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Abstract 

 The advent of laboratory techniques to assess protein-DNA interactions, and chromatin 

post-translational modifications has created vast arrays of data correlating binding sites and 

regulatory elements with genome regions. There has been great interest in developing new 

computational approaches that leverage these annotations in order to better understand the 

layout and organization of eukaryotic genomes and gene regulation. In particular, while tools 

exist to accurately map the coding regions of the genome, few methods exist to leverage new 

annotations in the non-coding regions of the genome that may hold the key to many important 

questions about gene regulation. By exploiting the results of large scale annotation studies such 

as ENCODE to identify cell-type specific enhancers, and transcription factor binding sites, it is 

possible to better understand enhancer regions of the genome responsible for promoting 

transcriptional activity. Using frequent sequential pattern mining techniques from the classical 

data mining field, the importance of linear order in enhancer role and structure was explored in 

this thesis. Common orderings of binding sites within enhancers were identified across nine cell 

lines. Putative targets of enhancers exhibiting these patterns were then determined and 

clustered based on functional classification. Examination of detected patterns indicated that 

while the choice of transcription factors in the pattern often correlated with the overall function of 

putative targets, the ordering of these binding sites might be an effective classifier of more 

specific functional activity. Additionally, findings suggested that the arrangement of binding sites 

within enhancers was more likely to be cell specific than the transcription factor binding sites 

themselves. The knowledge that binding site pattern is more strongly linked to target function 

than binding site co-association alone could lead to important advances in our understanding of 

the diverse regulatory roles of different enhancers as well as new functional annotations for 

enhancers, genes, and transcription factors that have not yet been the focus of intensive studies 

to elucidate their roles. 
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1. Introduction 

 The study of regulatory genomic elements is an important and unresolved problem in 

genomic biology. It has been determined that more than 98% of the human genome does not 

directly code for proteins, and while the structure and function of coding regions that is better 

understood represent only a small fraction of the genome [1]. Understanding the nature of gene 

expression can lead to important breakthroughs in mechanisms of cancer and human disease. 

At the level of gene transcription, gene expression is controlled via transcription factor (TF) 

proteins that selectively bind to cis-regulatory elements in a sequence-specific manner. These 

proteins typically bind to specific DNA sequences within enhancer regions, which act on genes 

to promote or repress expression [2, 3]. Modern techniques in molecular biology have led to the 

wide availability of data from high-throughput mapping of the interaction between proteins and 

non-coding regions of the genome that harbor regulatory functions, as well as the epigenetic 

regulatory marks that guide the transcriptional and regulatory machinery in accessing the 

genome [4-6]. The wealth of data generated has rapidly outpaced available bioinformatics 

techniques to dissect and analyze the complex regulatory relationships between epigenetic 

marks, DNA sequences, and TF binding sites (TFBS). Tools to explore the binding of TF 

proteins responsible for regulating gene expression and mapping areas of regulatory 

significance have been in high demand to explore the structure and function of the vast non-

coding regions of the genome [7-9]. The Encyclopedia of Genome Elements (ENCODE) project 

has been instrumental in systematically mapping the genome and disseminating the results of 

these genome-wide landscapes [5]. The mechanism by which TFs modulate gene expression 

has been of particularly great interest due to their ubiquitous role in transcriptional regulation. 

 Recent studies of these factors and their associated regions have focused on elucidating 

common combinations of TFs that tend to co-associate within the same regions of the genome 

[7-10]. These groupings can indicate common regulatory patterns in which TFs act 
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independently or by protein association to affect gene transcription. Common pairing of factors 

can indicate a protein-protein interaction that may be required to facilitate DNA binding and 

transcriptional regulation. Studies of these combinatorial patterns have utilized techniques in 

data mining for frequent itemset analysis to efficiently detect associations using experimental 

data from high-throughput assays [9]. Due to the rapidly evolving landscape of genomic 

mapping many of these studies have not incorporated protein DNA association data only 

recently made available by ENCODE. In addition only one published study has explored the 

linear arrangement of factors on the genome [11]. In this study the authors did not use 

ENCODE data to guide the selection of enhancer regions and binding sites, nor did they 

consider the potential significance of overlapping and interacting binding sites. In this thesis we 

perform a screen of several databases of publically available binding site and enhancer region 

information to examine order-aware combinatorial patterns of binding sites within regulatory 

regions. 

1.1 Transcription Factor Binding Sites 

 Transcription factors (TFs) play a critical role in transcriptional regulation through cis-

acting elements present near genes [2, 3, 12]. TFs are proteins capable of recognizing and 

associating with specific genomic sequences (motifs) [12, 13]. Once associated TFs can 

mediate the recruitment of important transcriptional proteins, other TFs, and members of the 

polymerase holoenzyme [3, 12]. A particular TF will recognize a variety of different sequences 

with varying efficiency. The motif recognized by a TF is generally represented using a position 

weight matrix (PWM) indicating its preference for particular nucleotides at each position in the 

transcription factor binding site (TFBS) [13]. Understanding the layout and organization of TFBS 

in the genome is a crucial step towards elucidating the complex regulatory mechanisms, which 

control gene expression and ultimately cellular function. 
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 Tools for locating TFBS based on genomic sequences often score putative TFBS based 

on closeness to known motifs and return high scoring motifs [14]. More sensitive searches will 

often attempt to calculate p-values and incorporate estimated false discovery rates (FDRs) [15]. 

Ultimately these methods may fail to detect TFBS or output false TFBS because of topological 

or structural features of the surrounding genomic sequence not represented in sequence motifs. 

The most common screens for TFBS require chromatin immunoprecipitation (ChIP) of sequence 

bound TFs. Sequences are then ascertained through high throughput sequencing (ChIP-seq), 

or less sensitive array based detection [6, 16]. These techniques are more costly and time 

consuming than in silico identification but can positively determine which areas of the genome 

are bound by particular TFs. Several curated databases of TFBS motifs and experimentally 

confirmed TFBS locations exist including TRANSFAC and JASPAR, the latter is open access 

[17, 18]. The ENCODE project has been instrumental in performing and distributing high 

throughput screens of the genome for TFBS as well as more general protein association [5]. 

These ChIP-seq data have focused on identifying windows of high protein occupancy within the 

genome. The windows detected can be as large as 0.5-1kb, therefore, further processing is 

required to obtain base-pair resolution maps of protein binding. Additionally these association 

maps include proteins believed to not bind directly with DNA but rather with other proteins which 

may themselves preferentially associate with DNA motifs. Studies of these regions have been 

focused on either identifying new binding motifs in a de novo search of the genomic regions, or 

mapping existing motifs to these locations. This type of mapping is far more specific and reliable 

than in silico mapping of binding sites because of the high false positive rate of in silico mapping 

techniques [19, 20]. 

 Occasionally TFBS will act on other nearby TFBS allowing a particular TF to control the 

presence of other TFs [12]. In the case of positive control a certain TF will act to strongly recruit 

other TFs increasing their binding efficiency to nearby sequences. Alternatively in the case of 
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overlapping TFBS only a single TF can be bound at a time, allowing for TFs to competitively 

inhibit each other through binding. Lastly if TFBS are too close together they can cause 

competitive inhibition without overlapping through steric interference. The distance required for 

this type of interference will be a function of the size and structure of the associated TFs. 

Identifying constructively and destructively interfering TFBS can add important details to our 

understanding of TFBS structure and function. 

