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Abstract

Relationships between synoptic activity and sea ice variability in the Arctic are studied

using self-organizing maps (SOMs) to categorize observed weather patterns over the 1979-2010

period. The European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-interim, or ERAI) provides the daily sea level pressures from which the SOMs are com-

puted. Time series of frequencies and durations of synoptic weather patterns are correlated

with two sea ice metrics, Fram Strait ice out�ow and year-to-year changes in September pan-

Arctic sea ice extent. When compared to teleconnection indices commonly associated with

sea ice variability, the Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Arctic

Dipole (AD), some SOM patterns correlate more strongly with sea ice metrics. For example,

Beaufort High synoptic patterns are increasing in frequency in spring and summer and their

spring frequencies are associated with ice loss. Icelandic Low patterns show opposing in�u-

ences on sea ice from wind-forcing and thermal advection. The phase lags between the SOM

occurrences and sea ice variability o¤er the potential for augmentation of other approaches to

seasonal sea ice prediction. The ERA-interim SOM analysis is used to quantify how the Com-

munity Climate System Model, Version 4 (CCSM4) captures synoptic activity in the twentieth

and twenty-�rst centuries. The model undersimulates patterns important for ice loss, such

as broad high pressures over the continents and ice cover, and simulates strong storm track

features at a higher-than-observed frequency. Large-scale teleconnection patterns, such as the

AO and AD, are reasonably captured but there are spatial shifts in centers of action (which

are associated with ice motion biases) and enhanced interannual variability relative to the ob-

servations. Relationships between synoptic activity and year-to-year changes in sea ice extent

are not as prominent in the 20th century model experiment and further weaken in the 21st
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century. Accounting for seasonal SLP biases in the model enhances SOM frequency-ice cor-

relations, suggesting that the model captures closer-to-observed atmosphere-ice linkages when

SLPs are reasonably simulated. Strong low pressures over the Arctic predominate over the

ice-free central Arctic during summer and fall in the 21st century.
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Chapter 1

Introduction

Arctic sea ice extent has rapidly decreased over the past two decades (e.g., Stroeve et al.

(2012); IPCC, 2013), as shown in Figure 1.1. The cause of the ice retreat has been linked

to many factors, including increased surface temperatures, changes in atmospheric circulation

and associated wind forcing (e.g., Ogi and Wallace (2012)), in�uxes of warm ocean water (e.g.,

Shimada et al. (2006); Alexeev et al. (2013)), the ice-albedo feedback, and changing storm tracks

(e.g., Screen et al. (2011)). The ice cover has also thinned (Kwok and Rothrock (2009); Laxon

et al. (2013)). The recent thinning has made sea ice more mobile and thus more susceptible to

winds associated with atmospheric synoptic patterns (Rampal et al. (2009)). Accordingly, the

variability of the atmospheric circulation on daily to seasonal timescales is becoming increasingly

important for sea ice (Asplin et al. (2009)). The goal of this study is to characterize atmospheric

patterns associated with sea ice variability on daily to seasonal timescales.

While ocean currents play an important role in the long-term motion of sea ice, surface

winds are the primary drivers of short-term sea ice motion. Several studies have used sea level

pressure (gradient wind) data in attempts to improve upon the presently limited predictive skill
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of summer sea ice (NRC (2012)). Ogi and Wallace (2012) showed that low level winds play an

important role in determining summer sea ice retreat, and more speci�cally, that low-level winds

contributed to the 2007, 2010, and 2011 September sea ice extent minima. Wu et al. (2012)

also analyzed observed monthly mean low-level winds using a modi�ed empirical orthogonal

function (EOF) technique and found that the Arctic Dipole and Central Arctic patterns both

play a role in sea ice loss, as both features contain pressure gradients conducive to advecting

ice out of the Arctic Ocean into the North Atlantic. However, these studies used monthly

mean atmospheric �elds, which can average out crucial synoptic patterns that play a role in ice

motion and deformation.

Other studies have focused more on relationships between sea ice minima and changing

storm tracks over the last few decades, as opposed to wind variability. Screen et al. (2011)

examined the role of mean cyclone activity on sea ice variability (1979 �2009), in terms of sea

ice motion and extent in the Arctic. They found that during years of large perennial September

sea ice loss there were fewer storms over the central Arctic Ocean in late spring and early

summer (Figure 1.2, adapted from Screen et al. (2011), their Figure 6). Also, there were more

cyclones during years of ice gain, although the relationship was not linear. According to Screen

et al. (2011), there appears to be no trend in late spring and early summer cyclone frequency.

Other earlier studies, however, have found an increasing trend in high-latitude cyclone

frequency (e.g., McCabe et al. (2001); Zhang et al. (2004)). Speci�cally, McCabe et al. (2001)

found an increase in cyclone frequency and intensity in the high-latitudes and a decrease in

mid-latitude cyclone frequency from 1959 to 1997. These �ndings were corroborated by Zhang

et al. (2004), who analyzed cyclone activity from 1948 to 2002 and found an increase in cyclone

frequency in the Arctic during winter, spring, and summer. They also noted that cyclones
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seen over the Arctic can have either local or mid-latitude origins and that complex spatial

and temporal variability exists in cyclone activity. However, if cyclone activity is a primary

determinant of the summer sea ice minimum extent, there should be discernible trends in

cyclone activity over the past few decades.

While these analyses of storm tracks add to the understanding of sea ice variability, the

broader range of synoptic patterns over the Arctic should also be important to sea ice variability

through dynamic and thermodynamic forcing. For example, the Beaufort High pressure pattern

has been identi�ed as a key driver of the extreme sea ice retreat of 2007 (L�Heureux et al.

(2008)). An assessment of synoptic variability� as opposed to storm track variability� relevant

to sea ice requires novel methods of diagnostic analysis. EOFs, for example, are subject to

the orthogonality constraint, which confounds physical/dynamical interpretation of a set of

patterns (e.g., spatial relationships). While the use of storm tracks or cyclone frequency over

monthly periods represents another novel approach, storm tracks are de�ned over timescales of

weeks to months, and important transient features can be lost in the integration of daily data

over these timescales (see Figure 1.2).

The atmospheric sciences community makes uses of GCMs in order to project future ice

extent (e.g., IPCC AR5). In order for these model projections to be credible, they should

simulate the atmospheric circulation on all timescales, as the atmospheric circulation determines

temperature advection, ice motion, and upwelling, for example. Also, many models have

di¢ culty simulating the observed negative sea ice trends (e.g., IPCC, 2013; see Figure 1.3,

taken from Stroeve et al. (2012)) and even with an improvement upon CMIP3 models, the

uncertainty in future ice extent has not been greatly reduced (Stroeve et al. (2012)). In the

present study, CCSM4 (Gent et al. (2011)), one of the most widely used global climate models,
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has been shown to reasonably represent the Arctic atmosphere (de Boer et al. (2011)) and

Arctic sea ice state (Jahn et al. (2011)). de Boer et al. (2011) showed that the model captures

the spatial patterns and timescales of various Arctic variables, such as temperature, sea level

pressure (SLP), and cloud properties. However, large biases do exist in representation of SLP

in the Arctic: a low pressure bias exists in all seasons. The corresponding under-simulation

of sea level pressure over the Arctic Ocean is associated with overly strong simulated storm

tracks, especially over the North Atlantic and with the penetration of Atlantic storms too

far into the Arctic. Jahn et al. (2011) posits that the di¢ culty in producing high pressures

over the Beaufort Sea creates errors in simulating ice motion. Later in the 21st century,

model projections suggest that the storm tracks will shift farther northward with the shifting

temperature gradients (Bengtsson et al. (2006)). As the 21st century Arctic is projected to

be ice free by 2070, Arctic storms may become stronger (Simmonds and Keay (2009); Vavrus

et al. (2011)). Comprehensive studies have examined the e¤ect of 21st century ice losses on the

atmosphere (e.g., Deser et al. (2010a)) and some show that storm tracks, such as the Aleutian

Low become stronger (Higgins and Cassano (2009)).

Self-organizing maps (SOMs; Kohonen (2001)) o¤er a way to link synoptic patterns to

various meteorological variables, to quantify synoptic pattern characteristics, and to compare

synoptic activity between observations and present and future climates. The SOM analysis, an

arti�cial neural network algorithm, provides a convenient way to look at high frequency spatial

data, such as the multi-dimensional time series common in the atmospheric sciences. SOMs are

increasingly employed in atmospheric science for their ability to reduce the dimensionality of

data into representative maps of a given variable (daily mean sea-level pressure, for example).

They have also been shown to better capture the frequency (temporal variance) and spatial
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patterns than principal component analysis (PCA) (Reusch et al. (2005)). Cavazos (1999)

and Hewitson and Crane (2002) �rst made use of SOMs to study extreme weather events and

synoptic climatology, respectively.Cassano et al. (2006) expanded the use of SOMs to extreme

weather events in the Arctic, such as high temperatures and high winds, that may play a role

in coastal vulnerability.

This study utilizes SOMs to better quantify the associations between observed synoptic pat-

terns and sea ice variability on seasonal timescales. The associations to be quanti�ed are those

between synoptic patterns and two sea ice metrics. The synoptic patterns and one of the sea ice

metrics, Fram Strait out�ow, span all seasons, not just the summer season, which has been the

focus of several previous studies (e.g., Ogi and Wallace (2012); Screen et al. (2011); L�Heureux

et al. (2008)). The use of daily atmospheric data is an integral and novel component to our

study, as sea ice responds dynamically as well as thermodynamically to transient atmospheric

patterns. Both types of responses are implicitly addressed here. It should be noted, however,

that variations in dynamic and thermodynamic forcing are inextricably linked through tem-

perature advection by surface winds. This study aims to add to knowledge of changing Arctic

synoptic activity and its relationship to sea ice and to bridge cyclone climatologies to analyses

of synoptic activity.

