
c© 2014 by Nirman Kumar. All rights reserved.

IN SEARCH OF BETTER PROXIMITY

BY

NIRMAN KUMAR

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Associate Professor Sariel Har-Peled, Chair
Professor Jeff Erickson
Associate Professor Mahesh Viswanathan
Professor David M. Mount, University of Maryland

Abstract

Given a set of points in a metric space, a fundamental problem is to preprocess these points for answering

nearest-neighbor queries on them. Proximity search is the problem of answering more general queries that

need the first, second, or further closest neighbors of a query point, possibly in spaces where a separation

function is defined which may be more general than a metric. In this thesis, we look at several proximity

search problems. Our goal is to better understand, when proximity search is easy, i.e., there is a data-

structure requiring near-linear space and allowing logarithmic query time. We study three problems:

(i) Answering nearest-neighbor queries in a metric space when the query is restricted to a subspace of low

doubling dimension. We show that even though the points lie in a high dimensional ambient space,

the problem is inherently low dimensional.

(ii) Answering kth nearest-neighbor queries in Euclidean space. We provide a sub-linear space data-

structure for this problem. We also extend this to the case when the data points are replaced by

disjoint balls (of arbitrary radii), and the distance of a query point to a ball is the distance to the ball

as a set.

(iii) We consider more general distance functions and proximity search queries on them. This translates

to the abstract problem of computing the lower envelope of a set of functions, for a query point. For

this abstract problem, we provide a set of sufficient conditions that allow efficient data-structures for

computation of the lower envelope. We apply this to several problems of interest. Among new results,

we provide approximate weighted Voronoi diagrams in low dimensional Euclidean space.

ii

To my family.

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Sariel Har-Peled. He showed confidence in me right

from the start. When I was first admitted to grad school in UIUC, Sariel had graciously accepted me as a

student. After I had finished my masters, and had spent some time in industry, Sariel again agreed to take

me as a student. His confidence in me has been a great motivation for me. He has taught me how to do

research, write and present my research better, and to cultivate taste in research problems. Sariel funded my

research right from the start of my PhD to the very end, and allowed me to travel to conferences, even though

I was not presenting – this has been very helpful for my research career. His jokes have been enlightening

and levitating, especially when research seemed hard and dragging down. I thank him whole-heartedly for

taking me as his student and mentoring me.

I would like to thank all the faculty at UIUC, from whom I learned much of Computer Science and

math, simply by listening to them. I would like to thank Profs. Sarita Adve, Gul Agha, Jozsef Balogh,

Bruce Berndt, Roy Campbell, Chandra Chekuri, Jeff Erickson, Zoltan Furedi, Sariel Har-Peled, Ely Kerman,

Alexandra Kolla, Jose Meseguer, Manoj Prabhakaran, Hal Schenck, Paul Schupp, Mahesh Viswanathan and

Doug West.

I would like to thank Chandra Chekuri and Jeff Erickson for the excellent advice they offered me along

the way, and the excellent teaching they offered. I hope it has helped me improve as a teacher.

I would like to thank all my teachers, for instilling the love of academic pursuits, by their teaching.

I thank all my office mates, past and present, for being great friends and co-workers and I will miss the

time spent with them. So, thanks to Naman Agarwal, Shashank Agrawal, Hsien-Chih Chang, Alina Ene,

Kyle Fox, Shalmoli Gupta, Sungjin Im, Nitish Korula, Vivek Madan, Hemanta Maji, Ben Moseley, Amir

Nayyeri, Kent Quanrud, Ben Raichel, Daniel Schreiber and Chao Xu.

I would like to thank my parents and my elder brother for all the love and support along the way, and

for being my first teachers. I can still remember the time when math seemed arcane and hard (it still does,

but slightly lesser and for different reasons), and they taught me patiently till I understood a few things,

saw the beauty and simplicity of numbers and geometry, and found a new love in Mathematics.

iv

I thank all my friends for being there for me whenever I needed them.

I thank my wife, Neha, for being a perfect companion, and making Urbana-Champaign a fun place to

live in. All these years, I never felt Urbana-Champaign was even slightly boring, though having lived here

for a while, sometimes it got very boring when she was not around. I thank her for her love, patience and

support.

Thanks to my daughter Nysa, for being a constant source of pleasure in life. Her sense of wonder at the

simplest things, and of late her many questions, reaffirm my belief that the world is a very interesting place,

even though I am conditioned to think that I understand it very well. But simply thinking why she finds

something very interesting, has sometimes given me inspiration to look at things differently, as well as to

think how I can present things that I think are obvious to me, in a new and interesting manner.

Finally, I would like to thank the great Masters, who inspire us all by their exemplary work, to dedicate

serious hours of study and thought to research, which at the face of it seems pointless, as can be experienced

when we try to explain what we do to others, but when we do it, we know the tremendous satisfaction it

gives us.

v

Table of Contents

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Proximity Search and Generalizations . 1

1.1.1 Abstract proximity search . 4
1.2 Low Dimensional Queries . 5

1.2.1 Our Results . 5
1.3 k-ANN Queries in IRd . 7

1.3.1 Our Results . 7
1.4 k-ANN Queries for Balls in IRd . 7

1.4.1 Our Results . 8
1.5 Approximating Lower Envelopes . 8

1.5.1 Our Results . 8

Chapter 2 Preliminaries . 10
2.1 Notation and basic definitions . 10
2.2 Model of computation . 10
2.3 Quadtrees . 11
2.4 Nets in a Metric Space . 12
2.5 Grids . 12
2.6 Well Separated Pairs Decomposition . 13
2.7 Approximate Voronoi Diagrams(AVD) . 14

2.7.1 The Arya and Malamatos Construction . 14
2.8 Doubling Dimension . 15
2.9 Net-trees . 16

Chapter 3 Low Dimensional Queries . 18
3.1 Problem and Model . 18

3.1.1 Warm-up exercise: Affine Subspace . 18
3.1.2 An Embedding . 19

3.2 A Constant Factor ANN Algorithm . 21
3.3 Answering (1 + ε)-ANN . 22
3.4 Answering (1 + ε)-ANN faster . 24

3.4.1 The construction . 25
3.4.2 Analysis . 25

3.5 Online ANN . 28
3.5.1 Online AVD Construction and ANN Queries . 28
3.5.2 Correctness . 30
3.5.3 Bounding the number of regions created . 32
3.5.4 The result . 39

3.6 Conclusions . 39

vi

Chapter 4 Sublinear Space Data-Structures for k-ANN in IRd 40
4.1 Introduction . 40
4.2 Preliminaries . 42

4.2.1 Problem definition . 42
4.2.2 Basic tools . 42

4.3 A (15, k)-ANN in sublinear space . 44
4.4 Approximate Voronoi diagram for dk(q,P) . 45

4.4.1 Construction . 46
4.4.2 Correctness . 48
4.4.3 The result . 51
4.4.4 A generalization – weighted version of k ANN . 52

4.5 Density estimation . 53
4.5.1 Performing point-location in several quadtrees simultaneously 53
4.5.2 Slowly growing functions . 54
4.5.3 The data-structure . 56

4.6 ANN queries where k and ε are part of the query . 58
4.6.1 Rough approximation . 58
4.6.2 The result . 60
4.6.3 Weighted version of (1 + ε, k)-ANN . 60

4.7 Conclusions . 61

Chapter 5 Sublinear Space Data-Structures for k-ANN on Balls 62
5.1 Problem definition and notation . 62
5.2 Approximate range counting for balls . 63

5.2.1 Approximate range counting among balls . 64
5.3 Answering k-ANN queries among balls . 66

5.3.1 Computing a constant factor approximation to dk(q,B) 66
5.4 Quorum clustering . 69

5.4.1 Computing an approximate quorum clustering . 69
5.5 Construction of the sublinear space data-structure for (k, ε)-ANN 72

5.5.1 Preliminaries . 72
5.5.2 Correctness . 74
5.5.3 The result . 76

5.6 Conclusions . 77

Chapter 6 Generalized Proximity Search . 78
6.1 Introduction . 78
6.2 The framework and summary of results . 80

6.2.1 Problem statement . 80
6.2.2 Informal description of the technique . 80
6.2.3 Notations and basic definitions . 82
6.2.4 Conditions on the functions . 84
6.2.5 Summary of results . 86

6.3 Constructing the AVD . 88
6.3.1 Building blocks . 88
6.3.2 The search procedure . 93
6.3.3 The connectivity tree, and the preprocessing . 95
6.3.4 The result . 98

6.4 Applications . 99
6.4.1 Multiplicative distance functions with additive offsets 99
6.4.2 Scaling distance – generalized polytope distances . 101
6.4.3 Nearest furthest-neighbor . 105
6.4.4 Satisfaction of conditions . 106

6.5 Conclusions . 107

vii

Appendix A Basic properties of the functions . 109

Appendix B Bounding the size of intersection of balls of the same radius 111

References . 112

viii

List of Figures

3.1 An example of embedding of space into two dimensions where M is the x-axis. 19
3.2 The quantities α(p) and h(p). 20
3.3 Preprocessing the subspace M to answer (1 + ε)-ANN queries on P. Here c2 is a sufficiently

large constant. 25
3.4 Computing a (1 +O(ε))-ANN in P for a query point q ∈M. 25
3.5 Answering (1 + ε)-ANN and constructing AVD. 29
3.6 Examples of a computed AVD region Cq. 29

4.1 Quorum clustering for n = 16 and k = 4. 43
4.2 Quorum clustering, immediate environs and grids. 46
4.3 Notations used. 55

6.1 Search algorithm: We are given a query point q, and an approximation parameter ε > 0. The
quantity N is a parameter to be specified shortly. Initially, we call this procedure on the set
of functions F with Υ being the partition of F into singletons (i.e., ` = 0). 93

6.2 Being α-rounded fat. 101
6.3 A α-fat star shaped region that is not α-rounded fat. Clearly, the gap between the rounded

fatness parameter and the regular fatness parameter can be made to be arbitrarily large. . . . 101
6.4 A α-fat convex body is α-rounded fat (for the same center point ρ). 101
6.5 The (1 + ε) expansion of yJ contains ball(p, x). 103
6.6 The object J is α-fat but not α′-rounded fat. In particular, the point p is in J⊕ball(0, (ε/c)diam(J))

but not in (1 + ε)J , and the scaling distance function is not well defined at u. 103

ix

Chapter 1

Introduction

1.1 Proximity Search and Generalizations

Proximity search is a generalization of nearest-neighbor search. The problem is fundamental in several areas

of Computer Science. Knuth, see [Knu98], attributes an early solution for geometric proximity search to

McNutt, which he named as the post office problem . In another early appearance, it was called best-

match file searching [BK73]. In information-retrieval literature, it is known as the problem of building an

index for similarity search [HS03]. In the information theory literature it appears as the problem of building

a vector quantization encoder [LBG80, GN98]. In statistics and learning theory it has been termed as fast

nearest-neighbor classifier [DGL96].

In the nearest-neighbor problem, we are given a set P of n points in a metric space, typically IRd equipped

with the usual `2 metric, and we need to preprocess them, so that given a query point q, the closest point

among the data points can be found efficiently. There is a straightforward algorithm to solve this problem

in linear time per query, that iterates through each of the data points and returns the closest such point to

q. However, some preprocessing can improve the query time.

In the plane, i.e., d = 2, for instance, we can construct the Voronoi diagram of the points, that can be

stored using O(n) space along with a point location data-structure that can locate the cell in the Voronoi

diagram containing a query point q. The point location data-structure also takes O(n) storage space, and

allows a O(log n) query time to locate a query point. Therefore, if each cell in the Voronoi diagram is

annotated with the nearest neighbor among the data points, we have a nearest neighbor data-structure that

takes O(n) space and affords O(log n) query time. This result is surprising, and is still one of the classical

cornerstones of Computational Geometry and books on Computational Geometry written even today present

this result in sufficient detail, which it deserves. The same framework extends to higher dimensions, but the

space usage of the data-structure is very high – specifically, the space required to store the Voronoi diagram

is Θ(ndd/2e) in the worst case. Clarkson [Cla88] showed a data-structure with query time O(log n) and space

usage O(ndd/2e+δ), where δ > 0 is a pre-specified constant, and the O(·) notation here hides constants cd

1

for small constants like c = 2, that are exponential in the dimension d. Matoušek and Agarwal showed that

one can trade off the space used and the resulting query time [AM93a]. Mesier [Mei93] provided a data-

structure with query time O(d5 log n), which achieved polynomial dependence on the dimension d, where

the space used is O(nd+δ), which is the square of the usage by the data-structure of Clarkson. Even though

these results are theoretically impressive and interesting, they are not too good for practical purposes if the

dimension is larger than 2. Even data sets of moderate size will require too much space, as the space usage

is quadratic or worse. Fortunately, in real world applications of this problem, it is often sufficient to work

with an approximate answer to this problem. We now define an approximate version of the nearest neighbor

problem in IRd.

In the approximate version of the problem, we are required to return a data point such that its distance

from q is at most (1 + ε) times the distance of q to the closest data point. The parameter ε is the accuracy

requirement of the problem and the space requirement of the data-structure depends on ε. Considerable

amount of research work has been done on this problem too, see [Cla06]. This problem was first considered

by Bern [Ber93], who showed that the fixed approximation factor of O(d1/2) can be achieved in a O(n)

sized quad-tree based data-structure with O(log n) query time. Arya and Mount [AM93b] showed that the

approximation factor can be brought down to (1 + ε) if ε > 0 is specified at the time of preprocessing. They

used a randomized data-structure of near-linear size that achieves poly-logarithmic query time in expectation.

Finally, the seminal work of Arya et al. [AMN+98] showed that the approximation parameter ε can even be

specified as part of the query. Their data-structure, known as a BBDtree, thus has space requirement O(n)

which is independent of ε. The query time is O((1/εd) log n). Mount and Arya implemented this algorithm

and made its optimized code available as a library [AM98]. Many researchers have proposed improvements

to this data-structure, mainly to move the dependence of the query time on ε from a multiplicative factor

to an additive one, see [Bes96, Dun99, Cha02, Cha06]. The best one of these improves the query time to

O(log n + 1/εd−1). Achieving even better dependence on ε is also a major researched problem. Clarkson

[Cla94] and Chan [Cha98] showed that query time of O((1/ε(d−1)/2) log n) can be achieved by increasing

the size of the data-structure to roughly O((1/ε(d−1)/2)n). Using a conceptually different approach, Har-

Peled [Har01] achieved the best query time till date of O(log(n/ε)) using a data-structure of size roughly

O((1/εd)n log2 n). Har-Peled defined an analogue of classical Voronoi diagrams, known as approximate

Voronoi diagrams (AVD), which is a partition of space into regions, of near-linear total complexity, and an

associated data point in each region, which is a valid (1+ε)-ANN for any point in the region. The space bound

was improved by Sabharwal et al. [SSS06] by a logarithmic factor. Arya and Malamatos [AM02] simplified

these results and reduced the space complexity further to O((1/εd)n). Finally, the space complexity was

2

reduced to O((1/εd−1)n) by Arya, Malamatos, and Mount [AMM02]. They also showed that (1 + ε)-ANN

queries can be answered in O(log n+ (1/ε(d−1)/2)) time, see also [AMM09]. All of these data-structures rely

on computing an AVD of the point set and then building a point location data-structure for it.

ANN for high dimensional spaces. This thesis deals with problems in spaces of fixed, constant dimension

d. Since the space of our data-structures and query times depend exponentially on the dimension d, if the

dimension d is larger than log n, all the above mentioned algorithms are even worse than the “brute-force”

algorithm, which computes the distance from the query to every point in P, and answers queries in O(dn)

time. Arguably, the algorithms and data-structures, as well as the ones proposed and studied in this thesis,

work only for low dimensions d – a rough ballpark figure is 20, for which the Arya and Mount library code

works with excellent performance. For the sake of completeness however, we also mention some known

results on the extremely important problem of ANN search in high dimensions d.

Kleinberg [Kle97] showed that by combining one dimensional random projections in a novel way, a (1+ε)-

ANN query can be answered in O(n+ d log3 n) time using roughly O(dn) space. Later, Indyk and Motwani

[IM98] and Kushilevitz et al. [KOR00] showed that polynomial space nO(1/ε2) can be used to answer queries

in time polynomial in d, log n, and 1/ε. The best result along these lines is that of Ailon and Chazelle

[AC09], who showed that queries can be answered in time O(d log d + 1/ε3 log2 n) using the same space.

Techniques used in the above solutions include random projection (for example, dimension reduction and

locality sensitive hashing [DIIM04]) and divide-and-conquer.

General metric spaces. The ANN problem has been studied for more general metric spaces, than Eu-

clidean spaces. Data structures for proximity searching in metric spaces have been known for some time,

see for example, [Bri95, FS82, Yia93]. Clarkson [Cla99] and later Karger and Ruhl [KR02] designed models

to capture the sphere packing and local growth properties of low dimensional Euclidean spaces and studied

their relation to the ANN problem. Much of the recent work has focused on metric spaces of low doubling

dimension [Ass83]. The doubling dimension of a metric space is the minimum value τ such that every

ball in the space can be covered by 2τ balls of half the radius. This model was applied to various proximity

problems by Krauthgamer, Lee, and co-authors [GKL03, KL04, KL05, KL06]. The results have been ex-

tended by Har-Peled and Mendel [HM06] and others [BKL06, CG06]. A thorough survey on metric space

dimensions related to nearest-neighbor searching can be found in Clarksons paper [Cla06]. The results de-

scribed in these papers on doubling spaces apply in the black box model , in which points of the space can

only be accessed through a black box that computes the distance between any two points in constant time.

The model thus relies only on the barest set of assumptions, and so it is possible to obtain the conceptually

3

simplest and most general algorithms. In this model, Har-Peled and Mendel [HM06] have shown that, given

a set P of n points in a metric space of doubling dimension τ , (1 + ε)-ANN queries can be answered in time

O(log n) + 1/εO(τ) using a data-structure of linear space. Cole and Gottlieb [CG06] presented a dynamic

data-structure with similar query time and size. Their data-structure can also support point insertion and

deletion in O(log n) time. (These asymptotic bounds hide multiplicative factors that depend on the doubling

dimension, except for the space bounds of Cole and Gottlieb [CG06], which are truly O(n), irrespective of

the dimension.)

1.1.1 Abstract proximity search

We now define the proximity search problem more abstractly, including its approximate version. Proximity

search can be formulated as the following abstract problem. Given two setsQ and X , a separation function

ψ : Q×X → IR+, and a set of n data points D = {d1, . . . ,dn} ⊆ X , one is required to pre-process the data

points such that given a query point q ∈ Q one can output the element d ∈ {d1, . . . ,dn} such that ψ(q,d)

is the minimum of the numbers ψ(q,d1), . . . , ψ(q,dn). Yet another generalization of this problem is similar

to a rank query. We are additionally given an integer k with 1 ≤ k ≤ n and we must return the element

d ∈ {d1, . . . ,dn} such that ψ(q,d) has rank k in the list of numbers ψ(q,d1), . . . , ψ(q,dn). For k = 1 this

problem is known as the nearest-neighbor problem (NN problem) and for k > 1 as the k-nearest neighbor

problem (k-NN problem). The computational model assumes that computing the separation function ψ(q,d)

given any q ∈ Q and d ∈ X requires O(1) time. In general, the space Q can be infinite, and there is no

hope of storing precomputed answers for all possible query points. On the other hand, a simple O(n) time

algorithm exists, that computes ψ(q,di) for i = 1, 2, . . . , n and does a rank selection query. In the most

general case, not much can be done beyond this trivial algorithm, as a simple adversarial argument can show.

However, by exploiting the structure of the spaces Q and X , and the separation function ψ, one can hope to

design faster query algorithms. In typical applications however, it is sufficient to work with an approximate

answer to a proximity query. For an approximate query for some k where 1 ≤ k ≤ n, one is additionally

specified a real ε > 0 and one needs to return an object d ∈ {d1, . . . ,dn} such that,

ψk(q,X)/(1 + ε) ≤ ψ(q,d) ≤ (1 + ε)ψk(q,X)

where ψk(q,X) is the kth smallest number among the numbers, ψ(q,d1), . . . , ψ(q,dn). When, ε ≤ 1, as is

often the case where approximations are used, a slightly weaker condition is sometimes required,

(1− ε)ψk(q,X) ≤ ψ(q,d) ≤ (1 + ε)ψk(q,X).

4

This problem is the approximate nearest-neighbor problem (ANN problem) for k = 1 and the k-approximate

nearest-neighbor problem (k-ANN problem) for k > 1.

We now describe the problems that have been studied in this thesis.

1.2 Low Dimensional Queries

A natural setting for the ANN problem is the case when the data (or the queries) come from a low dimensional

subspace that lies inside a high dimensional ambient space. Such cases are interesting as it is widely believed

that in practice, real world data usually lies on a low dimensional manifold (or is close to lying on such a

manifold). Such low-dimensionality arises from the way the data is being acquired, inherent dependency

between parameters, aggregation of data that leads to concentration of mass phenomena, etc.

Indyk and Naor [IN07] showed that if the data is in high dimensional Euclidean space, but lies on a

manifold with low doubling dimension, then one can do a dimension reduction into constant dimension (i.e.,

similar in spirit to the Johnson Lindenstrauss lemma [JL84]), such that a (1 + ε)-ANN to a query point

(the query point might lie anywhere in the ambient space) is preserved with constant probability. Using

an appropriate data-structure on the embedded space and repeating this process sufficient number of times,

results in a data-structure that can answer ANN queries in polylog time (ignoring the dependency on ε).

1.2.1 Our Results

We study the “reverse” problem. Here the given set P of points, lies (possibly) in a high dimensional space,

and we would like to pre-process it for ANN queries, where the queries come from a manifold of low doubling

dimension. The question arises naturally when the given data is formed by merging together a large number

of data sets, while the ANN queries come from a single data set.

In particular, the question here is whether this problem is low or high dimensional in nature. Note

that direct dimension reduction as done by Indyk and Naor would not work in this case. Indeed, imagine

the data lies densely on a slightly deformed sphere in high dimensions, and the query is the center of the

sphere. Clearly, a random dimension reduction via projection into constant dimension would not preserve

the (1 + ε)-ANN.

Given the set P lying in a general metric space X (which is not necessarily Euclidean and is conceptually

high dimensional), and a subspaceM having low doubling dimension τ , we show how to pre-process P such

that given any query point in M we can quickly answer (1 + ε)-ANN queries on P. In particular, we get a

data-structure of (roughly) linear size that can answer (1 + ε)-ANN queries in (roughly) logarithmic time.

5

However, we do require access to the query subspace in a non black box fashion.

Our construction uses ideas developed for handling the low dimensional case, i.e., where both the data

and query come from the same space of low doubling dimension. Initially, we embed P and M into a

space with low doubling dimension that (roughly) preserves distances between points in M and points in

P. We can use the embedded space to answer constant factor ANN queries. Getting a better approximation

requires some further ideas. In particular, we build a data-structure over M that is somewhat similar

to approximate Voronoi diagrams [Har01]. By sprinkling points carefully on the subspace M and using

the net-tree data-structure of Har-Peled and Mendel [HM06], we can answer (1 + ε)-ANN queries in time

O(ε−O(τ) + 2O(τ) log n).

To get a better query time requires some further work. In particular, we borrow ideas from the simplified

construction of Arya and Malamatos [AM02] (see also [AMM09]). Naively, this requires us to use well

separated pairs decomposition (i.e., WSPD) [CK95] for P. Unfortunately, no such small WSPD (i.e., of

linear size) exists for data in high dimensions. To overcome this problem, we build the WSPD in the

embedded space. Next, we use this to guide us in the construction of the ANN data-structure. This

improved construction requires space nε−O(τ) and queries can be answered in time 2O(τ) log n.

We also present an algorithm for a weaker model similar to the black box model. Every time an ANN

query is issued, the algorithm computes a region around the query point such that the returned point is a

valid ANN for all the points in this region. Furthermore, the algorithm caches such regions, and whenever

a query arrives it first checks if the query point is already contained in one of the regions computed, and

if so it answers the ANN query immediately; otherwise it finds an ANN and also computes a region where

the found ANN is a valid ANN, and then adds it to the set of regions. Significantly, for this algorithm we

need no pre-specified knowledge about the query subspace. The resulting algorithm computes on the fly, an

AVD on the query subspace. In particular, we show that if the queries come from a subspace with doubling

dimension τ , then the algorithm would create at most n/εO(τ) regions overall. A limitation of this new

algorithm is that we currently do not know how to efficiently perform a point location query in a set of such

regions, without assuming further knowledge about the subspace. Interestingly, the new algorithm can be

interpreted as learning the underlying manifold M the queries come from.

These results first appeared in the conference paper [HK11], and later as a journal paper [HK13a]. In

this thesis, they are presented in Chapter 3.

6

1.3 k-ANN Queries in IRd

Generalizing the ANN problem in IRd, we study the k-ANN problem in IRd. Here we are also given an integer

k with 1 ≤ k ≤ n, and we are required to find a point p ∈ P, whose distance from q is within a multiplicative

factor of 1± ε to the kth NN distance of q to P.

A data-structure of Arya et al. [AMM05], was already known for the case when ε is specified at the time

of preprocessing (but k can be specified during query time). They present a data structure parametrized by

a parameter γ with 2 ≤ γ ≤ 1/ε and achieving a natural space-time trade off with the variance in γ. At one

end of the spectrum where γ = 2 they get a data-structure with space requirement O(n log(1/ε)) and query

time O(log n+ 1/εd) for this problem.

1.3.1 Our Results

We study the problem and also a few applications. Our results are the following.

(i) For the case where k is specified with the query, we improve upon the result of Arya et al. [AMM05],

by showing that the problem can be solved in roughly the same space-time bounds as facilitated by

the method of Arya et al. [AMM05], even if ε is specified only during query. This makes the algorithm

more practical than the algorithm of Arya et al..

(ii) Similar to AVD, one can define the concept of AVD for the k-ANN problem. The case k = 1 is the

regular approximate Voronoi diagram [Har01, AM02, AMM09]. The case k = n is the furthest-neighbor

Voronoi diagram. It is not hard to see that it has a constant size approximation (see [Har99], although

it was probably known before). We show that this AVD has complexity Õ(n/k).

(iii) We show that certain kinds of problems, which relate to density estimation, can be solved more effi-

ciently than known before, using our data-structure. An example is to compute the function, which

for a given query point q returns the sum of the distances of q to its k nearest-neighbors in P.

These results first appeared in the conference paper [HK12]. In this thesis, they are presented in Chap-

ter 4.

1.4 k-ANN Queries for Balls in IRd

Many of the results for k-ANN queries can be extended to the following generalization of the problem. Here,

instead of points as our input, we have balls, that are disjoint from each other, but the distance of a query

point q to a ball is the distance to its boundary if it lies outside the ball, or 0 if it lies inside the ball.

7

1.4.1 Our Results

We show that the results for points can be extended to the case for balls. More specifically, we show that

one can construct an AVD for this problem of complexity Õ(n/k).

These results are presented in Chapter 5.

1.5 Approximating Lower Envelopes

The algorithms for proximity search generally rely heavily on the triangle inequality. One possible gen-

eralization is to consider separation function as some “distance” where the triangle inequality holds only

approximately, for example, squared distances. However, these variations can typically be handled by small

modifications in the algorithms.

Such general problems can be posed more cleanly in the language of minimization diagrams. The problem

of approximating minimization diagrams, also known as lower envelopes, is a far reaching generalization of

proximity search. We would like to understand, for what classes of functions, can we approximate their

minimization diagrams with the desirable space and query time bounds?

1.5.1 Our Results

Our contributions to this problem are the following: We provide a set of sufficient conditions, and show that

if these conditions are satisfied by a class of functions, then for any set of n functions from the class, one

can pre-process them into a data-structure with the desirable space bound of O(npolylog(n)) and allowing

logarithmic query time for approximating the lower envelope.

Of main interest are applications of this result to concrete classes of functions. We describe here at a

very high and intuitive level a few applications given in this thesis.

(i) We consider the problem of approximate multiplicative weighted Voronoi diagrams, and show that our

framework applies to the class of functions defining multiplicative weighted Voronoi diagrams.

(ii) We consider the scaling distance function defined by a certain class of objects. In particular, the

distance defined by Minkowski metrics of symmetric convex bodies with constant boundary complexity

can be handled by our framework, and we get a data-structure for answering ANN queries for such a

metric.

(iii) For a set of points the furthest-neighbor distance can be approximated easily. We consider the problem,

where we are given a set of point sets, and we want to find the point set, whose furthest-neighbor

8

distance is the smallest, approximately. This problem, the nearest furthest-neighbor problem arises

naturally when trying to model uncertainty. We show how to solve this problem approximately using

our framework.

These results first appeared in the conference paper [HK13b]. In this thesis, they are presented in

Chapter 6.

9

Chapter 2

Preliminaries

This chapter discusses some defintions and data-structures which are used in the later chapters. The dis-

cussion here is not a survey of the material. They serve as short introductions, and include the appropriate

references.

2.1 Notation and basic definitions

Let X denote a metric space. We denote the distance between two points p, q ∈ X by d(p, q). If the metric

space is the Euclidean space IRd for some d, sometimes we also use ‖p− q‖ to denote the distance.

The following definition captures the range of distances for a set of points.

Definition 2.1.1 For a point set P, the spread is the ratio
max
p,v∈P

d(p,v)

min
p,v∈P,p 6=v

d(p,v) .

2.2 Model of computation

For all our algorithms and data-structures our model of computation is the real RAM model, where one can

store and manipulate arbitrarily large real numbers in constant time. As we also use grids, we need to be

able to compute in constant time lg(x) (i.e., log2 x), 2x and bxc. For quadtrees, see below, we also need the

following operation to be done in constant time. It is equivalent to the assumption that for 2 given points

we can construct their quadtree in constant time, see Har-Peled’s book [Har11] for details.

Definition 2.2.1 (Bit index) Let α, β ∈ [0, 1) be two real numbers. When written in base two, where

for definiteness we assume an infinite sequence of trailing 1’s does not occur, suppose α = 0.α1α2 . . . and

β = 0.β1β2 Let bit∆(α, β) be the index of the first bit after the period where they differ.

Assumption 2.2.2 Given two numbers α, β ∈ [0, 1) where α 6= β. Then we can compute bit∆(α, β) in O(1)

time.

10

2.3 Quadtrees

The quadtree is a data-structure used for point location in IRd. A quadtree is imposed on a finite region of

space, say the unit cube [0, 1]d. Conceptually, it is a division of this region into a hierarchy of cells. At any

level of the tree the cells are of the same size, which is a power of two. All cells of the same size are interior

disjoint and cover the given area. The natural tree structure, based on the partial order of the containment

relation on such a collection of cells, is the quadtree. Given a finite point set, if one considers such an infinite

hierarchy of cells and clips it at the right level, it can be seen as a multi-grid representation of the point

set, where all distances between the sets of points have a corresponding level in the quadtree, whose cell

size matches the distance up to a constant factor. If the spread of distances is large, see Definition 2.1.1, a

quadtree for the set of points can be very deep. To go around this problem, a quadtree can be compressed

quite easily and one can have the desired multi-grid representation. Such a compressed quadtree takes O(n)

space for storage. Every node in a compressed quadtree has a region of space associated with it. For a

quadtree, such a region is always a canonical cube, i.e., a cube whose sidelength is a power of two and which

lies inside the unit cube. But for a compressed quadtree, one can have a region which is the set difference of

two such cubes, associated with it. For a node ν of a quadtree let �ν be the region associated with it. We

state several results for quadtrees. The user is referred to the book [Har11] for details and proofs.

Theorem 2.3.1 ([Har11]) Given a set P of n points in the unit cube [0, 1]d, one can construct a compressed

quadtree of P in O(n log n) deterministic time.

In the above construction, one is required to use the assumption about bit index, see Definition 2.2.1.

Occasionally, we also use the following very useful result.

Theorem 2.3.2 ([Har11]) Given a list C of n canonical cubes (i.e., whose sides are powers of two), all

lying inside the unit cube, one can construct a minimal compressed quadtree T such that for any cell c ∈ C,

there exists a node ν ∈ T, such that �ν = c. The construction time is O(n log n).

Finally, we have the following result, which justifies the quadtree as a point location data-structure.

Theorem 2.3.3 ([Har11]) Given a compressed quadtree T of size n, one can preprocess it in time O(n log n),

such that given a query point q, one can return the lowest node in T whose region contains q in O(log n)

time.

11

2.4 Nets in a Metric Space

Given a set of points P in a metric space X , an r-net for P, is a set of points Q ⊆ X , such that for any

different p, v ∈ Q we have that d(p, v) > r and at the same time Q ⊆ ⋃p∈Q ball(p, r), i.e., the balls of radius

r around points in Q cover P. Such a set of points, represents well the set of points P at scale r. We note

that it is possible to compute such a set of points, which is also a subset of P, using a greedy algorithm.

2.5 Grids

Grids are an extremely useful construct used to discretize a continuous region of space. For a real positive

number x and a point p = (p1, . . . , pd) ∈ IRd, define Gx(p) to be the grid point (bp1/xcx, . . . , bpd/xcx). The

number x is the width or sidelength of the grid Gx. The mapping Gx partitions IRd into cubes that are

called grid cells.

Definition 2.5.1 A cube is a canonical cube if it is contained inside the unit cube U = [0, 1]d, it is a cell

in a grid Gr, and r is a power of two (i.e., it might correspond to a node in a quadtree having [0, 1]d as its

root cell). We will refer to such a grid Gr as a canonical grid . Note that all the cells corresponding to

nodes of a compressed quadtree are canonical.

We will often approximate sets in IRd by the set of grid cells that intersect it. The union of these cells

contains the set under concern, and is hopefully not too large if the width of the grid is small. The following

captures this, where the sidelength of the grid is chosen in proportion to the diameter of the set being

approximated.

Definition 2.5.2 Given a set b ⊆ IRd, and a parameter δ > 0, let G≈(b, δ) denote the set of canonical

grid cells of sidelength 2blog2 δdiam(b)/
√
dc, that intersect b, where diam(b) = maxp,u∈b ‖u− p‖ denotes the

diameter of b. Clearly, the diameter of any grid cell of G≈(b, δ), is at most δdiam (b). Let G≈(b) = G≈(b, 1).

It is easy to verify that |G≈(b)| = O(1). The set G≈(b) is the grid approximation to b.

Sometimes it is easier to use an absolute value for the width of the grid, i.e., not defining it in terms of

the set being approximated.

Definition 2.5.3 To approximate a set X ⊆ [0, 1]d, up to distance r, consider the set G≈r(X) of all

the canonical grid cells of G`, that have a non-empty intersection with X, where ` = 2blog2(r/
√
d)c. Let

∪G≈r(X) =
⋃

�∈G≈r(X)�, denote the union of cubes of G≈r(X). Each cube of G≈r(X) has diameter at most

r.

12

Observe that X ⊆ ∪G≈r(X) ⊆ X ⊕ ball(0, r), where ⊕ denotes the Minkowski sum, and ball(0, r) is the

ball of radius r centered at the origin.

Definition 2.5.4 For a ball b of radius r, and a parameter ψ, let �(b, ψ) denote the set of all the canonical

cells intersecting b, when considering the canonical grid with sidelength 2blog2 ψc.

Clearly, |�(b, ψ)| = O
(
(r/ψ)d

)
, for ψ ≤ r.

2.6 Well Separated Pairs Decomposition

Given a set of points P in a metric space X , they define n(n−1)/2 pairwise distances between different points.

By rescaling we can assume that the minimum distance is 1. In this case, the spread, see Definition 2.1.1

gives the maximum distance among the points. However, in certain applications, we need a good idea of all

the different possible distances. In general all the n(n−1)/2 distances can be different. However, we can say

something interesting if we bucketize these distances and for a bucket we mandate that all distances vary

by at most a multiplicative factor of (1 + ε). Clearly, a possible bucketization is to put every distance in its

own bucket. However, that is still Ω(n2) buckets. For algorithmic applications, we would want the smallest

number of buckets. This is not always possible, but in Euclidean spaces it is possible. The definition of a

well-separated pair decomposition (see below), enables us to give further structure for such buckets. These

buckets represent distances of points between small clusters of points.

For a point set P, a pair decomposition of P is a set of pairs W =
{
{A1, B1} , . . . , {As, Bs}

}
, such

that (I) Ai, Bi ⊂ P for every i, (II) Ai ∩ Bi = ∅ for every i, and (III) ∪si=1Ai ⊗ Bi = P ⊗ P. Here

X ⊗ Y =
{
{x, y}

∣∣∣x ∈ X, y ∈ Y, and x 6= y
}

.

A pair Q ⊆ P and R ⊆ P is (1/ε)-separated if max(diam(Q) ,diam(R)) ≤ ε · d(Q,R), where d(Q,R) =

minp∈Q,v∈R d(p, v).