1.2 Enhancers 

 Many studies have demonstrated that TFBS that target particular genes are generally 

grouped together into cis-regulatory modules (CRMs) [21, 22]. These modules are generally 50 

bp to 1.5 kb in length and there may be several that act on the same gene [21]. An enhancer is 

a CRM that when bound increases transcription of a target gene, and can be located either 

proximally or distally to the gene. Enhancers can be as close as just upstream of the promoter 

region or even within the introns of the target or so far away that they are closer to other genes 

that they do not regulate or located on different chromosomes [23, 24]. The ability of distal 

enhancers to act on target genes is due to a three-dimensional proximity of bound TFs to the 

transcriptional machinery located at the promoter region that can be impossible to capture in a 

linear sequence. Though tools exist to estimate three-dimensional genomic structure only 

experimental analysis can confirm structural proximity and more importantly regulatory 

relationship [6, 16]. 

 A variety of approaches exist to locate enhancers in silico based on dense groupings of 

TFBS, phylogenetic sequence conservation, and proximity to genes or other annotations [25]. 

Studies have demonstrated that enhancers often exhibit discontinuous conservation where 

some regions within the enhancers are conserved but not others [11]. More recent 

advancements based on DNase hypersensitivity and chromatin modifications have shown 

promising results for detecting enhancer regions based solely on histone modification 
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information from ChIP-seq experiments. The ChromHMM software constructs a hidden Markov 

model (HMM) to classify regions of the genome based on histone modifications [26]. Prior work 

has shown that chromatin marks are an effective measure of cell-type specific enhancer activity 

[27, 28]. In mapping chromatin state across nine human cell types the histone modifications 

H3K4me3, H3K4me2, H3K4me1, H3K9ac, H3K27ac, H3K36me3, H4K20me1, H3K27me3, and 

H3K9me3 were considered for classifying chromatin regions [26]. H3K4 methylation and 

trimethylation were associated with enhancers and promoters respectively, while dimethylation 

was associated with both [26, 27, 29]. Both acetyl marks have been shown to correlate with 

active regulatory regions, while H3K27me3 is associated with Polycomb repressed regions [26, 

27, 29]. Lastly, H3K36me3 and H4K20me1 are both associated with transcribed regions [26]. 

Annotations based on these classifications are included as a track in the UCSC genome 

browser. The organization and structure of enhancers is of great interest as advancements in 

this area may lead to better classifiers for enhancer regions and a more complete understanding 

of transcriptional regulation [22]. The annotations available were generated by the ENCODE 

project using high throughput ChIP-seq screens of multiple cell lines for a large variety of 

histone marks. 

1.3 Mining Transcription Factor Binding Sites 

 While previous studies have considered the co-occurrence of TFBS in the same 

enhancer region, there have been few studies to analyze potentially common orderings of 

TFBS, and in particular the possibility of patterns containing overlapping TFBS. By applying 

techniques for FSPM using enhancers identified by ChromHMM, and TFBS from the JASPAR 

database common TFBS orderings can be identified without losing overlapping TFBS. Both 

TFBS verified in prior literature through ChIP-seq experiments and curated by JASPAR, and 

those identified by FIMO using motifs from JASPAR can be analyzed in this manner. Because 

overlapping TFBS can only be bound by a single TF at a time, and nearby TFBS will lead to 
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steric occlusion when bound by large TFs, nearby TFBS should be treated differently from more 

distal TFBS. Ultimately, in frequent sequences that contain sites that may occlude each other 

these sites should be placed in the same itemset to indicate that they occupy a single position 

available for binding. Using classic techniques from FSPM it is possible to mine sequences 

containing such sets of overlapping TFBS. By using enhancer regions detected based on 

chromatin modifications and allowing for the possibility of overlapping TFBS we provided a more 

complete analysis of the frequent patterns of TFBS present in the genome. Additionally, the use 

of experimentally validated TFBS greatly reduces the number of sites requiring processing while 

simultaneously increasing the accuracy of the results. 
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2. Literature Review 

2.1 Frequent Sequential Pattern Mining 

 FSPM is a powerful analytical tool originally developed to research consumer purchasing 

habits [30]. FSPM algorithms process databases of transactions to find common transaction 

orderings (e.g. individuals who purchase printers will purchase ink in future transactions). Each 

record in the input database is an ordered sequence of transactions, where each transaction is 

an unordered set of items (itemset). Define a sequence, 𝑥 = 𝑎!𝑎!𝑎!𝑎!𝑎!𝑎!⋯ where 𝑎!  is a 

subset of A, the set of all items (alphabet). Then the sequence y = b1b2b3b4b5b6… is a 

subsequence of 𝑥 if for every 𝑏! and 𝑏! with 𝑖 < 𝑗, there exists 𝑎! and 𝑎! such that 𝑏!   is a subset 

of 𝑎!, 𝑏! is a subset of 𝑎!, and 𝑛 < 𝑚. For any sequence 𝑥, the number of sequences in the 

database that are a superset of 𝑥 is the support of 𝑥. Any sequence with support greater than or 

equal to 𝑚𝑖𝑛_𝑠𝑢𝑝  is a frequent sequence. Classic FSPM seeks to identify all frequent 

sequences for a particular database and 𝑚𝑖𝑛_𝑠𝑢𝑝  (Table. 1). Many algorithms have been 

proposed for mining all possible frequent patterns from a database including the generalized 

sequential pattern (GSP) algorithm, the Apriori algorithm, and PrefixSpan [31-33]. GSP 

constructs all possible patterns in order of increasing length, selecting patterns of sufficient 

support at each step [33]. Apriori relies on the knowledge that a frequent pattern of length k will 

contain a frequent pattern of length k-1 to perform additional pruning of putative patterns [31]. 

As a further improvement, the PrefixSpan algorithm constructs a projected copy of the input 

database for each frequent pattern found to make selecting longer patterns easier [32]. 

Sequences in the projected database are all suffixes of sequences in the original database 

whose corresponding prefix is a superset of the current frequent pattern. 



8	
  
	
  	
  

Sequence ID Sequence 

1 <a(bc)d> 

2 <ab(cd)> 

3 <a(bd)c> 

4 <abc> 

Table. 1 Example of a sequence database containing four frequent sequences. Sequences are 
denoted with angle brackets and itemsets are enclosed with parenthesis. With min_sup = 3 the 
patterns a, b, c, ab, ac, ad, bc, and abc are frequent. Additionally with min_sup = 2 abd is 
frequent, notice that abd is a subsequence of 1 and 2. 

 For any sufficiently large database, the set of all frequent sequences will be massive, 

having an exponential upper bound based solely on the size of the alphabet. Many of the 

identified sequences will contribute little additional information to any meaningful analysis. 

FSPM can be restricted to the set of closed frequent sequences, or the set of maximally 

frequent sequences [30]. A frequent sequence, 𝑥 , is said closed if there is no frequent 

sequence, 𝑦, such that 𝑥 is a subset of y and the support of 𝑥 is equal to the support of 𝑦. A 

frequent sequence is maximal if it is not a subsequence of any other frequent sequence 

regardless of any difference in support. The set of closed frequent sequences is a lossless 

compression as any subsequence of a frequent sequence is itself frequent, and no support 

information was lost. The set of maximal frequent sequences preserves information about all 

frequent sequences but support information is lost in the compression. Heuristic algorithms for 

more efficiently locating closed and maximal patterns have been previously described including 

CloSpan [30, 34]. Rather than attempting to find all closed patterns, CloSpan will find closed 

patterns with high likelihood by merging frequent patterns of increasing length to create new 

putative patterns. By combining existing patterns rather than extending patterns an element at a 

time this approach can much more rapidly arrive at very long closed patterns. 

 Additional requirements may be imposed on frequent sequences including maximum 

and minimum item distance [35-37]. In the case of maximum distance the definition of 

subsequences from above is altered to further require that 𝑚 − 𝑛   ≤   𝑚𝑎𝑥_𝑑𝑖𝑠𝑡, and for minimum 
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distance 𝑚 − 𝑛   ≥   𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 is required. Rather than simply using sequence position a distance 

function 𝑓!(𝑛,𝑚) can be defined to compute item distance. In order to make pattern mining 

feasible the distance metric must preserve ordering, so if 𝑛 < 𝑚 < 𝑘 then 𝑓!(𝑛,𝑚) < 𝑓!(𝑛, 𝑘). 