The speci�c objectives of this study are the following:

1. Quantify observed Arctic synoptic activity in terms of spatial patterns and trends in

recent decades using SOM.

2. Investigate relationships between identi�ed synoptic patterns and sea ice metrics, such as

year-to-year changes in sea ice extent and Fram Strait out�ow.
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3. Explore how well CCSM4 captures observed Arctic synoptic activity and large-scale tele-

connection patterns.

4. Compare 20th and 21st century relationships between CCSM4 synoptic activity and year-

to-year changes in ice extent in both the 20 and 21st centuries, and identify how CCSM4

projects synoptic activity to change in the late 21st century

Chapter 2 describes the data used to achieve the objectives described above. Chapter 3

discusses the SOM methodology and the ERA-Interim Master SOM used throughout the study,

in addition to a grouping of the SOM patterns and the seasonality of the synoptic patterns

within the Master SOM. Results of exploring objectives (1) and (2) are discussed in Chapter 4,

and objectives (3) and (4) results are discussed in Chapter 5. Chapter 6 provides a summary

of the main �ndings and highlights the utility of tools, such as SOMs, in studying relationships

between synoptic activity and processes a¤ected by synoptic activity (e.g., ice motion).
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Figure 1.1: Observed Pan-Arctic September ice extent

September observed sea ice extent (106km2) from NSIDC (red line) for 1979 - 2010.
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Figure 1.2: ILYs versus IGYs: SLP and Wind Stress

MJJ mean sea level pressure (colors, in hPa) and surface wind stress (vectors, in Nm-2)
during ice loss years (de�ned as years during which there was a year-to-year loss of
Sep ice area at least one standard deviation from the mean) and ice gain years (de�ned
analogously for gains in ice area). The reference vector represents a wind stress of 0.025
Nm-2. Adapted from Screen et al. (2011), Fig. 6, using ERA-Interim monthly mean
data.
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Figure 1.3: Historical and Projected Sep Ice Extent: 1900 - 2100

Projected September ice extent for various CMIP5 models using RCP 4.5 from 1900 to
2100. Figure 2(a) of Stroeve et al. (2012). Colors indicate the model used. Dotted
lines indicate individual ensemble members, while the solid lines indicate the ensemble
average. The solid red line indicates the observed ice extent. The solid black line
represents the multi-model ensemble average, with thinner black lines on either side
indicating the one standard deviation range. The top-right plot indicates the improve-
ment from the SRESA1B scenario in CMIP3 experiments. The shaded colors represent
one standard deviation multi-model ensemble mean spreads.
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Chapter 2

Data

2.1 Atmospheric data

In order to represent synoptic patterns over the Arctic, daily averaged, six-hourly mean sea

level pressure (SLP) data from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-interim dataset, downloaded from the ECMWF Data Server)

was used for the years 1979 �2010. The ERA-interim dataset provides full coverage over the

Arctic (as it is a global reanalysis), has a relatively �ne spatial resolution of 1.5�, covers the entire

modern satellite era (1979 �present), and has been shown to represent Arctic variables well in

comparison with other reanalyses (Bromwich et al. (2007)) although it has been shown to have

temperature biases below 850 hPa (Serreze and Barry (2005)). Screen et al. (2011) compared

four reanalyses (ERA-interim, ERA-40, JRA-25, and NCEP-NCAR) for use in cyclone tracking

and found that all showed similar interannual variability, further justifying its use in the present

study.

The SLP data from ERA-Interim were regridded to a polar stereographic equal-area grid
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to account for grid points converging toward the pole (i.e., to avoid the SOM analysis placing

greater focus on SLP near the pole); this is analogous to cosine weighting in EOF analysis.

Other variables used in the analysis of dynamic and thermodynamic e¤ects of synoptic patterns

on sea ice variability are daily averaged, six-hourly u- and v-winds at 10 meters and 2-meter

temperature from 1979 �2010. These are used to calculate temperature advection associated

with each pattern.

Synoptic patterns identi�ed by the SOM analysis are compared to three modes of at-

mospheric circulation variability, the North Atlantic Oscillation (NAO), Arctic Oscillation

(AO), and Arctic Dipole (AD) in terms of their relationships to various sea ice metrics (Section

4.3). Time series of monthly NAO and AO indices were taken from the Climate Prediction Cen-

ter (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.cu

rrent.ascii and http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index /mon

thly.ao.index.b50.current.ascii). The monthly AD time series is courtesy of Dr. Muyin Wang

of NOAA�s Paci�c Marine Environmental Laboratory. For statistical analysis, these time series

were averaged seasonally and annually (Oct �Sep, in order to capture each annual cycle from

freeze-up to melt). The seasons are de�ned here on the basis of climatological monthly Arctic

surface air temperatures (e.g., January-February-March, JFM, are the coldest months in the

central Arctic) and are shifted by one month relative to the conventional seasonal de�nitions.

In the present study, the following seasons will be used: JFM (winter), April-May-June (AMJ,

spring), July-August-September (JAS, summer), and October-November-December (OND, win-

ter).
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2.2 Observational sea ice data

Two sea ice metrics time series were used to quantify interannual sea ice variability: annual

(for the 12 months ending in September) Fram Strait ice out�ow and year-to-year changes in

September pan-Arctic sea ice extent, shown in Figure 2.1. The time series of sea ice extent

minima in September was taken from National Snow and Ice Data Center (Fetterer et al. (aily),

updated daily). Similar to Screen et al. (2011), year-to-year September sea ice extent changes

(�SIE) were calculated because they highlight the variations of perennial (multi-year) sea ice.

In comparison with the SIE, the time series of �SIE is less dominated by trend. An ice loss year

(ILY) is de�ned as a year-to-year decrease in September minimum sea ice extent at least one

standard deviation from the mean (year-to-year change). There are six ILYs: 1990, 1993, 1995,

1997, 2002, and 2007. An ice gain year (IGY) is de�ned analogously for a year-to-year increase

in ice extent. Years 1980, 1992, 1994, 1996, and 2009 comprise IGYs. These metrics were

then correlated to frequencies of occurrence of the SOM patterns (based on all years available,

1979-2010) shown in the following section. Fram Strait ice out�ow data was taken from Kwok

(2009), Figure 4, whose values are calculated using passive microwave brightness temperature

and ice concentration data.
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Figure 2.1: Observed year-to-year change in sea ice exent and Fram Strait Out�ow

Year-to-year change in September sea ice extent (from NSIDC) is shown for 1980 �2010
(blue solid line). Fram Strait area out�ow is shown for Oct - Sep 1979 �2007 (adapted
from Kwok 2009, Fig. 4, represented by the dashed red line).
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2.3 Model Output

CCSM4 is a fully coupled model with four model components (Gent et al. (2011)): atmosphere

(Community Atmosphere Model Version 4, CAM4), land (Community Land Model Version 4,

CLM4), sea ice (Los Alamos Sea Ice Model, CICE), and ocean (Parallel Ocean Model Version 2,

POP2). Many features have been improved upon in the CCSM4 Arctic climate. For example,

a parameterization called FREEZEDRY (Vavrus and Waliser (2008)) reduces positive low cloud

biases in the Arctic in CAM4. Improved sea ice physics, such as ridging, and a melt pond

parameterization, which improves Arctic snow/ice surface albedos, have been implemented into

the CICE model. The CLM has a frozen soil scheme and considers snow properties, such as

aging.

Twentieth century output from Ensemble #6 (the Mother of All Runs, or MOAR) is used

as it has daily output for multiple variables. The twentieth century experiment is forced

by transient greenhouse gas forcing from 1850 to 2005 and initialized with randomly-chosen

years from a thousand year control run with 1850 radiative forcings. (Daily output of SLP

was saved for Ensemble #4 and synoptic activity in both ensembles is found to be essentially

identical.) Thirty-two years (model years 1974 to 2005) are analyzed so that the length

of comparison periods is identical. Model years do not match year-by-year with the ERA-

Interim reanalysis data; however, the model atmosphere is inherently stochastic and cannot be

expected to reproduce various features at the same time in observations. It is thusly more

important to compare temporal slabs of the same length and focus on comparing seasonal

frequencies of synoptic patterns, rather than the timing of individual events, for example.

Twenty-�rst century CCSM4 Ensemble #6 output is used from 2069 to 2100 (32 years total).
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Ensemble #6 was initialized from the end of the 20th century experiment described above. The

chosen ensemble is from the most extreme anthropogenic greenhouse gas forcing, representative

concentration pathway 8.5 (RCP8.5), denoting a 8.5 W/m2 radiative forcing anomaly (compared

to preindustrial forcings) at the end of the century. The atmospheric data is on a 0.9� x 1.25�

resolution (f09_g16, �nite volume) grid, and ice data (which includes monthly fractional sea ice

concentration) is on an approximately 1� grid. Analogous to the observed atmospheric data,

spatial SLP anomalies are computed.
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Chapter 3

Methodology

3.1 Classi�cation of synoptic patterns: Self-organizing maps

The SOM analysis is an arti�cial neural network algorithm used here to reduce the dimen-

sionality of daily spatial anomalies of SLP data into the representative synoptic patterns that

span all seasons. Spatial anomalies are input into the SOM algorithm so that the training

focuses on the SLP gradients (i.e., atmospheric circulation), as opposed to just the magnitudes

of daily SLP �elds. The analysis assumes no prior knowledge of the input data and preserves

its probability distribution function (Kohonen (2001)). SOMs do have limitations, as they are

computer assisted; the user must supply some parameters (as noted below). The user should

make multiple master SOMs with varying parameters in order to �nd one that captures features

the user deems important.

