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ABSTRACT 

 

Cyber-infrastructure is at the heart of power system operations 

and is critical for maintaining reliable and stable power supply.  The 

advent of smart grid technology will undoubtedly increase the 

exposure and potential avenues of cyber attack well into the 

future.  The industry standard of contingency analysis largely 

focuses on accidental outages, such as natural disasters, 

equipment malfunction, etc. Intentional, directed attacks and cyber 

components are not well understood or accounted for.   

 

In response, the Security-Oriented Cyber-Physical Contingency 

Analysis (SOCCA) framework demonstrates that it is both prudent 

and practical to assess the impact of cyber events within power 

infrastructures.  Using a new formalism to model cyber-physical 

interconnections and by ranking contingencies based on impact 

and attack complexity, SOCCA presents system operators with a 

detailed vulnerability landscape of their networks. SOCCA’s 

contingency ranking algorithm relies heavily on Markov Decision 

Processes. These MDPs require expert knowledge in determining 

the attack surface and gauging the likelihood of an attack’s success 

as represented by a probability.  The choice of reward function and 
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assignment of probabilities greatly influence the behavior of the 

MDP.  Therefore, the accuracy of the ranking algorithm is called 

into question as it is intrinsically tied to the accuracy of the expert 

knowledge.   

 

This thesis aims to identify the major factors that affect the 

contingency ranking in an MDP model that represents an industry-

standard cyber-physical power network.  Probability assignments 

will be varied including augmenting the SOCCA framework in order 

to extend the probabilities associated with the MDPs to be bounded 

intervals rather than exact values. This way, reliance on precise 

expert knowledge is lessened and sensitivity analysis can be 

performed to provide a confidence rating to the contingency 

analysis. This will also give insight into how modifying or mitigating 

certain attack steps contributes to the overall cyber security state 

of the network. 
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CHAPTER 1: INTRODUCTION 

 

Called mankind’s biggest and most complex machine, the modern 

electric power grid is a myriad of aging technologies and ad-hoc 

solutions. Assessing the cyber threat landscape of this most critical 

asset is vital in ensuring its reliability and the continued delivery of 

the nation’s essential services.  Traditional state estimation in the 

power grid refers to analyzing data from a distributed network of 

sensors connected to power components and communicated 

through SCADA or similar technologies [1].  These sensors operate 

on line voltages, current, phase angle and discrete measurable 

electricity phenomena.  

 

This implies that the behavior of the system can be accurately 

predicted using power flow equations, using numerical methods 

largely based on the Newton-Raphson method [2]. This allows 

power companies to plan for and mitigate the damage caused by 

disruptive events during operation and know the state of the 

system of all times.  This usually manifests itself as ‘N – 1’ 

contingency analysis [3], where the loss of a generator or 

transmission component is simulated and system operators make 



2 
 

adjustments to re-route power as necessary. NERC standards 

require such capability.  

 

However, as smart grid technology continually pushes its way into 

the electric sector, the industry can no longer rely on purely 

physical numerical methods to guarantee reliability.  Promising big 

improvements in energy efficiency and benefits to utilities and 

consumers, computer automation of the grid also ensures 

increased exposure to the risk of outages from cyber threats.  

Internet-ready smart meters under consumer control, distributed 

generation and energy storage, and GPS-enabled phasor 

measurement units are just a few examples of how the cyber 

attack landscape may grow unabated for many years to come.  

 

1.1 The SOCCA Framework 

In order to address the need to incorporate cyber-physical 

interconnections into power grid contingency analysis, Zonouz et 

al. presented SOCCA: A Security-Oriented Cyber-Physical 

Contingency Analysis in Power Infrastructures [4].  First, SOCCA 

uses offline discovery to map the cyber control network.  An XML 

document was created to describe the topology and network access 

policies / firewall rules.  Using the NetAPT tool [5], a connectivity 
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matrix is created using the topology and access policies that 

reflects possible workflows through the network as a directed 

graph.  In the future, this could be done in a dynamic, online 

manner using tools such as nmap, Nessus, etc.  

 

The power component network is handled by the Power World 

Simulator [6], which performs power flow contingency analysis to 

determine component failures that would result in an outage.  The 

interconnections between the cyber control network and the power 

component network are then added.  This is typically a breaker 

connected to a relay, which is handled by a front end processer in 

the control network.  Using the complete directed connectivity 

graph, SOCCA generates a Markov Decision Process [7] model that 

seeks to enumerate the paths an attacker might take in securing 

resources and privileges in an attempt to cause line outages. 