Additionally the triangle inequality can be imposed so that 𝑓!(𝑛, 𝑘) ≤ 𝑓!(𝑛,𝑚) + 𝑓!(𝑚, 𝑘). These 

additional requirements reduce the efficacy of CloSpan because the combined databases of two 

merged patterns will need to be pruned to remove sequences violating the maximum or 

minimum distance constraints [35]. 

2.2 Bio-sequence Mining 

 FSPM has been applied in a number of studies to detect frequent patterns of nucleotide 

and amino acid sequences [38-40]. In these studies the size of the alphabet was generally very 

small (e.g., A, T, C, and G for nucleotides), while the sequences were very large (potentially 

entire genomes). Classically FSPM is much more suited to short sequences over large 

alphabets, largely because of the heavy reliance on pruning inherent in most of the popular 

algorithms. With large sequences and small alphabets many shorter sequences are likely to 

have sufficient support to be considered frequent making the space required to perform mining 

prohibitive. In studies of TFBS and enhancers itemsets are large, and sequences are kept 

relatively short (0.5 – 2 kb). 

 Recent studies of enhancer regions have focused on the co-association of different 

TFBS across many enhancers [7-10]. These studies are attractive due to the interest in 

combinatorial effects of groups of TFs and the existence of multi-TF complexes that work 

together to promote transcription. The adaptation of frequent itemset mining (FIM) has proven 

particularly effective for this type of analysis [41]. FIM is a classic data-mining tool used in 

market analysis to detect items commonly purchased together in the same transaction by 

consumers. The support of a particular itemset is defined as the number of transactions 

containing the itemset, an itemset is frequent if it is support by at least min_sup transactions 
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(the minimum support). In these studies enhancers were treated as transactions and TFBS as 

items. Ha et al. [7] instead employs a pattern mining approach, but transformed input data so 

that patterns were lost and only association information was recovered. Only Teng et al. [9] 

used ChIP-seq peaks to map TFBS, and chromatin marks to predict enhancers. Morgan et al. 

relies on Patser [42] to predict TFBS based on motifs taken from TRANSFAC [43]. In their 

analysis, enhancers were contiguous windows of 100 bp, the high number of TFBS detected 

using Patser motivated this relatively small window choice. Similarly, Sun et al. [8] used Clover 

to detect TFBS from motifs in TRANSFAC. Rather than using a fixed window size, FIM was 

performed with a distance constraint requiring all items in an itemset to be close together [44]. In 

Ha et al. TFBS were selected using log scaled scores calculated from PWMs curated by 

JASPAR and TRANSFAC. Enhancer regions in this study were selected by searching for 

regions bounded by particular TFBS of interest. Teng et al. showed the most promising results 

based on their comparison with experimentally validated enhancer regions and known TF 

interactions. In their analysis rather than considering membership of each TFBS in an enhancer 

as a binary property they used a probabilistic model of membership. Additionally, the enhancers 

themselves were scored and a probability to assess the likelihood of an enhancer existing was 

incorporated into itemset scoring. Therefore, rather than searching for a minimum support of 

each itemset they computed the probability that an itemset had at least minimum support. 

Finally unlike previous studies, Teng et al. attempted to detect an appropriate minimum support 

for each itemset based on the frequency of each TFBS in the genome. 

 While FIM is a powerful tool for evaluating TF association, information about the linear 

configuration of TFBS is lost in these studies. Similar methods for market analysis exist to 

detect common patterns of serial purchases. These techniques for frequent sequential pattern 

mining (FSPM) have been shown previously to offer interesting insights into enhancer 

organization [11]. Cai et al. [11] attempted to detect enhancers using sequence conservation 
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and motifs from TRANSFAC. They focused their analysis on conserved domains within non-

coding regions of the genome, and extracted putative enhancers that show common patterns of 

TFBS using FSPM. ChIP-seq peaks were used to validate in silico results from their study but 

were not incorporated into the analysis. In their study they chose to ignore overlapping and 

extremely close TFBS, always preferentially selecting the highest scoring binding site. All 

previous studies have taken this approach to overlapping binding sites despite the potentially 

interesting interactions between TFs in these regions.  
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3. Methods 

 In order to study the importance of binding site order in enhancer regions a modified 

version of PrefixSpan was designed and used to process enhancer and TFBS data derived from 

a variety of sources, extracted patterns were then analyzed for functional and regulatory 

significance (Fig. 1). Each dataset provided putative TFBS mapped to the genome. Sequences 

of TFBS were constructed for pattern mining by mapping TFBS to putative enhancer regions 

detected using the ChromHMM software [45, 46]. These sequences were then pre-processed to 

collapse multiple occluding TFBS into single sites. Each such site would form an itemset, where 

items were the constituent TFBS. The modified pattern mining performed enforced a minimum 

distance between itemsets in any frequent pattern. In addition itemset distance was calculated 

based on actual base-pair offsets of constituent TFBS. The algorithm was also modified to 

perform additional filtering, and to ultimately only extract maximal patterns. This was done both 

to remove redundant and extraneous patterns from the output and to ease the processing of 

large datasets. Following pattern mining the putative targets of each pattern were determined 

and clustered by functional annotation. These annotated clusters were then compared to 

regulatory annotations available for TFs in their associated patterns. 

3.1 Extracting Enhancer Sequences 

 Enhancer regions used for analysis were selected with ChromHMM. Nine human cell 

lines were assayed for nine histone marks commonly associated with promoters, enhancers, 

and other functional regions [45, 46]. Of the states learned fifteen were selected as likely 

associated with biological functions and consistently present. Based on association with known 

annotations these regions were labeled for functional relevance. In our analysis, regions 

annotated as being either strong or weak enhancers were chosen. Sequences for FSPM were 

derived through mapping of TFBS to enhancers. Absolute base-pair offsets of TFBS were 
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included in the metadata for each sequence to differentiate between interfering and non-

interfering TFBS. 

 The TFBS used in enhancer sequences were taken from JASPAR [17, 47]. The 

sequences were either from the curated set of binding sequences used to construct the 

JASPAR profiles, or from computationally identified binding sites using FIMO. The curated 

sequences in the JASPAR database were compiled from published ChIP-seq and SELEX 

experiments [17, 47]. The quality of each study was manually assessed and only sites 

determined to be functionally inactive were removed [47]. The JASPAR sequences were 

available as locations in the hg19 reference genome, in order to map these sequences to 

enhancers from ChromHMM, the liftOver tool was used to transform the coordinates onto the 

hg18 reference [17, 46, 48]. The TFBS found using FIMO [15] were selected with a p-value 

cutoff of 10-6 and matches with q-value greater than 0.1 were removed [45, 46]. Each identified 

TFBS was mapped to an enhancer discovered through ChromHMM and sequences were 

constructed based on the order of occurrence of TFBS in enhancers. 