Definition 2.6.1 For a point set P, a well-separated pair decomposition (WSPD) of P with parameter

1/ε is a pair decomposition of P with a set of pairs W = {{A1, B1} , . . . , {As, Bs}}, such that, for any i, the

sets Ai and Bi are ε−1-separated [CK95].

We have the following result, which makes this concept very useful for Euclidean spaces.

Theorem 2.6.2 ([CK95, Har11]) Given a set P of n points in IRd under the Euclidean metric, and ε

with 0 < ε ≤ 1, one can construct a ε−1-WSPD of size nε−d, and the construction time is O(n log n+nε−d).

13

2.7 Approximate Voronoi Diagrams(AVD)

The approximate version of a regular Voronoi diagram is an approximate Voronoi diagram(AVD). For a

set P of n points in IRd, a (1 + ε)-AVD is a partition of IRd into regions which are interior disjoint, and

for each region there is an associated point p ∈ P, such that for any point q in the region, we have that

d(q, p) ≤ (1 + ε)d(q,P). A point location data-structure for an AVD, immediately gives us a data-structure

for the approximate nearest-neighbor problem. AVD’s were first defined by Har-Peled [Har01], see also the

book [Har11] and the journal version of the paper [HIM12]. Har-Peled showed that a (1 + ε)-AVD can be

constructed such that the total complexity of the Voronoi diagram is O(nε−d log2 n). Here the constant in

the O(·) expression are exponential in d. However, this is surprising, as the complexity is near-linear in n,

while that of an exact Voronoi diagram is Θ(ndd/2e), which even for d = 3 is quadratic in n. Sabharwal

[SSS02] showed that an AVD of complexity O(n log nε−d) can be constructed, thus improving the bound by

a logarithmic factor. The best result was achieved by Arya and Malamatos, who gave a conceptually very

simple construction of AVD’s which achieve optimal complexity as a function of n. Their main result implies

the following, which we state in slightly less general form than stated in the paper;

Theorem 2.7.1 Let P be a set of n points in IRd, and 0 < ε ≤ 1/2. One can construct a (1 + ε)-AVD for

P with O(nε−d) regions, where each region is the difference of two cubes. Moreover, for any query point, its

(1 + ε)-ANN can be returned in O(log(n/ε)) time.

In the next section, we describe at an intuitive level, their construction. For details, one can look at their

paper [AM02].

2.7.1 The Arya and Malamatos Construction

Arya and Malamatos roughly do the following to construct a (1 + ε)-AVD. First, they compute a ε/c-WSPD

for some large enough constant c. Next, for each pair (Ai, Bi) of the WSPD, compute approximately their

distance Di. To this end, take any two points, a, b with a ∈ Ai, b ∈ Bi and let d(a, b) = Di : this guarantees

by property of a WSPD that it holds approximately for any a′ ∈ Ai, b
′ ∈ Bi that d(a′, b′) ≈ Di. Now,

consider ball
(
a, 2jDi/4

)
for j = 0, 1, . . . , so that the final radius of the ball around a is roughly Di/ε and

similarly balls of these radii around b. We tile ball
(
a, 2jDi/4

)
by quadtree cells of size roughly ε2jDi. The

union of all cells, arising from all such balls around a and b are thrown into a quadtree for point location,

i.e., given a query q we would need to output the “innermost” or smallest cell containing it, or report that q

is outside the union. Also, for each of these cells, we need to choose an arbitrary point (the representative of

the cell) and a ANN among P for the representative point, which can be computed, say, by the algorithm of

14

Arya et. al. [AMN+98]. For a query, once we locate the smallest cell containing it we can simply report the

ANN stored for its representative point. To see why it works at an intuitive level, notice that in the region,

which is the union of the balls given, except for the smallest one (i.e., from the union we remove the region

occupied by the smallest balls), the AVD intuitively does not have any “challenge” in deciding between any

point of Ai and any point of Bi. This is true because the smallest distance to Ai ∪ Bi is roughly at least

Di/4 (or 2jDi/4, if the query lies in a further off region), while the smallest cell containing the query point

is roughly ε times this number. As such, by Lipschitzness of distance, the reported ANN is correct (as far

as competition between Ai, Bi is concerned). For a more global argument, one simply sees that all pairs of

points occur in some such pair, as such competition between any pair of points is resolved correctly for the

query point.

2.8 Doubling Dimension

The real space of d dimensions has a natural concept of dimension, coming from the underlying affine space

IRd. When the space is endowed with a norm, such as the usual `2 Euclidean norm, the dimension d plays a

key role in several metrical concepts. However, going further it ties up with the natural volume (Lebesgue)

measure on the space through packing bounds. Thus, for example one has the following phenomena: The

number of dilates of an object by a factor 1/2 that are disjoint and contained within the object is at most 2d.

This follows by a simple volume packing bound. Many algorithms in Computational Geometry, and most

particularly approximation algorithms make use of such packing bounds to obtain bounds on the size of

ε-nets in the space. Intuitively, the following principle is a powerful workhorse of approximation algorithms.

Suppose one knows that the solution to a problem has size at least Ω(R). If to find an approximate solution,

one needs to explore a space of diameter O(R), one can restrict oneself to examining the space at a scale

of resolution roughly εR, where (1 + ε) is the degree of approximation desired. By the packing bounds

mentioned above, this leads to the examination of a constant sized set of points. In trying to extend such

a phenomena to general metric spaces, we are immediately faced with several problems. Firstly, there is no

intrinsic notion of dimension and secondly, there is no notion of volume. However, the following definition

captures both of these concepts with surprising efficacy.

Definition 2.8.1 A metric space X is said to be of doubling dimension τ if every ball of radius R in the

space can be covered by 2τ balls of radius R/2.

Note that in the above definition we do not require the covering balls to be disjoint. The strength of the

above definition is that it can even apply to discrete or finite metric spaces. A few simple properties are the

15

following, which attest to the strength of this definition, and point to the fact that the definition is really

talking about the intrinsic dimension.

Lemma 2.8.2 For any finite metric space on n points, the doubling dimension is bounded by log n.

If one recalls the JL lemma, one sees that heuristically, it is a good idea to think of a n point metric space,

that is Euclidean, as being of dimension roughly O(log n). The doubling dimension thus ties up nicely with

this. We also have,

Lemma 2.8.3 The dimension of the Euclidean space IRd is Θ(d).

Thus, the doubling dimension ties up nicely with the usual concept of dimension for Euclidean spaces, as

well. The following result is elementary.

Lemma 2.8.4 Let M be a metric space of doubling dimension τ and P ⊆M be a point set with spread λ.

Then |P| ≤ λO(τ).

2.9 Net-trees

The net-tree [HM06] is a data-structure that defines hierarchical nets in finite metric spaces. Formally, a

net-tree is defined as follows: Let P ⊆ M be a finite subset. A net-tree of P is a tree T , whose set of

leaves is P. Denote by Pv the set of leaves in the subtree rooted at a vertex v ∈ T . With each vertex

v is associated a point repv ∈ Pv. Internal vertices have at least two children. Each vertex v has a level

l(v) ∈ Z ∪ {−∞}. The levels satisfy l(v) < l(p(v)), where p(v) is the parent of v in T . The levels of the

leaves are −∞. Let γ be some large enough constant, say γ = 11. The following properties are satisfied:

(I) For every vertex v ∈ T , ball
(

repv,
2γ
γ−1γ

l(v)
)
⊇ Pv, (II) For every vertex v ∈ T that is not the root,

ball
(

repv,
γ−5

2(γ−1)γ
l(p(v))−1

)
∩ P ⊆ Pv, (III) For every internal vertex u ∈ T , there exists a child v ∈ T of u

such that repu = repv. The following construction result by Har-Peled and Mendel shows that net-trees can

actually be constructed efficiently by a randomized algorithm.

Theorem 2.9.1 ([HM06]) Given a set P of n points with doubling dimension τ , one can construct a

net-tree for P in 2O(τ)n log n expected time.

Notice that in the above result, we use the intrinsic doubling dimension of the point set P. The algorithms

thus only depend on the point set, and do not use properties of any ambient space in which the point set may

lie. The following results, also from [HM06], shows that net-trees can be used to construct data-structures for

answering ANN queries, and to construct WSPD’s in metric spaces of low doubling dimension τ , efficiently.

16

Theorem 2.9.2 ([HM06]) Given a set P of n points with doubling dimension τ , lying inside a metric

space X , one can construct a data-structure for answering ANN queries, where the quality parameter ε is

provided together with the query. The query time is 2O(τ) log n + ε−O(τ), the expected preprocessing time is

2O(τ)n log n, and the space used is 2O(τ)n.

Notice that, in the above result, the ambient space X does not necessarily have bounded doubling dimension.

The following result regarding computation of WSPD’s in spaces X of doubling dimension τ , generalizes a

result of Talwar [Tal04], in which the number of WSPD pairs depended on the spread of the point set.

Theorem 2.9.3 ([HM06]) For 1 ≥ ε > 0, one can construct an ε−1-WSPD of size nε−O(τ), and the

expected construction time is 2O(τ)n log n + nε−O(τ). Furthermore, the pairs of the WSPD correspond

to (Pu,Pv), where u, v are vertices of a net-tree of P, and for any pair (Pu,Pv) in the WSPD, we have

diam(Pu) ,diam(Pv) ≤ εd(u, v).

17

Chapter 3

Low Dimensional Queries

3.1 Problem and Model

The Problem. We look at the ANN problem in the following setting. Given a set P of n data points in a

metric space X , and a setM⊆ X of (hopefully low) doubling dimension τ , and ε > 0, we want to preprocess

the points of P, such that given a query point q ∈M one can efficiently find a (1 + ε)-ANN of q in P.

Model. We are given a metric space X and a subsetM⊆ X of doubling dimension τ . We assume that the

distance between any pair of points can be computed in constant time in a black-box fashion. Specifically,

for any p, q ∈ X we denote by d(p, q) the distance between p and q. We also assume that one can build

nets on M. Specifically, given a point p ∈ M and a radius r > 0, we assume we can compute 2τ points

pi ∈ M, such that ball(p, r) ∩M ⊆ ⋃ ball(pi, r/2). By applying this recursively we can compute an r-net

N for any ball(p, R) centered at p; that is, for any point v ∈ ball(p, R) there exists a point u ∈ N such

that d(v, u) ≤ r. Let compNet(p, R, r) denote this algorithm for computing an r-net. The size of N is

(R/r)O(τ), and we assume this also bounds the time it takes to compute it. For example, in Euclidean space

IRd, let p be the origin and consider the tiling of space by a grid of cubes of diameter r. One can compute an

r-net, by simply enumerating all the vertices of the grid cells that intersect the cube
[
−R,R

]d
surrounding

ball(p, R) = ball(0, R).

Finally, given any point p ∈ X we assume that one can compute, in O(1) time, a point α(p) ∈ M such

that α(p) is the closest point in M to p. (Alternatively, α(p) might be specified for each point of P in

advance.)

3.1.1 Warm-up exercise: Affine Subspace

We first consider the case where our query subspace is an affine subspace embedded in d dimensional

Euclidean space. Thus let X = IRd with the usual Euclidean metric. Suppose our query subspace M is an

affine subspace of dimension k where k � d. We are also given n data points P = {p1, p2, . . . , pn}. We want

18

p = (px, py, pz)

α(p)

h(p)

z

y

X = IR3
x

M′ = IR2

M

p′ =
(
px,
√
p2y + p2z

)

M

M
h(p)

x

Figure 3.1: An example of embedding of space into two dimensions where M is the x-axis.

to preprocess P such that given a q ∈ M we can quickly find a point pi ∈ P which is a (1 + ε)-ANN of q in

P.

We choose an orthonormal system of coordinates for M. Denote the projection of a point p to M as

α(p). Denote the coordinates of a point α(p) ∈ M in the chosen coordinate system as (p1, p2, . . . , pk). Let

h(p) denote the distance of any p ∈ IRd from the subspace M. Notice that h(p) = ‖α(p)− p‖, and consider

the following embedding.

Definition 3.1.1 For the point p ∈ IRd, the embedded point is p′ =
(
p1, p2, . . . , pk, h(p)

)
∈ IRk+1.

An example of the above embedding is shown in Figure 3.1. It is easy to see that for x ∈M and y ∈ IRd, by

the Pythagorean theorem, we have ‖y − x‖2 = ‖α(y)− x‖2+‖y − α(y)‖2 = ‖α(y)− x‖2+h(y)
2

= ‖y′ − x′‖2.

So, ‖y − x‖ = ‖y′ − x′‖. That is, the above embedding preserves the distances between points on M and

any point in IRd.

As such, given a query point q ∈ M, let p′i be its (1 + ε)-ANN in P′ ⊆ IRk+1. Then the original point

pi ∈ P (that generated p′i) is a (1 + ε)-ANN of q in the original space IRd.

But this is easy to do using known data-structures for ANN [AMN+98], or the data-structures for ap-

proximate Voronoi diagram [Har01, AM02].

Thus, we have n points in IRk+1 to preprocess and, without loss of generality, we can assume that p′i are

all distinct. Now given ε ≤ 1/2, we can preprocess the points {p′1, . . . , p′n} and construct an approximate

Voronoi diagram consisting of O
(
nε−(k+1) log ε−1

)
regions [AM02]. Each such region is the difference of two

cubes. Given a point q′ ∈ IRk+1 we can find a (1 + ε)-ANN in O(log(n/ε)) time, using this data-structure.

3.1.2 An Embedding

Here, we show how to embed the points of P (and all of X) into another metric spaceM′ with finite doubling

dimension, such that the distances between P and M are roughly preserved.

19

p

h(p) = dX (p, α(p))

α(p) M

X

Figure 3.2: The quantities α(p) and h(p).

For a point p ∈ X , let α(p) denote the closest point in M to p (for the sake of simplicity of exposition

we assume this point is unique). The height of a point p ∈ X is the distance between p and α(p); namely,

h(p) = dX (p, α(p)). For a set B ⊆ X , let α(B) denote the set
{
α(x)

∣∣∣x ∈ B
}

. An example is shown in

Figure 3.2.

Definition 3.1.2 (M′ embedding .) Consider the embedding of X into M′ = M× IR+ induced by the

distances of points of X from M. Formally, for a point p ∈ X , the embedding is defined as

p′ =
(
α(p), h(p)

)
∈M′.

The distance between any two points p′ =(α(p), h(p)) and v′ =(α(v), h(v)) of M′ is defined as

dM′(p
′, v′) = dX

(
α(p), α(v)

)
+ |h(p)− h(v)| .

It is easy to verify that dM′(·, ·) complies with the triangle inequality. For the sake of simplicity of exposition,

we assume that for any two distinct points p and v in our (finite) input point set P it holds that p′ 6= v′

(that is, dM′(p′, v′) 6= 0). This can be easily guaranteed by introducing symbolic perturbations.

Lemma 3.1.3 The following holds: (A) For any two points x, y ∈M, we have dM′(x′, y′) = dX (x, y).

(B) For any point x ∈M and y ∈ X , we have dX (x, y) ≤ dM′(x′, y′) ≤ 3dX (x, y).

(C) The space M′ has doubling dimension at most 2τ + 2, where τ is the doubling dimension of M.

Proof : (A) Clearly, for x, y ∈M, we have x′ = (x, 0) and y′ = (y, 0). As such, dM′(x′, y′) = dX (x, y) + |0−

0| = dX (x, y).

(B) Let x ∈M and y ∈ X . We have x′ = (x, 0) and y′ =
(
α(y), dX

(
y, α(y)

))
. As such,

dM′(x
′, y′) = dX (α(x), α(y)) + |0− h(y)| = dX (x, α(y)) + dX (α(y), y) ≥ dX (x, y) ,

20

by the triangle inequality. On the other hand, because dX (y, α(y)) = dX (y,M) ≤ dX (x, y), we have

dM′(x
′, y′) = dX

(
α(x), α(y)

)
+ |h(x)− h(y)| = dX

(
x, α(y)

)
+ h(y)

= dX (x, α(y)) + dX (y, α(y)) ≤
(
dX (x, y) + dX (y, α(y))

)
+ dX (y, α(y))

= dX (x, y) + 2dX (y, α(y)) ≤ 3dX (x, y) ,

by the triangle inequality.

(C) Consider a point (p, ψ) ∈ M × IR+ = M′ and the ball b = ballM′((p, ψ), r) ⊆ M′ of radius r

centered at (p, ψ). Consider the projection of b into M; that is PM =
{
v
∣∣∣(v, h) ∈ b

}
. Similarly, let

PIR =
{
h
∣∣∣(v, h) ∈ b

}
.

Clearly, ballM′
(
(p, ψ), r

)
⊆ PM × PIR, and PM is contained in ballM(p, r) = ballX (p, r) ∩M. Since the

doubling dimension of M is τ , this ball can be covered by 22τ balls of the form ballM(pi, r/4) with centers

pi ∈M.

Also since PIR ⊆ IR is contained in the interval
[
ψ − r, ψ + r

]
having length 2r, it can be covered by at

most 4 intervals I1, . . . , I4 of length r/2 each, centered at values x1, . . . , x4, respectively. (Intuitively, each

of the intervals Ij , is a “ball” of radius r/4.) Then,

ballM′
(

(p, ψ), r
)
⊆ PM × PIR ⊆

(⋃

i

ballM(pi, r/4)

)
×




4⋃

j=1

Ij




⊆
4⋃

j=1

⋃

i

(ballM(pi, r/4)× Ij) ⊆
4⋃

j=1

⋃

i

ballM′
(

(pi, xj), r/2
)
,

since the set ballM
(
pi, r/4

)
× Ij is contained in ballM′

(
(pi, xj), r/2

)
. We conclude that ballM′((p, ψ), r) can

be covered using at most 22τ+2 balls of half the radius.

3.2 A Constant Factor ANN Algorithm

In this section we present a 6-ANN algorithm. We refine this to a (1 + ε)-ANN in the next section.

Preprocessing. In the preprocessing stage, we map the points of P into the metric spaceM′ of Lemma 3.1.3.

Build a net-tree for the point set P′ =
{
p′
∣∣∣ p ∈ P

}
inM′ and preprocess it for ANN queries using the net-tree

data-structure (augmented for nearest-neighbor queries) of Har-Peled and Mendel [HM06]. Let D denote

the resulting data-structure.

21

Answering a query. Given q ∈ M, we compute a 2-ANN to q′ ∈ M′ using D. Let this be the point y′.

Return dX (q, y), where y is the original point in P corresponding to y′.

Correctness. Let nq be the nearest neighbor of q in P and let y be the point returned. As q ∈ M we

have by Lemma 3.1.3 (B) that dX (q, y) ≤ dM′(q′, y′) and dM′
(
q′, n′q

)
≤ 3dX

(
q, nq

)
. As y′ is a 2-ANN for q′

it follows that,

dX (q, y) ≤ dM′(q
′, y′) ≤ 2dM′

(
q′, n′q

)
≤ 6dX

(
q, nq

)
.

We thus proved the following.

Lemma 3.2.1 Given a set P ⊆ X of n points and a subspace M of doubling dimension τ , one can build a

data-structure in 2O(τ)n log n expected time, such that given a query point q ∈ M, one can return a 6-ANN

to q in P in 2O(τ) log n query time. The space used by this data-structure is 2O(τ)n.

Proof : Since the doubling dimension of M′ is at most 2τ + 2, building the net-tree and preprocessing it for

ANN queries takes 2O(τ)n log n expected time, and the space used is 2O(τ)n [HM06]. The 2-ANN query for

a point q takes time 2O(τ) log n.

3.3 Answering (1 + ε)-ANN

Once we have a constant factor approximation to the nearest-neighbor in P it is not too hard to boost it into

(1 + ε)-ANN. To this end we need to understand what the net-tree [HM06] provides us with. See Har-Peled

and Mendel [HM06] (see also Section 2.9) for a precise definition of the net-tree. Roughly speaking, the

nodes at a given level l, define an γl-net for Q. This means that one can compute an r-net for any desired

r by looking at nodes whose levels define the right resolution. Thus r-nets derived from the net-tree have a

corresponding set of nodes in the net-tree. Suppose one needs to find an r-net for the points of Q inside a

ball ballM(p, R). One computes an ANN y ∈ Q of the center p. This determines a leaf node l of the net-tree.

One then seeks out a vertex v of the net-tree on the l to root path, such that l ∈ Qv and the v associated

ball radius is roughly R. By adding appropriate pointers, one can perform this hopping up the tree in

logarithmic time. Now, exploring the top of the subtree rooted at v, and collecting the representative points

of the vertices in that traversal, one can compute an r-net for the points in Q ∩ ballM(p, R). In particular,

using the ANN data-structure of Har-Peled and Mendel [HM06] this operation is readily supported.

Lemma 3.3.1 ([HM06]) Given a net-tree for a set Q ⊆ M of n points in a metric space with doubling

dimension τ , and given a point p ∈M and radius r ≤ R, one can compute an r-net N ⊆ Q of Q∩ballM(p, R),

such that the following properties hold:

22

(A) For any point v ∈ Q ∩ ballM(p, R) there exists a point u ∈ N such that dM(v, u) ≤ r.

(B) |N | = (R/r)O(τ).

(C) Each point z ∈ N corresponds to a node v(z) in the net-tree. Let Qv(z) denote the subset of points of Q

stored in the subtree of v(z). The union
⋃
z∈N Qv(z) covers Q ∩ ballM(p, R).

(D) For any z ∈ N , the diameter of the point set Qv(z) is bounded by r.

(E) The time to compute N is 2O(τ) log n+O(|N |).

Construction. For every point p ∈ P we compute an r(p)-net U(p) for ballM(α(p), R(p)), where r(p) =

εh(p) /(20c1) and R(p) = c1h(p) /ε. Here c1 is some sufficiently large constant. This net is computed using

the algorithm compNet, see Subsection 3.1. This takes 1/εO(τ) time to compute for each point of P.

For each point u of the net U(p) ⊆ M store the original point p it arises from, and the distance to the

original point p. We will refer to s(u) = dX (u, p) as the reach of u.

Let Q ⊆ M be union of all these nets. Clearly, we have that |Q| = n/εO(τ). Build a net-tree T for

the points of Q. We compute in a bottom-up fashion for each node v of the net-tree T the point with the

smallest reach stored in Qv.

Answering a query. Given a query point q ∈M, compute using the algorithm of Lemma 3.2.1 a 6-ANN

to q in P. Let ∆ be the distance from q to this ANN. Let R = 20∆, and r′ = ε∆/20. Using T and

Lemma 3.3.1, compute an r′-net N of ballM(q, R) ∩ Q.

Next, for each point p ∈ N consider its corresponding node v(p) ∈ T. Each such node stores a point

of minimum reach in Qv(p). We compute the distance to each such minimum-reach point and return the

nearest-neighbor found as the ANN.

Theorem 3.3.2 Given a set P ⊆ X of n points and a subspaceM of doubling dimension τ , and a parameter

ε > 0, one can build a data-structure in nε−O(τ) log n expected time, such that given a query point q ∈ M,

one can return a (1 + ε)-ANN to q in P. The query time is 2O(τ) log n + ε−O(τ). This data-structure uses

nε−O(τ) space.

Proof : We only need to prove the bound on the quality of the approximation. Consider the nearest-neighbor

nq to q in P.

(A) If there is a point z ∈ U(nq) ⊆ Q within distance r′ from q then there is a net point u of N that contains

z in its subtree of T. Let wy be the point of minimum reach in Qv(u), and let y ∈ P be the corresponding

original point. Now, we have

dX (q, y) ≤ dX (q, wy) + dX (wy, y) ≤ dX (q, wy) + dX
(
z, nq

)

23

as the point wy has reach dX (wy, y), wy is the point of minimal reach among all the points of Qv(u),

z ∈ Qv(u), and dX
(
z, nq

)
is the reach of z and thus an upper bound on dX (wy, y). By the triangle

inequality, we have

dX (q, y) ≤ dX (q, wy) + dX
(
q, nq

)
+ dX (z, q)

≤
(
dX (q, z) + dX (z, wy)

)
+ dX

(
q, nq

)
+ dX (z, q)

≤ dX
(
q, nq

)
+ 3r′,

as z, wy ∈ Qv(u), the diameter of Qv(u) is at most r′, and by assumption dX (z, q) ≤ r′. So we have,

dX (q, y) ≤ dX
(
q, nq

)
+ 3ε∆/20 ≤ (1 + ε)dX

(
q, nq

)
.

(B) Otherwise, it must be that, dX
(
q, U(nq)

)
> r′. Observe that it must be that r(nq) < r′ as h

(
nq
)
≤ ∆.

It must be therefore that the query point is outside the region covered by the net U(nq). As such, we

have

R(nq) =
c1h
(
nq
)

ε
< dX

(
α(nq), q

)
≤ dX

(
q, nq

)
+ dX

(
nq, α(nq)

)
≤ 2dX

(
nq, q

)
≤ 2∆,

which means h
(
nq
)
≤ 2ε∆/c1. Namely, the height of the point nq is insignificant in comparison to its

distance from q (and conceptually can be considered to be zero). In particular, consider the net point

u ∈ N that contains in its subtree the point z ∈ U(nq) closest to α(nq), i.e., dM
(
α(nq), z

)
≤ r(nq). The

point of smallest reach in this subtree provides a (1 + ε)-ANN as an easy but tedious argument similar

to the one above shows.

3.4 Answering (1 + ε)-ANN faster

In this section, we extend the approach used in the above construction to get a data-structure which is

similar in spirit to an AVD of P on M. Specifically, we spread a set of points C on M, and we associate a

point of P with each one of them. Now, answering 2-ANN on C, and returning the point of P associated with

this point, results in the desired (1 + ε)-ANN.

24

algBuildANN(P,M).

P′ =
{
x′
∣∣∣x ∈ P

}
⊆M′

Compute a 8-WSPD W = {{A′1, B′1} , . . . , {A′s, B′s}} of P′

for {A′i, B′i} ∈ W do

Choose points a′i ∈ A′i and b′i ∈ B′i.
ti = dM′(a′i, b

′
i), Ti = ti + hmax(A′i) + hmax(B′i)

Ri = c2Ti/ε, ri = εTi/c2

Ni = compNet(α(ai), Ri, ri) ∪ compNet(α(bi), Ri, ri).

C = N1 ∪ . . . ∪Ns
NC ← Net-tree for C [HM06]
for p ∈ C do

Compute nn(p,P) and store it with p

Figure 3.3: Preprocessing the subspaceM to answer (1+ε)-ANN queries on P. Here c2 is a sufficiently large
constant.

algANN (q ∈M)
p← 2-ANN of q in C
(Use net-tree NC [HM06] to compute p.)
y ← the point in P associated with p.
return y

Figure 3.4: Computing a (1 +O(ε))-ANN in P for a query point q ∈M.

3.4.1 The construction

For a set Z ′ ⊆ P′ let

hmax(Z ′) = max
(p,h)∈Z′

h.

The preprocessing stage is presented in Figure 3.3, and the algorithm for finding the (1 + ε)-ANN for a

given query is presented in Figure 3.4.

3.4.2 Analysis

Suppose the data-structure returned y and the actual nearest neighbor of q is nq. If y = nq then the algorithm

returned the exact nearest-neighbor to q and we are done. Otherwise, by our general position assumption,

we can assume that y′ 6= n′q. Note that there is a WSPD pair {A′, B′} ∈ W that separates y′ from n′q inM′;

namely, y′ ∈ A′ and n′q ∈ B′. Let

t = dM′(a
′, b′) ,

25

where a′ and b′ are the representative points of A′ and B′, respectively. Let a and b be the points of P

corresponding to a′ and b′, respectively. Now, let

T = hmax(A′) + hmax(B′) + t, R = c2T/ε and r = εT/c2.

Observation 3.4.1 By the definition of a 8-WSPD and the triangle inequality, for any x′ ∈ A′ and y′ ∈ B′,

we have that dM′(x′, y′) ≤ diam(A′) + diam(B′) + dM′(a′, b′) ≤ (5/4) t.

We study the two possible cases, q /∈ ballM(α(a), R) ∪ ballM(α(b), R) (Lemma 3.4.2) and q ∈ ballM(α(a), R)

∪ ballM(α(b), R) (Lemma 3.4.3).

Lemma 3.4.2 If q /∈ ballM(α(a), R)∪ ballM(α(b), R) then the algorithm from Figure 3.4 returns a (1 + ε)-

ANN in P to the query point q (assuming c2 is sufficient large). Restated informally – if q is far from both

y and nq (compared to the distance between them) then the ANN computed is correct.

Proof : We have dX
(
α(nq), α(y)

)
≤ dM′

(
n′q, y

′) ≤ 5/4t by Observation 3.4.1. So, by the triangle inequality,

we have dX
(
nq, y

)
≤ h
(
nq
)

+ dX
(
α(nq), α(y)

)
+ h(y) ≤ hmax(A′) + (5/4)t+ hmax(B′) ≤ (5/4)T .

Since n′q, b
′ ∈ B′, we have dX

(
α(nq), α(b)

)
≤ dM′

(
n′q, b

′) ≤ diam(B′) ≤ t/8 ≤ T/8. Therefore,

dX
(
q, α(nq)

)
≥ dX (q, α(b))− dX

(
α(nq), α(b)

)
≥ R− diam(B′) = c2

T

ε
− diam(B′)

≥ T
(

c2

ε
− 1

8

)
≥ c2T

2ε
,

assuming ε ≤ 1 and c2 ≥ 1. Now, dX
(
q, nq

)
≥ dX

(
nq,M

)
= dX

(
nq, α(nq)

)
, and thus by the triangle

inequality, we have

dX
(
q, nq

)
≥ dX

(
q, nq

)
+ dX

(
nq, α(nq)

)

2
≥ dX

(
q, α(nq)

)

2
≥ c2T

4ε
.

This implies that dX (q, y) ≤ dX
(
q, nq

)
+ dX

(
nq, y

)
≤ dX

(
q, nq

)
+ (5/4)T ≤ (1 + ε)dX

(
q, nq

)
, assuming

c2 ≥ 5.

Lemma 3.4.3 If q ∈ ballM(α(a), R) ∪ ballM(α(b), R) then the algorithm returns a (1 + ε)-ANN in P to the

query point q.

Proof : Since the algorithm covered the set ballM(α(a), R) ∪ ballM(α(b), R) with a net of radius r = εT/c2,

it follows that dX (q, C) ≤ r. Let c be the point in the 2-ANN search to q in NC . We have dX (q, c) ≤ 2r.

Now, the algorithm returned the nearest neighbor to c as the ANN; that is, y is the nearest neighbor of c in

P.

26

Now,

dX (q, y) ≤ dX (c, y) + dX (q, c) ≤ dX (c, y) + 2r ≤ dX
(
c, nq

)
+ 2r

≤ dX
(
q, nq

)
+ dX (c, q) + 2r ≤ dX

(
q, nq

)
+ 4r = dX

(
q, nq

)
+ 4

εT

c2
,

by the triangle inequality. Therefore, if dX (q, y) ≥ T/40 then,

dX
(
q, nq

)
≥ dX (q, y)− 4

εT

c2
≥ (1− ε/2)dX (q, y) ,

assuming c2 ≥ 320. Since 1/(1− ε/2) ≤ 1 + ε, we have that dX (q, y) ≤ (1 + ε)dX
(
q, nq

)
.

Similarly, if dX
(
q, nq

)
≥ T/40 then,

dX (q, y) ≤ dX
(
q, nq

)
+ 4

εT

c2
≤ (1 + ε)dX

(
q, nq

)
,

assuming c2 ≥ 160.

We prove by contradiction that the case dX
(
q, nq

)
≤ T/40 and dX (q, y) ≤ T/40 is impossible. That is,

intuitively, T is roughly the distance between nq to y, and there is no point that can be close to both nq and

y. Indeed, under those assumptions, h
(
nq
)
≤ dX

(
q, nq

)
≤ T/40 and h(y) ≤ dX (q, y) ≤ T/40. Observe that

hmax(A′) ≤ h(y) + diam(A′) ≤ T/40 +
t

8
≤ 3T

20
.

and similarly hmax(B′) ≤ 3T/20. This implies that

(3/4)t = t

(
1− 1

8
− 1

8

)

≤ dM′(a
′, b′)− diam(A′)− diam(B′) ≤ dM′

(
n′q, y

′)

=
∣∣h
(
nq
)
− h(y)

∣∣+ dX
(
α(nq), α(y)

)
≤ T/40 + dX

(
α(nq), nq

)
+ dX

(
nq, y

)
+ dX (y, α(y))

≤ T/40 + h
(
nq
)

+ (dX
(
nq, q

)
+ dX (q, y)) + h(y)

≤ T/40 + 3T/20 + T/40 + T/40 + 3T/20 ≤ 3T/8

This implies that t ≤ T/2 and thus T = t + hmax(A′) + hmax(B′) ≤ T/2 + 3T/20 + 3T/20 = (4/5)T . This

implies that T ≤ 0. We conclude that dM′(a′, b′) = t ≤ T ≤ 0. This implies that a′ = b′, which is impossible,

as no two points of P get mapped to the same point in M′. (And of course, no point can appear in both

sides of a pair in the WSPD.)

27

The preprocessing time of the above algorithm is dominated by the task of computing for each point of

C its nearest neighbor in P. Observe that the algorithm would work even if we only use (1 + O(ε))-ANN.

Using Theorem 3.3.2 to answer these queries, we get the following result.

Theorem 3.4.4 Given a set of P ⊆ X of n points, and a subspace M of doubling dimension τ , one can

construct a data-structure requiring space nε−O(τ), such that given a query point q ∈M one can find a (1+ε)-

ANN to q in P. The query time is 2O(τ) log(n/ε), and the preprocessing time to build this data-structure is

nε−O(τ) log n.

3.5 Online ANN

The algorithms of Section 3.3 and Section 3.4 require that the subspace of the query points is known, in

that we can compute the closest point α(p) on M given a p ∈ X , and that we can find a net for a ball on

M using compNet, see Subsection 3.1. In this section we show that if we are able to efficiently answer

membership queries in regions that are the difference of two balls, then we do not need such explicit access

to M. We construct an AVD on M in an online manner as the query points arrive. When a new query

point arrives, we test for membership among the existing regions of the AVD. If a region contains the point

we immediately output its associated ANN that is already stored with the region. Otherwise we use an

appropriate algorithm to find a nearest neighbor for the query point and add a new region to the AVD.

Here we present our algorithm to compute the AVD in this online setting and prove that when the query

points come from a subspace of low doubling dimension, the number of regions created is linear.

3.5.1 Online AVD Construction and ANN Queries

The algorithm algBuildAVD(P,R, q) is presented in Figure 3.5. The algorithm maintains a set of regions

R that represent the partially constructed AVD. Given a query point q it returns an ANN from P and if

needed adds a region Cq to R.

Remark 3.5.1 In order to compute the (1 + ε/10)-ANN y1 of q in P and the (1 + ε/10)-ANN of q in

P \ ballX (y1, εr1/3) (see Figure 3.5) one can use any ANN algorithm or simple brute-force nearest-neighbor

search.

The quantity D′ is a 2-approximation to the diameter D of P, and can be precomputed in O(n) time.

Let p be an arbitrary fixed point of P.

The regions created by the algorithm in Figure 3.5 are the difference of two balls. An example region

when the balls ballX (q, εr2/5) and ballX (y1, 5ρ1/4ε) intersect, is shown in Figure 3.6. The intuition as to

28

algBuildAVD(P,R, q).
// p is an arbitrary fixed point in P.
// D′ is a 2-approximation to diam(P).
if dX (q, p) ≥ 4D′/ε then return p.
if ∃C ∈ R with q ∈ C then

return the point associated with C.
Compute (1 + ε/10)-ANN y1 of q in P.// See Remark 3.5.1.

r1 ← dX (q, y1).
if there is no point in P \ ballX (y1, εr1/3) then

Cq ← ballX (q,D′/4).
else

f1 ← furthest point from y1 in P ∩ ballX (y1, εr1/3).
ρ1 ← dX (y1, f1). // ρ1 ≤ εr1/3.
y2 ← (1 + ε/10)-ANN of q in P \ ballX (y1, εr1/3). // See Remark 3.5.1.

r2 ← dX (q, y2).
Cq ← ballX (q, εr2/5) \ ballX (y1, 5ρ1/4ε).

Associate y1 with Cq.
R← R ∪ Cq.
return y1 as the ANN for q.

Figure 3.5: Answering (1 + ε)-ANN and constructing AVD.

q
y1

r2

εr2
5

5ρ1
4ε
εr1
3

ρ1
r1

f1

Cq

y2

q

y1

Cq

Figure 3.6: Examples of a computed AVD region Cq.

why y1 is a valid ANN inside this region is as follows. Since the distance of q to y1 is r1, the points inside

ballX (y1, εr1/3) are all roughly the same distance from q as q is far enough from y1. The next distance

of interest, dX (q, y2) = r2, is the distance to a ANN of points outside this ball. As long as we are inside

ballX (q, εr2/5) and far enough from y1, i.e., dX (q, y1) > 5ρ1/4ε, the points outside ballX (y1, εr1/3) are too

far and cannot be a (1 + ε)-ANN. But if we get too close to y1 we can no longer be certain that y1 is a valid

(1 + ε)-ANN, as it is no more true that distances to points inside ballX (y1, εr1/3) look all roughly the same.