 

For each set of privileges that an attacker may possess, a unique 

state is given in the MDP. Using the Power World simulation, each 

state is granted a performance index, which signifies the outage 

severity associated with disruption of the network components 

governed by those privileges.  Next, using value iteration, a 

security index for each state is calculated using the performance 



4 
 

index (impact) with the probability that the attacker will succeed in 

gaining the state’s privileges from cyber attack.  These probabilities 

are, at best, speculative and based on expert knowledge or 

experience.  Adding mitigation schemes and network defenses 

likely serve to lower the likelihood of success, but it is hard to 

evaluate by how much this will change.  An attacker may also 

discover a novel approach to infiltration that renders defenses 

ineffective or take advantage of social engineering and phishing to 

achieve his/her goals.  It becomes crucial when assessing critical 

assets and contingencies to know how sensitive the model is to 

likelihood metrics. 

 

Once the value iteration is complete, the attacker’s possible actions 

are ranked according to the optimal route the attacker can take to 

cause disruption.  Because the MDP value iteration algorithm 

incorporates all future actions into the analysis, ranking is 

accomplished by simply choosing the action with highest security 

index from the attacker’s available actions given the set of 

privileges he/she has attained.  It is important to note that as new 

information comes in regarding cyber events as reported by 

intrusion detection systems or other network monitoring, SOCCA 

can be run in real-time to re-evaluate from any point in the MDP 
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using the attacker’s current position as the base point.  This is 

helpful as the network grows and scales and performance 

constraints limit the ability to generate and evaluate the entire 

MDP at once.  Instead, the contingency analysis will be limited to a 

given horizon. 

 

Using the contingency rankings generated by the MDP, a system 

operator has good knowledge of the most crucial assets on his 

system and which intrusions are the most important to prevent 

against at varying stages of network operation.  Tools that work in 

real-time and report early are vital due to timing deadlines 

inherent to power infrastructure.  System operators typically know 

their options to re-route power in the event of a failure, and they 

can use the same tactics in the event of a cyber attack. 

 

1.2 Markov Decision Processes 

It is important to understand the manner in which MDPs model 

decision-making scenarios to give the results of the contingency 

analysis clear meaning. A Markov Decision Process [7] is a tuple 

(S, A, Pa(s,s’), R(s)) where S is a finite set of states, A is a finite 

set of actions, P is a probability transition function that reflects the 

likelihood that given an action a taken from state s, the system 
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changes to state s’, and R is the expected reward gained from for 

achieving state s. Since S and A are finite, an MDP of this type is 

referred to as a discrete Markov decision process. 

 

For the purposes of this thesis, the MDP is modeled after the 

SOCCA framework [4].  The state space S is the security state of 

the cyber-power network, meaning that each state is a potential 

set of privileges that an attacker has gained through infiltration.  A 

privilege in this sense is defined as control over a network host or 

power component.  For each new node in the network that an 

attacker controls, he/she is said to have extended the current set 

of privileges and the MDP transitions to a new state. The attacker 

initially has no privileges in the network and is seen as a user on 

the open Internet.  

 

The action space A represents the attacker’s choices as he/she 

explores the security state space of the system.  Given the current 

set of privileges, any directed connectivity to another node that an 

attacker could potentially exploit is assigned an action that 

transitions to a new state of privileges including the exploited 

node.  Taking an action can result in two possibilities. An attacker 

is either successful at exploiting the node and gains the new 
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privilege with probability p or fails to execute the attack and 

remains at his/her current state with probability (1-p). These 

probabilities are what define P.  An example MDP is shown in 

Figure 1 [4].  

 

Lastly, R, the reward function, reflects how transitioning from 

states in the MDP serves the attacker’s goals.  In this case, the 

attacker’s goal is characterized as causing as many line outages as 

he/she can.  For each state s, 

 

 

which says that for every power line l, calculate the flow on that 

line divided by the maximum flow permitted on that line and if 

there is a line flow violation, assign a positive value. Otherwise, 

assign 0.  If the security state of the system s contains privileges 

for components that directly control flow on power lines, it is 

assumed that the attacker compromises those lines and switches 

them off.  The flow of power under each set of outages is 

calculated within the Power World Simulator. 