 Additional TFBS/enhancer sequences were derived using ChIP-seq data generated by 

the ENCODE project [4, 5]. Putative TFBS were selected using FIMO and motifs available 

through JASPAR on peaks identified by ENCODE as having TF binding activity. False positive 

TFBS were selected via the same method restricted to random regions of the genome that did 

not intersect with any ENCODE peaks [20]. The p-value scores of these negative controls were 

used to construct cutoffs for the positive TFBS. Only putative binding sites with p-value greater 

than 99.9% of all negative sites selected were used. In addition, for each ENCODE peak only 

the highest scoring putative TFBS was kept. These sites were then intersected with the 

ChromHMM enhancer regions to construct a set of sequences for mining. This dataset has the 

advantage of in vitro verification and generally contains far fewer false-positive binding sites 

than the purely in silico datasets generated using FIMO and other motif finders. 
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 In constructing input sequences for FSPM special care was taken to handle overlapping 

and poorly spaced TFBS within the same enhancer. Rather than eliminating TFBS or simply 

ignoring potential physical interaction between TF, the data was transformed to allow occluding 

TFBS to appear within the same itemset in the sequence. To construct each sequence an 

itemset was created for each TFBS in the order in which they appear in the enhancer. Into these 

itemsets any TFBS close enough to occlude the corresponding TFBS was also inserted. Lastly 

the base-pair offset of each associated TFBS was stored along with the itemsets used to 

construct the enhancer sequences. During FSPM the distance between two itemsets was then 

computed using the difference in base-pair offsets of the associated TFBS. By selecting an 

appropriate minimum distance, itemsets containing the same TFBS could be selectively 

excluded from any detected frequent sequences. Both the cutoff for occlusion and twice that 

cutoff were selected as minimum distances. In the former instance it was possible that the same 

TFBS might appear in two itemsets if it fell between two other TFBS that were themselves at 

least the minimum distance for occlusion apart. In the latter instance while it was impossible for 

the same TFBS to appear in two itemsets it was possible to miss a TFBS entirely if it fell too 

close to its neighbors while still falling outside the maximum distance for occlusion. In 

experiments little difference was seen between these two measures as most TFBS were outside 

the maximum occlusion distance. 

3.2 FSPM: PrefixSpan 

 TFBS sequences were interrogated using a modified version of the PrefixSpan 

algorithm. PrefixSpan recursively constructs frequent patterns of increasing length employing a 

technique known as database projection to construct new copies of the sequence database 

containing only sequences prefixed by the current pattern [32]. Database projection occurs in 

linear time and can be done in tandem with computing the support for a new pattern. The 

projected database contains only the suffixes following the current pattern rather than the entire 
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sequences. Here a suffix is defined as the final itemset in the current pattern plus all those 

following it. In this way several suffixes from the same sequence can occur in the projected 

database if the current pattern occurs multiple times in the sequence (Table 2). Once a 

projected database has been constructed new patterns can be found quickly in a linear pass 

over the new database. The two methods of pattern extension employed by PrefixSpan are 

extension and expansion. Pattern extension occurs when a new itemset with a single item is 

appended to the current frequent pattern resulting in a new frequent pattern, one itemset longer 

than the current pattern. Pattern expansion adds a new item to the final itemset in the current 

pattern yielding a new frequent pattern of the same length. Items are selected for extension by 

counting the occurrence of items in the current projected database, ignoring those items in the 

first position of sequences. Items with frequency greater than or equal to the minimum support 

are candidates for pattern extension. Those items in the first position of sequences in the 

projected database are considered for pattern expansion. Items in this position occurring with 

frequency greater than or equal to the minimum support can be added to the final itemset and 

still result in a frequent sequence. 

Sequence ID Sequence 

1 (bc)d 

2 b(cd) 

3 (bd)c 

4 bc 

Table. 2 The projected database for the prefix ab is given above. The database is a projection 
of the database from Table 1. Clearly with min_sup = 2 no new items are available for 
expansion, while d and c are both available for extension. 

 The PrefixSpan algorithm can be easily modified to discard the current pattern if any of 

the recursively generated super-patterns were frequent (with the same support), more efficiently 

identifying maximal (closed) patterns. These pruning techniques will not catch all sub-patterns 

and an additional pass over the final set of patterns will be required to remove sub-patterns 
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discovered before their super-patterns were identified if the set of only closed or maximal 

patterns is desired. Additionally, a maximum itemset distance constraint can be trivially enforced 

by terminating the linear search of patterns in the projected database once maximum item 

distance from the first itemset in the sequence has been achieved (the first itemset in each 

sequence is also the final itemset in the current pattern). In the same manner a minimum 

distance may be imposed by not counting items in itemsets at the beginning of each sequence 

until an itemset satisfying them minimum distance has been reached. 

3.3 FSPM: Details 

 Enhancer sequences were loaded into a database in memory for processing by FSPM 

using a modified PrefixSpan. In the initial database each sequence was given a unique identifier 

and stored as an ordered list containing sets of TFBS. Each set was associated with a particular 

base-pair offset in the enhancer and contained all TFBS within interacting range of that offset. 

Prefix projection performed against the initial database during pattern mining was used to 

construct projected databases containing sub-sequences from the initial database of 

sequences. In projected databases it was possible for several subsequences of the same 

sequence to occur, however, the support of a particular pattern was based on the total number 

of sequences containing the pattern, without regard to the number of occurrences of the pattern 

within any particular sequence in the support. This was done because the primary use of the 

pattern support was to determine the number of different enhancers containing the pattern as a 

cutoff for pattern significance. During recursive pattern extension the current prefix and 

database is track in memory and new projections are constructed on for each prefix extension 

for use in further recursive calls. 

 The PrefixSpan implementation used in this study incorporated a minimum distance 

constraint and the pruning techniques for selecting maximal sequences during prefix 

extension/expansion. The prefixspan routine recursively extends a prefix, initially called with an 
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empty prefix (Algorithm. 3). To determine which items to choose to extend the sequence the 

subroutine locally_frequent_extend will linearly scan sequences in the database counting the 

number of sequences each item occurs in, where only occurrences at least min_dist from the 

start of the sequence are considered (Algorithm. 1). Items to use in sequence extension are 

selected by locally_frequent_expand, which will linearly scan the database counting the number 

of times each item occurs at the beginning of a sequence in the database (Algorithm. 1). Each 

item identified will be used to create a new prefix and project_extend or project_expand will be 

used to create a database projection for the new seed prefix and a recursive call will be made to 

prefixspan to continue the search (Algorithm. 2). Frequent sequences of TFBS as well as those 

enhancers containing such sequences are returned in the result set. 

 Recursive database projection can lead to exceedingly high memory footprints when 

processing large databases containing long sequences or many transcription factors. To reduce 

memory pressure database projection is modified to create new databases containing only 

offset values in the original database. These lightweight projections reuse the same primary 

database and can be rapidly constructed, as each entry requires only two integer values, a 

sequence identifier, and the offset from the beginning of the sequence. Furthermore, during the 

projection process it is possible for duplicate entries to be inserted into the database if multiple 

entries already exist corresponding to the same sequence. By ensuring uniqueness of database 

entries using unique keying the size of all recursively constructed projections and the time 

required to scan for projection can both be greatly decreased. 

 Following the completion of pattern mining the set of reported patterns was pruned to 

include only the maximal patterns. Sorting the patterns in order of decreasing length and then 

continually selecting the next pattern not already a sub-pattern of a selected pattern was used to 

collect the final set of patterns. Each pattern was written to a list of frequent patterns and bed 

files were constructed indicating the support of detected patterns. These files give the genome 
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coordinates of enhancer regions in the support of each frequent pattern annotated with the 

locations of binding sites within the aforementioned enhancer. Frequent patterns were used to 

compare TFBS combinations between cell lines and examine the potential significance of TF 

associations. Coordinates obtained from bed files were used to dissect the conservation of 

enhancer regions with frequent patterns, and similarity of regions containing the same frequent 

pattern. 

3.4 Frequent Pattern Analysis 

 To analyze the patterns detected by FSPM, cell line specific patterns, and patterns 

common to multiple cell lines were selected. Patterns were limited to those sequences of TFBS 

containing at least three binding sites. To validate results patterns containing several unique 

binding sites were searched against existing literature. These searches were used to confirm 

that TFs known to associate were found in common patterns. Finally, patterns were analyzed to 

assess the importance of linear ordering of TFBS. In particular the set of detected patterns was 

scanned to see if multiple possible arrangements of the same pattern were seen following 

pattern mining of a particular cell line. These results as well as a summary analysis of the 

difference between the TFBS databases used were incorporated. 