In other words, there may be points much closer than y1, when we are close enough to y1. Thus in a small

enough neighborhood around y1 we need to zoom in and possibly create a new region.

29

3.5.2 Correctness

Lemma 3.5.2 If dX (q, p) ≥ 2D′ + 2D′/ε then p is a valid (1 + ε)-ANN.

Proof : Since D′ is a 2-approximation to the diameter of P, so 2D′ ≥ D = diam(P). This means dX (q, p) ≥

D + D/ε. Let nq ∈ P be the closest point to q. By the triangle inequality,

D + D/ε ≤ dX (q, p) ≤ dX
(
q, nq

)
+ dX

(
nq, p

)
≤ dX

(
q, nq

)
+ D.

As such D ≤ εdX
(
q, nq

)
. We conclude dX (q, p) ≤ dX

(
q, nq

)
+ dX

(
nq, p

)
≤ (1 + ε)dX

(
q, nq

)
.

Lemma 3.5.3 If there is no region in R containing q then the algorithm outputs a valid (1 + ε/10)-ANN.

Proof : We output y1 which is a (1 + ε/10)-ANN of q.

Lemma 3.5.4 The (1 + ε/10)-ANN y1 found in the algorithm is a (1 + ε)-ANN for any point q ∈ Cq.

Proof : Let r1 = dX (q, y1) and r2 = dX (q, y2). There are two possibilities.

If the region Cq is the ball ballX (q,D′/4) constructed when there is no point in P \ ballX (y1, εr1/3), then

D = diam(P) ≤ 2εr1/3. As such,

dX (q,P) ≥ dX (q, y1)

1 + ε/10
=

r1

1 + ε/10
≥ 3D

2ε(1 + ε/10)
=

3D

2ε+ ε2/5
≥ (4/3)

D

ε
.

It is not hard to see that in this case, y1 is a valid (1 + ε)-ANN for any point inside ballX (q,D′/4) ⊆

ballX (q,D/4), as dX (ballX (q,D/4),P) ≥ D/ε, for ε sufficiently small.

Otherwise, if the set P \ ballX (y1, εr1/3) is nonempty then let y2 be a (1 + ε/10)-ANN of q in P \

ballX (y1, εr1/3) and let r2 = dX (q, y2). We break the analysis into two cases.

(i) If r2 ≤ 2r1, then let q be any point in Cq and let nq ∈ P be its nearest neighbor. If nq = y1 there is

nothing to show. Otherwise dX (q, q) ≤ εr2/5 and by the triangle inequality we have

dX
(
q, nq

)
≥ dX

(
q, nq

)
− dX (q, q) ≥ dX

(
q, nq

)
− εr2/5

≥ dX (q, y1) /(1 + ε/10)− ε2r1/5

≥ (1− ε/2)r1,

as dX
(
q, nq

)
≥ dX (q,P) ≥ dX (q, y1) /(1 + ε/10) and r1 = dX (q, y1). Again, by the triangle inequality

30

and the above, we have

dX (q, y1) ≤ dX (q, y1) + dX (q, q) ≤ dX (q, y1) + 2εr1/5 = (1 + 2ε/5)r1

≤ 1 + 2ε/5

1− ε/2 dX
(
q, nq

)
≤ (1 + ε)dX

(
q, nq

)
,

for ε ≤ 1/5.

(ii) If r2 > 2r1 then let f1 be the furthest point from y1 inside ballX (y1, εr1/3) and let ρ1 = dX (y1, f1).

Let q be any point in Cq and as before let nq ∈ P be its nearest neighbor. We claim that the nearest

neighbor of q in P lies in ballX (y1, ρ1). To see this, let z be any point in P \ ballX (y1, ρ1). Noting

that the distance from q to the closest point in P outside ballX (y1, ρ1) is at least r2/(1 + ε/10) and by

triangle inequality we have,

dX (q, z) ≥ dX (q, z)− dX (q, q) ≥ dX (q, z)− εr2/5

≥ r2/(1 + ε/10)− εr2/5 > (1− 3ε/10)r2.

On the other hand, as r1 = dX (q, y1) and r1 < r2/2, we have

dX (q, y1) ≤ dX (q, y1) + dX (q, q) ≤ dX (q, y1) + εr2/5 = r1 + εr2/5 < r2/2 + εr2/5

≤ (1− 3ε/10)r2 < dX (q, z) ,

by the above. As such, no point in P \ ballX (y1, ρ1) can be the nearest neighbor of q for ε < 1. As such

nq ∈ ballX (y1, ρ1). Now,

dX (q, y1) ≤ dX
(
q, nq

)
+ dX

(
nq, y1

)
≤ dX

(
q, nq

)
+ ρ1. (3.1)

Now q ∈ Cq = ballX (q, εr2/5) \ ballX (y1, 5ρ1/4ε), and thus dX (q, y1) > 5ρ1/4ε. Thus,

dX
(
q, nq

)
≥ dX (q, y1)− dX

(
y1, nq

)
≥ dX (q, y1)− ρ1 ≥

(
5

4ε
− 1

)
ρ1. (3.2)

31

Therefore from (3.1) and (3.2), we have

dX (q, y1) ≤ dX
(
q, nq

)
+ ρ1 ≤

(
1 +

1

5/4ε− 1

)
dX
(
q, nq

)
=

(
1 +

4ε

5− 4ε

)
dX
(
q, nq

)

≤ (1 + ε)dX
(
q, nq

)
.

for ε ≤ 1/4.

3.5.3 Bounding the number of regions created

The online algorithm presented in Figure 3.5 is valid for any general metric space X , without any restriction

on the subspace of query points. However, when the query points are restricted to lie in a subspace M

of low doubling dimension τ , then one can show that at most nε−O(τ) regions are created overall, where

n = |P|. There are two types of regions created. The outer regions are created when P \ ballX (y1, εr1/3) is

empty and the inner regions are created when this condition does not hold. An example of an inner region

is shown in Figure 3.6.

Bounding the number of outer regions

First we show that there are at most ε−O(τ) outer regions created.

Lemma 3.5.5 When all the queries to the algorithm come from a subspace of doubling dimension τ , then

at most ε−O(τ) outer regions are created overall.

Proof : Any two query points creating distinct outer regions occur at a distance of at least D′/4 from each

other. However all of them occur inside a ball of radius 4D′/ε around p. Thus the spread of the set containing

all these query points is bounded by (4D′/ε) / (D′/4) = O(1/ε). As such, there are at most ε−O(τ) such

points.

Bounding the number of inner regions

We now consider the inner regions created by the algorithm. Consider the mapped point set P′ in the space

M′, see Section 3.1.2. Fix a c-WSPD
{
{A′1, B′1} , . . . , {A′s, B′s}

}
of P′ where c is a constant to be specified

shortly and s = cO(τ)n is the number of pairs. Let Ai, Bi ⊆ P denote the corresponding “unmapped” points

corresponding to A′i, B
′
i, that is, Ai = {p ∈ P | p′ ∈ A′i} and Bi = {p ∈ P | p′ ∈ B′i}. If a query point q

creates a new inner region we shall assign it to a set Ui associated with the pair {A′i, B′i}, if the pair of points

y′1, y
′
2 of the algorithm satisfy y′1 ∈ A′i and y′2 ∈ B′i. Similarly assign q to the set Vi if y′1 ∈ B′i and y′2 ∈ A′i.

32

Thus, the query points that gave rise to new regions are now associated with pairs of the WSPD. Our

analysis bounds the size of the sets Ui and Vi associated with a pair {A′i, B′i}, for i = 1, . . . , s, thus bounding

the total number of regions created.

Let U′i =
{
q′
∣∣∣ q ∈ Ui

}
⊆M′ and V′i =

{
q′
∣∣∣ q ∈ Vi

}
, for i = 1, . . . , s. For a pair {A′i, B′i} of the WSPD

we define the numbers hmax(A′i) = max(u,h)∈A′i h. Similarly let hmax(B′i) = max(z,h)∈B′i h. Also, let

li = max
u′∈A′i,z′∈B′i

dX (α(u), α(z)) and Li = li + hmax(A′i) + hmax(B′i) .

The following sequence of lemmas establish our claim. The basic strategy is to show that the set U′i has

spread O
(
1/ε2

)
. This holds analogously for V′i and so we will only work with U′i. We will assume that c is

a sufficiently large constant and ε is sufficiently small.

Lemma 3.5.6 For any i, we have diamM′(A′i) ≤ Li/c and diamM′(B′i) ≤ Li/c.

Proof : By the construction of the WSPD, we have that diamM′(A′i) ≤ dM′(A′i, B
′
i) /c. Moreover, we have

dM′(A
′
i, B
′
i) = min

p′∈A′i,v′∈B′i
dM′(p

′, v′) = min
p′∈A′i,v′∈B′i

(
dX
(
α(p), α(v)

)
+ |h(p)− h(v)|

)

≤ li + min
p′∈A′i,v′∈B′i

(
|h(p)|+ |h(v)|

)
≤ li + hmax(A′i) + hmax(B′i) = Li.

This implies that diamM′(A′i) ≤ Li/c, and similarly diamM′(B′i) ≤ Li/c.

Lemma 3.5.7 We have diam(U′i) = O(Li/ε).

Proof : Let q be a (query) point in Ui. By assumption we have y′1 ∈ A′i and y′2 ∈ B′i. By the triangle

inequality,

dX (y1, y2) ≤ dX (y1, α(y1)) + dX (α(y1), α(y2)) + dX (α(y2), y2) ≤ hmax(A′i) + li + hmax(B′i)

≤ Li.

On the other hand, since the point y2 is outside ballX (y1, εr1/3), we have that dX (y1, y2) > εr1/3, where

r1 = dX (q, y1). This gives us r1 < (3/ε)dX (y1, y2) < 3Li/ε. By Lemma 3.1.3, dM′(q′, y′1) ≤ 3dX (q, y1) =

3r1 < 9Li/ε. Also, we have,

dM′(y
′
1, y
′
2) = dX (α(y1), α(y2)) + |h(y1)− h(y2)| ≤ li + hmax(A′i) + hmax(B′i) = Li. (3.3)

Let q be any other point in Ui, and let the points y1 and y2 be the points found by the algorithm such that

33

y1
′ ∈ A′i and y2

′ ∈ B′i. Since y′1 is also in A′i, we have by Lemma 3.5.6 that dM′(y′1, y1
′) ≤ diamM′(Ai) ≤ Li/c.

As such,

diam(U′i) = max
q′,q′∈U′i

dM′(q
′, q′) ≤ max

q′,q′∈U′i
(dM′(q

′, y′1) + dM′(y
′
1, y1

′) + dM′(q
′, y1
′))

≤ 9Li/ε+ Li/c+ 9Li/ε = O(Li/ε) ,

for ε small enough.

Lemma 3.5.8 For a query point q, the associated distances r2 and Li satisfy r2 ≥ Li/18.

Proof : Let u′ be the point with maximum height in A′i; that is h(u) = hmax(A′i). By Lemma 3.5.6, we have

dM′(u′, y′1) ≤ Li/c. The definition of the distance in M′, gives

hmax(A′i)− h(y1) ≤ |hmax(A′i)− h(y1)| = |h(u)− h(y1)| ≤ dM′(u
′, y′1) ≤ Li/c,

and so h(y1) ≥ hmax(A′i) − Li/c. Similarly we have, h(y2) ≥ hmax(B′i) − Li/c. We have r1 = dX (q, y1) ≥

dX (y1,M) = dX (y1, α(y1)) = h(y1) and similarly r2 = dX (q, y2) ≥ h(y2). Noting that, r2 ≥ dX (q,P) ≥

r1/(1 + ε/10) ≥ (10/11)r1 we get,

2.1r2 = r2 +
11

10
r2 ≥ r2 + r1 ≥ h(y2) + h(y1) ≥ hmax(A′i) + hmax(B′i)−

2Li
c
. (3.4)

Let z′ ∈ A′i and w′ ∈ B′i be such that dX (α(z), α(w)) = li. Observing that dM′(q′, y′1) ≤ 3dX (q, y1) = 3r1

and similarly dM′(q′, y′2) ≤ 3dX (q, y2) = 3r2, we have by the triangle inequality that

dM′(q
′, z′) ≤ dM′(q

′, y′1) + dM′(y
′
1, z
′) ≤ 3r1 + diam(A′i) ≤ 3r1 + Li/c,

and dM′(q
′, w′) ≤ dM′(q

′, y′2) + dM′(y
′
2, w

′) ≤ 3r2 + diam(B′i) ≤ 3r2 + Li/c,

by Lemma 3.5.6. By the triangle inequality, we have

li ≤ dM′(z
′, w′) ≤ dM′(z

′, q′) + dM′(q
′, w′) ≤ 3r1 + 3r2 +

2Li
c
≤ 6.3r2 +

2Li
c
,

as r1 ≤ (11/10)r2. Thus we have,

6.3r2 ≥ li −
2Li
c
. (3.5)

34

By Eq. (3.4) and Eq. (3.5), we have, for c ≥ 8, that

9r2 ≥ 2.1r2 + 6.3r2 ≥
(
hmax(A′i) + hmax(B′i)−

2Li
c

)
+

(
li −

2Li
c

)

= hmax(A′i) + hmax(B′i) + li −
4Li
c
≥ Li −

Li
2

=
Li
2
,

which implies Li ≤ 18r2.

Suppose q was added to Ui after q. We want to show that for q, q ∈ Ui we must have dM′(q′, q′) >

εr2/5 where r2 = dX (q, y2). We establish this through a sequence of lemmas. The proof is essentially by

contradiction, and the next four lemmas assume the contrary to derive a contradiction. Roughly speaking,

the assumption that dM′(q′, q′) = dX (q, q) ≤ εr2/5 places q in the chipped off region of the crescent

region Cq. It turns out that q is far from both the approximate nearest neighbor of q, which is y1 and the

approximate nearest neighbor of q outside an environ of y1, which is y2. Under the assumption q, q ∈ Ui

we should however be able to find the corresponding approximate nearest neighbors for q close to those of

q. Enforcing the constraint that any approximate nearest neighbor of q cannot be the second approximate

nearest neighbor of q, which is y2, leads to either counting discrepancies or geometric contradictions arising

from the triangle inequality.

Lemma 3.5.9 Let q, q be two points of Ui, such that q was added after q. If dX (q, q) ≤ εr2/5, then

(i) dX (q, y1) ≤ (5/4ε)ρ1, and (ii) r2 ≥ (2/ε)r1.

Proof : Since q created a new region it lies outside Cq = ballX (q, εr2/5) \ ballX (y1, 5ρ1/4ε). Since by

assumption q ∈ ballX (q, εr2/5), it must be the case that q ∈ ballX (y1, 5ρ1/4ε), as otherwise q ∈ Cq. Thus,

these two balls intersect, and

ε

5
r2 +

5

4ε
ρ1 ≥ dX (q, y1) = r1.

But ρ1 ≤ εr1/3 and so r1 ≥ (3/ε)ρ1, implying

ε

5
r2 +

5

12
r1 ≥

ε

5
r2 +

5

12
· 3

ε
ρ1 =

ε

5
r2 +

5

4ε
ρ1 ≥ r1 =⇒ r2 ≥

35

12ε
r1 ≥

2

ε
r1.

Lemma 3.5.10 Let q, q be two points in Ui such that q was added after q. If dX (q, q) ≤ εr2/5 then, for

sufficiently small ε and sufficiently large c, we have that

(A) r1 ≤ εLi.

35

(B) dX (y1, q) ≤ 5r1/12 ≤ εLi.

(C) dX (q, Bi) ≥ Li/120.

Proof : (A) By Eq. (3.3) we have dM′(y′1, y
′
2) ≤ Li. Now, by Lemma 3.5.9, we have r2 ≥ (2/ε)r1. As such,

by the triangle inequality, and by Lemma 3.1.3, we have

Li ≥ dM′(y
′
1, y
′
2) ≥ dM′(q

′, y′2)− dM′(q
′, y′1) ≥ dX (q, y2)− 3dX (q, y1) (3.6)

≥ r2 − 3r1 ≥ 2r1/ε− 3r1 ≥ r1/ε,

for ε ≤ 1/3. Thus Li ≥ r1/ε.

(B) In terms of r2, by Eq. (3.6), we have

dM′(y
′
1, y
′
2) ≥ r2 − 3r1 ≥ r2 −

3εr2

2
≥ r2

2
≥ Li

36
, (3.7)

since by Lemma 3.5.8 r2 ≥ Li/18 for ε ≤ 1/3 and by Lemma 3.5.9 r1 ≤ εr2/2. Now q lies inside

ballX (y1, (5/4ε)ρ1) and as ρ1 ≤ (ε/3)r1 (see Figure 3.6), we have

dX (y1, q) ≤ (5/4ε)ρ1 ≤ (5/4ε)(ε/3)r1 ≤ 5r1/12 ≤ r1 ≤ εLi,

by (A).

(C) Let z be an arbitrary point in Bi and notice that by Eq. (3.7) and the triangle inequality we have,

dM′(q
′, z′) ≥ dM′(y

′
1, z
′)− dM′(q

′, y′1) ≥ dM′(y
′
1, y
′
2)− dM′(y

′
2, z
′)− dM′(q

′, y′1)

≥ Li
36
− diam(B′i)− 3dX (q, y1) ≥ Li

36
− Li

c
− 3εLi ≥

Li
40
,

also using Lemma 3.1.3 (B) and Lemma 3.5.6 for sufficiently small ε and sufficiently large c. Now, Lemma 3.1.3

(B) implies that dX (q, z) ≥ dM′(q′, z′) /3 ≥ Li/120.

Lemma 3.5.11 Let q, q be two points in Ui such that q was added after q, and suppose dX (q, q) ≤ εr2/5. Let

A+
i = Ai ∪ {f1}, where f1 is the furthest point from y1 in the set ballX (y1, εr1/3)∩ P. Then, for sufficiently

small ε and sufficiently large c, we have Bi∩A+
i = ∅. In particular, we have dX (q, Bi) > 2 maxu∈A+

i
dX (q, u).

Proof : First, let u be any point in Ai. Then, by Lemma 3.1.3 (B), the triangle inequality, Lemma 3.5.6 and

36

Lemma 3.5.10 we have, for c sufficiently large and ε sufficiently small, that

dX (q, u) ≤ dM′(q
′, u′) ≤ dM′(q

′, y′1) + dM′(y
′
1, u
′) ≤ 3dX (q, y1) + diamM′(A

′
i)

≤ 3εLi +
Li
c
<

Li
240

.

We also have by the triangle inequality,

dX (q, f1) ≤ dX (q, y1) + dX (y1, f1) ≤ εLi +
ε

3
r1 ≤ εLi +

ε2

3
Li <

Li
240

,

since dX (y1, f1) ≤ εr1/3 and by Lemma 3.5.10. As such, for sufficiently large c and small ε, we have

max
u∈A+

i

dX (q, u) <
Li

240
. (3.8)

On the other hand, for any z ∈ Bi, we have by Lemma 3.5.10 (C) that dX (q, z) ≥ Li/120. As such, by

Eq. (3.8), we have

dX (q, Bi) = min
z∈Bi

dX (q, z) ≥ Li
120

= 2
Li

240
> 2 max

u∈A+
i

dX (q, u) .

We conclude that Bi ∩A+
i = ∅.

Remark 3.5.12 A subtle (but minor) technicality is that we require ρ1 6= 0, where ρ1 = dX (y1, f1). This

can be enforced by replicating every point of P, and assigning infinitesimally small positive to the distance

between a point and its copy. Clearly, for this modified point set this condition holds.

Lemma 3.5.13 Let q, q be two points in Ui, such that q was added after q. For a sufficiently small ε and

a sufficiently large c, we have that dX (q, q) > εr2/5.

Proof : We assume for the sake of contradiction that dX (q, q) ≤ εr2/5. Let y1 ∈ Ai be the (1 + ε/10)-

ANN found by the algorithm for q, and let y2 be the (1 + ε/10)-ANN of q in P \ ballX (y1, εr1/3), where

r1 = dX (q, y1). We have

r1 = dX (q, y1) ≤
(

1 +
ε

10

)
dX (q,P) ≤

(
1 +

ε

10

)
dX (q, y1) ≤ 5

4ε

(
1 +

ε

10

)
ρ1 <

3

2ε
ρ1,

by Lemma 3.5.9 (i) and as y1 is a (1+ε/10)-ANN of q in P. The strict inequality follows under the assumption

37

ρ1 > 0, see Remark 3.5.12. As in Lemma 3.5.11 let A+
i = Ai ∪ {f1}. By Lemma 3.5.11, we have

dX (q, Bi) > (1 + ε/10) max
u∈A+

i

dX (q, u) ,

as dX (q, Bi) > 2 maxu∈A+
i
dX (q, u). If A+

i is not contained in ballX (y1, εr1/3), then there is a point in

A+
i \ ballX (y1, εr1/3) that is, by a factor of (1 + ε/10), closer to q than Bi. But this implies that y2 /∈ Bi,

and this is a contradiction to the definition of q (q by definition has y1 ∈ Ai and y2 ∈ Bi). Thus, A+
i is

contained in ballX (y1, εr1/3).

As such, we have y1 ∈ Ai ⊆ A+
i ⊆ ballX (y1, εr1/3) (and, by definition f1 ∈ A+

i , and thus f1 also belongs

to this ball). We conclude

ρ1 = dX (y1, f1) ≤ dX (y1, y1) + dX (y1, f1) ≤ 2
εr1

3
<

2ε

3
· 3

2ε
ρ1 = ρ1,

for ε sufficiently small. This is a contradiction.

Lemma 3.5.14 Let q, q be two points in Ui, such that q was added after q. Then for sufficiently small ε

and sufficiently large c we have, dM′(q′, q′) = dX (q, q) > εr2/5 = Ω (εLi).

Proof : Since q, q ∈ M it follows from Lemma 3.1.3 that dM′(q′, q′) = dX (q, q). By Lemma 3.5.13, we have

dX (q, q) > εr2/5. From Lemma 3.5.8 it follows that εr2/5 = Ω (εLi).

Lemma 3.5.15 We have that max(|Ui| , |Vi|) = ε−O(τ).

Proof : From Lemma 3.5.7 and Lemma 3.5.14 it follows that the spread of the set U′i is bounded by

O

(
Li/ε

εLi

)
= O

(
1

ε2

)
.

Since U′i ⊆ M′ which is a space of doubling dimension O (τ) it follows that |U′i| = ε−O(τ). The same

argument works for V′i. For any q ∈M, q′ = (q, 0) and it is easy to see that the mapping q→ q′ is bijective.

As such |U′i| = |Ui|, and similarly |V′i| = |Vi|, and the claimed bounds follow.

The next lemma bounds the number of regions created.

Lemma 3.5.16 The number of regions created by the algorithm is n/εO(τ).

Proof : As shown in Lemma 3.5.5 the number of outer regions created is bounded by ε−O(τ). Consider an

inner region Cq. For this point q the algorithm found a valid y1 and y2. Now from the definition of a WSPD

38

there is some i such that y′1 ∈ A′i, y′2 ∈ B′i or y′1 ∈ B′i, y′2 ∈ A′i. In other words there is some i such that

q ∈ Ui or q ∈ Vi. As shown in Lemma 3.5.15 the size of each of these is bounded by ε−O(τ). Since the total

number of such sets is 2m where m = ncO(τ) is the number of pairs of the WSPD, it follows that the total

number of inner regions created is bounded by (c/ε)
O(τ)

n ≤ nε−O(τ), for ε sufficiently small.

3.5.4 The result

We summarize the result of this section.

Theorem 3.5.17 The online algorithm presented in Figure 3.5 always returns a (1 + ε)-ANN. If the query

points are constrained to lie on a subspace of doubling dimension τ , then the maximum number of regions

created for the online AVD by the algorithm throughout its execution is n/εO(τ).

3.6 Conclusions

In this chapter, we considered the ANN problem when the data points can come from an arbitrary metric

space (not necessarily an Euclidean space) but the query points come from a subspace of low doubling

dimension. We demonstrated that this problem is inherently low dimensional by providing fast ANN data-

structures obtained by combining and extending ideas that were previously used to solve ANN for spaces

with low doubling dimensions.

Interestingly, one can extend Assouad’s type embedding to an embedding that (1+ε)-preserves distances

from P toM (see [HM06] for an example of a similar embedding into the `∞ norm). This extension requires

some work and is not completely obvious. The target dimension is roughly 1/εO(τ) in this case. If one

restricts oneself to the case where both P and M are in Euclidean space, then it seems one should be

able to extend the embedding of Gottlieb and Krauthgamer [GK11] to get a similar result, with the target

dimension having only polynomial dependency on τ . However, computing either embedding efficiently seems

quite challenging. Furthermore, even if the embedded points are given, the target dimension in both cases

is quite large, and yields results that are significantly weaker than the ones presented here.

The on the fly construction of AVD without any knowledge of the query subspace (Section 3.5) seems like

a natural candidate for a practical algorithm for ANN. Such an implementation would require an efficient

way to perform point-location in the generated regions. We leave the problem of developing such a data-

structure as an open question for further research. In particular, there might be a middle ground between

our two ANN data-structures that yields an efficient and practical ANN data-structure while having very

limited access to the query subspace.

39

Chapter 4

Sublinear Space Data-Structures for
k-ANN in IRd

4.1 Introduction

A more general problem than the approximate nearest neighbor problem is the k-nearest neighbors problem

where given a point set P, one is interested in finding the k points in P nearest to the query point q.

This is widely used in pattern recognition, where points in P are labeled and the majority label among the

k-nearest neighbors is used to label the query point for some appropriate value of k. In this chapter, we

are interested in the more restricted problem of approximating the distance to the kth-nearest neighbor and

finding a data point achieving the approximation. We call this problem the (1+ε, k)-approximate nearest

neighbor ((1 + ε, k)-ANN) problem. This problem is widely used for density estimation in statistics, with

k ≈ √n [Sil86]. It is also used in meshing (with k = 2d), or to compute the local feature size of a point

set in IRd [Rup95]. The problem also has applications in non-linear dimensionality reduction; finding low

dimensional structures in data – more specifically low dimensional submanifolds embedded in Euclidean

spaces. Algorithms like ISOMAP, LLE, Hessian-LLE, SDE and others, use the k-nearest neighbor as a

subroutine [Ten98, BSLT00, MS94, WS06].

Density estimation. Given distributions µ1, . . . , µk defined over IRd, and a query point q, we want to

compute the a posteriori probabilities of q being generated by one of these distributions. This approach is

used in unsupervised learning as a way to classify a new point. Naturally, in most cases, the distributions are

given implicitly; that is, one is given a large number of points sampled from each distribution. So, let µ be

such a distribution, and P be a set of n samples. To estimate the density of µ at q, a standard Monte Carlo

technique is to consider a ball B centered at q, and count the number of points of P inside B. Specifically,

one possible approach that is used in practice [DHS01], is to find the smallest ball centered at q that contains

k points of P and use this to estimate the density of µ. The right value of k has to be chosen carefully – if

it is too small, then the estimate is unstable (unreliable), and if it is too large, it either requires the set P

to be larger, or the estimate is too “smoothed” out to be useful (values of k that are used in practice are

40

Õ(
√
n)), see Duda et al. [DHS01] for more details. To do such density estimation, one needs to be able to

answer, approximate or exact, k-nearest neighbor queries.

Sometimes one is interested not only in the radius of this ball centered at the query point, but also in the

distribution of the points inside this ball. The average distance of a point inside the ball to its center, can be

estimated by the sum of distances of the sample points inside the ball to the center. Similarly, the variance

of this distance can be estimated by the sum of squared distances of the sample points inside the ball to the

center of the ball. As mentioned, density estimation is used in manifold learning and surface reconstruction.

For example, Guibas et al. [GMM11] recently used a similar density estimate to do manifold reconstruction.

Answering exact k-nearest neighbor queries. Given a point set P ⊆ IRd, computing the partition of

space into regions, such that the k nearest neighbors do not change, is equivalent to computing the kth order

Voronoi diagram . Via standard lifting, this is equivalent to computing the first k levels in an arrangement

of hyperplanes in IRd+1 [Aur91]. More precisely, if we are interested in the kth-nearest neighbor, we need to

compute the (k − 1)-level in this arrangement.

The complexity of the (≤ k) levels of a hyperplane arrangement in IRd+1 is Θ(nb(d+1)/2c(k+ 1)d(d+1)/2e)

[CS89]. The exact complexity of the kth-level is not completely understood and achieving tight bounds on

its complexity is one of the long-standing open problems in discrete geometry [Mat02]. In particular, via

an averaging argument, in the worst case, the complexity of the kth-level is Ω
(
nb(d+1)/2c(k + 1)d(d+1)/2e−1

)
.

As such, the complexity of kth-order Voronoi diagram is Ω(nk) in two dimensions, and Ω(n2k) in three

dimensions.

Thus, to provide a data-structure for answering k-nearest neighbor queries exactly and quickly (i.e.,

logarithmic query time) in IRd, requires computing the k-level of an arrangement of hyperplanes in IRd+1. The

space complexity of this structure is prohibitive even in two dimensions (this also effects the preprocessing

time). Furthermore, naturally, the complexity of this structure increases as k increases. On the other end

of the spectrum one can use partition-trees and parametric search to answer such queries using linear space

and query time (roughly) O
(
n1−1/(d+1)

)
[Mat92, Cha10]. One can get intermediate results using standard

space/time tradeoffs [AE99].

Known results on approximate k-order Voronoi diagram. Similar to AVD, one can define a AVD for

the k-nearest neighbor. The case k = 1 is the regular approximate Voronoi diagram [Har01, AM02, AMM09].

The case k = n is the furthest neighbor Voronoi diagram. It is not hard to see that it has a constant size

approximation (see [Har99], although it was probably known before). The results in this chapter can be

interpreted as bridging between these two extremes.

41

4.2 Preliminaries

4.2.1 Problem definition

Given a set P of n points in IRd and a number k, 1 ≤ k ≤ n, consider a point q and order the points of P by

their distance from q; that is,

‖u1 − q‖ ≤ ‖u2 − q‖ ≤ · · · ≤ ‖un − q‖ ,

where P = {u1, u2, . . . , un}. The point uk = nnk(q,P) is the kth-nearest neighbor of q and dk(q,P) =

‖uk − q‖ is the kth-nearest neighbor distance . The nearest neighbor distance (i.e., k = 1) is d(q,P) =

minu∈P ‖u− q‖. The global minimum of dk(q,P), denoted by ropt(P, k) = minq∈IRd dk(q,P), is the radius of

the smallest ball containing k points of P.

Observation 4.2.1 For any p, u ∈ IRd, k and a set P ⊆ IRd, we have that dk(u,P) ≤ dk(p,P) + ‖u− p‖.

Namely, the function dk(q,P) is 1-Lipschitz. The problem at hand is to preprocess P such that given a query

point q one can compute uk quickly. The standard nearest neighbor problem is this problem for k = 1.

In the (1+ε, k)-approximate nearest neighbor ((1+ε, k)-ANN) problem, given q, k and ε > 0, one wants

to find a point u ∈ P, such that (1− ε) ‖uk − q‖ ≤ ‖u− q‖ ≤ (1 + ε) ‖uk − q‖.

4.2.2 Basic tools

A ball b of radius r in IRd, centered at a point p, can be interpreted as a point in IRd+1, denoted by

b′ = (p, r). For a regular point p ∈ IRd, its corresponding image under this transformation is the mapped

point p′ = (p, 0) ∈ IRd+1.

Given point u = (u1, . . . , ud) ∈ IRd we will denote its Euclidean norm by ‖u‖. We will consider a point

u =(u1, u2, . . . , ud+1) ∈ IRd+1 to be in the product metric of IRd × IR and endowed with the product metric

norm

‖u‖⊕ =
√

u2
1 + · · ·+ u2

d + |ud+1| .

It can be verified that the above defines a norm and the following holds for it.

Lemma 4.2.2 For any u ∈ IRd+1 we have ‖u‖ ≤ ‖u‖⊕ ≤
√

2 ‖u‖.

The distance of a point to a set under the ‖·‖⊕ norm is denoted by d⊕(u,P).

42

Figure 4.1: Quorum clustering for n = 16 and k = 4.

Assumption 4.2.3 We assume that k divides n; otherwise one can easily add fake points as necessary at

infinity.

Assumption 4.2.4 We also assume that the point set P is contained in [1/2, 1/2 + 1/n]d, where n = |P|.

This can be achieved by scaling and translation (which does not affect the distance ordering). Moreover, we

assume the queries are restricted to the unit cube U = [0, 1]d.

Quorum clustering

Given a set P of n points in IRd, and a number k ≥ 1, where k|n, we start with the smallest ball b1 that

contains k points of P, that is radius(b1) = ropt(P, k). Let P1 = P ∩ b1. Continue on the set of points

P \ P1 by finding the smallest ball that contains k points of P \ P1, and so on. Let b1, b2, . . . , bn/k denote

the set of balls computed by this algorithm and let Pi = (P \(P1 ∪ · · · ∪ Pi−1)) ∩ bi. See Figure 4.1 for

an example. Let ci and ri denote the center and radius respectively, of bi, for i = 1, . . . , n/k. A slight

symbolic perturbation can guarantee that (i) each ball bi contains exactly k points of P, and (ii) all the

centers c1, c2, . . . , ck, are distinct points. Observe that r1 ≤ r2 ≤ · · · ≤ rn/k ≤ diam(P). Such a partition of

P into n/k clusters is a quorum clustering . An algorithm for computing it is provided in Carmi et al.

[CDH+05]. We assume we have a black-box procedure QuorumCluster(P, k) [CDH+05] that computes an

approximate quorum clustering. It returns a list of balls, (c1, r1), . . . , (cn/k, rn/k). The algorithm of Carmi

et al. [CDH+05] computes such a sequence of balls, where each ball is a 2-approximation to the smallest

ball containing k points of the remaining points. The following is an improvement over the result of Carmi

et al. [CDH+05].

Lemma 4.2.5 Given a set P of n points in IRd and parameter k, where k|n, one can compute, in O(n log n)

time, a sequence of n/k balls, such that, for all i, 1 ≤ i ≤ n/k, we have

(A) For every ball (ci, ri) there is an associated subset Pi of k points of Qi = P \ (Pi ∪ . . . ∪ Pi−1), that it

covers.

43

(B) The ball (ci, ri) is a 2-approximation to the smallest ball covering k points in Qi; that is, ri/2 ≤

ropt(Qi, k) ≤ ri.

Proof : The guarantee of Carmi et al. is slightly worse – their algorithm running time is O(n logd n). They

use a dynamic data-structure for answering O(n) queries, that report how many points are inside a query

canonical square. Since they use orthogonal range trees this requires O(logd n) time per query. Instead,

one can use dynamic quadtrees. More formally, we store the points using linear ordering [Har11], using any

balanced data-structure. A query to decide the number of points inside a canonical node corresponds to an

interval query (i.e., reporting the number of elements that are inside a query interval), and can be performed

in O(log n) time. Plugging this data-structure into the algorithm of Carmi et al. [CDH+05] gives the desired

result.

4.3 A (15, k)-ANN in sublinear space

Lemma 4.3.1 Let P be a set of n points in IRd, k ≥ 1 be a number such that k|n, (c1, r1) , . . .,
(
cn/k, rn/k

)
,

be the list of balls returned by QuorumCluster(P, k), and let x = mini=1,...,n/k (‖ci − q‖+ ri). We have

that x/5 ≤ dk(q,P) ≤ x.

Proof : For any i = 1, . . . , n/k, we have bi = ball(ci, ri) ⊆ ball(q, ‖ci − q‖+ ri). Since |bi ∩ P| ≥ k, we have

dk(q,P) ≤ ‖ci − q‖+ ri. As such, dk(q,P) ≤ x = min
i=1,...,n/k

(‖ci − q‖+ ri).

For the other direction, let i be the first index such that ball(q, dk(q,P)) contains a point of Pi, where Pi

is the set of k points of P assigned to bi. Then, we have

ri/2 ≤ ropt(Qi, k) ≤ dk(q,P) ,

where Qi = P \ (P1 ∪ · · · ∪ Pi−1), ri is a 2-approximation to ropt(Qi, k), and the last inequality follows as

X = ball(q, dk(q,P)) ∩ P is a set of size k and X ⊆ Qi. Then,

‖ci − q‖ − ri ≤ d(q, ball(ci, ri)) ≤ dk(q,P) ,

as the distance from q to any u ∈ ball(ci, ri) satisfies ‖u− q‖ ≥ ‖ci − q‖ − ri by the triangle inequality.

Putting the above together, we get

x = min
j=1,...,n/k

(‖cj − q‖+ rj) ≤ ‖ci − q‖+ ri = (‖ci − q‖ − ri) + 2ri ≤ 5dk(q,P) .