 

Once the MDP has been properly filled, it is ready to find the 

optimal policy for the decision maker.  A policy, denoted ∏(s), is 
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the choice of action that the decision maker takes while at state s. 

The decision maker here is the attacker.  To achieve this, the 

dynamic programming algorithm called value iteration is used.   

For value iteration, a value function V(s) is defined that gives each 

state s a value v so that it can be compared amongst other states.  

This differs from the reward function in that it mixes the reward 

gained at a state with the probability of reaching that state as well 

as the future rewards of states available after reaching s. V(s) is 

defined as follows: 

 

 

 

Here gamma represents the discount factor, which accounts for the 

diminished return of rewards that are far away from the current 

state.  As a dynamic programming algorithm, V(s) is recalculated 

for every state iteratively until the sum of change across all states 

falls within some low value.  The value used in this thesis was 10-3. 

Once values have been calculated for all states, the optimal policy 

for the attacker to take is the action that would lead to the state of 

highest value from the current state.  Additionally, for the system 

operator, these actions are the most important to protect and 

prevent from occurring.  
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1.3 Overview 

From here, Chapter 2 will review the body of research related to 

cyber contingency analysis in power networks and how it compares 

to the methods discussed here.  Chapter 3 will examine the 

creation of the cyber-physical power network model and 

justification for why it is an appropriate representation of modern 

power infrastructure.  It will also dive into the parameters that 

were assigned to the corresponding MDP.  Chapter 4 discusses the 

methods used to evaluate the dominating factors that affect the 

contingency ranking and the results of employing those methods.  

Chapter 5 will draw conclusions about the findings from Chapter 4 

and make considerations for analyses to be done in the future.  
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1.4 Figures 

 

 

 

 

 

 

 

 

 

Figure 1: An Example Power Control Network and MDP 
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CHAPTER 2: RELATED WORK 

 

Although contingency analysis of the power grid has been studied 

for many decades, only recently have concerted efforts been 

carried out to incorporate cyber contingencies and their effects into 

the mix.  Chen et al. [8] propose a stochastic Petri net approach to 

model coordinated cyber-physical attacks on the smart grid.  Using 

a hierarchical method of constructing small Petri nets from specific 

domain experts, a large Petri net is compiled to represent the 

system as a whole.  The authors admit that there is a great deal of 

manual effort and expertise required for an accurate model.  

Additionally, their method focuses on modeling specific attack 

scenarios such as a smart meter compromise.  By shifting focus to 

the effects of a generic compromise and gauging the impact of the 

expert knowledge, this research hopes to overcome these 

limitations.  

 

Research has also been performed that seeks to advance dynamic 

detection of network compromise and measurement corruption in a 

power network [9].  While detection is important in its own right, 

and the authors make good effort to account for unexpected or 

unknown attacks, their method is complex and intrinsically tied to 
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a power system state that in reality, morphs and grows constantly.  

Reevaluation of contingencies in real-time is incredibly important 

for system operators and focus should be reallocated towards 

enumeration of key assets and not so heavily on types of attacks.   

 

Sridhar et al. present a detailed overview of cyber security tasks 

relevant to the power grid domain.  While presented at a high-

level, the risk assessment methodology explained within contains 

many vital activities that collectively serve to professionally 

coordinate cyber defense within the power infrastructure.  The 

SOCCA framework would be an essential contribution to the 

infrastructure vulnerability analysis within the broader scope of 

complete cyber-physical system security.  As the paper states, grid 

security must be continually analyzed with respect to complexity, 

long lifespans, and novel attack vectors.  At this time, no other 

contingency analysis offers the same real-time, scalable protection 

benefits. 

 

In terms of perturbation analysis of MDPs, different approaches 

were considered.  [10-12] show examples of methods that have 

been proposed to handle sensitivity of steady-state performance of 

Markov processes. The approach deemed most closely related to 
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the problem description at the time of writing is [13], which among 

other things, contributes a novel value iteration algorithm that 

allows transition probabilities within an MDP to be treated as a 

bounded real interval instead of an exact value.  This algorithm will 

be discussed in greater detail in Chapter 4. 

  



14 
 

 CHAPTER 3: MODEL CREATION 

 

Every network and corresponding system model will have 

significant differences, even within domain-specific applications.  