 Patterns presenting across all cell lines and patterns containing at least four unique TFs 

were extracted to narrow the list of frequent patterns. A set of putative target genes for each 

frequent pattern was constructed from the genes nearest to the enhancers containing the 

pattern. For each pattern a review of prior literature about associated TFs revealed possible 

regulatory roles for the group of TFs. Using the Database for Annotation Visualization and 

Integrated Discovery (DAVID), putative targets were clustered by functional annotation [49, 50]. 

For each pattern the highest enriched functional clusters were compared with the documented 

regulatory roles of associated TFs. 
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 This type of analysis was used to demonstrate that the patterns detected correlated to 

previously documented regulatory functions of their constituent TFs, lending credence to their 

functional relevance. In addition, functional clusters of different patterns containing the same set 

of TFs were compared to explore the relationship between TFBS order within enhancers and 

functional significance of genes regulated. 
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Fig 1. Analysis pipeline for dataset analysis, pattern mining, and annotation of frequent patterns 
and putative targets for regulatory and functional significance. 
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4: 
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22: 
23: 
24: 
25: 
26: 
27: 

Function locally_frequent_extend(db, min_dist, min_sup) 
   Input: Database db 
   Input: Integer min_dist 
   Input: Integer min_sup 
   Output: List items 
 
item_counts = Map([item -> 0 for item in Alphabet]) 
For seq in db: 
  Integer curPos = bp_offset(seq[0]) 
  Set found_items = Set() 
  For i from 1 to |seq|: 
    If bp_offset(seq[i]) – curPos ≥ min_dist: 
      found_items = found_items union Set(seq[i]) 
  For item in found_items: 
    item_counts[item]++ 
Return item for item in item_counts if item_counts[item] > min_sup 
 
Function locally_frequent_expand(db, min_sup) 
   Input: Database db 
   Input: Integer min_sup 
   Output: List items 
 
item_counts = Map([item -> 0 for item in Alphabet]) 
For seq in db: 
  For item in seq[0]: 
    item_counts[item]++ 
Return item for item in item_counts if item_counts[item] > min_sup 

Listing. 1 Routines for finding frequent items to use in expanding or extending the current 
prefix. In both cases frequent items are counted once per sequence in the database. Due to the 
nature of the database projection routine multiple instances of the sequence can occur in the 
database so during projection a second check for support is performed. The 
locally_frequent_extend routine has been modified to add a minimum distance constraint. 
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1: 
2: 
3: 
4: 
5: 
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29: 
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41: 
42: 
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44: 

Function project_extend(prefix, db, min_dist, min_sup) 
   Input: Sequence prefix 
   Input: Database db 
   Input: Integer min_dist 
   Input: Integer min_sup 
   Output: Database new_db or None 
 
Database new_db = Database() 
Integer new_sup = 0 
Set visited = Set() 
TFBS suffix = prefix[-1] 
 
For seq in db: 
  Integer curPos = bp_offset(seq[0]) 
  For i from 1 to |seq|: 
    If bp_offset(seq[i]) – curPos ≥ min_dist and suffix in seq[i]: 
      new_db[] = seq[i:] 
      If name(seq) not in visited_sequences: 
        new_sup++ 
        visited = visited union Set([name(seq)]) 
 
If new_sup ≥ min_sup: 
  Return new_db 
Return None 
 
Function project_expand(prefix, db, min_sup) 
   Input: Sequence prefix 
   Input: Database db 
   Input: Integer min_sup 
   Output: Database new_db or None 
 
Database new_db = Database() 
Integer new_sup = 0 
TFBS suffix = prefix[-1] 
 
For seq in db: 
  If suffix in seq[0]: 
    new_db[] = copy(seq) 
    new_sup++ 
 
If new_sup ≥ min_sup: 
  Return new_db 
Return None 

Listing. 2 Routines for projecting the sequence database following extending or expanding the 
current seed prefix. In both cases the new support is computed in addition to constructing a 
new database. If the new database lacks sufficient support then no database is returned. The 
project_extend routine has been modified to implement a minimum distance constraint. 
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Function prefixspan(prefix, db, min_dist, min_sup) 
   Input: Sequence prefix 
   Input: Database db 
   Input: Integer min_dist 
   Input: Integer min_sup 
   Output: List freq_pat 
   Output: List freq_pat_sup 
 
patterns = List() 
freq_items = locally_frequent_expand(db, min_sup) 
found = False 
 
For item in freq_items: 
  new_pat = copy(prefix) 
  new_pat[-1].add(item) 
  new_db  = project_expand(new_pat, db, min_sup) 
  If new_db is None: 
    Continue 
  patterns.extend(prefixspan(new_db, k, new_pat)) 
  found = True 
 
freq_items = locally_frequent_extend(db, min_dist, min_sup) 
 
For item in freq_items: 
  new_pat = copy(prefix) 
  new_pat.append(Set([item])) 
  new_db  = project_expand(new_pat, db, min_dist, min_sup) 
  If new_db is None: 
    Continue 
  patterns.extend(prefixspan(new_db, k, new_pat)) 
  found = True 
 
If not found: 
  patterns.append(prefix) 
Return patterns 

Listing. 3 Main prefixspan routine. Modified so that only patterns that cannot be extended are 
appended to the list of frequent patterns. Recursive calls build successively longer sequences. 
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4. Results 

 Frequent sequence data was extracted from sequences generated using JASPAR, and 

TRANSFAC binding sites as determined by FIMO. Additionally patterns were extracted from 

sequences constructed from experimentally verified JASPAR sites and JASPAR motifs mapped 

onto the ENCODE ChIP-seq peaks as previously described. The JASPAR data generated 

through FIMO and experimental validation were both found to be too sparse to detect a diverse 

set of frequent patterns with high support. TFBS identified using FIMO were made available on 

the UCSC genome browser by the authors of FIMO. Sites were filtered with a p-value cutoff of 

10-6 and a maximum q-value of 0.1. In each case the binding sites were mapped to enhancer 

regions identified by the ENCODE project using data from multiple ChIP-seq datasets for 

different histone modifications. These regions were selected across nine different cell lines 

using the hg18 coordinate system. The cell lines used in this study were Gm12878, H1hesc, 

Hepg2, Hmec, Hsmm, Huvec, K562, Nhek, and Nhlf. There were an average of 602,240.67 

regions in each cell line and of those 250,767.11 were enhancer regions. 

4.1 JASPAR Sites 

 Sequences were constructed from JASPAR using two distinct datasets. A first set of 

TFBS was taken using the database of sequences used to construct motif PWMs for JASPAR. 

This set of sequences has been experimentally verified through either SELEX or ChIP-seq. 

While less likely to contain false positives than in silico binding sites this data set was also 

extremely small, lacking many common factors. The second set of factors was detected using 

FIMO to process the hg18 genome. Cutoffs were set as previously described and sites were 

mapped to ChromHMM enhancer regions. This analysis contained fewer unique sites, likely due 

to the relatively small size of the JASPAR database as compared to TRANSFAC. Processing of 

these TFBS revealed many short enhancer sequences and several very long ones. The 

average length of the enhancer sequences was two for every cell line in both cases. 