44

Theorem 4.3.2 Given a set P of n points in IRd, and a number k ≥ 1 such that k|n, one can build a

data-structure, in O(n log n) time, that uses O(n/k) space, such that given any query point q ∈ IRd, one can

compute, in O(log(n/k)) time, a 15-approximation to dk(q,P).

Proof : We invoke QuorumCluster(P, k) to compute the clusters (ci, ri), for i = 1, . . . , n/k. For i =

1, . . . , n/k, let b′i = (ci, ri) ∈ IRd+1. We preprocess the set B′ =
{
b′1, . . . , b

′
n/k

}
for 2-ANN queries (in IRd+1

under the Euclidean norm). The preprocessing time for the ANN data structure is O((n/k) log(n/k)), the

space used is O(n/k) and the query time is O(log(n/k)) [Har11].

Given a query point q ∈ IRd the algorithm computes a 2-ANN to q′ = (q, 0), denoted by b′j , and returns
∥∥q′ − b′j

∥∥
⊕ as the approximate distance.

Observe that, for any i, we have ‖b′i − q′‖ ≤ ‖q′ − b′i‖⊕ ≤
√

2 ‖b′i − q′‖ by Lemma 4.2.2. As such, the

returned distance to b′j is a 2-approximation to d(q′,B′); that is,

d⊕(q′,B′) ≤
∥∥q′ − b′j

∥∥
⊕ ≤

√
2
∥∥b′j − q′

∥∥ ≤ 2
√

2d(q′,B′) ≤ 2
√

2d⊕(q′,B′) .

By Lemma 4.3.1, d⊕(q′,B′) /5 ≤ dk(q,P) ≤ d⊕(q′,B′). Namely,

∥∥q′ − b′j
∥∥
⊕ /(10

√
2) ≤ dk(q,P) ≤

∥∥q′ − b′j
∥∥
⊕ ,

implying the claim.

Remark 4.3.3 The algorithm of Theorem 4.3.2 works for any metric space. Given a set P of n points in a

metric space, one can compute n/k points in the product space induced by adding an extra coordinate, such

that approximating the distance to the kth nearest neighbor, is equivalent to answering ANN queries on the

reduced point set, in the product space.

4.4 Approximate Voronoi diagram for dk(q,P)

Here, we are given a set P of n points in IRd, and our purpose is to build an AVD that approximates the

k-ANN distance, while using (roughly) O(n/k) space.

45

Figure 4.2: Quorum clustering, immediate environs and grids.

4.4.1 Construction

Preprocessing

(A) Compute a quorum clustering for P using Lemma 5.4.6. Let the list of balls returned be b1 =

(c1, r1) , . . . , bn/k =
(
cn/k, rn/k

)
.

(B) Compute an exponential grid around each quorum cluster. Specifically, let

X =

n/k⋃

i=1

dlog(32/ε)+1e⋃

j=0

�

(
ball
(
ci, 2

jri
)
,
ε

ζ1d
2jri

)
(4.1)

be the set of grid cells (see Definition 2.5.4) covering the quorum clusters and their immediate environ,

where ζ1 is a sufficiently large constant, see Figure 4.2.

(C) Intuitively, X takes care of the region of space immediately next to a quorum cluster1. For the other

regions of space, we can apply a construction of an approximate Voronoi diagram for the centers of the

clusters (the details are somewhat more involved). To this end, lift the quorum clusters into points in

IRd+1, as follows

B′ =
{
b′1, . . . , b

′
n/k

}
,

where b′i = (ci, ri) ∈ IRd+1, for i = 1, . . . , n/k. Note that all points in B′ belong to U ′ = [0, 1]d+1

by Assumption 4.2.4. Now build a (1 + ε/8)-AVD for B′ using the algorithm of Arya and Malamatos

[AM02]. The AVD construction provides a list of canonical cubes covering [0, 1]d+1 such that in the

smallest cube containing the query point, the associated point of B′, is a (1 + ε/8)-ANN to the query

point. (Note that these cubes are not necessarily disjoint. In particular, the smallest cube containing

the query point q is the one that determines the assigned approximate nearest neighbor to q.)

Clip this collection of cubes to the hyperplane xd+1 = 0 (i.e., throw away cubes that do not have a

1That is, intuitively, if the query point falls into one of the grid cells of X , we can answer a query in constant time.

46

face on this hyperplane). For a cube � in this collection, denote by nn′(�), the point of B′ assigned to

it. Let S be this resulting set of canonical d-dimensional cubes.

(D) Let W be the space decomposition resulting from overlaying the two collection of cubes, i.e., X and S.

Formally, we compute a compressed quadtree T that has all the canonical cubes of X and S as nodes,

and W is the resulting decomposition of space into cells. One can overlay two compressed quadtrees

representing the two sets in linear time [BHTT10, Har11]. Here, a cell associated with a leaf is a

canonical cube, and a cell associated with a compressed node is the set difference of two canonical

cubes. Each node in this compressed quadtree contains two pointers – to the smallest cube of X , and

to the smallest cube of S, that contains it. This information can be computed by doing a BFS on the

tree.

For each cell � ∈ W we store the following.

(I) An arbitrary representative point �rep ∈ �.

(II) The point nn′(�) ∈ B′ that is associated with the smallest cell of S that contains this cell.

We also store an arbitrary point, p(�) ∈ P, that is one of the k points belonging to the

cluster specified by nn′(�).

(III) A number βk(�rep) that satisfies dk(�rep,P) ≤ βk(�rep) ≤ (1 + ε/4)dk(�rep,P), and a point

nnk(�rep) ∈ P that realizes this distance. In order to compute βk(�rep) and nnk(�rep) use

the data-structure of Section 4.6 (see Theorem 4.6.3) or the data-structure of Arya et al.

[AMM05].

Answering a query

Given a query point q, compute the leaf cell (equivalently the smallest cell) in W that contains q by

performing a point-location query in the compressed quadtree T. Let � be this cell. Return

min
(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖�rep − q‖

)
, (4.2)

as the approximate value to dk(q,P). Return either p(�) or nnk(�rep) depending on which of the two

distances ‖q′ − nn′(�)‖⊕ or βk(�rep) + ‖�rep − q‖ is smaller (this is the returned approximate value of

dk(q,P)), as the approximate kth-nearest neighbor.

47

4.4.2 Correctness

Lemma 4.4.1 Let � ∈ W and q ∈ �. Then the number computed by the algorithm is an upper bound on

dk(q,P).

Proof : By Observation 4.2.1, dk(q,P) ≤ dk(�rep,P)+‖�rep − q‖ ≤ βk(�rep)+‖�rep − q‖. Now, let nn′(�) =

(c, r). We have, by Lemma 4.3.1, that dk(q,P) ≤ ‖c− q‖+ r = ‖q′ − nn′(�)‖⊕ . As the returned value is the

minimum of these two numbers, the claim holds.

Lemma 4.4.2 Consider any query point q ∈ [0, 1]d, and let � be the smallest cell of W that contains the

query point. Then, d(q′,B′) ≤ ‖nn′(�)− q′‖ ≤ (1 + ε/8)d(q′,B′).

Proof : Observe that the space decomposition generated by W is a refinement of the decomposition gener-

ated by the Arya and Malamatos [AM02] AVD construction, when applied to B′, and restricted to the d

dimensional subspace we are interested in (i.e., xd+1 = 0). As such, nn′(�) is the point returned by the AVD

for this query point before the refinement, thus implying the claim.

The query point is close to a quorum cluster of the right size

Lemma 4.4.3 Consider a query point q, and let � ⊆ IRd be any set with q ∈ �, such that diam(�) ≤

εdk(q,P). Then, for any u ∈ �, we have

(1− ε)dk(q,P) ≤ dk(u,P) ≤ (1 + ε)dk(q,P) .

Proof : By Observation 4.2.1, we have

dk(q,P) ≤ dk(u,P) + ‖q− u‖ ≤ dk(u,P) + diam(�) ≤ dk(u,P) + εdk(q,P) .

The other direction follows by a symmetric argument.

Lemma 4.4.4 If the smallest region � ∈ W that contains q has diameter diam(�) ≤ εdk(q,P) /4, then the

algorithm returns a distance which is between dk(q,P) and (1 + ε)dk(q,P).

Proof : Let �rep be the representative stored with the cell. Let α be the number returned by the algorithm.

By Lemma 4.4.1 we have that dk(q,P) ≤ α. Since the algorithm returns the minimum of two numbers, one

48

of which is βk(�rep) + ‖�rep − q‖, we have by Lemma 4.4.3,

α ≤ βk(�rep) + ‖�rep − q‖ ≤ (1 + ε/4)dk(�rep,P) + ‖�rep − q‖

≤ (1 + ε/4)
(
dk(q,P) + diam(�)

)
+ diam(�)

≤ (1 + ε/4)(dk(q,P) + εdk(q,P) /4) + εdk(q,P) /4

= (1 + ε/4)2dk(q,P) + εdk(q,P) /4 ≤ (1 + ε)dk(q,P) ,

establishing the claim.

Definition 4.4.5 Consider a query point q ∈ IRd. The first quorum cluster bi = ball(ci, ri) that intersects

ball(q, dk(q,P)) is the anchor cluster of q. The corresponding anchor point is (ci, ri) ∈ IRd+1.

Lemma 4.4.6 For any query point q, we have that

(i) the anchor point (c, r) is well defined,

(ii) r ≤ 2dk(q,P),

(iii) for b = ball(c, r) we have b ∩ ball(q, dk(q,P)) 6= ∅, and

(iv) ‖c− q‖ ≤ 3dk(q,P).

Proof : Consider the k closest points to q in P. As P ⊆ b1∪· · ·∪bn/k it must be that ball(q, dk(q,P)) intersects

some bi. Consider the first cluster ball(c, r) in the quorum clustering that intersects ball(q, dk(q,P)). Then

(c, r) is by definition the anchor point and we immediately have ball(c, r) ∩ ball(q, dk(q,P)) 6= ∅. Claim (ii)

is implied by the proof of Lemma 4.3.1. Finally, as for (iv), we have r ≤ 2dk(q,P) and the ball around q of

radius dk(q,P) intersects ball(c, r), thus implying that ‖c− q‖ ≤ dk(q,P) + r ≤ 3dk(q,P).

Lemma 4.4.7 Consider a query point q. If there is a cluster ball(c, r) in the quorum clustering computed,

such that ‖c− q‖ ≤ 6dk(q,P) and εdk(q,P) /4 ≤ r ≤ 6dk(q,P), then the output of the algorithm is correct.

Proof : We have

32r

ε
≥ 32(εdk(q,P) /4)

ε
= 8dk(q,P) ≥ ‖c− q‖ .

Thus, by construction, the expanded environ of the quorum cluster ball(c, r) contains the query point, see

Eq. (5.1). Let j be the smallest integer such that 2jr ≥ ‖c− q‖. We have that, 2jr ≤ max(r, 2 ‖c− q‖). As

49

such, if � is the smallest cell in W containing the query point q, then

diam(�) ≤ ε

ζ1d
2jr ≤ ε

ζ1d
·max(r, 2 ‖c− q‖) ≤ ε

ζ1d
·max

(
6dk(q,P) , 12dk(q,P)

)

≤ ε

4d
dk(q,P) ,

by Eq. (5.1) and if ζ1 ≥ 48. As such, diam(�) ≤ εdk(q,P) /4, and the claim follows by Lemma 4.4.3.

The general case

Lemma 4.4.8 The data-structure constructed above returns (1+ε)-approximation to dk(q,P), for any query

point q.

Proof : Consider the query point q and its anchor point (c, r). By Lemma 4.4.6, we have r ≤ 2dk(q,P) and

‖c− q‖ ≤ 3dk(q,P). This implies that

d(q′,B′) ≤ ‖(c, r)− q′‖ ≤ ‖c− q‖+ r ≤ 5dk(q,P) . (4.3)

Let the returned point, which is a (1+ε/8)-ANN for q′ in B′, be (cq, rq) = nn′(�), where q′ = (q, 0). We have

that
∥∥(cq, rq)− q′

∥∥ ≤ (1 + ε/8)d(q′,B′) ≤ 6dk(q,P). In particular,
∥∥cq − q

∥∥ ≤ 6dk(q,P) and rq ≤ 6dk(q,P).

Thus, if rq ≥ εdk(q,P) /4 or r ≥ εdk(q,P) /4 we are done, by Lemma 4.4.7. Otherwise, we have

∥∥(cq, rq
)
− q′

∥∥ ≤ (1 + ε/8) ‖(c, r)− q′‖ ,

as
(
cq, rq

)
is a (1 + ε/8) approximation to d(q′,B′). As such,

∥∥(cq, rq
)
− q′

∥∥
1 + ε/8

≤ ‖(c, r)− q′‖ ≤ ‖c− q‖+ r. (4.4)

As ball(c, r) ∩ ball(q, dk(q,P)) 6= ∅ we have, by the triangle inequality, that

‖c− q‖ − r ≤ dk(q,P) . (4.5)

By Eq. (4.4) and Eq. (4.5) we have

∥∥(cq, rq
)
− q′

∥∥
1 + ε/8

− 2r ≤ ‖c− q‖ − r ≤ dk(q,P) .

50

By the above and as max
(
r, rq
)
< εdk(q,P) /4, we have

∥∥cq − q
∥∥+ rq ≤

∥∥(cq, rq
)
− q′

∥∥+ rq ≤ (1 + ε/8)(dk(q,P) + 2r) + rq

≤ (1 + ε/8)(dk(q,P) + εdk(q,P) /2) + εdk(q,P) /4 ≤ (1 + ε)dk(q,P) .

Since the algorithm returns for q a value that is at most
∥∥cq − q

∥∥+ rq, the result is correct.

4.4.3 The result

Theorem 4.4.9 Given a set P of n points in IRd, a number k ≥ 1 such that k|n, and 0 < ε sufficiently

small, one can preprocess P, in O
(
n log n+

n

k
Cε log n+

n

k
C ′ε
)

time, where Cε = O
(
ε−d log ε−1

)
and C ′ε =

O
(
ε−2d+1 log ε−1

)
. The space used by the data-structure is O(Cεn/k). This data structure answers a (1 +

ε, k)-ANN query in O
(

log
n

kε

)
time. The data-structure also returns a point of P that is approximately the

desired k-nearest neighbor.

Proof : Computing the quorum clustering takes time O(n log n) by Lemma 5.4.6. Observe that |X | =

O
(
n
kεd

log 1
ε

)
. From the construction of Arya and Malamatos [AM02], we have |S| = O

(
n
kεd

log 1
ε

)
(note

that since we clip the construction to a hyperplane, we get 1/εd in the bound and not 1/εd+1). A careful

implementation of this stage takes time O
(
n log n+ |W|

(
log n+ 1

εd−1

))
. Overlaying the two compressed

quadtrees representing them, takes linear time in their size, that is O(|X |+ |S|).

The most expensive step is to perform the (1 + ε/4, k)-ANN query for each cell in the resulting decom-

position of W, see Eq. (5.2) (i.e., computing βk(�rep) for each cell � ∈ W). Using the data-structure of

Section 4.6 (see Theorem 4.6.3) each query takes O
(
log n+ 1/εd−1

)
time (alternatively, we could use the

data-structure of Arya et al. [AMM05]), As such, this takes

O

(
n log n+ |W|

(
log n+

1

εd−1

))
= O

(
n log n+

n

kεd
log

1

ε
log n+

n

kε2d−1
log

1

ε

)

time, and this bounds the overall construction time.

The query algorithm is a point location query followed by an O(1) time computation and takes time

O
(
log
(
n
kε

))
.

Finally, one needs to argue that the returned point of P is indeed the desired approximate k-nearest

neighbor. This follows by arguing in a similar fashion to the correctness proof; the distance to the returned

point is a (1+ε)-approximation to the kth-nearest neighbor distance. We omit the tedious but straightforward

details.

51

Using a single point for each AVD cell

The AVD generated can be viewed as storing two points in each cell � of the AVD. These two points are in

IRd+1, and for a cell �, they are

(i) the point nn′(�) ∈ B′, and

(ii) the point (�rep, βk(�rep)).

The algorithm for dk(q,P) can be viewed as computing the nearest neighbor of (q, 0) to one of the above two

points using the ‖·‖⊕ norm to define the distance. Using standard AVD algorithms we can subdivide each

such cell � into O
(
1/εd log ε−1

)
cells to answer this query approximately. By using this finer subdivision we

can have a single point inside each cell for which the closest distance is the approximation to dk(q,P). This

incurs an increase by a factor of O
(
1/εd log ε−1

)
in the number of cells.

4.4.4 A generalization – weighted version of k ANN

We consider a generalization of the (1+ε, k)-ANN problem. Specifically, we are given a set of points P ⊆ IRd,

a weight wp ≥ 0 for each p ∈ P, and a number ε > 0. Given a query q and weight τ ≥ 0, its τ-NN distance

to P, is the minimum r such that the closed ball ball(q, r) contains points of P of total weight at least τ .

Formally, the τ -NN distance for q is

dτ (q,P) = min
{
r
∣∣∣w
(
ball(q, r) ∩ P

)
≥ τ

}
,

where w(X) =
∑
x∈X wx. A (1+ε)-approximate τ-NN distance is a distance `, such that (1−ε)dτ (q,P) ≤

` ≤ (1 + ε)dτ (q,P) and a (1 + ε)-approximate τ-NN is a point of P that realizes such a distance. The

(1+ε, τ)-ANN problem is to preprocess P, such that a (1+ε)-approximate τ -NN can be computed efficiently

for any query point q.

The (1 + ε, k)-ANN problem is the special case wp = 1 for all p ∈ P and τ = k. Clearly, the function

dτ (·,P) is also a 1-Lipschitz function of its argument. If we are given τ at the time of preprocessing, it can

be verified that the 1-Lipschitz property is enough to guarantee correctness of the AVD construction for the

(1 + ε, k)-ANN problem. However, we need to compute a τ quorum clustering, where now each quorum

cluster has weight at least τ . A slight modification of the algorithm in Lemma 5.4.6 allows this. Moreover,

for the preprocessing step which requires us to solve the (1+ε, τ)-ANN problem for the representative points,

one can use the algorithm of Section 4.6.3. We get the following result,

Theorem 4.4.10 Given a set of n weighted points P in IRd, a number τ > 0 and 0 < ε sufficiently

small, one can preprocess P in O

(
n log n+

w(P)

τ
Cε log n+

w(P)

τ
C ′ε

)
time, where Cε = O

(
ε−d log ε−1

)
and

52

C ′ε = O
(
ε−2d+1 log ε−1

)
and w(P) =

∑
p∈P w(p). The space used by the data-structure is O(Cεw(P) /τ).

This data structure answers a (1 + ε, τ)-ANN query in O

(
log

w(P)

τε

)
time. The data-structure also returns

a point of P that is a (1 + ε)-approximation to the τ -nearest neighbor of the query point.

4.5 Density estimation

Given a point set P ⊆ IRd, and a query point q ∈ IRd, consider the point v(q) = (d1(q,P) , . . . , dn(q,P)).

This is a point in IRn, and several problems in Computational Geometry can be viewed as computing some

interesting function of v(q). For example, one could view the nearest neighbor distance as the function

that returns the first coordinate of v(q). Another motivating example is a geometric version of discrete

density measures from Guibas et al. [GMM11]. In their problem one is interested in computing gk(q) =

∑k
i=1 di(q,P). In this section, we show that a broad class of functions (that include gk), can be approximated

to within (1± ε), by a data structure requiring space Õ(n/k).

4.5.1 Performing point-location in several quadtrees simultaneously

Lemma 4.5.1 Consider a rooted tree T with m nodes, where the nodes are colored by I colors (a node

might have several colors). Assume that there are O(m) pairs of such (node, color) associations. One can

preprocess the tree in O(m) time and space, such that given a query leaf v of T , one can report the nodes

v1, . . . , vI in O(I) time. Here, vi is the lowest node in the tree along the path from the root to v that is

colored with color i.

Proof : We start with the naive solution – perform a DFS on T , and keep an array X of I entries storing

the latest node of each color encountered so far along the path from the root to the current node. Storing

a snapshot of this array X at each node would require O(mI) space. But then one can answer a query in

O(I) time. As such, the challenge is to reduce the required space.

To this end, interpret the DFS to be a Eulerian traversal of the tree. The traversal has length 2m− 2,

and every edge traveled contains updates to the array X . Indeed, if the DFS traverses down from a node u

to a child node w, the updates would be updating all the colors that are stored in w, to indicate that w is the

lowest node for these colors. Similarly, if the DFS goes up from w to u, we restore all the colors stored in w

to their value just before the DFS visited w. Now, the DFS traversal of T becomes a list of O(m) updates.

Each update is still an O(I) operation. This is however a technicality, and can be resolved as follows. For

each edge traveled we store the updates for all colors separately, each update being for a single color. Also

each update entry stores the current node, i.e., the destination vertex of the edge traveled. The total length

53

of the update list is still O(m), as follows from a simple charging argument, and the assumption about the

number of (node, color) pairs. We simply charge each restore to its corresponding “forward going” update,

and the number of forward going updates is exactly equal to the number of (node, color) pairs. For each leaf

we store its last location in this list of updates.

So, let L be this list of updates. At each kth update, for k = tI for some integer t, store a snapshot of

the array of colors as updated if we scan the list from the beginning till this point. Along with this we store

the node at this point and auxiliary information allowing us to compute the next update i.e., if the snapshot

stored is between all updates at this node. Clearly, all these snapshots can be computed in O(m) time, and

require O((m/I)I) = O(m) space.

Now, given a query leaf v, we go to its location in the list L, and jump back to the last snapshot stored.

We copy this snapshot, and then scan the list from the snapshot till the location for v. This would require

re-doing at most O(I) updates, and can be done in O(I) time overall.

Lemma 4.5.2 Given I compressed quadtrees D1, . . . ,DI of total size m in IRd, one can preprocess them in

O(m log I) time, using O(m) space, such that given a query point q, one can perform point-location queries

in all I quadtrees, simultaneously for q, in O(logm+ I) time.

Proof : Overlay all these compressed quadtrees together. Overlaying I quadtrees is equivalent to merging I

sorted lists [Har11] and can be done in O(m log I) time. Let D denote the resulting compressed quadtree.

Note that any node of Di, for i = 1, . . . , I, must be a node in D.

Given a query point q, we need to extract the I nodes in the original quadtrees Di, for i = 1, . . . , I, that

contain the query point (these nodes can be compressed nodes). So, let � be the leaf node of D containing

the query point q. Consider the path π from the root to the node �. We are interested in the lowest node

of π that belongs to Di, for i = 1, . . . , I. To this end, color all the nodes of Di that appear in D, by color i,

for i = 1, . . . , I. Now, we build the data-structure of Lemma 4.5.1 for D. We can use this data-structure to

answer the desired query in O(I) time.

4.5.2 Slowly growing functions

Definition 4.5.3 A monotonic increasing function f : IR+ → IR is slowly growing if there is a constant

c > 0, such that for ε sufficiently small, we have (1− ε)f(x) ≤ f((1− ε/c)x) ≤ f((1 + ε/c)x) ≤ (1 + ε)f(x),

for all x ∈ IR+. The constant c is the growth constant of f . The family of slowly growing functions is

denoted by Fsg.

54

Fsg The class of slowly growing functions, see Definition 4.5.3.

f A function in Fsg or a monotonic increasing function from IR to IR+.

F (q)
∑k
i=1 f

(
di(q,P)

)

F1(q)
∑k
i=dkε/8e f(di(q,P))

I I ⊆
{
dkε/8e , . . . , k

}
, is a coreset, see Lemma 4.5.5.

wi, i ∈ I wi ≥ 0 are associated weights for coreset elements.

F2(q)
∑
i∈I wif(di(q,P))

Figure 4.3: Notations used.

Clearly, Fsg includes polynomial functions, but it does not include, for example, the function ex. We

assume that given x, one can evaluate the function f(x) in constant time. In this section, using the AVD

construction of Section 4.4, we show how to approximate any function F (·) that can be expressed as

F (q) =

k∑

i=1

f
(
di(q,P)

)
,

where f ∈ Fsg. See Figure 4.3 for a summary of the notations used in this section.

Lemma 4.5.4 Let f : IR → IR+ be a monotonic increasing function. Now, let F1(q) =

k∑

i=dkε/8e
f(di(q,P)).

Then, for any query point q, we have that F1(q) ≤ F (q) ≤ (1 + ε/4)F1(q), where F (q) =
∑k
i=1 f

(
di(q,P)

)
.

Proof : The first inequality is obvious. As for the second inequality, observe that di(q,P) is a monotonically

increasing function of i, and so is f(di(q,P)). We are dropping the smallest k(ε/8) terms of the summation

F (q) that is made out of k terms. As such, the claim follows.

The next lemma exploits a coreset construction, so that we have to evaluate only few terms of the

summation.

Lemma 4.5.5 Let f : IR → IR+ be a monotonic increasing function. There is a set of indices I ⊆
{
dkε/8e , . . . , k

}
, and integer weights wi ≥ 0, for i ∈ I, such that:

(A) |I| = O
(

log k
ε

)
.

(B) For any query point q, we have that F2(q) =
∑
i∈I wif(di(q,P)) is a good estimate for F1(q); that is,

(1− ε/4)F2(q) ≤ F1(q) ≤ (1 + ε/4)F2(q), where F1(q) =
∑k
i=dkε/8e f(di(q,P)).

Furthermore, the set I can be computed in O(|I|) time.

Proof : Given a query point q consider the function gq : {1, 2, . . . , n} → IR+ defined as gq(i) = f
(
di(q,P)

)
.

Clearly, since f ∈ Fsg, it follows that gq is a monotonic increasing function. The existence of I follows

55

from Lemma 3.2 in Har-Peled’s paper [Har06], as applied to (1± ε/4)-approximating the function F1(q) =

∑k
i=dkε/8e f(di(q,P)); that is, (1− ε/4)F2(q) ≤ F1(q) ≤ (1 + ε/4)F2(q).

4.5.3 The data-structure

We are given a set of n points P ⊆ IRd, a function f ∈ Fsg, an integer k with 1 ≤ k ≤ n, and ε > 0 sufficiently

small. We describe how to build a data-structure to approximate F (q) =
∑k
i=1 f

(
di(q,P)

)
.

Construction

In the following, let α = 4c, where c is the growth constant of f (see Definition 4.5.3). Consider the coreset

I from Lemma 4.5.5. For each i ∈ I we compute, using Theorem 4.4.9, a data-structure (i.e., a compressed

quadtree) Di for answering (1 + ε/α, i)-ANN queries for P. We then overlay all these quadtrees into a single

quadtree, using Lemma 4.5.2.

Answering a Query. Given a query point q, perform a simultaneous point-location query in D1, . . . ,DI ,

by using D, as described in Lemma 4.5.2. This results in a (1 + ε/α) approximation zi to di(q,P), for i ∈ I,

and takes O(logm+ I) time, where m is the size of D, and I = |I|. We return ξ =
∑
i∈I wif(zi), where wi

is the weight associated with the index i of the coreset of Lemma 4.5.5.

Bounding the quality of approximation. We only prove the upper bound on ξ. The proof for the

lower bound is similar. As the zi are (1 ± ε/α) approximations to di(q,P) we have, (1 − ε/α)zi ≤ di(q,P),

for i ∈ I, and it follows from definitions that,

(1− ε/4)wif(zi) ≤ wif
(

(1− ε/α)zi

)
≤ wif(di(q,P)) ,

for i ∈ I. Therefore,

(1− ε/4)ξ = (1− ε/4)
∑

i∈I
wif(zi) ≤

∑

i∈I
wif(di(q,P)) = F2(q). (4.6)

Using Eq. (4.6) and Lemma 4.5.5 it follows that,

(1− ε/4)2ξ ≤ (1− ε/4)F2(q) ≤ F1(q). (4.7)

56

Finally, by Eq. (4.7) and Lemma 4.5.4 we have,

(1− ε/4)2ξ ≤ F1(q) ≤ F (q).

Therefore we have, (1− ε)ξ ≤ (1− ε/4)2ξ ≤ F (q), as desired.

Preprocessing space and time analysis. We have that I = |I| = O
(
ε−1 log k

)
. Let Cx = O

(
x−d log x−1

)
.

By Theorem 4.4.9 the total size of all the Dis (and thus the size of the resulting data-structure) is

S =
∑

i∈I
O
(
Cε/α

n

i

)
= O

(
Cε/α

n log k

kε2

)
. (4.8)

Indeed, the maximum of the terms involving n/i is O(n/kε) and I = O
(
ε−1 log k

)
. By Theorem 4.4.9 the

total time taken to construct all the Di is

∑

i∈I
O
(
n log n+

n

i
Cε/α log n+

n

i
C ′ε/α

)
= O

(
n log n log k

ε
+
n log n log k

kε2
Cε/α +

n log k

kε2
C ′ε/α

)
,

where C ′x = O
(
x−2d+1 log x−1

)
. The time to construct the final quadtree is O(S log I), but this is subsumed

by the construction time above.

The result

Summarizing the above, we get the following result.

Theorem 4.5.6 Let P be a set of n points in IRd. Given any slowly growing, monotonic increasing function

f (i.e f ∈ Fsg, see Definition 4.5.3), an integer k with 1 ≤ k ≤ n, and ε ∈ (0, 1), one can build a data-

structure to approximate F (·). Specifically, we have:

(A) The construction time is O(C1n log n log k), where C1 = O
(
ε−2d−1 log ε−1

)
.

(B) The space used is O
(
C2
n

k
log k

)
, where C2 = O

(
ε−d−2 log ε−1

)
.

(C) For any query point q, the data-structure computes a number ξ, such that (1−ε)ξ ≤ F (q) ≤ (1+ε)ξ,

where F (q) =
∑k
i=1 f(di(q,P)).

(D) The query time is O

(
log n+

log k

ε

)
.

(The O notation here hides constants that depend on f .)

57

4.6 ANN queries where k and ε are part of the query

Given a set P of n points in IRd, we present a data-structure for answering (1 + ε, k)-ANN queries, in time

O
(
log n+ 1/εd−1

)
. Here k and ε are not known during the preprocessing stage, but are specified during

query time. In particular, different queries can use different values of k and ε. Unlike our main result, this

data-structure requires linear space, and the amount of space used is independent of k and ε. Previous

data-structures required knowing ε in advance [AMM05].

4.6.1 Rough approximation

Observe that a fast constant approximation to dk(q,P) is implied by Theorem 4.3.2 if k is known in advance.

We describe a polynomial approximation when k is not available during preprocessing. We sketch the main

ideas; our argument closely follows the exposition in Har-Peled’s book [Har11].

Lemma 4.6.1 Given a set P of n points in IRd, one can preprocess it, in O(n log n) time, such that given

any query point q and k with 1 ≤ k ≤ n, one can find, in O(log n) time, a number R satisfying dk(q,P) ≤

R ≤ ncdk(q,P). The result is correct with high probability, i.e., at least 1− 1/nc−2, where c is an arbitrary

constant.

Proof : By an appropriate scaling and translation ensure that P ⊆ [1/2, 3/4]d. Consider a compressed

quadtree decomposition T of b + [0, 1]d for P, whose shift b is a random vector in [0, 1/2]d. By a bottom-up

traversal, compute, for each node v of T, the axis parallel bounding box Bv of the subset of P stored in its

subtree, and the number of those points.

Given a query point q ∈ [1/2, 3/4]d, locate the lowest node ν of T whose region contains q (this takes

O(log n) time, see [Har11]). By performing a binary search on the root to ν path locate the lowest node νk

whose subtree contains k or more points from P. The algorithm returns R, the distance of the query point

to the furthest point of Bνk , as the approximate distance.

To see that the quality of approximation is as claimed, consider the ball b centered at q with radius

r = dk(q,P). Next, consider the smallest canonical grid having side length α ≥ nc−1r (thus, α ≤ 2nc−1r).

Randomly translating this grid, we have with probability ≥ 1 − 2rd/α ≥ 1 − 1/nc−2, that the ball b is

contained inside a canonical cell � of this grid. This implies that the diameter of Bνk is bounded by
√
dα,

Indeed, if the cell of νk is contained in �, then this clearly holds. Otherwise, if � is contained in the cell νk,

then νk must be a compressed node, the inner portion of its cell is contained in �, and the outer portion of

the cell can not contain any point of P. As such, the claim holds.

58

Moreover, for the returned distance R, we have that

r = dk(q,P) ≤ R ≤ diam(Bνk) + r ≤
√
dα+ r ≤

√
d2nc−1r + r ≤ ncr.

An alternative to the argument used in Lemma 4.6.1, is to use two shifted quadtrees, and return the

smaller distance returned by the two trees. It is not hard to argue that in expectation the returned distance is

anO(1)-approximation to the desired distance (which then implies the desired result via Markov’s inequality).

One can also derandomize the shifted quadtrees and use d+ 1 quadtrees instead [Har11].

We next show how to refine this approximation.

Lemma 4.6.2 Given a set P of n points in IRd, one can preprocess it in O(n log n) time, so that given a

query point q, one can output a number β satisfying, dk(q,P) ≤ β ≤ (1 + ε)dk(q,P), in O
(
log n+ 1/εd−1

)

time. Furthermore, one can return a point p ∈ P such that (1− ε)dk(q,P) ≤ ‖p− q‖ ≤ (1 + ε)dk(q,P).

Proof : Assume that P ∪ {q} ⊆ [1/2, 1/2 + 1/n]d. The algorithm of Lemma 4.6.1 returns the distance R

between q and some point of P; as such we have, dk(q,P) ≤ R ≤ nO(1)dk(q,P) ≤ diam(P ∪ {q}) ≤ d/n. We

start with a compressed quadtree for P having U = [0, 1]d as the root. We look at the set of canonical cells

X0 with side length at least R, that intersect the ball ball(q, R). Clearly, the kth nearest neighbor of q lies

in this set of cubes. The set X0 can be computed in O(|X0| log n) time using cell queries [Har11].

For each node v in the compressed quadtree there is a level associated with it. This is lvl(v) =

log2 sidelength(�v). The root has level 0 and it decreases as we go down the compressed quadtree. In-

tuitively, −lvl(v) is the depth of the node if it was a node in a regular quadtree.

We maintain a queue of such canonical grid cells. Each step in the search consists of replacing cells in

the current level with their children in the quadtree, and deciding if we want to descend a level. In the ith

iteration, we replace every node of Xi−1 by its children in the next level, and put them into the set Xi.

We then update our estimate of dk(q,P). Initially, we set I0 = [l0, h0] = [0, R]. For every node v ∈ Xi,

we compute the closest and furthest point of its cube (that is the cell of this node) from the query point

(this can be done in O(1) time). This specifies a collection of intervals Iv one for each node v ∈ Xi. Let nv

denote the number of points stored in the subtree of v. For a real number x, let L(x),M(x), R(x) denote

the total number of points in the intervals, that are to the left of x, contains x, and are to the right of x,

respectively. Using median selection, one can compute in linear time (in the number of nodes of Xi) the

minimum x such that L(x) ≥ k. Let this value be hi. Similarly, in linear time, compute the minimum x such

that L(x) +M(x) ≥ k, and let this value be li. Clearly, the desired distance is in the interval Ii = [li, hi].

59

The algorithm now iterates over v ∈ Xi. If Iv is strictly to the left of li, v is discarded (it is too close to

the query and can not contain the kth nearest neighbor), setting k ← k − nv. Similarly, if Iv is to the right

of hi it can be thrown away. The algorithm then moves to the next iteration.

The algorithm stops as soon as the diameter of all the cells of Xi is smaller than (ε/8)li. A representative

point is chosen from each node of Xi (each node of the quadtree has an arbitrary representative point

precomputed for it out of the subset of points stored in its subtree), and the furthest such point is returned

as the (1 + ε)- approximate k nearest neighbor. To see that the returned answer is indeed correct, observe

that li ≤ dk(q,P) ≤ hi and hi− li ≤ (ε/8)li, which implies the claim. The distance of the returned point from

q is in the interval [α, β], where α = li− (ε/8)li and β = hi ≤ li + (ε/8)li ≤ (1 + ε/2)(1− ε/8)li ≤ (1 + ε/2)α.

This interval also contains dk(q,P). As such, β is indeed the required approximation.

Since we are working with compressed quadtrees, a child node might be many levels below the level of

its parent. In particular, if a node’s level is below the current level, we freeze it and just move it on the set

of the next level. We replace it by its children only when its level has been reached.

The running time is clearly O(|X0| log n+
∑
i |Xi|). Let ∆i be the diameter of the cells in the level

being handled in the ith iteration. Clearly, we have that hi ≤ li + ∆i. All the cells of Xi that survive must

intersect the ring with inner and outer radii li and hi respectively, around q. By a simple packing argument,

|Xi| ≤ ni = O
(
(li/∆i + 1)d−1

)
. As long as ∆i ≥ dk(q,P), we have that ni = O(1), as li ≤ dk(q,P). This

clearly holds for the first O(log n) iterations. It can be verified that once this no longer holds, the algorithm

performs at most dlog2(1/ε)e + O(1) additional iterations, as then ∆i ≤ (ε/16)dk(q,P) and the algorithm

stops. Clearly, the nis in this range can grow exponentially, but the last one is O(1/εd−1). This implies that

∑
i |Xi| = O

(
log n+ 1/εd−1

)
, as desired.