Power networks come in all shapes and sizes, governed by the area 

of distribution they serve, types of equipment in use, utility-specific 

policies, and legacy issues.  Therefore, when advising utilities on 

the security state of their networks or providing tools to system 

operators, it is imperative that the model formalism makes sense 

and emulates reality.  There is no perfect generalization or 

analogous model for every single network and it can make drawing 

meaningful conclusions difficult in a research setting.  This chapter 

will highlight how the example model was chosen and make a case 

for having general value to the industry at large. 

 

3.1 The Physical Power Network 

When performing cyber-physical contingency analysis and system 

monitoring, scope must be sufficiently limited so that the system 

does not become overburdened. Quick decision making makes all 

the difference in guarding against intentional attacks.  That being 

said, a power network was chosen to reflect the typical granularity 

at which monitoring is performed – the substation or a small 
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collections of substations. The simulated power grid infrastructure 

chosen was the IEEE 24-bus reliability test system [14].  This test 

system fully describes generation and transmission network, 

complete with load constraints, ratings, and reliability data.  It 

was, in fact, created in order to sufficiently describe a broad range 

of power networks and was created by a committee of industry 

professionals well-versed in real implementations.  A diagram of 

the 24-bus system is shown in Figure 2.  The system consists of 32 

generation units and 24 load/generation buses connected by 38 

transmission lines along with full descriptions of peak load 

conditions, generation capability, and energy output.  This data 

was directly entered into a Power World simulation in order to 

calculate highly accurate line flows. 

 

3.2 The Cyber Control Network 

As for the cyber control network, there are no peer-reviewed and 

standard models for the IT infrastructure necessary to coordinate 

and monitor a power network.  In the culture of cyber security 

awareness that we live in, it is unlikely that any utility would step 

forward to expose the inner workings of their network willingly to 

the general public.  In place of a standard representation, an 

example of a control network was constructed from conversations 
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with local professionals in the industry and based on a real network 

that was kept confidential.  On their recommendations, the cyber 

control network was made to fit with the 24-bus power network.  T 

 

The cyber control network consists of 59 host systems and firewalls 

and monitors the buses in the 24-bus model.  Each bus is 

controlled by a single host in the control network.  Inspection of 

the cyber control network reveals 10 key assets that affect the 

cyber-physical interconnection and can result in line outages.  

Figure 3 shows the cyber control network topology. 

 

3.3 Creation of the Markov Decision Process 

Since there are 10 key assets that an attacker would seek 

privileged access to in order to achieve his/her goals, states are 

created in the MDP that reflect collection of those 10 privileges.  

Since the assets must be achieved somewhat sequentially, there 

are 146 resultant states instead of all possible permutations of the 

10 privileges.  As described above, the SOCCA framework uses the 

connectivity matrix and access policy rules to determine the 

possible actions from each state. The calculation of the reward 

function has already been discussed. Figure 4 is a directed graph 

showing the entire MDP.  The top number at each state is the ID of 
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that state, the middle is the state’s performance index or reward 

value, and the bottom number is the state’s security index, the 

result of value iteration.  States depicted white contain cyber 

privileges only while grey states are those that contain physical 

privileges as well.  A mapping from state ID’s to control network 

hosts is included in Table 1. 

 

3.4 Probability Transition Assignment 

The final piece of the puzzle for the MDP model is how to assign 

transition probabilities to the actions between states.  For cyber 

components, this is almost always set according to domain 

expertise or security professional advice, as has been a recurring 

theme throughout this writing.  Since this research seeks to 

determine the importance of accurate expertise on the overall 

contingency ranking, probabilities will instead be assigned 

randomly and results will be compared.  However, for states in the 

MDP that reflect having direct control over a power component 

through the required set of privileges to get access, probability 

transitions are set to 1.  For example, if the attacker gains control 

of a relay, it is then trivial to open a breaker and cause an outage.  

There is virtually no mitigation possible between those two events. 

  



18 
 

3.5 Figures 

 

 

 

 

 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 2: The IEEE 24-bus Reliability Test System   
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Figure 3: Simulated Cyber Control Network 
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CHAPTER 4: EXPERIMENTATION & RESULTS 

 

The body of work related to cyber-physical contingency analysis for 

power grids always circles back to the requirement of expert 

domain knowledge and security knowhow.  By nature, it is a 

tedious and manual process that requires large resources and the 

benefits are often undermined by the cost.  In an MDP model such 

as this, expertise manifests itself as transition probabilities.  