25	
  
	
  

 In performing FSPM the minimum sequence support was chosen manually for each 

dataset. Values ranging from 10 to 30 were used for the JASPAR dataset as these sequences 

showed a high degree of heterogeneity, preventing larger values from identifying any 

meaningful patterns. Due to the reduced number of unique sites identified using FIMO 

sequences tended to be more similar allowing for support values between 25 and 500. In all 

cases sequences reported were restricted to maximal frequent patterns. Summary statistics 

were collected, and interesting patterns were extracted for more detailed analysis. In addition 

frequent patterns detected were checked for rearrangements to measure the importance of 

binding site order. To quantify the significance of ordering the frequent patterns detected were 

transformed into itemsets, removing all ordering information. Then each itemset was checked 

for the number of times it occurred as a pattern in the original set. In both the FIMO and the 

JASPAR datasets the many patterns were found to have very few rearrangements, indicating 

that the ordering of items in the pattern was significant. In particular for FIMO patterns between 

36% and 100% of patterns were unique depending on support, and between 68% and 76% for 

JASPAR patterns. 

4.2 TRANSFAC Sites 

 As in the case of JASPAR, FIMO was used to extract sites using the TRANSFAC data 

with the aforementioned cutoff values. The TRANSFAC database contains more TFBS motifs 

than the JASPAR database, leading to more complex patterns. Unlike JASPAR, reference site 

locations used in constructing motifs was not publically available for TRANSFAC so this 

analysis was omitted. Because the TRANSFAC database was more complete patterns were 

easier to detect, therefore a minimum support between 250 and 500 was selected. Once again 

good evidence was found for the significance of ordering with roughly 55% of patterns being 

unique. 
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4.3 ENCODE Sites 

 The results of high throughput ChIP-seq experiments performed to identify regions of 

high protein-DNA affinity were used to construct another dataset for pattern analysis. Using 

FIMO high scoring binding sites were selected within each ChIP-seq peak and mapped to 

enhancers identified previously by ChromHMM. These sequences were mined for frequent 

sequences using a minimum support between 150 and 250. Between 57% and 63% of patterns 

were found to be unique itemsets, demonstrating a preference for particular orderings. 

4.4 Patterns Shared Across Cell Lines 

 As many prior studies have focused on common associations between TFBS using 

frequent itemset analysis the importance of pattern ordering was of great interest. By 

transforming frequent patterns into frequent itemsets it was possible to ascertain the number of 

patterns representing the same itemset as well as the effect of minimum support on both 

patterns and itemsets. By counting the number of itemsets and patterns observed in various 

numbers of cell lines it was possible to measure the importance of cell type in TFBS patterns. 

While both patterns and itemsets were found to often be cell type specific this was much more 

the case for patterns. The most strike example was observed in the JASPAR/FIMO dataset 

where most itemsets were found across all cell lines while the organization of those TFBS 

correlated strongly with the cell lines. 
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Fig 2. Graphs showing the number of 
patterns (yellow) or itemsets (red) found in 
multiple cell lines (x-axis). In both cases 
most patterns and itemsets are not seen in 
all cell lines, except FIMO/JASPAR where 
itemsets were shared between nearly all 
lines while patterns were far more specific 
to cell type. 

	
  

 The length and diversity of patterns detected was also compared with prevalence across 

multiple cell types. Pattern diversity was defined as the number of unique TFs participating in 

the pattern, and was measured by assessing the average size of frequent itemsets. While a 

pattern can be a series of repetitive binding sites for the same group of TFs the length of the 

corresponding itemset will be only the number of unique TFs in the pattern. From this analysis it 

was determined that in general patterns that were more common had less complexity, however, 

in FIMO/JASPAR and FIMO/TRANSFAC datasets showed similar levels of pattern complexity 

regardless of pattern frequency across cell lines. 

 

Fig 3. For each dataset the average length 
of of patterns (yellow) or itemsets (red) 
present across multiple cell lines was 
assessed. The plots show average length 
vs. number of cell lines. Interestingly only 
the FIMO/JASPAR and FIMO/TRANSFAC 
datasets showed a relatively consistent 
diversity of items regardless of pattern 
frequency. 
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4.5 Patterns Detected Across All Lines 

 For each dataset a list of patterns detected across all cell lines was collected. Enhancers 

containing these patterns were located and the nearest genes in both the upstream and 

downstream directions were extracted from the UCSC genome browser. Three sets of unique 

gene IDs were created for each pattern, nearest, upstream, and downstream. Each set was 

analyzed using DAVID to create a list of highly enriched functional annotations. An additional 

clustering analysis with DAVID was used to create subgroups for each pattern based on 

functional similarities. Many of the most common patterns were merely repetitive instances of 

the same binding site, however, four patterns from the FIMO/JASPAR dataset and two from the 

TRANSFAC dataset contained a unique set of TFs (Table 5). Interestingly, the patterns 

identified in TRANSFAC showed no reordering, while the JASPAR patterns were 

rearrangements of the same set of three TFs, suggesting that the grouping was important 

though not the order. 

 Patterns found in all cell lines were filtered to extract those patterns containing at least 

three unique TFBS. Six such patterns were found, four in the JASPAR/FIMO dataset and two in 

the TRANSFAC/FIMO dataset. The patterns identified through the TRANSFAC database 

contained the Sp1, Sp4, Muscle, and KROX TFBS. Both Sp1 and Sp4 are Kruppel-like factors 

and interact with DNA through a zinc-finger binding domain [51, 52]. The Sp1 TF can function 

as both a transcriptional activator and a repressor and has been implicated in regulating a 

variety of cellular events including growth, differentiation, apoptosis, chromatin remodeling, the 

immune response, and the response to DNA damage [52]. Sp4 has been found to interact with 

the E2F1 transcription factor, which has been identified as a mediator of both apoptosis and 

proliferation [53]. The KROX transcription factors play important roles in both development and 

terminal differentiation [53]. Clustering analysis of the first TRANSFAC pattern revealed an 

enrichment of targets with positive and negative transcriptional control, as well as actin binding, 
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cellular adhesion, and structural morphology (Table 7). The role of Sp1, and KROX in controlling 

development and differentiation correlates well with these cluster annotations. The second set 

of clusters was very similar to the first though both sets contained so many genes that there was 

a very diverse set of annotations. 

 The sets of patterns taken from JASPAR/FIMO were each rearrangements of RREB1, 

Sp1, and YGR067C. The RREB1 protein is a zinc-finger transcription factor that recognizes the 

RAS-response element (RRE) in the promoters of target proteins. This TF has been implicated 

in the Ras signal transduction pathway and may play a role in cellular adhesion and migration 

[54]. YGR067C is a putative TF found in Saccharomyces cerevisiae, its role in these patterns 

was not immediately clear from the available literature. Each of the clusters identified in an 

analysis of all four patterns identified enrichment of transcriptional regulation proteins both 

positive and negative (Table 7). There were also clusters implicating related proteins in a variety 

of roles ranging from cellular mobility to chromatin remodeling. As in the previous group the set 

of genes clustered as so large that the clusters spanned a wide variety of functional roles. 

4.6 Patterns Containing at Least 4 TFs 

 In a second functional analysis, patterns were extracted based on length and associated 

genes were mapped for functional significance. Long patterns also displayed a high degree of 

repetitively, reflecting the importance of repetitive groupings of TFBS for strong binding 

potential. Interestingly a functional analysis of longer patterns demonstrated a stronger 

correlation between TFBS order and function than shorter more prevalent patterns. The patterns 

selected for this analysis contained at least four distinct binding sites and four unique TFs. The 

only three patterns detected meeting this criteria were from the TRANSFAC/FIMO dataset 

(Table 6). Unlike the more frequent patterns detected across multiple cell lines these longer 

patterns were only detected in one line. 
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 Most datasets were found to be enriched with short and repetitive patterns, removing 

these yielded three patterns with at least four binding sites and at least four unique binding 

factors all from the TRANSFAC/FIMO dataset. All three patterns contained the TFBS Sp1, Sp4, 

KROX, and GC. The GC-box TFBS is a common motif in eukaryotic enhancers and acts as a 

promoter of gene expression [55]. The roles of these transcription factors suggest an overall 

significance of this set of patterns in controlling cellular differentiation and apoptosis. Clustering 

analysis by DAVID revealed 52 distinct clusters for the first pattern, the largest of which 

indicated transcriptional regulation, DNA binding, and nuclear localization annotations (Table 8). 

