committed to a temporary branch). Besides, even a single developer with a habit to commit

untested changes into the trunk may disrupt the development process of the entire team. Thus, our results

confirm the usefulness of continuous integration tools, which ensure that all commits merged into the trunk

are fully tested.

RQ5: What is the temporal and spacial locality of changes?

Simplifying the development process and increasing the productivity of a developer are among the major

goals of an Integrated Development Environment (IDE). The better an IDE supports code changing behavior

of a developer, the easier it is for him/her to develop the code. Code Bubbles [15] is an example of a state-of-

the-art IDE with a completely reworked User Interface (UI). The novel UI enables a developer to concentrate

on individual parts of an application. For example, a developer could pick one or more related methods that

he/she is currently reviewing or editing and focus on them only.

To detect whether developers indeed focus their editing efforts on a particular method at any given point

in time, we calculate the distribution of method-level code changes over time. We perform this calculation

for all 24 participants who took part in our study, since it does not depend on any particular activity of

the participant (e.g., interactions with VCS or test runs). We employ three sliding time windows spanning

15, 30, and 60 minutes. For every code change that happens in a particular method, we count the number
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Figure 2.20: Ratio of method-level code changes for three sliding time windows: 15, 30, and 60 minutes.

of changes to this method within each sliding window, i.e., the number of changes 7.5 minutes, 15 minutes,

and 30 minutes before and after the given change. Then, we sum the results for all code changes of each

method. Finally, we add up all these sums for all the methods.

Figure 2.20 shows the ratio of method-level code changes for each of our three sliding time windows. On

average, 85% of changes to a method during an hour interval are clustered within 15 minutes. Our results

demonstrate that developers tend to concentrate edits to a particular method in a relatively small interval

of time. The implication of this finding is that IDEs should provide visualizations of the code such that a

programmer can focus on one method at a time.

2.3.4 Threats to Validity

There are several factors that might negatively impact the accuracy of our results. This section discusses

the potential influence and possible mitigation for each of these factors.

Experimental Setup

Issues like privacy, confidentiality, and lack of trust in the reliability of research tools made it difficult

to recruit developers to participate in our study. Therefore, we were unable to study a larger sample of

experienced developers.
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Many factors affect developers’ practices. For example, developers may write code, refactor, test, and

commit differently in different phases of software development, e.g., before and after a release. As another

example, practices of developers who work in teams might be different than those who are the sole authors

of their programs. Due to the uncontrolled nature of our study, it is not clear how such factors affect our

results.

Our participants have used CodingTracker for different periods of time (See Section 2.3.2). Those par-

ticipants who used CodingTracker more influenced our results more.

Our results are limited to developers who use Eclipse for Java programming because CodingTracker is

an Eclipse plug-in that captures data about the evolution of Java code. However, we expect our results to

generalize to similar programming environments.

AST Node Operations Inferencing Algorithm

To decide whether two individual text edits should be “glued” together, we apply certain heuristics, which

are sufficient in most cases. Nevertheless, like any heuristics, they cannot cover all possible scenarios. As

a result, our algorithm might infer multiple operations for a single change intended by a developer (e.g., a

single rename of a variable). This artificial increase in the number of AST node operations can potentially

skew the results for each question. However, our personal experience shows that such corner case scenarios

are infrequent in practice and thus, their influence on our results is negligible.

In this study, we did not infer the move operation, but rather represented the corresponding action as

delete followed by add. Consequently, the number of AST node operations that our data analyzers operate

on might be inflated. At the same time, all our results are computed as ratios of the number of operations,

which substantially diminishes the effect of this inflation.

Although our AST node operations inferencing algorithm does not expect that the underlying code is

always parsable, it produces the most precise results for a particular subsequence of text edits when there is at

least one preceding and one succeeding state in which the code is parsable. The algorithm uses these parsable

states to “jump over the gap” of intermediate unparsable states, if any. A scenario without a preceding and

succeeding parsable state could cause the algorithm to produce some noise in the form of spurious or missing

AST node operations. Nevertheless, in this study, only 0.4% of the inferencing algorithm applications on

the data were performed when the edited code contained some parsing errors, and thus, we think that the

impact of parsing errors on our results is minimal.

34



Chapter 3

Inferring Refactorings from
Continuous Code Changes

3.1 Introduction

Several research projects [34, 77, 80, 98–100, 104, 132, 140] made strides into understanding the practice of

refactoring. The fundamental technical problem in understanding the practice is being able to identify the

refactorings that were applied by developers. There are a few approaches. One is to bring developers into

the lab and watch how they refactor [99]. This has the advantage of observing all code changes, so it is

precise. But this approach studies the programmers in a confined environment, for a short period of time,

and thus, it is unrepresentative.

Another approach is to study the refactorings applied in the wild. The most common way is to analyze

two Version Control System (VCS) snapshots of the code either manually [11,34,93,94] or automatically [5,

31,32,52,82,134,137]. However, the snapshot-based analysis has several disadvantages. First, it is imprecise.

Many times refactorings overlap with editing sessions, e.g., a method is both renamed, and its method

body is changed dramatically. Refactorings can also overlap with other refactorings, e.g., a method is both

renamed and its arguments are reordered. The more overlap, the more noise. In our study on code evolution

(see Section 2.3), 46% of refactored program entities are also edited or further refactored in the same

commit. Second, it is incomplete. For example, if a method is renamed more than once, a snapshot-based

analysis would only infer the last refactoring. Third, it is impossible to answer many empirical questions.

For example, from snapshots we cannot determine how long it takes developers to refactor, and we cannot

compare manual vs. automated refactorings.

Others [100,132] have studied the practice of automated refactorings recorded by Eclipse [34,63], but this

approach does not take into account the refactorings that are applied manually. Recent studies [99,100,132]

have shown that programmers sometimes perform a refactoring manually, even when the IDE provides an

automated refactoring. Thus, this approach is insufficient.

To address these five serious limitations, we studied refactoring in the wild, while employing a continuous

analysis. Such analysis tracks code changes as soon as they happen rather than inferring them from VCS
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Scope Refactoring

API-level

Encapsulate Field
Rename Class
Rename Field

Rename Method

Partially local
Convert Local Variable to Field

Extract Constant
Extract Method

Completely local
Extract Local Variable
Inline Local Variable

Rename Local Variable

Table 3.1: Inferred refactorings. API-level refactorings operate on the elements of a program’s API. Partially
local refactorings operate on the elements of a method’s body, but also affect the program’s API. Completely
local refactorings affect elements in the body of a single method only.

snapshots. Besides allowing researchers to study better the practice of refactoring, inferring refactorings

from continuous code changes provides an important benefit to developers — it can be performed on-the-fly

and thus, it enables an IDE to assist a developer with refactorings while they are in progress.

Recent tools [44, 49] that were developed for such inference were not designed for empirical studies.

Therefore, we designed and implemented our own refactoring inference algorithm that analyzes code changes

continuously. Our refactoring inference algorithm takes as input add, delete, and update AST node operations

that we infer from the continuous sequence of raw code edits (see Section 2.2). Currently, our algorithm

infers ten kinds of refactorings performed either manually or automatically, but it can be easily extended

to handle other refactorings as well. These ten kinds of refactorings were previously reported [132] as

the most popular among automated refactorings. Table 3.1 shows the inferred refactorings, ranging from

API-level refactorings (e.g., Rename Class), to partially local (e.g., Extract Method), to completely local

refactorings (e.g., Extract Local Variable). We think the inferred refactorings are representative since they

are both popular and cover a wide range of common refactorings that operate on different scope levels. In

the following, when we refer to refactorings we mean these ten refactoring kinds.

3.2 Refactoring Inference Algorithm

3.2.1 Inferring Migrated AST Nodes

Many kinds of refactorings that we would like to infer rearrange elements in the refactored program. To

correctly infer such refactorings, we need to track how AST nodes migrate in the program’s AST. A node

might migrate from a single site to another single site (i.e., this node is moved from one parent node to

another parent node), for example, as a result of Inline Local Variable refactoring applied to a variable with
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public String wrap(int num){
  return "-" + num + "-";
}

public String wrap(int num){
  String dash = "-";
  return dash + num + dash;
}

Extract Local Variable

Figure 3.1: An example of Extract Local Variable refactoring that results in many-to-one migration of the
extracted AST node.
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Figure 3.2: The effect of the Extract Local Variable refactoring presented in Figure 3.1 on the underlying
AST.

a single usage. Such migration is one-to-one. Also, a node might migrate from a single site to multiple sites,

e.g., as a result of Inline Local Variable refactoring applied to a variable with multiple usages in the code.

Such migration is one-to-many. Finally, a node might migrate from multiple sites to a single site, e.g., as a

result of Extract Local Variable refactoring applied to an expression that appears in multiple places in the

code. Such migration is many-to-one.

Figure 3.1 shows an example of Extract Local Variable refactoring that results in many-to-one migration

of the extracted AST node. Figure 3.2 shows the effect of this refactoring on the underlying AST. Note

that the extracted AST node, string literal "-", is deleted from two places in the old AST and inserted in a

single place in the new AST — as the initialization of the newly created local variable.

Our refactoring inference algorithm takes as input a sequence of basic AST node operations: add, delete,

and update. The algorithm infers migrate operations from these basic operations. A single migrate operation

is composed either of one delete operation and one or more add or update operations, or of one add or update

operation and one or more delete operations applied on the same AST node within a specific time window.

We consider that two AST nodes represent the same node if they have the same AST node type and the

same content. As a time window, we employ a five minutes time interval.

The algorithm assigns a unique ID to each inferred migrate operation. Note that a basic AST node
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public int scale(int num){
  int factor = 5;
  return factor * num;
}

public int scale(int num){
  
  return 5 * num;
}

Inline Local Variable

Deleted Variable 
Declaration

Replaced Entity With 
Expression

Migrated From 
Variable Initialization

Figure 3.3: An example of Inline Local Variable refactoring and its characteristic properties.

operation can be part of at most one migrate operation. The algorithm marks each basic AST node operation

that is part of a particular migrate operation with its ID. This enables us to easily establish whether two

basic AST node operations belong to the same migrate operation in the following stages of our refactoring

inference algorithm.

3.2.2 Algorithm Overview

Our algorithm infers ten kinds of refactorings shown in Table 3.1. To infer a particular kind of refactoring,

our algorithm looks for properties that are characteristic to it. A refactoring property is a high-level semantic

code change, e.g., addition or deletion of a variable declaration. Figure 3.3 shows an example of Inline Local

Variable refactoring and its characteristic properties: deletion of a variable declaration, deletion of a variable

reference, and migration of the variable’s initialization expression to the former usage of the variable.

Refactoring properties are identified directly from the basic AST node operations that represent the

actions of a developer. A developer may change the code in any order, e.g., first delete the variable declaration

and then replace its references with the initialization expression, or first replace the references and then delete

the variable declaration, etc. Consequently, the order in which the properties are identified does not matter.

A refactoring property is described with its attributes, whose values are derived from the corresponding

AST node operation. Table 3.2 shows 13 attributes that our algorithm employs for a variety of refactoring

properties. A property may contain one or more such attributes. Table 3.3 presents refactoring properties

and their attributes. When the algorithm checks whether a property can be part of a particular refac-

toring, the property’s attributes are matched against attributes of all other properties that already make

part of this refactoring. As a basic rule, two attributes match if either they have different names or they

have the same value. Additionally, the algorithm checks that the disjoint attributes have different values:
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Attribute name Description
entityName The name of a program entity

oldEntityName The old name of a program entity
newEntityName The new name of a program entity
migratedNode The migrated AST node

migrateID The ID of the migrate operation
parentID The ID of the parent node

destinationMethodID The ID of the destination method
sourceMethodName The name of the source method

sourceMethodID The ID of the source method
getterMethodName The name of a getter method

getterMethodID The ID of the gettern method
setterMethodName The name of the setter method

setterMethodID The ID of the setter method

Table 3.2: Attributes of refactoring properties.

destinationMethodID should be different from sourceMethodID and getterMethodID should be different

from setterMethodID.

Our algorithm combines two or more closely related refactoring properties in a single refactoring fragment.

Such fragments express high-level properties that could not be derived from a single AST node operation,

e.g., replacing a reference to an entity with an expression involves two AST node operations: delete entity

reference and add expression. Table 3.4 shows the inferred refactoring fragments and their component

properties.

The algorithm considers that a refactoring is complete if all its required characteristic properties or

fragments are identified within a specific time window (in our experiments, we employed a time window of five

minutes). Some characteristic properties are optional, e.g., replacing field references with getters and setters

in Encapsulate Field refactoring is optional. Also, a refactoring might include several instances of the same

characteristic property. For example, an Inline Local Variable refactoring applied to a variable that is used in

multiple places includes several properties of migration of the variable’s initialization expression to the former

usage of the variable. Even though it is sufficient to have a single instance of each required characteristic

property to infer a refactoring, our algorithm infers a refactoring as fully as possible, incorporating all

properties that belong to it. If no more properties are added to a complete refactoring within two minutes,

the algorithm considers that the inference of this refactoring is finished. Table 3.5 presents the characteristic

properties of the ten refactorings inferred by our algorithm.

Putting It All Together. Tables 3.2 – 3.5 are populated according to the grammar of our simple

refactoring matching language, which we define as follows:
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Property name Property attributes

Added Entity Reference
entityName

parentID

Added Field Assignment
entityName

setterMethodID
Added Field Declaration entityName

Added Field Return
entityName

getterMethodID

Added Getter Method Declaration
getterMethodName

getterMethodID

Added Getter Method Invocation
getterMethodName

parentID

Added Method Declaration
entityName

destinationMethodID

Added Method Invocation
entityName

sourceMethodName
sourceMethodID

Added Setter Method Declaration
setterMethodName

setterMethodID

Added Setter Method Invocation
setterMethodName

parentID
Added Variable Declaration entityName

Changed Entity Name In Usage
oldEntityName
newEntityName

sourceMethodName

Changed Field Name In Declaration
oldEntityName
newEntityName

Changed Method Name In Declaration
oldEntityName
newEntityName

Changed Type Name In Constructor
oldEntityName
newEntityName

Changed Type Name In Declaration
oldEntityName
newEntityName

Changed Variable Name In Declaration
oldEntityName
newEntityName

sourceMethodName

Deleted Entity Reference
entityName

parentID
Deleted Variable Declaration entityName

Made Field Private entityName

Migrated From Method
sourceMethodID

migrateID

Migrated From Usage
migratedNode

migrateID
parentID

Migrated From Variable Initialization
entityName

migratedNode
migrateID

Migrated To Field Initialization
entityName

migratedNode
migrateID

Migrated To Method
entityName

destinationMethodID
migrateID

Migrated To Usage
migratedNode

migrateID
parentID

Migrated To Variable Initialization
entityName

migratedNode
migrateID

Table 3.3: Refactoring properties.
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Fragment name Component properties

Migrated Across Methods
Migrated From Method

Migrated To Method

Replaced Entity With Expression
Migrated To Usage

Deleted Entity Reference

Replaced Entity With Getter
Added Getter Method Invocation

Deleted Entity Reference

Replaced Entity With Setter
Added Setter Method Invocation

Deleted Entity Reference

Replaced Expression With Entity
Migrated From Usage

Added Entity Reference

Table 3.4: Refactoring fragments.

Refactoring Properties/Fragments Optional Multiple instances

Convert Local Variable to Field
Added Field Declaration no no

Deleted Variable Declaration no no

Encapsulate Field

Added Getter Method Declaration no no
Added Setter Method Declaration no no

Added Field Assignment no no
Added Field Return no no
Made Field Private no no

Replaced Entity With Getter yes yes
Replaced Entity With Setter yes yes

Extract Constant
Added Field Declaration no no

Migrated To Field Initialization no no
Replaced Expression With Entity no yes

Extract Local Variable
Added Variable Declaration no no

Migrated To Variable Initialization no no
Replaced Expression With Entity no yes

Extract Method
Added Method Declaration no no
Added Method Invocation no no
Migrated Across Methods no yes

Inline Local Variable
Deleted Variable Declaration no no

Migrated From Variable Initialization no no
Replaced Entity With Expression no yes

Rename Class
Changed Entity Name In Usage yes* yes

Changed Type Name In Constructor yes* yes
Changed Type Name In Declaration no no

Rename Field
Changed Entity Name In Usage no yes

Changed Field Name In Declaration no no

Rename Local Variable
Changed Entity Name In Usage no yes

Changed Variable Name In Declaration no no

Rename Method
Changed Entity Name In Usage no yes

Changed Method Name In Declaration no no

Table 3.5: Characteristic properties of the inferred refactorings. Note that at least one of the two optional
properties of the Rename Class refactoring, Changed Entity Name In Usage and Changed Type Name In
Constructor, is required for this refactoring to be considered complete.
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<name> ::= LITERAL-STRING

<value> ::= LITERAL-STRING

<attribute> ::= (<name>, <value>)

<property> ::= <property> <attribute> | <attribute>

<fragment> ::= <fragment> <property> | <property>

<refactoring> ::= <refactoring> <fragment> | <refactoring> <property> | <fragment> | <property>

To decide whether a property P1 can be part of a refactoring R, we employ the following matching rules:

1. P1 is characteristic of R according to Table 3.5.

2. R does not contain a property P2 of the same kind (according to Table 3.3) as P1 or R accepts multiple

properties of the P1 kind according to Table 3.5.

3. R does not contain a property P2 such that there is an attribute A1 in P1 and an attribute A2 in P2,

and A1 and A2 have the same name, but different values.

Matching rules for fragments in a refactoring and properties in a fragment are similar.

Figure 3.4 shows a high-level overview of our refactoring inference algorithm. The algorithm takes as

input the sequence of basic AST node operations marked with migrate IDs — astNodeOperations. The

output of the algorithm is a sequence of the inferred refactoring — inferredRefactorings. The algorithm

assigns a unique ID to each inferred refactoring and marks all basic AST node operations that contribute to

a refactoring with the refactoring’s ID.

The refactoring inference algorithm processes each basic AST node operation from astNodeOperations

(lines 4 – 17). First, the algorithm removes old pending complete refactorings from pendingCompleteRefac-

torings and adds them to inferredRefactorings (line 5). A complete refactoring is considered old if no more

properties were added to it within two minutes. Also, the algorithm removes timed out pending incomplete

refactorings from pendingIncompleteRefactorings (line 6) as well as timed out pending refactoring fragments

from pendingRefactoringFragments (line 7). An incomplete refactoring or a refactoring fragment times out

if it was created more than five minutes ago, i.e., the algorithm allocates a five minutes time window for a

refactoring or a refactoring fragment to become complete.

Next, the algorithm generates refactoring properties specific to a particular AST node operation (line

8). The kind of the AST node operation (add, delete, or update), the type of the affected node (e.g., a

variable declaration or reference, a method declaration, etc.), the context of the affected node (e.g., the

containing method, the containing field or variable declaration, etc.), whether this operation is part of a
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input: astNodeOperations // the sequence of basic AST node operations
output: inferredRefactorings
1 inferredRefactoringKinds = getAllInferredRefactoringKinds();
2 inferredRefactorings = �; pendingCompleteRefactorings = �;
3 pendingIncompleteRefactorings = �; pendingRefactoringFragments = �;
4 foreach (astNodeOperation ∈ astNodeOperations) {
5 inferredRefactorings ∪= removeOldRefactorings(pendingCompleteRefactorings);
6 removeTimedOutRefactorings(pendingIncompleteRefactorings);
7 removeTimedOutRefactoringFragments(pendingRefactoringFragments);
8 newProperties = getProperties(astNodeOperation);
9 foreach (newProperty ∈ newProperties) {
10 handleRefactoringFragments(newProperty, newProperties, pendingRefactoringFragments);
11 isPropertyConsumed = handleCompleteRefactorings(newProperty, pendingCompleteRefactorings);
12 if (isPropertyConsumed) continue;
13 isPropertyConsumed = handleIncompleteRefactorings(newProperty, pendingIncompleteRefactorings,

pendingCompleteRefactorings);
14 if (isPropertyConsumed) continue;
15 createNewRefactorings(newProperty, inferredRefactoringKinds, pendingIncompleteRefactorings);
16 }
17 }
18 inferredRefactorings ∪= pendingCompleteRefactorings;

Figure 3.4: Overview of our refactoring inference algorithm.

migrate operation — all are the factors that the algorithm accounts for in order to generate one or more

properties shown in Table 3.3.

In the following step, the algorithm processes the generated properties one by one (lines 9 – 16). First,

every new property is checked against pending refactoring fragments (line 10). Next, the algorithm tries to

add the new property to pending complete refactorings (line 11). If the new property is added to a complete

refactoring, it is consumed and the algorithm proceeds to the next new property (line 12). If the property

is not consumed by a complete refactoring, the algorithm checks whether this property can be added to

pending incomplete refactorings (line 13). If adding the new property to a pending incomplete refactoring

makes it complete, the property is consumed, and the algorithm proceeds to the next new property (line

14). Otherwise, the algorithm creates new refactorings of the kinds that the new property is characteristic

of (line 15).

Finally, after processing all AST node operations, the algorithm adds to inferredRefactorings any of the

remaining pending complete refactorings (line 18).

Figure 3.5 shows the details of checking a new property against pending refactoring fragments. If there is

a refactoring fragment that accepts the new property and becomes complete, then this refactoring fragment

itself turns into a new property to be considered by the algorithm (line 6). Note that as discussed above,

a refactoring fragment or a pending refactoring accepts a property if the property’s attributes match the
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procedure: handleRefactoringFragments(newProperty, newProperties, pendingRefactoringFragments)
1 foreach (pendingRefactoringFragment ∈ pendingRefactoringFragments) {
2 if (accepts(pendingRefactoringFragment, newProperty) {
3 addProperty(pendingRefactoringFragment, newProperty);
4 if (isComplete(pendingRefactoringFragment) {
5 remove(pendingRefactoringFragments, pendingRefactoringFragment);
6 newProperties ∪= pendingRefactoringFragment ; break;
7 }
8 }
9 }
10 if (canBePartOfRefactoringFragment(newProperty) {
11 pendingRefactoringFragments ∪= createRefactoringFragment(newProperty);
12 }

Figure 3.5: This procedure checks the new property against pending refactoring fragments.

function: handleCompleteRefactorings(newProperty, pendingCompleteRefactorings)
1 foreach (pendingCompleteRefactoring ∈ pendingCompleteRefactorings) {
2 if (accepts(pendingCompleteRefactoring, newProperty) {
3 addProperty(pendingCompleteRefactoring, newProperty);
4 return true; // the property is consumed
5 }
6 }
7 return false; // the property is not consumed

Figure 3.6: This function tries to add the new property to pending complete refactorings. The function
returns true if the property is added to a refactoring and false otherwise.

attributes of the properties that already make part of the fragment or the refactoring. If the new property

can be part of a new refactoring fragment, the algorithm creates the fragment and adds it to pendingRefac-

toringFragments (lines 10 – 12).

Figure 3.6 shows how the algorithm tries to add the new property to pending complete refactorings.

If the new property is added to a complete refactoring, the property is consumed, and thus, the function

returns true (line 4). If there is no complete refactoring that consumes the new property, the function

returns false (line 7).

Figure 3.7 shows how the algorithm checks whether the new property can be added to pending incom-

plete refactorings. If an incomplete refactoring accepts the property, it is added to a copy of this incomplete

refactoring (lines 3 – 4). This ensures that the initial incomplete refactoring remains unchanged in pending-

IncompleteRefactorings and thus, could be considered for future properties, if there are any. If adding the

new property makes the new refactoring complete, it is added to pendingCompleteRefactorings (line 6) and

the function returns true since the property is consumed (line 7). Otherwise, the new refactoring is added

to pendingIncompleteRefactorings (line 8). If the new property does not make any of the pending incomplete

44



function: handleIncompleteRefactorings(newProperty,pendingIncompleteRefactorings,
pendingCompleteRefactorings)

1 foreach (pendingIncompleteRefactoring ∈ pendingIncompleteRefactorings) {
2 if (accepts(pendingIncompleteRefactoring, newProperty) {
3 newRefactoring = clone(pendingIncompleteRefactoring);
4 addProperty(newRefactoring, newProperty);
5 if (isComplete(newRefactoring) {
6 pendingCompleteRefactorings ∪= newRefactoring ;
7 return true; // the property is consumed
8 } else pendingIncompleteRefactorings ∪= newRefactoring ;
9 }
10 }
11 return false; // the property is not consumed

Figure 3.7: This function tries to add the new property to pending incomplete refactorings. The function
returns true if adding the property to an incomplete refactoring makes it complete and false otherwise.

procedure: createNewRefactorings(newProperty,inferredRefactoringKinds,pendingIncompleteRefactorings)
1 foreach (inferredRefactoringKind ∈ inferredRefactoringKinds) {
2 if (isCharacteristicOf(inferredRefactoringKind, newProperty) {
3 newRefactoring = createRefactoring(inferredRefactoringKind, newProperty);
4 pendingIncompleteRefactorings ∪= newRefactoring ;
5 }
6 }

Figure 3.8: This procedure creates new refactorings of the kinds that the new property is characteristic of.

refactorings complete (and thus, the property is not consumed), the function returns false (line 11).

Figure 3.8 shows how the algorithm creates new refactorings of the kinds that the new property is

characteristic of (line 3) and adds these new refactorings to pendingIncompleteRefactorings (line 4).

3.2.3 Algorithm Evaluation

Unlike the authors of the other two similar tools [44,49], we report the accuracy of our continuous refactoring

inference algorithm on real world data. First, we evaluated our algorithm on the automated refactorings

performed by the participants of our empirical study (see Section 3.3), which are recorded precisely by

Eclipse. We considered 2,398 automated refactorings of nine out of the ten kinds that our algorithm infers

(we disabled the inference of the automated Encapsulate Field refactoring in our experiment because the

inferencer did not scale for one participant, who performed many such refactorings one after another). A

challenge of any inference tool is to establish the ground truth, and we are the first to use such a large ground

truth. Our algorithm correctly inferred 99.3% of these 2,398 refactorings. The uninferred 16 refactorings

represent unlikely code editing scenarios, e.g., ten of them are the Extract Local Variable refactorings in

which Eclipse re-writes huge chunks of code in a single shot.
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Refactoring
True False False

positives negatives positives
Convert Local Variable to Field 1 0 1

Encapsulate Field 0 0 0
Extract Constant 0 0 0

Extract Local Variable 8 0 0
Extract Method 2 0 1

Inline Local Variable 2 0 0
Rename Class 3 0 0
Rename Field 5 0 0

Rename Local Variable 28 0 2
Rename Method 4 0 0

Total 53 0 4

Table 3.6: Sampling results.

Also, we randomly sampled 16.5 hours of code development from our corpus of 1,520 hours. Each sample

is a 30-minute chunk of development activity, which includes writing code, refactoring code, running tests,

committing files, etc. To establish the ground truth, we manually replayed each sample and recorded any

observed refactorings of the ten kinds supported by our algorithm. Then, we compared this to the numbers

reported by our inference algorithm. Finally, we classified the observed discrepancies as either false positives

or false negatives. Table 3.6 shows the sampling results for each kind of refactoring that our algorithm infers.

Overall, our inference algorithm has a precision of 0.93 and a recall of 1.

3.3 A Comparative Study of Manual and Automated

Refactorings

3.3.1 Introduction

Our continuous refactoring inference algorithm enabled us to perform the first empirical study that addresses

the five serious limitations of the existing approaches (which are described in Section 3.1). We study

synergistically the practice of both manual and automated refactorings. We answer seven research questions:

RQ1: What is the proportion of manual vs. automated refactorings?

RQ2: What are the most popular automated and manual refactorings?

RQ3: How often does a developer perform manual vs. automated refactorings?

RQ4: How much time do developers spend on manual vs. automated refactorings?

46



RQ5: What is the size of manual vs. automated refactorings?

RQ6: How many refactorings are clustered?

RQ7: How many refactorings do not reach VCS?

In our study, we applied the refactoring inference algorithm on the real code evolution data from 23

developers, working in their natural environment for 1,520 hours. We found that more than half of the

refactorings were performed manually, and thus, the existing studies that focus on automated refactorings

only might not be generalizable since they consider less than half of the total picture. We also found that

the popularity of automated and manual refactorings differs. Our results present a fuller picture of the

popularity of refactorings in general, which should help both researchers and tool builders to prioritize their

work. Our findings provide additional evidence that developers underuse automated refactoring tools, which

raises the concern of the usability problems in these tools. We discovered that more than one third of the

refactorings performed by developers are clustered. This result emphasizes the importance of researching

refactoring clusters in order to identify refactoring composition patterns. Finally, we found that 30% of

the performed refactorings do not reach the VCS. Thus, using VCS snapshots alone to analyze refactorings

might produce misleading results.

3.3.2 Research Methodology

To answer our research questions, we employed the code evolution data that we collected as part of our

previous user study (see Section 2.3) on 23 participants. We recruited ten professional programmers who

worked on different projects in domains such as marketing, banking, business process management, and

database management. We also recruited 13 Computer Science graduate students and senior undergraduate

summer interns who worked on a variety of research projects from six research labs at the University of

Illinois at Urbana-Champaign.

The participants of our study have different affiliations and programming experience, and used our tool,

CodingTracker, for different amounts of time. Consequently, the total aggregated data is non-homogeneous.

To see whether this non-homogeneity affects our results, we divided our participants into seven groups

along the three above mentioned categories (i.e., affiliation, programming experience, and tool usage time).

Table 3.7 shows the detailed statistics for each group as well as for the aggregated data. For every research

question, we first present the aggregated result, and then discuss any discrepancies between the aggregated

and the group results.

At the time of the study, when CodingTracker recorded the data, we did not have a refactoring inference
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Metric

Group

Aggregated
Affiliation Tool usage Programming

Students Professionals
(hours) experience (years)

≤ 50 > 50 < 5 5 – 10 > 10

Participants 23 13 10 13 10 5 11 6
Usage time, hours 1,520 1,048 471 367 1,152 269 775 458

Mean 66 81 47 28 115 54 70 76
STDEV 52 54 44 16 38 46 52 62

Table 3.7: Size and usage time statistics of the aggregated and individual groups.

algorithm. However, CodingTracker can accurately replay all the code editing events, thus recreating an

exact replica of the development session. We replayed the coding sessions and this time, we applied our

newly-developed refactoring inference algorithm.

We first applied our AST node operations inference algorithm (see Section 2.2) on the collected raw data

to represent code changes as add, delete, and update operations on the underlying AST. These basic AST

node operations serve as input to our refactoring inference algorithm.

Next, we answer every research question by processing the output of the refactoring inference algorithm

with the question-specific analyzer. Note that our analyzers for RQ1 – RQ5 ignore trivial refactorings. We

consider a refactoring trivial if it affects a single line of code, e.g., renaming a variable with no uses.

3.3.3 Results

RQ1: What is the proportion of manual vs. automated refactorings?

Previous research on refactoring practice either predominantly focused on automated refactorings [98, 100,

132] or did not discriminate manual and automated refactorings [34, 140]. Answering the question about

the relative proportion of manual and automated refactorings will allow us to estimate how representative

automated refactorings are of the total number of refactorings, and consequently, how general are the

conclusions based on studying automated refactorings only.

For each of the ten refactoring kinds inferred by our algorithm, we counted how many refactorings were

applied using Eclipse automated refactoring tools and how many of the inferred refactorings were applied

manually. Fig. 3.9 shows our aggregated results. The last column represents the combined result for all the

ten refactoring kinds.

Overall, our participants performed around 11% more manual than automated refactorings (2,820 vs.

2,551). Thus, research focusing on automated refactorings considers less than half of the total picture.

Moreover, half of the refactoring kinds that we investigated, Convert Local Variable to Field, Extract Method,
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Figure 3.9: Relative proportion of manual and automated refactorings.

Rename Field, Rename Local Variable, and Rename Method, are predominantly performed manually. This

observation undermines the generalizability of the existing studies based on the automated execution of

these popular refactorings. Also, it raises concerns for tool builders about the underuse of the automated

refactoring tools, which could be a sign that these tools require considerable improvement.

We compared the number of manual and automated refactorings performed by each group. Table 3.8

shows the total counts of manual and automated refactorings as well as the relative fraction of manual

over automated refactorings. The results for the groups in the Affiliation and Usage time categories

are consistent with the results for the aggregated data. At the same time, the programming experience of

our participants has a greater impact on the ratio of the performed manual and automated refactorings.

In particular, developers with less than five years of programming experience tend to perform 28% more

manual than automated refactorings, while those with an average experience (5 – 10 years) perform more

automated than manual refactorings. This result reflects a common intuition that novice developers are less

familiar with the refactoring tools (e.g., in RQ3 we observed that novices do not perform three kinds of

automated refactorings at all), but start using them more often as their experience grows. Nevertheless,

developers with more than ten years of experience perform many more manual than automated refactorings

(49%). One of the reasons for this behavior could be that more experienced developers learned to perform

refactorings well before the appearance of the refactoring tools. Also, experts might think that they are

faster without the refactoring tool. For example, we observed that such developers mostly perform manually

Rename refactorings, which could be accomplished quickly (but less reliably) using the Search & Replace

command.
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Category Group Manual Automated Manual over Automated
Aggregated All data 2820 2551 10.5%

Affiliation
Students 1645 1516 8.5%

Professionals 1175 1035 13.5%

Usage time
≤ 50 hours 485 471 3%
> 50 hours 2335 2080 12.3%

Experience
< 5 years 292 228 28%

5 – 10 years 1282 1459 -12.1%
> 10 years 1237 829 49.2%

Table 3.8: Manual and automated refactorings performed by each group.

RQ2: What are the most popular automated and manual refactorings?

Prior studies [98,132] identified the most popular automated refactorings to better understand how developers

refactor their code. We provide a more complete picture of the refactoring popularity by looking at both

manual and automated refactorings. Additionally, we would like to contrast how similar or different are

popularities of automated refactorings, manual refactorings, and refactorings in general.

To measure the popularity of refactorings, we employ the same refactoring counts that we used to answer

the previous research question. Fig. 3.10, 3.11, and 3.12 correspondingly show the popularity of automated,

manual, and all refactorings in the aggregated data. The Y axis represents refactoring counts. The X axis

shows refactorings ordered from the highest popularity rank at the left to the lowest rank at the right.

Our results on popularity of automated refactorings mostly corroborate previous findings [132]1. The

only exceptions are the Inline Local Variable refactoring, whose popularity has increased from the seventh

to the third position, and the Encapsulate Field refactoring, whose popularity has declined from the fifth to

the seventh position. Overall, our results show that the popularity of automated and manual refactorings

is quite different: the top five most popular automated and manual refactorings have only three refactor-

ings in common — Rename Local Variable, Rename Method, and Extract Local Variable, and even these

refactorings have different ranks. The most important observation though is that the popularity of auto-

mated refactorings does not reflect well the popularity of refactorings in general. In particular, the top five

most popular refactorings and automated refactorings share only three refactorings, out of which only one,

Rename Method, has the same rank.

Having a fuller picture about the popularity of refactorings, researchers would be able to automate or

infer the refactorings that are popular when considering both automated and manual refactorings. Similarly,

tool builders should pay more attention to the support of the popular refactorings. Finally, novice developers

1Note that we cannot directly compare our results with the findings of Murphy et al. [98] since their data represents related
refactoring kinds as a single category (e.g., Rename, Extract, Inline, etc.). For a fair comparison, we would need to aggregate
our data using the same categories, but this is not feasible, since we do not infer all refactoring kinds that are part of each such
category.
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Figure 3.10: Popularity of automated refactorings.
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Figure 3.11: Popularity of manual refactorings.
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Figure 3.12: Popularity of refactorings.
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might decide what refactorings to learn first depending on their relative popularity.

Popularity of refactorings among different participant groups is mostly consistent with the one observed

in the aggregated data. In particular, for three groups (Usage time > 50 hours, Experience 5 – 10 years,

and Experience > 10 years), the top five most popular refactorings are the same as for the aggregated data,

while for the rest of the groups, four out of five most popular refactorings are the same.

RQ3: How often does a developer perform manual vs. automated refactorings?

In our previous study [132], we showed that developers may underuse automated refactoring tools for a variety

of reasons, one of the most important being that developers are simply unaware of automated refactoring

tools. Answering this question will help us to better understand whether developers who are aware of an

automated refactoring tool use the tool rather than refactor manually.

In the following, we denote the quantity of automated tool usage as A. We compute A as a ratio of

automated refactorings to the total number of refactorings of a particular kind performed by an individual

participant. For each of the ten inferred refactoring kinds, we counted the number of participants for a range

of values of A, from A = 0% (those who never use an automated refactoring tool) up to A = 100% (those

who always use the automated refactoring tool).

Both for the aggregated data and for all groups, we observed that the fraction of participants who always

perform a refactoring manually is relatively high for all the ten refactoring kinds (with a few exceptions).

Also, in the aggregated data, there are no participants who apply Convert Local Variable to Field, Encapsu-

late Field, Extract Method, and Rename Field using the automated refactoring tools only. In groups, there

are even more refactoring kinds that are never applied using automated refactoring tools only. Overall,

our results provide a stronger quantitative support for the previously reported findings [100, 132] that the

automated refactoring tools are underused.

To get a better insight into the practice of manual vs. automated refactoring of our participants, we

defined three properties:

• High full automation: The number of participants who always perform the automated refactoring

(A = 100%) is higher than the number of participants who always perform this refactoring manually

(A = 0%).

• High informed underuse: The number of participants who are aware of the automated refactoring,

but still apply it manually most of the time (0% < A ≤ 50%) is higher than the number of participants

who apply this refactoring automatically most of the time (50% < A ≤ 100%).
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Category Group
Property

High High General
full automation informed underuse informed underuse

Aggregated
Extract Constant Extract Method

All
Rename Class Rename Local Variable

Affiliation

Students
-Extract Constant +Conv. Loc. Var. to Field
-Rename Class +Extract Constant

+Rename Method

Professionals
+Rename Method -Rename Local Variable -Extract Constant

-Rename Class
-Rename Method

Usage time
≤ 50 hours

-Extract Constant -Extract Constant
+Rename Method -Rename Class

> 50 hours -Rename Class +Rename Method -Extract Constant

Experience

< 5 years
-Extract Constant -Conv. Loc. Var. to Field
-Rename Class -Extract Constant

-Inline Local Variable

5 – 10 years
-Extract Constant -Rename Local Variable -Extract Constant

+Conv. Loc. Var. to Field
+Extract Constant

> 10 years
-Extract Constant +Encapsulate Field

+Rename Method

Table 3.9: Manual vs. automated refactoring practice.

• General informed underuse: The number of participants who apply the automated refactoring

only (A = 100%) is significantly lower than the number of participants who both apply the automated

refactoring and refactor manually (0% < A < 100%).

Table 3.9 shows refactoring kinds that satisfy the above properties for each group as well as for the

aggregated data. For each group, we present only the difference with the aggregated result, where “−”

marks those refactoring kinds that are present in the aggregated result, but are absent in the group result,

and “+” is used in the vice-versa scenario.

Our aggregated results show that only for two refactorings, Extract Constant and Rename Class, the

number of participants who always perform the automated refactoring is higher than the number of par-

ticipants who always perform the refactoring manually. Another important observation is that for two

refactoring kinds, Extract Method and Rename Local Variable, the number of participants who are aware

of the automated refactoring, but still apply it manually most of the time is higher than the number of

participants who apply this refactoring automatically most of the time. This shows that some automated

refactoring tools are underused even when developers are aware of them and apply them from time to time.

Our results for groups show that students tend to underuse more refactoring tools than professionals. Also,

developers with more than five years of experience underuse more refactoring tools that they are aware of
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than those with less than five years of experience. At the same time, novice developers do not use three

refactoring tools at all, i.e., they always perform the Convert Local Variable to Field, Extract Constant, and

Inline Local Variable refactorings manually. Thus, novice developers might underuse some refactoring tools

due to lack of awareness, an issue identified in a previous study [132].

The aggregated result shows that for each of the ten refactoring kinds, the number of participants who

apply the automated refactoring only is significantly lower than the number of participants who both apply

the automated refactoring and refactor manually. The result across all groups shows that no less than seven

refactoring kinds satisfy this property. These results show that developers underuse automated refactoring

tools, some more so than others, which could be an indication of a varying degree of usability problems in

these tools.

RQ4: How much time do developers spend on manual vs. automated

refactorings?

One of the major arguments in favor of performing a refactoring automatically is that it takes less time than

performing this refactoring manually [131]. We would like to assess this time difference as well as compare

the average durations of different kinds of refactorings performed manually.

To measure the duration of a manual refactoring, we consider all AST node operations that contribute

to it. Our algorithm marks AST node operations that contribute to a particular inferred refactoring with

a generated refactoring’s ID, which allows us to track each refactoring individually. Note that a developer

might intersperse a refactoring with other code changes, e.g., another refactoring, small bug fixes, etc.

Therefore, to compute the duration of a manual refactoring, we cannot subtract the timestamp of the first

AST node operation that contributes to it from the timestamp of the last contributing AST node operation.

Instead, we compute the duration of each contributing AST node operation separately by subtracting the

timestamp of the preceding AST node operation (regardless of whether it contributes to the same refactoring

or not) from the timestamp of the contributing AST node operation. If the obtained duration is greater

than two minutes, we discard it, since it might indicate an interruption in code editing, e.g., a developer

might get distracted by a phone call or take a break. Finally, we sum up all the durations of contributing

AST node operations to obtain the duration of the corresponding refactoring.

We get the durations of automated refactorings from CodingSpectator [132]. CodingSpectator measures

configuration time of a refactoring performed automatically, which is the time that a developer spends in the

refactoring’s dialog box. Note that the measured time includes neither the time that the developer might

need to check the correctness of the performed automated refactoring nor the time that it takes Eclipse to
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Figure 3.13: Average duration of performing manual refactorings and configuring automated refactorings.
The black intervals represent the standard error of the mean (SEM). The configuration time bar for the
Encapsulate Field refactoring is missing since we do not have data for it.

actually change the code, which could range from a couple of milliseconds to several seconds, depending on

the performed refactoring kind and the underlying code.

Fig. 3.13 shows our aggregated results. On average, manual refactorings take longer than their automated

counterparts with a high statistical significance (p < 0.0001, using two-sided unpaired t-test) only for Extract

Local Variable, Extract Method, Inline Local Variable, and Rename Class since for the other refactoring

kinds our participants rarely used the configuration dialog boxes (i.e., our participants mostly performed

these refactoring kinds without going through the configuration process). This observation is also statistically

significant across all groups. Manual execution of the Convert Local Variable to Field refactoring takes longer

than the automated one with a sufficient statistical significance (p < 0.04) for the aggregated data, while

for most groups this observation is not statistically significant. The most time consuming, both manually

and automatically, is the Extract Method refactoring, which probably could be explained by its complexity

and the big number of code changes involved. All other refactorings are performed manually on average in

under 15 – 25 seconds. Some refactorings take longer than others. A developer could take into account this

difference when deciding what automated refactoring tool to learn first.

Another observation is that the Rename Field refactoring is on average the fastest manual refactoring.

It takes less time than the arguably simpler Rename Local Variable refactoring. One of the possible expla-

nations is that developers perform the Rename Field refactoring manually when it does not require many

changes, e.g., when there are few references to the renamed field, which is supported by our results for the

following question.
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Figure 3.14: Average size of manual and automated refactorings expressed as the number of affected AST
nodes. The black intervals represent the standard error of the mean (SEM). The scale of the Y axis is
logarithmic.

RQ5: What is the size of manual vs. automated refactorings?

In an earlier project [132], we noticed that developers mostly apply automated refactoring tools for small

code changes. Therefore, we would like to compare the average size of manual and automated refactorings

to better understand this behavior of developers.

To perform the comparison, we measured the size of manual and automated refactorings as the number of

affected AST nodes. For manual refactorings, we counted the number of AST node operations contributing

to a particular refactoring. For automated refactorings, we counted all AST node operations that appear

between the start and the finish refactoring operations recorded by CodingTracker. Note that all operations

between the start and the finish refactoring operations represent the effects of the corresponding automated

refactoring on the underlying code [104].

Fig. 3.14 shows our aggregated results. On average, automated refactorings affect more AST nodes

than manual refactorings for four refactoring kinds, Convert Local Variable to Field, Extract Method,

Rename Field, and Rename Local Variable, with a high statistical significance (p < 0.0001), and for three

refactoring kinds, Extract Local Variable, Inline Local Variable, and Rename Method, with a sufficient

statistical significance (p < 0.03). One of the reasons could be that developers tend to perform smaller

refactorings manually since such refactorings have a smaller overhead. At the same time, this observation

is not statistically significant for all the above seven refactoring kinds in every group. In particular, it is

statistically significant in five out of seven groups for three refactoring kinds, Convert Local Variable to

Field, Extract Method, and Rename Field, and in fewer groups for the other four kinds of refactorings.

Intuitively, one could think that developers perform small refactorings by hand and large refactorings
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with a tool. On the contrary, our findings show that developers perform even large refactorings manually.

In particular, Extract Method is by far the largest refactoring performed both manually and automatically

– it is more than two times larger than Encapsulate Field, which is the next largest refactoring. At the same

time, according to our result for RQ3, most of the developers predominantly perform the Extract Method

refactoring manually in spite of the significant amount of code change. Thus, the size of a refactoring is not a

decisive factor for choosing whether to perform it manually or with a tool. This also serves as an additional

indication that the developers might not be satisfied with the existing automation of the Extract Method

refactoring [99].

RQ6: How many refactorings are clustered?

To better understand and support refactoring activities of developers, Murphy-Hill et al. [100] identified

different refactoring patterns, in particular, root canal and floss refactorings. A root canal refactoring

represents a consecutive sequence of refactorings that are performed as a separate task. Floss refactorings,

on the contrary, are interspersed with other coding activities of a developer. In general, grouping several

refactorings in a single cluster might be a sign of a higher level refactoring pattern, and thus, it is important

to know how many refactorings belong to such clusters.

To detect whether several refactorings belong to the same cluster, we compute a ratio of the number of

AST node operations that are part of these refactorings to the number of AST node operations that happen in

the same time window as these refactorings, but do not belong to them (such operations could happen either

between refactorings or could be interspersed with them). If this ratio is higher than a particular threshold,

T , we consider that the refactorings belong to the same cluster. That is, rather than using a specific time

window, we try to construct as large clusters as possible, adding refactorings to a cluster as long as the

ratio of refactoring to non-refactoring changes in the cluster does not fall below a particular threshold. The

minimum size of a cluster is three. Note that for the clustering analysis we consider automated refactorings

of all kinds and manual refactorings of the ten kinds inferred by our tool.

Fig. 3.15 shows the proportion of clustered and separate refactorings for aggregated data for different

values of T , which we vary from 1 to 10. T = 1 means that the number of non-refactoring changes does

not exceed the number of refactoring changes in the same cluster. Fig. 3.16 shows the average size of gaps

between separate refactorings (i.e., refactorings that do not belong to any cluster) expressed as the number of

AST node operations that happen between two separate refactorings or a separate refactoring and a cluster.

Our aggregated results show that for T = 1, 45% of the refactorings are clustered. When the threshold

grows, the number of the clustered refactorings goes down, but not much — even for T = 10, 28% of
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Figure 3.15: Proportion of clustered and separate refactorings for different values of the threshold T .
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Figure 3.16: The average size of gaps between separate refactorings expressed as the number of AST node
operations. The X axis represents the values of the threshold T .

refactorings are clustered. The average gap between floss refactorings is not very sensitive to the value of

the threshold as well. Overall, developers tend to perform a significant fraction of refactorings in clusters.

This observation holds for all groups except for the novice developers, where for T = 1 only 8% of the

refactorings are clustered. One of the reasons could be that novices tend to refactor sporadically, while

more experienced developers perform refactorings in chunks, probably composing them to accomplish high-

level program transformations (e.g., refactor to a design pattern). Our results emphasize the importance of

researching refactoring clusters in order to identify refactoring composition patterns.

RQ7: How many refactorings do not reach VCS?

In Section 2.3, we showed that VCS snapshots provide incomplete and imprecise evolution data. In particular,

we showed that 37% of code changes do not reach VCS. Since refactorings play an important role in software

development, in this study, we would like to assess the number of refactorings that never make it to VCS,

and thus, are missed by any analysis based on VCS snapshots. Note that in our study of code evolution, we

looked at how much automated refactorings are interspersed with other code changes in the same commit

in the aggregated data only, while in this study, we look at both automated and manual refactorings, we
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distinguish ten refactoring kinds, we distinguish different groups of participants, and we are able to count

individual refactorings that are completely missing in VCS (rather than just being partially overlapped with

some other changes).

We consider that a refactoring does not reach VCS if none of the AST node operations that are part of

this refactoring reach VCS. An AST node operation does not reach VCS if there is another, later operation

that affects the same node, up to the moment the file containing this node is committed to VCS. These

non-reaching AST node operations and refactorings are essentially shadowed by other changes. For example,

if a program entity is renamed twice before the code is committed to VCS, the first Rename refactoring is

completely shadowed by the second one.

Fig. 3.17 shows the ratio of reaching and shadowed refactorings for the aggregated data. Since even a

reaching refactoring might be partially shadowed, we also compute the ratio of reaching and shadowed AST

node operations that are part of reaching refactorings, which is shown in Fig. 3.18.

Our aggregated results show that for all refactoring kinds except Inline Local Variable, some fraction of

refactorings are shadowed. Overall, 30% of refactorings are completely shadowed. The highest shadowing

ratio is for the Rename refactorings. In particular, 64% of the Rename Field refactorings do not reach VCS.

Thus, using VCS snapshots to analyze these refactoring kinds might significantly skew the analysis results.

Although we did not expect to see any noticeable difference between manual and automated refactorings,

our results show that there are significantly more shadowed manual than automated refactorings for each

refactoring kind (except Inline Local Variable, which does not have any shadowed refactorings at all). Overall,

40% of manual and only 16% of automated refactorings are shadowed. This interesting fact requires further

research to understand why developers underuse automated refactorings more in code editing scenarios whose

changes are unlikely to reach VCS.

Another observation is that even refactorings that reach VCS might be hard to infer from VCS snapshots,

since a noticeable fraction of AST node operations that are part of them do not reach VCS. This is particularly

characteristic of the Extract refactorings, which have the highest ratio of shadowed AST node operations.

Our results for all groups are consistent with the aggregated results with a few exceptions. In particular,

the percentage of completely shadowed refactorings for those participants who used our tool for less than 50

hours, is relatively small — 12%, which could be attributed to the fact that such participants did not have

many opportunities to commit their code during the timespan of our study. Another observation is that for

novice developers, the fraction of completely shadowed automated refactorings is significantly higher than

the fraction of completely shadowed manual refactorings (38% vs. 10%). One of the reasons could be that

novices experiment more with automated refactoring tools while learning them (e.g., they might perform an
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Figure 3.17: Ratio of reaching and shadowed refactorings.
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inappropriate automated refactoring and then undo it). Also, novice developers might be less confident in

their refactoring capabilities and thus, try to see the outcome of an automated refactoring before deciding

how (and whether) to refactor their code, which confirms our previous finding [132]. On the contrary, for

the developers with more than ten years of programming experience, the fraction of completely shadowed

automated refactorings is very low — 2%, while the fraction of completely shadowed manual refactorings

is much higher — 39%. Thus, the most experienced developers tend to perform automated refactorings in

code editing scenarios whose changes are likely to reach VCS.

3.3.4 Threats to Validity

Experimental Setup

We encountered difficulties in recruiting a larger group of experienced programmers due to issues such as

privacy, confidentiality, and lack of trust in the reliability of research tools. However, we managed to recruit

23 participants, which we consider a sufficiently big group for our kind of study. Our dataset is not publicly

available due the non-disclosure agreement with our participants.

Our dataset is non-homogeneous. In particular, our participants have different affiliations and program-

ming experience, and used CodingTracker for a varying amount of time. To address this limitation, we

divided our participants into seven groups along these three categories. We answered each research question

for every group as well as for the aggregated data and reported the observed discrepancies.

Our results are based on code evolution data obtained from developers who use Eclipse for Java pro-

gramming. Nevertheless, we expect our results to generalize to similar programming environments.

We infer only ten kinds of refactorings, which is a subset of the total number of refactorings that a

developer can apply. To address this limitation to some extent, we inferred those refactoring kinds that are

previously reported as being the most popular among automated refactorings [132].

Refactoring Inference Algorithm

Our refactoring inference algorithm takes as input the basic AST node operations that are inferred by

another algorithm (see Section 2.2). Thus, any inaccuracies in the AST node operations inference algorithm

could lead to imprecisions in the refactoring inference algorithm. However, we compute the precision and

recall for both these algorithms applied together, and thus, account for any inaccuracies in the input of the

refactoring inference algorithm.

Although the recall of our refactoring inference algorithm is very high, the precision is noticeably lower.
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Hence, some of our numbers might be skewed, but we believe that the precision is high enough not to

undermine our general observations.

To measure the precision and recall of the refactoring inference algorithm, we sampled around 1% of the

total amount of data. Although this is a relatively small fraction of the analyzed data, the sampling was

random and involved 33 distinct 30-minute intervals of code development activities, thus a manual analysis

of 990 minutes of real code development, which is a significant amount of data for such task.
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Chapter 4

Identifying Previously Unknown
Program Transformations

4.1 Introduction

Many code changes are repetitive by nature, thus forming code change patterns. Frequent pattern min-

ing [59] is successfully applied in a broad range of domains. For example, Amazon.com recommends related

products based on “customers who bought this also bought that”. Netflix recommends new movies based on

“customers who watched this also watched that”. Similar frequent pattern mining has revolutionized other

services such as ITunes, GoodReads, social platforms, etc. More recently, data mining techniques became

popular in the domain of genetics [114, 124, 129]. In particular, these techniques are employed to identify

similar sequences of genes, which is a common task in DNA studies. We conjecture that mining frequent

code changes can be similarly transformative for software development.

Identifying frequent code change patterns benefits Integrated Development Environment (IDE) designers,

code evolution researchers, and developers. IDE designers can build tools that automate execution of frequent

code changes, thus improving the productivity of developers. Researchers would better understand the

practice of code evolution and also would be able to focus their attention on the most popular development

scenarios. Library developers can notice and fix the common mistakes in the library API usage.

Application developers would particularly benefit from the ability of an IDE to identify repetitive code

changes on-the-fly. An IDE that learns code change patterns as soon as the developer types them can (i) per-

form the corresponding change automatically the next time a developer needs it or (ii) detect inconsistencies

in the code changes if the developer continues to perform them manually. Developers would also benefit if

an IDE can learn frequent library usage patterns and offer intelligent code-completion [17,106,107] based on

most common scenarios. Finally, such an IDE can learn code changes from more experienced programmers

and suggest them to novices, thus creating a virtual pair-programming environment that does not incur the

limitations of forcing both programmers to be collocated in space and time.

Existing research [17,20,21,66,90,96,128,130,141,143,150] predominantly detects frequent code change

patterns either analyzing the static source code of a single version of an application or comparing the appli-
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cation’s Version Control System (VCS) snapshots. In our empirical study of code evolution (see Section 2.3),

we showed that data stored in VCS is imprecise, incomplete, and makes it impossible to perform analysis

that involves the time dimension inside a single VCS snapshot. However, the most important limitation

both of the snapshot-based techniques and of the static source code analysis is that such approaches cannot

learn code changes on-the-fly, i.e., while the changes are in progress. Recent research [44, 49] aimed at pro-

viding on-the-fly code change assistance to developers, but their code change identification techniques were

limited in two ways: (i) they were looking for a single kind of code change patterns — refactorings, (ii) they

considered only a small subset of previously known kinds of refactorings.

We employed data mining techniques to detect previously unknown frequent code change patterns from

a continuous sequence of code changes. Since our approach works on a continuous sequence of code changes,

it can be applied either on-the-fly, or on a previously recorded sequence.

We designed and implemented a novel frequent code change pattern mining algorithm that accounts for

two major challenges specific to the domain of program transformations — overlapping transactions and

mining frequent itembags rather than itemsets (we discuss these challenges in Sections 4.2 and 4.4.1). To

effectively handle both overlapping transactions and itembags, it is crucial to directly access the transaction

identifiers while computing new itemsets. Therefore, our algorithm employs the vertical data format [144].

Our approach is inspired by several ideas from CHARM [145], the state-of-the-art algorithm for frequent

closed itemsets mining that uses the vertical data format. In particular, our algorithm extends the notion

of itemset-tidset tree (IT-tree) and adapts several optimization insights of CHARM.

We applied our novel algorithm on the real code evolution data from 23 developers, working in their

natural environment for 1,520 hours. Our evaluation shows that our algorithm is effective, useful, and scales

well for big amounts of data. In particular, our algorithm mined more than half a million item instances

in less than six hours. We analyzed some of the frequent code change patterns detected by our algorithm

and identified ten kinds of popular high-level program transformations. On average, 32% of the pattern

occurrences reported by the algorithm led to high-level program transformation discoveries.

4.2 Motivating Example

Figure 4.1 shows a code editing example in which a developer repeatedly applies a high-level program

transformation. In this and all subsequent examples of program transformations, we represent the changed

parts of code as underlined text. Figure 4.1 shows that the developer edits two methods, getDistance

and computeDirection. Method getDistance computes distance between two points, p1 and p2. Method

64



double getDistance(Point p1, Point p2) {
  ...
}
float computeDirection(Point o, Point p) {
  ...
}

Before After

double computeDistance(Point p1, Point p2) {
  if (p1.equals(p2)) return 0;
  ...
}
double computeDirection(Point o, Point p) {
  if (o.equals(p)) return 0;
  ...
}

Figure 4.1: An example of a repeated high-level program transformation.

computeDirection computes a direction angle from some origin point o to a given point p. In this code

editing example, the developer first renames getDistance to computeDistance to better reflect its meaning.

Then, the developer decides to increase accuracy of direction angle computation and changes accordingly

the return type of computeDirection method from float to double. Finally, the developer improves

the performance of both methods — if the method’s arguments are equal, the method returns 0 without

performing any additional computations. We call the corresponding high-level program transformation

Return If Arguments Are Equal.

Table 4.1 shows code changes of the code editing scenario in Figure 4.1. The first column presents the

relative order of the changes. Note, however, that the ordering of changes is partial. For example, according

to the code editing scenario in Figure 4.1, change 2 happened after change 1. At the same time, the mutual

order of changes 3 – 9 is undefined. The second and the third columns correspondingly show the kind of the

AST node operation and the affected AST node’s type. The last column presents the content of the affected

AST node (or the content’s change for change operations).

Given a sequence of code changes like the one in Table 4.1, we would like to identify repetitive code

change patterns that correspond to some high-level program transformations. For example, we would like

to detect that code changes 3 – 9 and 10 – 16 represent the same code change pattern — the pattern of

high-level program transformation Return If Arguments Are Equal. To achieve this goal, we represent each

code change as a 2-tuple (<operation kind>, <AST node type>)1. A code change pattern is an unordered

bag of code changes. It is a bag rather than a set, since the same code change might occur several times in a

pattern, e.g., (add, SimpleName) occurs three times in the pattern of transformation Return If Arguments

Are Equal.

To detect repetitive code change patterns, we apply data mining techniques. In data mining terminology,

an item corresponds to our code change and an itembag corresponds to our code change pattern. The number

1We ignore the contents of the affected AST nodes to avoid making our code changes too specific. Too specific representation
hinders detecting similar changes, e.g., changes 9 and 16 in Table 4.1 would be different, if we considered the affected nodes’
contents.
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Order index Operation AST node type AST node content change
1 change SimpleName getDistance → computeDistance

2 change PrimitiveType float → double

3 add SimpleName p1

4 add SimpleName equals

5 add SimpleName p2

6 add MethodInvocation p1.equals(p2)

7 add NumberLiteral 0

8 add ReturnStatement return 0

9 add IfStatement if (p1.equals(p2)) return 0

10 add SimpleName o

11 add SimpleName equals

12 add SimpleName p

13 add MethodInvocation o.equals(p)

14 add NumberLiteral 0

15 add ReturnStatement return 0

16 add IfStatement if (o.equals(p)) return 0

Table 4.1: Code changes of the code editing scenario in Figure 4.1.

of repetitions of a pattern (itembag) is called frequency. Note that our goal is to detect full code change

patterns rather than their parts (i.e., we would like to detect a pattern with code changes 3 – 9 rather than

3 – 7 or 5 – 8, or any other subset of code changes). Therefore, we mine closed itembags, i.e., itembags that

are not part of bigger itembags with the same frequency (we present a more formal definition of closedness

in the following section).

Note that off-the-shelf data mining algorithms are designed to mine itemsets rather than itembags. Also,

they assume that transactions are disjoint. For code change mining, a transaction is a window in which an

algorithm looks for a pattern. The size of the window determines the maximum size of a pattern that a

mining algorithm can detect. To mine the actual code changes, we use a time window, while for presentation

purposes, we define the size of a window as the number of code changes. For example, let’s consider that our

window is of size eight. Then, according to table 4.1, we have two disjoint windows (transactions), the first

spans code changes 1 – 8, and the second — changes 9 – 16. As a result, the pattern with code changes 3 –

9 crosses the boundary between windows. Consequently, a mining algorithm would not be able to correctly

detect the whole pattern. To avoid this problem, we designed a mining algorithm that uses overlapping

windows (transactions).

In the following, we introduce the canonical problem of mining frequent closed itemsets. Then, we

discuss in a more formal way how our problem of mining frequent code change patterns differs from the

canonical one, i.e., how we handle itembags and overlapping transactions. We conclude the chapter with the

presentation of our code change pattern mining algorithm and its evaluation results.
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Transaction identifier (tid) Set of items
1 a, c
2 b, d
3 a, b, d
4 c
5 b, c

Table 4.2: An example of a transaction database.

Itemset X t(X) sup(X)
{a} {1, 3} 2
{a, b} {3} 1
{b, d} {2, 3} 2
{a, b, d} {3} 1

Table 4.3: Example itemsets from the transaction database in Table 4.2.

4.3 Background

A transaction is a tuple < tid,X >, where tid is a unique transaction identifier and X is a set of items. A

transaction database D is a set of transactions. Let I be a set of all items and T be a set of all tids that are

present in a database D. A non-empty set X ⊆ I is called an itemset. Correspondingly, a non-empty set

Y ⊆ T is called a tidset. An itemset that contains n items is called an n-itemset.

A transaction < tid,X > contains itemset Y if Y is a subset of X. Let t(X) denote the set of tids of all

transactions that contain itemset X. In a given transaction database D, the support of an itemset X, which

we denote as sup(X), is the number of transactions in D that contain X. That is, sup(X) = |t(X)|. An

itemset X is a frequent itemset if sup(X) ≥ min sup, where min sup is a user-specified minimum support

threshold. An itemset X is a closed itemset if there exists no proper superset Y such that sup(X) =

sup(Y ). In contrast to mining frequent itemsets, mining frequent closed itemsets produces a significantly

more compact result while preserving the result’s completeness [113].

Table 4.2 shows an example of a transaction database that contains four items, I = {a, b, c, d}, and

five transactions, T = {1, 2, 3, 4, 5}. For the convenience of presentation, when the order of items does not

matter, we order them alphabetically. Table 4.3 shows several itemsets from the transaction database in

Table 4.2. The second and the third columns of Table 4.3 present the set of the containing transaction

identifiers and the support for each itemset.

To accommodate such properties of code change pattern mining as overlapping transactions and itembags,

it is crucial to access the transaction identifiers directly while computing new itemsets. The vertical data

format grants such access to a mining algorithm. Therefore, our approach is inspired by several ideas from
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Item Tidset
a {1, 3}
b {2, 3, 5}
c {1, 4, 5}
d {2, 3}

Table 4.4: The transaction database from Table 4.2 represented in the vertical data format.

CHARM [145], an advanced algorithm for mining data in the vertical data format, which introduces the

notion of itemset-tidset tree (IT-tree), employs several optimizations, and searches for closed itemsets, thus

considerably reducing the size of the mining result. In particular, our algorithm extends the notion of IT-tree

and adapts several optimization insights of CHARM. We now introduce the vertical data format and present

the CHARM’s definition of IT-tree. We discuss our approach in the next section.

The vertical data format represents a transaction database as a set of tuples < item, tidset >, where tidset

is a set of identifiers of transactions that contain the corresponding item. Table 4.4 shows the transaction

database from Table 4.2 in the vertical data format. Eclat [144] is the first algorithm for mining data in the

vertical data format without candidate generation. The basic idea of the algorithm is to compute (n + 1)-

itemsets from n-itemsets by intersecting their tidsets. The algorithm starts with frequent 1-itemsets and

finishes when no more frequent itemsets can be found. For example, let’s consider two 1-itemsets, {a} and

{b}, from Table 4.4 (note that for any item x there is a corresponding 1-itemset {x}). The algorithm computes

the tidset of a 2-itemset {a, b} by intersecting the tidsets of {a} and {b}: t({a, b}) = t({a}) ∩ t({b}) = {3}.

The support of the itemset {a, b} is 1: sup({a, b}) = |t({a, b})| = 1. If the minimum support threshold is

greater than 1, then itemset {a, b} is discarded. Otherwise, it is added to the results and consequently, it is

considered for computing 3-itemsets.

The nodes in an IT-tree are pairs itemset : tidset. The root of the tree represents an empty itemset,

and thus, its tidset is T , the set of all tids. The immediate children of the root node are 1-itemsets that are

computed by scanning the transaction database. The immediate children of a non-root node are computed

by intersecting this node’s tidset with the tidsets of the not yet considered 1-itemsets, traversing them from

left to right. If the resulting tidset’s size falls below the minimum frequency threshold, the new node is not

added to the IT-tree. The IT-tree is completed when no more nodes can be added to it. Figure 4.2 shows

the IT-tree for the transaction database from Table 4.4. The first level of the tree consists of the 1-itemsets

from the database that are paired with their tids, e.g., {a} : {1, 3}, {b} : {2, 3, 5}, etc. The following levels

are computed according to the procedure described above. For example, node {a, b} : {3} is the result of

combination of nodes {a} : {1, 3} and {b} : {2, 3, 5}. Three itemsets in this IT-tree are not closed, and thus,

are not included into the mining result: itemsets {a, b} and {a, d} are subsumed by the proper super itemset
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{} : {1, 2, 3, 4, 5}

{a} : {1, 3} {b} : {2, 3, 5} {c} : {1, 4, 5} {d} : {2, 3}

{a, b} : {3} {a, c} : {1} {a, d} : {3} {b, c} : {5} {b, d} : {2, 3}

{a, b, d} : {3}

Figure 4.2: The IT-tree for the transaction database from Table 4.4.

{a, b, d}, while itemset {d} is subsumed by the proper super itemset {b, d}.

4.4 Frequent Code Change Pattern Mining Algorithm

4.4.1 Handling Overlapping Transactions and Itembags

We mine frequent code change patterns from an ordered sequence of code changes (note that code changes

are naturally ordered according to when they happened, i.e., according to their timestamps). To populate

our transaction database, we divide this continuous sequence into individual transactions. Our code editing

example in Section 4.2 shows that making transactions disjoint and sizing them according to the maximum

length of a pattern, max length, does not account for patterns that cross the boundary of two transactions.

Therefore, we use overlapping transactions whose size is 2∗max length. The size of the overlap between two

neighboring transactions is max length. As a result, our mining algorithm finds all patterns whose length

does not exceed max length and some patterns whose length lies in between max length and 2∗max length.

Figure 4.3 shows an example of a sequence of code changes. For presentation purposes, we denote every

distinct kind of code change with a different character. For example, d might stand for (change, SimpleName),

a for (add, MethodInvocation), c for (delete, IfStatement), etc. Also, we consider that the maximum

length of a pattern we are looking for, max length, is six. For the actual mining, we set max length to five

minutes, and thus, transactions contained various numbers of items.

An important observation is that although code changes form an ordered sequence, a code change pattern

is unordered because the corresponding high-level program transformation may be performed in different

orders. For example, a developer who performs a Rename Local Variable refactoring might first change the

variable’s declaration and then its references or vice versa, or even intersperse changing the declaration and

the references. Thus, the order of a transaction’s items does not matter.

Another observation is that a high-level program transformation may contain several instances of the
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d  a  c  b  c  a  e  g  f  d  d  a  c  b  c  a  e  g  f  d  h  i  j  k
1    2   3    4    5   6   7    8    9  10  11 12  13 14  15  16 17  18  19 20  21 22 23 24

Transaction 1
Transaction 2

Transaction 3

Figure 4.3: An example of a sequence of code changes. Distinct kinds of code changes are represented with
different characters.

same kind of code change. For example, Rename Local Variable refactoring involves the same change for

all references to the renamed variable. Section 4.2 presents an example of another high-level program trans-

formation, Return If Arguments Are Equal, that also contains multiple instances of the same kind of code

change, (add, SimpleName). These examples show that for mining code change patterns, a transaction’s

items form a bag rather than a set. In particular, the first transaction in Figure 4.3 contains three items

a and two items c. Moreover, this transaction contains two instances of code change pattern {a, c}, which

illustrates a scenario when two high-level program transformations happen within max length time frame.

The major difference between our frequent code change pattern mining algorithm and the existing ap-

proaches to mining frequent itemsets is that our algorithm handles overlapping transactions and itembags

rather than itemsets. To distinguish different occurrences of an item in the same transaction as well as the

overlapped parts of two transactions, our algorithm assigns a unique ID to each item’s occurrence. The

first line in Figure 4.3 shows the IDs assigned to the underlying items’ occurrences. For example, the first

transaction contains occurrences of item a with IDs {2, 6, 12}, the second transaction — {12, 16}, and the

third — {16}. Note that although our algorithm handles itembags, we continue to use the notion of item-

sets throughout our presentation, since the fact that our itemsets are actually itembags is accounted for by

explicitly tracking each item’s occurrences.

4.4.2 Tracking an Item’s Occurrences

In order to track items’ occurrences, a node in our itemset-tidset tree (IT-tree) is defined as follows:

[item1, item2, ..., itemn] :

[tid1 : [[occurrences1], [occurrences2], ..., [occurrencesn]],

tid2 : [[occurrences1], [occurrences2], ..., [occurrencesn]],

...,

tidm : [[occurrences1], [occurrences2], ..., [occurrencesn]]]

70



Itemset IT-tree node
{a} [a] : [1 : [[2, 6, 12]], 2 : [[12, 16]], 3 : [[16]]]
{c} [c] : [1 : [[3, 5]], 2 : [[13, 15]], 3 : [[13, 15]]]
{d} [d] : [1 : [[1, 10, 11]], 2 : [[10, 11]], 3 : [[20]]]
{a, c} [a, c] : [1 : [[2, 6, 12], [3, 5]], 2 : [[12, 16], [13, 15]], 3 : [[16], [13, 15]]]
{a, c, d} [a, c, d] : [1 : [[2, 6, 12], [3, 5], [1, 10, 11]], 2 : [[12, 16], [13, 15], [10, 11]], 3 : [[16], [13, 15], [20]]]

Table 4.5: Examples of itemsets and their corresponding IT-tree nodes for the sequence of code changes
from Figure 4.3.

We use square brackets to denote ordered sets. The order of items in an itemset does not matter for

a pattern, but it helps our algorithm to track occurrences of every item in each transaction that contains

this itemset. Thus, we represent an n-itemset as an ordered set of items [item1, item2, ..., itemn]. For a

given itemset, a node in an IT-tree contains an ordered set of tids of transactions that contain this itemset.

Ordering of transactions enables our algorithm to effectively handle overlapping parts of the neighboring

transactions. For each transaction, the IT-tree node also tracks all occurrences for every item in the given

itemset (in the above representation, [occurrencesi] are all occurrences of itemi in a particular transaction).

Our algorithm also orders an item’s occurrences to ensure the optimal result of our itemset frequency

computation technique that we discuss below.

Similarly to CHARM [145], we compute our IT-tree by traversing the 1-itemsets from left to right and

intersecting the tidset of a particular itemset with the tidsets of the not yet considered 1-itemsets to generate

new IT-tree nodes. The major difference from the CHARM’s approach is that our algorithm tracks items’

occurrences, and thus, whenever a new item is added to an itemset, the item’s occurrences are appended

to the set of occurrences of every transaction in the corresponding IT-tree node. Table 4.5 shows several

examples of itemsets and their corresponding IT-tree nodes for the sequence of code changes from Figure 4.3.

The first row presents the IT-tree node for itemset {a}. The node consists of the itemset itself, [a], followed

by tids of transactions that this itemset appears in — 1, 2, 3. For each transaction, the node tracks all

occurrences of item a: transaction 1 contains occurrences 2, 6, 12, transaction 2 — 12, 16, and transaction

3 — 16. Note that storing an item’s occurrences in every IT-tree node that contains this item is not only

redundant, but also prohibitively expensive. Instead, our algorithm stores occurrences of individual items

and then just refers these occurrences from the containing IT-tree nodes. We inline the referred occurrences

for presentation purposes only.
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4.4.3 Computing the Frequency of an Itemset

Due to overlapping transactions and multiple occurrences of an item in the same transaction, our algorithm

cannot compute the frequency of an itemset as the number of transactions that contain this itemset (as it

is done in the existing frequent itemset mining techniques). Instead, we devised our own itemset frequency

computation technique that accounts for the particularities of our mining problem. In a given transaction

k:

tidk : [[occurrences1], [occurrences2], ..., [occurrencesn]]

the frequency of the corresponding itemset is:

fk = min
i=1..n

|[occurrencesi]| (4.1)

That is, fk is the number of occurrences of an itemset’s item that appears the least number of times.

The overall frequency of an itemset that is contained in m transactions is:

F =

m∑
k=1

fk (4.2)

If an item occurrence is shared between two neighboring transactions, k and l, the algorithm should

count this occurrence only once, either as part of fk or as part of fl. In an ordered set of transactions, two

transactions, k and l, are neighboring if and only if |k− l| = 1 and |tidk− tidl| = 1. That is, the neighboring

transactions follow each other both in the ordered set and in the original sequence of code changes. For

example, in Figure 4.3 transactions of the ordered set [1, 2] are neighboring, while transactions of the ordered

set [1, 3] are not neighboring.

Let’s denote [occurrenceski ] the ordered set of occurrences of itemi in a transaction k. Let’s denote

oj an occurrence o with the index j in the ordered set of occurrences. To compute the frequency of an

n-itemset that is contained in m transactions, our algorithm visits each pair of transactions k and k + 1,

where 1 ≤ k < m. First, our algorithm computes fk using formula (4.1). Then, if transactions k and

k + 1 are neighboring, our algorithm visits every occurrence oj ∈ [occurrenceski ], where 1 ≤ i ≤ n. If

o ∈ [occurrencesk+1
i ], then our algorithm checks whether the shared occurrence o should be removed from

the transaction k or k + 1. If j ≤ fk, then o is removed from the transaction k + 1. Otherwise, it is removed

from the transaction k. Note that removing shared occurrences never affects the initially computed fk.

Finally, our algorithm computes the overall frequency using formula (4.2).
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tid Occurences fk f ′
k

1 [[2, 6, 12], [3, 5], [1, 10, 11]] 2 2
2 [[12, 16], [13, 15], [10, 11]] 1 2
3 [[16], [13, 15], [20]] 1 1

Table 4.6: The frequency computation result for the itemset {a, c, d}.

For the best performance of our algorithm, we order an item’s occurrences such that those that happened

earlier in time appear earlier in the ordered set. Since occurrences’ IDs are generated incrementally (see

Figure 4.3), such ordering is easily achieved by sorting occurrences in ascending order of their IDs. Conse-

quently, the occurrences that are shared between transactions k and k+1 are placed at the end of the ordered

set of all occurrences for the transaction k. Hence, our algorithm computes the maximal possible frequency

for the transaction k employing the shared occurrences only when needed, while the unused part of them is

attributed to the subsequent transaction k + 1, thus maximizing its frequency too. Going through each pair

of transactions k and k + 1, 1 ≤ k < m, our algorithm propagates this maximization, thus computing the

optimal overall frequency F .

Table 4.6 shows the frequency computation result for the itemset {a, c, d}. Occurrences removed by the

algorithm are crossed out. The values in the fourth column, f ′
k, are computed by applying the formula in

(4.1) without removing the shared occurrences. The overall frequency of the itemset {a, c, d} is F = 4.

4.4.4 Optimizations

To optimize the mining algorithm, CHARM exploits several insights about the properties of itemsets and

tidsets. Let’s recall that the computation of immediate children of an IT-tree node of an itemset X involves

traversing the not yet considered 1-itemsets from left to right. Let’s assume that this traversal visits two

1-itemsets, Y and Z, in this order. If t(X ∪ Y ) = t(X ∪ Z), then there is no need to create separate

children nodes corresponding to Y and Z. Instead, CHARM removes both Y and Z from the list of not

yet considered 1-itemsets and adds a node X ∪ Y ∪ Z as a child of the IT-tree node of the itemset X.

Similarly, if t(X ∪ Y ) ⊃ t(X ∪ Z), then a child node X ∪ Y ∪ Z is added to the IT-tree, but the 1-itemset

Z is not removed from the yet not considered 1-itemsets, which means that CHARM would consider Z

without Y while computing another immediate child, X ∪Z. To maximize the chances of encountering such

scenarios, CHARM sorts the not yet considered 1-itemsets in ascending order of the number of transactions

that contain them.

In our algorithm, we adapt the CHARM’s optimization insights to the specifics of our data mining prob-

lem. We introduce the notion of a frequency descriptor, FD, a 3-tuple that captures all relevant information
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about the frequency of an itemset that is contained in m transactions:

FD =< F,
→
fk,

→
f ′
k>, where k = 1..m.

For example, according to Table 4.6, the frequency descriptor of the itemset {a, c, d} is FD =< 4, (2, 1, 1),

(2, 2, 1) >. Two frequency descriptors are equivalent if they have exactly the same elements. A frequency

descriptor FD1 is more powerful than a frequency descriptor FD2 if FD1 and FD2 are not equivalent

and every element of FD1 is equal to or greater than the corresponding element of FD2. For example,

< 4, (2, 1, 1), (2, 2, 1) > is more powerful than < 4, (2, 1, 1), (1, 2, 1) >, but it is not more powerful than

< 4, (2, 1, 1), (1, 3, 1) >.

To optimize the computation of the IT-tree, our algorithm first sorts the not yet considered 1-itemsets

Y of a given itemset X by the number of transactions that contain X ∪ Y . If two 1-itemsets, Y and Z, are

such that t(X ∪ Y ) = t(X ∪ Z), then the algorithm arranges Y and Z in the lexicographical order of the

frequency descriptors of X ∪ Y and X ∪ Z.

Next, our algorithm computes the immediate children of the IT-tree node of the itemset X by traversing

the sorted list of 1-itemsets. If two yet not considered 1-itemsets, Y and Z, are such that t(X∪Y ) = t(X∪Z)

and the frequency descriptors of X ∪ Y and X ∪ Z are equivalent, our algorithm removes both Y and Z

from the list of the not yet considered 1-itemsets and adds a node X ∪ Y ∪ Z as a child of the IT-tree node

of the itemset X. If Y and Z are such that t(X ∪Y ) = t(X ∪Z) or t(X ∪Y ) ⊃ t(X ∪Z), and the frequency

descriptor of X ∪ Z is more powerful than the frequency descriptor of X ∪ Y , our algorithm adds a child

node X ∪ Y ∪ Z to the IT-tree, but keeps the 1-itemset Z in the list of the not yet considered 1-itemsets.

4.4.5 Computing Closed Itemsets

The output of our algorithm contains only closed code change patterns, i.e., for each itemset X that represents

a particular pattern, in our result, there is no itemset Y such that Y ⊃ X and FY = FX . To ensure

the closedness of the result, our algorithm checks every newly generated itemset X against the already

accumulated itemsets. Since the number of accumulated itemsets might be very big, to speed up the checking

process, we hash the accumulated itemsets similarly to CHARM, i.e., using the sum of the itemsets’ tids as

the key.

Unlike CHARM though, our algorithm differentiates between partially subsumed and completely subsumed

itemsets as well as detects scenarios, in which the previously accumulated itemset needs to be replaced with

the new one. Also, our algorithm compares the frequency descriptor of the newly generated itemset X,
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FDX , with the frequency descriptors of the previously generated itemsets Y , FDY . If Y ⊃ X and FDY

is more powerful than FDX , then the itemset X is completely subsumed — it is not added to the results

and the algorithm stops computing the children of the corresponding IT-tree node. Otherwise, if Y ⊃ X

and the overall frequency of X, FX , is equal to the overall frequency of Y , FY , then the itemset X is

partially subsumed — it is not added to the results, but the algorithm proceeds computing the children of

the corresponding IT-tree node. Finally, if Y ⊂ X and FX = FY , Y is removed from the results. Note that

all the above decisions are valid only for X and Y that appear in the same transactions, i.e., t(X) = t(Y ).

4.4.6 Establishing Frequency Thresholds

To decide whether an itemset is frequent enough to be added to the results, our algorithm employs two

thresholds. First, our algorithm checks whether an itemset’s overall frequency is not less than the absolute

frequency threshold, i.e., the frequency threshold that ignores all other characteristics of the itemset (e.g.,

its size or composition). Next, our algorithm checks whether the itemset’s overall frequency multiplied by

the itemset’s size is not less than the dynamic threshold, i.e., the longer an itemset grows, the less frequent

it can be in order to pass this threshold. For example, a dynamic threshold of 100 filters out 1-itemsets that

are less frequent than 100, 2-itemsets that are less frequent than 50, and so on.

4.4.7 Putting It All Together

Figure 4.4 shows a high-level overview of our frequent code change pattern mining algorithm. The pseudocode

of the figure contains all the basic functionality features of our algorithm discussed above.

4.5 Evaluation

In our evaluation, we would like to answer these questions:

• Q1(scalability): Is our algorithm scalable to handle big amounts of data?

• Q2(effectiveness): Does our algorithm mine code change patterns that simplify identification of high-

level program transformations?

• Q3(usefulness): Can we detect interesting high-level program transformations from the mined code

change patterns?

To answer these questions, we applied our frequent code change pattern mining algorithm on a large

corpus of real world data. In the following, we first describe how we collected the data and performed the
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input: codeChangesSequence
output: frequentPatterns

procedure: mine(codeChangesSequence) {
frequentPatterns = �; emptySet = �;
inputItems = getInputItems(codeChangesSequence);
solve(emptySet, inputItems);

}

procedure: solve(currentItemset, remainingItems) {
// Sort remainingItems according to currentItemset as a prefix.
remainingSortedItems = sort(currentItemset, remainingItems);
while (remainingSortedItems 6= �) {

nextItem = pollFirst(remainingSortedItems);
newItemset = addItem(currentItemset, nextItem);
if (getFrequency(newItemset) ≥ ABSOLUTE FREQUENCY ) {

newRemainingItems = copy(remainingSortedItems);
foreach (forwardItem ∈ remainingSortedItems) {

freqCompResult = compare(freqDescr(newItemset), freqDescr(addItem(newItemset, forwardItem));
if (freqCompResult == EQUIVALENT || freqCompResult == SECOND MORE POWERFUL) {

newItemset = addItem(newItemset, forwardItem);
removeItem(newRemainingItems, forwardItem);
if (freqCompResult == EQUIVALENT ) {

removeItem(remainingSortedItems, forwardItem);
}

}
}
if (getFrequency(newItemset) * getSize(newItemset) ≥ DYNAMIC THRESHOLD) {

subsumptionResult = checkSubsumption(newItemset);
if (subsumptionResult 6= FULLY SUBSUMED) {
if (subsumptionResult 6= PARTIALLY SUBSUMED) {

frequentPatterns = addItemset(frequentPatterns, newItemset);
}
solve(newItemSet, newRemainingItems);

}
}

}
}

}

Figure 4.4: Overview of our frequent code change pattern mining algorithm.
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evaluation of the algorithm. Then, we present our results.

4.5.1 Experimental Setup

We applied our algorithm on the data collected during our previous user study (see Section 2.3), which

involved 23 participants: ten professional programmers who worked on different projects in domains such

as marketing, banking, business process management, and database management; and 13 Computer Science

graduate students and senior undergraduate summer interns who worked on a variety of research projects

from six research labs at the University of Illinois at Urbana-Champaign. Table 2.2 shows the programming

experience of our participants. We evaluated our mining algorithm on 1,520 hours of code development

collected from our participants.

We first applied our AST node operations inference algorithm (see Section 2.2) on the collected raw

data to represent code changes as add, delete, and update operations on the underlying AST. Next, we

represented distinct kinds of code changes as combinations of the operation and the type of the affected

AST node. For example, (add, IfStatement), (delete, IfStatement), and (add, InfixExpression)

are three different kinds of code changes. The instances of code change kinds serve as input to our frequent

code change pattern mining algorithm. That is, in our mining algorithm, a code change kind is an item and

an instance of a code change kind is an item’s occurrence.

For each mined code change pattern, our algorithm reports all occurrences of the pattern in the input

sequence of code changes. We use CodingTracker’s replayer to manually investigate these occurrences.

We replay the code changes of a particular occurrence to detect the corresponding high-level program

transformation.

Since the mining result is huge, we order the mined patterns along three dimensions: by frequency of

the pattern (F ), by size of the pattern (S), and by F ∗ S. Then, we output the top 1,000 patterns for each

dimension and investigate them starting from the top of the list.

Recall that our algorithm uses two thresholds to decide whether a pattern is frequent: absolute frequency

threshold and dynamic threshold. Both thresholds check whether a specific pattern’s metrics (a pattern’s

frequency and a pattern’s frequency multiplied by its size correspondingly) do not fall below a user-specified

value. Providing different values for these thresholds, one can tune the output of our mining algorithm.

We noticed that some items (i.e., atomic AST node operations like (add, IfStatement)) are much more

frequent than the others. Thus, picking a single pair of threshold values to analyze our data is impractical.

If these values are too low, our algorithm’s scalability would degrade, while the output would become

disproportionately big. On the other hand, too high values would hinder the mining of patterns that involve
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Frequency, F NK AFT DT Mining time
10, 000 ≤ F 23 30 10,000 15 minutes

300 ≤ F < 10, 000 81 30 300 5.2 hours
5 ≤ F < 300 32 5 5 7.7 seconds

Table 4.7: Grouping of item kinds by their frequency. Column NK shows the number of item kinds in each
group. Columns AFT and DT show the values of the absolute frequency threshold and dynamic threshold.

Item
Transactions

Item Total
kinds occurrences mining time

136 7,927 549,184 5.5 hours

Table 4.8: Performance statistics of our experiment.

less frequent items. Therefore, we divided the input items into three groups, applying different threshold

values to each. Table 4.7 shows each group as well as the corresponding thresholds and the mining time.

We performed all mining on a quad-core i7 2GHz machine with 8GB of RAM.

We observed that some AST node operations are too frequent to be considered at all. For example,

adding and deleting SimpleName accompanies any code change that declares or references a program entity.

Consequently, mining items that represent such AST node operations would only add noise to the detected

code change patterns. Therefore, before applying our algorithm, we filtered out the noisy item kinds, thus

reducing the number of item kinds from 162 to 138. According to Table 4.7, the total number of the

considered item kinds is 136, which means that two item kinds were too infrequent to be part of any group.

4.5.2 Results

Table 4.8 summarizes performance statistics of our experiment. Our algorithm mined more than half a

million item occurrences in less than six hours, and thus, the answer to the first question is that our

mining algorithm is sufficiently scalable to handle big amounts of data with the appropriate

threshold values.

The frequent patterns mined by our algorithm helped us identify ten kinds of program transformations.

Table 4.9 shows the identified kinds of program transformations grouped according to their scope. The last

two columns of the table show the number of pattern occurrences that we investigated and the number of

fruitful pattern occurrences, i.e., those that led to the discovery of the corresponding program transforma-

tions. Overall, 32% of pattern occurrences were fruitful. Hence, our answer to the second question is

that our algorithm is effective — it mines patterns that often lead to discovery of high-level

program transformations.
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Scope Identified program transformation Investigated Fruitful

Statement Convert Element to Collection 5 2

Loop
Add a Loop Collector 3 1

Wrap Loop with Timer 2 1

Method Add Null Check for a Parameter 5 1

Class

Add a New Enum Element 2 1

Change and Propagate Field Type 3 1

Change Field to ThreadLocal 2 1

Copy Field Initializer 2 1

Create and Initialize a New Field 4 1

Move Interface Implementation to Inner Class 6 1

Table 4.9: Identified kinds of program transformations. Column Investigated shows the number of the
investigated pattern occurrences. Column Fruitful shows the number of pattern occurrences that were
fruitful.

Lock myLock; Set<Lock> myLock;
Before After

Figure 4.5: An example of Convert Element to Collection transformation.

Note that although we did not have any knowledge of the codebase, we were able to identify and name

ten kinds of high-level program transformations. We believe that the original developers of the code could

have recognized more transformations. Thus, the result for effectiveness of our mining algorithm is the lower

bound.

In the following, we present the discovered transformation kinds in more detail.

Convert Element to Collection. This is a statement-level transformation in which a developer

converts a field, parameter, or a local variable of a certain type into a collection (e.g., list, set, array, etc.)

of that type. Figure 4.5 shows an example of Convert Element to Collection transformation. Note that if

variable myLock in Figure 4.5 has any references in the code, then converting it to a collection would require

updating all its references accordingly.

Add a Loop Collector. This is a transformation in which a developer introduces a new variable that

collects or aggregates the data processed in a loop. Figure 4.6 shows an example of Add a Loop Collector

transformation.

Wrap Loop with Timer. A developer applies this transformation to compute the execution time of a

loop. The developer surrounds the loop with variables that hold the time before and after the loop execution

and outputs the time difference. Figure 4.7 shows an example of Wrap Loop with Timer transformation.

Add Null Check for a Parameter. This is a transformation in which a developer adds null precon-

dition checks to all methods of a class that receive a particular parameter such that the methods’ bodies
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for (A a : collection) {
  ...
}

Before After

Set<A> collector = new HashSet<A>();
for (A a : collection) {
  ...
  collector.add(a);
}

Figure 4.6: An example of Add a Loop Collector transformation.

for (...) {
  ...
}

Before After

long start = System.currentTimeMillis();
for (...) {
  ...
}
long end = System.currentTimeMillis();
output(end – start);

Figure 4.7: An example of Wrap Loop with Timer transformation.

are not executed if the parameter is null. Figure 4.8 shows an example of Add Null Check for a Parameter

transformation.

Add a New Enum Element. Adding a new element to enum triggers a ripple of changes such as adding

new switch cases, if-then-else chains, and dealing with any duplicated code that uses the updated enum.

Figure 4.9 shows an example of Add a New Enum Element transformation.

Change and Propagate Field Type. This is a transformation in which a developer changes the type

of a field. As a result, the developer also has to update the type of some local variables as well as the return

type of some methods. Figure 4.10 shows an example of Change and Propagate Field Type transformation.

Change Field to ThreadLocal. To improve thread safety of an application, a developer may decide to

convert some fields to ThreadLocal. Besides changing the type and the initialization of the converted field,

the developer also has to modify all field’s accesses such that they use get() and set() of ThreadLocal.

Figure 4.11 shows an example of Change Field to ThreadLocal transformation.

void m1(P1 p1, P2 p2) {
  ...
}
void m2(P1 p1, P3 p3) {
  ...
}

Before After

void m1(P1 p1, P2 p2) {
  if (p1 == null) return;
  ...
}
void m2(P1 p1, P3 p3) {
  if (p1 == null) return;
  ...
}

Figure 4.8: An example of Add Null Check for a Parameter transformation.
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enum E {e1, ... , en};
switch (e) {
  case 1: ...
  ...
  case n: ...
}
if (m.isE1()) { ... }
...
if (m.isEn()) { ... }

P createP() {
  P p = new P();
  p.add(E.e1);
  ...
  p.add(E.en);
}

Before After

enum E {e1, ... , en, en+1};
switch (e) {
  case 1: ...
  ...
  case n: ...
  case n+1: ...
}
if (m.isE1()) { ... }
...
if (m.isEn()) { ... }
if (m.isEn+1()) { ... }

P createP() {
  P p = new P();
  p.add(E.e1);
  ...
  p.add(E.en);
  p.add(E.en+1);
}

Figure 4.9: An example of Add a New Enum Element transformation.

A field;
public A method() {
  ...
  A localVar;
  ...
}

Before After

B field;
public B method() {
  ...
  B localVar;
  ...
}

Figure 4.10: An example of Change and Propagate Field Type transformation.

class A {
  B f;
  void m() {
    int v = compute(f);
    ...
  }
}

Before

class A {
  ThreadLocal<B> f;
  void m() {
    int v = compute(f.get());
    ...
  }
}

After

Figure 4.11: An example of Change Field to ThreadLocal transformation.
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class C {
  F field1;
  F field2;
  ...
}

Before After

class C {
  F field1 = new F() { ... };
  F field2 = new F() { ... };
  ...
}

Figure 4.12: An example of Copy Field Initializer transformation.

class C {
  private A a;
  public C() {
    a = new A();
    ...
  }
  ...
}

Before After

class C {
  private A a;
  private B b;
  public C() {
    a = new A();
    b = new B();
    ...
  }
  ...
}

Figure 4.13: An example of Create and Initialize a New Field transformation.

Copy Field Initializer. This is a transformation in which a developer copies the same initializer to

several fields. Figure 4.12 shows an example of Copy Field Initializer transformation.

Create and Initialize a New Field. When a developer adds a new field, it has to be properly initialized

alongside the already present fields in constructors and other initialization places (e.g., static initialization

blocks). Figure 4.13 shows an example of Create and Initialize a New Field transformation.

Move Interface Implementation to Inner Class. This is a transformation that describes a scenario

in which a developer moves the implementation of an interface from a class to its newly created inner class.

Figure 4.14 shows an example of Move Interface Implementation to Inner Class transformation.

The mined code change patterns helped us identify ten kinds of interesting program transformations

whose scopes range from individual statements to whole classes. Thus, our answer to the third question

class C implements I1, I2{
  public void implementorI1() {
    ...
  }
  ...
}

Before After

class C implements I2{
  class InnerC implements I1{
    public void implementorI1() {
      ...
    }
  }
  ...
}

Figure 4.14: An example of Move Interface Implementation to Inner Class transformation.
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is that our algorithm is useful.

4.5.3 Threats to Validity

In our experiment, we used the output of the AST node operations inference algorithm (see Section 2.2) to

prepare the input to our frequent code change pattern mining algorithm. Consequently, imprecisions in the

inferred AST node operations could negatively affect our mining results. Note, however, that our approach

to mining frequent code change patterns is independent of the way its input is produced.

We investigated the mined patterns manually, and thus, might have missed some of their corresponding

high-level program transformations. Also, we investigated only a fraction of the mining results. However,

our experiment did not aim at discovering all program transformations performed by our participants.

Instead, our goal was to show that our algorithm mines patterns that effectively point to high-level program

transformations, and we believe that discovering several such transformations in a reasonable amount of

time (identifying and documenting these transformations took just a couple of days) supports this claim.

In our study, we collected code evolution data from developers who use Eclipse for Java programming.

Consequently, the identified high-level program transformations might not be generalizable to other pro-

gramming environments and languages. Nevertheless, our approach to identifying such transformations is

orthogonal to the way developers make their code changes.

Our dataset is not publicly available due the nondisclosure agreement with our participants.
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Chapter 5

Related Work

5.1 Program Transformations

A program transformation is any change that converts one program into another one. Developers transform

programs daily, improving their design or performance, fixing bugs, implementing new features, etc. A

variety of automated program transformation tools were developed to support these programming activities.

For example, text substitution is one of the simplest automated program transformations. It is supported

by all modern Integrated Development Environments (IDEs) as well as by some specialized command-line

tools (e.g., sed and awk [36]).

Behavior-preserving program transformations keep the observable behavior of the transformed program

intact. Although behavior-preserving source-to-source transformations are the most common example of

compiling a program, the executable source code may be produced by transforming the original program

that is expressed in a variety of ways, e.g., as high-level design patterns [18], as algebraic specifications [69,72],

etc.

Performance tuning transformations are behavior-preserving transformations that improve performance

of the underlying code. Such transformations are implemented as part of compilers starting with IBM’s

Fortran I compiler in 1959 [3], which supported constant folding, common subexpression elimination, loop-

independent code motion, etc. With the advancements in user interfaces, program transformation tools

became interactive. A developer directs a tool to apply a particular transformation to a specific part of the

code, while the tool automatically transforms the corresponding code and (usually) checks the correctness of

the transformation. Many interactive source-to-source transformation tools were created to help developers

parallelize their programs, e.g., PTOOL [4], Faust [56], ParaScope [8, 25,58,75,76], and D [65].

Refactorings are a different kind of source-to-source behavior-preserving transformations. Refactorings

help developers improve the design of the underlying program rather than its performance. Opdyke and

Johnson were the first to mention the term “refactoring” in the literature in 1990 [111]. Bill Griswold

described several refactorings (e.g., rename, extract, inline, etc.) and implemented them in a prototype
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tool for Scheme as part of his PhD thesis in 1991 [54]. Bill Opdyke identified refactorings for developing

object-oriented frameworks and implemented them in a prototype tool for C++ as part of his PhD thesis in

1992 [110]. Brant and Roberts developed the first production-quality refactoring tool, Smalltalk Refactoring

Browser [122], which was also the first refactoring tool fully integrated in a development environment,

Smalltalk. The increasing popularity of eXtreme Programming (XP) [13], which relies on refactoring as an

important step during code development, as well as the release of the Martin Fowler’s book on refactoring

in 1999 [45] led to wide acceptance of refactorings among software developers.

As part of our prior work, we developed a range of program analysis and transformation tools: ReBA [35]

adapts client applications to new versions of evolving libraries; AMPIzer [105, 112, 147] transforms legacy

Message Passing Interface (MPI) applications to make them executable on Adaptive MPI (AMPI), whose

features benefit the transformed applications in many ways (e.g., communication/computation overlap, dy-

namic load balancing, etc.); SOTER [103] detects message contents that can be safely passed by reference in

Actor Model programs in order to improve their performance. Also, we developed CodingSpectator [132,133]

and employed it in a field study to better understand how developers interact with automated refactoring

tools provided by Eclipse.

5.2 Representation of Program Transformations

One of the simplest approaches to program transformation is to treat the source code of a program as plain

text and transform it by applying text substitution rules, which can be represented as regular-expression

patterns [14]. This simple representation does not consider the structure of the underlying program, and

thus, it is not capable to express more sophisticated transformations. Besides, if a transformation is big,

such representation becomes cumbersome to understand and maintain.

More advanced representations take into account the structural properties of the underlying code. For

example, A* [85] and TAWK [55] allow direct manipulations on the Abstract Syntax Tree (AST) of the

transformed program. Mens et al. [95] express refactorings as graph operations. Stratego/XT [136] employs

even higher level of abstraction and represents transformations as term rewrite rules. These tools are powerful

and expressive, but to be applied properly, they require an extensive expertise on the part of a programmer.

To simplify representation of program transformations, while preserving its expressiveness, some tools

extend the syntax of the underlying language, e.g., DMS [12], REFINE [19], TXL [26]. Although this

approach improves readability and maintainability of transformations, it requires a significant effort from a

programmer and consequently, it is rarely applied in practice. Several other tools augment the underlying
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language with different annotations [7,23,74,123]. This approach suffers from an additional burden to write

and maintain transformations as part of the program’s source code.

5.3 Capturing Fine-grained Code Changes

Robbes et al. [119,121] proposed to make changes first-class citizens and capture them directly from an IDE

as soon as they happen. They developed a tool, SpyWare [120], that implements these ideas. SpyWare gets

notified by the Smalltalk compiler in Squeak IDE whenever the AST of the underlying program changes.

SpyWare records the captured AST modification events as operations on the corresponding AST nodes.

Also, SpyWare records automated refactoring invocation events.

Although our work is inspired by similar ideas, our tool, CodingTracker, significantly differs from Spy-

Ware. CodingTracker captures raw fine-grained code edits rather than a compiler’s AST modification events.

The recorded data is so precise that CodingTracker is able to replay it in order to reproduce the exact state

of the evolving code at any point in time. Also, CodingTracker implements a novel AST node operations

inferencing algorithm that does not expect the underlying code to be compilable or even fully parsable.

Besides, CodingTracker captures a variety of evolution data that does not represent changes to the code,

e.g., interactions with VCS, application and test runs, etc.

Sharon et al. [38] implemented EclipsEye, porting some ideas behind SpyWare to Eclipse IDE. Similarly

to SpyWare, EclipsEye gets notified by Eclipse about AST changes in the edited application, but these

notifications are limited to the high-level AST nodes starting from fields/methods and up.

Omori and Maruyama [108, 109] developed a similar fine-grained operation recorder and replayer for

the Eclipse IDE. In contrast to CodingTracker, their tool does not infer AST node operations but rather

associates code edits with AST nodes, to which they might belong. Besides, CodingTracker captures more

operations such as those that do not affect code like runs of programs and tests and version control system

operations. The additional events that CodingTracker captures enabled us to study the test evolution

patterns and the degree of loss of code evolution information in version control systems.

Yoon et al. [142] developed a tool, Fluorite, that records low-level events in Eclipse IDE. Fluorite captures

sufficiently precise fine-grained data to reproduce the snapshots of the edited files. But the purpose of Fluorite

is to study code editing patterns rather than program transformations in general. Therefore, Fluorite does

not infer AST node operations from the collected raw data. Also, it does not capture such important

evolution data as interactions with VCS, test runs, or effects of automated refactorings.

Chan et al. [22] proposed to conduct empirical studies on code evolution employing fine-grained revision
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history. They produce fine-grained revision history of an application by capturing the snapshots of its files

at every save and compilation action. Although such a history contains more detailed information about an

application’s code evolution than a common VCS, it still suffers from the limitations specific to snapshot-

based approaches, in particular, the irregular intervals between the snapshots and the need to reconstruct

the low-level changes from the pairs of consecutive snapshots.

5.4 Inferring High-Level Program Transformations

5.4.1 Detecting Structural Changes

To provide greater insight into source code evolution, researchers have proposed tools to reconstruct high-

level source code changes (e.g., operations on AST nodes, refactorings, restructurings, etc.) from the coarse-

grained data supplied through VCS snapshots.

Fluri et al. [43] proposed a change distilling algorithm to extract fine-grained changes from two snapshots

of a source code file and implemented this algorithm in a tool, ChangeDistiller. ChangeDistiller represents

the difference between two versions of a file as a sequence of atomic operations on the corresponding AST

nodes. We also express changes as AST node operations, but our novel algorithm infers them directly from

the fine-grained changes produced by a developer rather than from snapshots stored in VCS.

Kim et al. [79] proposed summarizing the structural changes between different versions of a source code

file as high-level change rules. Change rules provide a cohesive description of related changes beyond deletion,

addition and removal of a textual element. Based on this idea, they created a tool that automatically infers

those change rules and presents them as concise and understandable transformations to the programmer.

All these as well as many other [5, 52, 78, 82, 134, 139] tools designed to detect structural changes in the

evolving code operate on VCS snapshots. However, the results of our field study presented in Section 2.3

show that VCS snapshots provide incomplete and imprecise data, thus compromising the accuracy of these

tools. In a change-oriented programming environment, we overcome the limitations of file-based VCSs by

inferring high-level program transformations from fine-grained code changes recorded by CodingTracker.

5.4.2 Automated Inference of Refactorings

In an early work, Demeyer et al. [31] inferred refactorings by comparing two different versions of source code

using heuristics based only on low-level software metrics — method size, class size, and inheritance levels.

Kim et al. [82] used a function similarity algorithm to detect methods that have been renamed. More recent

refactoring inference approaches detect refactorings depending on how well they match a set of characteristic
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properties that are constructed from the differences between two consecutive versions of an application. Dig

et al. [32] employed references of program entities like instantiations, method calls, and type imports as

their set of characteristic properties. Weißgerber and Diehl [137] used characteristic properties based on

names, signature analysis, and clone detection. More recently, Prete et al. [115] devised a template-based

approach that can infer up to 63 of the 72 refactorings cataloged by Fowler [45]. Their templates build

upon characteristic properties such as accesses, calls, inherited fields, etc., that model code elements in Java.

Their tool, Ref-Finder, infers the widest variety of refactorings to date.

All these approaches rely exclusively on snapshots from VCS to infer refactorings. Thus, the accuracy of

detection depends on the closeness of the two snapshots being compared. We have shown (see Section 3.3.3,

RQ7) that many refactorings are shadowed and do not ever reach a commit. This compromises the accuracy

of inference algorithms that rely on snapshots. Moreover, snapshot-based approaches (with the exception of

Ref-Finder) usually concentrate only on API-level changes leaving out many of the completely or partially

local refactorings that we infer (see Table 3.1). This paints an incomplete picture of the evolution of the

code.

To address such inadequacies, our inference algorithm leverages fine-grained edits. Similar to existing

approaches, our algorithm infers refactorings by matching a set of characteristic properties for each refac-

toring (see Table 3.5). Our properties consist of high-level semantic changes such as adding a field, deleting

a variable, etc. In contrast to existing approaches, our properties are precise because they are constructed

directly from the AST operations that are recorded on each code edit.

In parallel with our tool, Ge et al. [49] developed BeneFactor and Foster et al. [44] developed WitchDoctor.

Both these tools continuously monitor code changes to detect and complete manual refactorings in real-

time. Although conceptually similar, our tools have different goals — we infer complete refactorings, while

BeneFactor and WitchDoctor focus on inferring and completing partial refactorings in real time. Thus,

their tools can afford to infer fewer kinds of refactorings and with much lower accuracy. Nonetheless, while

orthogonal to our work on studying code evolution, these projects highlight the potential of using refactoring

inference algorithms based on fine-grained code changes to improve the IDE. In the following, we compare

our tool with the most similar tool, WitchDoctor, in more detail.

Like our tool, WitchDoctor represents fine-grained code changes as AST node operations and uses these

operations to infer refactorings. Although similar, the AST node operations and refactoring inference al-

gorithms employed by WitchDoctor and our tool have a number of differences. In particular, our AST

node operations inference algorithm (see Section 2.2) employs a range of heuristics for better precision,

e.g., it handles Eclipse’s linked edits and jumps over the unparsable state of the underlying code. Witch-
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Doctor specifies refactorings as requirements and constraints. Our refactoring inference algorithm defines

refactorings as collections of properties without explicitly specifying any constraints on them. Instead, the

properties’ attributes matching ensures compatibility of the properties that are part of the same refactor-

ing (see Section 3.2.2). Additionally, our algorithm infers migrated AST nodes and refactoring fragments,

which represent a higher level of abstraction than properties that are constructed directly from AST node

operations. The authors of WitchDoctor focused on real-time performance of their tool. Since we applied

our tool off-line, we were not concerned with its real-time performance, but rather assessed both precision

and recall of our tool on real world data.

5.5 Mining Frequent Itemsets

The major challenge in mining frequent itemsets is to develop scalable algorithms that can effectively handle

large transaction databases. One of the fundamental distinctions between different approaches to mining

frequent itemsets is whether mining is performed with or without candidate generation. Agrawal et al. [2]

observed that an n-itemset is frequent only if all its subsets are also frequent. Their mining algorithm,

Apriori, leverages this property by using frequent n-itemsets to generate (n+ 1)-itemset candidates. Apriori

checks the newly generated candidates against the transaction database to establish those of them that are

frequent. The algorithm starts with detecting frequent 1-itemsets directly from the transaction database

and proceeds iteratively until no more frequent itemsets can be found.

Mining with candidate generation has two major drawbacks: a) it generates redundant itemsets that

are found to be infrequent; b) it repeatedly scans the transaction database while progressing through the

iterations. Mining without candidate generation addresses both these limitations. Such mining can be

broadly divided into mining using horizontal data format and mining using vertical data format. The

horizontal data format represents a transaction database as a set of tuples < TransactionID, itemset >.

Table 4.2 illustrates a database in this format. Han et al. [60] suggested to mine frequent itemsets without

candidate generation using horizontal data format. Their frequent-pattern growth (FP-growth) algorithm

first scans the database to detect frequent 1-itemsets. The algorithm uses these 1-itemsets to construct FP-

tree, an extended prefix-tree structure. Then, the algorithm expands the initial FP-tree by growing pattern

fragments in a recursive fashion.

Zaki [144] proposed a different approach to mining frequent itemsets without candidate generation. His

algorithm, Eclat, explores the vertical data format, which explicitly stores transactions’ identifiers (tidsets)

for every itemset. Eclat computes (n + 1)-itemsets from n-itemsets by intersecting their tidsets. The
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algorithm collects the initial set of frequent 1-itemset by scanning the transaction database.

Subsequently, Zaki [145] developed CHARM, a more advanced algorithm for mining data in the vertical

data format. The algorithm is based on the same idea of intersecting itemsets’ tidsets to produce new

itemsets, but it specifies the search problem using the notion of itemset-tidset tree (IT-tree). Also, CHARM

introduces several optimizations, including the search for closed itemsets.

All the approaches above operate on a database with disjoint transactions, each containing a set of items.

On the contrary, our frequent code change pattern mining algorithm handles overlapping transactions and

itembags rather than itemsets, which are the two major challenges specific to frequent code change pattern

mining from continuous sequence of code changes.

5.6 Mining Source Code

Source code mining research has a long history. Here, we present several representative examples.

Michail [96] applied data mining techniques to detect how a library is reused in different applications. The

mined library reuse patterns, represented as association rules, facilitate the reuse of the library components

by developers.

Li et al. [90] employed frequent itemset mining to extract programming rules from the source code of an

application. They also showed that source code fragments that violate the extracted rules are likely to be

buggy.

Holmes et al. [66] matched the structural context of the edited source code against a code repository to

present a developer with the examples demonstrating the relevant API usage. Similarly, Bruch et al. [17]

proposed to improve the IDE’s code completion systems by making them learn from code repositories.

Hovemeyer et al. [67] developed FindBugs, a tool that detects a variety of bug patterns in an application

by statically matching bug pattern descriptions against the underlying source code. More recently, Lin et

al. [92] proposed an approach to search for a specific kind of bug patterns — violations of check-then-act

idioms.

All these approaches mine the application’s source code, while our algorithm mines code changes, and

thus, it can identify new patterns on-the-fly.

Another direction of research is mining source code change patterns from the Version Control System

(VCS) history of an application. Ying et al. [141] and Zimmermann et al. [150] apply data mining techniques

on the application’s revision history to detect software artifacts (e.g., methods, classes, etc.) that are usually

changed together. The mined association rules predict what other source code locations a developer needs
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to consider while performing a particular change. Uddin et al. [130] proposed to mine VCS histories of client

applications to study how their use of APIs evolves over time, which is helpful both to developers and users

of the libraries’ APIs. Canfora et al. [20, 21] and Thummalapenta et al. [128] used VCS snapshots to study

and track the evolution of different software entities such as source lines, bugs, and clones. In the domain of

software testing, Zaidman et al. [143] mined software repositories to explore how production and test code

co-evolve.

Mining VCS snapshots of an application is exposed to the limited nature of VCS data. In our empirical

study of code evolution (see Section 2.3), we showed that data stored in VCS is imprecise, incomplete, and

makes it impossible to perform analysis that involves the time dimension inside a single VCS snapshot.

Also, similarly to other source code mining techniques, these approaches are not suitable for identifying code

change patterns on-the-fly.

Wit et al. [30] performed live monitoring of the clipboard to detect clones. Their tool tracked the detected

clones, offering several resolution strategies whenever the clones were edited inconsistently. Our approach of

detecting similar changes to different parts of the code is complementary to detecting different changes to

similar parts of the code.

5.7 Empirical Studies on Source Code Evolution

Early work on source code evolution relied on the information stored in VCS as the primary source of data.

The lack of fine-grained data constrained researchers to concentrate mostly on extracting high-level metrics

of software evolution, e.g., number of lines changed, number of classes, etc.

Eick et al. [39] identified specific indicators for code decay by conducting a study on a large (∼100,000,000

LOC) real time software system for telephone systems. These indicators were based on a combination of

metrics such as number of lines changed, commit size, number of files affected by a commit, duration of a

change and the number of developers contributing to a file.

Xing et al. [138] analyzed the evolution of design in object-oriented software by reconstructing differences

between snapshots of software releases at the UML level using their tool, UMLDiff. UML level changes

capture information at the class level and can be used to study how classes, fields, and methods have

changed from each version. From these differences, they tried to identify distinct patterns in the software

evolution cycles.

Gall et al. [46] studied the logical dependencies and change patterns in a product family of Telecommu-

nication Switching Systems by analyzing 20 punctuated software releases over two years. They decomposed
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the system into modules and used their CAESAR technique to analyze how the structure and software

metrics of these modules evolved through different releases.

For these kinds of analyses, the data contained in traditional VCS is adequate. However, for more

interesting analyses that require program comprehension, relying only on high-level information from VCS

is insufficient. In particular, Robbes in his PhD thesis [118, p.70] shows the difference in the precision of

code evolution analysis tools applied to fine-grained data vs. coarse-grained VCS snapshots. This client level

comparison is complementary to our work, in which we quantify the extent of data loss and imprecision in

VCS snapshots independently of a particular client tool.

5.8 Empirical Studies on the Practice of Refactoring

Xing and Stroulia [140] report that 70% of all changes observed in the evolution of the Eclipse code base

are expressible as refactorings. Dig and Johnson [33] studied four open source frameworks and one library

and concluded that more than 80% of component API evolution is expressible through refactorings. These

studies indicate that the practice of refactoring plays a vital role in software evolution and is an important

area of research.

Work on empirical research on the usage of automated refactoring tools was stimulated by Murphy et

al.’s [98] study of 41 developers using the Java tools in Eclipse. Their study provided the first empirical

ranking of the relative popularities of different automated refactorings, demonstrating that some tools are

used more frequently than others. Subsequently, Murphy-Hill et al.’s [100] study on the use of automated

refactoring tools provided valuable insights into the use of automated refactorings in the wild by analyzing

data from multiple sources.

Due to the non-intrusive nature of CodingTracker, we were able to deploy our tool to more developers

for longer periods of time, providing a more complete picture of refactoring in the wild. We inferred and

recorded an order of magnitude more manual refactorings than Murphy-Hill et al. in their sampling-based

approach. Murphy-Hill sampled 80 commits from 12 developers for a total of 261 refactoring invocations

whereas our tool recorded 1,520 hours from 23 developers for a total of 5,371 refactoring invocations.

Murphy-Hill et al.’s [100] study found that (i) refactoring tools are underused and (ii) the kinds of

refactorings performed manually are different from those performed using tools. Our data (see Section 3.3.3,

RQ3) corroborates both these claims. We found that some refactorings are performed manually more

frequently, even when the automated tool exists and the developer is aware of it. Due to the large differences

in the data sets (261 from Murphy-Hill et al. vs. 5,371 in our study), it is infeasible to meaningfully compare
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the raw numbers for each refactoring kind, while comparing the ratios would not yield statistically significant

results. Our work also builds upon their work by providing a more detailed breakdown of the manual and

automated usage of each refactoring tool according to different participants’ behavior.

Vakilian et al. [131] observed that many advanced users tend to compose several refactorings to achieve

different purposes. Our results about clustered refactorings (see Section 3.3.3, RQ6) provide additional

empirical evidence of such practices.
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Chapter 6

Future Work

6.1 Accessing and Manipulating Code Changes

Currently, CodingTracker’s replayer enables a developer to browse fine-grained code changes applied to an

application. Although a developer can apply filters to focus on a particular kind (or kinds) of code changes,

the list of changes is still too big for effective comprehension. To improve readability of code changes, we plan

to (i) implement grouping mechanisms that would represent changes in a hierarchical way; (ii) add a feature

that would map code fragments to the corresponding changes and vice-versa, thus allowing a developer to

focus on changes that pertain to a code fragment of interest (e.g., a particular method or loop); and (iii)

add graphical views that would visually represent high-level information about code changes, e.g., showing

intensity of changes over time.

Additionally, we would like to enable a developer to manipulate the code changes directly. In particular,

we plan to allow a developer to undo or tweak a specific change in the list, e.g., adjust a configuration option

of a refactoring. Also, we plan to make changes re-applicable, i.e., a developer would be able to choose a

particular change (or changes) from the list and apply them to a different code fragment.

6.2 On-Line Refactoring Assistance

Although our refactoring inference algorithm operates on continuous code changes, and thus, can be applied

on-line, in our empirical study, we applied the algorithm while replaying the previously captured code

changes. Nevertheless, we plan to make our inference algorithm part of Eclipse IDE such that it can

assist developers with the refactoring process on-the-fly. For example, after inferring a manual refactoring

performed by a developer, our tool will check its correctness and report to the developer any detected

inconsistencies. Even when there are no problems to report, our tool will notify the developer that the

corresponding refactoring could have been applied automatically, thus increasing the developer’s awareness

of the automated refactorings supported by Eclipse.
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Similarly to BeneFactor [49] and WitchDoctor [44], we will extend our tool to infer partial refactorings.

Consequently, our tool will be able to assist a developer while a manual refactoring is in progress. For

example, our tool could offer the developer to complete the refactoring automatically.

6.3 Improved Mining of Frequent Code Change Patterns

Although our current frequent code change pattern mining algorithm helps identify high-level program

transformations, we would like to minimize the manual part of this identification. We plan to implement

postprocessors of the mining results that would simplify identification of program transformations. In

particular, we are going to employ grouping of the results that would organize the mined patterns according

to their equivalence classes with respect to the corresponding program transformations. Also, we plan to

introduce specialized filters that would prioritize patterns containing particular combinations of AST node

operations. In the long term, we would like to incorporate our mining algorithm into an IDE and completely

eliminate the manual part of high-level program transformations identification.

Another line of work enabled by our tool is to (i) implement specific inference algorithms for the program

transformations that we identified using our mining algorithm, and (ii) automate the identified transfor-

mations in an IDE. We believe that specialized inference algorithms are more effective than any agnostic

inference algorithm could be. Consequently, such algorithms would allow researchers to assess with a high

degree of confidence the popularity of different high-level transformations. Then, tool builders could pick

the most popular transformations and automate them in an IDE.

6.4 Extended Empirical Studies

Our empirical studies on source code evolution and on the practice of refactorings serve as mere examples

of the kinds of research questions that a researcher can answer using the detailed and precise code evolution

data collected and processed by CodingTracker. We think that the already collected data can be used for

further studies on how developers change their code. In particular, we plan to analyze the correlations

between such programming activities as refactoring and testing, refactoring and interactions with VCS, etc.

CodingTracker captures code evolution data in a very unobtrusive way. Therefore, we think that it could

be made part of the official Eclipse distribution and collect huge amounts of data from many developers

(similarly to the current Eclipse data collectors, a developer would have an option to not upload the collected

data). Collecting more data would not only help to answer research questions more precisely, but also would

enable us to answer new kinds of research questions. For example, we would be able to compare code evolution
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activities for different projects and settings (e.g., open source vs. proprietary, industry vs. academia, etc.).

Also, collecting code evolution data for longer time periods would help us study different phases of software

development of a given project (e.g., before vs. after a release) as well as identify long term trends in the

project’s evolution.
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Chapter 7

Conclusions

Although change is the heart of software development, the traditional programming environments and tool-

kits treat changes as a by-product of software evolution. In this dissertation, we show that placing change at

the center of a programming environment benefits code evolution researchers, tool builders, and application

developers.

We developed CodingTracker, an infrastructure that captures and replays detailed and precise changes to

the code, represents the captured raw code edits uniformly as Abstract Syntax Tree (AST) node operations,

infers refactorings from continuous code changes, and mines frequent code change patterns, thus helping

researchers identify previously unknown high-level program transformations. We employed CodingTracker

to conduct an empirical study on source code evolution, in which we quantified the limitations of the data

stored in Version Control Systems (VCS). CodingTracker also enabled us to conduct an extensive empirical

study on the practice of manual vs. automated refactorings.

The primary source of data in code evolution research is the file-based VCS. The results of our empirical

study show that although popular among researchers, a file-based VCS provides data that is incomplete and

imprecise. Moreover, many interesting research questions that involve code changes and other development

activities (e.g., automated refactorings or test runs) require evolution data that is not captured by VCS

at all. We found that 37% of code changes are shadowed by other changes, and are not stored in VCS.

Thus, VCS-based code evolution research is incomplete. Second, programmers intersperse different kinds

of changes in the same commit. For example, 46% of refactored program entities are also edited in the

same commit. This overlap makes the VCS-based research imprecise. The data collected by CodingTracker

enabled us to answer research questions that could not be answered using VCS data alone. In particular,

we discovered that 40% of test fixes involve changes to the tests, 24% of changes committed to VCS are

untested, and 85% of changes to a method during an hour interval are clustered within 15 minutes. These

results confirm that more detailed data than what is stored in VCS is needed to study software evolution

accurately.

There are many ways to learn about the practice of refactoring, such as observing and reflecting on one’s
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own practice, observing and interviewing other practitioners, and controlled experiments. But an important

way is to analyze the changes made to a program, since programmers’ beliefs about what they do can be

contradicted by the evidence. Thus, it is important to be able to analyze programs and determine the kind

of changes that have been made. This is traditionally done by looking at the difference between snapshots.

Our empirical study on source code evolution shows that VCS snapshots lose information. Moreover, VCS

snapshots do not allow researchers to distinguish manual and automated refactorings. Therefore, to study

the practice of refactoring, we employed a continuous analysis of change. We discovered that refactorings

tend to be clustered, that programmers often change the name of a program entity several times within a

short period of time and perform more manual than automated refactorings. Continuous analysis is better

at detecting refactorings than analysis of snapshots, and it ought to become the standard for detecting

refactorings.

Although mining frequent code change patterns has a long research history, we are the first to present an

algorithm that mines such patterns from a continuous sequence of code changes rather than from the static

source code. Our algorithm effectively handles overlapping transactions that contain multiple instances of

the same item kind — the major challenge that distinguishes our approach from the existing frequent itemset

mining techniques. Since our algorithm mines code changes continuously, it can be applied either on-the-fly

or on a previously recorded sequence of code changes. To evaluate our algorithm, we used 1,520 hours of real

world code changes that we collected from 23 developers. We showed that our mining algorithm is scalable,

effective, and useful. Analyzing some of the mining results, we identified ten popular kinds of high-level

program transformations.
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