4.6.2 The result

Theorem 4.6.3 Given a set P of n points in IRd, one can preprocess them in O(n log n) time, into a data

structure of size O(n), such that given a query point q, an integer k with 1 ≤ k ≤ n and ε > 0 one can

compute, in O
(
log n+ 1/εd−1

)
time, a number β such that dk(q,P) ≤ β ≤ (1+ε)dk(q,P). The data-structure

also returns a point p ∈ P such that (1− ε)dk(q,P) ≤ ‖p− q‖ ≤ (1 + ε)dk(q,P).

4.6.3 Weighted version of (1 + ε, k)-ANN

We now consider the weighted version of the (1 + ε, k)-ANN problem as defined in Section 4.4.4. Knowledge

of the threshold weight τ is not required at the time of preprocessing. By a straightforward adaptation of

the arguments in this section we get the following.

60

Theorem 4.6.4 Given a set P of n weighted points in IRd one can preprocess them, in O(n log n) time,

into a data structure of size O(n), such that one can efficiently answer (1 + ε, τ)-ANN queries. Here a

query is made out of (i) a query point q, (ii) a weight τ ≥ 0, and (iii) an approximation parameter

ε > 0. Specifically, for such a query, one can compute, in O
(
log n+ 1/εd−1

)
time, a number β such that

(1−ε)dτ (q,P) ≤ β ≤ (1+ε)dτ (q,P). The data-structure also returns a point p ∈ P such that (1−ε)dτ (q,P) ≤

‖p− q‖ ≤ (1 + ε)dτ (q,P).

4.7 Conclusions

In this chapter, we presented a data-structure for answering (1 + ε, k)-ANN queries in IRd where d is a

constant. Our data-structure has the surprising property that the space required is Õ(n/k). One can verify

that up to noise this is the best one can do for this problem. This data-structure also suggests a natural way

of compressing geometric data, such that the resulting sketch can be used to answer meaningful proximity

queries on the original data. We then used this data-structure to answer various proximity queries using

roughly the same space and query time. We also presented a data-structure for answering (1 + ε, k)-ANN

queries where both k and ε are specified during query time. This data-structure is simple and practical.

There are many interesting questions for further research.

(A) In the vein of the authors recent work [HK11], one can verify that our results extends in a natural

way to metrics of low doubling dimensions ([HK11] describes what an approximate Voronoi diagram

is for doubling metrics). It also seems believable that the result would extend to the problem where

the data is high dimensional but the queries arrive from a low dimensional manifold.

(B) It is natural to ask what one can do for this problem in high dimensional Euclidean space. In

particular, can one get query time close to the one required for approximate nearest neighbor

[IM98, HIM12]. Of particular interest is getting a query time that is sublinear in k and n while

having subquadratic space and preprocessing time.

(C) The dependency on ε in our data-structures may not be optimal. One can probably get space/time

tradeoffs, as done by Arya et al. [AMM09].

61

Chapter 5

Sublinear Space Data-Structures for
k-ANN on Balls

5.1 Problem definition and notation

Input. We are given a set of disjoint1 balls B = {b1, . . . , bn}, where bi = ball(ci, ri), for i = 1, . . . , n.

Here ball(c, r) ⊆ IRd denotes the (closed) ball with center c and radius r ≥ 0. Additionally, we are given

an approximation parameter ε ∈ (0, 1). For a point q ∈ IRd, the distance of q to a ball b = ball(c, r) is

d(q, b) = max
(
‖q− c‖ − r, 0

)
.

Observation 5.1.1 For two balls b1 ⊆ b2 ⊆ IRd, and any point q ∈ IRd, we have d(q, b1) ≥ d(q, b2).

The kth-nearest neighbor distance of q to B, denoted by dk(q,B), is the kth smallest number in

d(q, b1) , . . . , d(q, bn). Similarly, for a given set of points P, dk(q,P) denotes the kth-nearest neighbor distance

of q to P.

Problem definition. We aim to build a data-structure to answer (1±ε)-approximate kth-nearest neighbor

(i.e., (k, ε)-ANN) queries, where for any query point q ∈ IRd one needs to output a ball b ∈ B such that,

(1 − ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B). There are different variants depending on whether ε and k are

provided with the query or in advance.

Notations. We use cube to denote a square (d = 2), a cube (d = 3), or a hypercube (d > 3), as the

dimension might be.

Observation 5.1.2 For any set of balls B, the function dk(q,B) is a 1-Lipschitz function; that is, for any

two points u, v, we have that dk(u,B) ≤ dk(v,B) + ‖v − u‖.

Assumption 5.1.3 We assume all the balls are contained inside the cube
[
1/2− δ, 1/2 + δ

]d
, which can be

ensured by translation and scaling (which preserves order of distances), where δ = ε/4. As such, we can

ignore queries outside the unit cube [0, 1]d, as any input ball is a valid answer in this case.

1Our data-structure and algorithm work for the more general case where the balls are interior disjoint, where we define the
interior of a “point ball”, i.e., a ball of radius 0, as the point itself. This is not the usual topological definition.

62

Let B be a family of balls in IRd. Given a set X ⊆ IRd, let

B(X) =
{
b ∈ B

∣∣∣ b ∩X 6= ∅
}

denote the set of all balls in B that intersect X.

For two compact sets X,Y ⊆ IRd, X � Y if and only if diam(X) ≤ diam(Y). For a set X and a set

of balls B, let B�(X) =
{
b ∈ B

∣∣∣ b ∩X 6= ∅ and b � X
}

. Let cd denote the maximum number of pairwise

disjoint balls of radius at least r, that may intersect a given ball of radius r in IRd. It can be verified that

2 ≤ cd ≤ 3d for all d. Clearly, we have |B�(b)| ≤ cd for any ball b.

Definition 5.1.4 For a parameter δ ≥ 0, a function f : IR+ → IR+ is δ-monotonic, if for every x ≥ 0,

f(x/(1 + δ)) ≤ f(x).

5.2 Approximate range counting for balls

Data-structure 5.2.1 For a given set of balls B = {b1, . . . , bn} in IRd, we build the following data-structure,

that is useful in performing several of the tasks at hand.

(A) Store balls in a (compressed) quadtree. For i = 1, 2, . . . , n, let Gi = G≈(bi) (see Definition 2.5.2),

and let G =
⋃n
i=1Gi denote the union of these cells. Let T be a compressed quadtree decomposition

of [0, 1]d, such that all the cells of G are cells of T. We preprocess T to answer point location queries.

This takes O(n log n) time, see [Har11].

(B) Compute list of “large” balls intersecting each cell. For each node u of T, there is a list of balls

registered with it. Formally, register a ball bi with all the cells of Gi. Clearly, each ball is registered

with O(1) cells, and it is easy to see that each cell has O(1) balls registered with it, since the balls are

disjoint.

Next, for a cell � in T we compute a list storing B�(�), and these balls are associated with this cell.

These lists are computed in a top-down manner. To this end, propagate from a node u its list B�(�)

(which we assume is already computed) down to its children. For a node receiving such a list, it scans

it, and keep only the balls that intersect its cell (adding to this list the balls already registered with

this cell). For a node ν ∈ T, let Bν be this list.

(C) Build compressed quadtree on centers of balls. Let C be the set of centers of the balls of B.

Build in O(n log n) time, a compressed quadtree TC storing C.

(D) ANN for centers of balls. Build a data structure D, for answering 2-approximate k-nearest neighbor

distances on C, the set of centers of the balls, see [HK12] or Chapter 4, where k and ε are provided

63

with the query. The data structure D, returns a point c ∈ C such that, dk(q, C) ≤ d(q, c) ≤ 2dk(q, C).

(E) Answering approximate range searching for the centers of balls.

Given a query ball bq = ball(q, x) and a parameter δ > 0, one can, using TC , report (approximately),

in O(log n+ 1/δd) time, the points in bq ∩ C. Specifically, the query process computes O(1/δd) sets of

points, such that their union X, has the property that bq ∩ C ⊆ X ⊆ (1 + δ)bq ∩ C, where (1 + δ)bq

is the scaling of bq by a factor of 1 + δ around its center. Indeed, compute the set G≈
(
bq
)
, and then

using cell queries in TC compute the corresponding cells (this takes O(log n) time). Now, descend to

the relevant level of the quadtree to all the cells of the right size, that intersect bq. Clearly, the union

of points stored in their subtrees are the desired set. This takes overall O(log n+ 1/δd) time.

A similar data-structure for approximate range searching is provided by Arya and Mount [AM00], and

our description above is provided for the sake of completeness.

Overall, it takes O(n log n) time to build this data-structure, and we denote it by DS5.2.1.

5.2.1 Approximate range counting among balls

We need the ability to answer approximate range counting queries on a set of balls. Specifically, given a set

of balls B, and a query ball b, the target is to compute the size of the set b ∩ B =
{
b′ ∈ B

∣∣∣ b′ ∩ b 6= ∅
}

. To

make this query computationally fast, we allow an approximation. More precisely, for a ball b a set b̃ is a

(1+ δ)-ball of b, if b ⊆ b̃ ⊆ (1+ δ)b, where (1+ δ)b is the (1+ δ)-scaling of b around its center. The purpose

here, given a query ball b, is to compute the size of the set b̃ ∩ B for some (1 + δ)-ball b̃ of b. It turns out

that this is challenging, as the query ball can be approximated, but the balls in B remain the same. This is

to prevent the undesired situation where a “giant” ball is a valid answer for any ANN query.

Some useful tools

Lemma 5.2.2 Given a compressed quadtree T of size n, a convex set X, and a parameter δ > 0, one

can compute the set of nodes in T, that realizes G≈(X, δ) (see Definition 2.5.2), in O
(
log n+ 1/δd

)
time.

Specifically, this output a set XN of nodes, of size O
(
1/δd

)
, such that their cells intersect G≈(X, δ), and

their parents cell diameter is larger than δdiam(X). Note that the cells in XN might be significantly larger

if they are leafs of T.

Proof : Let G≈ = G≈(X, 1) be the grid approximation to X. Using cell queries on the compressed quadtree,

one can compute the cells of T that corresponds to these canonical cells. Specifically, for each cube � ∈

G≈(X), the query either returns a node for which this is its cell, or it returns a compressed edge of the

quadtree; that is, two cells (one is a parent of the other), such that � is contained in of them and contains

64

the other. Such a cell query takes O(log n) time [Har11]. This returns O(1) nodes in T such that their cells

cover G≈(X).

Now, traverse down the compressed quadtree starting from these nodes and collect all the nodes of the

quadtree that are relevant. Clearly, one has to go at most O(log 1/δ) levels down the quadtree to get these

nodes, and this takes O(1/δd) time overall.

Lemma 5.2.3 Let X be any convex set in IRd, and let δ > 0 be a parameter. Using DS5.2.1, one can

compute, in O
(
log n+ 1/δd

)
time, all the balls of B that intersects X, with diameter ≥ δdiam(X).

Proof : We compute the cells of the quadtree realizing G≈(X, δ) using Lemma 5.2.2. Now, from each such

cell (and its parent), we extract the list of large balls intersecting it (there are O(1/δd) such nodes, and the

size of each such list is O(1)). Next we check for each such ball if it intersects X and if its diameter is at

least δdiam(X). We return the list of all such balls.

Answering a query

Given a query ball bq = ball(q, x), and an approximation parameter δ > 0, our purpose is to compute a

number N , such that
∣∣∣B
(
ball
(
q, x
))∣∣∣ ≤ N ≤

∣∣∣B
(
ball
(
q, (1 + δ)x

))∣∣∣.

The query algorithm works as follows:

(A) Using Lemma 5.2.3, compute a set X of all the balls that intersect bq and are of radius ≥ δx/4.

(B) Using DS5.2.1, compute O(1/δd) cells of TC that corresponds to G≈
(
bq(1 + δ/4), δ/4

)
. Let N ′ be

the total number of points in C stored in these nodes.

(C) The quantity N ′ + |X| is almost the desired quantity, except that we might be counting some

of the balls of X twice. To this end, let N ′′ be the number of balls in X with centers in

G≈
(
bq(1 + δ/4), δ/4

)

(D) Let N ← N ′ + |X| −N ′′. Return N .

Correctness. We only sketch the proof, as it is straightforward. Indeed, the union of the cells of

G≈
(
bq(1 + δ/4), δ/4

)
contains ball(q, x(1 + δ/4)) and is contained in ball(q, (1 + δ)x). All the balls with

radius smaller than δx/4 and intersecting ball(q, x) have their centers in cells of G≈
(
bq(1 + δ/4), δ/4

)
, and

their number is computed correctly. Similarly, the “large” balls are computed correctly. The last stage

ensures we do not over-count by 1 each large ball that also has its center in G≈
(
bq(1 + δ/4), δ/4

)
. It is also

easy to check that |B(ball(q, x))| ≤ N ≤ |B(ball(q, x(1 + δ)))|. The same result can be used for x/(1 + δ) to

get δ-monotonicity of N .

65

Query running time. Computing all the cells of G≈
(
bq(1 + δ/4), δ/4

)
takes O(log n+ 1/δd) time. Com-

puting the “large” balls takes O
(
log n+ 1/δd

)
time. Checking for each large ball if it is already counted by

the “small” balls takes O(1/δd) by using a grid.

Result. The above implies the following.

Lemma 5.2.4 (rangeCount) Given a set B of n balls in IRd, it can be preprocessed, in O(n log n) time,

into a data structure of size O(n), such that given a query ball ball(q, x) and approximation parameter

δ > 0, the query algorithm rangeCount(q, x, δ) returns, in O(log n+ 1/δd) time, a number N satisfying the

following:

(A) N ≤ |B(ball(q, (1 + δ)x))|,

(B) |B(ball(q, x))| ≤ N , and

(C) for a query ball ball(q, x) and δ, the number N is δ-monotonic as a function of x, see Defini-

tion 5.1.4.

5.3 Answering k-ANN queries among balls

5.3.1 Computing a constant factor approximation to dk(q,B)

Lemma 5.3.1 Let B be a set of disjoint balls in IRd, and consider a ball b = ball(q, r) that intersects at

least k balls of B. Then, among the k nearest neighbors of q from B, there are at least max(0, k − cd) balls

of radius at most r. The centers of all these balls are in ball(q, 2r).

Proof : Consider the k nearest neighbors of q from B. Any such ball that has its center outside ball(q, 2r),

has radius at least r, since it intersects b = ball(q, r). Since the number of balls that are of radius at least r

and intersect b is bounded by cd, there must be at least max(0, k− cd) balls among the k nearest neighbors,

each having radius less than r. Now, ball(q, 2r) will contain the centers of all such balls.

Corollary 5.3.2 Let γ = min(k, cd). Then, dk−γ(q, C) /2 ≤ dk(q,B).

Idea. The basic observation is that we only need a rough approximation to the right radius, as using

approximate range counting (i.e., Lemma 5.2.4), one can improve the approximation.

Let xi denote the distance of q to the ith closest center in C. Let dk = dk(q,B). Let i be the minimum

index, such that dk ≤ xi. Since dk ≤ xk, it must be that i ≤ k. There are several possibilities:

(A) If i ≤ k − cd (i.e., dk ≤ xk−cd) then, by Lemma 5.3.1, the ball ball(q, 2dk) contains at least k − cd

centers. As such, dk < xk−cd ≤ 2dk, and xk−cd is a good approximation to dk.

66

(B) If i > k − cd, and dk ≤ 4xi−1, then xi−1 is the desired approximation.

(C) If i > k − cd, and dk ≥ xi/4, then xi is the desired approximation.

(D) Otherwise, it must be that i > k− cd, and xi−1/4 ≤ dk ≤ xi/4. Let bj = ball(cj , rj) be the jth closest

ball to q, for j = 1, . . . , k. It must be that bi, . . . , bk are much larger than ball(q, dk). But then, the

balls bi, . . . , bk must intersect ball(q, xi/2), and their radius is at least xi/2. We can easily compute

these big balls using DS5.2.1 (B), and the number of centers of the small balls close to query, and then

compute dk exactly.

Preprocessing. We build DS5.2.1 in O(n log n) time.

Notations. For x ≥ 0, let N(x) denote the number of balls in B that intersect ball(q, x); that is N(x) =
∣∣∣
{
b ∈ B

∣∣∣ b ∩ ball(q, x) 6= ∅
}∣∣∣, and C(x) denote the number of centers in ball(q, x), i.e., C(x) = |C ∩ ball(q, x)|.

Also, let #(x) denote the 2-approximation to the number of balls of B intersecting ball(q, x), as computed

by Lemma 5.2.4; that is N(x) ≤ #(x) ≤ N(2x).

Answering a query. We are given a query point q ∈ IRd and a number k.

Using DS5.2.1, compute a 2-approximation for the smallest ball containing k − i centers of B, for i =

0, . . . , γ, where γ = min(k, cd), and let rk−i be this radius. That is, for i = 0, . . . , γ, we have C(rk−i/2) ≤

k − i ≤ C(rk−i). For i = 0, . . . , γ, compute Nk−i = #(rk−i) (Lemma 5.2.4).

Let α be the maximum index such that Nk−α ≥ k. Clearly, α is well defined as Nk ≥ k. The algorithm

is executed in the following steps.

(A) If α = γ we return 2rk−γ .

(B) If #(rk−α/4) < k, we return 2rk−α.

(C) Otherwise, compute all the balls of B that are of radius at least rk−α/4 and intersect the ball

ball(q, rk−α/4), using DS5.2.1 (B). For each such ball b, compute the distance ζ = d(q, b) of q to

it. Return 2ζ for the minimum such number ζ such that #(ζ) ≥ k.

Lemma 5.3.3 Given a set of n disjoint balls B in IRd, one can preprocess them, in O(n log n) time, into

a data structure of size O(n), such that given a query point q ∈ IRd, and a number k, one can compute, in

O(log n) time, a number x such that, x/4 ≤ dk(q,B) ≤ 4x.

Proof : The data-structure and query algorithm are described above. We next prove correctness. To prove

that (A) returns the correct answer observe that under the given assumptions,

rk−γ/4 ≤ dk−γ(q, C) /2 ≤ dk(q,B) ≤ 2rk−γ ,

67

where the second inequality follows from Corollary 5.3.2, and the third inequality follows as N(2rk−γ) ≥

#(rk−γ) ≥ k, while dk(q,B) is the smallest number x such that N(x) ≥ k.

For (B) observe that we have that N(rk−γ/4) ≤ #(rk−γ/4) < k and as such we have rk−γ/4 < dk(q,B).

But by assumption, #(rk−γ) ≥ k and so N(2rk−γ) ≥ #(rk−γ) ≥ k, thus dk(q,B) ≤ 2rk−γ .

For (C), first observe that α < γ as the algorithm did not return in (A). Since α is the maximum index such

that #(rk−α) ≥ k, so N(rk−α−1) ≤ #(rk−α−1) < k implying, rk−α−1 < dk(q,B). Also, dk(q,B) ≤ rk−α/4,

as the algorithm did not return in (B). Now the ball ball(q, rk−α−1) contains at least k − α − 1 centers

from C, but it does not contain k − α centers. Indeed, otherwise we would have dk−α(q, C) ≤ rk−α−1 and

so rk−α ≤ 2dk−α(q, C) ≤ 2rk−α−1, but on the other hand rk−α−1 < dk(q,B) ≤ rk−α/4, which would be a

contradiction. Similarly, there is no center of any ball whose distance from q is in the range (rk−α−1, rk−α/2)

otherwise we would have that dk−α(q, C) < rk−α/2 and this would mean that rk−α ≤ 2dk−α(q, C) < rk−α,

a contradiction. Now, the center of the kth closest ball is clearly more than rk−α−1 away from q. As

such its distance from q is at least rk−α/2. Since dk(q,B) ≤ rk−α/4 it follows that the kth closest ball

intersects ball(q, rk−α/4) and moreover, its radius is at least rk−α/4. Since we compute all such balls in (C),

we do encounter the kth closest ball. It is easy to see that in this case we return a number ζ satisfying,

ζ/2 ≤ dk(q,B) ≤ 2ζ.

As for the running time, notice that we need to use the algorithm of Lemma 5.2.4 O(1) times, each

iteration taking time O(log n). After this we need another O(log n) time for the invocation of the algorithm

in Lemma 5.2.3. As such, the total query time is O(log n).

Refining the approximation of dk(q,B)

Lemma 5.3.4 Given a set B of n balls in IRd, it can be preprocessed, in O(n log n) time, into a data

structure of size O(n). Given a query point q, numbers k, x, and an approximation parameter ε > 0, such

that x/4 ≤ dk(q,B) ≤ 4x, one can find a ball b ∈ B such that, (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B), in

O
(
log n+ 1/εd

)
time.

Proof : We are going to use the same data-structure as Lemma 5.2.4, for the query ball bq = ball(q, 4x(1 + ε)).

We compute all large balls of B that intersect bq. Here a large ball is a ball of radius > xε, and a ball of

radius at most xε is considered to be a small ball. Consider the O(1/εd) grid cells of G≈
(
bq, ε/16

)
. In

O(1/εd) time we can record the number of centers of large balls inside any such cell. Clearly, any small

ball that intersects ball(q, 4x) has its center in some cell of G≈
(
bq, ε/16

)
. We use the quadtree TC to find

out exactly the number of centers, N�, of small balls in each cell � of G≈
(
bq, ε/16

)
, by finding the total

number of centers using TC , and decreasing this by the count of centers of large balls in that cell. This can

68

be done in time O(log n+ 1/εd). We pick an arbitrary point in �, and assign it weight N�, and treat it as

representing all the small balls in this grid cell – clearly, this introduces an error of size ≤ εx in the distance

of such a ball from q, and as such we can ignore it in our argument. In the end of this snapping process, we

have O(1/εd) weighted points, and O(1/εd) large balls. We know the distance of the query point from each

one of these points/balls. This results in O(1/εd) weighted distances, and we want the smallest `, such that

the total weight of the distances ≤ ` is at least k. This can be done by weighted median selection in linear

time in the number of distances, which is O(1/εd). Once we get the required point we can output any ball

b corresponding to the point. Clearly, b satisfies the required conditions.

The result

Theorem 5.3.5 Given a set of n disjoint balls B in IRd, one can preprocess them in time O(n log n) into a

data structure of size O(n), such that given a query point q ∈ IRd, a number k with 1 ≤ k ≤ n and ε > 0,

one can find in time O
(
log n+ ε−d

)
a ball b ∈ B, such that, (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

5.4 Quorum clustering

We are given a set B of n disjoint balls in IRd, and we describe how to compute quorum clustering for them

quickly.

Let ξ be some constant. Let B0 = ∅. For i = 1, . . . ,m, let Ri = B \ (
⋃i−1
j=0 Bj), and let Λi = ball(wi, xi)

be any ball that satisfies,

(A) Λi contains min(k − cd, |Ri|) balls of Ri completely inside it,

(B) Λi intersects at least k balls of B, and

(C) the radius of Λi is at most ξ times the radius of the smallest ball satisfying the above conditions.

Next, we remove any k − cd balls that are contained in Λi from Ri to get the set Ri+1. We repeat this

process till all balls are extracted. Notice that at each step i we only require that the Λi intersects k balls

of B (and not Ri), but that it must contain k − cd balls from Ri. Also, the last quorum ball may contain

fewer balls. The balls Λ1, . . . ,Λm, are the resulting ξ-approximate quorum clustering .

5.4.1 Computing an approximate quorum clustering

Definition 5.4.1 For a set P of n points in IRd, and an integer `, with 1 ≤ ` ≤ n, let ropt(P, `) denote the

radius of the smallest ball which contains at least ` points from P, i.e., ropt(P, `) = minq∈IRd d`(q,P).

69

Similarly, for a set R of n balls in IRd, and an integer `, with 1 ≤ ` ≤ n, let Ropt(R, `) denote the radius

of the smallest ball which completely contains at least ` balls from R.

Lemma 5.4.2 ([HK12]) Given a set P of n points in IRd and integer `, with 1 ≤ ` ≤ n, one can compute,

in O(n log n) time, a sequence of dn/`e balls, o1 = ball(u1, ψ1) , . . . , odn/`e = ball
(
udn/`e, ψdn/`e

)
, such that,

for all i, 1 ≤ i ≤ dn/`e, we have

(A) For every ball oi, there is an associated subset Pi of min(`, |Qi|) points of Qi = P \ (Pi ∪ . . . ∪ Pi−1),

that it covers.

(B) The ball oi = ball(ui, ψi) is a 2-approximation to the smallest ball covering min(`, |Qi|) points in Qi;

that is, ψi/2 ≤ ropt(Qi,min(`, |Qi|)) ≤ ψi.

The algorithm. The algorithm to construct an approximate quorum clustering is as follows. We use the

algorithm of Lemma 5.4.2 with the set of points P = C, and ` = k − cd to get a list of m = dn/(k − cd)e

balls o1 = ball(u1, ψ1) , . . . , om = ball(um, ψm), satisfying the conditions of Lemma 5.4.2. Next we use the

algorithm of Theorem 5.3.5, to compute (k, ε)-ANN distances from the centers u1, . . . , um, to the balls of B.

Thus, we get numbers γi satisfying, (1/2)dk(ui,B) ≤ γi ≤ (3/2)dk(ui,B). Let ζi = max(2γi, 3ψi), for

i = 1, . . . ,m. Sort ζ1, . . . , ζm (we assume for the sake of simplicity of exposition that ζm, being the radius

of the last cluster is the largest number). Suppose the sorted order is the permutation π of {1, . . . ,m} (by

assumption π(m) = m). We output the balls Λi = ball
(
uπ(i), ζπ(i)

)
, for i = 1, . . . ,m, as the approximate

quorum clustering.

Correctness

Lemma 5.4.3 Let B = {b1, . . . , bn} be a set of n disjoint balls, where bi = ball(ci, ri), for i = 1, . . . , n. Let

C = {c1, . . . , cn} be the set of centers of these balls. Let b = ball(c, r) be any ball that contains at least `

centers from C, for some 2 ≤ ` ≤ n. Then ball(c, 3r) contains the ` balls that correspond to those centers.

Proof : Without loss of generality suppose b contains the ` centers c1, . . . , c`, from C. Now consider any index

i with 1 ≤ i ≤ `, and consider any j 6= i, which exists as ` ≥ 2 by assumption. Since ball(c, r) contains both

ci and cj , 2r ≥ ‖ci − cj‖ by the triangle inequality. On the other hand, as the balls bi and bj are disjoint we

have that ‖ci − cj‖ ≥ ri + rj ≥ ri. It follows that ri ≤ 2r for all 1 ≤ i ≤ `. As such the ball ball(c, 3r) must

contain the entire ball bi, and thus it contains all the ` balls b1, . . . , b`, corresponding to the centers.

Lemma 5.4.4 Let B = {b1 = ball(c1, r1) , . . . , bn = ball(cn, rn)} be a set of n disjoint balls in IRd. Let

C = {c1, . . . , cn} be the corresponding set of centers, and let ` be an integer with 2 ≤ ` ≤ n. Then,

ropt(C, `) ≤ Ropt(B, `) ≤ 3ropt(C, `).

70

Proof : The first inequality follows since the ball realizing the optimal covering of ` balls, clearly contains their

centers as well, and therefore ` points from C. To see the second inequality, consider the ball b = ball(c, r)

realizing ropt(C, `), and use Lemma 5.4.3 on it. This implies Ropt(B, `) ≤ 3ropt(C, `).

Lemma 5.4.5 The balls Λ1, . . .Λm computed above are a 12-approximate quorum clustering of B.

Proof : Consider the balls o1 = ball(u1, ψ1) , . . . , om = ball(um, ψm) computed by the algorithm of Lemma 5.4.2.

Suppose Ci, for 1 = 1, . . . ,m, is the set of centers assigned to the balls bi. That is, C1, . . . , Cm form a disjoint

decomposition of C, each of size k− cd (except for the last set, which might be smaller – a technicality that

we ignore for the sake of simplicity of exposition).

For i = 1, . . . ,m, let Bi denote the set of balls corresponding to the centers in Ci. Now while constructing

the approximate quorum clusters we are going to assign the set of balls Bπ(i) for i = 1, . . . ,m, to Λi. Now,

fix a i with 1 ≤ i ≤ m − 1. The balls of
⋃i
j=1 Bπ(j) have been used up. Consider an optimal ball, i.e., a

ball b = ball(c, r) that contains completely k − cd balls among
⋃m
j=i+1 Bπ(j) and intersects k balls from B,

and is the smallest such possible. Fix some k − cd balls from
⋃m
j=i+1 Bπ(j) that this optimal ball contains.

Consider the sets of centers C′ of these balls. The quorum clusters oπ(j) for j = i + 1, . . . ,m, contain all

these centers, by construction. Out of these indices, i.e., out of the indices {π(i+ 1), . . . , π(m)}, suppose p

is the minimum index such that op contains one of these centers. When op was constructed, i.e., at the pth

iteration of the algorithm of Lemma 5.4.2, all the centers from C′ were available. Now since the optimal ball

b = ball(c, r) contains k− cd available centers too, it follows that ψp ≤ 2r since Lemma 5.4.2 guarantees this.

Since k−cd ≥ 2, by Lemma 5.4.3, ball(up, 3ψp) contains the balls of Bp. Moreover, by the Lipschitz property,

see Observation 5.1.2, it follows that dk(up,B) ≤ dk(c,B)+‖up − c‖ ≤ r+(r+ψp) ≤ 4r, where the second last

inequality follows as the balls b = ball(c, r) and the ball op = ball(up, ψp) intersect. Therefore, for the index p

we have that, dk(up,B) ≤ 2γp ≤ 3dk(up,B) ≤ 12r, and also that 3ψp ≤ 6r. As such ζp = max(2γp, 3ψp) ≤ 12r.

The index π(i + 1) minimizes this quantity among the indices {π(i+ 1), . . . , π(m)} (as we took the sorted

order), as such it follows that ζi+1 ≤ 12r.

Lemma 5.4.6 Given a set B of n disjoint balls in IRd, such that (k−cd)|n, and a number k with 2cd < k ≤ n,

in O(n log n) time, one can output a sequence of m = n/(k − cd) balls Λ1, . . . ,Λm, such that

(A) For each ball Λi, there is an associated subset Bi of k − cd balls of Ri = B \ (B1 ∪ . . . ∪ Bi−1), that it

completely covers.

(B) The ball Λi intersects at least k balls from B.

(C) The radius of the ball Λi is at most 12 times that of the smallest ball covering k − cd balls of Ri
completely, and intersecting k balls of B.

71

Proof : The correctness was proved in Lemma 5.4.5. To see the time bound is also easy as the computation

time is dominated by the time in Lemma 5.4.2, which is O(n log n).

5.5 Construction of the sublinear space data-structure for

(k, ε)-ANN

Here we show how to compute an approximate Voronoi diagram for approximating the kth-nearest ball, that

takes O(n/k) space. We assume k > 2cd without loss of generality, and we let m = dn/(k − cd)e = O(n/k).

Here k and ε are prespecified in advance.

5.5.1 Preliminaries

The following notation was introduced in [HK12], see also Chapter 4. A ball b of radius r in IRd, centered

at a point c, can be interpreted as a point in IRd+1, denoted by b′ = (c, r). For a regular point p ∈ IRd, its

corresponding image under this transformation is the mapped point p′ = (p, 0) ∈ IRd+1, i.e., we view it as a

ball of radius 0 and use the mapping defined on balls. Given point u =(u1, . . . , ud) ∈ IRd we will denote its

Euclidean norm by ‖u‖. We will consider a point u =(u1, u2, . . . , ud+1) ∈ IRd+1 to be in the product metric

of IRd × IR and endowed with the product metric norm

‖u‖⊕ =
√

u2
1 + · · ·+ u2

d + |ud+1| .

It can be verified that the above defines a norm, and for any u ∈ IRd+1 we have ‖u‖ ≤ ‖u‖⊕ ≤
√

2 ‖u‖.

Construction

The input is a set B of n disjoint balls in IRd, and parameters k and ε.

The construction of the data-structure is similar to the construction of the kth-nearest neighbor data-

structure from the authors’ paper [HK12], see also Chapter 4. We compute, using Lemma 5.4.6, a ξ-

approximate quorum clustering of B with m = n/(k − cd) = O(n/k) balls,

Σ = {Λ1 = ball(w1, x1) , . . . ,Λm = ball(wm, xm)} ,

where ξ ≤ 12. The algorithm then continues as follows:

72

(A) Compute an exponential grid around each quorum cluster. Specifically, let

I =

m⋃

i=1

dlog(32ξ/ε)e⋃

j=0

G≈

(
ball
(
wi, 2

jxi
)
,
ε

ζ1

)
(5.1)

be the set of grid cells covering the quorum clusters and their immediate environ (see Definition 2.5.2),

where ζ1 is a sufficiently large constant (say, ζ1 = 256ξ).

(B) Intuitively, I takes care of the region of space immediately next to a quorum cluster2. For the other

regions of space, we can apply a construction of an approximate Voronoi diagram for the centers of the

clusters (the details are somewhat more involved). To this end, lift the quorum clusters into points in

IRd+1, as follows

Σ′ = {Λ′1, . . . ,Λ′m} ,

where Λ′i = (wi, xi) ∈ IRd+1, for i = 1, . . . ,m. Note that all points in Σ′ belong to U ′ = [0, 1]d+1

by Assumption 5.1.3. Now build a (1 + ε/8)-AVD for Σ′ using the algorithm of Arya and Malamatos

[AM02], for distances specified by the ‖·‖⊕ norm. The AVD construction provides a list of canonical

cubes covering [0, 1]d+1 such that in the smallest cube containing the query point, the associated point

of Σ′, is a (1 + ε/8)-ANN to the query point. (Note that these cubes are not necessarily disjoint.

In particular, the smallest cube containing the query point q is the one that determines the assigned

approximate nearest neighbor to q.)

Clip this collection of cubes to the hyperplane xd+1 = 0 (i.e., throw away cubes that do not have a face

on this hyperplane). For a cube � in this collection, denote by nn′(�), the point of Σ′ assigned to it.

Let S be this resulting set of canonical d-dimensional cubes.

(C) Let W be the space decomposition resulting from overlaying the two collection of cubes, i.e., I and S.

Formally, we compute a compressed quadtree T that has all the canonical cubes of I and S as nodes,

and W is the resulting decomposition of space into cells. One can overlay two compressed quadtrees

representing the two sets in linear time [BHTT10, Har11]. Here, a cell associated with a leaf is a

canonical cube, and a cell associated with a compressed node is the set difference of two canonical

cubes. Each node in this compressed quadtree contains two pointers – to the smallest cube of I, and

to the smallest cube of S, that contains it. This information can be computed by doing a BFS on the

tree.

For each cell � ∈ W we store the following.

2That is, intuitively, if the query point falls into one of the grid cells of I, we can answer a query in constant time.

73

(I) An arbitrary representative point �rep ∈ �.

(II) The point nn′(�) ∈ Σ′ that is associated with the smallest cell of S that contains this cell.

We also store an arbitrary ball, b(�) ∈ B, that is one of the balls completely inside the

cluster specified by nn′(�) – we assume we stored such a ball inside each quorum cluster,

when it was computed.

(III) A number βk(�rep) that satisfies dk(�rep,B) ≤ βk(�rep) ≤ (1 + ε/4)dk(�rep,B), and a ball

nnk(�rep) ∈ B that realizes this distance. In order to compute βk(�rep) and nnk(�rep) use

the data-structure of Section 5.3, see Theorem 5.3.5.

Answering a query

Given a query point q, compute the leaf cell (equivalently the smallest cell) in W that contains q by

performing a point-location query in the compressed quadtree T. Let � be this cell. Let,

λ∗ = min
(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖q−�rep‖

)
. (5.2)

If diam(�) ≤ (ε/8)λ∗ we return nnk(�rep) as the approximate kth-nearest neighbor, else we return b(�).

5.5.2 Correctness

Lemma 5.5.1 The number λ∗ = min
(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖q−�rep‖

)
satisfies, dk(q,B) ≤ λ∗.

Proof : This follows by the Lipschitz property, see Observation 5.1.2.

Lemma 5.5.2 Let � ∈ W be any cell containing q. If diam(�) ≤ εdk(q,B) /4, then nnk(�rep) is a valid

(1± ε)-approximate kth-nearest neighbor of q.

Proof : For the point �rep, by Observation 5.1.2, we have that

dk(�rep,B) ≤ dk(q,B) + ‖q−�rep‖ ≤ dk(q,B) + diam(�) ≤ (1 + ε/4)dk(q,B) .

Therefore, the ball nnk(�rep) satisfies

d(�rep,nnk(�rep)) ≤ (1 + ε/4)dk(�rep,B) ≤ (1 + ε/4)2dk(q,B) ≤ (1 + 3ε/4)dk(q,B) .