Proteins with these annotations will themselves serve as TFs potentially effecting broader 

cellular regulatory events. The next most significant cluster exhibited annotations for actin 

binding and cytoskeletal protein binding. These annotations would indicate that the proteins in 

this cluster are involved in constructing the type of rigid cellular structures common in terminally 

differentiated cells. An additional cluster showed enrichment of factors implicated in Wnt 

signaling and colorectal cancer. The Wnt pathway is plays an important role in terminal 

differentiation of colonocytes [56]. The second pattern showed enrichment for cellular junction 

and cytoskeletal proteins in addition to those in the first cluster. These types of proteins would 

also be important for terminal differentiation by increasing cellular adhesion and creating rigid 

cellular structures. The final pattern showed enrichment for the same clusters as the first pattern 

as well as a number of clusters specific to neuron development. Proteins in these clusters 

control neural cell differentiation, and morphology. 
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Cell Line Total Regions Enhancers 

Gm12878 570,580 242,768 

H1hesc 618,287 240,205 

Hepg2 545,647 205,781 

Hmec 608,568 291,155 

Hsmm 638,307 272,987 

Huvec 549,178 234,697 

K562 621,678 249,997 

Nhek 627,623 279,560 

Nhlf 640,298 239,754 

Average 602,240.67 250,767.11 

Table 3. Enhancer regions detected using ChromHMM to process ChIP-seq data taken from 
ENCODE screens. 

 

Dataset Factors TFBS min_sup Patterns Itemsets Sites TFs 

FIMO/ 

JASPAR 

22.22 54,498 25 77.65 28.00 3.55 2.21 

100 11.33 6.44 4.06 1.59 

500 1.11 1.11 3.83 1.00 

JASPAR 66 78,720.89 10 46.00 28.00 3.30 2.65 

20 6.00 4.00 3.31 2.31 

30 2.00 2.00 3.35 2.15 

FIMO/ 

TRANSAFAC 

70.56 101,995.78 250 168.56 89.44 3.00 2.37 

300 101.56 51.56 3.00 2.13 

500 19.89 10.89 3.00 2.23 

FIMO/ 

ENCODE 

71 106,668.22 150 124.78 71.33 3.01 2.20 

200 68.78 42.00 3.00 2.00 

250 33.78 21.33 3.00 1.82 

Table 4. For each dataset the number of TFs/TFBS were counted, and for varying min_sup 
values the average number of patterns, itemsets derived from those patterns, binding sites in 
each pattern, and TFs involved in each pattern were ascertained across all cell types. 
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ID Sequence Count Genes Dataset 

1 <Muscle, KROX, Sp1> 3,295 1,557 TRANSFAC/FIMO 

2 <KROX, SP4, Sp1> 3,771 1,786 TRANSFAC/FIMO 

3 <RREB1, YGR067C, SP1> 432 292 JASPAR/FIMO 

4 <YGR067C, SP1, RREB1> 531 240 JASPAR/FIMO 

5 <YGR067C, RREB1, SP1> 425 220 JASPAR/FIMO 

6 <RREB1, SP1, YGR067C> 414 271 JASPAR/FIMO 

Table 5. Patterns found across all cell lines containing a unique set of TFBS and the number of 
times they were observed, and the number of unique putative targets identified. 

 

ID Sequence Count Genes Dataset 

1 <(GC, SP4), SP4, (SP4, KROX), Sp1> 204 1,557 TRANSFAC/FIMO 

2 <(GC, Sp1, SP4), (Sp1, SP4), KROX, Sp1> 200 1,786 TRANSFAC/FIMO 

3 <Sp1, Sp1, (SP4, GC, KROX), SP4> 204 292 TRANSFAC/FIMO 

Table 6. Patterns found to contain at least 4 distinct TFBS. 
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ID Score Annotations 

1 5.72 Poly-Ala (68), Poly-Ser (66), Poly-Pro (57), Poly-Gly (52) 

1 3.67 Tetraspanin, subgroup (11), Tetraspanin, conserved site (11), Tetraspanin (11), CD9 antigen (9), 
73.Integrins_and_other_cell-surface_receptors (5) 

1 3.58 nucleus (412), regulation of transcription (309), DNA binding (258), transcription (254), Transcription (251), 
transcription regulation (246), non-membrane-bounded organelle (229), intracellular non-membrane-bounded 
organelle (229), dna-binding (218), regulation of RNA metabolic process (217) 

2 7.07 Poly-Ala (79), Poly-Pro (77), Poly-Gly (60), Poly-Gln (27) 

2 6.08 nucleus (504), regulation of transcription (379), transcription (318), Transcription (315), transcription regulation 
(309), DNA binding (301), non-membrane-bounded organelle (274), intracellular non-membrane-bounded organelle 
(274), regulation of RNA metabolic process (268), regulation of transcription, DNA-dependent (261) 

2 3.57 sequence-specific DNA binding (99), activator (90), protein dimerization activity (73), Basic motif (36), Leucine-
zipper (27), Basic-leucine zipper (bZIP) transcription factor (14), BRLZ (14), bZIP transcription factor, bZIP-1 (8), 
leucine zipper (6), Basic leucine zipper (4) 

3 2.37 striated muscle cell differentiation (5), muscle cell differentiation (5), syncytium formation by plasma membrane 
fusion (4), syncytium formation (4), myotube differentiation (4), myoblast fusion (4) 

3 1.94 Poly-Ser (17), Poly-Pro (17), Ser-rich (14), Poly-Ala (10), Poly-Gly (9) 

3 1.46 Transcription factor jumonji/aspartyl beta-hydroxylase (3), Transcription factor jumonji, JmjN (3), Transcription factor 
jumonji (3), JmjN (3), JmjC (3) 

4 2.11 Poly-Ala (14), Poly-Pro (12), Poly-Gly (9) 

4 1.75 Pleckstrin homology-type (8), WH1 (3), EVH1 (3) 

4 1.56 developmental protein (19), differentiation (14), neurogenesis (3) 

5 2.77 cytoskeletal protein binding (19), protein domain specific binding (11), SH3 domain binding (5) 

5 2.27 Pleckstrin homology-type (12), WH1 (3), EVH1 (3) 

5 1.98 cytoskeleton (32), cytoskeletal protein binding (19), actin binding (15), actin-binding (14), regulation of organelle 
organization (5), regulation of cellular component size (5), regulation of protein polymerization (4), regulation of 
protein complex assembly (4), regulation of cytoskeleton organization (4), regulation of cellular component 
biogenesis (4) 

6 2.08 Poly-Ser (19), Poly-Pro (14), Poly-Ala (12), Poly-Gly (9), Poly-Arg (7) 

6 1.86 muscle cell differentiation (7), striated muscle cell differentiation (6), syncytium formation by plasma membrane 
fusion (3), syncytium formation (3), myotube differentiation (3), myoblast fusion (3) 

6 1.68 cell junction (17), structural molecule activity (11), triple helix (4) 

Table 7. Functional clusters for putative targets of patterns found across all cell lines. 
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ID Score Annotations 

1 1.32 ank repeat (6), Ankyrin (6), ANK 3 (6), ANK 2 (6), ANK 1 (6), ANK (6), ANK 4 (5), ANK 5 (4), ANK 6 (3) 

1 1.29 Pleckstrin homology (9), PH (9), PH (8), nucleoside-triphosphatase regulator activity (7), GTPase regulator activity 
(7), small GTPase regulator activity (6), regulation of small GTPase mediated signal transduction (6), regulation of 
Ras protein signal transduction (6), enzyme activator activity (5), guanyl-nucleotide exchange factor activity (4) 