Therefore, it is the goal of these experiments to perturb the 

probabilities assigned to states in the model to determine the 

importance of and sensitivity to prior knowledge of the attack 

surface.  This will be accomplished by assigning a base value to the 

transitions in the model as if they were determined by an expert 

and calculating the security index (value function) accordingly.  

These probabilities will be chosen randomly out of a set of three 

possibilities, representing low, medium, and high likelihood of 

exploitation.  These exact values will be 0.2, 0.4, and 0.6 

respectively.  Once these probabilities have been randomly 

distributed, the value of each state will be locked in as the base 

value.  Perturbations of the probabilities thereafter should cause 

changes in the value functions of the MDP states compared to the 

base values.  The change in value of states will be assessed 
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empirically as well as any change in the contingency ranking 

results from the base values.  In this way, the results will show 

whether transition probabilities in a MDP modeled after a real 

power network are highly sensitive to accurate expert analysis or if 

other factors in the MDP dominate the ranking. 

 

4.1 Interval Value Iteration 

At the core of the sensitivity analysis is the Interval Value Iteration 

(IVI) algorithm [13].  Where traditional MDPs require an exact 

value for the transition probability function, IVI provides the ability 

to specify a real interval for each action’s likelihood.  This is an 

ideal tool for perturbation because it allows for testing the entire 

range of probabilities within a given ∆p.  By testing all probabilities 

simultaneously, effectively all possible permutations of an MDP, an 

uncountable amount, are tested in polynomial time.  This is 

incredibly powerful.  The authors show that there is a finite set of 

MDPs that are of interest.  Particularly, given an ordering of all the 

states in the MDP, there is a unique MDP that sends as much 

probability mass as possible early in the ordering.  We will defer to 

the publication for proofs of order-maximizing MDPs and 

convergence.  As expected, IVI gives a real interval as a result for 

a state’s value function.  In fact, it gives optimal policy value 
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intervals.  There are perhaps more sophisticated ways to compare 

these intervals, but for this study, value intervals were compared 

by their midpoint to determine ranking. Pseudo-code of IVI can be 

found in Appendix A. 

 

4.2 Contingency Ranking 

The primary way to evaluate whether or not a perturbation of the 

MDP’s probability transition function creates meaningful results is 

to enumerate the highest ranking contingencies (states with 

highest value function) and look for changes.  In other words, does 

the attacker’s optimal policy change if a different transition 

function is introduced?  Because the attacker is assumed to start 

outside the network without any privileges, we rank contingencies 

based on optimal actions from the root.  In breadth-first fashion, 

all actions are enumerated from the root state and the top action is 

ranked #1.  From here, we continue considering the remaining 

actions from the root state, but we now include all actions 

reachable from the state in which the system would result if the 

attacker successfully transitioned from the top contingency.  One 

contingency is ranked per iteration and any new actions reachable 

given that contingency is taken are added to the list to be ranked.  

This is a slight break from the algorithm presented in the SOCCA 
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paper, which ranked all contingencies available before considering 

the next hop.  This continues until all states have been reached 

and the resulting list is the optimal policy for the attacker.  The 

attacker should take actions in the order listed to maximize the 

reward, in our case, line outages.  Conversely, a system operator 

should prioritize protecting against actions in the list in order to 

thwart the attacker most effectively.  It should be noted that only 

cyber contingencies are to be ranked since it is assumed that 

power contingencies have no option for mitigation and transition 

with probability 1.  To reiterate, the white nodes in the MDP 

diagram (Figure 4) refer to cyber states while grey nodes denote 

power states. 

 

4.3 Experiments 

Recall that the following experiments were perturbations compared 

against a base value assigned to states as if an expert has set their 

probability transition functions.  All graphs are located in the 

Figures subsection of this chapter. 
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4.3.1 Perturbation of the Base Values 

The first experiment conducted was to employ IVI to introduce a ∆p 

for each state’s probability function.  As the interval is increased 

outward from the base probability, the possible values associated 

with the states should significantly change if the probabilities are a 

dominating factor in the MDP.  To test this, the top 10 contingency 

rankings were compared for each increase in ∆p.  Additionally, the 

value intervals returned by IVI in each case were compared and 

the percent change in value for every state was calculated.  The 

maximum difference of either the interval’s lower bound or upper 

bound from the base value was chosen for the percent change.  

This data shows how a change in probability directly affects a 

state’s value.  An example data set from one iteration of testing is 

displayed in Table 2.  

 

After carrying out the tests, a surprising result emerged.  

Increasing the range of probabilities for all states by as much as .3 

in either direction caused no change in the contingency rankings at 

all.  Neither the ordering nor the set of contingencies in the top 10 

changed at all.  Figure 5 shows the average percent difference in 

value for all states for a given ∆p along with the standard 

deviation.  This data set is delimited as ‘linear’ because the relation 
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between states with different probability transitions is linear due to 

the base probabilities being 0.2, 0.4, and 0.6. 

 

4.3.2 Perturbing the Probability Relation 

Since no changes were detected in the previous experiment, the 

next thing to test is the relative relationship between the different 

probability transition functions.  Whereas the probabilities were 

linearly related before, an exponential relationship was tried. In 

place of 0.2, 0.4, and 0.6 the new corresponding initial probabilities 

were set to 0.1, 0.2, and 0.8.  Again testing for different values of 

∆p using IVI, the top 10 rankings were compared to the base 

rankings and percent change was calculated similarly as before in 

Figure 6.  Please note that base rankings in this context refer to 

the rankings before any experiments were run, not the beginning 

of the current experiment. 

 

This time, 9 out of the top 10 rankings were different compared to 

the base rankings.  However, across all ∆p using the exponential 

relationship, there was no change in rankings.  This is still a 

significant change and reflects an entirely different policy that an 

optimal attacker would pursue.  Therefore, the relationship 
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amongst probability values is an important consideration when 

constructing the MDP. 

 

4.3.3 Reassigning the Original Probabilities 

Another test that was deemed necessary was to detect changes if a 

whole other assignment of probabilities was given.  The base 

probabilities were assigned randomly out of 0.2, 0.4, and 0.6.  For 

this test, those probabilities were again randomly distributed 

across all states in a guaranteed unique way from the base 

assignments.  Once more, IVI was utilized to test over increasing 

values of ∆p. The top 10 rankings were again computed and 

percent change of value functions are given in Figure 7. 

 

Similar to the first experiment, there was no change in the 

rankings compared to the base rankings across any ∆p.  Even 

though the probabilities were scrambled and reordered, there was 

no consequential change in the MDP’s optimal policy.  The 

probabilities within states have a linear relationship as in 

Experiment 1 so perhaps this is additional evidence for the 

importance of the relative difference between probability 

transitions instead of their placement in the MDP. 
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4.3.4 Perturbing the Discount Factor 

The probability transition function is only one aspect that governs 

the optimal MDP policy.  Another variable that may affect change is 

the discount factor within the value iteration. The discount factor is 

responsible for diminishing greater rewards that require many 

actions to attain versus smaller rewards that are more easily within 

reach.  IVI was not used in this test.  Instead, the original base 

probabilities were left constant and the discount factor was varied 

intermittently between .2 and .9. The base value iteration 

algorithm used a discount factor of 0.7.  Percent change from the 

base values were again calculated and are included in Figure 8. 

 

Despite seeing the greatest change in the values of states and the 

widest standard deviation, perturbing the discount factor did not 

change the top 10 contingency rankings in any way.   
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4.4 Figures 

State  Base Value V↓(s)  V↑(s) ∆max % Change 

1   2.91 2.21 3.32 0.704 0.242 

2   3.39 2.72 3.61 0.67 0.198 

3   5.8 5.05 5.82 0.748 0.129 

4   2.98 1.62 3.53 1.36 0.456 

5   9.38 8.57 8.57 0.811 0.0864 

6   8.57 7.41 7.41 1.16 0.135 

7   8.57 7.41 7.41 1.16 0.135 

8   7.41 5.75 5.75 1.66 0.224 

9   5.75 3.38 3.38 2.37 0.412 

10   7.41 5.75 5.75 1.66 0.224 

11   8.57 7.41 7.41 1.16 0.135 

12   7.41 5.75 5.75 1.66 0.224 

13   9.95 9.38 9.38 0.569 0.0571 

14   9.38 8.57 8.57 0.811 0.0864 

15   9.38 8.57 8.57 0.811 0.0864 

16   8.57 7.41 7.41 1.16 0.135 

17   7.41 5.75 5.75 1.66 0.224 

18   8.57 7.41 7.41 1.16 0.135 

19   9.38 8.57 8.57 0.811 0.0864 

20   8.57 7.41 7.41 1.16 0.135 

21   9.95 9.38 9.38 0.569 0.0571 

22   5.47 4.61 5.32 0.856 0.156 

23   4.14 3.05 3.99 1.09 0.263 

24   8.57 7.41 7.41 1.16 0.135 

25   7.41 5.75 5.75 1.66 0.224 

26   4.32 3.1 3.57 1.22 0.283 

27   9.38 8.57 8.57 0.811 0.0864 

28   8.57 7.41 7.41 1.16 0.135 

29   5 3.99 4.6 1.01 0.202 

30   5.47 4.61 5.32 0.856 0.156 

…   … … … … … 

 

 

 

  

Table 2:  Example Data Set from Experiment 1 

∆p = .1 
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Top 10 Base Contingency Rankings 

  
 

  

Start State End State  V(s) 

0 74 4.99 

74 101 10.34 

74 125 10.34 

101 28 9.94 

101 77 9.94 

101 102 9.94 

101 111 9.94 

101 119 9.94 

28 4 9.38 

77 4 9.94 

 

 
 

 
 

 
 

Top 10 Contingency Ranking Changes vs. Base 

  
    

  

Across all Linear 
  

0 

  

    
  

From Base to Exponential 
 

9 

Across All Exponential 
  

0 

  

    
  

From Base to Shuffled Linear 
 

0 

Across All Shuffled 
  

0 

  
    

  

Across All Change in Discount Factor   0 

  

Table 3 
 

Table 4 
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CHAPTER 5: CONCLUSIONS 

 

Towards the objective of evaluating the sensitivity of a prototypical 

power network MDP to the effects of probability transitions, the 

results show conclusive evidence that the role of expert knowledge 

is not as integral to contingency ranking as previously thought.  

Despite augmenting the security index of MDP states by as much 

as 130% on average with standard deviation approaching the 

average itself, contingency rankings were shown to not be affected 

at all.  The discount factor of value iteration was also determined 

to be inconsequential albeit being the most influential in terms of 

value change.  The only noticed change in contingency rankings 

occurred when greater disparity was placed in the relative values of 

available probability transitions, though the placement of the 

transitions themselves seems insignificant.   

 

This seems to imply that the native structure of a power network is 

governed by the only remaining variable, the assignment of 

rewards amongst states.  This is reasonable when considering that 

power control networks are typically structured such that there are 

only a few hops between the outside Internet and components that 

directly affect line flow.  This is also in keeping with the radial 
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topology of the control network.  If the initial few hops are 

breached, the inner workings of the network are open to 

exploration and exploit.  Therefore, it is imperative to maintain a 

strong outer shell and place defense mechanisms early in the 

attack chain.  Deriving the most vulnerable assets is an ongoing 

problem, but it seems that focus ought to be shifted towards 

accurate reward functions and broad probability transition schemes 

in place of individual probability scrutiny in the scope of MDP 

modeling. 

 

5.1 Future Work 

Going forward with this reasoning, it seems prudent to perform 

experiments using varying reward functions to identify the most 

accurate measure of contingency ranking.  Additionally, the 

incorporation of negative rewards for attack failures may provide 

additional insight into the behavior of the system.  Furthermore, 

probability transition functions that model tight exterior mitigation 

may be equally interesting. 

 

As for extension of the SOCCA framework into the future, alert 

correlation may provide an avenue to enable real-time threat 

monitoring and contingency warnings.  Works such as [15] present 
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novel approaches to alert correlation through attack trees.  By 

mapping intrusion detection or other network management alerts 

to assets in an attack chain as we have demonstrated using MDPs, 

the current state of the network can be approximated in good 

confidence and re-evaluation of contingencies can take place 

quickly and responsively.  A working prototype of this type of 

analysis has been discussed and implemented in a related work to 

SOCCA called SCPSE [16].  
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APPENDIX A: INTERVAL VALUE ITERATION ALGORITHM 

 

 

Figure 9: Pseudo-code of the IVI algorithm [13] 
 