The SOM algorithm starts with randomly initialized set of weather patterns, or nodes,

chosen by the user. Data for a randomly chosen daily SLP �eld, for example, are presented to

each node within the Master SOM. The Euclidian distance between the data for a given day and
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each node is calculated. The pattern with the shortest distance best represents the SLP �eld

for a given day and is identi�ed as the best matching unit (BMU). The BMU is then nudged

to better represent the input data for the randomly chosen day, based on the learning rate, a

user-set parameter. Neighboring nodes (weather patterns) are also nudged toward the input

data �eld based on their distance from the BMU (which depends on the user-set parameter

neighborhood radius). The training continues for more than 1,000,000 iterations, a parameter

also set by the user. Sammon mapping (Sammon Jr (1969)) and quantization error allow the

user to assess the stability and quality of the Master SOM that is produced. Frequencies of

occurrence of the weather pattern matching each node are calculated by mapping each �eld

within the dataset to its respective BMU.

The �nal product of the analysis is a Master SOM. Figure 3.1 shows the Master SOM

trained on observed data, discussed in Chapter4. A Master SOM created from CCSM4 data is

trained analogously and is discussed in Chapter 5. Adjacent nodes within the Master SOM are

similar, o¤ering an advantage over similar categorization techniques, such as EOFs or k-means

partitions methods, for the purposes of studying transitions of weather patterns.

3.2 Master SOM

The Master SOM created from daily regridded ERA-interim SLP data, used as an example, is

shown in Fig. 3.1. It depicts the synoptic patterns that occur from 50 to 90 �N over all days of

all years. Winter patterns predominate in the top-left of the Master SOM, transitioning to more

autumn-like patterns as one moves to the top-right. Spring patterns are on the bottom-left,

summer patterns are on the bottom-middle, while patterns that occur during all seasons are in

17



the bottom-right. Overall, in Fig. 3.1, it is apparent that there is a higher pressure (i.e., fewer

storms) over the central Arctic Ocean than subpolar regions and that storms penetrating into

the Arctic with mid-latitude origins are most common in the Atlantic sector (e.g., broad high

pressure patterns seen in the top portion of the Master SOM and Icelandic Lows on the right

sides of the Master SOM), consistent with Zhang et al. (2004) and others.

3.3 Grouping of SOM patterns

The individual SOM weather patterns are grouped based on spatial correlations to facilitate

the discussion, make statistical summaries of spatial and temporal changes of patterns, and

to identify types of patterns that are related to sea ice loss or gain. Grouping also makes

the trend and correlation statistics more robust (see Chapter 4). The grouping of the ERA-

Interim Master SOM is discussed below, but grouping for the CCSM4 Master SOM is created

analogously and discussed in Chapter 5.

For the grouping of the patterns in Figure 3.1, the spatial correlations between each pairing

of patterns within a group were required to be at least 0.65, a threshold chosen by analyzing

spatial correlations between all patterns within the Master SOM. This threshold is su¢ ciently

high that patterns had to be spatially similar in order to be grouped yet low enough that there

were no lone patterns. Sea ice correlations using grouped pattern frequencies are stronger than

the means of correlations based on frequencies of single patterns within each group. Multiple

groupings were tested using di¤erent methods (such as hierarchical agglomerative clustering,

which builds and merges clusters, and groupings based on Euclidean distances) in order to

examine the robustness of the groups. All groupings tested gave similar results in terms of
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group trends and sea ice metric correlations. Figure 3.2 shows the Master SOM with the

groups labeled; the lowest spatial correlation within a group is 0.69 (i.e., the lowest within-

group correlation is 0.69 for the �Beaufort Highs/Eurasian Lows�and �Icelandic Lows/Fram

Strait Out�ow�groups).

The �High Pressure Bridges� group in the top-left of the Master SOM is characterized

by a broad ridge extending across the ice cover and continents. The group in the top right,

labeled �Eurasian Highs-Icelandic/Aleutian Lows�is spatially similar to the top-left group, but

the broad ridge is weaker, especially over the ice cover. �Arctic Highs/Paci�c Lows,� in the

middle-left of the Master SOM, shows strong highs over the central Arctic with shifting lows

over the oceans. The bottom-right group shows similarities to the top-right group; however, the

�Icelandic Lows/Fram Strait Out�ow�patterns penetrate deeper into the Barents and exhibit

pressure gradients conducive to wind-driven ice motion parallel to the Fram Strait. �Beaufort

Highs/Eurasian Lows� is situated in the bottom-left of the SOM, characterized by Beaufort

Highs of varying spatial scales and spatially shifting lows. Finally, in the bottom-middle is the

�Weak Features�group, containing weaker pressure gradients and dominated by central Arctic

lows.
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Figure 3.1: ERA-Interim Master SOM

Master SOM of ERA-interim daily sea-level pressure spatial anomalies (hPa) from 1979
�2010 (all days of all seasons).
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Figure 3.2: ERA-Interim Master SOM Grouped

As in Figure 3.1 with bars and labels indicate groupings discussed in the text.
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Chapter 4

Results I: Observed Arctic Synoptic

Activity

4.1 Seasonality of SOM patterns

Figure 4.1 shows the mean frequencies per season for each SOM group labeled in Fig. 3.2. Most

of the groups show notable seasonality, except for the �Icelandic Lows/Fram Strait Out�ow�

group, which occurs at least 6 days during each season. Most of the time series also display

large interannual variability (Figure 4.2). Winter patterns with strong pressure gradients are

the �High Pressure Bridges�and �Eurasian Highs-Icelandic/Aleutian Lows�groups, with high

pressures over the continents (including the Siberian High) and over the ice cover (especially

in the �High Pressure Bridges�group), occurring approximately 46 and 44 days during winter,

respectively. This is consistent with cyclone climatologies, such as those of Zhang et al. (2004)

and Serreze et al. (2001), who showed that cyclone centers predominate over the North Paci�c
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and North Atlantic during winter and that these storms contribute greatly to climatological low

pressure signals. The Aleutian and Icelandic Lows, representing the storm tracks over the North

Paci�c Ocean and North Atlantic Ocean, respectively, are also present during winter. For spring,

the high-pressure pattern centered near northern Canada and the Archipelago dominates in the

�Arctic Highs/Paci�c Lows� and �Beaufort Highs/Eurasian Lows� groups, consistent with a

general weakening of the central Arctic�s atmospheric circulation; the average frequencies of

occurrence of these groups during spring are approximately 24 and 30 days, respectively. The

patterns depicting high pressure over the continents also become less frequent, consistent with

the increase in solar heating and the associated snow melt (Serreze and Barry (2005)). Also

apparent is a slight northward shift of the low pressure features over the North Paci�c and

North Atlantic, likely owing to more storms of midlatitude origin propagating into the Arctic

in winter than during summer (e.g., Zhang et al. (2004); Serreze et al. (2001)).

For summer a weaker circulation, in addition to northward shifts of the storm tracks (i.e.,

low pressure signals) and the summer cyclone maximum over the ice (Serreze and Barry (2005)),

characterizes the �Weak Features� group, which occur on an average of ~44 days during the

summer season. The SLP signal associated with enhanced cyclogenesis from Eurasia eastward

to the Arctic Ocean and from Alaska to the Canadian Archipelago (Serreze et al. (2001)) is also

present. The �Icelandic Lows/Fram Strait Out�ow�group, occurring approximately 28 days in

the fall (but at least 6 days during each season), shows the strengthening of the main pressure

features present in winter (except over the ice cover). This strengthening is part of the transition

into the �High Pressure Bridges�and �Eurasian Highs-Icelandic/Aleutian Lows�groups as the

winter season starts. The patterns that are most common in autumn generally occur frequently

in winter as well (as November and December are atmospherically winter months).
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Figure 4.1: Composite frequencies for grouped SOM patterns

Seasonal composite frequencies (days) of grouped patterns (see Fig. 3.2) for JFM (blue),
AMJ (green), JAS (red), and OND (orange).
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4.2 Trends

Trends in frequencies of occurrence of grouped patterns are examined. In order to address

variability amongst individual patterns within the given groups, time series and trends were

also analyzed for individual SOM patterns in order to determine whether trends are consistent

within a given group. Figure 4.2 shows the time series of frequencies of occurrence (dashed

lines) for each group of patterns for each season (designated by color). Solid lines indicate the

trendline for each time series. Table 4.1 shows the trends (expressed as the change in annual

frequency of occurrence per decade, calculated using the trendline shown in Fig. 4.2). Trends

appear to be most prominent during the summer season, while winter trends are weakest. The

largest trend is ~�3 days per decade, which occurs for the �High Pressure Bridges�, "Icelandic

Lows/Fram Strait Out�ow�, and �Beaufort High/Eurasian Lows�groups.

The �High Pressure Bridges� group shows statistically signi�cant negative trends in both

summer and fall (-0.98 days at 95% statistical signi�cance and -3.29 days per decade at 90%

statistical signi�cance, respectively). This group also shows an overall increase in winter of

1.18 days per decade, although the increase is not statistically signi�cant at 90% con�dence.

The group labeled �Eurasian Highs-Icelandic/Aleutian Lows�shows a shift in winter and fall

occurrences (see Fig. 4.2), decreasing by 1.73 days per decade in winter and increasing by

1.56 days per decade in fall (although the trends are not signi�cant at 90% con�dence). The

seasonal shifts in trends of these two groups indicate a shift to stronger high pressure patterns

over the sea ice during winter (i.e., a shift to more �High Pressure Bridges�type patterns) and

an increase in Icelandic Low storm tracks penetrating into the Barents Sea during the fall (i.e.,

an increase in �Eurasian Highs-Icelandic/Aleutian Lows�), consistent with positive trends in
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Arctic cyclone frequencies found in Zhang et al. (2004) and McCabe et al. (2001). However,

direct comparisons to cyclone trends cannot be made as low pressures are present in all SOM

patterns in Fig. 3.2.