1 1.07 regulation of transcription (33), chromosome organization (6), chromatin regulator (5), chromatin organization (5), 
chromatin modification (5) 

1 1.04 mutagenesis site (24), disease mutation (17), membrane organization (7) 

1 1.02 vesicle-mediated transport (7), sh3 domain (5), Src homology-3 domain (5), SH3 (5), Variant SH3 (4), SH3 (4) 

2 2.93 phosphoprotein (82), splice variant (69), alternative splicing (69) 

2 1.46 cell junction (12), PDZ/DHR/GLGF (4), PDZ (4) 

2 1.26 developmental protein (13), cell surface receptor linked signal transduction (10), Wnt signaling pathway (6), 
Pathways in cancer (6), Wnt receptor signaling pathway (4), wnt signaling pathway (3), beta-catenin binding (3), 
Colorectal cancer (3), Basal cell carcinoma (3) 

2 1.12 negative regulation of signal transduction (4), negative regulation of cell communication (4), Regulator of G protein 
signalling (3), RGS (3) 

2 1.11 cytoplasm (34), non-membrane-bounded organelle (30), intracellular non-membrane-bounded organelle (30), 
cytoskeleton (19), cytoskeletal part (15), microtubule cytoskeleton (8), cytoskeletal protein binding (8), cell projection 
(7), actin-binding (7), actin cytoskeleton (7) 

3 1.33 cell surface receptor linked signal transduction (15), developmental protein (10), Pathways in cancer (7), Wnt 
signaling pathway (5), Wnt receptor signaling pathway (4), Colorectal cancer (4), wnt signaling pathway (3), beta-
catenin binding (3), Basal cell carcinoma (3) 

3 1.17 mutagenesis site (24), endomembrane system (10), membrane organization (6) 

3 1.10 regulation of neurogenesis (5), regulation of nervous system development (5), regulation of cell development (5), 
regulation of neuron differentiation (4), regulation of neuron projection development (3), regulation of cell projection 
organization (3), regulation of cell morphogenesis involved in differentiation (3), regulation of cell morphogenesis (3), 
regulation of axonogenesis (3) 

3 1.01 regulation of neurogenesis (5), regulation of nervous system development (5), regulation of cell development (5), 
positive regulation of developmental process (4), positive regulation of neurogenesis (3), positive regulation of cell 
differentiation (3), positive regulation of cell development (3) 

3 0.91 nucleus (47), ion binding (32), cation binding (32), metal ion binding (31), regulation of transcription (30), 
transcription regulation (29), transcription (29), Transcription (29), DNA binding (25), metal-binding (24) 

Table 8. Functional clusters for putative targets of patterns with at least four unique TFs. 
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5. Discussion 

 Patterns extracted from multiple datasets revealed interesting insights into the 

organization of enhancer regions and transcriptional regulation. Analysis of pattern ordering 

demonstrated the potential importance of linear sequencing to TFBS function. By incorporating 

ChIP-seq data into both the enhancer and TFBS identification stages the risk of detecting false 

enhancers or binding sites was greatly reduced. Interestingly frequent patterns were generally 

short, containing between three and four positions. Additionally many sequences contained 

repetitive binding sites for the same TF. In general increasing minimum pattern support had the 

effect of reducing the number of pattern rearrangements observed. Finally the most commonly 

observed patterns were those that were predominated by duplicate binding sites. 

5.1 Functional Characterization 

 Functional characterization of putative enhancer targets was used to gain important 

insights into the potential regulatory functions of TFBS patterns detected. The patterns analyzed 

were selected manually from among the patterns occurring in all cell lines, and the lengthiest 

patterns extracted. Both the length and complexity of the patterns selected was of particular 

interest. As many previous studies focused on pairs of commonly associated TFBS we looked 

primarily to groups of at least three TFBS spaced sufficiently to make occlusion less likely. 

Annotation was performed using DAVID to construct clusters of functionally similar genes within 

each set of putative targets. Targets were selected based on proximity to the enhancer regions 

containing the pattern. While this type of selection is not ideal it is a commonly used 

approximation to ascertain the targets of an enhancer. 

5.1.1 Patterns Across All Cell Lines 

 These patterns were extremely frequent appearing across all cell types and in many 

different enhancer regions in each type. The patterns themselves were short, containing at most 
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three sites, and only in a limited number of cases three distinct TFs. It was also apparent that 

ordering did not play an important role in the regulatory function of these patterns. Many 

orderings of the same set of binding sites appeared in the analysis and little difference was 

found in the putative targets of these reordered patterns. The value of the clustering analysis 

was impeded by the extremely large number of putative targets, which resulted in similar 

clusters among all identified patterns. 

5.1.2 Longest Patterns 

 Unlike the set of extremely common patterns the functional groups for putative targets of 

long patterns were better differentiated. Average pattern length was reasonably well preserved 

across patterns regardless of frequency across cell lines, however, more frequent patterns 

tended to have fewer unique components. Perhaps the most interesting trait observed within 

these patters was that the differing arrangements of the observed TFBS correlated strongly with 

target protein function. In one pattern enrichment for actin-binding proteins was observed, while 

in the second a cluster was detected indicating the presence of cellular adhesion and structural 

proteins, and in the third, proteins were often important for neuronal cell development and 

morphology. In all three instances the roles of proteins targeted by these patterns fit the 

documented roles of the transcription factors well. 

5.2 Pattern Rearrangement 

 While the JASPAR/FIMO dataset provided strong evidence that the itemsets detected in 

frequent mining are fairly immune to changes across cell types the other datasets showed a 

decreased number of itemsets observed in multiple cell types. Even in these cases itemsets 

were far more likely to be extant across cell lines than the frequent patterns they were derived 

from. From these observations we can conclude both that patterns are a more nuanced tool for 

both functional analysis and cell type differentiation. 
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5.3 Future Directions 

 There are many interesting future extensions to this project that could help further 

elucidate the role of binding site patterns in transcriptional regulation. While this study has 

focused on enhancers detected through ChIP-seq analysis new techniques including STARR-

seq have shown great promise in detecting putative enhancers and assessing their strength 

[57]. In addition, new studies have identified de novo motifs from ChIP-seq peaks for TFBS 

made available through ENCODE [19]. These studies have created enormous datasets for 

which new pruning and noise filtering techniques will be required to perform efficient pattern 

analysis. 

5.3.1 Integration of ChIP-seq/STARR-seq Peaks 

 Integration of raw ChIP-seq or STARR-seq data into the pattern-mining algorithm could 

provide a much more finely tuned search for putative binding patterns. This type of analysis 

could fuse enhancer and binding site identification with pattern analysis. Similar studies have 

used pattern analysis to search for new enhancer regions but have not leveraged the wealth of 

ChIP-seq data now available in selecting enhancers, or the far more powerful STARR-seq data 

in assessing the strength of putative enhancers. This combined approach could allow the 

pattern-mining process to guide the selection of enhancers and ultimately detect with greater 

accuracy those binding sites within the enhancer of greatest significance. 

5.3.2 Probabilistic Pattern Mining 

 In Teng et al. the authors considered a probabilistic approach to itemset membership 

based on intensity of ChIP-seq peaks for enhancers, and closeness of putative binding sites to 

known motifs. Techniques exist for constructing frequent patterns using similar probabilistic 

measures for pattern membership and could be extended to this work. In particular it might also 

be possible to incorporate the intensity of ChIP-seq peaks for TFBS from the ENCODE dataset 

into the analysis. This type of probabilistic approach may better capture the thermodynamic 
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complexity of TFBS and enhancers. It may also better differentiate weak and strong signals, 

elucidating new patterns not yet observed. 
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