74

As such we have that

d(q,nnk(�rep)) ≤ d(�rep,nnk(�rep)) + ‖q−�rep‖ ≤((1 + 3ε/4) + ε/4) dk(q,B) ≤ (1 + ε)dk(q,B) .

Similarly, using the Lipschitz property, we can argue that, d(q,nnk(�rep)) ≥ (1−ε)dk(q,B), and therefore

we have, (1− ε)dk(q,B) ≤ d(q,nnk(�rep)) ≤ (1 + ε)dk(q,B), and the required guarantees are satisfied.

Lemma 5.5.3 For any point q ∈ IRd there is a quorum ball Λi = ball(wi, xi) such that (A) Λi intersects

ball(q, dk(q,B)), (B) xi ≤ 3ξdk(q,B), and (C) ‖q− wi‖ ≤ 4ξdk(q,B).

Proof : By assumption, k > 2cd, and so by Lemma 5.3.1 among the k nearest neighbor of q, there are

k − cd balls of radius at most dk(q,B). Let B′ denote the set of these balls. Among the indices 1, . . . ,m,

let i be the minimum index such that one of these k − cd balls is completely covered by the quorum cluster

Λi = ball(wi, xi). Since ball(q, dk(q,B)) intersects the ball while Λi completely contains it, clearly Λi intersects

ball(q, dk(q,B)). Now consider the time Λi was constructed, i.e, the ith iteration of the quorum clustering

algorithm. At this time, by assumption, all of B′ was available, i.e., none of its balls were assigned to earlier

quorum clusters. The ball ball(q, 3dk(q,B)) contains k− cd unused balls and touches k balls from B, as such

the smallest such ball had radius at most 3dk(q,B). By the guarantee on quorum clustering, xi ≤ 3ξdk(q,B).

As for the last part, as the balls ball(q, dk(q,B)) and Λi = ball(wi, xi) intersect, and xi ≤ 3ξdk(q,B), we have

by the triangle inequality that ‖q− wi‖ ≤ (1 + 3ξ)dk(q,B) ≤ 4ξdk(q,B), as ξ ≥ 1.

Definition 5.5.4 For a given query point, any quorum cluster that satisfies the conditions of Lemma 5.5.3

is defined to be an anchor cluster . By Lemma 5.5.3 an anchor cluster always exists.

Lemma 5.5.5 Suppose that among the quorum cluster balls Λ1, . . . ,Λm, there is some ball Λi = ball(wi, xi)

which satisfies that ‖q− wi‖ ≤ 8ξdk(q,B) and εdk(q,B) /4 ≤ xi ≤ 8ξdk(q,B) then the output of the algorithm

is correct.

Proof : We have

32ξxi
ε
≥ 32ξ(εdk(q,B) /4)

ε
= 8ξdk(q,B) ≥ ‖q− wi‖ .

Thus, by construction, the expanded environ of the quorum cluster ball(wi, xi) contains the query point,

see Eq. (5.1). Let j be the smallest non-negative integer such that 2jxi ≥ d(q,wi). We have that, 2jxi ≤

75

max(xi, 2d(q,wi)). As such, if � is the smallest cell in W containing the query point q, then

diam(�) ≤ ε

ζ1
2j+1xi ≤

ε

ζ1
·max(2xi, 4d(q,wi)) ≤

ε

ζ1
·max

(
16ξdk(q,B) , 32ξdk(q,B)

)

≤ ε

8
dk(q,B) ,

by Eq. (5.1), and if ζ1 ≥ 256ξ. Now, by Lemma 5.5.1 we have that λ∗ ≥ dk(q,B), so diam(�) ≤ (ε/8)λ∗.

Therefore, the algorithm returns nnk(�rep) as the (1 ± ε)-approximate kth-nearest neighbor, but then by

Lemma 5.5.2 it is a correct answer.

Lemma 5.5.6 The query algorithm always outputs a correct approximate answer, i.e., the output ball b

satisfies (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

Proof : Suppose that among the quorum cluster balls Λ1 = ball(w1, x1) , . . . ,Λm = ball(wm, xm), there is

some ball Λi such that ‖q− wi‖ ≤ 8ξdk(q,B) and (ε/4)dk(q,B) ≤ xi ≤ 8ξdk(q,B), then by Lemma 5.5.5

the algorithm returns a valid answer. Assume this condition is not satisfied. Let the anchor cluster be

Λ = ball(w, x). Since the anchor cluster satisfies ‖q− w‖ ≤ 4ξdk(q,B) and x ≤ 3ξdk(q,B), it must be the

case that, x < (ε/4)dk(q,B). Since the anchor cluster intersects ball(q, dk(q,B)), we have that ‖q− w‖ ≤

(1 + ε/4)dk(q,B). Thus, ‖q′ − Λ′‖⊕ = ‖q− w‖+ x ≤ (1 + ε/2)dk(q,B). Let � be the smallest cell in which q

is located. Now consider the point nn′(�) ∈ Σ′. Suppose it corresponds to the cluster Λj , i.e., Λ′j = nn′(�).

Since nn′(�) is a (1 + ε/8)-ANN to q among the points of Σ′, ‖q′ − nn′(�)‖⊕ ≤ (1 + ε/8) ‖q′ − Λ′‖⊕ ≤

(1+ε/8)(1+ε/2)dk(q,B) ≤ (1+ε)dk(q,B) ≤ 2dk(q,B) ≤ 8ξdk(q,B). It follows that, ‖q− wj‖ ≤ 8ξdk(q,B),

and xj ≤ 8ξdk(q,B). By our assumption, it must be the case that, xj < (ε/4)dk(q,B). Now, there are two

cases. Suppose that, diam(�) ≤ (ε/8)λ∗. Then, since we have λ∗ ≤ ‖q′ − nn′(�)‖⊕ so λ∗ ≤ 2dk(q,B). As

such, diam(�) ≤ (ε/4)dk(q,B). In this case we return nnk(�) by the algorithm, but the result is correct by

Lemma 5.5.2. On the other hand, if we return b(�), it is easy to see that d(q,b(�)) ≤ ‖q− wj‖ + xj ≤

(1 + ε)dk(q,B). Also, as b(�) lies completely inside Λj it follows by Observation 5.1.1, that d(q,b(�)) ≥

d(q,Λj) ≥ ‖q− wj‖ − xj ≥ (‖q− wj‖+ xj)− 2xj ≥ dk(q,B)− (ε/2)dk(q,B) ≥ (1− ε/2)dk(q,B), where the

second last inequality follows by Lemma 5.5.1.

5.5.3 The result

Theorem 5.5.7 Given a set B of n disjoint balls in IRd, a number k, with 1 ≤ k ≤ n, and ε ∈ (0, 1), one can

preprocess B, in O
(
n log n+

n

k
Cε log n+

n

k
C ′ε
)

time, where Cε = O
(
ε−d log ε−1

)
and C ′ε = O

(
ε−2d log ε−1

)
.

The space used by the data-structure is O(Cεn/k). Given a query point q, this data-structure outputs a ball

76

b ∈ B in O
(

log
n

kε

)
time, such that (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

Proof : If k ≤ 2cd then Theorem 5.3.5 provides the desired result.

For k > 2cd, the correctness was proved in Lemma 5.5.6. We only need to bound the construction time

and space as well as the query time. Computing the quorum clustering takes time O(n log n) by Lemma 5.4.6.

Observe that |I| = O
(
n
kεd

log 1
ε

)
. From the construction of Arya and Malamatos [AM02], we have |S| =

O
(
n
kεd

log 1
ε

)
(note, that since we clip the construction to a hyperplane, we get 1/εd in the bound and not

1/εd+1). A careful implementation of this stage takes time O
(
n log n+ |W|

(
log n+ 1

εd−1

))
. Overlaying the

two compressed quadtrees representing them takes linear time in their size, that is O(|I|+ |S|).

The most expensive step is to perform the (1 ± ε/4)-approximate kth-nearest neighbor query for each

cell in the resulting decomposition of W, see Eq. (5.2) (i.e., computing βk(�rep) for each cell � ∈ W). Using

the data-structure of Section 5.3 (see Theorem 5.3.5) each query takes O
(
log n+ 1/εd

)
time.

O

(
n log n+ |W|

(
log n+

1

εd

))
= O

(
n log n+

n

kεd
log

1

ε
log n+

n

kε2d
log

1

ε

)

time, and this bounds the overall construction time.

The query algorithm is a point location query followed by an O(1) time computation and takes time

O
(
log
(
n
kε

))
.

Note that the space decomposition generated by Theorem 5.5.7 can be interpreted as a space decom-

position of complexity O(Cεn/k), where every cell has two input balls associated with it, which are the

candidates to be the desired (k, ε)-ANN. That is, Theorem 5.5.7 compute a (k.ε)-AVD of the input balls.

5.6 Conclusions

In this chapter, we presented a generalization of the usual (1±ε)-approximate kth-nearest neighbor problem

in IRd, where the input are balls of arbitrary radius, while the query is a point. We first presented a data

structure that takes O(n) space, and the query time is O(log n+ ε−d). Here, both k and ε could be supplied

at query time. Next we presented an (k, ε)-AVD taking Õ(n/k) space. Thus showing, surprisingly, that the

problem can be solved in sublinear space if k is sufficiently large.

77

Chapter 6

Generalized Proximity Search

6.1 Introduction

Given a set of functions F =
{
fi : IRd → IR

∣∣∣ i = 1, . . . , n
}

, their minimization diagram is the function

fmin(q) = mini=1,...,n fi(q), for any q ∈ IRd. By viewing the graphs of these functions as manifolds in IRd+1,

the graph of the minimization diagram, also known as the lower envelope of F , is the manifold that can

be viewed by an observer at −∞ on the xd+1 axis. Given a set of functions F as above, many problems in

Computational Geometry can be viewed as computing the minimization diagram; that is, one preprocesses

F , and given a query point q, one needs to compute fmin(q) quickly. This typically requires nO(d) space if

one is interested in logarithmic query time. If one is restricted to using linear space, then the query time

deteriorates to O
(
n1−O(1/d)

)
[Mat92, Cha10]. There is substantial work on bounding the complexity of the

lower envelope in various cases, how to compute it efficiently, and performing range search on them; see the

book by Sharir and Agarwal [SA95].

Nearest-neighbor. One natural problem that falls into this framework is the nearest-neighbor (NN)

search problem. Here, given a set P of n data points in a metric space X , we need to preprocess P, such that

given a query point q ∈ X , one can find (quickly) the point nq ∈ P closest to q. Nearest-neighbor search is

a fundamental task used in numerous domains including machine learning, clustering, document retrieval,

databases, statistics, and many others.

To see the connection to lower envelopes, consider a set of data points P = {p1, . . . , pn} in IRd. Next,

consider the set of functions F = {f1, . . . , fn}, where fi(q) = ‖q− pi‖, for i = 1, . . . , n. The graph of fi

is the set of points
{

(q, fi(q)) | q ∈ IRd
}

(which is a cone in IRd+1 with apex at (pi, 0)). Clearly the NN

search problem is to evaluate the minimization diagram of these functions at a query point q, and to find

the function fi which achieves the minimum at q.

More generally, given a set of n functions, one can think of the functions as defining distances, and the

minimization diagram defining a “nearest-neighbor” under those distance functions, by analogy with the

78

above. The nearest-neighbor distance of a query point here, is simply the “height” of the lower envelope at

that point.

Generalized distance functions: motivation. The algorithms for approximate nearest-neighbor extend

to various metrics in IRd, for example the well known `p metrics. In particular, previous constructions of

AVD’s extend to `p metrics [Har01, AM02] as well. However, these constructions fail even for a relatively

simple and natural extension; specifically, multiplicative weighted Voronoi diagrams. Here, every site p, in

the given point set P, has a weight ωp, and the “distance” of a query point q to p is fp(q) = ωp ‖p− q‖. As

with ordinary Voronoi diagrams, one can define the weighted Voronoi diagram as a partition of space into

disjoint regions, one for each site p, such that in the region for p, the function fp is the one realizing the

minimum among all the functions induced by the points of P. Such a weighted Voronoi diagram is known

as the multiplicative Voronoi diagram, and even in the plane it can have quadratic complexity. Intuitively,

such multiplicative Voronoi diagrams can be used to model facilities, where the price of delivery to a client

depends on the facility and the distance to the client. Of course, this is only one possible distance function,

and there are many other such functions that are of interest.

When is fast proximity and small space not possible? Consider a set of segments in the plane,

and we are interested in the nearest segment to a query point. Given n such segments and n such query

points, this is an extension of Hopcroft’s problem, which requires only to decide if there is any of the given

points on any of the segments. There are lower bounds (in reasonable computation models) which show that

a solution to Hopcroft’s problem requires Ω
(
n4/3

)
time [Eri96]. This implies that no multiplicative-error

approximation for proximity search in this case is possible, if one insists on near-linear preprocessing, and

logarithmic query time.

When is fast ANN possible? So, consider a set of geometric objects where each one of them induces a

natural distance function, measuring how far a point in space is from this object. Given such a collection

of functions, the nearest-neighbor for a query point is simply the function that defines the lower envelope

“above” the query point (i.e., the object closest to the query point under its distance function). Clearly,

this approach allows a generalization of the proximity search problem. In particular, the above question

becomes, for what classes of functions, can the lower envelope be approximated up to (1 + ε)-multiplicative

error, in logarithmic time? Here the preprocessing space used by the data-structure should be near-linear.

79

6.2 The framework and summary of results

For the sake of simplicity of exposition, throughout this chapter we assume that all the “action” takes place

in the unit cube [0, 1]d. Among other things, this implies that all the queries are in this region. This can

always be guaranteed by an appropriate scaling and translation of space. The scaling and translation, along

with the conditions on functions in our framework, implies that outside the unit cube the approximation to

the lower envelope can be obtained in constant time.

6.2.1 Problem statement

We are given a set F of n functions from IRd to IR+, and a parameter ε. Our task is to build a data-

structure of near-linear size, such that given a query point q, one can quickly compute a value x, such that

d(q) ≤ x ≤ (1 + ε)d(q), where

d(q) = d(q,F) = min
i=1,...,n

fi(q) (6.1)

is the height of the lower envelope of F at q; that is, d(q) is the distance of q from F. Since the functions

of F are distance functions in our applications, we refer to these approximate minimization diagram queries

as approximate nearest neighbor (ANN) queries.

For such a set of functions F, an approximate Voronoi diagram (AVD) is a decomposition of space

into near-linear number of cells, each of low descriptive complexity, such that every cell c in the AVD has a

small number of functions Gc associated with it, such that for any query point q, if c is the cell of the AVD

that contains q, then d(q,Gc) approximates d(q,F) well. As such, given an ANN query, it can be answered

by doing a point-location query in the AVD to compute c, and then computing d(q,Gc) explicitly. Usually,

such an AVD is constructed using compressed quadtrees and yields an O(log n) time ANN queries, see [Har11]

for details.

6.2.2 Informal description of the technique

Consider n points in the plane p1, . . . , pn, where the “distance” from the ith point to a query q, is the

minimum scaling of an ellipse Ei (centered at pi), till it covers q, and let fi denote this distance function.

Assume that these ellipses are fat, i.e., for some constant α > 0, there is a ball of some radius ri, centered

at pi, that lies inside Ei, while the ball of radius αri covers Ei. Clearly each function fi has a graph that

is a deformed cone. Given a query point q ∈ IR2, we are interested in the first function graph being hit

by a vertical ray shot upward from (q, 0). In particular, let d(q) = mini=1,...,n fi(q) be the height of the

80

minimization diagram of these functions at q.

As a first step in computing d(q), consider the decision version of this problem.

Given a value r, we are interested in deciding if d(q) ≤ r. That is, we want to decide

if q ∈ ⋃i(pi + rEi). Of course, this is by itself a computationally expensive task,

and as such we satisfy ourselves with an approximate decision procedure. Formally,

we replace every ellipse by a collection of grid cells (of the right resolution), such

that approximately it is enough to decide if the query point lies inside any of these

grid cells – if it does, we know that d(q) ≤ (1 + ε)r, otherwise d(q) > r. Of course, as depicted in the

right, since the ellipses are of different sizes, the grid cells generated for each ellipse might belong to different

resolutions, and might be of different sizes. Nevertheless, one can perform this point-location query among

the marked grid squares quickly using a compressed quadtree.

If we were interested only in the case where d(q) is guaranteed to be in some interval [α, β], then the

problem would be easily solvable. Indeed, build a sequence of the above deciders D1, . . . ,Dm, where Di is

for the distance (1 + ε)iα, and m = log1+ε(β/α). Clearly, doing a binary search over these deciders would

resolve the distance query.

Sketchable. Unfortunately, in general, there is no such guarantee – this makes the

problem significantly more challenging. Fortunately, for truly “large” distances, a col-

lection of such ellipses looks like a constant number of ellipse (at least in the approximate

case). In the example of the figure above, for large enough distance, the ellipses looks

like a single ellipse, as demonstrated in the figure on the right. Slightly more formally, if
⋃
i(pi + rEi) is

connected, then the set
⋃
i(pi +REi) can be (1 + ε)-approximated by a constant number of these ellipses,

if R > Ω(nr/ε). A family of functions having this property is sketchable. This suggests the problem is easy

for very large distances.

Critical values to search over. The above suggests that connectivity is the underlying property that

enables us to simplify and replace a large set of ellipses, by a few ellipses, if we are looking at them

from sufficiently far. This implies that the critical values, when the level-set of the functions changes its

connectivity, are the values we should search over during the nearest-neighbor search. Specifically, let ri be

the minimal r when the set
⋃n
k=1(pk + riEk) has n− i connected components, for i = 0, 1, . . . , n− 1, and let

0 = r0 < r1 ≤ r2 ≤ · · · ≤ rn−1 < rn = ∞, be the resulting sequence. Using the above decision procedure,

and a binary search, we can find the largest index j, such that rj ≤ d(q) < rj+1. Furthermore, the decision

procedure for the distance rj+1, reports which connected components of
⋃n
k=1(pk + rjEk) contains the query

81

point q in their union, at distance rj+1. Assume the set of these connected component is formed by the first

t functions; that is,
⋃t
k=1(pk + rj+1Ek) contains q. There are two possibilities:

(A) If d(q) ∈
[
rj , ca(t/ε)rj

]
, then a binary search with the decision procedure would approximate d(q),

where ca is some constant.

(B) If d(q) > (t/ε)rj then, each connected component of
⋃t
k=1(pk + rjEk) can be sketched and replaced

by a constant number of representative functions (the sketch), and the nearest-neighbor search can

now be restricted to the union of the sketches. This is an instance of the problem with a smaller

number of functions.

Challenges

There are several challenges in realizing the above scheme:

(A) We are interested in more general distance functions. To this end, we carefully formalize what

conditions the underlying distance functions induced by each point has to fulfill, so that our framework

applies.

(B) The above scheme requires (roughly) quadratic space to be realized. To reduce the space to near-

linear, we need be more aggressive about replacing clusters of points/functions, by sketches. To this

end, we replace our global scheme by a recursive scheme that starts with the “median” critical value,

and fork the search at this value using the decision procedure. Now, when continuing the search

above this value, we replace every cluster (at this resolution) by its sketch.

(C) Computing this “median” value directly is too expensive. Instead, we randomly select a function and

compute the connectivity radius of this single distance function with the remaining functions. With

good probability this value turns out to be good.

(D) We need to be very careful to avoid accumulation in the error as we replace clusters by sketches.

6.2.3 Notations and basic definitions

Given q ∈ IRd and P ⊆ IRd a non-empty closed set, the distance of q to P is d(q,P) = minx∈P ‖q− x‖.

Definition 6.2.1 For ` ≥ 0 and a function f : IRd → IR, the ` sublevel set of f is the set f�` =
{
q ∈ IRd

∣∣∣ f(q) ≤ `
}

. The number ` will be the level of the sublevel set f�`. For a set of functions F , let

F�` =
⋃
f∈F f�`.

For a value r, the approximate versions of the sublevel sets are f�`,≈r = G≈r(f�`) and F�`,≈r =

∪f∈FG≈r(f�`), see Definition 2.5.3.

82

Definition 6.2.2 Given a function f and q ∈ IRd, their distance is d(q, f) = f(q). Given two functions

f and g, their distance d(f, g) is the minimum ` ≥ 0 such that f�` ∩ g�` 6= ∅. Similarly, for two sets of

function, F and G, their distance is d(F ,G) = min
f∈F,g∈G

d(f, g) . See also Eq. (6.1).

Example 6.2.3 To decipher these somewhat cryptic definitions, the reader might want to consider the

standard settings of regular Voronoi diagrams. Here, we have a set P of n points. The ith point pi ∈ P

induces the natural function fi(q) = ‖pi − q‖. We have:

(A) The graph of fi in IRd+1 is a cone “opening upwards” with an apex at (pi, 0).

(B) The ` sublevel set of fi (i.e., (fi)�`) is a ball of radius ` centered at pi.

(C) The distance of q from fi, i.e., d(q, fi), is the Euclidean distance between q and pi.

(D) Consider two subsets of points X,Y ⊆ P and let FX and FY be the corresponding sets of functions.

The distance ` = d(FX ,FY) is the minimum radius of balls centered at points of X and Y , such

that there are two balls, from the two sets, that intersect; that is, ` is half the minimum distance

between a point of X and a point of Y . In particular, if the union of balls of radius ` centered at X

is connected, i.e., (FX)�` is connected, and similarly for Y , then (FX ∪ FY)�` is connected. This

is the critical value where two connected components of the sublevel sets merge.

The distance function behaves to some extent like one would expect an usual metric to behave: (i) d(f, g)

always exists, and (ii) (symmetry) d(f, g) = d(g, f), Also, we have f�d(f,g) 6= ∅. Note that the triangle

inequality does not hold for d(·, ·).

Observation 6.2.4 Suppose that f and g are two functions such that d(f, g) > 0 and q ∈ IRd. Then,

max(d(q, f) ,d(q, g)) ≥ d(f, g).

Definition 6.2.5 Let B1, B2, . . . , Bm be connected, nonempty sets in IRd. This collection of sets is con-

nected if ∪iBi is connected.

Definition 6.2.6 An infinite family of functions F from IRd to IR+, is well behaved , if for any m functions

{f1, . . . , fm} chosen from this family, their graphs as surfaces in IRd+1, can be preprocessed in mγ·d time,

so that the projection of their lower envelope is computed explicitly, as a partition of space into regions of

the same total complexity, and these regions can be preprocessed for point-location queries in the same time

and space, (i.e., mγd), and it can answer point-location queries in O(logm) time. Here, the constant γ is

termed as the wellness constant .

83

Sketches

A key idea underlying our approach is that any set of functions of interest should look like a single (or a

small number of functions) from “far” enough. Indeed, given a set of points P ⊆ IRd, they look like a single

point (as far as distance), if the distance from CH(P) is at least 2diam(P) /ε.

Definition 6.2.7 (`con(F)) Given a set of functions G, if G contains a single function then the connec-

tivity level `con(G) is 0; otherwise, it is the minimum ` ≥ 0, such that the collection of sets f�` for f ∈ G

is connected, see Definition 6.2.5.

Remark 6.2.8 It follows from Definition 6.2.7 that at level ` = `con(G), each of the sets f�` for f ∈ G, are

nonempty and connected, and further their union G�` is also connected. This can be relaxed to require that

the intersection graph of the sets f�` for f ∈ G is connected (this also implies they are nonempty). Notice

that, if at level `, the sublevel sets are connected, then the relaxed definition is equivalent to Definition 6.2.7.

However, the relaxed definition introduces more technical baggage, and for all the interesting applications

we have, the sublevel sets f�y are connected at all levels y at which they are nonempty. Therefore, in the

interest of brevity, and to keep the presentation simple, we mandate that the sublevel sets be connected at `.

Furthermore, we assume that the sublevel sets are connected whenever nonempty.

Definition 6.2.9 Given a set of functions G and δ ≥ 0, y0 ≥ 0, a (δ, y0)-sketch for G is a (hopefully small)

subset H ⊆ G, such that G�y ⊆ H�(1+δ)y, for all y ≥ y0.

It is easy to see that for any G, δ ≥ 0, y0 ≥ 0, if H ⊆ G is a (δ, y0)-sketch, then for any δ′ ≥ δ, y′0 ≥ y0,H′ ⊇ H

it is true that H′ is a (δ′, y′0)-sketch for G. Trivially, for any δ ≥ 0, y0 ≥ 0, it is true that H = G is a

(δ, y0)-sketch.

6.2.4 Conditions on the functions

A infinite family of functions F from IRd to IR+, is dependable , if there are absolute constants, ζ > 0 –

the growth constant , and a positive integer csk – the sketch constant , depending on F, such that the

following conditions are satisfied for any f ∈ F:

(P1) Compactness. For any y ≥ 0 the sublevel set (f)�y is compact.

(P2) Bounded growth. There is a function λf : IR+ → IR+, called the growth function , such that

for any y ≥ 0 and ε > 0, if f�y 6= ∅, then λf (y) ≥ diam(f�y) /ζ, and such that if q ∈ IRd with

d(q, f�y) ≤ ελf (y), then f(q) ≤ (1 + ε)y. This is equivalent to, f�y ⊕ ball(0, ελf (y)) ⊆ f�(1+ε)y,

where ball(u, r) is the ball of radius r centered at u.

84

(P3) Existence of a sketch. Given δ > 0 and a finite subset G ⊆ F, there is a H ⊆ G with |H| =

O
(

1/δcsk
)

and y0 = O
(
`con(G) ·

(
|G|/δ

)csk) such that, H is a (δ, y0)-sketch for G.

We also require some straightforward properties from the computation model:

(C1) For all q ∈ IRd, the value f(q) = d(q, f) is computable in O(1) time.

(C2) For any y ≥ 0, r > 0, the set of grid cells approximating the sublevel set f�r of f , that is f�y,≈r =

G≈r(f�y) (see Definition 2.5.3), is computable in linear time in its size.

(C3) For any f, g ∈ F, the distance d(f, g) is computable in O(1) time.

We also assume that the growth function λf (y), from Condition (P2), can be computed quickly, i.e., in

O(1) time.

Remark (A) For all our examples, we will specify a set of n functions F = {f1, . . . , fn}, from the implicit

infinite family F. In this case the growth constant and the sketch constant would be absolute constants not

depending on n, or the chosen set of functions F . Henceforth, we will use the term family (or set, or class)

of functions, for our set of n functions F : the infinite family F is only implicitly defined.

(B) In the following, many of the quantities used above, like the resolution r, or distance involved, would

be computed approximately, as exact computation is both computationally expensive and not necessary to

make things work.

Remark 6.2.11 We will use Condition (C2) for a given y only for r = Ω(ελf (y)). That is, we will use

a grid on the sublevel set at a resolution typically ε times its growth function value at its level, which by

Condition (C2) is also Ω(εdiam(f�y)). Here ε ∈ (0, 1) is a prespecified approximation parameter. As such,

the number of grid cells in the approximation f�y,≈r, for a single function f level set, is O
(
1/εd

)
. The value

of r being used can be somewhat imprecise as long as it is small enough.

Properties

In the following, let F be a family of functions, that satisfies the conditions above. The functions under

consideration have the basic properties listed below. Since these properties are straightforward but their

proofs are somewhat tedious, we present their proofs in Appendix A.

(L1) 0-level is empty or a point. For any f ∈ F , either f�0 = ∅ or f�0 consists of a single point, see

Lemma A.0.1.

(L2) Connectivity level for more than one function is non-zero. If `con(F) = 0 for any

non-empty set F , then |F| = 1. See Definition 6.2.7 and Observation A.0.2.

85

(L3) Near convexity. Let f ∈ F and y ≥ 0. For any points u, v ∈ f�y, we have uv ⊆ F�(1+ζ/2)y,

where uv denotes the segment joining u to v, see Lemma A.0.3.

(L4) Connectivity level is preserved under sketching. For any G ⊆ F , δ ≥ 0 and y ≥ 0,

such that G is a (δ, y)-sketch for F , we have that, `con(G) ≤ (1 + δ)(1 + ζ/2) max(y, `con(F)), see

Lemma A.0.5.

(L5) Distances are preserved under sketching. Let G ⊆ F , such that G is a (δ, y0)-sketch for

F , for some δ ≥ 0 and y0 ≥ 0. Let q be a point such that d(q,F) ≥ y0. Then we have that

d(q,G) ≤ (1 + δ)d(q,F), see Lemma A.0.6.

Remark 6.2.12 (Computing the sketch) We implicitly assume that the above relevant quantities can

be computed efficiently. For example, given some δ > 0, and y0 as per the bound in condition (P3), a

(δ, y0)-sketch can be computed in time O(|G| /δcsk) time.

6.2.5 Summary of results

Our main result is the following, the details of which are presented in Section 6.3.

Theorem 6.2.13 Let F be a set of n functions in IRd that complies with the assumptions of Section 6.2.4,

and has sketch constant csk ≥ d + 1. Then, one can build a data-structure to answer ANN for this set of

functions, with the following properties:

(A) The query time is O(log n+ 1/εcsk).

(B) The preprocessing time is O
(
nε−2csk log2csk+1 n

)
.

(C) The space used is O
(
nε−d−1−csk logcsk+1 n

)
.

One can transform the data-structure into an AVD, and in the process improve the query time (the space

requirement slightly deteriorates). See Section 6.3 for details.

Corollary 6.2.14 Let F be a set of n functions in IRd that complies with the assumptions of Section 6.2.4,

and has sketch constant csk ≥ d + 1. Moreover, suppose that the family of functions satisfies the well-

behaveness condition, see Definition 6.2.6, with wellness constant γ. Then, one can build a data-structure

to answer ANN for this set of functions, with the following properties:

(A) The improved query time is O(log(n/ε)).

(B) The preprocessing time is O
(
nε−2csk log2csk+1 n+ nε−γdcsk

)
.

(C) The space used is S = O
(
nε−d−1−csk logcsk+1 n+ nε−γdcsk

)
.

In particular, we can compute an AVD of complexity O(S), for the given functions. That is, one can

compute a space decomposition, such that every region has a single function associated with it, and for any

86

point in this region, this function is a (1 + ε)-ANN among the functions of F . Here, a region is either a

cube, or the set difference of two cubes, or the intersection of such a region with the region which is a cell in

the projection of the lower envelope of some of the functions.

Distance functions for which the framework applies

Multiplicative distance functions with additive offsets. For i = 1, . . . , n, we are given a point pi,

with an associated weight wi > 0, and an offset αi ≥ 0. The multiplicative distance with offset induced

by the ith point is fi(q) = wi ‖q− pi‖+ αi. In Section 6.4.1 we prove that these distance functions satisfy

the conditions of Section 6.2.4, and in particular we get the following result.

Theorem 6.2.15 Consider a set P of n points in IRd, where the ith point pi has additive weight αi ≥ 0

and multiplicative weight wi > 0, for i = 1, . . . , n. Such a point induces the additive/multiplicative distance

function fi(q) = wi ‖q− pi‖ + αi. Then one can compute a (1 + ε)-AVD for these distance functions, with

near-linear space complexity, and logarithmic query time. See Theorem 6.2.13 and Corollary 6.2.14, for the

exact bounds, where we can use the sketch constant csk = d+ 1, and the wellness constant γ = 1.

Scaling distance. Somewhat imprecisely, a connected body J centered at a point ρ is α-rounded fat if

it is α-fat (that is, there is radius r such that ball(ρ, r) ⊆ J ⊆ ball(ρ, αr)), and from any point p on the

boundary of J the “cone” CH(ball(ρ, r) ∪ p) is contained inside J (i.e., every boundary point sees a large

fraction of the “center” of the object). We also assume that the boundary of each object J has constant

descriptive complexity. Note that such an object is star-shaped with ρ as its center. See Definition 6.4.5 for

the formal definition.

2J

3J
For such an object J , its scaling distance to a point q, is the minimum t,

such that q ∈ tJ (where the scaling of J is done around its center ρ), see figure

on the right. Given n α-rounded fat objects, it is natural to ask for the Voronoi

diagram induced by their scaling distance.

The distance functions induced by such a set of objects complies with the

framework of Section 6.2.4, see Section 6.4.2 for details. As such, we get the

following result.

Theorem 6.2.16 Consider a set J of n α-rounded fat objects in IRd, for some constant α. Then one

can compute a ANN data-structure, for the scaling distance functions induced by J , with near-linear space

complexity, and logarithmic query time. See Theorem 6.2.13 for the exact bounds, where the sketch constant

is csk = d+ 1.

87

Nearest furthest-neighbor. For a set of points S ⊆ IRd and a point q, the furthest-neighbor distance

of q from S, is fS(q) = maxs∈S ‖s− q‖; that is, it is the furthest one might have to travel from q to arrive to

a point of S. For example, S might be the set of locations of facilities, where it is known that one of them is

always open, and one is interested in the worst case distance a client has to travel to reach an open facility.

The function fS(·) induces a partition of space into the furthest-neighbor Voronoi diagram, and while

its worst case combinatorial complexity is similar to the regular Voronoi diagram, it can be approximated

using a constant sized representation (in constant dimensions), see [Har99].

Given n sets of points P1, . . . ,Pn in IRd, we are interested in the distance function f(q) = mini fi(q),

where fi(q) = fPi
(q). This quantity arises naturally when one tries to model uncertainty [AAH+13]; indeed,

let Pi be the set of possible locations of the ith point (i.e., the location of the ith point is chosen randomly,

somehow, from the set Pi). Thus, fi(q) is the worst case distance to the ith point, and f(q) is the worst-case

nearest-neighbor distance to the random point-set generated by picking the ith point from Pi, for i = 1, . . . , n.

We refer to f(·) as the nearest furthest-neighbor distance, and we are interested in approximating it.

We prove in Section 6.4.3 that the distance functions f1, . . . , fn satisfy the conditions of the framework,

and we get the following result.

Theorem 6.2.17 Given n point sets P1, . . . ,Pn in IRd with a total of m points, and a parameter ε > 0,

one can preprocess these points into a data-structure for answering (1 + ε)-ANFN (approximate nearest

further-neighbor) queries, to get the following performance:

(A) The query time is O
(
log n+ 1/εd+1

)
.

(B) The preprocessing time and space used is O

(
n
(

logn
ε

)O(d)
)

.

Note that the space and query time used, depend only on n, and not on the input size.

6.3 Constructing the AVD

The input is a set F of n functions, satisfying the conditions of Section 6.2.4, and a number 0 < ε ≤ 1.

We preprocess F , such that given a query point q, one can compute a f ∈ F , where d(q,F) ≤ d(q, f) ≤

(1 + ε)d(q,F).

6.3.1 Building blocks

Near-neighbor

Given a set of functions G, a real number α ≥ 0, and a parameter ε > 0, a near-neighbor data-structure

Dnear = Dnr(G, ε, α) can decide (approximately) if a point has distance larger or smaller than α from G.

88

Formally, for a query point q, a near-neighbor query answers yes if d(q,G) ≤ α, and no if d(q,G) > (1 + ε)α.

It can return either answer if d(q,G) ∈
(
α, (1 + ε)α

]
. If it returns yes, then it also returns a function f ∈ G

such that d(q, f) ≤ (1 + ε)α. The query time of this data-structure is denoted by T≤(m), where m = |G|.

Lemma 6.3.1 Given a set of m functions G ⊆ F , α > 0 and ε > 0. One can construct a data-structure

(which is a compressed quadtree), of size O
(
m/εd

)
, in O

(
mε−d log(m/ε)

)
time, such that given any query

point q ∈ IRd, one can answer a (1+ε)-approximate near-neighbor query for the distance α, in time T≤(m) =

O(log(m/ε)).

Proof : For each f ∈ G, consider the canonical grid set G≈rf (f�α), where rf = ελf (α) ≥ εdiam(f�α) /ζ,

where λf (·) and ζ, are the growth function and the growth constant, respectively, see (P2). The sublevel

set of interest is G�α, and its approximation is C =
⋃
f∈G G≈rf (f�α), as the bounded growth condition (P2)

implies that f�α ⊆ G≈rf (f�α) ⊆ f�(1+ε)α. The set of canonical cubes C can be stored in a compressed

quadtree T , and given a query point q, we can decide if it is covered by some cube of C, by performing a

point location query in T .

By Remark 6.2.11,
∣∣G≈rf (f�α)

∣∣ = O
(
ε−d
)
. As such, the total number of canonical cubes in C is O

(
m/εd

)
,

and the compressed quadtree for storing them can be computed in O
(
mε−d log(m/ε)

)
time [Har11].

We mark a cell of the resulting quadtree by the function whose sublevel set it arose from (ties can be

resolved arbitrarily). During query, if q is found in one of the cells we return yes and the function associated

with the cell, otherwise we return no.

If we have that d(q,G) ≤ α, then the query point q will be found in one of the marked cells, since they

cover G�α. As such, the query will return yes. Moreover, if the query does return a yes, then it belongs to a

cube of C that is completely covered by G�(1+ε)α, as desired.

Interval data-structure

Given a set of functions G, real numbers 0 < α ≤ β, and ε > 0, the interval data-structure returns for a

query point q, one of the following:

(A) If d(q,G) ∈
[
α, β

]
, then it returns a function g ∈ G such that d(q, g) ≤ (1 + ε)d(q,G). It might

also return such a function for values outside this interval.

(B) “d(q,G) < α”. In this case it returns a function g ∈ G, such that d(q, g) < α.

(C) “d(q,G) > β”.

The time to perform an interval query is denoted by TI(m,α, β).

89

Lemma 6.3.2 Given a set of m functions G, an interval [α, β], and an approximation parameter 0 < τ ≤ 4,

one can construct an interval data-structure of size O
(
mτ−d−1 log 4β

α

)
, in time O

(
mτ−d−1 log 4β

α log m
τ

)
,

such that given a query point q one can answer (1 + τ)-ANN query for the distances in the interval [α, β],

in time TI(m,α, β, f) = O

(
log

m log(4β/α)

τ

)
.

Proof : Using Lemma 6.3.1, build a (1 + τ/4) near-neighbor data-structure Di for G, for distance ri =

(α/2)(1 + τ/4)i, for i = 0, . . . , L =
⌈
log1+τ/4(4β/α)

⌉
= O

(
τ−1 log(4β/α)

)
. Clearly, an interval query can

be answered in three stages:

(A) Perform a point-location query in D0. If the answer is yes then d(q,G) < α. We can also return a

function g ∈ G with d(q, g) < α.

(B) Similarly, perform a point-location query in DL. If the answer is no then d(q,G) > β and we are

done.

(C) It must be that d(q,G) ∈
[
ri, ri+1

]
for some i. Find this i by performing a binary search on the

data-structures D0, . . . ,DL, for the first i such that Di returns no, but Di+1 returns yes. Clearly,

Di+1 provides us with the desired (1 + τ/4)2-ANN to the query point.

To get the improved query time, observe that we can overlay these compressed quadtrees D0, . . . ,DL,

into a single quadtree. For every leaf (or compressed node) of this quadtree, we compute the original node

with the lowest value covering this node. Clearly, finding the desired distance can now be resolved by a single

point-location query in this overlay of quadtrees. The total size of these quadtrees is S = O
(
Lm/τd

)
, and

the total time to compute these quadtrees is T1 = O
(
L
(
m/τd

)
log(m/τ)

)
, and the time to compute their

overlay is O(S logL). The time to perform a point-location query in the overlayed quadtree is O(logS).

Lemma 6.3.2 readily implies that if somehow a priori we know that the nearest-neighbor distance lies

in an interval of values of polynomial spread, then we would get the desired data-structure by just using

Lemma 6.3.2. To overcome this unbounded spread problem, we would first argue that, under our assump-

tions, there are only linear number of intervals where interesting things happen to the distance function.

Connected components of the sublevel sets

Given a finite set X and a partition into disjoint sets X = X1 ∪ · · · ∪Xk, let this partition be denoted by

〈X1, . . . , Xk〉X . For i = 1, . . . , k, each Xi is a part of the partition.

Definition 6.3.3 For two partitions PA = 〈A1, . . . , Ak〉X and PB = 〈B1, . . . , Bl〉X of the same set X, PB

is a refinement of PA, denoted by PB v PA, if for any Bi there exists a set Aji , such that Bi ⊆ Aji . In

the other direction, PA is a coarsening of PB .

90

Given partitions Π = 〈X1, . . . , Xk〉X v Ξ = 〈X ′1, . . . , X ′k′〉X , let φ(Π,Ξ, i) be the function that return

the set of indices of sets in Π whose union is X ′i ∈ Ξ.

Observation 6.3.4 (A) Given partitions Π and Ξ of a finite set X, if Π v Ξ then |Ξ| ≤ |Π|.

(B) Given partitions Π v Ξ of a set X with n elements. The partition function φ(Π,Ξ, ·) can be computed

in O(n) time. For any 1 ≤ i ≤ |Ξ|, the set φ(Π,Ξ, i) can be returned in O
(
|φ(Π,Ξ, i)|

)
time, and its size

can be computed in O(1) time.

Definition 6.3.5 Given partitions Π = 〈X1, . . . , Xk〉X v Ξ = 〈X ′1, . . . , X ′k′〉X of a set X, for any part X ′i

of Ξ, Π[X ′i] denotes the induced partition of X ′i by Π, where Π[X ′i] = 〈Xi1 , . . . , Xir 〉X′i , and {i1, . . . , ir} =

φ(Π,Ξ, i).

Definition 6.3.6 For G ⊆ F and ` > 0, consider the intersection graph of the sets f�`, for all f ∈ G. Each

connected component is a cluster of G at level `. And the partition of G by these clusters, denoted by

C(G, `), is the `-clustering of G.

The values ` at which the `-clustering of F changes, are, intuitively, the critical values when the sublevel

set of F changes and which influence the AVD. These values are critical in trying to decompose the nearest-

neighbor search on F , into a search on smaller sets.

Observation 6.3.7 If 0 ≤ a ≤ b then C(G, a) v C(G, b).

The following lemma testifies that we can approximate the `-clustering quickly, for any number `.

Lemma 6.3.8 Given G ⊆ F , ` ≥ 0, and ε > 0, one can compute, in O
(
m
εd

log(m/ε)
)

time, a partition

Ψ = Ψε(G, `), such that C(G, `) v Ψ v C(G, (1 + ε)`), where m = |G|.

Proof : For each f ∈ G, tile the sublevel sets (f)�` by canonical cubes of small enough diameter, such

that bounded growth condition (P2) assures all cubes are inside (f)�(1+ε)`. To this end, for f ∈ G, set

rf = ελf (`) ≥ εdiam(f�`) /ζ, and compute the set Cf =
⋃

f∈G
f�`,≈rf , see Definition 6.2.1. It is easy to verify

that we have that

(G)�` ⊆ ∪Cf ⊆ (G)�(1+ε)` . (6.2)

By assumption, we have that |Cf | = O(1/εd), and the total number of canonical cubes in all the sets

Cf for f ∈ G is O(m/εd). We throw all these canonical cubes into a compressed quadtree, this takes

O
(
(m/εd) log(m/ε)

)
time. Here, every node of the compressed quadtree is marked if it belongs to some of

these sets, and if so, to which of the sets. Two sets ∪Cf and ∪Cg intersect, if and only if there are two

91

canonical cubes, in these two sets, such that they overlap; that is, one of them is a sub-cube of the other.

Initialize a union-find data-structure, and traverse the compressed quadtree using DFS, keeping track of the

current connected component, and performing a union operation whenever encountering a marked node (i.e.,

all the canonical nodes associated with it, are unionized into the current connected component). Finally, we

perform a union operation for all the cells in Cf , for all f ∈ G. Clearly, this results in the desired connected

components of the intersection graph of ∪Cf (note that we consider two sets as intersecting only if their

interiors intersect). Translating each such connected set of canonical cubes back to the functions that gave

rise to them, results in the desired partition.

The partition Ψ computed by Lemma 6.3.8 is monotone, that is, for ` ≤ `′ and ε ≤ ε′, we have

Ψε(G, `) v Ψε′(G, `′). Moreover, for each cluster C ∈ Ψε(G, `), we have that `con(C) ≤ (1 + ε)`.

Computing a splitting distance

Definition 6.3.9 Given a partition Ψ = Ψ1(G, `) of G, with m = |Ψ| clusters, a distance x is a splitting

distance if m/4 ≤ |Ψ1(G, x/4)|, Ψ v Ψ1(G, x/4), and |Ψ1(G, x)| ≤ (7/8)m.

Lemma 6.3.10 Given a partition Ψ = Ψ1(G, `) of G, one can compute a splitting distance for it, in expected

O(n(log n+ t)) time, where n = |G|, and t is the maximum cluster size in Ψ.

Proof : For each cluster C ∈ Ψ, let rC be its distance from all the functions in G \ C; that is rC =

minf∈C ming∈G\C d(f, g). Note that rC ≥ `. Now, let r1 ≤ r2 ≤ · · · ≤ rm, be these distances for the m

clusters of Ψ. We randomly pick a cluster C ∈ Ψ and compute rC for it, by brute force – computing the

distance of each function of C with the functions of G \ C.

Let `′ = max(rC , 4`). Let i be the rank of rC , among r1, . . . , rm. With probability 1/2, we have that

m/4 ≤ i ≤ (3/4)m. If so we have that:

(A) All the clusters that correspond to ri, . . . , rm, are singletons in the partition Ψ1(G, `′/4), as the

distance of each one of these clusters, to the nearest cluster other than itself, is larger than `′/4.

We conclude that |Ψ1(G, `′/4)| ≥ m/4.

(B) All the clusters of Ψ that correspond to r1, . . . , ri, are contained inside a larger cluster of Ψ1(G, `′)

(i.e., they were merged with some other cluster). But then, the number of clusters in Ψ1(G, `′) is

at most (7/8)m. Indeed, put an edge between such a cluster, to the cluster realizing the smallest

distance with it. This graph has at least m′ ≥ m/4 edges, and it is easy to see that each component

of size at least 2 in the underlying undirected graph, has the same number of edges as vertices.

As such the number of singleton components is at most m−m′, while the number of components

92

Search(G, Υ, q)
// G: set of functions, Υ = Ψ1(G, `) for some value `, q: query point.

if |Υ| ≤ 8 then

return d(q,G) = minf∈G d(q, f) (*)
x← compute a splitting distance of Υ, see Lemma 6.3.10

// Perform an interval ANN query on the interval [x/8, Nx], see Lemma 6.3.2.

if d(q,G) ∈
[
x/8, Nx

]
or (1 + ε/4)-ANN found then

return nearest function found by (1 + ε/4)-ANN interval query.
if d(q,G) < x/8 then

f ← 2-approximate NN query on G, with distance x/8, see Lemma 6.3.1.
Find cluster C ∈ Ψ1(G, x/4), such that f ∈ C, see Lemma 6.3.8.
return Search(C, Υ[C], q)

// Must be that d(q,G) > Nx
return Search(G, Ψ1(G, x), q) (**)

Figure 6.1: Search algorithm: We are given a query point q, and an approximation parameter ε > 0. The
quantity N is a parameter to be specified shortly. Initially, we call this procedure on the set of functions F
with Υ being the partition of F into singletons (i.e., ` = 0).

of size at least 2, is at most m′/2. It follows that the total number of components is at most

m −m′/2 ≤ 7m/8. Since each such component corresponds to a cluster in Ψ1(G, `′), the claim is

proved.

Now, compute Ψ1(G, `′) and Ψ1(G, `′/4), using Lemma 6.3.8. It is clear that, Ψ v Ψ1(G, `′/4). With

probability at least half, they have the desired sizes, and we are done. Otherwise, we repeat the process. In

each iteration we spend O(n(log n+ t)) time, and the probability for success is half. As such, in expectation,

the number of rounds needed is constant.

6.3.2 The search procedure

An initial “naive” implementation

The search procedure is presented in Figure 6.1.

Lemma 6.3.11 Search(G,Υ, q) returns a function f ∈ G, such that d(q, f) ≤ (1 + ε)d(q,G). The depth

of the recursion of Search is h = O(log n), where n = |G|.

Proof : The proof is by induction on the size of Υ. If |Υ| ≤ 8, then the function realizing d(q,G) is returned,

and the claim is true.

Let x be the computed splitting distance of Υ. Next, the procedure performs an (1 + ε/4)-approximate

interval nearest-neighbor query for q on the range [x/8, Nx]. If this computed the approximate nearest-

neighbor, then we are done.

93

Otherwise, it must be that either d(q,G) < x/8 or d(q,G) > Nx, and significantly, we know which of

the two options it is:

(A) If d(q,G) < x/8, then doing an approximate near-neighbor query on G, and distance x/8, returns a

function f ∈ G such that d(q, f) < x/4. Clearly, the nearest-neighbor to q must be in the cluster

containing f in the partition Ψ1(G, x/4), and Search recurses on this cluster. Now, by induction,

the returned ANN is correct.

Since x is a splitting distance of Υ, see Definition 6.3.9, we have |Υ| /4 ≤ |Ψ1(G, x/4)| and Υ v

Ψ1(G, x/4). As such, since C is one of the clusters of Ψ1(G, x/4), the induced partition of C by Υ

(i.e., Υ[C]), can have at most (1− 1/4) |Υ|+ 1 ≤ (7/8) |Υ| clusters.

(B) Otherwise, we have d(q,G) > Nx. Since x is a splitting distance, we have that |Ψ1(G, x)| ≤ (7/8) |Υ|,

see Definition 6.3.9. We recurse on G, and a partition that has fewer clusters, and by induction, the

returned answer is correct.

In each step of the recursion, the number of sets in the partition shrunk by at least a fraction of 7/8. As

such, after a logarithmic number of recursive calls, the procedure is done.

But where is the beef? Modifying Search to provide fast query time

The reader might wonder how we are going to get an efficient search algorithm out of Search, as in the

case that Υ has a small number of clusters (i.e., 8), still requires us to perform a scan on all the functions

in these clusters, and compute their distance from the query point q. It turns out, that we can assume that

each cluster of Υ has size bounded by O(1/εcsk), i.e., it is really a sketch (of some set of functions). Initially,

since all the clusters are singletons, this is clearly true. In future iterations, when clusters merge – and this

happens during (**), as we shall see, it is okay to pass the sketches as proxies for the actual cluster, bounding

the size of each cluster. In particular, the query time is O(1/εcsk + log2 n). Indeed, an interval query takes

O(log n) time, and there O(log n) such queries. The final query on the sketch takes time proportional to the

sketch size which is O(1/εcsk).

As such, the major challenge is not making the query process fast, but rather building the search structure

quickly, and arguing that it requires little space.

Sketching a sketch

To improve the efficiency of the preprocessing for Search, we are going to use sketches more aggressively.

Specifically, for each of the clusters of Υ, we can compute their δ-sketches, for δ = ε/(8h) = O(ε/ log n),

see Lemma 6.3.11. From this point on, when we manipulate this cluster, we do it on its sketch. To make

94

this work set N = n4csk . Indeed, for any set of functions G under consideration, their δ-sketch is active at a

distance O(`con(G)(|G| /δ)csk) = O(`con(G)(n/δ)csk), see (P3). Now assuming δ = O(ε/ log n), and ε at least

1/ log n (otherwise our algorithm is no worse than brute-force search, essentially), as well as n sufficiently

large, it follows that a sketch is active at N = n4csk times `con(G).

The only place in the algorithm where we need to compute the sketches, is in (**) in Figure 6.1. Specif-

ically, we compute Ψ1(G, x), and for each new cluster C ∈ Ψ1(G, x), we combine all the sketches of the

clusters D ∈ Υ such that D ⊆ C, into a single set of functions. We then compute a δ-sketch for this set,

and this sketch is this cluster from this point on. In particular, the recursive calls to Search would send the

sketches of the clusters, and not the clusters themselves. Conceptually, the recursive call would also pass

the minimum distance where the sketches are active – it is easy to verify that we use these sketches only at

distances that are large enough to be allowable (i.e., the sketches represent the functions they correspond

to, well in these distances).

Importantly, whenever we compute such a new set, we do so for a distance that is bigger by a polynomial

factor (i.e., N) than the connectivity level of the clusters being merged. Indeed, observe that d(q,G) > Nx

and Nx is N times bigger than x, which is an upper bound on the connectivity level of the clusters being

merged.

As such, all these sketches are valid, and can be used at this distance (or any larger distance). Of course,

the quality of the sketch deteriorates. In particular, since the depth of recursion is h, the worst quality of

any of the sketches created in this process is at most (1 + δ)h ≤ 1 + ε/4.

Significantly, before using such a sketch, we would shrink it by computing a ε/8-sketch of it. This would

reduce the sketch size to O(1/εcsk). Note however, that this still does not help us as far as recursion - we

must pass the larger δ-sketches in the recursive call of (**).

This completes the description of the search procedure. It is still unclear how to precompute all the data-

structures required during the search. To do that, we need to better understand what the search process

does.

6.3.3 The connectivity tree, and the preprocessing

Given a set of functions F , consider the tree tracking the connected components of the sublevel sets of the

functions, as the level changes continuously. Formally, initially we start with n singletons (which are the

leaves of the tree) that are labeled with the value zero, and we store them in a set F of active nodes. Now,

we compute for each pair of sets of functions X,Y ∈ F the distance d(X,Y), and let X ′, Y ′ be the pair

realizing the minimum of this quantity. Merge the two sets into a new set Z = X ′ ∪ Y ′, create a new node

95

for this set having the node for X ′ and Y ′ as children, and set its label to be d(X ′, Y ′). Finally, remove X ′

and Y ′ from F and insert Z into it. Repeat till there is a single element in F. Clearly, the result is a tree

that tracks the connected components, during the execution of Kruskal’s algorithm for MST, for the graph

on the functions where distances are defined using d(·, ·).

To make the presentation consistent, let d≈(X,Y) be the minimum x, such that Ψ1(X ∪ Y, x) is connected

(see Lemma 6.3.8), and x is a power of two. Computing d≈(X,Y) can be done by computing d≈(f, g) for

each pair of functions separately. This in turn, can be done by first computing α = d(f, g), and observing

that x is between α/2 and α. In particular, since x must be a power of two, so there are at most 2 candidate

values to consider, and which is the right one can be decided using Lemma 6.3.8.

So, in the above, we use d≈(·, ·) instead of d(·, ·), and let H be the resulting tree. For a value `, let

LH(`) be the set of nodes such that their label is smaller than `, but their parent label is larger than `. It is

easy to verify that LH(`) corresponds to Ψ = Ψ1(F , `); indeed, every cluster C ∈ Ψ corresponds to a node

u ∈ LH(`), such that the set of functions stored in the leaves of the subtree of u, denoted by F(u) is C. The

following can be easily proved by induction. Recall that we are using the approximate distances d≈(X,Y)

between sets, and all splitting distances, as well as N = n4csk are set to be the closest power of 2.

Lemma 6.3.12 Consider a recursive call Search(G,Υ, q), see Figure 6.1, made during the search algo-

rithm execution. Then there exists a node u, and a value `, such that (i) G = F(u) and, (ii) Υ =
{

F(v)
∣∣∣ v ∈ LH(`) , and v is in the subtree of u

}
. That is, a recursive call of Search corresponds to a sub-

tree of H.

Of course, not all possible subtrees are candidates to be such a recursive call. In particular, Search can

now be interpreted as working on a subtree T of H, as follows:

(A) If T is a single node u, then find the closest function in F(u) to q. Using the sketch this can be

done quickly.

(B) Otherwise, compute a distance x, such that the number of nodes in the level LT (x) is roughly half

the number of leaves of T .

(C) Using interval data-structure determine if the distance d(q,F(T)) is in the range [x/8, Nx]. If so,

we found the desired ANN.

(D) If d(q,F(T)) > Nx then continue recursively on portion of T above LT (x).

(E) If d(q,F(T)) < x/8 then we know the node u ∈ LT (x/4) such that the ANN belongs to F(u).

Continue the search recursively on the subtree of T rooted at u.

That is, Search breaks T into subtrees, and continues the search recursively on one of the subtrees.

96

Significantly, the size of every such subtree is at most a constant fraction of the size of T , and every edge of

T belongs to a single such subtree.

The preprocessing now works by precomputing all the data-structures required by Search. Of course,

the most natural approach would be to precompute H, and build the search tree by simulating the above

recursion onH. Fortunately, this is not necessary, and we only use the aboveH in analyzing the preprocessing

running time.

In particular, given a subtree T with m edges, the corresponding partition Υ would have at most m

sets. Each such set would have a δ-sketch, and we compute a ε/8-sketch for each one of these sketches.

Namely, the input size here is M = O(m/δcsk). Computing the ε/8-sketches for each one of these sketches

takes U1 = O(M/εcsk) = O
(
m(εδ)

−csk
)

time, see Remark 6.2.12. Computing the splitting distance, using

Lemma 6.3.10, takes U2 = O(M(logM + 1/δcsk)) = O
(
m log nδ−csk +mδ−2csk

)
time. Computing the in-

terval data-structure Lemma 6.3.2 takes U3 = O
(
Mε−d−1 log n logM

)
= O

(
m log2 nδ−cskε−d−1

)
time, and

requires S1 = O
(
Mε−d−1 log n

)
= O

(
m log nδ−cskε−d−1

)
space. This breaks T into edge disjoint subtrees

T1, . . . , Tt, and we compute the search data-structure for each one of them separately (each one of these

subtrees is smaller by a constant fraction of the original tree). Finally, we need to compute the δ-sketches

for the clusters sent to the appropriate recursive calls, and this takes U4 = O(M/δcsk) = O
(
mδ−2csk

)
time,

by Remark 6.2.12.

Every edge of the tree T gets charged for the amount of work spent in building the top level data-structure.

That is, the top level amortized work each edge of T has to pay is

W = O
(

(U1 + U2 + U3 + U4) /m
)

= O
(
(εδ)

−csk + δ−csk log n+ δ−2csk + ε−d−1δ−csk log2 n+ δ−2csk
)

= O
(
ε−max(d+1+csk,2csk) logmax(csk+2,2csk) n

)
.

Now, it is valid to assume a larger value for the sketch constant csk, than its optimal value as per its

definition by (P3). As such we assume that csk ≥ (d+ 1) ≥ 2, and we can simplify the above expression to

O(ε−2csk log2csk n). Since an edge of T gets charged at most O(log n) times by this recursive construction,

we conclude that the total preprocessing time is O
(
nε−2csk log2csk+1 n

)
.

By the same argument, each edge requires O(log n · (S1/m)) = O
(
ε−d−1−csk logcsk+1 n

)
space. Moreover,

the space used to store the ε/8-sketches at the leaf nodes is just O(nε−csk). As such, the overall space used

by the data-structure is
(
nε−d−1−csk logcsk+1 n

)
. As for the query time, it boils down to O(log n) interval

queries, and then scanning one O(ε)-sketch. As such, this takes O
(
log2 n+ 1/εcsk

)
time.

97

6.3.4 The result

Proof of 1 Theorem 6.2.13: The query time stated above is O
(
log2 n+ 1/εcsk

)
. To get the improved query

time, we observe that Search performs a sequence of point-location queries in a sequence of interval near-

neighbor data-structures (i.e., compressed quadtrees), and then it scans a set of functions of size O(1/εcsk) to

find the ANN. We take all these quadtrees spread through our data-structure, and assign them priority, where

a quadtree T1 has higher priority than a compressed quadtree T2, if T1 is queried after T2, for any search

query. Such an ordering can be assigned, as, conceptually, the search proceeds using queries on the nodes of

a tree, down from the root. This defines an acyclic ordering on these compressed quadtrees. Overlaying all

these compressed quadtrees together, one needs to return for the query point, the leaf of the highest priority

quadtree that contains the query point. This can be easily done by scanning the compressed quadtree, and for

every leaf, computing the highest priority leaf that contains it (observe, that here we are overlaying only the

nodes in the compressed quadtrees that are marked by some sublevel set – nodes that are empty are ignored).

Furthermore, since not all query points can be dealt with by one of the interval near-neighbor data-structures,

we must store sketches of size O(1/εcsk), for certain regions of [0, 1]d – such regions are not covered by any

of the cubes arising from the interval near-neighbor data-structures.

A tedious, but straightforward induction argument, implies that doing a point-location query in the re-

sulting quadtree, is equivalent to running the search procedure, as described above. Once we found the leaf

that contains the query point, we scan the sketch associated with this cell, and return the computed nearest-

neighbor.

Proof of 2 Corollary 6.2.14: We build the data-structure of Theorem 6.2.13, except that instead of linearly

scanning the sketch at a leaf node, during the query time, we preprocess each such sketch (which is set of

functions of size O(1/εcsk)), for an exact point-location query; that is, we compute the lower envelope of

the sketch and preprocess it for vertical ray shooting. This can be done because we are assuming that our

function family satisfies the well-behaveness condition, see Definition 6.2.6. This would require O
(
1/εγdcsk

)

space and time, and the linear scanning that takes O(1/εcsk) time, now is replaced by a point-location query

that takes O(log 1/ε), as desired. The total query time is thus O(log n+ log 1/ε) = O(log n/ε).

Using a similar argument, the space requirement is O
(
nε−d−1−csk logcsk+1 n+ nε−γdcsk

)
, where the first

part comes from Theorem 6.2.13, and for the second part we notice that we replaced the space used for

sketches, O(nε−csk) by O(nε−γdcsk), the space required to store the point-location data structures for the

projection of the lower envelope of the sketch onto IRd, each of which is a partition of space, intersected with

the region in which the sketch is to be applied – such a region is one arising from the compressed quadtree

of Theorem 6.2.13, and is either a cube or the set difference of two cubes.

98

6.4 Applications

We present some concrete classes of functions that satisfy our framework, and for which we construct AVD’s

efficiently.

6.4.1 Multiplicative distance functions with additive offsets

As a warm-up we present the simpler case of additively offset multiplicative distance functions. The results

of this section are almost subsumed by more general results in Section 6.4.2. Here the sublevel sets look

like expanding balls, but there is a time lag before the balls even come into existence, i.e., sublevel sets are

empty up-to a certain level – this corresponds to the additive offsets. In Section 6.4.2 the sublevel sets are

more general fat bodies but there is no additive offset. The results in the present section essentially give an

AVD construction of approximate weighted Voronoi diagrams. More formally, we are given a set of points

P = {p1, . . . , pn}. For i = 1, . . . , n, the point pi has weight wi > 0, and a constant αi ≥ 0, associated

with it. We define fi(q) = wi ‖q− pi‖ + αi. Let F = {f1, . . . , fn}. We have, (fi)�y = ∅ for y < αi, and

(fi)�y = ball
(
pi,

y−αi

wi

)
for y ≥ αi. Checking conditions (C1) and (C2) is trivial. As for (C3) we have the

following easy lemma,

Lemma 6.4.1 For any 1 ≤ i, j ≤ n we have d(fi, fj) = max
(
αi, αj , ‖pi − pj‖ wiwj

wi+wj
+

αiwj+αjwi

wi+wj

)
.

Proof : The ith distance function is fi(q) = wi ‖q− pi‖+αi. As such, for y < max(αi, αj), either (fi)�y = ∅,

or (fj)�y = ∅, and (fi)�y∩(fj)�y = ∅. For y ≥ max(αi, αj), we have fi(q) ≤ y ⇐⇒ wi ‖q− pi‖+αi ≤

y ⇐⇒ ‖q− pi‖ ≤ y−αi

wi
, which implies that q ∈ ball

(
pi,

y−αi

wi

)
; that is, we have (fi)�y = ball

(
pi,

y−αi

wi

)
,

and (fj)�y = ball
(
pj ,

y−αj

wj

)
.

Now, if pi = pj , then the distance between the two functions is the minimal value such that their

sublevel sets are not empty, and this is max(αi, αj). In particular,
αiwj+αjwi

wi+wj
≤ max(αi, αj), and we also

have max
(
αi, αj , ‖pi − pj‖ wiwj

wi+wj
+

αiwj+αjwi

wi+wj

)
= max(αi, αj ,) , as desired.

If pi 6= pj the sublevel sets intersect for the first time when the balls ball
(
pi,

y−αi

wi

)
and ball

(
pj ,

y−αj

wj

)

touch at a point that belongs to the segment pipj . Clearly then we have, ‖pi − pj‖ = y−αi

wi
+

y−αj

wj
=⇒

wiwj ‖pi − pj‖ = wj(y − αi) + wi(y − αj) =⇒ (wi + wj) y = wiwj ‖pi − pj‖ + wjαi + wiαj =⇒

y = ‖pi − pj‖ wiwj

wi+wj
+

αiwj+αjwi

wi+wj
.

Lemma 6.4.2 Given 1 ≤ i, j ≤ n, such that wi ≤ wj. Suppose y ≥ max(αi, αj). Then, for any δ ≥ 0, we

have (fj)�y ⊆ (fi)�(1+δ)y if and only if y ≥ ‖pi−pj‖+αi/wi−αj/wj

(1+δ)/wi−1/wj
.

99

Proof : For y ≥ max(αi, αj), we have that (fi)�y = ball
(
pi,

y−αi

wi

)
, and (fj)�y = ball

(
pj ,

y−αj

wj

)
. If pi = pj ,

then for any y such that (1+δ)y−αi

wi
≥ y−αj

wj
, we will have that (fj)�y ⊆ (fi)�(1+δ)y. Clearly, this condition

is also necessary. It is easy to verify that this is equivalent to the desired expression.

Consider the case pi 6= pj . For any u ∈ ball
(
pj ,

y−αj

wj

)
we have ‖u− pi‖ ≤ ‖pi − pj‖ + ‖pj − u‖ ≤

‖pi − pj‖+ y−αj

wj
, by the triangle inequality. Therefore, if (1+δ)y−αi

wi
≥ ‖pi − pj‖+ y−αj

wj
, then ball

(
pj ,

y−αj

wj

)
⊆

ball
(
pi,

(1+δ)y−αi

wi

)
. This is exactly the stated condition. Indeed, by rearrangement, y

(
(1 + δ)/wi− 1/wj

)
≥

‖pi − pj‖+ αi/wi − αj/wj .

As for the other direction, note that ball
(
pj ,

y−αj

wj

)
has a boundary point at distance

y−αj

wj
from pj on

the directed line from pi to pj on the other side of pj as pi, while ball
(
pi,

(1+δ)y−αi

wi

)
has the intercept of

(1+δ)y−αi

wi
− ‖pi − pj‖. For the condition to hold it must be true that (1+δ)y−αi

wi
− ‖pi − pj‖ ≥ y−αj

wj
, which

is also the stated condition.

It is easy to see that compactness (P1) and bounded growth (P2) hold for the set of functions F (for

(P2) we can take the growth function λ(fi)(y) = (y − αi)/wi for y ≥ αi and the growth constant ζ to be 2).

The following lemma proves the sketch property (P3).

Lemma 6.4.3 For any G ⊆ F and δ > 0 there is a (δ, y0)-sketch H ⊆ G, with |H| = 1 and y0 =

3`con(G) |G| /δ.

Proof : If |G| = 1, set H = G. Otherwise, let ` = `con(G) for brevity. Observe that ` ≥ max
i:fi∈G

αi, as

otherwise some (fi)�` = ∅, and it cannot be part of a connected collection of sets. Let |G| = m ≥ 2,

and let G = {f1, . . . , fm}, and assume that w1 ≤ wi, for i = 1, . . . ,m. Set H = {f1} – the func-

tion with the minimum associated weight. Since ` ≥ αi, we have (fi)�` is the ball ball
(
pi,

`−αi

wi

)
, for

i = 1, . . . ,m. Since G�` is connected, it must be true that, for a fixed j, 2 ≤ j ≤ m, there exist a se-

quence of distinct indices, 1 = i1, i2, . . . , ik−1, ik = j, such that ball
(
pir ,

`−αir

wir

)
∩ ball

(
pir+1

,
`−αir+1

wir+1

)
6=

∅, for r = 1, . . . , k − 1. By Lemma 6.4.1, we have ` ≥ ‖pir−pir+1‖+αir/wir+αir+1
/wir+1

1/wir+1/wir+1
. Rearranging,

∥∥pir − pir+1

∥∥ ≤ ` ·
(

1

wir
+

1

wir+1

)
−
(
αir
wir

+
αir+1

wir+1

)
≤ 2`

w1
, as w1 ≤ wi, for i = 1, . . . ,m. It follows

by the triangle inequality and the above, that ‖pi1 − pik‖ ≤
∑k−1
r=1

∥∥pir − pir+1

∥∥ ≤ 2(k − 1)`/w1 ≤ 2m`/w1.

Thus we have, ‖p1 − pj‖ ≤ 2m`/w1, for j = 1, . . . ,m. Let y0 = 3` |G|/δ = 3m`/δ. Then, for y ≥ y0,

we have that, y ≥ 3m`

δ
=

2m`/w1 +m`/w1

δ/w1
≥ 2m`/w1 + `/w1

δ/w1
, for m ≥ 2. The above implies that,

for y ≥ y0, we have y ≥ ‖p1−pj‖+`/w1

δ/w1
≥ ‖p1−pj‖+α1/w1

δ/w1
, since ` ≥ α1. It follows that for y ≥ y0,

y ≥ ‖p1 − pj‖+ α1/w1

δ/w1
≥ ‖p1 − pj‖+ α1/w1 − αj/wj

δ/w1 + (1/w1 − 1/wj)
=
‖p1 − pj‖+ α1/w1 − αj/wj

(1 + δ)/w1 − 1/wj
, as w1 ≤ wj , for

j = 1, . . . ,m. Thus, by Lemma 6.4.2, ball
(
pj ,

y−αj

wj

)
⊆ ball

(
p1,

(1+δ)y−α1

w1

)
, for y ≥ y0, and therefore, by

definition, H is a (δ, y0)-sketch for G.

100

CH(ball(ρ, r) ∪ p)

Jp

R ≤ αr

r∂J
ρ

Figure 6.2: Being α-rounded fat.

ρ

pr

Figure 6.3: A α-fat star shaped
region that is not α-rounded fat.
Clearly, the gap between the
rounded fatness parameter and the
regular fatness parameter can be
made to be arbitrarily large.

ρ

p

R ≤ αr

r

CH(ball(0, r) ∪ p)

Figure 6.4: A α-fat convex
body is α-rounded fat (for the
same center point ρ).

From the above, and the requirement that the sketch constant csk be at least d + 1 for our bounds to

hold, it follows that we can choose the sketch constant csk = max(1, d+ 1) = d+ 1. Moreover, as the graphs

of the functions are cones, we can easily see that this function family satisfies the well-behaveness condition,

see Definition 6.2.6, and that we can choose the wellness constant γ = 1. Thus, we get Theorem 6.2.15.

6.4.2 Scaling distance – generalized polytope distances

Let J ⊆ IRd be a compact set containing a “center” point ρ in its interior. Then J is star shaped , if for

any point v ∈ J , the entire segment ρv is also in J . Naturally, any convex body J with any center ρ in the

interior of J , is star shaped. The t-scaling of J with a center ρ, is the set, tJ =
{
t (v − ρ) + ρ

∣∣∣ v ∈ J
}

.

Given a star shaped object J with a center ρ, the scaling distance of a point q from J is the minimum

t, such that p ∈ tJ , and let fJ(q) denote this distance function. Note that, for any y ≥ 0, the sublevel set

(fJ)�y, is the y-scaling of J , that is (fJ)�y = yJ . Note that for a point p ∈ IRd, if we take J = ball(p, 1) with

center p, then fJ(q) = ‖q− p‖. That is, this distance notion is a strict extension of the Euclidean distance.

Here, we assume that an object J contains the origin in its interior, and the origin is the designated center,

unless otherwise stated.

Definition 6.4.4 A star shaped object J ⊆ IRd centered at ρ is α-fat if there is a number r such that,

ball(ρ, r) ⊆ J ⊆ ball(ρ, αr) .

Definition 6.4.5 Let J be a star shaped object centered at ρ. The object J is α-rounded fat , if there is

a radius r such that, (i) ball(ρ, r) ⊆ J ⊆ ball(ρ, αr), and (ii) For every point p in the boundary of J , the

cone CH(ball(ρ, r) ∪ p), lies within J , see Figure 6.2.

101

By definition, any α-rounded fat object is also α-fat. However, it is not true that a α-fat object is

necessarily rounded fat, see Figure 6.3. The following useful result is easy to see, also see Figure 6.4 for an

illustration.

Lemma 6.4.6 An object J that is a α-fat and convex is also α-rounded fat.

Given a set J = {J1, J2, . . . , Jn} of n star shaped objects, consider the set F of n scaling distance

functions, where the ith function, for i = 1, . . . , n, is fi = fJi . We assume that the boundary of each object

Ji, has constant complexity.

We next argue that F complies with the framework of Section 6.2.4. Using standard techniques, we

can compute the quantities required in conditions (C1)–(C3), as well as the diameter of the sublevel set,

as diam(yJi) = ydiam(Ji). Also, trivially we have that condition (P1) is satisfied, as the sublevel sets are

dilations of the Ji, and are thus compact by definition. The next few lemmas establish that both bounded

growth (P2), and the sketch property (P3), are also true, if the objects are also α-rounded fat, for some

constant α.

Lemma 6.4.7 Given α > 0, and an object J that is α-rounded fat. Then, for any c ≥ 2α, y ≥ 0, and

ε > 0, we have that yJ ⊕ ball(0, (ε/c)diam(yJ)) ⊆ (1 + ε)yJ ; that is, (fJ)�y ⊕ ball
(

0, (ε/c)diam
(

(fJ)�y

))
⊆

(fJ)�(1+ε)y.

Proof : Since (fJ)�y = yJ it is enough to show that yJ ⊕ ball
(
0, (ε/c)diam(yJ)

)
⊆ (1 + ε)yJ . Let r be the

radius guaranteed by Definition 6.4.5 for J . Clearly diam(yJ) = ydiam(J) ≤ 2yαr. Now, for every p ∈ ∂yJ ,

we have that p+ball(0, (ε/c)diam(yJ)) ⊆ (1+ε)yJ . It is sufficient to show that ball(p, (2εyαr/c)) ⊆ (1+ε)yJ ,

for p ∈ ∂yJ . Clearly p′ = (1 + ε)p ∈ ∂(1 + ε)yJ . Since the cone, CH(ball(ρ, (1 + ε)yr) ∪ p′) is in (1 + ε)yJ ,

it is clear that the ball of radius, x = ‖p′ − p‖ (1 + ε)yr

‖p′‖ = ‖p′ − p‖ yr‖p‖ is completely within (1 + ε)yJ , see

Figure 6.5. Now, ‖p− p′‖ = ε ‖p‖, so x = εyr. For c ≥ 2α, the result follows.

By the above lemma, we can take the growth function λfJi
(y) = diam

(
(fJi)�y

)
= ydiam(Ji), and the

growth constant, see (P2), for the set of functions fJi , to be ζ = c = 2α. If the object J is α-fat, but not

α′-rounded fat for any constant α′ > 0, then it may be that its scaling distance function grows arbitrarily

quickly, and thus is not a valid distance function for our framework, see Figure 6.6. It is not hard to see

that Lemma 6.4.7 implies that bounded growth (P2) is satisfied for all the functions f1, . . . , fn, when the

objects under consideration J1, . . . , Jn, are α-rounded fat.

There is a small sketch and it can be computed quickly

To show that a small sketch exists (i.e., (P3) holds) is slightly harder and is tackled next.

102

p p′

(fJ)�y = yJ

(fJ)�(1+ε)y = (1 + ε)yJ

yr

(1 + ε)yr

x = ‖p′ − p‖ ‖p
′‖

(1+ε)yr

Figure 6.5: The (1 + ε) expansion
of yJ contains ball(p, x).

(1 + ε)J

J

J ⊕ B
(
0, εcdiam(J)

)

p u

Figure 6.6: The object J is α-fat but not α′-rounded fat. In
particular, the point p is in J ⊕ ball(0, (ε/c)diam(J)) but not in
(1 + ε)J , and the scaling distance function is not well defined at
u.

Lemma 6.4.8 Let J = {J1, J2, . . . , Jn} be a set of n α-rounded fat objects centered at the origin, where

α ≥ 1 is a fixed constant. Then, for any δ > 0, there is a subset I ⊆ {1, 2, . . . , n} with |I| = O(δ−d),

such that for all y ≥ 0, we have
⋃

i∈{1,2,...,n}
yJi ⊆

⋃

i∈I
(1 + δ)yJi. Moreover, for every i ∈ I, we have that

diam(Ji) = Ω(maxi diam(Ji)).

Proof : Clearly it is sufficient to show this for y = 1. For i = 1, . . . , n, let ri be the radius of the “fatness”

ball contained in Ji, see Definition 6.4.5. Let K =
{
i
∣∣∣αri ≥ r1

}
be the set of indices of relatively large

objects (the other objects are sufficiently small and are contained in J1). Observe that K is not empty as

1 ∈ K. We have that

diam(Ji) ≥ 2ri ≥
2

α
r1 ≥

1

α2
· 2αr1 ≥

1

α2
max

1≤i≤n
diam(Ji) ,

for any i ∈ K, since all the objects are centered at the origin.

Clearly,
⋃
i∈[n] Ji ⊆

⋃
i∈[n] ball(0, αri) ⊆ ball(0, αr1) . We tile the ball ball(0, αr1) with cubes of diameter

δαr1/c
′ where c′ = cα2/2 = α3. Let C denote the set of these cubes, and observe that |C| = O(δ−d). For

every cube c ∈ C, if it intersects X = ∪i∈KJi, then we add the index of one of the objects of K intersecting

c to I, and add c to A.

Now,
⋃
i∈[n] Ji ⊆

⋃
c∈A c, as

⋃
c∈A c covers ball(0, αr1). Observe that |I| = |A| ≤ |C| = O

(
δ−d
)
. Next,

we show that if c′ is sufficiently large, then
⋃

c∈A c ⊆ ⋃i∈I(1 + δ)Ji. Since c∩Ji 6= ∅, and diam(c) ≤ δαr1/c
′,

103

c ⊆ Ji ⊕ ball(0, δαr1/c
′). By the choice of c′ we have

δαr1

c′
≤ δα2ri

c′
≤ δα2diam(Ji)

2c′
≤ δdiam(Ji)

c
, where

c = 2α is the constant from Lemma 6.4.7. Then, by Lemma 6.4.7, we have

c ⊆ Ji ⊕ ball
(
0, δαr1/c

′) ⊆ Ji ⊕ ball
(
0, δdiam(Ji) /c

)
⊆ (1 + δ)Ji,

which implies the claim.

Lemma 6.4.9 Let α ≥ 1 be a constant, J an α-rounded fat object, δ > 0, and let u be a point in IRd, with

‖u‖ ≤ δdiam(J) /c, where c = 2α. Then J + u ⊆ (1 + δ)J .

Proof : We have, J + u ⊆ J ⊕ ball(0, ‖u‖) ⊆ J ⊕ ball(0, δdiam(J) /c) as ‖u‖ ≤ δdiam(J) /c. Now, the claim

follows by Lemma 6.4.7.

Lemma 6.4.10 Let J = {J1, . . . , Jn} be a set of n α-rounded fat object in IRd, let F be the set of scaling

distance functions of these objects, and let P be the set of offset points (i.e., centers) of the objects of J .

Then `con(F) ≥ diam(P)/2nαr, where r = maxi ri, and ri is the inner radius of Ji, see Definition 6.4.5.

Proof : Let F =
{
fi = fJi

∣∣i = 1, . . . , n
}

and P = {p1, . . . , pn}. Here, for i = 1, . . . , n, pi is the center of Ji.

The claim is trivially true if diam(P) = 0, i.e., all the points pi are the same. Let ` = `con(F). As (fi)�` = `Ji,

where the scaling for object Ji is done around its center pi, it follows that `J =
{
`Ji

∣∣∣ Ji ∈ F
}

is connected,

see Definition 6.2.5. Since `Ji ⊆ ball(pi, `αri) ⊆ ball(pi, lαr), it follows that B =
{
ball(pi, `αr)

∣∣∣ i = 1, . . . , n
}

is also connected. Let u, v ∈ P be such that ‖u− v‖ = diam(P). There is a sequence of distinct i1, . . . , ik ∈

{1, . . . , n}, such that u = pi1 , v = pik , and ball(pit , `αr)∩ ball
(
pit+1

, `αr
)
6= ∅, and thus

∥∥pit − pit+1

∥∥ ≤ 2`αr,

for t = 1, . . . , k − 1. By the triangle inequality,

diam(P) = ‖u− v‖ = ‖pi1 − pik‖ ≤
k−1∑

t=1

∥∥pit − pit+1

∥∥ ≤
k−1∑

t=1

2`αr = 2(k − 1)`αr ≤ 2n`αr,

We can now show that condition (P3) holds for the fJi .

Lemma 6.4.11 Consider the setting of Lemma 6.4.10. Given δ > 0, there is a index set I ⊆ {1, . . . , n},

with |I| = O
(
δ−d
)
, and y0 = O(` · n/δ), such that the functions

{
fj

∣∣∣ j ∈ I
}

, form a (δ, y0)-sketch, where

` = `con(F).

Proof : We provide a sketch of the proof, as the details are easy but tedious. Consider the set of objects

Jij = Ji+pj−pi, for each pair (i, j) with 1 ≤ i, j ≤ n. Clearly, Jij is Ji translated, so that it is centered at pj .

104

By Lemma 6.4.8 there is an index set I ⊆ {1, . . . , n}, with |I| = O
(
δ−d
)
, such that for all y and any fixed j

with 1 ≤ j ≤ n, we have that
⋃
i∈[n] yJij ⊆

⋃
i∈I(1+δ/4)yJij . Let ri denote the radius of the ball for Ji from

Definition 6.4.5, and let r = maxi ri. By Lemma 6.4.10, we have that, ` ≥ diam(P)/(2nαr). Lemma 6.4.8

finds a I such that for all i ∈ I, ri ≥ Ω (r). A translated copy Jij = Ji + pj − pi, is a translation of Ji by a

vector u = pj−pi. As ` ≥ diam(P)/(2nαr), there is a y0 = O(`n/δ) such that ‖pj − pi‖ ≤ δdiam(y0Ji) /4c for

all 1 ≤ i, j ≤ n, where c = 2α. Thus using Lemma 6.4.9, (1+δ/4)y0Ji+(pj−pi) ⊆ (1+δ/4)2y0Ji ⊆ (1+δ)y0Ji.

Clearly this also holds for any y ≥ y0. Thus for y ≥ y0 we have (1+δ)yJi, covers yJi+(pj−pi) for 1 ≤ i ≤ n.

It is then easy to see that
{
fi

∣∣∣ i ∈ I
}

, is a (δ, y0)-sketch.

The result

We conclude that for α-rounded fat objects, the scaling distance functions they define falls under our frame-

work. From the above, and the requirement that the sketch constant csk be at least d+ 1 for our bounds to

hold, it follows that we can choose the sketch constant csk = max(d, d+ 1) = d+ 1, and this concludes the

proof of Theorem 6.2.16.

Note that the result in Theorem 6.2.16 covers any symmetric convex metric. Indeed, given a convex

symmetric shape C centered at the origin, and with constant boundary complexity, the distance it induces

for any pair of points p, u ∈ IRd, is the scaling distance of C centered at p to u (or, by symmetry, the scaling

distance of p from C centered at u). Under this distance IRd is a metric space, and of course, the triangle

inequality holds. By an appropriate scaling of space, which does not affect the norm (except for scaling

it) we can make C fat, and now Theorem 6.2.16 applies. Of course, Theorem 6.2.16 is considerably more

general, allowing each of the points to induce a different scaling distance function, and the distance induced

does not have to obey the triangle inequality.

6.4.3 Nearest furthest-neighbor

For a set of points S ⊆ IRd, and a point q, the furthest-neighbor distance of q from S, is fS(q) =

maxs∈S ‖s− q‖; that is, it is the furthest one might have to travel from q to arrive to a point of S. For

example, S might be the set of locations of facilities, where it is known that one of them is always open, and

one is interested in the worst case distance a client has to travel to reach an open facility. The function fS(·)

is known as the furthest-neighbor Voronoi diagram, and while its worst case combinatorial complexity

is similar to the regular Voronoi diagram, it can be approximated using a constant size representation (for

constant dimensions), see [Har99] – one can compute, in linear time, a subset U ⊆ S, of size O
(
ε−d log ε−1

)
,

such that (1− ε)fS(q) ≤ fU(q) ≤ fS(q).

105

Given n sets of points P1, . . . ,Pn in IRd, we are interested in the distance function f(q) = mini fi(q),

where fi(q) = fPi
(q). This quantity arises naturally when one tries to model uncertainty; indeed, let Pi

be the set of possible locations of the ith uncertain point (i.e., the location of the ith point is chosen

randomly, somehow, from the set Pi). Thus, fi(q) is the worst case distance to the ith point, and f(q) is the

worst-case nearest-neighbor distance to the random point-set generated by picking the ith point from Pi, for

i = 1, . . . , n. We refer to f(·) as the nearest furthest-neighbor Voronoi diagram, and we are interested in

its approximation.

6.4.4 Satisfaction of conditions

Observation 6.4.12 We have that (fi)�y =
⋂

u∈Pi
ball(u, y), and diam

(
(fi)�y

)
≤ 2y.

Given the above observation, it is easy to see that Condition (P1) is true, as (fi)�y is a finite intersection of

compact sets. The following Lemma shows that Condition (P2) is also true, by letting the growth function

λ(fi)(y) = y. Since y ≥ diam
(

(fi)�y

)
/2 by Observation 6.4.12, it follows that we can choose the growth

constant ζ to be 2.

Lemma 6.4.13 For any i with 1 ≤ i ≤ n, if (fi)�y 6= ∅, we have (fi)�y ⊕ ball(0, εy) ⊆ (fi)�(1+ε)y.

Proof : Consider any point q in (fi)�y⊕ball(0, εy). It is easy to see that ball(q, (1 + ε)y) ⊇ Pi by the triangle

inequality, and so q ∈ (fi)�(1+ε)y.

Lemma 6.4.14 (Existence of a sketch) Let G ⊆ {f1, . . . , fn}, denote a set of functions as above. Then,

given any δ > 0, there is a subset H ⊆ G with |H| = 1, and a y0 with y0 = O(`con(G) |G| /δ), such that H is

a (δ, y0)-sketch for G.

Proof : Let G = {f1, . . . , fm}, where m = |G|, and z = `con(G). Now, (fi)�z for i = 1, . . . ,m, are all

connected, and by Observation 6.4.12 diam
(

(fi)�z

)
≤ 2z. Thus, ∀u ∈ Pj ,∀v ∈ Pk, there are points

u′ ∈ (fj)�z, and v′ ∈ (fk)�z, such that ‖u′ − u‖ ≤ z, ‖v′ − v‖ ≤ z (by definition of the function fj and fk

respectively), and ‖v′ − u′‖ ≤ 2mz, by the bound on the diameter of the sublevel sets and the condition of

being connected, which is the same as the intersection graph of the sets being connected. It follows, by the

triangle inequality, that ‖v − u‖ ≤ 2(m + 1)z ≤ 4mz; namely, diam(P1 ∪ · · · ∪ Pm) ≤ 4mz. Let H be a set

containing an arbitrary function from G say, H = {f1}.

It is easy to see, that for y ≥ y0 = 4mz/δ, and for all u, v ∈ P1 ∪ · · · ∪ Pm, we have that ball(v, y) ⊆

ball(u, (1 + δ)y). Thus, for any i, 1 ≤ i ≤ m, we have that (fi)�y =
⋂

v∈Pi
ball(v, y) ⊆ ball(u, (1 + δ)y) , for

all u ∈ P1 and y ≥ y0. As such, (fi)�y ⊆
⋂

u∈P1
ball(u, (1 + δ)y) = (f1)�(1+δ)y, and the result follows.

106

Remark 6.4.15 The satisfaction of the computability conditions (C1)–(C3) is not too hard to see, though

it is tedious. We need to use a data-structure for approximate furthest-neighbor queries, as well as coresets

for approximately computing the MEB of the point sets. The fact that the center of the MEB is not perturbed

too much when using coresets, is guaranteed by Lemma B.0.7, presented in Appendix B, as it may also be of

independent interest.

The result

From the above, and the requirement that the sketch constant csk be at least d+ 1 for our bounds to hold, it

follows that for the functions under consideration, we can choose the sketch constant csk = max(d, d+ 1) =

d+ 1.

Proof of 3 Theorem 6.2.17: We only need to show how to get the improved space and query time – i.e., how

do we get rid of the total number of points m in the space and query time. Observe that every one of the sets

Pi can be replaced by a subset Si ⊆ Pi, of size O(1/εd log(1/ε)), such that for any point q ∈ IRd, we have

that fSi
(q) ≤ fPi

(q) ≤ (1+ε/4)fSi
(q). Such a subset can be computed in O(|Pi|) time, see [Har99]. We thus

perform this transformation for each one of the uncertain point sets P1, . . . ,Pn, which reduces the input size

to O(n/εd log(1/ε)). It is easy to verify that all the other operations required to construct the data-structure

can be done efficiently – for example, computing the sketch requires approximating the diameter up to a

constant factor, which can easily be done in linear time. We now apply our main result to the distance

functions induced by the reduced sets S1, . . . ,Sn.

6.5 Conclusions

In this chapter, we investigated what classes of functions have minimization diagrams that can be ap-

proximated efficiently – where our emphasis was on distance functions. We defined a general framework

and the requirements on the distance functions to fall under it. For such functions, we presented a new

data-structure, with near-linear space and preprocessing time, so that it can evaluate (approximately) the

minimization diagram of a query point in logarithmic time. Surprisingly, one gets an AVD (approximate

Voronoi diagram) of this complexity; that is, a decomposition of space with near-linear complexity, such

that for every region of this decomposition a single function serves as an ANN for all points in this region.

We also showed some interesting classes of functions for which we get this AVD. For example, multi-

plicative weighted distance functions with additive offsets. No previous results of this kind were known, and

even in the plane, multiplicative Voronoi diagrams have quadratic complexity in the worst case (for which

107

the new AVD has near-linear complexity). The framework also works for Minkowski metrics of fat convex

bodies, and nearest furthest-neighbor. However, it seems that our main result applies to even more general

distance functions.

Several questions remain open for further research:

(A) Are the additional polylog factors in the space necessary? In particular, it seems unlikely that

using WSPD’s directly, as done by Arya and Malamatos [AM02], should work in the most general

settings, so reducing the logarithmic dependency seems quite interesting. Specifically, can the Arya

and Malamatos construction [AM02] be somehow adapted to this framework, possibly with some

additional constraints on the functions, to get a linear space construction?

(B) On the applications side, are constant degree polynomials a dependable family amenable to our

framework? Specifically, consider a polynomial τ(x) that is positive for all x ≥ 0. Given a point u,

we associate the distance function f(q) = τ(‖u− q‖) with u. Given a set of such distance functions,

under which conditions, can one build an AVD for these functions efficiently? (It is not hard to see

that in the general case this is not possible under our framework.)

108

Appendix A

Basic properties of the functions

Lemma A.0.1 Let F be a set of functions that satisfy the compactness (P1) and bounded growth (P2)

conditions. Then, for any f ∈ F , either f�0 = ∅ or f�0 consists of a single point.

Proof : If f�0 contains two distinct points x, y ∈ f�0, such that ‖x− y‖ = diam(f�0) > 0. By the bounded

growth (P2) it follows that,

f�0 ⊆ f�0 ⊕ ball

(
0,
‖x− y‖

ζ

)
⊆ f�0 ⊕ ball(0, λf (0)) ⊆ f�0,

using ε = 1, and as λf (0) ≥ diam(f�0) /ζ = ‖x− y‖ /ζ. Thus, f�0 ⊕ ball
(

0, ‖x−y‖ζ

)
= f�0. Clearly in

y⊕ ball
(

0, ‖x−y‖ζ

)
, there is some y′ such that ‖x− y′‖ > ‖x− y‖. Namely, diam(f�0) > diam(f�0), which is

a contradiction.

We assume that that d(f, g) > 0 for f 6= g (this can be enforced using symbolic perturbations). Similarly,

we also assume that the distances d(f, g) are distinct for all distinct pairs of functions.

Observation A.0.2 If `con(F) = 0 for any non-empty set F , then |F| = 1.

Lemma A.0.3 Let f ∈ F and y ≥ 0. Suppose u, v ∈ f�y. Then, uv ⊆ F�(1+ζ/2)y, where uv denotes the

segment joining u to v.

Proof : If u = v, the claim is obvious. Using bounded growth (P2) with ε = ζ/2, and the inequality λf (y) ≥

diam(f�y) /ζ, it follows that f�y ⊕ ball(0, diam(f�y) /2) ⊆ f�(1+ζ/2)y. Thus, u ⊕ ball(0, diam(f�y) /2) ⊆

f�(1+ζ/2)y as well as ball(v, diam(f�y) /2) ⊆ f�(1+ζ/2)y. Since ‖u− v‖ ≤ diam(f�y), it follows that the entire

segment uv is in f�(1+ζ/2)y.

The following is easy to verify.

Lemma A.0.4 Let A1, . . . , Am ⊆ IRd, be compact connected sets. Let uv be any segment. Suppose that

uv∩Ai 6= ∅ for all 1 ≤ i ≤ k, and uv ⊆ ⋃ki=1Ai. Then, the set {A1, . . . , Ak} is connected, see Definition 6.2.5.

109

Lemma A.0.5 Suppose we are given G ⊆ F , δ ≥ 0 and y ≥ 0, such that G is a (δ, y)-sketch for F . Then,

`con(G) ≤ (1 + δ)(1 + ζ/2) max(y, `con(F)).

Proof : Assume that F = {f1, . . . , fm}, and G = {f1, . . . , fk}, where k ≤ m. If m = 1 then k = 1, and

we have by definition `con(F) = `con(G) = 0, and the result clearly holds true. If m > 1, we need to

show that (fi)�y′ , for i = 1, . . . , k, are connected, where y′ = (1 + δ)(1 + ζ/2)l, and ` = max(y, `con(F)).

Now by definition, F�` is a connected set. Consider any 1 ≤ i 6= j ≤ k. Then there is a sequence of

distinct indices i = i1, i2, . . . , is = j such that (fir)�` ∩
(
fir+1

)
�` 6= ∅ for 1 ≤ r ≤ s − 1. Consider any

such index, say ir, such that ir > k, i.e., fir /∈ G. Since, (fir)�` ∩
(
fir−1

)
�` 6= ∅ and (fir)�` ∩

(
fir+1

)
�` 6=

∅ we can choose points u ∈
(
fir−1

)
�` ∩ (fir)�` and v ∈ (fir)�` ∩

(
fir+1

)
�`. Now the entire segment

uv ⊆ (fir)�(1+ζ/2)l, by Lemma A.0.3. Since (1 + ζ/2)l ≥ y, it follows by the sketch property (P3), that

uv ⊆ (fir)�(1+ζ/2)l ⊆ G�(1+ζ/2)(1+δ)l. By Lemma A.0.4, the sets in the minimal cover of uv by the sublevel

sets (fi)�(1+ζ/2)(1+δ)l, 1 ≤ i ≤ k, are connected. It follows that (fir)�(1+ζ/2)l can be replaced by a sub-

collection of the (fi)�(1+ζ/2)(1+δ)l, 1 ≤ i ≤ k, and the property of neighbor intersections is still valid in the

chain. We replace each occurrence of the set (fir)�(1+ζ/2)l for ir > k, by the corresponding chain. It is

easy to see that the resulting chain connects up (fi1)�(1+ζ/2)(1+δ)l and (fis)�(1+ζ/2)(1+δ)l. Now, duplicate

elements can be easily removed without affecting the neighbor intersection property of the chain.

The following testifies that a sketch approximates the distance of a set of functions.

Lemma A.0.6 Let G ⊆ F be sets of functions, where G is a (δ, y0)-sketch for F for some δ ≥ 0 and y0 ≥ 0.

Let q be a point such that d(q,F) ≥ y0. Then we have that d(q,G) ≤ (1 + δ)d(q,F).

Proof : Let ` = d(q,F) and let f ∈ F be a witness that q ∈ f�`. As ` ≥ y0 we have that f�` ⊆
⋃
g∈G g�(1+δ)l

by the sketch property (Definition 6.2.9). As such there is some function g ∈ G, such that q ∈ g�(1+δ)l. It

follows that d(q, g) ≤ (1 + δ)d(q,F).

110

Appendix B

Bounding the size of intersection of
balls of the same radius

Lemma B.0.7 Let ball(u, z) be the MEB (minimum enclosing ball) of a set of points P ⊆ IRd. Then, for

any δ ∈ (0, 1), we have ball(u, δz) ⊆ ⋂p∈P ball(p, (1 + δ)z) ⊆ ball
(

u,
√

4δ + 2δ2 z
)
.

Proof : There are affinely independent points from P, on the surface of the MEB, such that u lies in their

convex hull (otherwise the MEB is not minimal). Thus, there is a set S = {p1, . . . , pk} ⊆ P, such that

(i) ∀p ∈ S ‖p− u‖ = z, and (ii) u ∈ CH(S). Thus, any closed halfspace h+ that its boundary passes

through u must contain at least one of the points of S.

u

h

p

v

Consider any point v ∈ ⋂p∈S ball(p, (1 + δ)z). Let h be the hyperplane pass-

ing through u, and orthogonal to u−v, and let h+ be the closed halfspace having

h on its boundary that does not contain v. Then, by the above observation,

there must be a point p ∈ S, such that p ∈ h+. Now, by the law of cosines, we

have that

(1 + δ)2z2 ≥ ‖p− v‖2 = ‖u− v‖2 + ‖p− u‖2 − 2 ‖u− v‖ ‖p− u‖ cos∠vup

≥ ‖u− v‖2 + ‖p− u‖2 = ‖u− v‖2 + z2,

since ∠vup ≥ π/2. Rearranging, we have (2δ + δ2)z2 ≥ ‖u− v‖2, thus implying
√

2δ + δ2z ≥ ‖u− v‖, We

conclude that
⋂

p∈P ball(p, (1 + δ)z) ⊆ ⋂p∈S ball(p, (1 + δ)z) ⊆ ball
(

u,
√

2δ + δ2 z
)
.

111

References

[AAH+13] P. K. Agarwal, B. Aronov, S. Har-Peled, J. M. Phillips, K. Yi, and W. Zhang. Nearest neighbor
searching under uncertainty ii. In Proc. 32nd ACM Sympos. Principles Database Syst. (PODS),
pages 115–126, 2013.

[AC09] N. Ailon and B. Chazelle. The fast johnson-lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302–322, 2009.

[AE99] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, pages
1–56. Amer. Math. Soc., 1999.

[AM93a] P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J. Comput.,
22:540–570, 1993.

[AM93b] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions. In Proc.
4th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 271–280, Philadelphia, PA, USA, 1993.
Society for Industrial and Applied Mathematics.

[AM98] S. Arya and D. Mount. ANN: library for approximate nearest neighbor searching. http://www.
cs.umd.edu/~mount/ANN/, 1998.

[AM00] S. Arya and D. M. Mount. Approximate range searching. Comput. Geom. Theory Appl., 17:135–
152, 2000.

[AM02] S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th ACM-SIAM
Sympos. Discrete Algs. (SODA), pages 147–155, 2002.

[AMM02] S. Arya, T. Malamatos, and D. M. Mount. Space-efficient approximate Voronoi diagrams. In
Proc. 34th Annu. ACM Sympos. Theory Comput. (STOC), pages 721–730, 2002.

[AMM05] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate spherical range
counting. In Proc. 16th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 535–544, 2005.

[AMM09] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest neighbor
searching. J. Assoc. Comput. Mach., 57(1):1–54, 2009.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach.,
45(6):891–923, 1998.

[Ass83] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111(4):429–448, 1983.

[Aur91] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM
Comput. Surv., 23:345–405, 1991.

[Ber93] M. Bern. Approximate closest-point queries in high dimensions. Inf. Process. Lett., 45(2):95–99,
February 1993.

112

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

[Bes96] S. N. Bespamyatnikh. Dynamic algorithms for approximate neighbor searching. In Proc. 8th
Canad. Conf. Comput. Geom. (CCCG), pages 252–257, 1996.

[BHTT10] M. de Berg, H. Haverkort, S. Thite, and L. Toma. Star-quadtrees and guard-quadtrees: I/O-
efficient indexes for fat triangulations and low-density planar subdivisions. Comput. Geom.
Theory Appl., 43:493–513, July 2010.

[BK73] W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching. Commun.
ACM, 16(4):230–236, April 1973.

[BKL06] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proc. 24rd
Int. Conf. Mach. Learning, pages 97–104, 2006.

[Bri95] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Intl. Conf. Very Large Data
Bases, pages 574–584, 1995.

[BSLT00] M. Bernstein, V. De Silva, J. C. Langford, and J. B. Tenenbaum. Graph approximations to
geodesics on embedded manifolds, 2000.

[CDH+05] P. Carmi, S. Dolev, S. Har-Peled, M. J. Katz, and M. Segal. Geographic quorum systems
approximations. Algorithmica, 41(4):233–244, 2005.

[CG06] R. Cole and L. Gottlieb. Searching dynamic point sets in spaces with bounded doubling dimen-
sion. In Proc. 38th Annu. ACM Sympos. Theory Comput. (STOC), pages 574–583, 2006.

[Cha98] T. M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom., 20:359–
373, 1998.

[Cha02] T. M. Chan. Closest-point problems simplified on the ram. In Proc. 13th ACM-SIAM Sympos.
Discrete Algs. (SODA), pages 472–473. Society for Industrial and Applied Mathematics, 2002.

[Cha06] T. M. Chan. A minimalist’s implementation of an approximate nearest neighbor algorithm in
fixed dimensions. Manuscript, 2006.

[Cha10] T. M. Chan. Optimal partition trees. In Proc. 26th Annu. ACM Sympos. Comput. Geom.
(SoCG), pages 1–10, 2010.

[CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with appli-
cations to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach., 42:67–90,
1995.

[Cla88] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput., 17:830–847,
1988.

[Cla94] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. 10th Annu. ACM
Sympos. Comput. Geom. (SoCG), pages 160–164, 1994.

[Cla99] K. L. Clarkson. Nearest neighbor queries in metric spaces. Discrete Comput. Geom., 22(1):63–93,
1999.

[Cla06] K. L. Clarkson. Nearest-neighbor searching and metric space dimensions. In G. Shakhnarovich,
T. Darrell, and P. Indyk, editors, Nearest-Neighbor Methods for Learning and Vision: Theory
and Practice, pages 15–59. MIT Press, 2006.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,
II. Discrete Comput. Geom., 4:387–421, 1989.

[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition. Spring-Verlag,
New York, 1996.

113

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, New York,
2nd edition, 2001.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In Proc. 20th Annu. ACM Sympos. Comput. Geom. (SoCG), pages
253–262, 2004.

[Dun99] C. A. Duncan. Balanced Aspect Ratio Trees. Ph.D. thesis, Department of Computer Science,
Johns Hopkins University, Baltimore, Maryland, 1999.

[Eri96] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete Comput. Geom., 16:389–418,
1996.

[FS82] C. D. Feustel and L. G. Shapiro. The nearest neighbor problem in an abstract metric space.
Pattern Recognition Letters, 1(2):125–128, 1982.

[GK11] L.A. Gottlieb and R. Krauthgamer. A nonlinear approach to dimension reduction. In Proc. 22nd
ACM-SIAM Sympos. Discrete Algs. (SODA), pages 888–899, 2011.

[GKL03] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In Proc. 44th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 534–543,
2003.

[GMM11] L. J. Guibas, Q. Mérigot, and D. Morozov. Witnessed k-distance. In Proc. 27th Annu. ACM
Sympos. Comput. Geom. (SoCG), pages 57–64, 2011.

[GN98] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Trans. on Inf. The., 44(6):2325 –2383, oct
1998.

[Har99] S. Har-Peled. Constructing approximate shortest path maps in three dimensions. SIAM J.
Comput., 28(4):1182–1197, 1999.

[Har01] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu. IEEE
Sympos. Found. Comput. Sci. (FOCS), pages 94–103, 2001.

[Har06] S. Har-Peled. Coresets for discrete integration and clustering. In Proc. 26th Conf. Found. Soft.
Tech. Theoret. Comput. Sci. (FSTTCS), pages 33–44, 2006.

[Har11] S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys and
Monographs. Amer. Math. Soc., 2011.

[HIM12] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. Theory Comput., 8:321–350, 2012. Special issue in honor of Rajeev
Motwani.

[HK11] S. Har-Peled and N. Kumar. Approximate nearest neighbor search for low dimensional queries.
In Proc. 22nd ACM-SIAM Sympos. Discrete Algs. (SODA), pages 854–867, 2011.

[HK12] S. Har-Peled and N. Kumar. Down the rabbit hole: Robust proximity search in sublinear space.
In Proc. 53rd Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 430–439, 2012.

[HK13a] S. Har-Peled and N. Kumar. Approximate nearest neighbor search for low dimensional queries.
SIAM J. Comput., 42(1):138–159, 2013.

[HK13b] S. Har-Peled and N. Kumar. Approximating minimization diagrams and generalized proximity
search. In Proc. 54th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 717–726, 2013.

[HM06] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and their
applications. SIAM J. Comput., 35(5):1148–1184, 2006.

114

[HS03] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces (survey article).
ACM Trans. Database Syst., 28(4):517–580, December 2003.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput. (STOC), pages 604–613,
1998.

[IN07] P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Trans. Algo., 3:1–12,
2007.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mapping into hilbert space. Con-
temporary Mathematics, 26:189–206, 1984.

[KL04] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity search. In
Proc. 15th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 798–807. Society for Industrial
and Applied Mathematics, 2004.

[KL05] R. Krauthgamer and J. R. Lee. The black-box complexity of nearest-neighbor search. Theo.
Comp. Sci., 348(2-3):262–276, 2005.

[KL06] R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In Proc. 47th Annu.
IEEE Sympos. Found. Comput. Sci. (FOCS), pages 119–132, 2006.

[Kle97] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proc. 29th
Annu. ACM Sympos. Theory Comput. (STOC), pages 599–608, 1997.

[Knu98] D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM J. Comput., 2(30):457–474, 2000.

[KR02] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In Proc.
34th Annu. ACM Sympos. Theory Comput. (STOC), pages 741–750, 2002.

[LBG80] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Trans. on
Commun., 28(1):84 – 95, jan 1980.

[Mat92] J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992.

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

[Mei93] S. Meiser. Point location in arrangements of hyperplanes. Inform. Comput., 106:286–303, 1993.

[MS94] T. Martinetz and K. Schulten. Topology representing networks. Neural Netw., 7(3):507–522,
March 1994.

[Rup95] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J.
Algorithms, 18(3):548–585, 1995.

[SA95] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, New York, 1995.

[Sil86] B.W. Silverman. Density estimation for statistics and data analysis. Monographs on statistics
and applied probability. Chapman and Hall, 1986.

[SSS02] Y. Sabharwal, N. Sharma, and S. Sen. Improved reductions of nearest neighbors search to plebs
with applications to linear-sized approximate Voronoi decopositions. In Proc. 22nd Conf. Found.
Soft. Tech. Theoret. Comput. Sci. (FSTTCS), pages 311–323, 2002.

115

[SSS06] Y. Sabharwal, N. Sharma, and S. Sen. Nearest neighbors search using point location in balls
with applications to approximate voronoi decompositions. J. Comput. Sys. Sci., 72(6):955–977,
2006.

[Tal04] K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proc. 36th
Annu. ACM Sympos. Theory Comput. (STOC), pages 281–290, 2004.

[Ten98] J. B. Tenenbaum. Mapping a manifold of perceptual observations. Adv. Neur. Inf. Proc. Sys.
10, pages 682–688, 1998.

[WS06] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite
programming. Int. J. Comput. Vision, 70(1):77–90, October 2006.

[Yia93] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric
spaces. In Proc. 4th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 311–321, 1993.

116

	List of Figures
	Chapter 1 Introduction
	Proximity Search and Generalizations
	Abstract proximity search

	Low Dimensional Queries
	Our Results

	k-ANN Queries in I Rd
	Our Results

	k-ANN Queries for Balls in I Rd
	Our Results

	Approximating Lower Envelopes
	Our Results

	Chapter 2 Preliminaries
	Notation and basic definitions
	Model of computation
	Quadtrees
	Nets in a Metric Space
	Grids
	Well Separated Pairs Decomposition
	Approximate Voronoi Diagrams(AVD)
	The Arya and Malamatos Construction

	Doubling Dimension
	Net-trees

	Chapter 3 Low Dimensional Queries
	Problem and Model
	Warm-up exercise: Affine Subspace
	An Embedding

	A Constant Factor ANN Algorithm
	Answering (1+)-ANN
	Answering (1+)-ANN faster
	The construction
	Analysis

	Online ANN
	Online AVD Construction and ANN Queries
	Correctness
	Bounding the number of regions created
	The result

	Conclusions

	Chapter 4 Sublinear Space Data-Structures for k-ANN in I Rd
	Introduction
	Preliminaries
	Problem definition
	Basic tools

	A (15,k)-ANN in sublinear space
	Approximate Voronoi diagram for dkq,P
	Construction
	Correctness
	The result
	A generalization – weighted version of k ANN

	Density estimation
	Performing point-location in several quadtrees simultaneously
	Slowly growing functions
	The data-structure

	ANN queries where k and are part of the query
	Rough approximation
	The result
	Weighted version of (1+,k)-ANN

	Conclusions

	Chapter 5 Sublinear Space Data-Structures for k-ANN on Balls
	Problem definition and notation
	Approximate range counting for balls
	Approximate range counting among balls

	Answering k-ANN queries among balls
	Computing a constant factor approximation to dkq,B

	Quorum clustering
	Computing an approximate quorum clustering

	Construction of the sublinear space data-structure for (k,)-ANN
	Preliminaries
	Correctness
	The result

	Conclusions

	Chapter 6 Generalized Proximity Search
	Introduction
	The framework and summary of results
	Problem statement
	Informal description of the technique
	Notations and basic definitions
	Conditions on the functions
	Summary of results

	Constructing the AVD
	Building blocks
	The search procedure
	The connectivity tree, and the preprocessing
	The result

	Applications
	Multiplicative distance functions with additive offsets
	Scaling distance – generalized polytope distances
	Nearest furthest-neighbor
	Satisfaction of conditions

	Conclusions

	Appendix A Basic properties of the functions
	Appendix B Bounding the size of intersection of balls of the same radius
	References