Within the �High Pressure Bridges�group, only pattern 1 (see Fig. 3.2) exhibits a statisti-

cally signi�cant trend at the 95% level in winter. Patterns 2 and 8 show a decrease of ~3 days

and 1 day, respectively, while the other patterns within the group show an increase in frequency

of up to 3 days. Considering that the patterns on the right-hand side (2 and 8) are relatively

weaker in intensity than the patterns on the left-hand side of the group (0, 1, 6, and 7), this

suggests that these broad high pressures are strengthening over the continents and the ice cover

during winter and/or the Aleutian and Icelandic storm tracks are strengthening or penetrating

farther poleward. As noted earlier, some studies have suggested poleward shifts of storm tracks

have occurred in observations over recent decades (McCabe et al. (2001)). Supporting this idea

is the overall decrease in the �Eurasian Highs-Icelandic/Aleutian Lows�group in winter. There

is relatively little change amongst individual patterns in the �High Pressure Bridges� group

during spring and summer (although the patterns rarely occur during the summer). During

fall, pattern 0 decreases in frequency by ~7 days over the time period (not shown), contributing

to this group�s overall decrease in frequency during fall.

The �Arctic Highs/Paci�c Lows�group, a predominantly spring pattern, shows a consistent

annual decrease in occurrence during the spring and summer seasons of -1.33 and -1.26 days

per decade, respectively (the summer trend is statistically signi�cant at 90%). The �Icelandic

Lows/Fram Strait Out�ow�group shows positive trends in all seasons except winter; only the

summer trend of 2.95 days per decade is statistically signi�cant at 95%. The �Weak Features�

group shows negative trends of up to 2.90 days per decade (in summer) in all seasons except
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winter (0.18 days per decade). This could be associated with noted decreases in SLP over the

Arctic (Walsh et al. (1996)); however, such trends are sensitive to the time period, as the Walsh

et al. (1996) study analyzed times series with a shift from a negative to a positive AO phase.

The �Beaufort Highs/Eurasian Lows�group, a spring and summer pattern, shows positive

trends of frequency during all seasons, with statistically signi�cant trends during spring and

fall of 3 days per decade (at 90% con�dence) and 0.87 days (at 95% con�dence), respectively.

Individual pattern trends are prominent only in spring (patterns 18, 19, and 20) and fall (pattern

20), not shown, with the positive trends in spring indicating a shift to stronger Beaufort Highs,

weaker Aleutian Lows, and/or stronger Eurasian Lows. Interestingly, climatological studies of

the Beaufort High (Gleicher et al. (2011); Serreze and Barrett (2010)) have found little trend

in vorticity metrics used to measure it. This may signal that the Beaufort High, itself, is not

increasing in frequency but that this type of pattern, somewhat similar to the Arctic Dipole,

has been persistent in recent years (e.g., Overland et al. (2012)).
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Table 4.1: ERA-Interim SOM group frequency trends

Season Winter Spring Summer Fall
High Pressure Bridges 1.18 -0.53 -0.98** -3.29*
Eurasia H- Ice/Al Lows -1.73 0.03 0.38 1.56

Arctic H/ Pac Lows 0.29 -1.33 -1.26* 0.18
Ice Lows/ Fram St Out�ow -0.25 0.27 2.95** 0.83
Beaufort H/ Eurasia Lows 0.32 3.00* 1.80 0.87**

Weak Features 0.18 -1.44 -2.9 -0.15

Annual increase (decrease) of frequency of occurrence (days) for SOM groups per decade by season, indi-
cated by positive (negative) numbers, of grouped patterns over the 1979 -2010 time period (days). Trends
with one (**, ***) asterisk(s) indicates a statistical signi�cance of 90% (95% and 99%, respectively) or
greater.
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Figure 4.2: Grouped Patterns Frequency of Occurence Time Series

Time series of frequencies of occurrence (days) of grouped patterns (see Fig. 3.2) for
JFM (blue), AMJ (green), JAS (red), and OND (orange) with respective trendlines.
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4.3 Correlations to sea ice metrics

Table 4.2 shows correlations between SOM group frequencies of occurrence and sea ice metrics

(Oct �Sep Fram Strait out�ow and year-to-year �SIE). Also shown are correlations between

time series of modes of atmospheric variability (AO, NAO, and AD) and the same sea ice

metrics. Time series of Oct �Sep annual frequencies of occurrence are correlated to Oct �Sep

Fram Strait out�ow, and time series of seasonal (OND of year N-1; and JFM, AMJ, and JAS of

year N) frequencies of occurrence are correlated to year-to-year changes (ending in year N) of

September sea ice extent, �SIE so that lead-lag relationships can be examined. Correlations of

detrended ice metrics to the SOM frequencies yielded similar results, indicating that correlations

of the time series are not due to trends.

Screen et al. (2011) indicated that cyclone frequency in late spring-early summer plays a

key role in preconditioning the ice for gain or loss. Because their study focuses speci�cally on

cyclones, especially on the features captured by a cyclone-tracking algorithm, the importance of

a �High Pressure Bridges�synoptic pattern may be overlooked. The �High Pressure Bridges�

group shows a statistically signi�cant (at 90%) correlation of 0.36 when Oct �Sep frequencies

are correlated to Oct �Sep Fram Strait ice out�ow; the group also shows a correlation of -0.37

(statistically signi�cant at 95%) between winter (JFM) frequencies (preceding the September

sea ice extent) and the year-to-year �SIE, i.e., the loss of perennial sea ice in the year ending in

September. The observations also show a (non-statistically signi�cant) increase of this pattern

during winter (Fig. 4.2 and Table 4.1). Considering the group�s pressure gradients east of

Greenland (producing NE �ow), both correlations provide quantitative support for this group�s

role in preconditioning the ice by advecting ice from the Eurasian coast and north of Greenland,
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which is one of the locations of oldest sea ice (Maslanik et al. (2011)), out through the Fram

Strait. The vacated sea along the Eurasian Coast quickly refreezes with young, thin, �rst-year

ice that is more susceptible to a complete loss by summer melt.

The �Eurasian Highs-Icelandic/Aleutian Lows�group also shows signi�cant correlations to

Fram Strait out�ow (-0.34) and year-to-year �SIE (-0.46) during AMJ (signi�cant at the 90%

and 99% level, respectively). Although this group is more prominent in winter and fall, it occurs

about eight days on average during the spring (AMJ) season (Fig. 4.1). While it may seem

inconsistent that some patterns correlate negatively with both changes in ice extent and with

Fram Strait out�ow, the details of the circulation and associated temperature advection with

these patterns help to clarify the possible ice loss mechanism. Composite 2-m temperatures and

10-m winds associated with pattern 11 (a member of the �Eurasian Highs-Icelandic/Aleutian

Lows� group), shown in Figure refWindTAdvexna, are conducive to wind forcing northward

through the Fram Strait. Normally this would favor retention of sea ice in the Arctic basin.

However, temperature advection associated with pattern 11 (Fig. 4.3) shows relatively strong

warm advection in the region of the Fram Strait. The warm water and air transported northward

can combine to melt sea ice, compensating for the inhibition of out�ow associated with the

southerly �ow, an example of complex dynamic-thermodynamic mechanisms. While Arctic sea

ice has decreased signi�cantly during recent decades, this group does not show a prominent

trend during spring (Fig. 4.2), ruling out changes in the frequency of this pattern type as the

primary culprit in recent Arctic sea ice losses. Fig. 4.3 does not show quantitatively the relative

importance of dynamics and thermodynamics, but it indicates that both factors contribute to

the prominent correlations.

The only other group to correlate signi�cantly with year-to-year change in �SIE is the
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�Beaufort Highs/Eurasian Lows� group during AMJ, with a correlation of -0.50 at 99% sta-

tistical signi�cance. The pressure gradients associated with the Beaufort High patterns in the

group are consistent with shuttling ice into the Chukchi Sea (where it is a¤ected by warmer

Paci�c water, Shimada et al. (2006)) and towards the Barents Sea and North Atlantic where

it can melt. Many studies have suggested the 2007 record-setting September sea ice minimum

can be attributed to a persistence of Beaufort Highs and Eurasian Lows, the so-called �dipole

anomaly� (L�Heureux et al. (2008); Wu et al. (2012)), and these types of patterns are shown

to have been increasing in recent decades (Fig. 4.2). 10-m winds overlayed onto 2-m temper-

ature and temperature advection associated with pattern 24 of the �Beaufort Highs/Eurasian

Lows� group are shown in Figures 6b and d, respectively. Strong positive temperature ad-

vection is located over the Bering Strait, the northern coast of Alaska and northeast Siberia.

This circulation pattern is conducive to the transport of warm, salty Paci�c water northward

into the Arctic through Bering Strait, as well as warm air into the Arctic via advection and

o¤shore (downslope) �ow from the northern continental periphery. This pattern should also

favor evacuation of sea ice away from the continental shelf regions near Siberia. The southward

advection indicated in the eastern Arctic transports sea ice from the polar latitudes into the

warmer North Atlantic water where it is e¢ ciently melted. The group exhibits the most spatial

similarities to the mean MJJ pressure pattern during ILYs (Screen et al. (2011), their Fig. 6,

and adapted here in Fig. 1.2), occurring ~31 days during ILYs in AMJ and ~30 days during

IGYs, with an overall mean frequency of occurrence of 30 days (Fig. 4.1). This suggests that

other patterns and processes also play an important role in perennial ice variability.

The �High Pressure Bridges�, �Eurasian Highs-Icelandic/Aleutian Lows�, and �Beaufort

Highs/Eurasian Lows�groups show, in some cases, stronger correlations to these sea ice metrics
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than do modes of atmospheric circulation variability that are commonly used to diagnose sea

ice variability: the AO and NAO (Stroeve et al. (2011); Rigor et al. (2002)), and the AD (Wu

et al. (2012)). Correlations with indices of these patterns are shown in Table 4.2. The Arctic

Oscillation and Arctic Dipole mean winter (JFM) indices show 90% statistical signi�cance in

their correlations of -0.31 (at 90%) and -0.58 (at 99%), respectively, highlighting the role of

large-scale atmospheric variability on sea ice. Note that as the AD time series is de�ned, a

negative phase corresponds to high pressure in the western Arctic and low pressure on the

eastern side. We have shown that anticyclonic �ow over the central Arctic Ocean is important

to Fram Strait out�ow, consistent with Ogi and Wallace (2012) and similar to the �Central

Arctic�pressure pattern signi�cantly correlated to SIE in Wu et al. (2012). Patterns with these

anticyclonic signals are showing positive trends during winter with the �High Pressure Bridges�

group and spring and summer with the �Beaufort High/Eurasian Low�groups.

These �ndings highlight the utility of SOMs to identify synoptic patterns that can be used to

augment predictability of Arctic processes and variables. The SOM analysis allows utilization

of daily atmospheric circulation �elds and captures spatial variations of many synoptic patterns.

The phase lags between the SOM frequencies and sea ice metrics, in conjunction with large-

scale atmospheric modes of variability, o¤er the possibility of augmenting other approaches to

seasonal ice prediction, via statistical methods.
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Table 4.2: Correlations between grouped ERA-Interim SOM frequencies and ice metrics

Yr-to-yr delSIE Correlations
Circulation Pattern Fram St. Out Corr JFM AMJ JAS OND

H P Bridges 0.36* -0.37** 0.04 -0.15 -0.02
Eur Hs-Icelandic/Aleutian Ls -0.34* 0.05 -0.46*** -0.09 -0.08

Arctic Hs/Pac Ls 0.13 0.07 -0.18 0 -0.02
Icelandic Ls/Fram Strait Out 0.06 -0.05 0.13 -0.12 0.09

Beaufort Hs/Eurasian Ls -0.14 0.07 -0.50*** -0.28 0.03
Weak 0.04 -0.01 -0.22 0 -0.06
NAO 0.26 -0.24 0.26 -0.09 0.08
AO 0.28 -0.31* 0.09 0.10 0.20
AD -0.58*** 0.22 0.40** 0.34* 0.01

Correlations of Oct �Sep Fram Strait out�ow and year-to-year change in Sep sea ice extent to frequencies
of occurrence of grouped patterns, NAO, AO, and AD index time series. Oct �Sep correlations are shown
for Fram Strait out�ow, and seasonal correlations are shown for year-to-year changes in Sep sea ice extent.
Correlations statistically signi�cant at 90% or greater are bolded, while one (**, ***) asterisk(s) indicates
a statistical signi�cance of 90% (95% and 99%, respectively) or greater.
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Figure 4.3: Winds overlayed on temperatures and temperature advection: Patterns 11 and 24

(Top) Composite 10-m winds (m/s) overlayed on 2-m temperature (K) in SOM patterns
11 (a) and 24 (b) from Fig. 3. (Bottom) Composite temperature advection calculated
from 10-m winds and 2-m temperature �elds (K/second) for patterns 11 (c) and 24 (d).
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Chapter 5

Results II: Arctic Synoptic Activity

in CCSM4: Present and Future

Climates

5.1 Synoptic Activity in CCSM4: CCSM4 Present-Day Cli-

mate Vs. ERA-Interim

General circulation models (GCMs), such as CCSM4, are used for Arctic climate and climate

change projections later in the 21st century. Stakeholders and communities are increasingly

making use of these projections in decision-making in various �elds, such as community reloca-

tion and the oil industry. Models used in these applications need to reasonably simulate the

atmospheric synoptic-scale circulation, as this is important for ocean upwelling, temperature

advection, and ice motion, amongst other processes. Bitz et al. (2002) discusses the signi�cance
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of models capturing high pressure systems over the Arctic in winter and low pressure features

over the central Arctic during summer in order to simulate reasonable Arctic ice thicknesses.

As discussed in Chapter 1, de Boer et al. (2011) show that CCSM4 has di¢ culties simulating

high pressure over the Arctic and exhibits a low pressure bias, creating sea ice motion biases

(Jahn et al. (2011)).

5.1.1 CCSM4 Ensemble Member Comparison

Examining multiple ensembles of the model is important, as slight changes in initial conditions

produce di¤erent model projections (for example, Kay et al. (2011), discuss the importance of

internal variability in CCSM4 in creating a large spread of ice extent losses amongst the 20th

century ensemble members). Ensemble #6 is the main focus of this study, as daily output of

many variables, such as temperature and downwelling longwave radiation, are available for this

ensemble. Ensemble member #6 sea ice extent is shown in Figure 5.1 and begins to capture

a more negative ice extent trend later in the 20th century. To ensure that ensemble member

choice does not drastically change the synoptic results, other ensemble members for which daily

output of SLP was saved for both the 20th and 21st centuries, ensemble members #4 and #5,

were analyzed. Figures 5.38 and 5.39 show mean seasonal winter SLP for Ensembles #4 and #5.

The main features are quite similar for the ensembles; for example, the Aleutian and Icelandic

Low storm tracks have similar locations and intensities, although the low pressure centers in

Ensemble #6 are slightly more intense (Figure 5.3). All of the ensembles fail to capture the

strength of the observed winter Beaufort High (Figure 5.2). Ensemble #5, however, captures

higher pressure extending from the Beaufort to the East Siberian Sea by ~5 mb.

During spring, Ensemble #6 better captures the Beaufort High-type pattern (Figure 5.5)
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than do the other ensemble members (AMJ mean SLP for Ensemble #5 is shown in Figure

5.40). The ensembles are very similar in the other seasons with slight spatial variations; for

example, Figures 5.41 and 5.42 show the mean JAS SLP for Ensembles #4 and #5. Both

summer cyclone maximums near the pole are of similar magnitudes and only slightly more

con�ned than the cyclone maximum in Ensemble #6 (Figure 5.10). Analogous analyses were

conducted for ensemble members #4, 5, and 6 for the 21st century and yielded similar results.

Considering the investigation of the seasonal di¤erences amongst the ensemble members,

this shows that CCSM4 fails to capture the atmosphere-ice relationships in observations and

that the SLP biases are largely systemic (i.e., the SLP features that are associated with the

overall negative bias are consistent throughout the model), although some spatial variations do

exist. Spatial features of teleconnection patterns (AO, NAO, and AD) were also compared and

exhibited largely similar features (not shown). The underlying synoptics are largely similar

amongst the ensemble members, as well. For example, both daily SLP �elds of ensemble

members #6 and #4 from the present-day CCSM4 climate were mapped to the ERA-Interim

Master SOM and display nearly identical grouped synoptic pattern frequencies. Discussion will

be limited to the CCSM4 Ensemble #6 as it has many variables with daily output. Examining

ensemble members instead of ensemble averages also o¤ers advantages (besides the ability to

investigate daily output variables, such as temperature and longwave radiation �elds), as the

ensemble mean would dampen the internal variability associated with each ensemble.

5.1.2 Seasonal and Synoptic Patterns: ERAI Vs. CCSM4

Before mapping CCSM4 20th century SLP �elds to the ERA-Interim Master SOM, a �rst sweep

at assessing CCSM4�s skill in simulating climatological mean SLP over the seasonal-synoptic
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timescales is conducted. Seasonal and (selected) monthly means between the observations and

CCSM4 are compared. Figure 5.2 shows Arctic winter (JFM) mean SLP from 1979 to 2010.

High pressure exists over the continents, along with subpolar storm tracks over the oceans. In

comparison, the CCSM4 mean JFM SLP (from model year 1974-2005), Figure 5.3, looks similar

to Figure 5.2, although there are some important di¤erences. The Icelandic low storm track

penetrates too far northward and a local pressure maximum is non-existent over the ice cover

in CCSM4, each contributing a mean SLP bias of ~-11 mb over the Greenland and Barents

Seas and ~-10 mb spanning the Paci�c side of the Arctic.

During spring (AMJ), ERA-Interim shows a relatively strong high pressure centered nearly

over the Beaufort Sea (Figure 5.4). The pressure gradients on the north side of the high

pressure are essentially parallel to the Transpolar Drift Stream (TDS). The Aleutian and

Icelandic low storm tracks have also weakened, associated with the general weakening of Arctic

atmospheric circulation as summer approaches (Serreze and Barry (2005)). Ensemble #6 from

the 20th century CCSM4 run does not have a strong enough high pressure over the Beaufort

(an approximately -6 mb bias) and shifts it farther south over northern Canada (Figure 5.5);

however, CCSM4 is able to simulate pressure gradients oriented along the TDS. Examining

observed monthly mean SLPs shows that the high pressure over the Beaufort is present in April

(and also during JFM but slightly shifted), shown in Figure 5.6. CCSM4 does not simulate

the high pressure in April (Figure 5.7) but starts to simulate it weakly in May (Figure 5.8).

ERA-Interim and CCSM4 mean JAS sea level pressure are shown in Figures 5.9 and 5.10,

respectively. Consistent with de Boer et al. (2011), summer shows the weakest biases. CCSM4

is able to simulate the central Arctic Low but shifts it towards the Beaufort and strengthens

it (producing a -4 mb bias). Recall that Bitz et al. (2002) found that simulating lows over
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the central Arctic was important for ice motion. Screen et al. (2011) also noted that the low

pressure in late spring-early summer was important for year-to-year ice gain. If the synoptic

activity exhibits similar ice relationships to the observations, then the stronger shifted low plays

a role in maintaining ice cover in the summer and could account for a weaker-than-observed ice

trend.

The most prominent biases occur in the fall. ERA-Interim shows the strengthening high

pressure over the ice cover and continents (Figure 5.11), while CCSM4 (Figure 5.12) fails to

produce the high pressure over the ice cover (leading to a -14 mb bias) and simulates too strong

of subpolar ocean storm tracks (with biases of -8 mb over the North Atlantic and -7 mb over

southern Alaska).

In order to further quantify how well CCSM4 captures synoptic activity in the Arctic,

including those synoptic patterns that correlate highly to sea ice variability, daily SLP patterns

from present day CCSM4 were mapped to their corresponding BMUs (see Chapter 3 for a

description) in the ERA-Interim Master SOM (Figure 3.2). There are multiple methods to

go about such an analysis. An alternative method would be to create a Master SOM trained

on both ERA-Interim and CCSM4 (analogous to methods used in Cassano et al. (2006), for

example). This would create a map that would incorporate both datasets into training to

represent the day-to-day Arctic SLP �elds. The former method has been chosen since it

considers ERA-Interim to be ground truth, so di¤erences in CCSM4 are considered to be model

biases, or errors. This method is preferred then since it focuses on the patterns already found

to be important to ice variability in ERA-Interim (Chapter 4) so that a more direct comparison

of biases can be discussed. Upon initial examination of Figures 5.14 through 5.19, CCSM4

does well in capturing the seasonality of the synoptic patterns.
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Figure 5.14 compares the mean annual frequencies of occurrence for each season of the "High

Pressure Bridges" group for the ERA-Interim and present-day CCSM4 climates, in addition

to showing the SOM patterns that comprise each group (from Figure 3.2). CCSM4 under-

simulates these broad Arctic high pressure patterns in all seasons. The most prominent bias is

during fall, with CCSM4 simulating these patterns ~10 days less annually (statistically di¤erent

from the ERA-Interim mean frequency of occurrence at 95% con�dence). Considering that the

model undersimulates these patterns by 6 days, and the mean high pressure spatial anomaly

center (just poleward of the Beaufort) within the group is ~12 mb, the frequency bias contributes

at least 1 mb to the seasonal mean SLP bias of ~-10 mb. In addition to frequency biases,

biases of the CCSM4 �elds that map to the "High Pressure Bridges" group also contribute to

the overall SLP bias. To estimate the group�s SLP bias contribution (i.e., intra-group bias),

mean SLP �elds for days mapped to their respective groups were calculated for CCSM4 and

ERAI (not shown). The Beaufort High within the "High Pressure Bridges" in ERAI is ~1032

mb on average in fall, the corresponding Beaufort High is ~1022 mb in CCSM4 during fall.

Considering that the "High Pressure Bridges" group occurs ~16 days during fall in the model,

this contributes ~-2mb to the fall bias (to the overall Beaufort High bias of ~-10 mb during the

fall). It should be noted that these are only estimates. The intra-group SLP bias contributes

approximately double to the group bias than do the frequencies. This highlights that not only

does CCSM4 produce too few strong high pressure patterns over the Arctic during fall, but also

biases simulated highs toward weaker pressures.

Consistent with de Boer et al. (2011), the lowest bias is during summer, ~-2 days annually

(not statistically di¤erent at 90%). Chapter 4 covered the importance of this type of pattern

to both Fram Strait ice out�ow and loss of perennial sea ice during winter; however, CCSM4
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shows a 90% statistically signi�cant bias of ~-6 days. This further highlights that CCSM4

undersimulates high pressure over the Arctic important for ice advection (de Boer et al. (2011)),

although CCSM4 reasonably simulates March ice extent (Figure 5.13).

Another pattern important to ice loss and linked to warm air advection is the "Eurasian

Highs/Icelandic-Aleutian Lows" group. Figure 5.15 shows the annual mean frequencies of

occurrence by season for this group in ERA-Interim and CCSM4. Again, the model consistently

undersimulates these patterns in all seasons. Although, this is a predominantly winter and fall

pattern, the group�s spring frequencies are linked to perennial ice loss. This group exhibits

complex dynamical-thermodyanmical linkages, as it is linked to annual Fram Strait in�ow and

associated with prominent warm air advection through the North Atlantic. The largest bias

of ~-10 days occurs during winter, contributing to the winter mean bias by at least -1 mb (the

mean high pressure spatial anomaly is ~8 mb over the Beaufort). During winter, the di¤erences

in the mean ERAI and CCSM4 SLP �elds associated with this group are not as prominent as

for the "High Pressure Bridges" group. The Beaufort High pressure bias is ~-6 mb in CCSM4

and contributes ~-1.5 mb to the overall seasonal bias. The contribution of the under-simulation

of these groups in CCSM4 and negative SLP biases within the group, itself, are roughly equal.

Again, the smallest bias is during the summer months (~-2 days, not statistically signi�cant at

90%).

Figure 5.16 shows the "Arctic Highs/Paci�c Lows" group frequencies in the ERA-Interim

and CCSM4 climates. This group weakly correlates to Fram Strait out�ow and year-to-

year changes in sea ice extent (Table 4.2). Again, this pattern is undersimulated in the

CCSM4 present-day climate in all seasons (the winter bias is not statistically signi�cant at

90%), especially in spring (~-12 days). This �nding is also consistent with CCSM4�s issues
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in simulating Arctic high pressure patterns (de Boer et al. (2011)), contributing to the low

pressure bias when comparing Figures 5.4 and 5.5.

The "Icelandic Lows/Fram Strait Out�ow" group�s frequencies of occurrence for both ERA-

Interim and CCSM4 are shown in Figure 5.17. Interestingly, CCSM4 oversimulates this group

during all seasons, especially fall (~22 day annual bias). The CCSM4 negative SLP bias for

this group plays a larger role in the seasonal fall bias over the Beaufort (contributing ~-5 mb

to the bias over this region during the fall). On the other hand, frequency biases contribute

a larger role to the seasonal fall SLP biases over the Icelandic Low, as the mean SLP patterns

for the "Icelandic Lows/Fram Strait Out�ow" group are of similar magnitudes in ERAI and

CCSM4. All seasons, except summer, display statistically signi�cant biases at 99%. This group

does not show prominent linkages to ice variability as this group only weakly and somewhat

inconsistently correlates to Fram Strait out�ow and year-to-year ice extent variability (Table

4.2). The far-northward penetrating Icelandic Lows displayed in the group are in agreement

with a deeper-than-observed North Atlantic storm track suggested in de Boer et al. (2011).

"Beaufort Highs/Eurasian Lows" patterns correlated prominently to year-to-year changes

in ice extent during spring (Table 4.2), and their frequencies of occurrence in CCSM4 and

ERA-interim are shown in Figure 5.18. CCSM4 is able to predict this group linked to ice

loss in spring, although it oversimulates it during AMJ (not statistically di¤erent at 90% than

ERA-Interim frequencies) and winter (statistically signi�cant at 99%). This oversimulation is

associated with the northward shifted Eurasian Low (compare Figures 5.4 and 5.5). In all other

seasons, CCSM4 under-predicts these patterns. Considering that these high pressure patterns

over the Arctic are overall weaker than the "High Pressure Bridges" group, this signals that

when the model does simulate these high pressures, they are at times too weak, in agreement
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with the consistent low pressure bias compared to ERA-Interim.

The group that CCSM4 consistently over-simulates is the "Weak Features" group (Figure

5.19), overall dominated by central Arctic Lows and strong Aleutian Lows. This group weakly

correlates the sea ice metrics, as shown in Table 4.2, likely associated with the weak pressure

gradients within the group. Winter, spring, and summer biases of up to ~12 days during

summer are all statistically signi�cant at 99%.

In summary, these results show that CCSM4 overall captures the seasonality of patterns ob-

served in CCSM4 but cannot consistently simulate high pressure patterns, such as the Beaufort

High and broad Arctic ridges during the winter, important for ice motion (and temperature

advection). CCSM4 produces stronger-than-observed storm tracks, and these low pressures

are captured in terms of storms that penetrate too deep into the Arctic. Cassano et al. (2006)

also noted that CCSM3 produces an elongated North Atlantic storm track in their SOM study

of CMIP3 synoptic activity, showing that the NCAR model is consistent in this regard. These

types of patterns are not prominently correlated to ice metrics. The model also oversimulates

relatively weak low pressure features that predominate during summer and are not conducive

to strong ice motion or advection. As shown in de Boer et al. (2011), CCSM4 shows the least

SLP bias during summer.

The grouped CCSM4 frequencies of occurrence mapped to the ERA-Interim Master SOM

(Figure 3.2) were correlated to year-to-year change in sea ice extent in CCSM4, shown in Table

5.1. Most correlations are weak, and prominent correlations displayed in the ERA-Interim

climate (Table 4.2) no longer exist. The "Icelandic Lows/Fram Strait Out�ow" group corre-

lates at 0.34 (90% signi�cant) to year-to-year September ice loss in winter and antecedent fall

frequencies correlate to September ice gain at 0.32 (also signi�cant at 90%). These correlations
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seem spurious considering the year lag between the two time series. The only other group to

correlate signi�cantly (at 90%) to year-to-year changes in CCSM4 September ice extent is the

High Pressure Bridge group, although it is, again, the group�s fall frequencies for the year previ-

ous to the September ice extent (year N -1) that correlate signi�cantly. The "Weak Features"

group in CCSM4 shows the most prominent linkages in spring (with a correlation of -0.25),

possibly associated with their high frequency of occurrence. The negative correlation, though,

is counterintuitive to the �ndings of Screen et al. (2011), which showed that enhanced cyclonic

activity over the central Arctic is linked to year-to-year ice gain.

5.1.3 CCSM4 Bias Correction

Weaker-than-observed atmosphere-ice linkages may be associated with overall negative SLP

biases. To explore this, the mean seasonal SLP biases were subtracted from the CCSM4

output before being mapped to the ERAI Master SOM (Figure 3.2). It should be noted that

although constant seasonal bias �elds were subtracted from the input CCSM4 SLP �elds, the

frequencies of occurrence of do not change uniformly with the bias subtraction. Figure 5.20

shows the mean seasonal frequencies of occurrence of the "High Pressure Bridges" group when

seasonal SLP bias corrections are applied to the CCSM4 ensemble member. CCSM4 now

overpredicts the high pressure patterns in all seasons, except fall. The increases in frequencies

are as high as 15 and 18 days in winter and spring (when compared to Figure 5.14). "Beaufort

Highs/Eurasian Lows" are still undersimulated in all seasons, except summer (Figure 5.21).

The "Weak Features" group patterns rarely occur after bias correction, except approximately

12 days in summer (Figure 5.22).

Mapping the bias-corrected model output to the ERAI Master SOM produces closer-to-
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observed frequencies, so are the atmosphere-ice linkages also captured? Correlations between

the bias-corrected annual frequencies (by season) and year-to-year ice variability in the CCSM4

ensemble were calculated analogously to Table 5.1. None of the frequency-ice correlations for

patterns shown to correlate prominently to ice variability become robust at 90% signi�cance,

but they do become more prominent (not shown). For example, the "Eurasian High/Icelandic

Lows" group correlations increase in magnitude from -0.13 to -0.21 in spring (compared to -0.46

in the observations; see Chapter 4). "Beaufort High/Eurasian Lows" correlations increase in

magnitude from -0.08 to -0.10 in spring. These results suggest that SLP biases play a role in the

weaker-than-observed interannual atmosphere-ice linkages. However, this �nding does not hold

true for the "High Pressure Bridges" group, for which the bias-corrected correlations increase

from 0.01 to 0.28 in winter. This is counterintuitive to the Chapter 4 �ndings (correlation

of -0.46 in the observational data), as the patterns have pressure gradients conducive to ice

loss. If these strong high pressure patterns are linked to ice gain in the model, it suggests

that other biases, such as the surface cold bias or underproduction of clouds may dampen the

atmosphere-ice associations.

"High Pressure Bridges" patterns (linked to observed ice loss) are associated with lower-

than-observed downwelling longwave radiation (by ~-60 W/m2 over the central Arctic) in the

model (compare Figures 5.23 for ERAI and 5.24 for CCSM4). Francis et al. (2005) �nd

that observed downwelling longwave �ux variability most highly correlates to perennial ice

variability than to other variables, such as winds and shortwave �uxes. In regions where low

clouds persist, downwelling longwave �ux trends are controlled by an increase in cloud fraction

and water vapor concentration (Francis and Hunter (2007)). de Boer et al. (2011) �nd that the

CCSM4 has a cold bias in all seasons, likely linked to the underprediction of clouds in winter
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and overproduction of clouds in summer. Considering that the "High Pressure Bridges" group

correlates more prominently to ice variability when corrected for the negative SLP biases, the

underpredicted downwelling longwave radiation (i.e., underprediction of clouds) may overwhelm

the importance of this pattern to ice loss. Cloud biases also a¤ect surface properties, such as ice

albedo and thickness (Eisenman et al. (2007)). These processes (although likely intrinsically

linked to atmospheric circulation) may be dominating year-to-year changes in ice extent in the

CCSM4 present-day climate. Systemic biases may also be linked to interannual variability of

the atmospheric circulation, which is intrinsically linked to processes that a¤ect sea ice, such as

temperature (via warm/cold air advection), surface winds, and ice age and motion. Ocean heat

�uxes (Shimada et al. (2006)) and dynamical forcing (Ogi and Wallace (2012)) also a¤ect ice

variability and could play a role in the muted atmosphere-ice linkages. Another shortcoming

of the model may be that interannual variability of the atmospheric circulation may not be

adequately captured. Large-scale atmospheric teleconnections (the AO, NAO, and AD) in

CCSM4 will be investigated in the following section, as it is most closely aligned to the present

study.

5.1.4 Large-scale Atmospheric Variability in the Arctic

CCSM4 undersimulates SOM patterns associated with ice variability (e.g., "High Pressure

Bridges"). The model�s ability to capture large-scale relationships between the atmosphere

and ice, such as the AO, NAO, and AD, is also investigated to identify if the model captures

large-scale atmospheric teleconnection patterns. The AO is de�ned as the leading principal

component (PC) of extended winter NDJFMA monthly mean SLP anomalies from 20-90 �N

(Thompson and Wallace (1998)). Figure 5.25 shows the extended winter mean SLP anomalies
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regressed onto the standardized time series associated with the EOF analysis (Figure 5.26).

The AO accounts for ~21% of the extended wintertime SLP variance and the tripole pattern is

apparent, with high pressure over the Arctic and low pressures centered in the subpolar regions

(during the positive AO phase). Figure 5.27 shows the leading PC of winter SLP calculated

analogously to the ERAI dataset. The model captures the overall tripole pattern and explains

~26% of the wintertime SLP variance, but the Arctic portion of the see-saw pattern is shifted

toward the Eurasian-side of the Arctic. The subpolar signatures associated with the Aleutian

Low are too strong by ~-3 mb and shifted toward the Gulf of Alaska. The signature associated

with the Icelandic Low is more con�ned in the model and centered over western Europe. The

CCSM4 AO index (Figure 5.28) shows more interannual variability than in observations, most

prominent earlier in the time period of analysis, and also shows fewer strongly negative AO

years than the observations.

The NAO can be de�ned as the leading PC of seasonal winter DJFM SLP anomalies over the

Atlantic, 20-80 �N and 90 �W-40�E (Hurrell (1995)). Figures 5.29 and 5.30 show SLP anomalies

regressed onto the standardized NAO index for each dataset. The model again shifts the centers

of action eastward toward Eurasia in the case of the northern lobe (centered near Iceland in

ERAI) and over western Europe in the case of the southern lobe. The associated time series

of NAO index values for ERA and CCSM4 are shown in Figures 5.31 and 5.32. Again, the

model shows enhanced interannual variability relative to the observations, especially earlier in

the time period.

The AD pattern is also shifted in the model relative to the observations (Figure 5.33 for

ERAI and Figure 5.34 for CCSM4). Overland et al. (2012) de�ne the AD as the second

leading principal component of individual monthly mean extended winter DJFM SLP anomalies
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poleward of 70 �N. The AD explains ~15% of the wintertime SLP variance in the observations

and ~12% in the model. The model shifts the western Arctic from over the Beaufort to over the

Atlantic sector. This is likely associated with the model�s under-simulation the Beaufort High

and over-simulation Icelandic Low-type patterns, shifting the center of action. The model,

however, does capture pressure gradients parallel to the TDS, which is what has made the

AD a focus of Arctic ice studies in recent decades (e.g., Overland et al. (2012) and Wu et al.

(2006)). The standardized time series for the ERAI dataset and CCSM4 output are shown in

Figures 5.35 and 5.36. Examining the last few years of the AD time series for the model shows

a predominantly negative phase, consistent with Figure 5.1, which shows a steeper negative ice

extent trend in the ensemble since around the model year 2000. This suggests that the model

does capture some atmosphere-ice connections, but are these consistent (i.e., coherent in time)?

Correlations between the described teleconnection indices and year-to-year changes in Sep-

tember sea ice extent in the CCSM4 ensemble member (Ensemble 6) are shown in Table 5.2.

In general, the model correlations are weaker than in the observations (Table 4.2), except in

spring for the case of the Arctic Dipole, correlating at 0.55 at 99% signi�cance. The correla-

tion for this month is stronger than observations and is likely associated with SLP biases over

the Beaufort, contributing to an AD-like signal in spring (Figure 5.5). The most prominent

correlations for the AO are in winter (-0.22)�consistent with observations (Table 4.2)�although

none of the correlations are statistically signi�cant at 90% or above.

Overall, the model�s linkages between wind and ice are not coherent. This draws attention

to the importance of interannual variability of the atmospheric circulation on ice variability.

CCSM4 captures the overall ocean circulation patterns associated with the AO, shown in Figure

5.37, taken from Figure 9 of Jahn et al. (2011), but the anticyclonic circulation is shifted in
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the model. The negative AO phase is associated with a strengthened Beaufort gyre in winter

(bottom of Figure 5.37) in both the observations and the model, but the circulation patterns in

the model are consistent with a large portion of ice being transported from along the Eurasian

coast (in the Laptev Sea) toward the Canadian Archipelago; this would have little e¤ect on

ice extent (considering only mechanical e¤ects on the ice �eld and without considering the

e¤ect of ice fracturing). On the other hand, the observed ice motion �eld associated with

a negative AO phase shows a clear TDS pattern conducive to shuttling ice toward the Fram

Strait form the Laptev Sea eastward. Slight spatial variations of leading modes of variability

could have drastically di¤erent e¤ects on ice �elds. The model also shows more interannual

variability of the teleconnection patterns. Recent studies have shown that the persistence of

teleconnection patterns, such as the AD (e.g., Overland et al. (2012)), could be associated with

the recent trends in September ice loss and even Arctic-midlatitude weather linkages. The

SOM frequencies comprise the synoptic activity, which is enveloped by these teleconnection

patterns. For example, mean frequencies of occurrence of SOM groups were calculated for

the top �ve negative AO years in the observations and model. The composite frequencies are

prominently di¤erent (not shown), with stronger high pressures associated with negative AO

years in the observations. This suggests that the model�s systemic bias (e.g., negative SLP

bias) and enhanced large-scale atmospheric interannual variability contribute, at least partially,

to the weaker-than-observed synoptic linkages in the SOM analysis.
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Figure 5.1: Present observed adn modeled CCSM4 ice extent

September observed sea ice extent (from NSIDC) (red line) for 1979 - 2010 and ensemble
#6 from the CCSM4 20th century experiment ice extent for model year 1974 - 2005.
Modeled sea ice extent is calculated using the area with sea ice concentrations of at
least 15%.
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Figure 5.2: ERA-Interim Mean JFM SLP

ERA-Interim seasonal mean JFM sea level pressure (mb) from 50-90 �N for the time
period 1979-2010.
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Figure 5.3: CCSM4 20th Century Mean JFM SLP

20th century (model year 1974-2005) mean winter JFM sea level pressure (mb) simu-
lated by CCSM4 Ensemble #6 from 1979 - 2010 from 50-90 �N.

53



Figure 5.4: ERA-Interim Mean AMJ SLP

As in Figure 5.2, but for spring (AMJ).
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Figure 5.5: CCSM4 20th Century Mean AMJ SLP

As in Figure 5.3, but for spring (AMJ).
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Figure 5.6: ERA-Interim Mean April SLP

ERA-Interim mean April sea level pressure (mb) from 50-90 �N.
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Figure 5.7: CCSM4 Mean April SLP

20th century (1974-2005) mean May sea level pressure (mb) as simulated by CCSM4
Ensemble #6 from 50-90 �N.
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Figure 5.8: CCSM4 Mean May SLP

As in Figure 5.7, but for May.
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Figure 5.9: ERA-Interim Mean JAS SLP

As in Figure 5.2, but for summer (JAS).
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Figure 5.10: CCSM4 Mean JAS SLP

As in Figure 5.3, but for summer (JAS).
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Figure 5.11: ERA-Interim Mean OND SLP

As in Figure 5.2, but for fall (OND).
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Figure 5.12: CCSM4 Mean OND SLP

As in Figure 5.3, but for fall (OND).
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Figure 5.13: Present observed and modeled CCSM4 ice extent

As in Figure 5.1, but for March.
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Figure 5.14: ERAI and CCSM4 High Pressure Bridges group frequencies

ERAI and CCSM4 High Pressure Bridges group frequencies mapped to ERAI Master
SOM. One (**,***) asterisk(s) represents a statistically signi�cant di¤erences of at
least 90% (95% and 99%, respectively).
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Figure 5.15: ERAI and CCSM4 Eurasian Highs-Icelandic/Aleutian Lows group frequencies

As in Figure 5.14, but for the Eurasian Highs-Icelandic/Aleutian Lows group.
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Figure 5.16: ERAI and CCSM4 Arctic Highs/Paci�c Lows group frequencies

As in Figure 5.14, but for the Arctic Highs/Paci�c Lows group.
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Figure 5.17: ERAI and CCSM4 Icelandic Lows/Fram Strait Out�ow group frequencies

As in Figure 5.14, but for the Icelandic Lows/Fram Strait Out�ow group.
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Figure 5.18: ERAI and CCSM4 Beaufort Highs/Eurasian Lows group frequencies

As in Figure 5.14, but for the Beaufort Highs/Eurasian Lows group.
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Figure 5.19: ERAI and CCSM4 Weak Features group frequencies

As in Figure 5.14, but for the Weak Features group.
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Table 5.1: Correlations b/w CCSM4 Ens 6 frequencies from ERAI Master SOM and modeled
year-to-year change in Sep ice exent

JFM AMJ JAS OND (yr N-1)
High Pressure Bridge 0.01 -0.07 0.18 -0.34*
Eurasian H-Ice/Al Lows -0.07 -0.13 -0.07 -0.1
Arctic Highs/Pac Lows 0.08 -0.2 0 -0.08
Ice L/FS Out�ow -0.34* -0.19 -0.29 0.32*
Beaufort H/Eura Lows -0.09 -0.08 0.14 -0.12
Weak Features -0.06 -0.25 0 -0.01

Correlations between CCSM4 20th century Ensemble #6 frequencies (mapped to the ERAI Master SOM
in Figure 3.2) and year-to-year change in September ice extent (from 1975-2005) simulated by CCSM4
20th century Ensemble #6. One asterisk indicates statistical signi�cance at 90% or greater.
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Figure 5.20: ERAI and CCSM4 Bias-Corrected High Pressure Bridges group frequencies

As in Figure 5.14, but for the bias-corrected CCSM4 SLP daily �elds, discussed in the
text (and statistical signi�cances and SOM group SLP �elds are not shown).
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Figure 5.21: ERAI and CCSM4 Bias-Corrected Beaufort Highs/Eurasian Lows group frequen-
cies

As in Figure 5.20, but for the Beaufort Highs/Eurasian Lows group.

72



Figure 5.22: ERAI and CCSM4 Bias-Corrected Weak Features group frequencies

As in Figure 5.20, but for the Weak Features group.
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Figure 5.23: ERA Downwelling LW radiation: High Pressure Bridges

Mean downwelling longwave radiation �eld for the "High Pressure Bridge" group in the
ERA Interim Master SOM, shown in Figure 3.2. The �eld was computed by averaging
daily downwelling longwave radiation �elds for the days that mapped to patterns within
the "High Pressure Bridge" group as the best matching unit (BMU).
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Figure 5.24: CCSM4 Downwelling LW radiation: High Pressure Bridges

As in Figure 5.23 but for CCSM4.
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Figure 5.25: ERA Arctic Oscillation SLP patterns

Spatial patterns of extended winter NDJFMA monthly mean SLP anomalies regressed
onto the standardized time series of the three leading principal component analysis of
SLP from 20-90 �N. The AO is de�ned as the leading PC.
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Figure 5.26: ERA Arctic Oscillation standardized time series

Regression coe¢ cients from three leading principal components of extended winter ND-
JFMA monthly mean SLP anomalies from 20-90 �N. The AO is de�ned as the leading
PC.
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Figure 5.27: CCSM4 Arctic Oscillation SLP patterns

As in Figure 5.25 but for CCSM4.
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Figure 5.28: CCSM4 Arctic Oscillation standardized time series

As in Figure 5.26 but for CCSM4.
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Figure 5.29: ERA North Atlantic Oscillation SLP patterns

Spatial patterns of extended winter DJFM monthly mean SLP anomalies regressed onto
the standardized time series of the three leading principal component analysis of SLP
from 20-90 �N and 90�W-40 �E. The NAO is de�ned as the leading PC.
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Figure 5.30: CCSM4 North Atlantic Oscillation SLP patterns

As in Figure 5.29 but for CCSM4.
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Figure 5.31: ERA North Atlantic Oscillation standardized time series

As in Figure 5.26 but for the NAO.
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Figure 5.32: CCSM4 North Atlantic Oscillation standardized time series

As in Figure 5.31 but for CCSM4.
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Figure 5.33: ERA Arctic Dipole SLP patterns

Spatial patterns of extended winter DJFM monthly mean SLP anomalies regressed
onto the standardized time series of the three leading principal component analysis of
SLP from 70-90 �N. The Arctic Dipole is de�ned as the second leading PC. The �rst
resembles the AO.
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Figure 5.34: CCSM4 Arctic Dipole SLP patterns

As in Figure 5.33 but for CCSM4.
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Figure 5.35: ERA Arctic Dipole standardized time series

As in Figure 5.26 but for the AD.
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Figure 5.36: CCSM4 Arctic Dipole standardized time series

As in Figure 5.35 but for CCSM4.
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Table 5.2: CCSM4 Teleconnection Indices Correlated to delSIE
Teleconnection Pattern
AO NAO AD

Winter -0.22 0.26 -0.02
Spring -0.13 -0.05 0.55***

Summer -0.12 0.07 0.18
Fall (yr N-1) -0.16 0.01 0.18

Correlations between seasonal (JFM, AMJ, JAS of yearN , and OND of yearN -1) teleconnection patterns
(AO, NAO, and AD), de�ned in the text, within CCSM4 20th century Ensemble #6 and year-to-year
change in September ice extent (from 1975-2005) simulated by CCSM4 20th century Ensemble #6. One
asterisk (**, ***) indicates statistical signi�cance at 90% (95%, 99%) or greater.
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Figure 5.37: Ice Motion associated with AO: Obs and Model

Mean DJFM ice motion �elds for years associated with the positive AO years (top) and
negative AO years (bottom) from satellite observations (left) and CCSM4 present-day
climate (right). Taken from Jahn et al. (2011), Figure 9.
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Figure 5.38: CCSM4 20th Century Mean JFM SLP Ens 4

As in Figure 5.3, but for JFM for Ensemble 4.
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Figure 5.39: CCSM4 20th Century Mean JFM SLP Ens 5

As in Figure 5.3, but for JFM for Ensemble 5.
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Figure 5.40: CCSM4 20th Century Mean AMJ SLP Ens 5

As in Figure 5.3, but for AMJ for Ensemble 5.
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Figure 5.41: CCSM4 20th Century Mean JAS SLP Ens 4

As in Figure 5.3, but for JAS for Ensemble 4.
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Figure 5.42: CCSM4 20th Century Mean JAS SLP Ens 5

As in Figure 5.3, but for JAS for Ensemble 5.
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5.2 Synoptic Activity in CCSM4: Present-Day Climate Vs.

Future Climate

The CCSM4 present-day and 21st century climates were used to train a 6x5 master SOM.

Model years 1974 to 2005 and 2069 to 2100 are used from each respective experiment so that the

length of comparison periods are identical. This method was chosen over simply comparing the

21st century climate to ERA-Interim as was done in the previous section since the present-day

climate had issues simulating the observed patterns and capturing the associated ice variability

linkages, suggesting that the CCSM4 synoptic activity has a di¤erent representations of day-

to-day SLP not captured by the ERA-Interim Master SOM.

The CCSM4 Master SOM is shown in Figure 5.43. The patterns were grouped analogously

to the ERAI Master SOM grouping discussed in Chapter 3. Groupings were objectively

categorized based on spatial correlations and similar spatial patterns. The SOM features the

main Arctic circulation patterns (Serreze and Barry (2005)). Broad Arctic High pressure

ridges that span the ice cover and subpolar continents that dominate in winter (Figure 5.44)

are featured in the top-left portion of the SOM. Strong storm tracks that predominate in

fall and winter, but can occur in all seasons, are featured on the right-side. Weaker pressure

features associated with weakening Arctic circulation during the warm season are featured on

the bottom-left. The CCSM4 Master SOM also appears similar to the ERA-Interim Master

SOM. Some apparent di¤erences are the more predominant low pressures over the central

Arctic in CCSM4 (the right portion of Figure 5.43) and fewer broad high pressure patterns

over the ice (similar to those in the top portion of the ERA-Interim Master SOM, shown in

Figure 3.2). This is due to 1) CCSM4�s low pressure bias (see the previous section) and 2) SLP
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over the Arctic deepening in the 21st century CCSM4 climate (Vavrus et al. (2011)). