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Abstract

My dissertation is mainly about various identities involving theta functions and analogues of theta functions.

In Chapter 2, we give a completely elementary proof of Ramanujan’s circular summation formula of

theta functions and its generalizations given by S. H. Chan and Z. -G. Liu, and J. M. Zhu, who used the

theory of elliptic functions. In contrast to all other proofs, our proofs are elementary. An application of this

summation formula is given.

In Chapter 3, we analyze various generalized two-dimensional lattice sums, one of which arose from the

solution to a certain Poisson equation. We evaluate certain lattice sums in closed form using results from

Ramanujan’s theory of theta functions, continued fractions and class invariants. Many nice explicit examples

are given.

In Chapter 4, we study one page in Ramanujan’s lost notebook that is devoted to claims about a certain

integral with two parameters. One claim gives an inversion formula for the integral that is similar to the

transformation formula for theta functions. Other claims are remindful of Gauss sums. In this chapter, we

prove all the claims made by Ramanujan about this integral.
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Chapter 1

Introduction

We might define a q-series to be one with summands containing expressions of the type

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 0, (1.0.1)

where we interprete (a; q)0 = 1 and (a; q)∞ := limn→∞(a; q)n when |q| < 1. However, this definition is not

completely satisfactory. The main reason is that, in the theory of q-series, we often let parameters in the

summands tend to 0 or to ∞, and consequently, factors of the type (a; q)n may be no longer be contained

in the summands. Then theta functions frequently arise in the identities satisfied by series with (a; q)n in

their summands. Dangling participle Ramanujan’s notation, we define the general theta function by

f(a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (1.0.2)

The four most important special cases are defined by

ϕ(q) :=f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞, (1.0.3)

ψ(q) :=f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (1.0.4)

f(−q) :=f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞, (1.0.5)

χ(q) :=(−q; q2)∞, (1.0.6)

where the first three product representations above are special cases of the Jacobi triple product identity

f(a, b) = (−a, ab)∞(−b, ab)∞(ab, ab)∞, (1.0.7)
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the most useful theorem in the theory of theta functions that was first discovered by Gauss. The last equality

in (1.0.5) is called Euler’s pentagonal number theorem, which has its combinatorial interpretation in terms

of the partitions. Theta functions play a prominent role in the theory of elliptic functions, modular forms

and basic hypergeometric series. To learn how q-series articulate with theta functions and number theory,

in particular in the spirit of Ramanujan, refer to [9]. My dissertation is mainly about various identities

involving theta functions and analogues of theta functions, and applications of theta functions.

1.1 An elementary proof of Ramanujan’s circular summation

formula and its generalizations

In the history, several mathematicians, such as L. Euler, C.F. Gauss, E. Heine, F.H. Jackson, L.J. Rogers

and S. Ramanujan played leading role in the development of q-series. Ramanujan undoubtedly contributed

more to q-series than anyone either before or after his time. One of his most famous theorems is the 1ψ1

summation theorem [31, Chap. 16, Entry 17]. Another famous theorem is his circular summation formula

stated without proof in [33, p. 54]. In Chapter 2, I devise a completely elementary and neat proof of the

circular summation formula that perhaps reflects Ramanujan’s thinking more than previous proofs.

Ramanujan’s general theta function f(a, b) is defined by (1.0.2). We also introduce Jacobi theta functions

θ2(z|τ) and θ3(z|τ)

θ2(z|τ) =

∞∑
n=−∞

q(n+1/2)2e(2n+1)iz, (1.1.1)

θ3(z|τ) =

∞∑
n=−∞

qn
2

e2niz, (1.1.2)

where q = eπiτ and Im τ > 0. On page 54 of his Lost Notebook [33], Ramanujan recorded a statement

which is now known as Ramanujan’s circular summation.

Theorem 1.1.1. For any positive integer n ≥ 2, if

Ur = ar(r+1)/(2n)br(r−1)/(2n) and Vr = ar(r−1)/(2n)br(r+1)/(2n),

then
n−1∑
r=0

Unr f
n

(
Un+r
Ur

,
Vn−r
Ur

)
= f(a, b)Hn(ab).
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When n ≥ 3,

Hn(x) = 1 + 2nx(n−1)/2 + · · · .

Ramanujan’s circular summation can be restated in terms of classical theta function θ3(z|τ) defined by

(1.1.2).

Theorem 1.1.2. For any positive integer n ≥ 2,

n−1∑
k=0

qk
2

e2kizθn3 (z + kπτ |nτ) = Fn(τ)θ3(z|τ). (1.1.3)

When n ≥ 3,

Fn(τ) = 1 + 2nqn−1 + · · · .

The first proof of Theorem 1.1.1 was given by S. S. Rangachari in [38]. He also discussed Ramanujan’s

explicit expressions of Hn for n = 2, 3, 4, 5 and 7. Rangachari proved these claims by using Mumford’s

theory of theta functions and some results on weight polynomials in coding theory. Theorem 1.1.1 was later

proved by Son [39] using a much more elementary but lengthier proof. We devise an completely elementary

and neat proof of the circular summation formula that perhaps reflects Ramanujan’s thinking more than

previous proofs.

With the theory of elliptic functions, H. H. Chan, Z. -G. Liu and S. T. Ng proved a dual form of the

Ramanujan circular summation formula in [22]. The authors of [17] proved an additive decomposition of

θ3. Zeng [47] then proved a general result which unifies the two results in [22] and [17]. Other studies on

Ramanujan’s circular summation can be found in [3], [24], [25], [34]. Motivated by [47], S. H. Chan and Z.

-G. Liu proved the following very general theta function identity using the theory of elliptic funtions in [23].

Theorem 1.1.3. Let m and n be any positive integers. Suppose y1, y2, . . . , yn are n complex numbers such

that y1 + y2 + · · ·+ yn = 0.Then we have

mn−1∑
k=0

n∏
j=1

θ3

(
z + yj +

kπ

mn

∣∣∣∣ τ) = Gm,n(y1, y2, . . . , yn|τ)θ3(mnz|m2nτ), (1.1.4)

where

Gm,n(y1, y2, . . . , yn|τ) = mn

∞∑
r1,r2,...,rn=−∞
r1+r2+···+rn=0

qr
2
1+r

2
2+···+r

2
ne2i(r1y1+r2y2+···+rnyn). (1.1.5)

Applying the imaginary transformation formula for θ3 to Theorem 1.1.3, the authors of [23] deduced the

following alternative version of Theorem 1.1.3.
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Theorem 1.1.4. Let m and n be any positive integers. Suppose that y1, y2, . . . , yn are n complex numbers

such that y1 + y2 + · · ·+ yn = 0. Then we have

mn−1∑
k=0

qk
2

e2kiz
n∏
j=1

θ3(mz + (yj + km)πτ |m2nτ) = Fm,n(y1, y2, . . . , yn|τ)θ3(z|τ), (1.1.6)

where

Fm,n(y1, y2, . . . , yn|τ)

=
(−iτ)(1−n)/2

(m2n)n/2
q−

y21+y22+···+y2n
2m2n Gm,n

(
y1π

m2n
,
y2π

m2n
, . . . ,

ynπ

m2n

∣∣∣∣− 1

m2nτ

)
.

And also,

Fm,n(y1, y2, . . . , yn|τ)

=

mn−1∑
k=0

∞∑
s1,s2,...,sn=−∞

m(s1+s2+···+sn)=k

qm
2n(s21+s

2
2+···+s

2
n)−2(s1y1+s2y2+···+snyn)−k

2

. (1.1.7)

Here, we find (1.1.7) by equating the terms that are independent of z on both sides of (1.1.6). Our

formula for Fm,n in (1.1.7) corrects the corresponding formula in [23]. When y1 = y2 = · · · = yn = 0 and

m = 1, Theorem 1.1.4 reduces to Ramanujan’s circular summation formula, Theorem 1.1.3.

If we use Ramanujan’s notation, Theorem 1.1.4 is equivalent to

mn−1∑
k=0

Unk

n∏
j=1

f

(
Umn+k
Uk

(ab)yj/m,
Vmn−k
Uk

(ab)−yj/m
)

= Fm,n(y1, y2, . . . , yn)f(a1/m, b1/m),

where

a = qme2imz, b = qme−2imz, Umnk = ak(k+1)/2bk(k−1)/2, V mnk = ak(k−1)/2bk(k+1)/2.

In [48], J. M. Zhu proved an alternating general circular summation formula.

Theorem 1.1.5. Suppose that mn is any even positive integer and y1, y2, . . . , yn are n complex numbers
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such that y1 + y2 + · · ·+ yn = 0. Then we have

mn−1∑
k=0

(−1)k
n∏
j=1

θ3

(
z + yj +

kπ

mn

∣∣∣∣τ) (1.1.8)

=Hm,n(y1, y2, . . . , yn|τ)θ2(mnz|m2nτ),

where

Hm,n(y1, y2, . . . , yn|τ)

=mnq−
m2n

4

∞∑
r1,r2,...,rn=−∞

r1+r2+···+rn=mn/2

qr
2
1+r

2
2+···+r

2
ne2i(r1y1+r2y2+···+rnyn). (1.1.9)

In Chapter 2, proofs will be given for Theorems 1.1.2, 1.1.3, 1.1.4 and 1.1.5. Although we can obtain

Theorem 1.1.4 by applying the imaginary transformation formula to Theorem 1.1.3, we can also prove it

directly in an elementary way. Some applications will be given.

1.2 The evaluation of two-dimensional lattice sums via

Ramanujan’s theta functions

In general, elementary evaluations are rare for higher-dimensional lattice-type sums. They have been stud-

ied for many years in the mathematical physics community. The most famous higher-dimensional sum is

Madelung’s constant from crystallography. In this paper, we analyze various generalized two-dimensional

lattice sums, one of which arose from the solution to a certain Poisson equation. We evaluate certain lattice

sums in closed form using results from Ramanujan’s theory of theta functions, continued fractions and class

invariants. For instance,

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(8m)2 + (4n+ 1)2
= −
√

2π

16
log

(
√

2− 1)− (
√√

2 + 1− 4
√

2)

1 + (
√

2− 1)(
√√

2 + 1− 4
√

2)
.

In [15], Berndt, Lamb and Rogers evaluated in closed form the sum

F(a,b)(q) :=

∞∑
n=−∞

∞∑
m=−∞

(−1)m+n

(xm)2 + (an+ b)2
, q = e−π/x, (1.2.1)

for any positive rational value of x, and for certain values of (a, b) ∈ N2. They used the notation F(a,b)(x)

instead of F(a,b)(q). We use F(a,b)(q) here so that we can state Theorem 3.2.3 more easily and clearly. The
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authors of [15] first proved the following theorem.

Theorem 1.2.1. Suppose that a and b are integers with a ≥ 2 and (a, b) = 1, and assume that Re x > 0.

Then

F(a,b)(q) = −2π

ax

a−1∑
j=0

ω−(2j+1)b log

∞∏
m=0

(1− ω2j+1q2m+1)(1− ω−2j−1q2m+1), (1.2.2)

where ω = eπi/a and q = e−π/x.

Now, for any positive rational number x and positive integers a and b, in addition to (1.2.1), we consider

two new types of sums,

G(a,b)(q) :=

∞∑
n=−∞

∞∑
m=−∞

(−1)m

(xm)2 + (an+ b)2
, (1.2.3)

H(a,b)(q) :=

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(xm)2 + (an+ b)2
, (1.2.4)

where q = e−π/x.

In analogy with Theorem 1.2.1 for F(a,b)(q), we are able to prove results for G(a,b)(q) and H(a,b)(q) ,

respectively. Moreover, it can be shown that G(a,b)(q) can be recast in the theory of F(a,b), which is proved

in Section 3.2. In Section 3.5, we study the theory of G(a,b)(q) with the aid of the results from F(a,b) and

derive many explicit examples afterwards.

The authors of [15] simplified Theorem 1.2.1 for a ∈ {3, 4, 5, 6} and b = 1 using classical results from

theta functions and q-series, and evaluated in closed form certain classes of double series. When a > 6,

the situation is much more complicated and we study the case for (a, b) = (8, 1) in detail in Section 3.4

and derive an explicit example afterwards. The case a = 12 can be derived in a similar fashion. Similarly,

we can also derive the theory of H(a,b), and more double series can be evaluated. Although the main

theorems of all these three types of sums are similar and not difficult to prove, the examination of special

cases of H(a,b) is quite different from those of F(a,b). In Section 3.3, we examine H(a,b) for the cases where

a ∈ {3, 4, 5, 6} and b = 1 . The resulting formulas are closely related to continued fractions including

the famous Rogers-Ramanujan continued fraction, Ramanujan’s cubic continued fraction, the Ramanujan-

Göllnitz-Gordon continued fraction and continued fractions of order 12. We are able to produce many

explicit examples from the values of these continued fractions. In these instances, we assume b = 1 without

loss of generality, because other possible values of the lattice sums can be easily recovered from the case

when b = 1.

Inspired by all the nice results from F(a,b)(q), G(a,b)(q) and H(a,b)(q), we consider a generalization of
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these lattice sums that is defined by

J(a,b,s,t)(q) :=

∞∑
n=−∞

∞∑
m=−∞

eπimseπint

(xm)2 + (an+ b)2
, (1.2.5)

where q = e−π/x. In Section 3.2, we prove the main theorem for J(a,b,s,t)(q) in analogy with Theorem 1.2.1,

and the main theorems for G(a,b)(q) and H(a,b)(q) follow easily. We then specialize it in the case (a, b) = (2, 1)

in Section 3.6. For certain s and t, we are able to obtain very nice evaluations. Ramanujan’s cubic continued

fraction plays an important role in determining explicit examples. For instance,

∞∑
n=−∞

∞∑
m=−∞

e
2
3πime

2
3πin

2m2 + (2n+ 1)2
=

π

4
√

2
e−πi/3 log 3.

Recently, Bailey, Borwein, Crandall and Zucker studied a class of lattice sums arising from solutions to

Poisson equation in [6]. In their paper, they determined some closed-form evaluations using Jacobi theta

functions for series ψ2(x, y) defined by

ψ2(x, y) =
1

π2

∑
m,n even

cos (mπx) cos (nπy)

m2 + n2
.

As graphically illustrated in [26], ψ2(x, y) is the ‘natural’ potential of the 2-dimensional jellium crystal, that

is, the solution to the Poisson equation of the physical model of the jellium, with the Poisson equation

∇2ψ2(r) = 1−
∑

m∈Z2

δ2(r−m),

where r = (x, y) and δ2(r) = δ(x)δ(y) is the Dirac delta-function, with the integral of this δ2 over R2 being

unity. The Dirac delta function is a non-traditional function which can only be defined by its action on

continuous functions. ∫
Rn
δ(r)f(r) = f(0).

And the Laplacian operator can be written as

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
.

One of the primary results in [6] is that for rational numbers x and y, the ‘natural’ potential ψ2(x, y) is

1
4π log β where β is an algebraic number.
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We are thus motivated to consider the class of sums when b = 0 in J(a,b,s,t)(q), that is,

J(a,0,s,t)(q) :=
∑

m,n∈ Z
(m,n) 6=(0,0)

eπimseπint

(xm)2 + (an)2
. (1.2.6)

Clearly,

Re{J(1,0,2x,2y)(e−π)} = 4π2ψ2(x, y).

After we prove the main theorem for J(a,0,s,t)(q) in Section 3.2, we then examine J(a,0,s,t)(q) when a ∈ {1, 2}

in Section 3.7. While the authors of [6] are mainly interested in applying numerical methods to first deduce

the values of lattice sums, our rigorous determinations focus from the start on Ramanujan’s theory of theta

functions. We can not only derive all the evaluations of ψ2(x, y) rigorously established in [6], but also produce

further nice results such as

∑
(m,n) 6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
m2 + n2

=
π

6
log

2−
√

3

3
√

3
.

The explicit values of the two class invariants and Ramanujan’s cubic continued fractions are frequently

applied during the examinations.

1.3 Integral analogue of theta functions and Gauss sums

In Chapter 4, we examine an integral analogue of Gauss sums from one point of view or of theta functions

from another point of view. In two papers [35], [36], [37, pp. 59–67, 202–207], Ramanujan examined the

properties of two integrals

φw(t) :=

∫ ∞
0

cos(πtx)

cosh(πx)
e−πwx

2

dx, (1.3.1)

ψw(t) :=

∫ ∞
0

sin(πtx)

sinh(πx)
e−πwx

2

dx, (1.3.2)

which can be regarded as continuous integral analogues of Gauss sums and theta functions. On Page 198 of

[33], Ramanujan records theorems, much in the spirit of those for φw(t) and ψw(t), for the function

Fw(t) :=

∫ ∞
0

sin(πtx)

tanh(πx)
e−πwx

2

dx. (1.3.3)

The formulas claimed by Ramanujan on page 198 without proofs are difficult to read. The objective of
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this project is to prove them and to show that Fw(t) is a beautiful continuous integral analogue of either

theta functions or Gauss sums. For instance, we have the following entry.

Entry 1.3.1. We have

Fw(t) = − i√
w
e−πt

2/(4w)F1/w(it/w). (1.3.4)

This beautiful transformation formula shows that Fw(t) is an integral analogue of theta functions.
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Chapter 2

An elementary proof of Ramanujan’s
circular summation formula and its
generalizations

2.1 Main theorem

We will start this section by proving Theorem 1.1.2 in an elementary way.

Theorem. For any positive integer n ≥ 2,

n−1∑
k=0

qk
2

e2kizθn3 (z + kπτ |nτ) = Fn(τ)θ3(z|τ).

When n ≥ 3,

Fn(τ) = 1 + 2nqn−1 + · · · .

Proof. Let x = e2iz. In the notation (1.1.2), we find that (1.1.3) is equivalent to

n−1∑
k=0

qk
2

xk

( ∞∑
m=−∞

qm
2n+2kmxm

)n
= Fn(τ)

∞∑
m=−∞

qm
2

xm. (2.1.1)

Define Fm,n(τ) by the following equation

n−1∑
k=0

qk
2

xk

( ∞∑
m=−∞

qm
2n+2kmxm

)n
=

∞∑
m=−∞

Fm,n(τ)qm
2

xm. (2.1.2)
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Then equating the coefficient of xm on both sides of (2.1.2), we find that

Fm,n(τ) =

n−1∑
k=0

∞∑
m1,m2,...,mn=−∞

m1+m2+···+mn=k−m

qn(m
2
1+m

2
2+···+m

2
n)−2k(m1+m2+···+mn)+k2−m2

=

n−1∑
k=0

∞∑
m1,m2,...,mn=−∞

m1+m2+···+mn=k−m

qn(m
2
1+m

2
2+···+m

2
n)−(k−m)2

=

n−m−1∑
k′=−m

∞∑
m1,m2,...,mn=−∞
m1+m2+···+mn=k′

qn(m
2
1+m

2
2+···+m

2
n)−k

′2

=

n−m−1∑
k′=−m

∞∑
m1,m2,...,mn=−∞
m1+m2+···+mn=k′

qn(m
2
1+m

2
2+···+m

2
n)−(m1+m2+···+mn)2 .

(2.1.3)

Now we claim that Fm,n(τ) = Fn(τ), i.e., Fm,n is independent of m. First, we show that for any 1 ≤ s ≤ m,

∞∑
m1,m2,...,mn=−∞
m1+m2+···+mn=−s

qn(m
2
1+m

2
2+···+m

2
n)−(m1+m2+···+mn)2

=

∞∑
m1,m2,...,mn=−∞

m1+m2+···+mn=n−s

qn{(m1−1)2+(m2−1)2+···+(mn−1)2}−(m1−1+m2−1+···+mn−1)2

=

∞∑
m1,m2,...,mn=−∞

m1+m2+···+mn=n−s

qn(m
2
1+m

2
2+···+m

2
n)−(m1+m2+···+mn)2 . (2.1.4)

It we use (2.1.4) in (2.1.3), it follows that

Fm,n(τ) =

n−m−1∑
k′=−m

∞∑
m1,m2,...,mn=−∞
m1+m2+···+mn=k′

qn(m
2
1+m

2
2+···+m

2
n)−(m1+m2+···+mn)2

=

n−1∑
k=0

∞∑
m1,m2,...,mn=−∞
m1+m2+···+mn=k

qn(m
2
1+m

2
2+···+m

2
n)−(m1+m2+···+mn)2 .

Therefore, Fm,n is independent of m. It remains to show that Fn(τ) = 1 + 2nqn−1 + · · · . An elementary

proof is given in [22]. This completes the proof of Theorem 1.1.2.

Now we give the proof of Theorem 1.1.3 here.
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Theorem. Let m,n be any positive integers. Suppose y1, y2, . . . , yn are n complex numbers such that y1 +

y2 + · · ·+ yn = 0.Then we have

mn−1∑
k=0

n∏
j=1

θ3

(
z + yj +

kπ

mn

∣∣∣∣ τ) = Gm,n(y1, y2, . . . , yn|τ)(mnz|m2nτ),

where

Gm,n(y1, y2, . . . , yn|τ) = mn

∞∑
r1,r2,...,rn=−∞
r1+r2+···+rn=0

qr
2
1+r

2
2+···+r

2
ne2i(r1y1+r2y2+···+rnyn).

Proof. From (1.1.2), we have

θ3

(
z + yj +

kπ

mn

∣∣∣∣τ) =

∞∑
s=−∞

qs
2

e2is(z+yj+
kπ
mn ),

θ3(mnz|m2nτ) =

∞∑
s=−∞

qm
2ns2e2imnsz.

If x = e2iz, then (1.1.4) becomes

mn−1∑
k=0

n∏
j=1

∞∑
s=−∞

qs
2

e2is(yj+
kπ
mn )xs = Gm,n(y1, y2, . . . , yn|τ)

∞∑
s=−∞

qm
2ns2xmns.

This is equivalent to the identity to be proved. Equate the coefficients of xN on both sides to obtain

mn−1∑
k=0

∞∑
s1,s2,...,sn=−∞
s1+s2+···+sn=N

qs
2
1+s

2
2+···+s

2
ne2is1y1+2is2y2+···+2isnyne2i

kπN
mn

= Gm,n(y1, y2, . . . , yn|τ)q
N2

n .

Define Gm,n,N (y1, y2, . . . , yn|τ) by

mn−1∑
k=0

∞∑
s1,s2,...,sn=−∞
s1+s2+···+sn=N

qs
2
1+s

2
2+···+s

2
ne2is1y1+2is2y2+···+2isnyne2i

kπN
mn

= Gm,n,N (y1, y2, . . . , yn|τ)q
N2

n . (2.1.5)

To prove (1.1.4), it suffices to show that Gm,n,N (y1, y2, . . . , yn|τ) is independent of N and has the repre-

sentation in (1.1.5).
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Now we claim that

Gm,n,N (y1, y2, . . . , yn|τ)

=


Gm,n(y1, y2, . . . , yn|τ), if mn|N,

0, otherwise.

From (2.1.5), we have

Gm,n,N (y1, y2, . . . , yn|τ)

=

∞∑
s1,s2,...,sn=−∞
s1+s2+···+sn=N

qs
2
1+s

2
2+···+s

2
n−N

2

n e2is1y1+2is2y2+···+2isnyn

mn−1∑
k=0

e2i
kπN
mn . (2.1.6)

Since

mn−1∑
k=0

e2i
kπN
mn =


mn, if mn|N,

0, otherwise,

Gm,n,N (y1, y2, . . . , yn|τ) = 0 unless N is a multiple of mn. It follows that we only need to consider the case

when N = lmn, l ∈ Z. So (2.1.6) becomes

Gm,n,N (y1, y2, . . . , yn|τ)

= mn

∞∑
s1,s2,...,sn=−∞

s1+s2+···+sn=lmn

qs
2
1+s

2
2+···+s

2
n− l

2m2

n e2is1y1+2is2y2+···+2isnyn

= mn

∞∑
s′1,s

′
2,...,s

′
n=−∞

s′1+s
′
2+···+s

′
n=0

q(s
′
1+lm)2+(s′2+lm)2+···+(s′n+lm)2−l2m2ne2is

′
1y1+2is′2y2+···+2is′nyn

= mn

∞∑
s′1,s

′
2,...,s

′
n=−∞

s′1+s
′
2+···+s

′
n=0

qs
′2
1 +s′22 +···+s′2n e2is

′
1y1+2is′2y2+···+2is′nyn .

Thus, Gm,n,N is independent of N , and so if we set

Gm,n,N (y1, y2, . . . , yn|τ) = Gm,n(y1, y2, . . . , yn|τ),

above, we deduce (1.1.5). This completes our proof.
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Now we also use only an elementary method to prove Theorem 1.1.4.

Theorem. Let m,n be any positive integers. Suppose that y1, y2, . . . , yn are n complex numbers such that

y1 + y2 + · · ·+ yn = 0. Then we have

mn−1∑
k=0

qk
2

e2kiz
n∏
j=1

θ3(mz + (yj + km)πτ |m2nτ) = Fm,n(y1, y2, . . . , yn|τ)θ3(z|τ),

where

Fm,n(y1, y2, . . . , yn|τ)

=
(−iτ)(1−n)/2

(m2n)n/2
q−

y21+y22+···+y2n
2m2n Gm,n

(
y1π

m2n
,
y2π

m2n
, . . . ,

ynπ

m2n

∣∣∣∣− 1

m2nτ

)
.

And also,

Fm,n(y1, y2, . . . , yn|τ)

=

mn−1∑
k=0

∞∑
s1,s2,...,sn=−∞

m(s1+s2+···+sn)=k

qm
2n(s21+s

2
2+···+s

2
n)−2(s1y1+s2y2+···+snyn)−k

2

.

Proof. From (1.1.2), we have

θ3(mz + (yj + km)πτ |m2nτ) =

∞∑
s=−∞

qm
2ns2e2imsz+2is(yj+km)πτ .

If x = e2iz, then (1.1.6) becomes

mn−1∑
k=0

qk
2

xk
n∏
j=1

∞∑
s=∞

qm
2ns2e2is(yj+km)πτxms = Fm,n(y1, y2, . . . , yn|τ)

∞∑
s=−∞

qs
2

xs. (2.1.7)

Define Fm,n,N (y1, y2, . . . , yn|τ) by

mn−1∑
k=0

qk
2

xk
n∏
j=1

∞∑
s=∞

qm
2ns2e2is(yj+km)πτxms = Fm,n,N (y1, y2, . . . , yn|τ)

∞∑
s=−∞

qs
2

xs. (2.1.8)
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Equate the coefficients of xN on both sides to find that

Fm,n,N (y1, y2, . . . , yn)

= q−N
2
mn−1∑
k=0

qk
2

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)+k=N

qm
2n(s21+s

2
2+...+s

2
n)+2km(s1+s2+...+sn)+2(s1y1+s2y2+...+snyn)

= q−N
2
N−mn+1∑
k=N

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=k

qm
2n(s21+s

2
2+...+s

2
n)+2(N−k)k+(N−k)2+2(s1y1+s2y2+...+snyn)

=

N−mn+1∑
k=N

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=k

qm
2n(s21+s

2
2+...+s

2
n)−k

2+2(s1y1+s2y2+...+snyn)

=

−N∑
k=mn−N−1

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=k

qm
2n(s21+s

2
2+...+s

2
n)−k

2−2(s1y1+s2y2+...+snyn).

(2.1.9)

Now we write

Sm,n(k) =

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=k

qm
2n(s21+s

2
2+...+s

2
n)−k

2−2(s1y1+s2y2+...+snyn).

We claim that
mn−1∑
k′=0

Sm,n(k′) =

mn−N−1∑
k′=−N

Sm,n(k′). (2.1.10)

It follows that

Fm,n,N (y1, y2, . . . , yn) = Fm,n(y1, y2, . . . , yn)

is independent of N and has the form in (1.1.7). To prove the claim, it suffices to show that

Sm,n(−k) = Sm,n(mn− k) for any 1 ≤ k ≤ N. (2.1.11)
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From (2.1.9) , we have

Sm,n(−k) =

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=−k

qm
2n(s21+s

2
2+...+s

2
n)−k

2−2(s1y1+s2y2+...+snyn)

=

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=mn−k

qm
2n((s1−1)2+(s2−1)2+...+(sn−1)2)−k2−2(s1y1+s2y2+...+snyn)

=

∞∑
s1,s2,...,sn=−∞

m(s1+s2+...+sn)=mn−k

qm
2n(s21+s

2
2+...+s

2
n)−(mn−k)

2−2(s1y1+s2y2+...+snyn)

= Sm,n(mn− k).

The proof is complete.

We conclude this section by proving Theorem 1.1.5.

Theorem. Suppose that mn is any even positive integer and y1, y2, . . . , yn are n complex numbers such that

y1 + y2 + · · ·+ yn = 0. Then we have

mn−1∑
k=0

(−1)k
n∏
j=1

θ3

(
z + yj +

kπ

mn

∣∣∣∣τ)
=Hm,n(y1, y2, . . . , yn|τ)θ2(mnz|m2nτ),

where

Hm,n(y1, y2, . . . , yn|τ)

=mnq−
m2n

4

∞∑
r1,r2,...,rn=−∞

r1+r2+···+rn=mn/2

qr
2
1+r

2
2+···+r

2
ne2i(r1y1+r2y2+···+rnyn).

Proof. From (1.1.1) and (1.1.2), we have

θ3

(
z + yj +

kπ

mn

∣∣∣∣ τ) =

∞∑
s=−∞

qs
2

e2is(z+yj+
kπ
mn ),

θ2(mnz|m2nτ) = q
m2n

4

∞∑
s=−∞

qm
2ns(s+1)e(2s+1)imnz.
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Similar to the proof of Theorem 1.1.3, we set x = e2iz. And thus (1.1.8) becomes

mn−1∑
k=0

(−1)k
n∏
j=1

∞∑
s=−∞

qs
2

e2is(yj+
kπ
mn )xs = Hm,n(y1, y2, . . . , yn|τ)q

m2n
4

∞∑
s=−∞

qm
2ns(s+1)x

mn
2 (2s+1).

Equate the coefficients of xN on both sides to obtain

mn−1∑
k=0

(−1)k
∞∑

s1,s2,...,sn=−∞
s1+s2+···+sn=N

qs
2
1+s

2
2+···+s

2
ne2is1y1+2is2y2+···+2isnyne2i

kπN
mn

=Hm,n(y1, y2, . . . , yn|τ)q
N2

n .

Define Hm,n,N (y1, y2, . . . , yn|τ) by

mn−1∑
k=0

(−1)k
∞∑

s1,s2,...,sn=−∞
s1+s2+···+sn=N

qs
2
1+s

2
2+···+s

2
ne2is1y1+2is2y2+···+2isnyne2i

kπN
mn

=Hm,n,N (y1, y2, . . . , yn|τ)q
N2

n . (2.1.12)

Now it suffices to show that Hm,n,N (y1, y2, . . . , yn|τ) is independent of N and has the representation in

(1.1.9). From (2.1.12), we have

Hm,n,N (y1, y2, . . . , yn|τ)

=

∞∑
s1,s2,...,sn=−∞
s1+s2+···+sn=N

qs
2
1+s

2
2+···+s

2
n−N

2

n e2is1y1+2is2y2+···+2isnyn

mn−1∑
k=0

(
−e 2iπN

mn

)k
. (2.1.13)

If mn is even, then we obtain

mn−1∑
k=0

(
−e 2iπN

mn

)k
=


0, if e

2iπN
mn 6= −1,

mn, otherwise,

which implies that Hm,n,N (y1, y2, . . . , yn|τ) = 0 unless 2πN
mn is an odd integer. It follows that we only need
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to consider the case when N = (2l + 1)mn/2, l ∈ Z. So (2.1.13) reduces to

Hm,n,N (y1, y2, . . . , yn|τ)

= mn

∞∑
s1,s2,...,sn=−∞

s1+s2+···+sn=(2l+1)mn/2

qs
2
1+s

2
2+···+s

2
n−N

2

n e2is1y1+2is2y2+···+2isnyn

= mn

∞∑
s′1,s

′
2,...,s

′
n=−∞

s′1+s
′
2+···+s

′
n=mn/2

q(s
′
1+lm)2+(s′2+lm)2+···+(s′n+lm)2−l2m2ne2is

′
1y1+2is′2y2+···+2is′nyn

= mn

∞∑
s′1,s

′
2,...,s

′
n=−∞

s′1+s
′
2+···+s

′
n=mn/2

qs
′2
1 +s′22 +···+s′2n−m

2n
4 e2is

′
1y1+2is′2y2+···+2is′nyn .

Therefore, Hm,n,N (y1, y2, . . . , yn|τ) is independent ofN . If we setHm,n,N (y1, y2, . . . , yn|τ) = Hm,n(y1, y2, . . . , yn|τ),

then the proof is completed.

2.2 Application

In [23], Chan and Liu defined the multiple theta series a(y1, y2|τ) by

a(y1, y2|τ) =

∞∑
r1,r2=−∞

q2r
2
1+2r1r2+2r22e2i(r1(2y1+y2)+r2(2y2+y1)). (2.2.1)

With ω = e
2πi
3 , the well-known cubic theta functions a(τ), b(τ) and c(τ) are defined in [19] as

a(τ) =

∞∑
r1,r2=−∞

q2r
2
1+2r1r2+2r22 = a(0, 0|τ),

b(τ) =

∞∑
r1,r2=−∞

q2r
2
1+2r1r2+2r22ωr1−r2 = a

(
π

3
,−π

3

∣∣∣∣ τ) ,
c(τ) =

∞∑
r1,r2=−∞

q2(r1+1/3)2+2(r1+1/3)(r2+1/3)+2(r2+1/3)2 = q2/3a

(
πτ

3
,
πτ

3

∣∣∣∣ τ) .
A direct computation gives that Gm,3 = 3ma(y1, y2|τ). Thus Theorem 1.1.3 reduces to the following

corollary by taking n = 3 [23].
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Corollary 2.2.1. With a(y1, y2|τ) defined above and y3 = −y1 − y2, we have

3m−1∑
k=0

θ3

(
z + y1 +

kπ

3m

∣∣∣∣ τ)θ3(z+y2 +
kπ

3m

∣∣∣∣ τ)θ3(z + y3 +
kπ

3m

∣∣∣∣ τ)
= 3ma(y1, y2|τ)(3mz|3m2τ). (2.2.2)

Letting m = 1, we have the identity

3a(y1, y2|τ)θ3(3z|3τ) = θ3

(
z + y1|τ

)
θ3

(
z + y2|τ

)
θ3 (z + y3|τ)

+θ3

(
z + y1 +

π

3

∣∣∣∣ τ) θ3(z + y2 +
π

3

∣∣∣∣ τ) θ3(z + y3 +
π

3

∣∣∣∣ τ)
+θ3

(
z + y1 +

2π

3

∣∣∣∣ τ) θ3(z + y2 +
2π

3

∣∣∣∣ τ) θ3(z + y3 +
2π

3

∣∣∣∣ τ) . (2.2.3)

In [23], the authors proved that

b(τ) =

∞∏
n=1

(1− q2n)3

(1− q6n)

by taking y1 = π
3 and y2 = −π3 in (2.2.3). Now taking y1 = πτ

3 + π
3 and y2 = πτ

3 −
π
3 , we have the following

corollary.

Corollary 2.2.2. With ω = e
2πi
3 ,

d(τ) :=

∞∑
r1,r2=−∞

q2r
2
1+2r1r2+2r22+2r1+2r2ωr1−r2 = 0.

Proof. Putting y1 = πτ
3 + π

3 , y2 = πτ
3 −

π
3 and z = 0 in (2.2.3), we have

3d(τ)θ3(0|3τ) = θ3

(
πτ

3
+
π

3

∣∣∣∣ τ) θ3(πτ3 − π

3

∣∣∣∣ τ) θ3(−2πτ

3

∣∣∣∣τ)
+ θ3

(
πτ

3
− π

3

∣∣∣∣ τ)θ3(πτ3
∣∣∣∣ τ) θ3(−2πτ

3
+
π

3

∣∣∣∣ τ)
+ θ3

(
πτ

3

∣∣∣∣ τ) θ3(πτ3 +
π

3

∣∣∣∣ τ) θ3(−2πτ

3
− π

3

∣∣∣∣ τ) . (2.2.4)
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By direct computation, we have

θ3

(
−2πτ

3

∣∣∣∣ τ) =
1 + q−

1
3

1 + q
1
3

θ3

(
πτ

3

∣∣∣∣ τ) ,
θ3

(
− 2πτ

3
+
π

3

∣∣∣∣ τ) =
1 + q−

1
3ω

1 + q
1
3ω−1

θ3

(
πτ

3
+
π

3

∣∣∣∣ τ),
θ3

(
− 2πτ

3
− π

3

∣∣∣∣ τ) =
1 + q−

1
3ω−1

1 + q
1
3ω

θ3

(
πτ

3
− π

3

∣∣∣∣ τ).

So (2.2.4) becomes

(
1 + q−

1
3

1 + q
1
3

+
1 + q−

1
3ω

1 + q
1
3ω−1

+
1 + q−

1
3ω−1

1 + q
1
3ω

)
θ3

(
πτ

3

∣∣∣∣ τ) θ3(πτ3 +
π

3

∣∣∣∣ τ) θ3(πτ3 − π

3

∣∣∣∣ τ) = 0,

since

1 + q−
1
3

1 + q
1
3

+
1 + q−

1
3ω

1 + q
1
3ω−1

+
1 + q−

1
3ω−1

1 + q
1
3ω

= 0.

This completes our proof.
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Chapter 3

The evaluation of two-dimensional
lattice sums via Ramanujan’s theta
functions

3.1 Preliminary results

Let us recall the standard notation, as given in (1.0.1),

(a; q)∞ :=

∞∏
n=0

(1− aqn), |q| < 1,

Let us also recall the Ramanujan’s general theta function f(a, b) and the famous Jacobi triple product

identity for f(a, b), as defined in (1.0.2) and (1.0.7), respectively. For |ab| < 1,

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2 = (−a, ab)∞(−b, ab)∞(ab, ab)∞.

Following Ramanujan’s notation for theta functions, as given in (1.0.3), (1.0.4), (1.0.5) and (1.0.6), we

have the definitions and product representations for ϕ(q), ψ(q), f(−q) and χ(q). From Entry 24 in Chapter

16 of Ramanajan’s third Notebook [10, p. 39], we have

f(q)

f(−q)
=

ψ(q)

ψ(−q)
=

χ(q)

χ(−q)
=

√
ϕ(q)

ϕ(−q)
, (3.1.1)

and

χ(q)χ(−q) = χ(−q2). (3.1.2)

If n is any positive rational number and q = exp(−π
√
n), the two class invariants Gn and gn are defined

by

Gn := 2−1/4q−1/24χ(q) and gn := −2−1/4q−1/24χ(−q). (3.1.3)

In the notation of Weber [42], Gn = 2−1/4f(
√
−n) and gn = 2−1/4f1(

√
−n). The term invariant is due to

Weber. From the definitions, it follows easily that Gn = G1/n is equivalent to the following identity [10, p.

21



43, Entry 27 (v)]

eα/24χ(e−α) = eβ/24χ(e−β), (3.1.4)

where αβ = π2.

There are four continued fractions that play important roles in this chapter. Their explicit values are

frequently used to deduce explicit examples of lattice sums. First of all, let us recall the famous Rogers-

Ramanujan continued fraction and its product representation

R(q) :=
q1/5

1 +

q

1 +

q2

1 + · · ·

=q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

, |q| < 1.

Ramanujan was interested in determining exact formulas for R(e−2π
√
n) and R(−eπ

√
n) for rational values

of n. For instance, he gave the values for R(e−2π) and R(−e−π), which were first established by G. N.

Watson. Using modular equations, more precisely, eta-function identities discovered by Ramanujan, Berndt

and Chan established some particular values of R(q) in [12], [11, p. 20–30]. In another paper [13], Berndt,

Chan and Zhang also used Ramanujan’s eta-function identities to obtain general formulas for evaluating

R(e−2π
√
n) and R(−eπ

√
n) in terms of class invariants. More evaluations can be found in [7], [29], [40], [43]

and [44]. Comprehensive discussions can be found in [4, Chap. 2].

The second one is Ramanujan’s cubic continued fraction, which is defined by

G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · ·
, |q| < 1. (3.1.5)

From Ramanujan’s lost notebook, we have, as given in [4, p. 94, Eq. (3.3.1 a) ], [4, p. 95, Eq. (3.3.6)]

G(q) = q1/3
(q; q2)∞
(q3; q6)3∞

= q1/3
χ(−q)
χ3(−q3)

. (3.1.6)

In [14], Berndt, Chan and Zhang derived a general method for evaluating G(±q). In Yi’s thesis [43], she

systematically exploited modular equations, in particular eta-function identities, to find 22 new values for

G(e−π
√
n) and G(eπ

√
n). Further evaluations can be found in [1], [2] and [8].

Thirdly, the Ramanujan-Göllnitz-Gordon continued fraction is defined as

T (q) :=
q1/2

1 + q +

q2

1 + q3 +

q4

1 + q5 +

q6

1 + q7 + · · ·
, |q| < 1. (3.1.7)
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Ramanujan recorded a product representation of T (q) on p. 229 of his second notebook [31], namely,

T (q) = q
1
2

(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

. (3.1.8)

Chan and Huang evaluated explicitly T (q) at q = e−π
√
n/2 for various positive integers n in [21].

The last one is a continued fraction of order 12 defined by

K(q) :=
q(1− q)
1− q3 +

q3(1− q2)(1− q4)

(1− q3)(1 + q6) +

q3(1− q8)(1− q10)

(1− q3)(1 + q12) + · · ·
, |q| < 1. (3.1.9)

The continued fraction K(q) is a special case of one of the fascinating continued fraction identities recorded

by Ramanujan in his second notebooks [31] [10, Entry 12, p. 24]. Indeed, replacing q by q3 and letting a = q

and b = q2 in [10, Entry 12, p. 24], we can obtain the product representation

K(q) = q
f(−q;−q11)

f(−q5;−q7)
= q

(q, q12)∞(q11, q12)∞
(q5, q12)∞(q7, q12)∞

. (3.1.10)

The addition formula for theta functions [10, p. 48, Entry 31] is stated below.

Lemma 3.1.1. Let Un = an(n+1)/2bn(n−1)/2 and Vn = an(n−1)/2bn(n+1)/2. Then, for each positive integer

n,

f(U1, V1) =

n−1∑
r=0

Urf(
Un+r
Ur

,
Vn−r
Ur

). (3.1.11)

We also need the following two lemmas [10, p. 36, Entry 20], [10, p. 45, Entry 29].

Lemma 3.1.2. If αβ = π, Re(α2) > 0, and n is any complex number, then

√
αf(e−α

2+nα, e−α
2−nα) = en

2/4
√
βf(e−β

2+inβ , e−β
2−inβ). (3.1.12)

Lemma 3.1.3. If ab = cd, then

(i) f(a, b)f(c, d) + f(−a,−b)f(−c,−d) = 2f(ac, bd)f(ad, bc),

(ii) f(a, b)f(c, d) + f(−a,−b)f(−c,−d) = 2af(
b

c
,
c

b
abcd)f(

b

d
,
d

b
abcd). (3.1.13)
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As special cases of the above lemma [10, p. 51, Example(iv)], we have

ϕ(−q) + φ(q2) = 2
f2(q3, q5)

ψ(q)
, (3.1.14)

ϕ(−q)− φ(q2) =− 2
f2(q, q7)

ψ(q)
. (3.1.15)

3.2 Main theorems

We begin this section by proving the main theorem for J(a,b,s,t)(q) defined by (1.2.5).

Theorem 3.2.1. Suppose that a and b are integers with a ≥ 2 and (a, b) = 1, s and t are any real numbers

with at least one not being an even number, and Re x > 0. Then

J(a,b,s,t)(q) = − π

ax

a−1∑
j=0

ω−(2j+t)b log

∞∏
m=−∞

(1− ω2j+tq|2m+s|)(1− ω−(2j+t)q|2m+s|),

where J(a,b,s,t)(q) is defined in (1.2.5), ω = eπi/a and q = e−π/x.

Proof. Suppose that N is a positive integer. Since the series is not absolutely convergent, we adopt the

convention
∑
n = limN→∞

∑
−N<n<N . Then we have

∑
−N<n<N

∑
m∈ Z

eπimseπint

(xm)2 + (an+ b)2

= π
∑

−N<n<N
eπint

∫ ∞
0

e−π(an+b)
2u

(∑
m∈ Z

eπimse−πm
2x2u

)
du. (3.2.1)

Now we may apply (3.1.12) with α =
√
π/(x

√
u), β = x

√
uπ, and n = πs/(x

√
u) to deduce that

∑
m∈ Z

eπims−πm
2x2u =

1

x
√
u

∑
m∈ Z

e−
π(m+s/2)2

x2u . (3.2.2)

Using this standard form of theta inversion (3.2.2) and inverting the order of summation and integration
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twice by absolute convergence in (3.2.1), we obtain

∑
−N<n<N

∑
m∈ Z

eπimseπint

(xm)2 + (an+ b)2

=
π

x

∑
−N<n<N

eπint
∫ ∞
0

e−π(an+b)
2u
∑
m∈ Z

e−
π(m+s/2)2

x2u
du√
u

=
π

x

∑
m∈ Z

∑
−N<n<N

eπint
∫ ∞
0

e−π(an+b)
2u−π(m+s/2)2

x2u
du√
u
.

Applying the elementary formula [28, p. 384, formula (3.471), no. 9] [19, p. 39]

∫ ∞
0

e−π(A
2u+B2/u) du√

u
=
e−2π|A||B|

|A|
, (3.2.3)

we have ∑
−N<n<N

∑
m∈ Z

eπimseπint

(xm)2 + (an+ b)2
=
π

x

∑
m∈ Z

∑
−N<n<N

eπintq|2m+s||an+b|

|an+ b|
. (3.2.4)

We now introduce a variable r and establish the following claim by comparing Taylor series coefficients in r

and letting N →∞.

∑
−∞<n<∞

eπintr|an+b|

|an+ b|
= −1

a

a−1∑
j=0

ω−(2j+t)b log{(1− ω2j+tr)(1− ω−(2j+t)r)}. (3.2.5)

Indeed, we have

− 1

a

a−1∑
j=0

ω−(2j+t)b log{(1− ω2j+tr)(1− ω−(2j+t)r)}

=
1

a

a−1∑
j=0

e−
πi(2j+t)b

a

∞∑
k=1

(
rk

k
eπik(2j+t)/a +

rk

k
e−πik(2j+t)/a

)

=
1

a

∞∑
k=1

rk

k

eπit(k−b)/a a−1∑
j=0

e2πij(k−b)/a + e−πit(k+b)/a
a−1∑
j=0

e−2πij(k+b)/a


=

1

a

∑
na+b≥1

r|na+b|

|na+ b|
eπint · a+

1

a

∑
na−b≥1

r|na−b|

|na− b|
e−πint · a

=
∑

na+b≥1

r|na+b|

|na+ b|
eπint +

∑
na+b≤−1

r|na+b|

|na+ b|
eπint

=

∞∑
n=−∞

eπintr|na+b|

|na+ b|
,

where we used the fact that na+ b 6= 0 since (a, b) = 1 in the last identity above. Note that if both s and t
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are even numbers, then we have log 0 at m = 0 on the right-hand side of the above identity. Therefore we

exclude the case in the assumption of the theorem to ensure the convergence of the series. Similar to [15,

Eq. (2.5)], we use a crude error estimate to bound the terms where n ≥ N and n ≤ −N as follows:

∑
−N<n<N

eπintr|an+b|

|an+ b|
=− 1

a

a−1∑
j=0

ω−(2j+t)b log(1− ω2j+tr)(1− ω−(2j+t)r)

+O

(
rN

(1− r)N

)
. (3.2.6)

To complete the proof, we substitute (3.2.6) into (3.2.4) and take the limit as N →∞.

Note that we have F(a,b)(q) = J(a,b,1,1)(q), G(a,b)(q) = J(a,b,1,0)(q) and H(a,b)(q) = J(a,b,0,1)(q). Thus we

have the following corollary.

Corollary 3.2.2. Suppose that a and b are integers with a ≥ 2, (a, b) = 1, and assume that Re x > 0. Then

we have

G(a,b)(q) =− 2π

ax

a−1∑
j=0

ω−2jb log

∞∏
m=0

(1− ω2jq2m+1)(1− ω−2jq2m+1), (3.2.7)

H(a,b)(q) =− π

ax

a−1∑
j=0

ω−(2j+1)b log
∏
m∈ Z

(1− ω2j+1q2|m|)(1− ω−2j−1q2|m|), (3.2.8)

where G(a,b)(q) and H(a,b)(q) are defined in (1.2.3) and (1.2.4), ω = eπi/a and q = e−π/x.

The following theorem shows that G(a,b)(q) can be placed within the theory of F(a,b).

Theorem 3.2.3. (i) Suppose that a and b are integers with a ≥ 2 and (2a, b) = 1, and assume that Re

x > 0. Then

G(2a,b)(q) =
1

2
F(a,b)(q) +

1

2
G(a,b)(q). (3.2.9)

(ii) If we further assume that a is any odd integer, then we have

G(a,b)(q) =


F(a,b)(−q), if b is even,

−F(a,b)(−q), if b is odd.

(3.2.10)

Proof. We begin with proving (3.2.10). Note that sin(2jbπ/a) does not appear in the summation below

since G(a,b)(q) is real-valued and the imaginary terms sum to 0. Now from (3.2.7), we have

G(a,b)(q) = −2π

ax

a−1∑
j=0

cos
2jbπ

a
log

∞∏
m=0

(1− 2 cos
2jπ

a
q2m+1 + q4m+2)
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= − 4π

ax

a−1
2∑
j=0

cos
2jbπ

a
log

∞∏
m=0

(1− 2 cos
2jπ

a
q2m+1 + q4m+2) +

2π

ax
log

∞∏
m=0

(1− q2m+1)2

=
4π

ax

a−1
2∑
j=0

cos
(a− 2jb)π

a
log

∞∏
m=0

(1 + 2 cos
(a− 2j)π

a
q2m+1 + q4m+2)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

=
4π

ax

a−1
2∑
j=0

cos

[
a− 2(a−12 − j)b

]
π

a
log

∞∏
m=0

(1 + 2 cos
[a− 2(a−12 − j)]π

a
q2m+1 + q4m+2)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

=
4π

ax

a−1
2∑
j=0

cos
[a(1− b) + (2j + 1)b]π

a
log

∞∏
m=0

(1 + 2 cos
(2j + 1)π

a
q2m+1 + q4m+2)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

= − 4π

ax

a−1
2∑
j=0

(−1)b cos
(2j + 1)bπ

a
log

∞∏
m=0

(1 + 2 cos
(2j + 1)π

a
q2m+1 + q4m+2)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

=− (−1)b
4π

ax

a−1
2∑
j=0

cos
(2j + 1)bπ

a
log

∞∏
m=0

(1 + 2 cos
(2j + 1)π

a
q2m+1 + q4m+2)

+ (−1)b
2π

ax
log

∞∏
m=0

cos
(2 · a−12 + 1)πb

a

(
1 + 2 cos

(2 · a−12 + 1)π

a
q2m+1 + q4m+2

)
=(−1)bF(a,b)(−q).

This completes the proof of (3.2.10). It remains to prove (3.2.9) from (3.2.7). Now,

G(2a,b)(q)

= − π

ax

2a−1∑
j=0

e
πibj
a log

∞∏
m=0

(1− e
πij
a q2m+1)(1− e−

πij
a q2m+1)

= − π

ax

{ a−1∑
j=0

e
πib(2j+1)

a log

∞∏
m=0

(1− e
πi(2j+1)

a q2m+1)(1− e−
πi(2j+1)

a q2m+1)

+

a−1∑
j=0

e
πib(2j)
a log

∞∏
m=0

(1− e
πi(2j)
a q2m+1)(1− e−

πi(2j)
a q2m+1)

}
.

=
1

2
F(a,b)(q) +

1

2
G(a,b)(q).
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To finish this section, we prove the main theorem for J(a, 0, s, t), defined by (1.2.6).

Theorem 3.2.4. Suppose that a is a positive integer, s and t are any real numbers with at least one not

being an even number, and Re x > 0. Then

J(a,0,s,t)(q) = − π

ax

a−1∑
j=0

log

∞∏
m=−∞

(1− ω2j+tq|2m+s|)(1− ω−(2j+t)q|2m+s|) +
∑
m6=0

eπims

(xm)2
,

where J(a,0,s,t)(q) is defined in (1.2.6), ω = eπi/a and q = e−π/x.

Proof. The proof is similar to the proof of Theorem 3.2.1. The main difference is that the index (m,n) can

not be (0, 0). Therefore, we need to separate the sum when n = 0 at the very beginning, and thus we have

∑
−N<n<N

n6=0

∑
m∈ Z

eπimseπint

(xm)2 + (an)2
=
π

x

∑
m∈ Z

∑
−N<n<N
N 6=0

eπintq|2m+s||an|

|an|
. (3.2.11)

Then we claim that for |r| < 1,

∑
n 6=0

eπintr|na|

|na|
= −1

a

a−1∑
j=0

log(1− ω2j+tr)(1− ω−(2j+t)r). (3.2.12)

Let us briefly prove the claim here. By expanding the right side of (3.2.12) as Taylor series in r, we have

−1

a

a−1∑
j=0

log(1− ω2j+tr)(1− ω−(2j+t)r)

=
1

a

a−1∑
j=0

∞∑
k=1

(
rk

k
eπik(2j+t)/a +

rk

k
e−πik(2j+t)/a

)

=
1

a

∞∑
k=1

rk

k

eπikt/a a−1∑
j=0

e2πijk/a + e−πikt/a
a−1∑
j=0

e−2πijk/a


=

1

a

∑
na≥1

r|na|

|na|
eπint · a+

1

a

∑
na≥1

r|na|

|na|
e−πint · a

=
∑
na≥1

r|na|

|na|
eπint +

∑
na≤1

r|na|

|na|
eπint

=
∑
n 6=0

eπintr|na|

|na|
.

To finish the proof of Theorem 3.2.4, we use the same idea as in the proof of Theorem 3.2.1.
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3.3 Examinations of H(a,b) for a ∈ {3, 4, 5, 6} and explicit examples

Although the proofs of (3.2.8) and Theorem 1.2.1 are similar, the examinations of special cases of H(a,b) are

quite different from those of F(a,b), and they are actually more difficult, because we have even powers of q

instead of odd powers in the evaluation. In this section, we examine the cases where a ∈ {3, 4, 5, 6} and b = 1.

Let us prove a couple of lemmas before the examinations.

Lemma 3.3.1. For |q| < 1, we have

∏
m≥1

(1−
√

2q2m + q4m) =
qf(−q32)

f(−q2)

√
f(−q4)

f(−q8)

(
1√
T (q4)

− (
√

2 + 1)
√
T (q4)

)
, (3.3.1)

∏
m≥1

(1 +
√

2q2m + q4m) =
qf(−q32)

f(−q2)

√
f(−q4)

f(−q8)

(
1√
T (q4)

+ (
√

2− 1)
√
T (q4)

)
, (3.3.2)

∏
m≥1

1−
√

2q2m + q4m

1 +
√

2q2m + q4m
=

1− (
√

2 + 1)T (q4)

1 + (
√

2− 1)T (q4)
, (3.3.3)

where T (q) is the Ramanujan-Göllnitz-Gordon continued fraction, defined by (3.1.7).

Proof. The equality (3.3.3) can be easily derived from (3.3.1) and (3.3.2). Here we give the proof of (3.3.1)

only, as the proof of (3.3.2) is similar. Letting ω = eπi/4 and using the Jacobi triple product identity (1.0.7)

for Ramanujan’s general theta function f(a, b), we have

∏
m≥1

(1−
√

2q2m + q4m) =
∏
m≥1

(1− (ω + ω−1)q2m + q4m)

=
∏
m≥1

(1− ωq2m)(1− ω−1q2m)

= (ωq2; q2)∞(ω−1q2; q2)∞

=
1

(q2; q2)∞

f(−ω,−ω−1q2)

1− ω
. (3.3.4)

Applying the addition formula (3.1.11) with n = 4, a = −ω and b = −ω−1q2, we obtain

f(−ω,−ω−1q2) = (1− ω)f(−q12,−q20) + (ω2 + ω3)q2f(−q4,−q28).

It follows that

f(−ω,−ω−1q2)

1− ω
= f(−q12,−q20)− (

√
2 + 1)q2f(−q4,−q28). (3.3.5)
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To complete the proof, we substitute (3.3.5) into (3.3.4), divide both the denominator and numerator by√
f(−q12,−q20)f(−q4,−q28), use the product representation of the Ramanujan-Göllnitz-Gordon continued

fraction (3.1.8), and manipulate theta products to deduce that

f(−q12;−q20)f(−q4;−q28) = f2(−q32)
f(−q4)

f(−q8)
.

Lemma 3.3.2. For |q| < 1, we have

∏
m≥1

(1−
√

3q2m + q4m) =
f(−q30,−q42)

f(−q2)
(1 + (

√
3 + 1)J(q6) + (2 +

√
3)K(q6)), (3.3.6)

∏
m≥1

(1 +
√

3q2m + q4m) =
f(−q30,−q42)

f(−q2)
(1 + (

√
3− 1)J(q6) + (2−

√
3)K(q6)), (3.3.7)

∏
m≥1

1−
√

3q2m + q4m

1 +
√

3q2m + q4m
=

1− (
√

3 + 1)J(q6) + (2 +
√

3)K(q6)

1 + (
√

3− 1)J(q6) + (2−
√

3)K(q6)
, (3.3.8)

where J(q) := q1/3 f(−q
3,−q9)

f(−q5,−q7) and K(q) = q f(−q,−q
11)

f(−q5,−q7) is the continued fractions of order 12 defined by

(3.1.9).

Proof. The proof of Lemma 3.3.2 is similar to the proof of Lemma 3.3.1. Here we give the proof of (3.3.7)

only. Letting ω = eπi/6 and using the Jacobi triple product identity (1.0.7) for Ramanujan’s general theta

function f(a, b), we have

∏
m≥1

(1 +
√

3q2m + q4m) =
∏
m≥1

(1 + (ω + ω−1)q2m + q4m)

=
∏
m≥1

(1 + ωq2m)(1 + ω−1q2m)

= (−ωq2; q2)∞(−ω−1q2; q2)∞

=
1

(q2; q2)∞

f(ω, ω−1q2)

1 + ω
. (3.3.9)

Applying the addition formula (3.1.11) with n = 6, a = ω and b = ω−1q2, we obtain

f(ω, ω−1q2) = (1 + ω)f(−q30,−q42) + (ω2 − ω5)q2f(−q18,−q54) + (ω3 − ω4)q6f(−q6,−q66).

It follows that

f(ω, ω−1q2)

1 + ω
= f(−q30,−q42) + (

√
3− 1)q2f(−q18,−q54) + (2−

√
3)q6f(−q6,−q66). (3.3.10)
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Substituting (3.3.10) into (3.3.9) and dividing through by f(−q30,−q42), we obtain (3.3.7).

Theorem 3.3.3. Suppose that q = e−π/x. Let G(q), T (q) and K(q) be the continued functions defined in

(3.1.5), (3.1.7), and (3.1.9), respectively. Let J(q) be the function defined in Lemma 3.3.2. Then

H(3,1)(q) =
2π

9x
log

8(1 +G3(q2))

1− 8G3(q2)
, (3.3.11)

H(4,1)(q) = − π√
2x

log

√
2− 1− T (q4)

1 + (
√

2− 1)T (q4)
, (3.3.12)

H(5,1)(q) =
2π

5x
log 2 +

π

5x
log

χ(−q10)

χ5(−q2)
− π√

5x
log

√
5ϕ(q5)− ϕ(q)√
5ϕ(q5) + ϕ(q)

− π

5
√

5x
log

(1− α5R5(q))(1− β5R5(q2))

(1− β5R5(q))(1− α5R5(q2))
, (3.3.13)

H(6,1)(q) =
π√
3x

log(2 +
√

3)
1 + (

√
3− 1)J(q6) + (2−

√
3)K(q6)

1 + (
√

3 + 1)J(q6) + (2 +
√

3)K(q6)
. (3.3.14)

Proof. We begin by proving (3.3.11). If we set (a, b) = (3, 1), then (3.2.8) immediately reduces to

H(3,1)(q)

=− π

3x

2∑
j=0

cos

(
(2j + 1)π

3

)
log

∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

3

)
q2|m| + q4|m|

)

=− π

3x
log

∏
m∈Z

1− q2|m| + q4|m|

1 + 2q2|m| + q4|m|

=− π

3x
log

1

4

∏
m≥1

(1− q2m + q4m)2

(1 + 2q2m + q4m)2

=
2π

3x
log 2− 2π

3x
log

∏
m≥1

1 + q6m

(1 + q2m)3

=
2π

3x
log 2− 2π

3x
log

(−q6; q6)∞
(−q2; q2)3∞

=
2π

3x
log 2− 2π

3x
log

χ3(−q2)

χ(−q6)
. (3.3.15)

Notice that we used χ(−q) = 1/(−q; q)∞ in the last equality above. To finish the calculation, let us take

α = 1− φ4(−q)/φ4(q) and β = 1− φ4(−q3)/φ4(q3) so that β has degree 3 over α in the theory of modular

equations. Then using [10, p. 124, Entry 12],

χ(−q) = 21/6(1− x)1/12(xq)−1/24,
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we have

q1/3
χ(−q)
χ3(−q3)

= 2−1/3
(1− α)1/12β1/8

(1− β)1/4α1/24
,

χ3(−q)
χ(−q3)

= 21/3
(1− α)1/4β1/24

(1− β)1/12α1/8
.

It is known that α and β admit birational parameterizations α = p(2+p)3/(1+2p)3 and β = p3(2+p)/(1+2p)

[10, p. 230, Entry 5(vi)]. Thus we deduce that

q1/3
χ(−q)
χ3(−q3)

=

(
p

2(1 + p)

)1/3

, (3.3.16)

χ3(−q)
χ(−q3)

=

(
2(1− p)2

(2 + p)(1 + 2p)

)1/3

. (3.3.17)

Now if v = q1/3χ(−q)/χ3(−q3) = G(q), as given in (3.1.6), then we solve for p from (3.3.16) to obtain

p =
1− 4v3 +

√
1− 8v3

4v3
, (3.3.18)

and it follows that

χ3(−q)
χ(−q3)

=

(
1− 8v3

1 + v3

)1/3

(3.3.19)

by substituting (3.3.18) into (3.3.17). Replacing q by q2 and substituting (3.3.19) into (3.3.15) completes

the proof of (3.3.11).

Notice that if (a, b) = (4, 1), then (3.2.8) becomes

H(4,1)(q)

=− π

4x

3∑
j=0

cos

(
(2j + 1)π

4

)
log

∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

4

)
q2|m| + q4|m|

)

=−
√

2π

4x
log

∏
m∈Z

1−
√

2q2|m| + q4|m|

1 +
√

2q2|m| + q4|m|

=−
√

2π

2x
log

(
√

2− 1)
∏
m≥1

1−
√

2q2m + q4m

1 +
√

2q2m + q4m

 .

Using (3.3.3), we are led to the closed form

H(4,1) = −
√

2π

2x
log

√
2− 1− T (q4)

1 + (
√

2− 1)T (q4)
.
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We set α = 2 cos 3
5π = 1−

√
5

2 , and β = 2 cos 1
5π = 1+

√
5

2 . With (a, b) = (5, 1) in (3.2.8), we have

H(5,1)(q)

=− π

5x

4∑
j=0

cos

(
(2j + 1)π

5

)
log

∏
m∈Z

(
1− 2 cos(

(2j + 1)π

5
)q2|m| + q4|m|

)

=− π

5x
log

∏
m∈Z

(1− αq2|m| + q4|m|)α(1− βq2|m| + q4|m|)β

(1 + q2|m|)2

=− π

5x
log

∏
m∈Z

(1 + q10|m|)
1
2

(1 + q2|m|)
5
2

(
1− βq2|m| + q4|m|

1− αq2|m| + q4|m|

)√5
2

=− π

5x
log

1

4

(√
5− 1√
5 + 1

)√5

− π

5x
log

χ5(−q2)

χ(−q10)
− π√

5x
log

∏
m even

1− βqm + q2m

1− αqm + q2m
. (3.3.20)

Factorizations of certain theta-function identities of degree 5 are given by [4, p. 30, Entry 1.7.2 (i),(ii) ]

ϕ(q) +
√

5ϕ(q5) =
(1 +

√
5)f(−q2)∏

n odd

(1 + αqn + q2n)
∏
n even

(1− βqn + q2n)
,

ϕ(q)−
√

5ϕ(q5) =
(1−

√
5)f(−q2)∏

n even

(1− αqn + q2n)
∏
n odd

(1 + βqn + q2n)
,

from which we deduce that

∏
m even

1− βqm + q2m

1− αqm + q2m

∏
m odd

1 + αqm + q2m

1 + βqm + q2m
=

(
√

5 + 1)(
√

5ϕ(q5)− ϕ(q))

(
√

5− 1)(
√

5ϕ(q5) + ϕ(q))
. (3.3.21)

Now we use the formulas of the factorizations of two of the most important formulas for the Rogers-

Ramanujan continued fraction from Ramanujan’s lost notebook [4, p. 21–22, Entry 1.4.1],

(
1√
t

)5

−
(
α
√
t
)5

=
1

q1/2

√
f(−q)
f(−q5)

∞∏
n=1

1

(1 + αqn + q2n)5
,

(
1√
t

)5

−
(
β
√
t
)5

=
1

q1/2

√
f(−q)
f(−q5)

∞∏
n=1

1

(1 + βqn + q2n)5
,

to obtain ∏
m odd

1 + βqm + q2m

1 + αqm + q2m
= 5

√
(1− α5R5(q))(1− β5R5(q2))

(1− β5R5(q))(1− α5R5(q2))
. (3.3.22)

To complete the proof of (3.3.13), we substitute (3.3.21) and (3.3.22) into (3.3.20).

Now if (a, b) = (6, 1), then we can easily prove (3.3.14) by applying Lemma 3.3.2. From (3.2.8), we
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have

H(6,1)(q) =− π

6x

5∑
j=0

cos

(
(2j + 1)π

6

)
log

∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

6

)
q2|m| + q4|m|

)

=−
√

3π

6x
log

∏
m∈Z

1−
√

3q2|m| + q4|m|

1 +
√

3q2|m| + q4|m|

=
π√
3x

log(2 +
√

3)
∏
m≥1

1 +
√

3q2m + q4m

1−
√

3q2m + q4m
. (3.3.23)

Applying (3.3.8), we are led to the closed form (3.3.14). This completes our proof.

Next we consider explicit examples of H(a,b)(q) from Theorem 3.3.3. We first derive examples for H(3,1)(q)

from (3.3.11). It is clear that the formulas for G(q) can also be used to evaluate H(3,1)(q). When x = 1/
√

2

we appeal to [4, p. 100, Eq. (3.4.4)]. We have

G(e−
√
2π) =

−2 +
√

6

2
. (3.3.24)

Thus we obtain
∞∑

n=−∞

∞∑
m=−∞

(−1)n

2m2 + (3n+ 1)2
=

√
2π

9
log(4 + 2

√
6).

Similarly, set x = 3
√

2. We use the fact from [4, p. 100, Eq. (3.4.5)] to find that

G3(e−
√
2π/3) =

−2 +
√

6

4
. (3.3.25)

Therefore we have
∞∑

n=−∞

∞∑
m=−∞

(−1)n

18m2 + (3n+ 1)2
=

√
2π

27
log(44 + 18

√
6).

As another example, when x = 1 we appeal to [4, p. 100, Eq. (3.4.3)] to find that

G(e−2π) =
−(1 +

√
3) +

√
6
√

3

4
,

and thus
∞∑

n=−∞

∞∑
m=−∞

(−1)n

m2 + (3n+ 1)2
=

√
2π

9
log

4
√

3(3
√

2− 2 4
√

3 +
√

6)

(2−
√

2
√

3)(3 +
√

3)
.

Now we derive explicit examples from (3.3.12), which include the Ramanujan-Göllnitz-Gordon continued
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fraction on the right-hand side. When x = 8 we appeal to [21, p. 84, Eq. (4.2)] to find that

T (e−π/2) =

√√
2 + 1− 4

√
2,

which yields

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(8m)2 + (4n+ 1)2
= −
√

2π

16
log

(
√

2− 1)−
(√√

2 + 1− 4
√

2
)

1 + (
√

2− 1)
(√√

2 + 1− 4
√

2
) .

When x = 8
3

√
3 we appeal to [21, p. 86]. We have

T (e−π
√
3/2) =

√√
6 +
√

2 + 1−
√√

6 +
√

2,

and hence

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(8m)2 + 3(4n+ 1)2

=−
√

6π

48
log

(
√

2− 1)−
(√√

6 +
√

2 + 1−
√√

6 +
√

2
)

1 + (
√

2− 1)
(√√

6 +
√

2 + 1−
√√

6 +
√

2
) .

We can find further evaluations for H(4,1)(q) by applying other formulas in [21, p. 84, Eq. (4.3), (4.4)] and

[21, p. 86, Examples].

Now we examine the more difficult case of H(6,1). We consider x = 6, which yields q6 = e−π. We appeal

to [30, Theorem 5.1] to find that

K(e−π) =
(6
√

3− 9)1/4 − 1

(6
√

3− 9)1/4 + 1
. (3.3.26)

We still need to examine J(e−π). We apply [30, Lemma 3.1] first to obtain

J(q) =
2q1/3χ(q)ψ(−q3)

ϕ(q) + ϕ(q3)
.

So we can evaluate J(e−π) from formulas for ϕ(e−π), ϕ(e−3π), ψ(−e−3π) and χ(e−π). We appeal to [45,

Lemma 5.1, Theorem 5.5], [46, Theorem 5.6] and [11, p. 326, Entry 2 (viii)] respectively. We have for
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a = π−1/4/Γ(3/4),

ϕ(e−π) = a,

ϕ(e−3π) = a2−13−3/8
√√

3 + 1,

ψ(−e−3π) = a2−3/43−1/2e3π/8(2
√

3− 3)1/4,

χ(e−π) = e−π/2421/4.

Simplify the resulting quotient to obtain

J(e−π) =

√
2(2−

√
3)1/4

33/8 + 2−1/4
√√

3 + 1
. (3.3.27)

To finish the calculation, we just need to insert (3.3.26) and (3.3.27) into (3.3.14) and simplify. Therefore

we have

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(6m)2 + (6n+ 1)2

=
π

6
√

3
log

(
2 +
√

3

2

(
5−
√

3 +
√

2 33/4 +
4

√
6
√

3− 9
(

1 +
√

3 +
√

2 33/4
)))

.

3.4 Simplification of F(8,1) and F(12,1) and explicit example

Theorem 3.4.1. Suppose that q = e−π/x. Then we have

F(8,1)(q) = − π

4x

√
2 +
√

2 log

A(q)−
√

1 +
√
2
2 q
√
C(q)−

√
1−

√
2
2 q
√
D(q)

A(q) +

√
1 +

√
2
2 q
√
C(q) +

√
1−

√
2
2 q
√
D(q)


− π

4x

√
2−
√

2 log

B(q)−
√

1−
√
2
2 q
√
C(q) +

√
1 +

√
2
2 q
√
D(q)

B(q) +

√
1−

√
2
2 q
√
C(q)−

√
1 +

√
2
2 q
√
D(q)

 ,

(3.4.1)
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where

A(q) =
ϕ(−q64)

ψ(−q16)
+
√

2q4
ψ(−q32)

ψ(−q16)
,

B(q) =
ϕ(−q64)

ψ(−q16)
−
√

2q4
ψ(−q32)

ψ(−q16)
,

C(q) =
ϕ(q16)

ψ(−q16)
+

ϕ(q32)

ψ(−q16)
,

D(q) =
ϕ(q16)

ψ(−q16)
− ϕ(q32)

ψ(−q16)
.

Proof. If (a, b) = (8, 1), then (1.2.2) reduces to

F(8,1)(q)

=− π

4x

7∑
j=0

cos

(
(2j + 1)π

8

)
log

∞∏
m=0

(
1− 2 cos

(2j + 1)π

8
q2m+1 + q4m+2

)

=− π

4x
log

∞∏
m=0

(
1− 2 cos π8 q

2m+1 + q4m+2

1 + 2 cos π8 q
2m+1 + q4m+2

)2 cos π8

×
(

1− 2 cos 3π
8 q

2m+1 + q4m+2

1 + 2 cos 3π
8 q

2m+1 + q4m+2

)2 cos 3π
8

=− π

4x
log

∞∏
m=0

(
(1− 2 cos π8 q

2m+1 + q4m+2)(1− q2m+2)

(1 + 2 cos π8 q
2m+1 + q4m+2)(1− q2m+2)

)2 cos π8

×
(

(1− 2 cos 3π
8 q

2m+1 + q4m+2)(1− q2m+2)

(1 + 2 cos 3π
8 q

2m+1 + q4m+2)(1− q2m+2)

)2 cos 3π
8

.

(3.4.2)

Letting ξ = eπi/8 and using the Jacobi triple product identity (1.0.7), we find that

F (q) :=

∞∏
m=0

(1 + 2 cos
π

8
q2m+1 + q4m+2)(1− q2m+2)

= (−ξq; q2)∞(−ξ̄q; q2)∞(q2; q2)∞

=

∞∑
n=−∞

ξnqn
2

=

∞∑
n=−∞

(−1)n
[
q(8n)

2

+ ξq(8n+1)2 + ξ2q(8n+2)2 + · · ·+ ξ7q(8n+7)2
]
.

Note that F (q) is real-valued, so the imaginary terms above sum to 0. Therefore we only need to consider
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the real parts. First, we have

Re

( ∞∑
n=−∞

(−1)n(ξ2q(8n+2)2 + ξ6q(8n+6)2)

)
=2Re

( ∞∑
n=−∞

(−1)nξ2q(8n+2)2

)

=
√

2

∞∑
n=−∞

(−1)nq4(4n+1)2

=
√

2

( ∞∑
n=0

(−1)nq4(4n+1)2 −
∞∑
n=0

(−1)nq4(4n+3)2

)

=
√

2

∞∑
n=0

(−1)n(n+1)/2q4(2n+1)2

=
√

2q4ψ(−q32).

Now we consider

Re

( ∞∑
n=−∞

(−1)n
[
ξq(8n+1)2 + ξ7q(8n+7)2

])

= Re

(
ξ

∞∑
n=−∞

(−1)n
[
q(8n+1)2 − q(8n+7)2

])

= 2 cos
(π

8

) ∞∑
n=−∞

(−1)nq(8n+1)2

= 2 cos
(π

8

)
q

∞∑
n=−∞

(−1)nq16n(4n+1)

= 2 cos
(π

8

)
qf(−q16·3,−q16·5)

=
√

2 cos
(π

8

)√
ψ(−q16)[ϕ(q16) + ϕ(q32)],

where we apply (3.1.14) in the last identity. If we apply (3.1.15), then we can find that

Re

( ∞∑
n=−∞

(−1)n
[
ξ3q(8n+3)2 + ξ5q(8n+5)2

])
=
√

2 cos

(
3π

8

)√
ψ(−q16)[ϕ(q16)− ϕ(q32)].

Combining the results above, we are led to the closed form

F (q) = ϕ(−q64) +
√

2q4ψ(−q32) +
√

2 cos
(π

8

)
q
√
ψ(−q16)[ϕ(q16) + ϕ(q32)]

+
√

2 cos

(
3π

8

)
q
√
ψ(−q16)[ϕ(q16)− ϕ(q32)].

(3.4.3)
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Similarly, we can derive a formula for the other factor in the denominator of (3.4.2). Thus,

G(q) :=

∞∏
m=0

(1 + 2 cos
3π

8
q2m+1 + q4m+2)(1− q2m+2)

= ϕ(−q64)−
√

2q4ψ(−q32) +
√

2 cos

(
3π

8

)
q
√
ψ(−q16)[ϕ(q16) + ϕ(q32)]

−
√

2 cos

(
3π

8

)
q
√
ψ(−q16)[ϕ(q16)− ϕ(q32)].

(3.4.4)

To complete the proof, we just need to apply (3.4.3), (3.4.4) and the facts that

cos
(π

8

)
=

√
2 +
√

2

2
and cos

(
3π

8

)
=

√
2−
√

2

2
.

The formula for a = 12 can be deduced in a similar fashion. However, the formula is more complicated

and thus we give the theorem without rigorous proof here.

Theorem 3.4.2. Suppose that q = e−π/x. Then we have

F(12,1)(q) = − π

6x

×
{√

2 +
√

3 log
ϕ(−q144)−

√
2ψ(−q72) +

√
3q4f(−q96) + q32ϕ(−q288)−

√
2 +
√

3X(q24)−
√

2−
√

3Y (q24)

ϕ(−q144) +
√

2ψ(−q72) +
√

3q4f(−q96) + q32ϕ(−q288) +
√

2 +
√

3X(q24) +
√

2−
√

3Y (q24)

+

√
2−
√

3 log
ϕ(−q144) +

√
2ψ(−q72)−

√
3q4f(−q96) + q32ϕ(−q288)−

√
2 +
√

3X(q24)−
√

2−
√

3Y (q24)

ϕ(−q144)−
√

2ψ(−q72)−
√

3q4f(−q96) + q32ϕ(−q288) +
√

2 +
√

3X(q24) +
√

2−
√

3Y (q24)

+
√

2 log
ϕ(−q16)−

√
2qψ(−q8)

ϕ(−q16) +
√

2qψ(−q8)

}
,

where

X(q) =

√
f(−q6)ϕ(q3)χ(−q6) + f(−q2)ϕ(−q3)χ(−q2)

2χ(−q2)
,

Y (q) =

√
f(−q6)ϕ(q3)χ(−q6)− f(−q2)ϕ(−q3)χ(−q2)

2χ(−q2)
.

We first obtain the following identity from Theorem 1.2.1.

F(12,1)(q) = − π

6x

{
2 cos

π

12
log

f(−eπi/12q,−e−πi/12q)
f(eπi/12q, e−πi/12q)

+2 cos
5π

12
log

f(−e5πi/12q,−e−5πi/12q)
f(e5πi/12q, e−5πi/12q)

+
√

2 log
f(−eπi/4q,−e−πi/4q)
f(eπi/4q, e−πi/4q)

}
.
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We also need to obtain the following formulas similar to (3.1.14) and (3.1.15), namely,

f(q5, q7) =

√
f(−q6)ϕ(q3)χ(−q6) + f(−q2)ϕ(−q3)χ(−q2)

2χ(−q2)
, (3.4.5)

f(q, q11) =

√
f(−q6)ϕ(q3)χ(−q6)− f(−q2)ϕ(−q3)χ(−q2)

2q2χ(−q2)
. (3.4.6)

For the proof of (3.4.5) and (3.4.6), we apply Lemma 3.1.13 (i) and (ii) with a = q2, b = q4 and c = d = q3.

We conclude this section by proving a formula for F(8,1) from (3.4.1). In principle, these calculations

are straightforward exercises if the values of ϕ(q), ϕ(q2), ϕ(−q2), ϕ(−q4), ψ(−q) and ψ(−q2) are known.

However, (3.4.1) is a long equation, so in practice, we only identify one instance where q16 is reasonably

simple, that is when q16 = e−π. We appeal to [45, Theorem 5.5, Theorem 5.7] and [46, Theorem 5.6,

Theorem 5.7], respectively. We have for a = π−1/4/Γ(3/4),

ϕ(e−π) = a,

ϕ(e−2π) = a2−1(
√

2 + 2)1/2,

ϕ(−e−2π) = a2−1/8,

ϕ(−e−4π) = a2−7/16(
√

2 + 1)1/2,

ψ(−e−π) = a2−3/4eπ/8,

ψ(−e−2π) = a2−15/16eπ/4(
√

2− 1)1/4.

After simplification, we obtain

A(e−π) = 215/16e−π/8{(
√

2 + 1)1/4 + (
√

2− 1)1/4},

B(e−π) = 215/16e−π/8{(
√

2 + 1)1/4 − (
√

2− 1)1/4},

C(e−π) = e−π/8(23/4 + (
√

2 + 1)1/2),

D(e−π) = e−π/8(23/4 − (
√

2 + 1)1/2).
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With all the calculations above, we have

∞∑
n=−∞

∞∑
m=−∞

(−1)m+n

(16m)2 + (8n+ 1)2

= − π

64
(

√
2 +
√

2) log

√
2a−

√
2 +
√

2c−
√

2−
√

2d
√

2a+
√

2 +
√

2c+
√

2−
√

2d

− π

64
(

√
2−
√

2) log

√
2b−

√
2−
√

2c+
√

2 +
√

2d
√

2b+
√

2−
√

2c−
√

2 +
√

2d
,

where

a =215/16{(
√

2 + 1)1/4 + (
√

2− 1)1/4},

b =215/16{(
√

2 + 1)1/4 − (
√

2− 1)1/4},

c =23/4 + (
√

2 + 1)1/2,

d =23/4 − (
√

2 + 1)1/2.

Curiously,
√

2 +
√

2 is the connective constant of the honeycomb lattice, see [27].

3.5 Examinations of G(a,b) and explicit examples

The authors of [15] examined F(a,b) for the cases where a ∈ {3, 4, 5, 6}, and we just examined the case a = 8

in the previous section. Applying Theorem 3.2.3, we can easily examine G(a,b) for a ∈ {3, 5, 6, 10, 12} in

terms of F(a,b). Moreover, it can easily be derived from (3.2.7) that

G(2,1)(q) = −π
x

log

∞∏
m=−∞

(1− q2m+1)2

(1 + q2m+1)2

= −2π

x
log

(q; q2)∞
(−q; q2)∞

= −2π

x
log

χ(−q)
χ(q)

, (3.5.1)

where χ(q) is defined in (1.0.6). Combining (3.2.9), (3.5.1) and the fact that F(2,1) = 0, we can examine

the case when a = 4. Indeed, we have

G(4,1)(q) = −π
x

log
χ(−q)
χ(q)

. (3.5.2)

By iterating, we can now examine the cases where a ∈ {8, 16}.

Now we produce explicit examples for G(a,b)(q). We first consider the simple case when (a, b) = (3, 1).
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We appeal to [15, Eq. (3.3)] to obtain

F(3,1)(q) = −2π

9x
log

1 +G3(−q)
1− 8G3(−q)

, (3.5.3)

where G(q) is Ramanujan’s cubic continued fraction given in (3.1.5). Applying (3.5.3) and (3.2.10), we can

easily derive that

G(3,1)(q) =
2π

9x
log

1 +G3(q)

1− 8G3(q)
. (3.5.4)

We can use formulas for G(q) to evaluate G(3,1)(q). When x = 1/
√

2 we appeal to (3.3.24). After simplifi-

cation, it follows from (3.5.4) that

∞∑
n=−∞

∞∑
m=−∞

(−1)m

m2 + 2(3n+ 1)2
=

√
2π

9
log

2 +
√

6

4
.

Similarly, when x =
√

3, we appeal to [4, p. 105] to find that

G(e−π/
√
3) =

√
3− 1

41/3
.

After simplification, we have

∞∑
n=−∞

∞∑
m=−∞

(−1)m

3m2 + (3n+ 1)2
=

2π

9
√

3
log

5 + 3
√

3

2
.

Now we examine G(6,1)(q) from (3.2.9). It follows from [15, Eq. (3.3)] and (3.5.4) that

G(6,1)(q) =
π

9x
log

(1 + v3)(1− 8u3)

(1− 8v3)(1 + u3)
,

where u = G(−q) and v = G(q). When x = 1 we appeal to [23, p. 350, Eq. (4.1) and Eq. (4.2)] to find that

G(−e−π) =
1−
√

3

2
, G(e−π) =

(1 +
√

3)(−(1 +
√

3) +
√

6
√

3)

4
,

which yield

∞∑
n=−∞

∞∑
m=−∞

(−1)m

m2 + (6n+ 1)2
=
π

9
log

(
√

3− 1)(21− 12
√

2 31/4 + 13
√

3− 7
√

2 33/4)

2(−45 + 24
√

2 31/4 − 26
√

3 + 14
√

2 33/4)
.
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Next we consider G(4,1)(q) and then G(8,1)(q). Recall from (3.5.2) that

G(4,1)(q) = −π
x

log
χ(−q)
χ(q)

= −π
x

log
ψ(−q)
ψ(q)

= − π

2x
log

ϕ(−q)
ϕ(q)

. (3.5.5)

The formulas for ϕ(q) and ψ(q) can be used to evaluate G(4,1). For example, many explicit evaluations can

be found in [11, p. 325], [45] and [46]. Set x = 4. By [11, Entry 1, p. 325], we have for a = π1/4/Γ(3/4),

ϕ(e−π/4) = a(1 + 2−1/4),

ϕ(−e−π/4) = a(1− 2−1/4).

It follows from (3.5.5) that

∞∑
n=−∞

∞∑
m=−∞

(−1)m

16m2 + (4n+ 1)2
=
π

8
log

4
√

2 + 1
4
√

2− 1
. (3.5.6)

Using (3.2.9), we can obtain the formula for G(8,1)(e
−π/4) from F(4,1)(e

−π/4) and G(4,1)(e
−π/4). We first

evaluate F(4,1)(q) at x = 4 from [15, Eq. (3.4)]. Similar to the evaluation of [15, Eq. (3.18)], we appeal to

[11, Examples 9.4] to find that α4 = (
√

2− 1)4, and thus

∞∑
n=−∞

∞∑
m=−∞

(−1)m+n

16m2 + (4n+ 1)2
=

π

4
√

2
log

1 +
√√

2− 1

1−
√√

2− 1
. (3.5.7)

Substituting (3.5.6) and (3.5.7) into (3.2.9) leads to

∞∑
n=−∞

∞∑
m=−∞

(−1)m

16m2 + (8n+ 1)2
=

π

16
log

4
√

2 + 1
4
√

2− 1
+

π

8
√

2
log

1 +
√√

2− 1

1−
√√

2− 1
.

3.6 Examinations of J(a,b,s,t)(q) and explicit examples

Simplifications of J(a,b,s,t)(q) are difficult and complicated when (s, t) 6= (1, 0), (0, 1) or (1, 1). However, we

can get several nice evaluations in the case when (a, b) = (2, 1).

Theorem 3.6.1. Assume that s and t are any real numbers with at least one not being an even number and
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Re x > 0. With q = e−π/x, we have

∞∑
n=−∞

∞∑
m=−∞

eπimseπint

(xm)2 + (2n+ 1)2

= − π

2x
e−

πit
2 log

∏
m≥0

(1− 2 cos (πt2 )q2m+s + q4m+s)(1− 2 cos (πt2 )q2m+2−s + q4m+4−2s)

(1 + 2 cos (πt2 )q2m+s + q4m+s)(1 + 2 cos (πt2 )q2m+2−s + q4m+4−2s)
. (3.6.1)

Proof. The proof is straightforward. We apply (3.6.1) with a = 2 and b = 1. Then we obtain

∞∑
n=−∞

∞∑
m=−∞

eπimseπint

(xm)2 + (2n+ 1)2

= − π

2x
e−

πit
2 log

∏
m∈ Z

(1− eπit2 q|2m+s|)(1− e−πit2 q|2m+s|)

(1 + e
πit
2 q|2m+s|)(1 + e−

πit
2 q|2m+s|)

= − π

2x
e−

πit
2

× log
∏
m≥0

(1− eπit2 q2m+s)(1− e−πit2 q−(2m+s))(1− eπit2 q2m+2−s)(1− e−πit2 q−(2m+2−s))

(1 + e
πit
2 q2m+s)(1 + e−

πit
2 q−(2m+s))(1 + e

πit
2 q2m+2−s)(1 + e−

πit
2 q−(2m+2−s))

= − π

2x
e−

πit
2 log

∏
m≥0

(1− 2 cos (πt2 )q2m+s + q4m+2s)(1− 2 cos (πt2 )q2m+2−s + q4m+4−2s)

(1 + 2 cos (πt2 )q2m+s + q4m+2s)(1 + 2 cos (πt2 )q2m+2−s + q4m+4−2s)
.

This completes the proof.

Theorem 3.6.2. With Re x > 0 and q = e−π/x, we have

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3πin

(xm)2 + (2n+ 1)2
=
π

x
e−

πi
3 log

ψ(q)ψ(−q3)

ψ(−q)ψ(q3)
, (3.6.2)

∞∑
n=−∞

∞∑
m=−∞

e
1
3πime

2
3πin

(xm)2 + (2n+ 1)2
=

π

2x
e−

πi
3 log

(
− G(q−1/3)ψ(q)ψ(q3)

G(−q1/3)ψ(−q)ψ(−q3)

)
, (3.6.3)

∞∑
n=−∞

∞∑
m=−∞

e
2
3πime

2
3πin

(xm)2 + (2n+ 1)2
=

π

2x
e−

πi
3 log

ϕ2(−q2)

ϕ(−q 2
3 )ϕ(−q6)

, (3.6.4)

where G(q) is Ramanujan’s cubic continued fraction defined by (3.1.5).

Proof. If we set t = 2
3 , then (3.6.1) immediately reduces to

∞∑
n=−∞

∞∑
m=−∞

eπimse
2
3πin

(xm)2 + (2n+ 1)2

= − π

2x
e−

πi
3 log

∏
m≥0

(1− q2m+s + q4m+2s)(1− q2m+2−s + q4m+4−2s)

(1 + q2m+s + q4m+2s)(1 + q2m+2−s + q4m+4−2s)

= − π

2x
e−

πi
3 log

(qs; q2)∞(q2−s; q2)∞(−q3s; q6)∞(−q6−3s; q6)∞
(−qs; q2)∞(−q2−s; q2)∞(q3s; q6)∞(q6−3s; q6)∞

. (3.6.5)
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We begin by proving (3.6.2). If s = 1, then (3.6.5) becomes

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3πin

(xm)2 + (2n+ 1)2
=− π

x
e−

πi
3 log

(q; q2)∞(−q3; q6)∞
(−q; q2)∞(q3; q6)∞

=
π

x
e−

πi
3 log

χ(q)χ(−q3)

χ(−q)χ(q3)

=
π

x
e−

πi
3 log

ψ(q)ψ(−q3)

ψ(−q)ψ(q3)
,

where we applied (3.1.1) in the last identity.

Next, we prove (3.6.3). Notice that if we set s = 1
3 , then (3.6.5) becomes

∞∑
n=−∞

∞∑
m=−∞

e
1
3πime

2
3πin

(xm)2 + (2n+ 1)2

= − π

2x
e−

πi
3 log

(q1/3; q2)∞(q5/3; q2)∞(−q; q6)∞(−q5; q6)∞
(−q1/3; q2)∞(−q5/3; q2)∞(q; q6)∞(q5; q6)∞

. (3.6.6)

To manipulate the q-products on the right side of (3.6.6), we first replace q by q3 to obtain

(q; q6)∞(q5; q6)∞(−q3; q18)∞(−q15; q18)∞
(−q; q6)∞(−q5; q6)∞(q3; q18)∞(q15; q18)∞

=
(q; q2)∞(−q3; q6)2∞(q9; q18)∞

(−q; q2)∞(q3; q6)2∞(−q9; q18)∞

=
χ(−q)χ2(q3)χ(−q9)

χ(q)χ2(−q3)χ(q9)
.

We recall from (3.1.6) that

G(−q) = −q 1
3χ(q)/χ3(q3), G(q) = q

1
3χ(−q)/χ3(−q3). (3.6.7)

After replacing q by q1/3 in the above identity and simplifying, we have

∞∑
n=−∞

∞∑
m=−∞

e
1
3πime

2
3πin

(xm)2 + (2n+ 1)2
=

π

2x
e−

πi
3 log

(
− G(−q1/3)ψ(q)ψ(q3)

G(q1/3)ψ(−q)ψ(−q3)

)
.

Now it remains to prove (3.6.4). Similar to the proof of (3.6.3), we set t = 2
3 in (3.6.5), manipulate the

resulting q-products and simplify to obtain

∞∑
n=−∞

∞∑
m=−∞

e
2
3πime

2
3πin

(xm)2 + (2n+ 1)2
=

π

2x
e−

πi
3 log

f2(−q2)χ2(−q2)

f(−q2/3)f(−q6)χ(−q2/3)χ(−q6)
.
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Finally, we use (3.1.2) to complete the proof.

Now we derive some explicit examples from Theorem 3.6.2. All of our identities follow from well-known

q-series evaluations. We first examine an example from (3.6.2). This case is relatively easy to evaluate.

When x = 1 we appeal to [46, Theorem 5.6, Theorem 5.7]. We have for a = π−1/4/Γ(3/4),

ψ(−e−π) = a2−3/4eπ/8, (3.6.8)

ψ(e−π) = a2−5/8eπ/8, (3.6.9)

ψ(−e−3π) = a2−3/43−1/2e3π/8(2
√

3− 3)1/4, (3.6.10)

ψ(e−3π) =
ae3π/8

21/833/8
√

1 +
√

2 4
√

3 +
√

3
. (3.6.11)

With all the evaluations above, we have, from (3.6.2),

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3πin

m2 + (2n+ 1)2
= πe−πi/3 log

1 +
√

2 4
√

3 +
√

3√
2(1 +

√
3)

. (3.6.12)

If we equate the real and imaginary parts of (3.6.12), then lattice sums involving sine and cosine functions

can be evaluated. We obtain, respectively,

∞∑
n=−∞

∞∑
m=−∞

(−1)m cos( 2
3πn)

m2 + (2n+ 1)2
=
π

2
log

1 +
√

2 4
√

3 +
√

3√
2(1 +

√
3)

,

and
∞∑

n=−∞

∞∑
m=−∞

(−1)m sin( 2
3πn)

m2 + (2n+ 1)2
= −
√

3π

2
log

1 +
√

2 4
√

3 +
√

3√
2(1 +

√
3)

.

Similarly, when x = 1/
√

3, we have [46, Theorem 4.7 (iii), Theorem 4.10 (x)]

ψ(−e−
√
3π)

ψ(−e−3
√
3π)

= 31/4e−
√
3π/4

√
3

3
√

4− 1
,

and

ψ(e−
√
3π)

ψ(e−3
√
3π)

= 31/4e−
√
3π/4 31/6(1−

√
3 +
√

3 3
√

4)1/3

21/12( 3
√

2− 1)2/3(1 +
√

3)1/6
.

Thus we obtain
∞∑

n=−∞

∞∑
m=−∞

(−1)me
2
3πin

m2 + 3(2n+ 1)2
=

√
3

9
πe−πi/3 log

1−
√

3 +
√

3 3
√

4
4
√

2(
√

3 + 1)1/2
. (3.6.13)

To calculate further examples from (3.6.2), we rewrite the ψ-quotient on the right-hand side of (3.6.2) in
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terms of Ramanujan’s cubic continued fraction. We appeal to (3.1.1), (3.6.7) and [11, p. 330, Eq. (4.6)] to

deduce that

ϕ(q)

ϕ(q3)
=

(
1 + 8q

χ3(q)

χ9(q3)

)1/4

=
(
1− 8qG3(−q)

)1/4
,

and therefore we can rewrite (3.6.2) as

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3πin

(xm)2 + (2n+ 1)2
=

π

8x
e−

πi
3 log

1− 8G3(−q)
1− 8G3(q)

. (3.6.14)

Besides (3.6.12) and (3.6.13), we can derive more examples from (3.6.2) by applying formulas for G(q)

and G(−q). For instance, when x = 3, we have [4, p. 105] and [16, Corollary 4.6]

G(−e−π3 ) = −

(
1 +
√

3

4

)1/3

, (3.6.15)

G(e−
π
3 ) =

1

2

(
1−

(
3− b
1 + b

)2
)1/3

, with b =

√
2
√

3 + 3, (3.6.16)

and thus we obtain

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3πin

9m2 + (2n+ 1)2
=

π

12
e−

πi
3 log

√
3 + 2

√
3
(

1 +
√

3 + 2
√

3
)

3−
√

3 + 2
√

3
. (3.6.17)

Now we examine (3.6.3). Similarly, when x = 1, we have the evaluations for ψ(−e−π), ψ(e−π), ψ(−e−3π),

ψ(e−3π), G(−e−π3 ) and G(e−
π
3 ) as in the previous example, namely, (3.6.8), (3.6.9), (3.6.10), (3.6.11),

(3.6.15) and (3.6.16). By a direct computation, we obtain

∞∑
n=−∞

∞∑
m=−∞

e
1
3πime

2
3πin

m2 + (2n+ 1)2

=
π

2
e−

πi
3 log 2

1
4 (2 +

√
3)

1
4

(√
2
√

3 + 3 + 1

)(
1 +
√

2
4
√

3 +
√

3
)− 1

2

.

After further simplification, we obtain the very neat and nice formula

∞∑
n=−∞

∞∑
m=−∞

e
1
3πime

2
3πin

m2 + (2n+ 1)2
=
π

4
e−πi/3 log(2 +

√
3). (3.6.18)
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Equate the real and imaginary parts of the above identity to obtain

∞∑
n=−∞

∞∑
m=−∞

cos
(
1
3πm+ 2

3πn
)

m2 + (2n+ 1)2
=
π

8
log(2 +

√
3),

∞∑
n=−∞

∞∑
m=−∞

sin
(
1
3πm+ 2

3πn
)

m2 + (2n+ 1)2
=−

√
3π

8
log(2 +

√
3).

Next, we examine (3.6.4). Theoretically, the calculation is also straightforward if the values of these

ϕ-functions on the right side are known. In practice, it is actually difficult to simultaneously obtain the

values of ϕ(−q2/3), ϕ(−q2) and ϕ(−q6). However, we can rewrite the right side in terms of cubic continued

fractions. From Ramanujan’s Lost Notebook, we have [4, p. 96, Eq. (3.3.10)]

ϕ(−q1/3)

ϕ(−q3)
= 1− 2G(q).

In [45, Theorem 4.3], J. Yi proved that for P = ϕ(q)/ϕ(q3) and Q = ϕ(q3)/ϕ(q9),

(
Q

P

)2

= PQ+
3

PQ
− 3. (3.6.19)

Now we apply (3.6.19) with P = ϕ(−q2/3)/ϕ(−q2) and Q = ϕ(−q2)/ϕ(−q6) to find that

Q

P
=

ϕ2(−q2)

ϕ(−q 2
3 )ϕ(−q6)

, PQ =
ϕ(−q2/3)

ϕ(−q6)
= 1− 2G(q2).

To evaluate Q/P , we only need to know the value of the relative cubic continued fraction. We give a couple

of examples here. If we set x =
√

2, then G(q2) = G(e−
√
2π) = (−1 +

√
6)/2, as given in (3.3.24). It follows

that PQ = 3−
√

6. Applying (3.6.19), we have

ϕ2(−e−
√
2π)

ϕ(−e−
√
2π/3)ϕ(−e−3

√
2π)

=
√

3, (3.6.20)

which implies
∞∑

n=−∞

∞∑
m=−∞

e
2
3πime

2
3πin

2m2 + (2n+ 1)2
=

π

4
√

2
e−πi/3 log 3. (3.6.21)

If we equate the real and imaginary parts of (3.6.21), then we obtain, respectively,

∞∑
n=−∞

∞∑
m=−∞

cos
(
2
3πm+ 2

3πn
)

2m2 + (2n+ 1)2
=

π

8
√

2
log 3,
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and
∞∑

n=−∞

∞∑
m=−∞

sin
(
2
3πm+ 2

3πn
)

2m2 + (2n+ 1)2
= −
√

3π

8
√

2
log 3.

When x = 1 we appeal to [4, p. 100, Eq. (3.4.5)] to find that

G(e−2π) =
−(1 +

√
3) +

√
6
√

3

4
,

which yields

ϕ(−e−2π/3)

ϕ(−e−2π)

ϕ(−e−2π)

ϕ(−e−6π)
= 1− 2G(e−2π) =

3 +
√

3 +
√

6
√

3

2
.

Substituting this last result into (3.6.19) and simplifying, we deduce that

ϕ2(−e−2π)

ϕ(−e−2π/3)ϕ(−e−6π)
= 31/4. (3.6.22)

Thus we obtain
∞∑

n=−∞

∞∑
m=−∞

e
2
3πime

2
3πin

m2 + (2n+ 1)2
=
π

8
e−πi/3 log 3. (3.6.23)

Again, if we equate the real parts and imaginary parts of (3.6.23), then we obtain, respectively,

∞∑
n=−∞

∞∑
m=−∞

cos
(
2
3πm+ 2

3πn
)

m2 + (2n+ 1)2
=

π

16
log 3,

and
∞∑

n=−∞

∞∑
m=−∞

sin
(
2
3πm+ 2

3πn
)

m2 + (2n+ 1)2
= −
√

3π

16
log 3.

3.7 Examinations of J(a, 0, s, t) and explicit examples

Now we examine J(a, 0, s, t) from Theorem 3.2.4 in two cases: a = 1 and a = 2. From calculation, it easily

follows that

∑
m,n∈ Z

(m,n) 6=(0,0)

eπimseπint

(xm)2 + n2
=
∑
m6=0

eπims

(xm)2
− π

x
log

∞∏
m=−∞

(
1− 2 cos(πt)q|s+2m| + q2|s+2m|

)
, (3.7.1)
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and

∑
m,n∈ Z

(m,n)6=(0,0)

eπimseπint

(xm)2 + (2n)2
=
∑
m 6=0

eπims

(xm)2
− π

2x

× log

∞∏
m=−∞

(
1− 2 cos

(
πt

2

)
q|s+2m| + q2|s+2m|

)(
1 + 2 cos

(
πt

2

)
q|s+2m| + q2|s+2m|

)
. (3.7.2)

Before we derive explicit examples from (3.7.1) and (3.7.2), let us recall the definition of the Weber-

Ramanujan class invariants Gn and gn, as defined in (3.1.3). The table at the end of Weber’s book [42, p.

721–726] contains the values of 105 class invariants. Without the knowledge of class field theory, Ramanujan

calculated class invariants independently for different reasons. His table of 46 class invariants in his paper

does not contain any values that are in Weber’s book. As G. N. Watson [41] remarked, “For reasons which

had commended themselves to Weber and Ramanujan independently, it is customary to determine Gn for

odd values of n; and gn for even values of n.” With the help of the properties of χ, i.e., (3.1.1), (3.1.2) and

(3.1.4), we can calculate many values of χ functions using the values of class invariants in the table [42, p.

721–726][11, p. 189–204]. For instance,

χ(e−π) = 21/4e−π/24G1 = e−π/2421/4,

χ(−e−2π) = 21/4e−π/12g4 = e−π/1223/8,

χ(e−3π) = 21/4e−π/8G9 = e−π/821/12(1 +
√

3)1/3,

χ(−e−6π) = 21/4e−π/4g36 = e−π/421/8
(

2 +
√

3 +

√
9 + 6

√
3

)1/3

,

χ(e−π/3) = eπ/9χ(e−3π) = e−π/7221/12(1 +
√

3)1/3,

χ(e−π/2) = e3π/48χ(e−2π) = e3π/48
ψ(e−2π)χ(−e−2π)

ψ(−e−2π)
= e−π/4821/16(

√
2 + 1)1/4.

Example 3.7.1.

∑
(m,n)6=(0,0)

(−1)m+n

m2 + n2
=− π log 2, (3.7.3)

∑
(m,n) 6=(0,0)

(−1)m+n

(2m)2 + n2
=− π

4
log(4 + 3

√
2), (3.7.4)

∑
(m,n) 6=(0,0)

(−1)n

m2 + (2n)2
=
π

4
log

4 + 3
√

2

2
, (3.7.5)

∑
(m,n)6=(0,0)

(−1)m+n

3m2 + 7n2
=− π√

21
log
(

2−1/3(
√

7−
√

3)(3 +
√

7)2/3
)
, (3.7.6)
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∑
(m,n) 6=(0,0)

cos
(
πm
3

)
cos
(
πn
3

)
m2 + n2

=
π

3
log(2 +

√
3), (3.7.7)

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
m2 + n2

=
π

6
log

2−
√

3

3
√

3
, (3.7.8)

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
2m2 + n2

=− π

2
√

2
log 3, (3.7.9)

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
m2 + (2n)2

=
π

6
log

2−
√

3

33/4
. (3.7.10)

Note that (3.7.3) is the classical lattice evaluation [19, Eq. (9.2.4)]. By interchanging the order of m

and n and using the special values of the cosine function, we very easily see that

∑
(m,n)6=(0,0)

(−1)n cos
(
πm
2

)
m2 + (2n)2

=
∑

(m,n)6=(0,0)

(−1)m cos
(
πn
2

)
(2m)2 + n2

=
∑

(m,n)6=(0,0)

cos
(
πm
2

)
cos
(
πn
2

)
m2 + n2

=
1

4

∑
(m,n) 6=(0,0)

(−1)m+n

m2 + n2
= −π

4
log 2.

Identities (3.7.3), (3.7.4), (3.7.5), (3.7.7) and (3.7.8) can be found in [6, Ex. 18] and [6, Appendix C].

However, they can only rigorously establish (3.7.3), (3.7.4), (3.7.5) and (3.7.7). The authors of [6] obtain

(3.7.8) experimentally, and moreover, they have a misprint in their evaluation. They have π
6 log

(
2−
√
3√

3

)
instead of π6 log

(
2−
√
3

3
√
3

)
on the right-hand side of (3.7.8). Using (3.7.1) and (3.7.2), we can derive all these

identities from well-known q-series evaluations.

We derive some explicit formulas from (3.7.1) first. If we set s = t = 1, then (3.7.1) immediately reduces

to ∑
m,n∈ Z

(m,n) 6=(0,0)

(−1)m+n

(xm)2 + n2
= −4π

x
logχ(q) +

∑
m 6=0

(−1)m

(xm)2
.

Note that
∑
m6=0(−1)m/m2 = −π2/6. When x = 1, then χ(q) = χ(e−π) = e−π/2421/4, and therefore we

have (3.7.3). Similarly, when x = 2, we have χ(q) = χ(e−π/2) = e−π/4821/16(
√

2 + 1)1/4. Thus we obtain

(3.7.4). We can obtain many additional formulas using the explicit values of the class invariants Gn and gn.

For instance, when x =
√

3/
√

7, we have G7/3 = 2−1/3(
√

7−
√

3)1/4(3 +
√

7)1/6[11, p. 341]. This completes

the evaluation of (3.7.6).

If we set s = t = 1/3 and then s = 1/3, t = −1/3, we obtain

∑
(m,n)6=(0,0)

eπim/3eπin/3

m2 + n2
=

∑
(m,n) 6=(0,0)

eπim/3e−πin/3

m2 + n2
= −π

x
log

χ2(q)

χ(q1/3)χ(q3)
+
∑
m 6=0

eπim/3

(xm)2
.
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Equate the real parts of each side to find that

∑
(m,n)6=(0,0)

cos
(
πm
3 + πn

3

)
m2 + n2

=
∑

(m,n)6=(0,0)

cos
(
πm
3 −

πn
3

)
m2 + n2

= −π
x

log
χ2(q)

χ(q1/3)χ(q3)
+
∑
m 6=0

cos
(
πm
3

)
(xm)2

.

Therefore we also have

∑
(m,n)6=(0,0)

cos
(
πm
3

)
cos
(
πn
3

)
m2 + n2

= −π
x

log
χ2(q)

χ(q1/3)χ(q3)
+
∑
m6=0

cos
(
πm
3

)
(xm)2

.

When x = 1, we have

χ2(q)

χ(q1/3)χ(q3)
=

χ2(e−π)

χ(e−π/3)χ(e−3π)
= eπ/182−1/3(

√
3− 1)2/3.

Note that
∑
m 6=0

cos(πm/3)
m2 = π2/18. The last two identities lead to (3.7.7).

Now we examine a more complicated case when s = t = 2/3. Similar to the previous case, we find that

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
(xm)2 + n2

= −π
x

log
f2(−q2)

f(−q2/3)f(−q6)
+
∑
m6=0

cos
(
2πm
3

)
(xm)2

. (3.7.11)

To calculate the theta function quotient on the right side above, we first apply (3.1.1) to obtain

f2(−q2)

f(−q2/3)f(−q6)
=

ϕ2(−q2)

ϕ(−q2/3)ϕ(−q6)

χ(−q2/3)χ(−q6)

χ2(−q2)
.

Consider the case x = 1. Recall that we have (3.6.22) for the ϕ-quotient. So it remains to calculate the

χ-quotient

χ(−q2/3)χ(−q6)

χ2(−q2)
=
χ(−q2/3)χ(−q2)χ(−q6)

χ3(−q2)
= q−2/9G(q2/3)χ(−q2)χ(−q6).

We appeal to [4, p. 39, Eq. (3.3.9)], (3.6.15) and (3.6.16) to find that

G(e−2π/3) = −G(e−π/3)G(−e−π/3) = 2−5/3(
√

3− 1)1/3(

√
2
√

3 + 3− 1),

which yields

χ(−e−2π/3)χ(−e−6π)

χ2(−e−2π)
= e−π/92−1/6(

√
3− 1)1/3(2 +

√
3)1/3. (3.7.12)

Notice that
∑
m 6=0

cos(2πm/3)
m2 = −π2/9. Substituting all these results into (3.7.11) and simplifying, we

complete the proof of (3.7.8). Smililarly, when x =
√

2, we first appeal to [11, p. 200] and (3.3.25) to find
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that

g2 = 1, g18 = (
√

2 +
√

3)1/3 and G(e−
√
2π/3) =

1√
2

(−
√

2 +
√

3)1/3,

and therefore,

χ(−e−
√
2π/3)χ(−e−3

√
2π)

χ2(−e−
√
2π)

= e
√
2π/9G(e−

√
2π/3)χ(−e−

√
2π)χ(−e−3

√
2π) = e−

√
2π/18.

Substituting (3.6.20) and the result above into (3.7.11), and simplifying, we complete the proof of (3.7.9).

We conclude this section by deriving (3.7.10) from (3.7.2). If we set s = t = 2/3, then (3.7.2) reduces

to

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
(xm)2 + (2n)2

= − π

2x
log

(
f2(−q2)

f(−q2/3)f(−q6)

χ(−q2/3)χ(−q6)

χ2(−q2)

)
+
∑
m 6=0

cos
(
2πm
3

)
(xm)2

= − π

2x
log

(
ϕ2(−q2)

ϕ(−q2/3)ϕ(−q6)

(
χ(−q2/3)χ(−q6)

χ2(−q2)

)2
)

+
∑
m6=0

cos
(
2πm
3

)
(xm)2

.

Set x = 1. Substituting (3.6.22) and (3.7.12) into the identity above, and simplifying, we obtain (3.7.10).
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Chapter 4

Integral analogues of theta functions
and Gauss sums

4.1 Introduction

In two papers [35], [36], [37, pp. 59–67, 202–207], Ramanujan examined the properties of two integrals defined

by (1.3.1) and (1.3.2), that is,

φw(t) :=

∫ ∞
0

cos(πtx)

cosh(πx)
e−πwx

2

dx,

ψw(t) :=

∫ ∞
0

sin(πtx)

sinh(πx)
e−πwx

2

dx,

which can be regarded as continuous integral analogues of Gauss sums from one point of view or of theta

functions from another point of view. These integrals are also briefly discussed in a two-page fragment

copied by G. N. Watson from Ramanujan’s “loose papers” and published with Ramanujan’s lost notebook

[33, pp. 221–222]. A thorough discussion of this two-page fragment can be found in the fourth book by

G. E. Andrews and B. C. Berndt on Ramanujan’s lost notebook [5].

Page 198 of [33] is an isolated page that is actually part of the original lost notebook, and its contents

are related to the two aforementioned papers by Ramanujan and the fragment on pages 221–222 of [33]. On

this page, Ramanujan records theorems, much in the spirit of those for φw(t) and ψw(t), for the function

Fw(t) :=

∫ ∞
0

sin(πtx)

tanh(πx)
e−πwx

2

dx,

as given in (1.3.3). The formulas claimed by Ramanujan on page 198 without proofs are difficult to read,

partly because the original page was perhaps a thin, colored piece of paper, for example, a piece of blue

airmail stationery, that was difficult for the photographers of [33] to photocopy. Since Ramanujan never

discussed the results on page 198 in any of his papers and since no one else has apparently ever discussed

them as well, it is the objective of this chapter to prove them and to also convince readers that Fw(t) is a

beautiful continuous integral analogue of either theta functions or Gauss sums.
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4.2 Some theorems about φw(t) and ψw(t)

Recall that φw(t) and ψw(t) are defined by (1.3.1) and (1.3.2), respectively. We first note that

φw(t) = φw(−t) and ψw(t) = −ψw(−t). (4.2.1)

In this brief section we recall some of Ramanujan’s theorems for these two functions from [35] and [36]. More

detailed proofs can be found in [5].

Theorem 4.2.1. [37, p. 202, eq. (1)] For w > 0,

φw(t) =
1√
w
e−πt

2/(4w)φ1/w(it/w). (4.2.2)

Theorem 4.2.2. [37, p. 202] We have

eπ(t+w)2/(4w)φw(t+ w) = eπt
2/(4w)

(
1

2
+ ψw(t)

)
. (4.2.3)

Theorem 4.2.3. [37, p. 203, eq. (4)] We have

1

2
+ ψw(t+ i) =

i√
w
e−πt

2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}
. (4.2.4)

Theorem 4.2.4. [37, p. 203, eq. (5)] We have

φw(t+ i) + φw(t− i) =
1√
w
e−πt

2/(4w). (4.2.5)

Theorem 4.2.5. [37, p. 203, eq. (8)] We have

eπ(t+w)2/(4w)

{
1

2
− ψw(t+ w)

}
= eπ(t−w)2/(4w)

{
1

2
+ ψw(t− w)

}
. (4.2.6)

Theorem 4.2.6. [37, p. 203, eq. (10)] If n is any positive integer,

ψw(t)− ψw(t+ 2ni) = − i√
w

n−1∑
k=0

e−π(t+(2k+1)i)2/(4w). (4.2.7)

Observe that Theorem 4.2.6 indicates that the function ψw(t) possesses a “quasi-period” 2i, and that

the right-hand side of (4.2.7) is an analogue of a Gauss sum.
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4.3 The claims on Page 198 in the Lost Notebook

We note immediately from the definition (1.3.3) that

Fw(t) = −Fw(−t). (4.3.1)

Entry 4.3.1. We have

Fw(t) = − i√
w
e−πt

2/(4w)F1/w(it/w). (4.3.2)

The beautiful transformation formula (4.3.2) shows that Fw(t) is an integral analogue of theta functions.

Proof. Write

Fw(t) =

∫ ∞
0

sin(πtx) cosh(πx)

sinh(πx)
e−πwx

2

dx

=

∫ ∞
0

sin(πtx) cos(iπx)

sinh(πx)
e−πwx

2

dx

=
1

2

∫ ∞
0

sin(t+ i)πx+ sin(t− i)πx
sinh(πx)

e−πwx
2

dx

=
1

2
{ψw(t+ i) + ψw(t− i)} , (4.3.3)

by (1.3.2). Recall from (4.2.4) that

1

2
+ ψw(t+ i) =

i√
w
e−πt

2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}
. (4.3.4)

Since ψ(t) is odd, we find from (4.3.4) that

−1

2
+ ψw(t− i) = −1

2
− ψw(−t+ i) = − i√

w
e−πt

2/(4w)

{
1

2
− ψ1/w

(
− it
w

+ i

)}
. (4.3.5)

56



Hence, from (4.3.3)–(4.3.5),

Fw(t) =
1

2

{
1

2
+ ψw(t+ i)− 1

2
+ ψw(t− i)

}
=

1

2

(
i√
w
e−πt

2/(4w)

{
1

2
− ψ1/w

(
it

w
+ i

)}
− i√

w
e−πt

2/(4w)

{
1

2
− ψ1/w

(
− it
w

+ i

)})
=

i

2
√
w
e−πt

2/(4w)

(
−ψ1/w

(
it

w
+ i

)
+ ψ1/w

(
− it
w

+ i

))
= − i

2
√
w
e−πt

2/(4w)

(
ψ1/w

(
it

w
+ i

)
+ ψ1/w

(
it

w
− i
))

= − i√
w
e−πt

2/(4w)F1/w(it/w),

by (4.3.3), and this completes the proof.

Entry 4.3.2. If n is any positive integer, then

Fw(t)− Fw(t+ 2ni) = − i√
w

n∑
j=0

′

e−π(t+2ji)2/(4w), (4.3.6)

where the prime ′ on the summation sign indicates that the terms with j = 0, n are to be multiplied by 1
2 .

Entry 4.3.2 is an analogue of Theorem 4.2.6 and demonstrates that Fw(t) has a quasi-period 2i.

Proof. Recall from (4.3.3) that

Fw(t) =
1

2
{ψw(t+ i) + ψw(t− i)}, (4.3.7)

and so

Fw(t)− Fw(t+ 2ni)

=
1

2
{ψw(t+ i)− ψw(t+ (2n+ 1)i)}+

1

2
{ψw(t− i)− ψw(t+ (2n− 1)i)}.

Applying Entry 4.2.6 on the right side above, we see that

Fw(t)− Fw(t+ 2ni)

=
1

2

{
− i√

w

n−1∑
k=0

e−π(t+(2k+2)i)2/(4w) − i√
w

n−1∑
k=0

e−π(t+2ki)2/(4w)

}

= − i√
w

n∑
j=0

′

e−π(t+2ji)2/(4w).
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This concludes the proof.

Entry 4.3.3. If n is a positive integer, then

Fw(t)− eπn(t+nw)Fw(t+ 2nw) = −e−πt
2/(4w)

n∑
j=0

′

eπ(t+2jw)2/(4w), (4.3.8)

where the prime on the summation sign has the same meaning as in Entry 4.3.2.

Observe that Entry 4.3.3 indicates that 2w is a quasi-period for Fw(t). The functions φw(t) and ψw(t)

also possess the same quasi-period.

Proof. Replacing t by t+ i and t− i in Theorem 4.2.5, we deduce, respectively, that

eπ(t+i+w)2/4wψw(t + i + w) + eπ(t+i−w)2/4wψw(t + i − w) =
1

2
(eπ(t+i+w)2/4w − eπ(t+i−w)2/4w), (4.3.9)

and

eπ(t−i+w)2/4wψw(t − i + w) + eπ(t−i−w)2/4wψw(t − i − w) =
1

2
(eπ(t−i+w)2/4w − eπ(t−i−w)2/4w). (4.3.10)

Now observe that e4πi(t+w)/4w = e4πi(t−w)/4w. We multiply eπ(t−i+w)2/4w in its two appearances in (4.3.10)

by e4πi(t+w)/4w, and we multiply eπ(t−i−w)2/4w in its two appearances in (4.3.10) by e4πi(t−w)/4w. Thus,

(4.3.10) can be recast in the form

eπ(t+i+w)2/4wψw(t − i + w) + eπ(t+i−w)2/4wψw(t − i − w) =
1

2
(eπ(t+i+w)2/4w − eπ(t+i−w)2/4w). (4.3.11)

Using (4.3.7) and (4.3.11), we find that

eπ(t+i+w)2/(4w)Fw(t+ w) + eπ(t+i−w)2/(4w)Fw(t− w)

=
1

2
{eπ(t+i+w)2/4wψw(t+ i+ w) + eπ(t+i+w)2/4wψw(t− i+ w)

+ eπ(t+i−w)2/4wψw(t+ i− w) + eπ(t+i−w)2/4wψw(t− i− w)}

=
1

2
(eπ(t+i+w)2/4w − eπ(t+i−w)2/4w). (4.3.12)

We now apply (4.3.12) with t successively replaced by t+ w, t+ 3w, . . . , t+ (2n− 1)w to deduce the n
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equations

eπ(t+i+2w)2/(4w)Fw(t+ 2w) + eπ(t+i)
2/(4w)Fw(t)

=
1

2
(eπ(t+i+2w)2/(4w) − eπ(t+i)

2/(4w)),

eπ(t+i+4w)2/(4w)Fw(t+ 4w) + eπ(t+i+2w)2/(4w)Fw(t+ 2w)

=
1

2
(eπ(t+i+4w)2/(4w) − eπ(t+i+2w)2/(4w)),

...

eπ(t+i+2nw)2/(4w)Fw(t+ 2nw) + eπ(t+i+(2n−2)w)2/(4w)Fw(t+ (2n− 2)w)

=
1

2
(eπ(t+i+2nw)2/(4w) − eπ(t+i+(2n−2)w)2/(4w)).

Alternately adding and subtracting the identities above, we conclude that

eπ(t+i)
2/(4w)Fw(t) + (−1)n+1eπ(t+i+2nw)2/(4w)Fw(t+ 2nw) =

n∑
j=0

′

(−1)j+1eπ(t+i+2jw)2/(4w),

that is to say,

Fw(t)− eπn(t+nw)Fw(t+ 2nw) = −e−πt
2/(4w)

n∑
j=0

′

eπ(t+2jw)2/(4w),

which completes our proof.

Entry 4.3.4. Let s = t + 2η1mw + 2η2ni, where η21 = η22 = 1, and where m and n are positive integers.

Then

Fw(s) + (−1)mn−1e−
1
2πη1m(s+t)Fw(t) = η1e

−πs2/(4w)
m∑
j=0

′

eπ(s−2jη1w)2/(4w)

+ η2(−1)mn
i√
w
e−

1
2πη1m(s+t)

n∑
j=0

′

e−π(t+2η2ji)
2/(4w), (4.3.13)

where the prime on the summation signs has the same meaning as in the two previous entries.

Proof. If we examine the proof of Entry 4.3.3, we see that we can similarly obtain an expression for

Fw(t) − e−πn(t−nw)Fw(t − 2nw), but with the right-hand side multiplied by −1 and the exponents j in

the summands being replaced by −j. Thus, we shall apply Entry 4.3.3 and its just described analogue with

n replaced by m and t replaced by t+ 2η2ni. Note that the right-hand side will be multiplied by η1, and so
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we obtain

Fw(t+ 2η2ni)−eπη1m(t+2η2ni+η1mw)Fw(t+ 2η2ni+ 2η1mw)

=− η1e−π(t+2η2ni)
2/(4w)

m∑
j=0

′

eπ(t+2η2ni+2η1jw)2/(4w).

Using the definition of s, we can reformulate the foregoing equality as

Fw(t+ 2η2ni)− eπη1m(s−η1mw)Fw(s)

=− η1e−π(s−2η1mw)2/(4w)
m∑
j=0

′

eπ(s−2η1mw+2η1jw)2/(4w)

=− η1e−π(s−2η1mw)2/(4w)
m∑
j=0

′

eπ(s−2η1jw)2/(4w).

If we examine the proof of Entry 4.3.2 with n replaced by −n, we see that the identity still holds except

that the right-hand side must now be multiplied by −1. Since in the present notation n > 0, then if we

apply Entry 4.3.2 to Fw(t+ 2η2ni) above, we must multiply the right-hand side by η2. Hence,

Fw(t)− eπη1m(s−η1mw)Fw(s)

=− η1e−π(s−2η1mw)2/(4w)
m∑
j=0

′

eπ(s−2η1jm)2/(4w) − η2
i√
w

n∑
j=0

′

e−π(t+2η2ji)
2/(4w).

Upon multiplying both sides above by e−πη1m(s−η1mw) and simplifying, we find that

Fw(s) + (−1)mn−1e−
1
2πη1m(s+t)Fw(t) = −η1e−πs

2/(4w)
m∑
j=0

′

eπ(s−2jη1w)2/(4w)

+η2(−1)mn
i√
w
e−

1
2πη1m(s+t)

n∑
j=0

′

eπ(t+2η2ji)
2/(4w),

where we used the fact that

(−1)mne−
1
2πη1m(s+t) = e−πη1m(s−η1mw).

This completes our proof.
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4.4 Examples

If we set s = t in Entry 4.3.4, it follows that w = −(η2ni)/(η1m). If we further suppose that both m and n

are odd, then (4.3.13) reduces to the identity

(1 + e−πη1mt)Fw(t) = η1e
−πt2/4w

m∑
j=0

′

eπ(t−2jη1w)2/(4w) − η2
i√
w
e−πη1mt

n∑
j=0

′

e−π(t+2η2ji)
2/(4w).

In the identity above, first let η1 = 1, η2 = −1 and multiply both sides by emt. Secondly, let η1 = −1, η2 = 1

and multiply both sides by e−mt. Replace t by 2t/π in each identity. We then respectively obtain the two

identities

2 cosh(mt)

∫ ∞
0

sin(2tx)

tanh(πx)
e−

πnx2

m idx (4.4.1)

=
1

2
emt + e(m−2)t+

πn
m i + e(m−4)t+

4πn
m i + · · ·+ 1

2
e−mt+πmni

+

√
m

n

{
1

2
e−mt+(mt

2

πn +π
4 )i + e(

2
n−1)mt+[( t

2

π2−1)πmn +π
4 ]i + · · ·+ 1

2
emt+[( t

2

π2−n
2)πmn +π

4 ]i

}

and

2 cosh(mt)

∫ ∞
0

sin(2tx)

tanh(πx)
e−

πnx2

m idx (4.4.2)

= −1

2
e−mt − e(2−m)t+πn

m i − e(4−m)t+ 4πn
m i + · · · − 1

2
emt+πmni

−
√
m

n

{
1

2
emt+(mt

2

πn +π
4 )i + e(1−

2
n )mt+[( t

2

π2−1)πmn +π
4 ]i + · · ·+ 1

2
e−mt+[( t

2

π2−n
2)πmn +π

4 ]i

}
.

Next add (4.4.1) and (4.4.2), divide both sides by 2, and equate the real and imaginary parts on both sides

to obtain the two identities

2 cosh(mt)

∫ ∞
0

sin(2tx)

tanh(πx)
cos

πnx2

m
dx

=
1

2
sinh{mt}+ sinh{(m− 2)t} cos

πn

m
+ sinh{(m− 4)t} cos

4πn

m

+ · · ·+ 1

2
sinh{−mt} cos(πmn)

+

√
m

n

{
1

2
sinh{−mt} cos

(
mt2

πn
+
π

4

)
+ sinh

{(
2

n
− 1

)
mt

}
cos

((
t2

π2
− 1

)
πm

n
+
π

4

)
+ · · ·+ 1

2
sinh{mt} cos

((
t2

π2
− n2

)
πm

n
+
π

4

)}
(4.4.3)
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and

− 2 cosh(mt)

∫ ∞
0

sin(2tx)

tanh(πx)
sin

πnx2

m
dx

= sinh{(m− 2)t} sin
πn

m
+ sinh{(m− 4)t} sin

4πn

m
+ · · ·+ 1

2
sinh{−mt} sin(πmn)

+

√
m

n

{
1

2
sinh{−mt} sin

(
mt2

πn
+
π

4

)
+ sinh

{(
2

n
− 1

)
mt

}
sin

((
t2

π2
− 1

)
πm

n
+
π

4

)
+ · · ·+ 1

2
sinh{mt} sin

((
t2

π2
− n2

)
πm

n
+
π

4

)}
. (4.4.4)

Using (4.4.3) and (4.4.4), we can evaluate several definite integrals. For example, if we set m = n = 1 in

(4.4.3) and (4.4.4), we find that, respectively,

∫ ∞
0

sin(2tx)

tanh(πx)
cos(πx2)dx =

sinh t

2 cosh t

(
1− cos

(
t2

π
+
π

4

))
,

and ∫ ∞
0

sin(2tx)

tanh(πx)
sin(πx2)dx =

sinh t

2 cosh t
sin

(
t2

π
+
π

4

)
.

These evaluations can be found in [28, p. 542, formulas 3.991, nos. 1, 2], respectively. No further cases of

(4.4.3) and (4.4.4) can be found in [28].

4.5 One further integral

There is one further integral, namely,

Gw(t) :=

∫ ∞
0

sin(πtx)

coth(πx)
e−πwx

2

dx,

which can be placed in the theory of φw(t), ψw(t), and Fw(t). First,

Gw(t) =

∫ ∞
0

sin(πtx) sinh(πx)

cosh(πx)
e−πwx

2

dx

= −i
∫ ∞
0

sin(πtx) sin(iπx)

cosh(πx)
e−πwx

2

dx

=
i

2

∫ ∞
0

cos{πx(t+ i)} − cos{πx(t− i)}
cosh(πx)

e−πwx
2

dx

=
i

2
{φw(t+ i)− φw(t− i)}, (4.5.1)

by (1.3.1). The formula (4.5.1) should be compared with (4.2.5).
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The next result shows that the theory of Gw(t) can be recast in the theory of ψw(t).

Theorem 4.5.1. If w′ := 1/w, then

Gw(t) =
i√
w
e−πt

2/(4w)ψw′(−itw′).

Proof. Using, in order, (4.5.1), Theorem 4.2.1, (4.2.1), Theorem 4.2.2, and (4.2.1), we find that

Gw(t) =
i

2
√
w
e−π(t+i)

2/(4w)φ1/w

(
it

w
− 1

w

)
− i

2
√
w
e−π(t−i)

2/(4w)φ1/w

(
it

w
+

1

w

)
=

i

2
√
w
e−π(t

2−1)/(4w)

{
e−iπt/(2w)φ1/w

(
− it
w

+
1

w

)
− eiπt/(2w)φ1/w

(
it

w
+

1

w

)}
=

i

2
√
w
e−π(t

2−1)/(4w)

{
e−π/(4w)

(
1

2
+ ψ1/w

(
− it
w

))
− e−π/(4w)

(
1

2
+ ψ1/w

(
it

w

))}
=

i

2
√
w
e−πt

2/(4w) {ψw′(−itw′)− ψw′(itw′)}

=
i√
w
e−πt

2/(4w)ψw′(−itw′),

which completes the proof.
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