
c© 2013 Virajith Jalaparti

ENABLING SEAMLESS WIDE AREA MIGRATION OF ONLINE GAMES

BY

VIRAJITH JALAPARTI

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Assistant Professor Matthew Caesar

Abstract

Highly interactive network applications such as online games are rapidly growing in pop-

ularity and make up a multi-billion dollar industry. However, they remain challenging for

game providers to support due to their inherent need for low latency, unpredictability in

workloads, the need to support application-specific requirements (e.g., players may wish to

play with certain other players already in the game) and their scale.

Cloud computing has proven to be a useful alternative to host a variety of online services.

While eliminating the costs of owning the physical infrastructure and maintenance, cloud

services provide several benefits such as providing agility and reliability for applications.

However, existing cloud computing facilities are insufficient for hosting games due to their

lack of application-specific primitives and the stringent requirements of online games.

In this work, we first perform an experimental study using real world deployments of

several popular games to understand the characteristics of online games. We find that

games can benefit from dynamic allocation and seamless migration of resources across

the wide-area to operate efficiently and provide the best user experience. To meet these

requirements, we propose SMOG, a framework that dynamically migrates game servers to

their optimal location, using orchestrated route control to optimize the network path to the

server. Through deployment of a prototype implementation on a Tier-1 ISP’s backbone

and a user study, we found SMOG can decrease average end-user latency by up to 60%

while performing migration in a manner transparent to game players. We further find that

SMOG provides benefits under a variety of realistic operating conditions, tolerating varia-

tion in application load, network latency and bandwidth available for migration. While we

focus on online games in this work, SMOG is general enough to be used for a variety of

latency-sensitive interactive applications such as video conferencing and interactive video

streaming.

ii

To my parents.

iii

Acknowledgments

I would like to thank my adviser, Matthew Caesar, for his advice and mentorship which

has been greatly instrumental for my growth as a researcher over the past few years. Matt

has been an amazing advisor – I learned a great deal from him about finding innovative

problems and questioning oneself during the process. He was very instrumental in helping

me learn how I could present my research.

I would like to thank Kobus van der Merwe (now at University of Utah), Jeffery Pang

and Seungjoon Lee at AT&T Labs - Research, who were very instrumental in the project

that led to this thesis. Part of this work was done while I was interning with them at AT&T

during the Summer of 2010. Their support was very helpful for deploying our system

over production networks. Their continued help and feedback was very important for the

success of this project. I am also grateful to all my fellow interns at AT&T who made my

summer there, very enjoyable.

I would like to thank all the students in the Systems and Networking group at UIUC who

had helped me with the user study. I would also like to thank them for creating a great

atmosphere in our lab – the discussions with my fellow students played an important role

in expanding my understanding of various areas of networking.

I would like to thank all the TPC members of ACM NetGames 2012 where an earlier

version of this thesis was published – this workshop provided me a forum for publicizing

this work and understanding the perspective of game developers and researchers. It gave

me an amazing opportunity of traveling to Europe, which was really enjoyable.

Finally, I would like to thank my family and friends who has always been there and

supported me during my graduate school.

iv

Table of Contents

Chapter 1 Introduction . 1

1.1 Contributions . 2

Chapter 2 Study of Online Games . 4

2.1 Background: Online Games . 4

2.2 Measurement Study . 5

Chapter 3 Supporting Online Games on Cloud Platforms 10

3.1 SMOG Architecture . 10

3.2 Enabling Wide Area Migration . 12

3.3 Optimized Server Placement in SMOG . 14

Chapter 4 Realizing SMOG in Practice . 16

4.1 System Deployment Details . 16

4.2 Addressing Downtime during Migration 17

4.3 Addressing Challenges in Practice . 18

Chapter 5 Evaluation of SMOG . 21

5.1 User Study . 21

5.2 Performance Analysis . 24

Chapter 6 Related Work . 28

6.1 Migration of Virtual Machines . 28

6.2 Latency Sensitivity of Online Games . 29

6.3 Efficiently Hosting Online Games . 30

Chapter 7 Conclusions . 32

7.1 Future Work . 33

References . 35

v

Chapter 1

Introduction

Cloud computing has emerged with enormous success as a new paradigm for distributed

computing. In this model, data centers provide dynamically allocated resources for ap-

plications, owned by different users. This computing model offers significant economic

advantages of scale for purchasing, operations, and energy usage since the number of idle

machines can be reduced by sharing hardware across multiple users. Cloud services also

offer a potential advantage for security and management as such administrative tasks can

be performed promptly by the cloud provider, and the cost of system administration can be

amortized over many machines.

However, there is a particular class of applications that are difficult to support in cloud

environments: highly interactive network applications, such as online games. The online

gaming market is a rapidly growing multi-billion dollar industry [1] with hundreds of mil-

lions of players [2]. These applications face several unique challenges. Online games have

stringent quality of service (QoS) demands, where even small increases in latency can inter-

fere with game play [3–6]. Hence, they have strong requirements on where servers can be

placed. At the same time, the unpredictability of network QoS coupled with the difficulty

in predicting where a game will become popular make it hard to statically place these ser-

vices. Even worse, unlike web users, players of certain types of games like Counter Strike:

Source [7], Quake III [8], etc. often have strong affinity to particular servers (see Chap-

ter 2). This makes it difficult to use traditional load balancing and replication mechanisms

(e.g., CDNs) to serve game clients. While application specific schemes have been proposed

for network games to deal with some of these problems (e.g., by partitioning state [9, 10]),

they require substantial changes in the way game developers architect games.

Such challenges are particularly unfortunate for two broad classes of games that can

obtain substantial benefit from shared cloud infrastructure to meet their needs: (a) games

that are hosted by individual players such as Counter Strike: Source, and (b) the majority

of games that have not yet achieved a player population large enough to justify deploying

a dedicated server infrastructure around the world. Shared cloud services would reduce

their operating costs and improve players’ gameplay experiences. Similar challenges pre-

1

vent other highly interactive applications such as video conferencing and interactive video

streaming [11], from reaping the full benefits of the cloud.

In this work, we explore the primitives which would enable cloud services to host on-

line games while meeting their strict constraints. To this end, we perform an extensive

study of several online games to understand their basic requirements. In particular, we

find that providing dynamic migration of cloud computing resources can simplify the prob-

lem of hosting game servers. We propose a platform for Seamless Migration of Online

Games or SMOG, which dynamically optimizes geographic server (or virtual machine)

placement while minimizing the observable effects of live server migration. To effectively

address this problem, we take the relatively unexplored approach of integrating cloud ser-

vices with wide area network services. While making cloud services network-aware has

been explored in previous work [12–14], they either require modifications to the network

components or applications being supported, or experience several seconds of downtime.

SMOG overcomes these limitations of earlier work and provides a platform for hosting

latency-sensitive applications. It requires no application-level modifications and uses the

capabilities of the hypervisors in virtualized systems to achieve its goals. SMOG is espe-

cially useful for games where players may select the server that they play on for reasons

other than latency. These reasons include skill-level, social, or historical preferences. This

server selection model, which does not rely on a matchmaking entity, is used by a large

number of games like Counter Strike, Quake etc. While our techniques can be used for any

online game, they are particularly useful for games in which players choose the server and

is complementary to other approaches to match a player to a nearby server.

SMOG can be deployed across multiple data centers which can potentially have different

network service providers. While we focus on server migration, game service providers

may also wish to use replication to scale up and down their services to adapt to long-

term load changes. These techniques are orthogonal to our work, and SMOG can make

use of traditional mechanisms to support these goals. While this work’s focus is online

games, SMOG is general enough to be used for a variety of latency-sensitive interactive

applications.

1.1 Contributions

We make three primary contributions in this work:

• We conduct a measurement study showing that there is substantial opportunity for

both resource savings and improvement in end-user latency, if game servers could

2

be dynamically relocated in the wide area. Compared to a static server placement,

average user latency can be decreased by up to 60% using dynamic server relocation.

• We designed, implemented and deployed SMOG on data centers connected to a Tier-

1 ISP, enabling seamless game server migration in the wide area. In contrast to

previous game platforms, SMOG does not require any modifications to game servers

or clients, does not require the use of any application-level middleware and thus,

allows game developers to continue using traditional game architectures.

• We show, using an user study, that the short interruption caused by SMOG’s migra-

tion in the wide area is not noticeable to game players. Since previous work has

shown that reducing latency improves both subjective and objective player satisfac-

tion measures [3–6], using SMOG’s migration primitive to optimize player latency

strictly improves the gameplay experience. We also show that seamless migration is

feasible with SMOG in a range of realistic operating conditions. While most of the

evaluation results presented in this work are for Quake III [8], we observed similar

results for two other games – Counter Strike: Source [7] and Plane Shift [15].

3

Chapter 2

Study of Online Games

Several measurement studies have been performed to understand the latency requirements

for online games [3–6, 16–19]. These studies focus on characterizing the effects of in-

creased latency on players’ performance. However, they assume that the server position is

fixed, which limits the flexibility in hosting game servers. In this chapter, we will try to

understand the latency gains that can be achieved with the ability to move game servers. As

background, we first describe several popular online games and their requirements (§2.1).

Then, we present the results of a measurement study of popular online games (§2.2), which

motivates our design of SMOG.

2.1 Background: Online Games

Two of the most popular genres of online games today are First Person Shooter (FPS) and

Massively Multi-player Online Games (MMOGs). FPS games such as Quake III [8] and

Counter Strike: Source (CSS) [7] are typically fast-paced and thus, have very stringent

latency requirements. The game client sends updates to the server every few tens of mil-

liseconds over UDP. They typically have little persistent state and are limited to a few tens

of players per game server. On the other hand, MMOGs run at a much slower pace (updates

sent every few 100s of millseconds), involve several thousands of players on the same game

server and store persistent information for every player in the game world. These include

games such as Second Life [20] and World of Warcraft [21].

Games such as World War II Online [22] and PlanetSide [23] lie in between these two

genres – they have strict latency requirements similar to FPS games, and store persistent

state and support hundreds or thousands of players like MMOGs. Further, there has also

been much recent interest in delivering games on demand so that players do not have to

download any client software at all (e.g., games on OnLive [11]). This entails a game

server in the cloud that receives keystrokes and sends only a generic video stream of the

game to each client. As real-time video delivery is demanding, these games are also very

latency sensitive.

4

It has been widely known that having low latency between the players and the game

server is essential for a good user experience (ideally, under 50 ms [3, 6]). Today, game

providers typically achieve such low latency by replicating servers throughout the world,

either by deploying dedicated servers in global data centers or by encouraging players to

host servers themselves. However, dedicated server replication is expensive and requires

over-provisioning to handle the peak load in each geographic region. Player-driven deploy-

ments have unpredictable QoS and increases the likelihood of cheating because gaming

services do not typically have control over client-hosted software [24]. More importantly,

in both scenarios, players often play on non-local servers for a number of reasons – their

friends are present on a remote server, remote servers have more players closer to their skill

level, local servers have few players etc. Players can join and leave these games at any time

and each server runs forever. Thus, the group of players playing on a server typically forms

and evolves organically.

In this work, we focus on games where currently players may want or have no choice

but to play on static servers that are distant in terms of network latency. This is especially

important for (a) games that are hosted by individual players, like CSS, and (b) the majority

of games that have not yet achieved a player population large enough to justify deploying

a dedicated server infrastructure around the world. We develop a platform called SMOG,

which targets such games so they can take advantage of cloud services to reduce their

operating costs and improve players’ gameplay experiences. While SMOG can support

many different types of games, we focus on First Person Shooter (FPS) games because

they have the most stringent QoS requirements. In the rest of this thesis, we use the term

game server to refer to the virtual machine running the application processes for the game.

2.2 Measurement Study

In this work, we argue that dynamic, seamless server migration can significantly simplify

hosting of online games in cloud computing environments while improving the experience

of game players. This is motivated by the insights garnered from a measurement study

we performed using Counter Strike: Source (CSS), one of the most popular First Person

Shooter (FPS) games with 1.716 billion player minutes per month [25]. (We observed

similar results for Quake III [8] and Unreal Tournament [26]). Our study, whose results we

discuss below, finds several unique features of games that motivate the key design decisions

behind SMOG’s architecture.

5

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160
%

 o
f
c
a

p
a

c
it
y
 f
u

ll
Time[hr]

+0000
+0100
-0500
-0600
-0800

(a) Variation of occupied capacity with time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7

N
u
m

b
e
r

o
f

c
lie

n
ts

Time[hr]

+0000
+0100
+0200
+0800
-0500
-0600
-0800

(b) Number of players connected to mshmro.com

divided across timezones

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7

A
v
e
ra

g
e
 C

lie
n
t

L
a
te

n
c
y
 [
m

s
e

c
]

Time [hr]

Best Location Timezone

+0100 +0000 -0500 -0600

Worst Location
Best Location

Oregon
Initial Best

(c) Variation of average player latency for different

server locations

Figure 2.1: Timezone level statistics (UTC=+0000)

2.2.1 Data Sets

To understand the characteristics of online games, we collected two different types of data

sets. First, to understand how the load on game servers changed over time and informa-

tion about players’ sessions, we obtained the list of 1000 most popular CSS servers from

Game Tracker [27]. Using QStat [28] to obtain server information, we probed these servers

at 10-minute intervals over a period of one week, starting from 9:30PM on June 8, 2010

EDT. QStat provides real-time details about the game server including detailed information

such as number of players present, player statistics etc. While this provides us information

regarding player sessions on the game server, it does not allow us to determine the ge-

ographical origin of the players. To obtain this information, we used a 7-hour tcpdump

trace collected on April 11, 2004 starting at 9AM PDT from mshmro.com [29], a long run-

ning popular CSS server located in Portland, Oregon, USA. This contains a detailed packet

trace of all connections to this server over the specified time period. It allows us to infer

the IP address of the players on the server and in turn their locations using IP geolocation

6

services [30].

2.2.2 Results

Using the traces collected above, we observe the following three main characteristics of

online games, which led us to conclude that games can significantly benefit from dynamic,

seamless server migration.

Games need dynamic, not static allocation of resources: Using the server statistics ob-

tained using Qstat from the top 1000 most popular CSS servers, we make two observations.

First, server loads change greatly over time. Figure 2.1a shows the load on servers in var-

ious time zones over the 7-day period. We define load as the ratio of the total number of

players in a time zone to the sum of the maximum capacities of the servers in that time

zone. We observe a strong diurnal pattern with peak loads of 4-5 times the troughs. Sec-

ond, we also find that peak loads shift over time according to the timezones of the servers’

geographic locations. For example, load peaks in the eastern hemisphere occur when load

in the western hemisphere is lowest, and vice versa.

This suggests that game providers can benefit from dynamic hosting of resources. Static

server placement would result in servers located in non-peak areas having wasted capacity.

With dynamic placement, game providers could migrate servers from lightly loaded regions

into peak regions to cope with load, and to react to dynamics in network path quality and

server utilization. Mechanisms like turning off servers under low load do not work because

even under low load conditions game servers can have some users playing on them. We

note that the peak game playing time is in the evening hours of each time zone, whereas

data center usage for businesses typically peaks during day time hours [31]. This means

that using the same data centers to host both business and game applications would improve

their overall utilization.

Games need migration, not replication of resources: Next, studying the 7-hour long

trace from mshmro.com, we find that users may express a strong affinity to specific servers.

Although it is well known that players prefer servers that have lower latency [3], our mea-

surements show that geographic and network distances are not the sole criteria in server

selection. For example, Figure 2.1b shows that players from all over the world (i.e., sev-

eral time zones) choose to play on the Oregon CSS server even though there exist servers,

closer to them. Users may prefer to play on servers that their friends play on, host specific

scenarios, are popular, or contain players with similar skill levels as themselves. Further,

in games with persistent state, players may always choose the same server to retain their

personal history.

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 (

o
v
e
r

to
ta

l
p
la

y
e
rs

)

Session Time [sec]

Russia
Hungary

France
US
UK

Singapore

(a) CDF of player session times

 36

 38

 40

 42

 44

 46

 8500 9000 9500 10000 10500
 0

 50

 100

 150

 200

 250

 300

 350

 400

N
u
m

b
e
r

o
f
p
la

y
e
rs

 o
n
 s

e
rv

e
r

T
o
ta

l
n
u
m

b
e
r

o
f
k
ill

s

Time [sec]

Player count
Total kill count

(b) Change in kill count of players on a server

Figure 2.2: Server level statistics

Further, we find that the optimal server position varies dynamically and server migra-

tion can substantially improve client performance. Figure 2.1c shows the estimated average

client latency given different server placements. For this experiment, we use data from the

trace collected from mshmro.com to determine the set of clients connected to the game

server. We assume the game server can be located at multiple physical locations corre-

sponding to multiple data centers in a Tier-1 ISP. We estimate the latency experienced by

clients using their air-mile distance to the server [32]. The air-mile distance is obtained

by mapping the IP addresses of the clients and servers to a (latitude,longitude) coordinate

pair using IP geolocation [30] and then finding the great-circle distance between the two

coordinate pairs.

In this experiment, we use the Best Location for the server at time t as that physical

location which has the minimum average latency to all the users connected to the server

at t. Vertical lines in Figure 2.1c indicate a change in the time zone of the best server

location. By using migration (Best Location in Figure 2.1c), the average client latency to

the server can always be kept close to 50ms, the highest latency that doesn’t degrade FPS

player performance [33] under any type of game play. In contrast, the two static server

placements (Oregon and Initial Best) have up to 60% higher latencies, compared to the

Best Location. We expect the worsening trend would continue after hour 7 since the trace

does not cover the hours when load from the western U.S. and Asia would peak. The Worst

Location line shows that a static placement could be suboptimal by more than 100%.

These results suggest that game providers can benefit from migration of resources. Un-

like traditional services that use replication and can redirect new user requests to the ap-

propriate (for example, closest) replica, a user’s affinity to a particular online game server

means that existing servers may need to be moved closer to clients to achieve the best user

experience. Also, since the majority of load arises from a relatively small geographic re-

8

gion at any point in time, it may be possible to place a single server to satisfy most of the

users that have an affinity for it. Thus, replication of servers in multiple geographic regions

would waste resources and would not satisfy user affinities to specific servers, unless they

were nearby.

Games need seamless, not paused migration: To understand how long a user is con-

nected to a particular server, we studied the session times of players, using the above week

long trace from the top 1000 servers. Here, we make two observations. First, some session

durations are very long. Figure 2.2a shows the cumulative fraction of the session times

of the players connected to the most popular servers in different countries over a period

of 24 hours. While the median session time is around 20 minutes, some players go on to

play for several hours. Second, we find that session durations have large variance, rang-

ing over several orders of magnitude. These two observations suggest that migration must

be performed while users are playing, introducing the need for seamless migration. The

existence of multi-hour session durations means that traditional dryout techniques used for

non-gaming services (redirecting new users to another server and waiting for the server

to empty) may take too long to react to diurnal patterns or flash crowds in online games.

Moreover, since session durations have large variance, it is hard to find specific points in

time where migration can be performed with minimal interruption (since most users are

typically in the middle of their game at any point in time). Thus, a general-purpose online

game hosting service should support seamless migrations.

That said, some games possess properties that can assist in making this seamless migra-

tion easier to achieve. For example, we find that some games undergo periods of decreased

user activity. For example, CSS takes place in multiple levels. After every level, players

return to their initial positions, and the game map and statistics are reset. During this time,

players are static and hence, transient packet loss due to migration is less likely to be di-

rectly perceivable to players. We note that these times can be detected without modifying

the game. Figure 2.2b shows how the kill count of players and the number of players in a

CSS server in San Francisco change over a period of 2000 seconds. This graph is deduced

from a trace that was collected external to the game using QStat [28]. The sudden decrease

in kill count half-way through indicates a level change. Designing game hosting services

to be application aware can help identify such periods during which game servers can be

transparently relocated. We note that such application properties are not necessary for pro-

viding seamless migration using SMOG (as shown by the user study in §5.1) but can be

useful to further improve its performance.

9

Chapter 3

Supporting Online Games on Cloud Platforms

To meet the unique requirements of hosting online game servers in a cloud environment, as

determined by our measurement study, we designed a platform for seamless migration of

online games called SMOG. SMOG needs to address two key problems: First, to provide

the best service to the application, SMOG needs to seamlessly migrate services across the

wide area. Migrating interactive application services across the wide area presents new

challenges, which are not addressed by traditional virtual machine migration techniques.

For example, migrating servers across IP domains introduces the danger of disconnections

and routing convergence issues, and migrating servers across long distances can increase

latency with potential downtime due to migration. To address this, SMOG provides net-

work support for virtual machine migration, coordinating application migration with route

control in a manner that enables fast migration across the wide area with minimal service

disruption.

Second, SMOG needs to determine when and where to migrate the application services.

This has to be done while ensuring game servers are placed in locations that provide the

best service to users. At the same time, such migration should not be performed too fre-

quently to avoid oscillations and unnecessary overhead. To address this, SMOG solves

an assignment problem to dynamically relocate interactive applications in the wide area.

These algorithms execute on the SMOG Control Framework, which collects state about

application-specific performance metrics, determines when a particular application service

needs to be migrated, and instructs the SMOG infrastructure to perform that migration.

In the rest of this chapter, we provide an overview of SMOG’s architecture and then

discuss the details of how SMOG addresses the above challenges.

3.1 SMOG Architecture

The architecture of SMOG is depicted in Figure 3.1. The cloud service provider deploys a

set of hosting platforms connected to a wide area network (WAN). For example, an ISP net-

work operator may integrate cloud computing functionality into its backbone by deploying

10

 Wide Area Network

DN

SNC PS

SHP

DN

SNC PS

SHP

SMOG Service

Controller

SMOG Hosting

Platform (SHP)

Datacenter

Network (DN)

SMOG Node

Controller (SNC)
Physical

Servers (PS)

Game

Server (GS)

DN

SNC

SHP

GSPS

Figure 3.1: SMOG provides a distributed platform for online games, consisting of hosting

facilities deployed across the wide area.

hosting platforms in its points-of-presence. These hosting platforms act as facilities where

application processes (e.g., game servers) may be hosted. In our design, each application

process runs within its own virtual machine, and migration is performed by the hypervisor.

As shown in Figure 3.1, each hosting platform consists of (i) a number of physical servers

running virtualization software that supports virtual machine migration, (ii) datacenter net-

working equipments that provide connectivity within the platform as well as connectivity to

the WAN, and (iii) a SMOG node controller which is responsible for local orchestration of

compute and networking resources to realize SMOG functionality. SMOG node controllers

in turn are collectively orchestrated by a SMOG Service Controller which makes migration

decisions in order to realize the service objectives of the hosted application. Collectively

the SMOG node and service controllers constitute the SMOG Control Framework.

To enable SMOG functionality, the SMOG node controllers expose an API to moni-

tor and manipulate virtual machine and networking state. For example, using this API,

VM migration is controlled. It is also used to manipulate routes, re-direct traffic, and ob-

serve traffic patterns and routing tables within the network in order to support migration of

servers. The API also allows the service controller to collect application specific perfor-

mance metrics (for example, network latency to clients in the case of online games) from

the hosting platforms. Such information is collected by the virtualization software, at each

of the hosting points, by monitoring client connections to the servers. This performance in-

formation is used to make decisions regarding when servers should be migrated, and which

new hosting platforms they should be migrated to.

To begin a migration, the service controller uses the node controller API to instruct the

virtualization software regarding when and where the process should be migrated to. To

coordinate this change with the network, the service controller also sends instructions to

11

Internet

Sa

P

PEa

Va

BGP

Ra

/29

Location A

Sb

P

Vb

PEb

BGP

Rb

/32

ARP

Location B

Physical Server

Game Server VM

Datacenter Router VPLS Endpoint

SWa SWbLAN Switch

Figure 3.2: SMOG Migration

the API to indicate any changes to routing state in order to ensure that the packets destined

to the migrated server reach it.

3.2 Enabling Wide Area Migration

To adapt to changing application workloads and provide better user experience, SMOG

needs to perform server migration between different hosting platforms i.e., across LANs,

across IP subnets, and potentially across Autonomous Systems (ASes). Unfortunately, tra-

ditional virtual machine migration techniques (e.g., Xen [34]) target migration within a

single Ethernet-based IP subnet, as opposed to WANs that span large geographic regions,

multiple routing protocols, and multiple IP subnets. Further, these techniques were de-

signed for LANs where a virtual machine (VM) can retain its IP address after its migration.

Such mechanisms cannot directly be used in wide area networks (i.e., across hosting points)

as the IP address of the VM might have to be modified to comply with network addressing.

Such changes in the IP addresses of the servers are not acceptable for interactive applica-

tions since it would require all current sessions to be terminated, interfering with the user’s

experience.

To address this, SMOG leverages integrated network support to coordinate migration of

an application server, in a manner that minimizes the downtime (period of disconnectivity

to the server) experienced by the application users. In particular, SMOG coordinates server

migration with network route control. In this section, we describe how SMOG works when

the hosting points are within a single AS. The inter-AS migration is discussed in §4.3.

Figure 3.2 depicts the mechanisms involved in migrating an application server (P) from

12

location A to location B. Each application server running on SMOG is allocated a small IP

subnet (e.g., a /29). Under normal operating conditions (i.e., when a migration is not under

way), this prefix would be advertised by the datacenter router (i.e., Ra in our example) via

BGP to a provider edge router (PEa) to allow the application server to be reached from the

Internet. The application server would similarly use Ra as its default gateway in order to

reach clients in the Internet.

SMOG utilizes a virtual private LAN service (VPLS) (Va to Vb via PEa and PEb),

to facilitate live virtual machine migration between physical servers S a and S b respec-

tively [35].1 VPLS is a MPLS-based virtual private network (VPN) and essentially inter-

connects the LAN switches S Wa and S Wb at layer two. This creates a broadcast domain

between the two sites, allowing IP addresses to move at will between the two sites and still

be reachable from anywhere in the broadcast domain. This in turn enables the use of “nor-

mal” LAN VM migration techniques [34] to migrate the application server (P) from S a to

S b. Further, after migration, P issues a gratuitous ARP response and will be still reach-

able from the Internet via location A i.e., packets destined for P will reach PEa, which is

still advertising the /29 prefix, and then follow the path to P via Ra, S Wa, Va, PEa (now

encapsulated in a VPLS frame), PEb, Vb, S Wb, S b and P. After migration P will still be

using Ra as its default gateway, so that packets from P will follow the same path in reverse.

Having traffic follow this “dogleg” path is of course suboptimal, and the SMOG service

control corrects this by performing the following two route control actions. First, the de-

fault gateway for P is updated to Rb so that traffic from P follows the more direct path to the

Internet. Second, to correct the path towards P the service controller initiates the following

actions in order: (i) The datacenter router at location B is instructed to advertise a more

specific route (i.e., a /32) to P via its BGP session with provider edge router PEb. Since

routes with more specific prefixes are preferred, the path via PEb will be preferred over the

path via PEa as this more specific route is distributed via the network. (ii) Once SMOG

monitoring has confirmed that traffic is no longer using the path via PEa/Ra to reach P, Ra

is instructed to withdraw the /29 in its advertisements, leaving the path via PEb as the only

available path to reach P. (iii) Then, Rb in turn is instructed to advertise the shorter prefix

(/29) so that we are back to the original state, except that both P and its associated prefix

are now associated with location B.

Note that this orchestrated route control completely prevents packet loss due to the route

changes since we follow a make-before-break approach whereby there is always at least

one (and for some time two) valid paths to P. Further, very specific routes are typically

1The VPLS endpoints Va and Vb are in fact encapsulated within the datacenter routers (Ra and Rb), but

we show them separately to simplify the exposition.

13

not advertised outside of the AS, i.e., the route manipulation used by SMOG would result

in other PE routers within the AS following the desired path, but would not cause route

convergence or instability in the larger Internet (outside the AS).

3.3 Optimized Server Placement in SMOG

While the previous section shows how SMOG can carry out migration of application

servers across WANs, we still need a mechanism to decide the best position of the ap-

plication servers. There are two sub-problems here. First, the service controller needs

to decide where to place servers. This is required to ensure good service to the maximal

number of clients, while taking into account metrics important to the application such as

delay, loss, etc. Second, the service controller needs to decide when to migrate the servers.

This ensures that SMOG can react, sufficiently fast, to load and network changes to avoid

overload and minimize poor connection quality. At the same time, we would like to avoid

inducing oscillations, and overreacting to small changes.

To address this problem in the context of network games, the service controller first col-

lects information about the network, including the hosting locations, and the set of players

on the game server. SMOG monitors the connections of the game server to determine the

IP addresses of the players. It then determines the latencies the clients would experience

from the various possible hosting points. This may be done using either active or passive

techniques. For example, active techniques include pinging the player’s end hosts to esti-

mate RTT. (For hosts that do not respond to ping, RTT may be estimated by pinging the last

router on the traceroute path to the end host.) Passive techniques include the use of latency

estimation tools [32, 36].

Next, given monitoring data, the service controller must make a decision about where

to place the game server. While depending on the application requirements, various met-

rics [37] can be used to gauge the quality of placement, in this paper, we focus on minimiz-

ing the number of online game players who experience high latency during game play i.e.,

whose latency to the game server is greater than a threshold latency, LTh. LTh can be speci-

fied by the game provider or known from evaluation studies (e.g., [3]). Using this threshold

value, we formulate the game server location problem as a variant of the generalized as-

signment problem [38]: Suppose we are given (i) a set of hosting points, H = {1, 2, . . . , n},

(ii) a set of servers, S = {1, 2, . . . , s} using SMOG, and (iii) ki clients connected to the ith

server, Pi = {i1, i2, ..., iki
}. The optimal location of the given set of game servers is obtained

as the solution to the following optimization problem:

14

Minimize C =

s∑

i=1

n∑

j=1

xi j

ki∑

m=1

l′jim (3.1)

with the following constraints:

n∑

j=1

xi j = 1, ∀i ∈ S (3.2)

s∑

i=1

wi jxi j ≤ c j, ∀ j ∈ H (3.3)

xi j ∈ {0, 1}, ∀i ∈ S , j ∈ H (3.4)

where l′jim is 1, if the latency, l jim , of the im
th user to the hosting point j is more than LTh

and 0 otherwise. wi j denotes the resource requirement of server i when assigned to hosting

point j (e.g., VM size, number of players, CPU usage). The above optimization problem

tries to minimize the number of players whose latency to their servers is higher than LTh,

which is given by the cost C. xi j is an indicator variable whose value is 1 if the ith server is

located at the jth hosting point; otherwise it is equal to 0. Constraints (3.2) and (3.4) ensure

that only one hosting point is used for a particular server. Constraint (3.3) ensures that the

total resource requirements by the assigned servers is within the remaining capacity c j at

hosting point j.

The above optimization problem has been extensively studied, and there exist several

approximation algorithms to solve it efficiently. For instance, Shmoys and Tardos [38]

present an efficient 2-approximation algorithm based on LP relaxation and rounding from

a fractional solution, which takes only tens of milliseconds to find a solution for instances

where |S | is several hundred and |P| is around ten [39].2

SMOG solves the above problem whenever a new player joins or leaves the game (or at

regular time intervals) and determines the current optimal position of the server. If the new

optimal location is different from the current server location, SMOG initiates a migration

using techniques discussed in §3.2. To prevent frequent oscillations, simple hysteresis

techniques are applied i.e., the server is actually migrated only if the improvement in the

cost function is at least a certain fraction of the current cost (e.g., this was set to 10% in

Figure 2.1c).

2The experiments were done using a Linux machine with a AMD Athlon 2GHz CPU and GNU LP Toolkit

version 4.19.

15

Chapter 4

Realizing SMOG in Practice

To determine the feasibility of our approach, we implemented and deployed a prototype of

SMOG in a number of data centers connected to a Tier-1 ISP backbone. In this chapter,

we address the various challenges encountered during this practical realization of SMOG.

First, we start by describing details of our overall system deployment. We then describe the

key challenge we had to address during the deployment: high downtime incurred during

Xen’s migration process. Finally, we describe solutions to various deployment issues that

arise in practice.

4.1 System Deployment Details

We implemented SMOG on ShadowNet [40], an operational trial network and compute

platform deployed on carrier-grade equipment and located within a Tier-1 ISP. Our imple-

mentation used 64bit CentOS 5.4 as many FPS games have dedicated servers which run on

Linux (e.g., Quake III, CSS, Team Fortress, etc.). We used two physical servers on Shad-

owNet, deployed in Illinois and Texas, to act as hosting points for the game servers. These

compute platforms are connected to the provider backbone via a 1Gbps link and have an

average round trip time (RTT) between the two sites of 27msec. A VPLS-based VLAN is

used to connect them as a single broadcast domain in the wide area. We use the Xen 3.4.3

hypervisor for the virtual machines (VM) responsible for hosting the game servers. We

modified the hypervisor to incur low downtimes for wide area migration, extending Xen

migration primitives [34] with the techniques described below.

The game servers are hosted on Xen VMs. Each VM is configured to send all application

packets to a default gateway through which it can reach the Internet. Using BGP, a route

to the VM is advertised as a /29 prefix. We use Xen migration logs to monitor the status

of the migration. After the server migrates to the new location, SMOG instructs the VM

to send a gratuitous ARP, to ensure the VLAN sends packets to the new physical location.

DRBD [41] is used to ensure that the logical disk used by the VM on the physical machines

are synchronized. It uses synchronous replication techniques to ensure that data which is

16

written at the primary location is transferred to the secondary location before it is commit-

ted. In our implementation, we use the physical location at which the VM is present as the

primary and the physical location to which the VM would be migrated as the secondary

location. This allows us to perform VM migration without requiring the VM to be paused

to ensure disk consistency, reducing server downtime.

4.2 Addressing Downtime during Migration

In our early deployments, we observed that SMOG’s migration interrupted the user’s game

experience. For example, when migrating a Quake III game server, a game client connected

to it, observes a downtime of around 460 msec during migration, even with paravirtual-

ization enabled (around 800 msec using full virtualization). While small, this downtime

cannot be tolerated by online games: the Quake III client displays a Server disconnected

message temporarily when the default Xen hypervisor is used.

To study this problem, we instrumented the Xen migration tools to micro-benchmark the

sources of delays. The migration timeline, when the VM is migrated from loc1 to loc2, is

shown in Table 4.1 (the migration process in Xen is described in §6.1). In the timeline, we

note that the VM is completely unreachable to any clients from when it is suspended at loc1

(step 2) to when it receives the first packet at loc2 (step 6). This downtime is caused due to

the following 3 mechanisms involved in Xen’s migration: (a) The last iteration of copying

the remaining memory pages and machine state from loc1 to loc2, occurring between steps

2 and 4. (b) Restoration of the processor, driver state etc., of the virtual machine at loc2,

occurring between steps 4 and 5. (c) Restoring network state and setting up the IP to MAC

address mapping for the VM at loc2. This occurs between steps 5 and 6. Table 4.1 shows

that the key bottleneck occurs between steps 2 and 5, during which the transferred state

(processor, drivers etc.) is restored at loc2 and the VM is brought up. We noticed that a

large fraction of the time between these steps is due to the hypervisor at loc2 waiting for the

hypervisor at loc1 to close the connection used to transfer the VM state during migration.

We modified Xen to remove this wait condition (Mod). With this extension, we found that

downtime reduced to around 170 msec.

Although this downtime for modified Xen is very low, it can result in a few consecutive

packets (3 to 4 for games like CSS and Quake III) from clients to the game server being

lost. This generally goes unnoticed by game players since most online games use tech-

niques like dead reckoning to deal with transient packet loss. Our user study (§5.1) shows

that this downtime is in fact not noticeable by humans during gameplay. Nonetheless, some

17

Migration Step FV PV Mod

1 Migration started at loc1 0.239 0.096 0.146

2 VM suspended at loc1 10.844 9.160 9.355

3 VM destroyed at loc1 11.073 9.187 9.674

4 Received all pages at loc2 11.079 9.173 9.424

5 Domain restored at loc2 11.430 9.436 9.507

6 1st packet received by VM at loc2 11.646 9.622 9.523

Downtime 0.802 0.462 0.168

Table 4.1: Typical timeline (in seconds) for Xen VMs migrated from loc1 to loc2 for a

fully-virtualized (FV) VM, paravirtualized (PV) VM, and modified Xen (Mod). Migration starts at

loc1 at time t = 0 sec.

games use TCP rather than UDP as transport. These games would delay recent packets un-

til lost packets are retransmitted and, thus, would benefit from minimizing loss even during

migration. For such games, simple buffering techniques at the hypervisor can be used to

ensure reliable delivery of packets to the game server. We note that for most games timely

delivery of recent packets is typically more important than redelivery of older packets con-

taining stale data and thus, minimizing migration downtime is more critical as compared to

reducing packet loss.

4.3 Addressing Challenges in Practice

In this section, we discuss various practical issues associated with SMOG’s deployment:

Network overheads from performing migration: The overheads caused by VM mi-

gration can interfere with game play or other applications sharing the same physical in-

frastructure. To characterize this overhead, we perform some simple back-of-the-envelope

calculations. In particular, we characterize the amount of overhead associated with a mi-

gration, the duration that overhead lasts, and the frequency with which migration occurs.

Amount of overhead: We first determine the amount of additional traffic sent due to a

migration. In our experiments with Quake III servers (Chapter 5.2), we found that migrat-

ing a 1GB VM required sending a total of 1.008GB over the network. The results from the

mshmro.com trace (Chapter 2) show that on an average a game server might have to be mi-

grated 12 times a day to ensure it is close to the optimal location for its current users. This

results in an average of 143.3 KBps traffic per game server. However, using mechanisms to

reduce the network footprint of migration (e.g., Satori [42]), this can be reduced by around

90%, to as low as 14.3 KBps. This amount is significantly smaller than the traffic already

generated by a standard FPS server with 32 players, which typically amounts to around

18

80KBps [10].

Duration of overhead: Next, we estimate the duration for which this overhead exists in

the network (the amount of time required to migrate a VM). This time is determined by the

rate at which VM data is transferred to the destination location and the rate at which the

VM’s memory is written to by applications. Our evaluation in §5.2 shows that even when

the available network bandwidth for VM migration is as low as 200Mbps, under typical

game loads and typical RTTs between the locations, it takes less than 30sec to complete a

single migration.

Frequency of overhead: Finally, we estimate the frequency with which SMOG migrates

VMs. As mentioned earlier, SMOG performs a migration only when the improvement in

the cost is beyond a certain threshold. This threshold is configurable and can be set based

on the load on the network. The results in §2.2 show that setting it to 10% of the current

value results in just 4 migrations in a total of 7 hours. In general, the threshold can be set

by the system administrator considering application requirements and the current load on

the datacenters.

Cross-AS migration: With the techniques discussed in §3.2, no inter-AS advertisements

are generated during the migration of a VM as long as the hosting platforms A and B are in

the same AS. However, if the hosting points are located in different ASes, external routing

updates may be generated. Inducing BGP routing advertisements could trigger flap damp-

ing or routing protocol reconvergence, which in turn could lead to large outages intolerable

by online games. One way to address this is to have the gaming provider run its own AS

(SMOG-AS), an Autonomous System that interconnects all SMOG hosting platforms. The

SMOG-AS peers with each AS in which a hosting platform is present. It announces the pre-

fixes corresponding to the game servers hosted on the SMOG framework. This ensures that

no external routing updates are triggered after VM migration, as the SMOG-AS announces

prefixes consistently across all peering points, regardless of its internal route changes due

to specific prefix announcements. However, one disadvantage of this approach is that the

SMOG-AS may need to carry all the long-distance traffic destined to the servers in SMOG

hosting platforms, in case it peers with many ASes using hot potato routing. We leave the

design of more sophisticated mechanisms to address the multi-AS scenario to future work.

Handling Persistent State: Our implementation uses DRBD to ensure that the persis-

tent storage of the VM is synchronously replicated between the hosting point where the

application is hosted and the hosting point to which it is migrated. However, since several

hosting points can be used for the game server, synchronously replicating storage across

all of them would lead to significant overhead and wastage of resources. SMOG deals with

this problem by replicating data on-demand. This is accomplished as follows: (a) When a

19

server has to be migrated from loc1 to loc2, SMOG first starts asynchronous DRBD repli-

cation between them, (b) Once the storage devices become consistent, DRBD is switched

to the synchronous mode and SMOG can initiate the migration of the VM. We note that the

initial asynchronous replication in this process would increase the total time required by

SMOG to perform a migration. However, since most games follow a regular daily pattern

and their load is predictable (Chapter 2), the next hosting point can be pre-calculated by

SMOG and the asynchronous replication can be initiated well before the actual need arises.

Synchronous replication schemes work well for games like Quake III and CSS that main-

tain very little persistent state. However, due to its high write latency, synchronous replica-

tion can affect the performance of games like MMOGs, which maintain persistent state (for

example, inventory, health) for each player. To understand the storage performance require-

ments for MMOGs, we instrumented a popular open-source MMOG, Planeshift (PS) [15].

PS uses a MySQL backend to store player information. We noticed that for one player, PS

sends updates to the database every 300sec (this rate is configurable) and the rate scales lin-

early with the number of players in the game. We believe that the low per-user data update

rates and update batching seen in PS generalizes to other MMOGs because, otherwise, the

database would be a bottleneck for game performance [43]. Further, some games [15, 44]

can be configured to place the database on a server different from the server which hosts

the game. This decoupling of the compute and storage server allows SMOG to perform the

migration of the persistent storage only when necessary (for example, when the database

update frequency is high), thereby reducing the overall overhead of migration. While the

above heuristics try to address the problem in certain scenarios, the general question of how

to migrate persistent game state during peak loads with 1000s of players online, ensuring

low application downtime and overhead, is an open research question and left to future

work.

20

Chapter 5

Evaluation of SMOG

In this chapter, we study the performance of SMOG in practice. Our evaluation is twofold.

First, to understand the end-to-end performance of SMOG and its effects on end-user game

experience, we conduct a user study using Quake III by simulating real world game play

conditions (§5.1). Second, to understand performance issues in SMOG under varying

workloads, we instrument a deployment of SMOG to directly measure the relevant per-

formance metrics (§5.2).

5.1 User Study

SMOG aims to minimize the effect of migration on end users. To evaluate how SMOG

achieves this goal, we conducted a user study using Quake III running on top of SMOG. To

emulate wide-area effects, we run the user study over a LAN emulating WAN delays and

bandwidth using tc, the Linux traffic control module.

Scenarios presented to users: We consider four different scenarios, varying the latency

between the client and the server: (a) L-NM, a low latency setting with no migration, (b)

LL-M, a low latency setting with migration to another low latency server, (c) H-NM, a high

latency setting with no migration and (d) HL-M, a high latency setting with migration to a

low latency server. Comparing the results observed for the scenarios with similar latency

but with and without migration can help us understand the effects of migration. The two

extreme latency conditions help us understand how users react to migration under different

network conditions.

Table 5.1 shows the latencies we use for each scenario. To choose realistic values, we

measured RTTs using ping to the top 500 Quake III servers around the world (obtained from

Game Tracker [27]) from a host on the UIUC campus. Figure 5.1 shows the resulting CDF.

We use the 95th percentile value (i.e., 200ms) from this distribution as the RTT between the

client and the server for the high latency (H) scenarios of the user study. We use 50msec as

the RTT in the low latency (L) scenarios, since it is known to be the limit above which user

21

Migration?

C-S RTT

before

(ms)

C-S

RTT

after

(ms)

S-S

RTT

(ms)

L-NM No 50 50 NA

LL-M Yes 50 50 27

H-NM No 200 200 NA

HL-M Yes 200 50 150

Table 5.1: Scenarios shown to user study participants, by client-server (C-S) latency before and

after migration, and server-server (S-S) latency between hosting points.

performance degrades [33]. The RTT between the two physical servers that serve as hosting

points in LL-M is set to 27msec, emulating the conditions on ShadowNet [35]. In the HL-

M, this RTT is 150msec in order to be consistent with the latency from the client to the two

servers. The bandwidth between hosting points is set to 465Mbps, as in ShadowNet.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
D

F
 o

v
e
r

to
p
 5

0
0
 s

e
rv

e
rs

RTT [msec]

Figure 5.1: CDF of RTT to top 500 Quake Servers

Procedure: Our user study consists of each participant playing a trial consisting of number

of pairs of game scenarios, either (L-NM, LL-M) or (H-NM, HL-M). To remove any bias

caused by the order in which these scenarios are played, we randomize the trial order by

having each player play each trial pair twice (4 trial pairs and 8 games total). The users are

told that they would be playing the game under network conditions that may differ across

trials, but they are not given the specific details of the differences between them. They are

also not told about the fact that some of trials can involve migration of the game server.

Before the experiment, each user first plays a practice match for 5 minutes on the q3dm1

map of Quake III over a LAN environment. Each game round in the experiment lasts one

minute. All rounds are death match games in which the user plays against a computer

bot on the game server. We use the q3dm1 map since it is small enough for a controlled

experiment. In every round, both the human player and the bot start from fixed spawn

points. For those scenarios with migration, the migration completes around half-way into

the game. This ensures that users have (almost) equal time to play under different latencies,

22

 0

 2

 4

 6

 8

 10

 12

L-NM LL-M

A
v
e
ra

g
e
 u

s
e
r

ra
ti
n
g

Game scenario

ALL
Ex

In-Ex

(a) Average user ratings

 0

 0.5

 1

 1.5

 2

 2.5

L-NM LL-M

A
v
e
ra

g
e
 u

s
e
r

k
ill

s

Game scenario

ALL
Ex

In-Ex

(b) Average user kill counts

Figure 5.2: User study results for low latency scenarios

 0

 2

 4

 6

 8

 10

 12

H-NM HL-M

A
v
e
ra

g
e
 u

s
e
r

ra
ti
n
g

Game scenario

ALL
Ex

In-Ex

(a) Average user ratings

 0

 0.5

 1

 1.5

 2

 2.5

H-NM HL-M

A
v
e
ra

g
e
 u

s
e
r

k
ill

s

Game scenario

ALL
Ex

In-Ex

(b) Average user kill counts

Figure 5.3: User study results for high latency scenarios

before and after the migration of the server. These measures decrease the number of random

factors that affect gameplay across different rounds.

Participants: We conducted a total of 96 trials of the 4 scenarios above, using a total

of 24 participants. Most of the participants were already familiar with FPS games, with

95% reporting that they played FPS games before, and 50% reporting that they played FPS

games regularly at least once a week at some point in their life. In this study, we regard

these users as experienced. Irrespective of the participants’ experience, all players perform

the same tasks during the user study.

Metrics: We evaluate SMOG’s user-perceived performance with the following two met-

rics:

(a) User Ratings: To provide a subjective evaluation of the game experience as observed

by the users, we asked users to rate the quality of their game experience on a scale of 1-10

based on the lag experienced during the round, with 10 being no observable lag at all and

1 being completely unplayable. The main aim of using this metric is to verify if users can

23

consciously observe the effects of migration of the game server during the game play.

(b) Kill Counts: We measure the number of kills a user accomplishes in each of the

rounds played. This gives us an objective way of measuring the user’s performance.

Results: Figure 5.2 and Figure 5.3 show the results of our user study using the above

two metrics. For these, we divide all the users (All) into two groups: experienced (Ex)

and inexperienced (In-Ex). Figure 5.2a shows the average rating given by the users, for

different experience levels. The error bars indicate the 95% confidence interval. We find

that the average ratings given by the users for the low latency scenarios with (LL-M) and

without migration (L-NM) are quite close to each other. This shows that users cannot

distinguish between the two, thereby allowing us to conclude that the downtime due to

migration in SMOG cannot be perceived by users. We note that the same results hold

for the experienced (Ex) and the inexperienced users (In-Ex), when considered separately.

Figure 5.2b shows the average kill count of all the users for the low latency scenarios. This

graph shows that the presence of migration does not significantly affect user performance

in the game.

Figure 5.3 shows the average user rating and the average user kills for the high latency

scenarios. These results are similar to those under low latency and thus, show that even

under different latency conditions, SMOG’s migration does not negatively affect user ex-

perience and is not consciously noticeable by a user.

5.2 Performance Analysis

To generalize our results, this section studies performance under a wider range of operat-

ing conditions. We use two metrics for evaluating SMOG’s performance: (i) application

downtime, which directly affects user experience in online games, and (ii) the total migra-

tion time, which measures the time during which SMOG’s operations can interfere with

that of the application. We note that lower level metrics such as application I/O rate etc.

directly affect the above metrics and hence, we do not take them into account. All experi-

ments were performed using a paravirtualized VM with 1GB of memory and the modified

Xen hypervisor, described in Chapter 4.

Effect of downtime: During migration, since the server is unreachable for a period of

time, the player’s predicted position in the virtual world on the server and the player’s

position on the client can diverge, leading to a possible glitch in game play. Table 5.2

shows the network conditions under which we measured the downtimes experienced by the

application hosted on SMOG. These are based on various real-world network parameters.

24

 1

 2

 3

 4

 5

 6

 20 30 40 50 60 70 80 90 100

D
if
fe

re
n
c
e
 i
n
 p

la
y
e
r

p
o
s
it
io

n
 (

n
o
rm

a
liz

e
d
)

Time from start of game [sec]

No migration
LAN migration (1000Mbps)

IL -> TX (465Mbps)
NY -> CA (465Mbps)

IL -> France (465Mbps)
IL -> France (250Mbps)

(a) Average user ratings

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 (

o
v
e
r

ti
m

e
)

Normalized difference in player position

No migration
LAN Migration (1000Mbps)

IL -> TX (465Mbps)
NY -> CA (465Mbps)

IL -> France (465Mbps)
IL -> France (250Mbps)

(b) Cumulative fraction

Figure 5.4: Difference in player position between server and client

Downtime Bandwidth RTT Source/Destination pair

(msec) (Mbps) (msec)

170 1000 0.5 LAN

220 465 27 IL to TX

240 465 45 NY to CA

350 465 100 IL to France

480 250 100 IL to France

Table 5.2: Downtime under various network conditions

Figure 5.4a shows how the difference in player position on the server and client varies over

time in the game, for different values of downtime caused by migration. The differences in

error are normalized with respect to the width of the bounding box of a player in the virtual

world (i.e., the width of 1 player avatar). The figure shows that the player position error

spikes only for a few milliseconds corresponding to the downtime due to migration. The

increased average error for different downtimes in Figure 5.4a is due to increased network

latency and does not measure the effects of migration. We observe that the maximum

normalized position error is about 5. We note that this error is around the same as that

observed during our user study (in cases where migration was involved) and hence, may not

be noticeable by game players in practice. Figure 5.4b shows the cumulative distribution

(over time) of this error. It shows that during a game lasting 100 seconds, less than 0.02%

of the time, the player position error is more than twice the average showing that the effect

of migration lasts for a small period of time.

Effect of bandwidth: To measure the effect of bandwidth on SMOG’s performance, we

varied the bandwidth available between the two hosting points using tc, fixing the average

RTT between them at 45msec. Figure 5.5a shows how downtime and total migration time

vary with bandwidth. Both metrics grow sharply with the decrease in bandwidth, and the

downtime remains low (around 200 msec) even for bandwidths as low as 200Mbps. We

25

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100 200 300 400 500 600 700 800 900 1000
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

D
o

w
n

ti
m

e
 [
s
e

c
]

T
o

ta
l
m

ig
ra

ti
o

n
 t
im

e
 [
s
e

c
]

Bandwidth [Mbps]

Downtime
Total Migration Time

(a) Varying bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

D
o

w
n

ti
m

e
 [
s
e

c
]

T
o

ta
l
m

ig
ra

ti
o

n
 t
im

e
 [
s
e

c
]

RTT [msec]

Downtime
Total Migration Time

(b) Varying latency

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

D
o
w

n
ti
m

e
 [
m

s
e
c
]

Number of players

With Clients
With Bots

(c) Varying application load

Figure 5.5: Performance of SMOG, measured using downtime and total migration, while

varying different operational parameters.

observed that any downtime less than 400msec does not cause a noticeable interruption in

Quake III game play. Thus, using the modified Xen migration (Chapter 4), SMOG can

work seamlessly if the bandwidth available for migration is more than 125Mbps. We note

that this bandwidth and latency is only needed for the last round of the migration to ensure

low downtime. This bandwidth requirement can be satisfied using recent proposals such as

SWAN [45] or B4 [46].

Effect of latency: Figure 5.5b shows the variation of downtime and total migration time

with network RTT between hosting points. The bandwidth for all these experiments is

fixed at 465Mbps (similar to the effective available bandwidth on ShadowNet [35, 47]).

Although the downtime varies linearly with RTT, it increases quickly and reaches 450msec

for an RTT of around 120msec. For higher RTTs, the downtime can be noticed by the

users of Quake III. We note that the average RTT between the US Midwest and Western

Europe (France), and Western Europe and Eastern Asia, are both around 100msec. Our

results in Chapter 2 (in particular, Figure 2.1c) show that migration will most likely only

occur between timezones that are close by. Thus, the modified Xen migration is sufficient

26

for most regular migrations.

While SMOG has sufficiently low downtime for regular network conditions, the down-

time incurred can be high enough to disrupt game play, for very low bandwidths (< 125

Mbps) or very high RTTs (> 120msec) between the hosting points. However, we note

that using other optimizations to Xen’s migration [35], we can expect to further decrease

the downtime. Using these optimizations, SMOG can work seamlessly for bandwidths as

low as 50Mbps and RTTs as high as 180msec. To migrate under more extreme conditions,

SMOG can perform multiple short migrations instead of one long migration. While this

increases the total overhead, SMOG can select individual hops so that each migration stays

below the threshold latency noticeable to end users.

Effect of application load: Increased application activity can also influence migration.

For example, increased writes to memory can dirty more pages, leading to increased total

migration time. To quantify this, we measured the downtime experienced by a Quake III

server by varying the numbers of (a) bots and (b) real clients connected to it. We note

that while the change in the application state depends on the number of bots, the change in

kernel (for example, network) state depends on the number of (non-bot) clients connected

to it. Hence, these two experiments help us measure the effects due to changes in different

aspects of the VM’s state. Figure 5.5c shows the results of this experiment when using a

465Mbps and 45msec RTT link for migration. Even with up to 20 players on the server

(bots or clients), the downtime is almost the same as that with no players on it. Hence, we

can conclude that for games like Quake III, increased application load does not significantly

affect the user perceived experience with SMOG.

27

Chapter 6

Related Work

The main goal of SMOG is to provide dynamic and seamless live wide area migration to

game servers in order improve player gaming experience. SMOG aims to perform these

functions in an application-independent manner. SMOG builds on several previous works

and is related to three main areas of research as illustrated below.

6.1 Migration of Virtual Machines

The advent of low-overhead virtualization technologies (e.g., Xen [48]) has made tech-

niques like server migration practically feasible. The idea behind such migration is to be

able to suspend the operation of the virtual machine (VM) on one physical machine and to

resume it at another physical machine, while preserving the state of the whole machine (in-

cluding that of the operating system, running processes, I/O devices, CPU registers etc.).

Existing migration techniques can be categorized into (a) suspend and resume, and (b)

live migration. Suspend and resume mechanisms like those incorporated in VMware GSX

server [49] and ISR [50] suspend operation of the entire machine at the first location and

then transfer the state over to the target machine. While they incorporate several optimiza-

tions like using copy-on-write disks, ballooning unused memory, compression techniques

to transfer state, and using distributed file systems such as Coda [51] and AFS [52], they

incur several minutes of downtime during which the server becomes unavailable. Hence,

such mechanisms are unsuitable for applications like interactive online games where every

second counts.

On the other hand, live migration techniques like those used in Xen [34] and current ver-

sions of VMware [53], strive to achieve sub-second downtime. Xen uses paravirtualization

and a pre-copy mechanism to achieve this – during the pre-copy phase, the dirty pages of

the VM’s memory are iteratively transferred to the destination while the VM is allowed

to run. During the last phase, the VM is completely suspended and the remaining state is

copied over. By ensuring that the last phase has to deal with only a few memory pages,

Xen achieves a downtime of few tens of milliseconds. However these mechanisms assume

28

that the physical machines are on a single LAN and hence cannot be directly adopted in

our wide area settings. In this work, we leverage the live migration primitives provided by

Xen and provide network support in order to enable wide area server migration.

Various approaches to wide area server migration using network level support have been

proposed earlier. Openflow [12] facilitates server migration through the use of Openflow

enabled swicthes. It allows the modification of switch entries in order to ensure reacha-

bility after the migration finishes. Unlike Openflow, SMOG works with legacy network

components. Several approaches use such network level redirection to facilitate wide area

live migration of VMs. Bradford et. al. [14] propose one such mechanism which uses dyn-

DNS with tunneling, along with pre-copying and write throttling, to migrate servers across

WANs but experiences several tens of seconds of downtime. Transit portal (TP) [13] is

another such mechanism which provides a technique to perform wide area server migration

using wide area route control to divert traffic to the new server location. However, such an

approach can result in outages for several seconds to minutes (equal to the convergence

period of BGP in the wide area) along with termination of existing connections. Contrary

to these mechanisms, we leverage VLAN technologies to minimize outages to less than a

second and provide seamless connectivity to the end-users.

SMOG builds on existing mechanisms [54, 55], using VPLS and VLANs to support

seamless WAN migration of VMs. It performs route control to reap the benefits offered by

such migration. Wide area route control enables us to achieve least latency paths from the

clients to the servers hosted in the cloud.

6.2 Latency Sensitivity of Online Games

The requirement of having low and predictable latency between the game server and the

player to ensure good user experience is well known, both in the game research commu-

nity and the online gaming industry. Several studies have tried to evaluate how player

performance and satisfaction vary with the network Quality of Service (QoS) experienced

by players during the game. Chen et. al. [3] study the effect of QoS on MMOGs and con-

clude that the player session times decrease with increased network latency and loss rate. A

study [4] of how latency affects player decisions to choose game servers, shows that players

of Quake III do not typically choose servers whose latency to them is more than 150ms.

Another study [5] examines real world servers of Unreal Tournament 2003 [26] to under-

stand the typical ranges of packet loss and latency and concludes that while packet loss

may not affect player performance significantly, latencies above 100ms can significantly

29

degrade performance of shooting precision weapons and latencies above 150ms make the

game feel sluggish. Further, Wattimena et. al. [6] develop a metric to quantify player sat-

isfaction and determine how this varies with network conditions – they infer that increased

latency and jitter decrease player satisfaction.

The above studies along with several others [16–19] provide similar conclusions – net-

work QoS has a very significant impact on player performance and satisfaction; both for

fast-paced FPS games and the slower MMOGs. Drawing motivation from this large body

of work, SMOG tries to ensure that players achieve high levels of satisfaction by ensuring

that the network QoS requirements are always met – otherwise, it migrates the game server

to a more suitable location given the current set of players.

6.3 Efficiently Hosting Online Games

Given the strict QoS requirements of online games as discussed above, game providers

find it challenging to host interactive games over the Internet. Large-scale games such as

Second Life [20] have replicated server infrastructure across the Internet which ensures

that players can find servers that are close to them and hence, achieve lower latency. Others

such as Quake III [8] are hosted by individual players which ensures that the servers are

distributed all over the world. Further, games like Halo [56] use matchmaking services [32]

to ensure that the users are matched to the servers that are closest to them. However, these

solutions do not solve the problem of hosting games which have not yet achieved sufficient

player population, or have players who play on distant servers due to reasons other than

network latency (e.g., social preferences).

Several solutions for simplifying the problem of hosting games have been proposed in

the research community. Many of these [57–59] include the use of middleware platforms

which focus on dynamically increasing the number of servers required to deal with client

load. These approaches, hence, help in determining how many servers are needed to handle

player load. Beskow et al. [60] use middleware redirection to achieve migration of game

state in the wide area, but this can suffer from large downtimes during migration of game

state. Further, some proposals dynamically improve player latencies by changing the way

game software is architected – for example, by using proxies [60] or P2P infrastructures [9].

In contrast to these approaches, SMOG helps to determine when and where to move

game servers in order to reduce network latency and achieve a better user experience.

SMOG leverages network layer support to achieve this while ensuring very low application

downtime. Further, we believe the VM platform approach taken by SMOG is a more prac-

30

tical solution because it relieves game developers from additional software and operational

complexity. SMOG is more practical to deploy at scale because it requires only infrastruc-

ture and primitives that most cloud service providers already have in place. In contrast to

previous solutions to improve latency, existing latency-sensitive games could benefit from

SMOG without any changes, thus providing an immediate potential customer-base for such

providers.

We note that SMOG migrates game servers in response to variations in server loads

and connection quality in the wide area. SMOG does not deal with the unpredictability

of network characteristics within a single cloud data-center which has been demonstrated

widely [61–63] and can impair the ability to host latency-sensitive applications. Several

recent works such as SecondNet [64], Oktopus [65] and D3 [66] try to solve this issue

and provide mechanisms to ensure that applications running in cloud settings can achieve

predictable performance. These mechanisms complement SMOG and can help in building

a comprehensive game hosting framework.

31

Chapter 7

Conclusions

Today, online games are one of the most popular form of entertainment with a multi-billion

dollar market [1] and a rapidly increasing player population [67]. In spite of their growing

popularity, game providers encounter several difficulties in hosting their games due to their

strict requirements on network Quality of Service (QoS). In addition, several games may

not have the required player population to justify their need for a dedicated infrastructure

or may require the game servers to be hosted by individual players. This can lead to further

poor connectivity to the game servers. Cloud computing platforms provide an attractive

option for such games as they reduce the cost of hosting games while eliminating issues

such as cluster maintenance. However, given the requirements of online games, such plat-

forms can provide no guarantees on the QoS achieved between the players and the game

servers. In this work, we aim to solve this problem of hosting online games on cloud plat-

forms while ensuring good network QoS to the players and hence, high user satisfaction.

To this end, we propose a platform for Seamless Migration of Online Games or SMOG,

which ensures that the location of the game server is dynamically chosen to provide the

best game play to all the players on the server.

Unlike traditional cloud computing platforms, SMOG’s infrastructure is distributed across

the wide area and integrated with network support to provide enhanced service to online

games. SMOG builds on traditional live migration techniques and uses them along with

intelligent route control in the wide area to seamlessly migrate game servers across data-

centers. SMOG’s control platform continuously monitors connections from a game server

to the players. Using this as input to an optimization framework, it determines the best

physical location for hosting the server while meeting the capacity constraints of the end-

points. Once the control platform determines where to move the game server, SMOG live

migrates the game server to the target location. It then creates ARP and BGP announce-

ments in order to ensure that the traffic from the players reach the game server along the

best paths. Using these mechanisms, SMOG ensures that games achieve better end user

experiences.

We realized a working prototype of SMOG on a Tier-1 ISP’s backbone network, achiev-

32

ing less than 200 ms of application downtime during migration. For this, we modified the

default hypervisor of Xen to speed up the connection close between the end points at the

end of migration. This change decreased the downtime from about 470 ms to just 170 ms,

ensuring uninterrupted game play for the users. Further, we evaluated our prototype of

SMOG using a user study, where users were made to play various scenarios, with and

without migration, and asked to rate the game play based on their experience. We found

that users did not notice the presence of migration and that their game play (quantified

using number of kills) was not affected by it. This shows that SMOG achieves seamless

server relocation while being unnoticed by the players. Further, we show that SMOG is

capable of operating under a variety of network conditions and can tolerate bandwidths as

low as 50Mbps and network RTTs as high as 180ms.

7.1 Future Work

While this work focuses on online games, SMOG can also be used to improve the per-

formance of other latency-sensitive applications and online services. It is a first step to-

wards addressing the broader challenge of integrating cloud resources with the network,

an approach that we believe is essential to realize the full potential of cloud computing

for highly-interactive applications. The following include avenues for future work which

would enable a comprehensive framework for hosting such applications on cloud platforms.

Persistent state migration: Some games, such as Massively Multiplayer Online Games

(MMOGs), maintain long-lived persistent game worlds on servers. While the state repli-

cation mechanisms used by SMOG work well for such games under low update rates, it

is unclear how the use of DRBD would scale under (a) increased load, with several 1000s

of updates per second and (b) increased migration rate, with the geographical distribution

of player population on a server changing every few minutes. Using other state replication

techniques such as wide-area SAN present a promising alternative to using synchronous

replication mechanisms like DRBD.

Supporting multiple servers: Games like Second Life [68] host a single virtual world

on a distributed collection of servers. Today, these servers are always hosted within the

same data center but SMOG would allow them to move to geographically distributed data

centers. Extending SMOG to support migration of multiple servers while ensuring low

overhead and consistency, is an interesting problem and will allow such games to reap of

benefits of wide area migration.

Bandwidth and other resource constraints: In addition to latency, emerging game

33

hosting platforms also have substantial bandwidth constraints. For example, OnLive [11]

streams game state to players as a video rather than as small state updates. Integration of

such hosting services with SMOG could substantially reduce bandwidth costs and improve

interaction latencies by ensuring that videos are always streamed from servers near clients.

The optimization framework of SMOG can be extended to include bandwidth constraints

to address this problem.

Support for other interactive applications: In this work, we describe SMOG as a plat-

form for efficiently hosting online games. However, its main primitive of seamlessly mi-

grating application processes across the wide area can also provide similar benefits for

other latency sensitive applications such as video conferencing etc. It would be interesting

to understand the performance of SMOG when used for such applications as they might

have different metrics to optimize along with a different set of constraints (e.g., bandwidth

available for clients).

New network primitives: SMOG provides seamless wide area migration as a primitive

for highly interactive online games. We believe that exposing other network-level proper-

ties and providing new network primitives to the applications can help them perform better.

While such exposure can lead to unintended problems (e.g., new security vulnerabilities),

they will nevertheless improve end-user experience as applications can decide what support

they require from the underlying network.

34

References

[1] “Online game market,” http://www.gamesbrief.com/2010/06/the-online-games-

market-was-worth-15-billion-in-2009-and-will-grow-to-20-billion-in-2010/.

[2] “217 million people play online games,” http://techcrunch.com/2007/07/10/217-

million-people-play-online-games/.

[3] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive are online gamers to network

quality?” Commun. ACM, vol. 49, no. 11, 2006.

[4] “Lag over 150 milliseconds is unacceptable,” http://gja.space4me.com/things/quake3-

latency-051701.html.

[5] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool, “The

effects of loss and latency on user performance in unreal tournament 2003,” in

NetGames, 2004.

[6] A. F. Wattimena, R. E. Kooij, J. M. van Vugt, and O. K. Ahmed, “Predicting the

perceived quality of a first person shooter: the quake iv g-model,” in NetGames, 2006.

[7] “Counter-strike: Source on steam,” http://store.steampowered.com/css.

[8] “Quake III Arena,” http://www.quake3arena.com/.

[9] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: a distributed architecture for online

multiplayer games,” in NSDI, 2006.

[10] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and

X. Zhuang, “Donnybrook: enabling large-scale, high-speed, peer-to-peer games,”

SIGCOMM CCR, vol. 38, no. 4, 2008.

[11] “OnLive,” http://www.onlive.com.

[12] “Open Flow Demo,” http://www.openflowswitch.org/wp/2008/12/video-of-mobile-

vms-demo/.

[13] V. Valancius, N. Feamster, J. Rexford, and A. Nakao, “Wide-area route control for

distributed services,” in USENIX ATC, 2010.

[14] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-area migra-

tion of virtual machines including local persistent state,” in VEE, 2007.

35

[15] “Planeshift,” http://www.planeshift.it/.

[16] G. Armitage, “An experimental estimation of latency sensitivity in multiplayer quake

3,” in ICON, 2003.

[17] K.-T. Chen, P. Huang, G.-S. Wang, C.-Y. Huang, and C.-L. Lei, “On the Sensitivity

of Online Game Playing Time to Network QoS,” in Infocom, 2006.

[18] M. Oliveira and T. Henderson, “What online gamers really think of the Internet?” in

NetGames, 2003.

[19] T. Yasui, Y. Ishibashi, and T. Ikedo, “Influences of Network Latency and Packet Loss

on Consistency in Networked Racing Games,” in NetGames, 2005.

[20] “Second Life,” http://secondlife.com/.

[21] “World of Warcraft,” http://us.battle.net/wow/en/.

[22] “World War II Online,” http://www.battlegroundeurope.com/.

[23] “PlanetSide,” http://www.planetside-universe.com/.

[24] “Cheats could ruin online gaming,” http://www.cbsnews.com/stories/2002/12/09/

tech/main532309.shtml.

[25] “Steam Game Statistics,” http://steampowered.com/status/game stats.html.

[26] “Unreal Tournament,” http://www.unrealtournament.com/.

[27] “Game tracker,” http://www.gametracker.com/.

[28] “QStat,” http://www.qstat.org/.

[29] “Mshmro.com Counter-Strike trace,” http://www.thefengs.com/wuchang/work/cstrike/.

[30] “IpInfoDB,” http://ipinfodb.com/.

[31] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers

in the wild,” in IMC, 2010.

[32] S. Agarwal and J. R. Lorch, “Matchmaking for online games and other latency-

sensitive p2p systems,” in SIGCOMM, 2009.

[33] M. Claypool and K. Claypool, “Latency and player actions in online games,” Com-

mun. ACM, vol. 49, no. 11, 2006.

[34] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, “Live migration of virtual machines,” in NSDI, 2005.

[35] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe, “Cloudnet: dynamic

pooling of cloud resources by live wan migration of virtual machines,” in VEE, 2011.

36

[36] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency between

arbitrary Internet end hosts,” in IMW, 2002.

[37] A. Karaman and H. Hassanein, “Core-selection algorithms in multicast routing - com-

parative and complexity analysis,” Computer Communications, vol. 29, no. 8, 2006.

[38] D. Shmoys and E. Tardos, “An approximation algorithm for the generalized assign-

ment problem,” Mathematical Programming, vol. 62, pp. 461–474, 1993.

[39] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. V. der Merwe, “Anycast

CDNS Revisited,” in WWW, 2008.

[40] X. Chen, Z. Morley, M. Jacobus, and V. Merwe, “Shadownet: A platform for rapid

and safe network evolution,” in Usenix ATC, 2009.

[41] “DRBD,” http://www.drbd.org/.

[42] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori: enlightened page

sharing,” in USENIX ATC, 2009.

[43] K. Zhang, K. Bettina, and A. Denault, “Persistence in massively multiplayer online

games,” in NetGames, 2008.

[44] “Ryzom,” http://www.ryzom.com/en/.

[45] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, , and R. Wat-

tenhofer, “Achieving High Utilization with Software-Driven WAN,” in SIGCOMM,

2013.

[46] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience

with a Globally-Deployed Software Defined WAN,” in SIGCOMM, 2013.

[47] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Remus:

high availability via asynchronous virtual machine replication,” in NSDI, 2008.

[48] “Xen,” http://www.xen.org.

[49] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum,

“Optimizing the migration of virtual computers,” SIGOPS Oper. Syst. Rev., vol. 36,

pp. 377–390, 2002.

[50] M. Kozuch and M. Satyanarayanan, “Internet Suspend/Resume,” in WMCSA, 2002.

[51] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.

Steere, “Coda: A Highly Available File System for a Distributed Workstation Envi-

ronment,” IEEE Trans. Comput., vol. 39, no. 4, Apr. 1990.

[52] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.

Sidebotham, and M. J. West, “Scale and Performance in a Distributed File System,”

ACM Trans. Comput. Syst., vol. 6, no. 1, pp. 51–81, 1988.

37

[53] M. Nelson, B. H. Lim, and G. Hutchins, “Fast transparent migration for virtual ma-

chines,” in USENIX ATC, 2005.

[54] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, “Live data center migration

across WANs: a robust cooperative context aware approach,” in INM, 2007.

[55] T. Wood, P. Shenoy, A. Gerber, K. K. Ramakrishnan, and J. Van der Merwe, “The

case for enterprise-ready virtual private clouds,” in HotCloud, 2009.

[56] “Halo waypoint,” http://www.halowaypoint.com/en-us/.

[57] D. Saha, S. Sahu, and A. Shaikh, “A service platform for on-line games,” in

NetGames, 2003.

[58] A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha, “Implementation of a service

platform for online games,” in NetGames, 2004.

[59] P. Quax, J. Dierckx, B. Cornelissen, G. Vansichem, and W. Lamotte, “Dynamic

server allocation in a real-life deployable communications architecture for networked

games,” in NetGames, 2008.

[60] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz, “Latency reduction by dy-

namic core selection and partial migration of game state,” in NetGames, 2008.

[61] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the cloud:

observing, analyzing, and reducing variance,” in VLDB, 2010.

[62] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability of production

cloud services,” in CCGRID, 2011.

[63] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving mapre-

duce performance in heterogeneous environments,” in OSDI, 2008.

[64] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang, “Sec-

ondnet: a data center network virtualization architecture with bandwidth guarantees,”

in Co-NEXT, 2010.

[65] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable datacen-

ter networks,” in SIGCOMM, 2011.

[66] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never than late: meet-

ing deadlines in datacenter networks,” in SIGCOMM, 2011.

[67] “Gaming Market - Global Industry Analysis, Size, Growth, Share and Forecast,”

http://www.transparencymarketresearch.com/global-gaming-market.html.

[68] “Second Life Working Group,” http://wiki.secondlife.com/wiki/Architecture Working-

Group.

38

	Chapter 1 Introduction
	Contributions

	Chapter 2 Study of Online Games
	Background: Online Games
	Measurement Study
	Data Sets
	Results

	Chapter 3 Supporting Online Games on Cloud Platforms
	SMOG Architecture
	Enabling Wide Area Migration
	Optimized Server Placement in SMOG

	Chapter 4 Realizing SMOG in Practice
	System Deployment Details
	Addressing Downtime during Migration
	Addressing Challenges in Practice

	Chapter 5 Evaluation of SMOG
	User Study
	Performance Analysis

	Chapter 6 Related Work
	Migration of Virtual Machines
	Latency Sensitivity of Online Games
	Efficiently Hosting Online Games

	Chapter 7 Conclusions
	Future Work

	References

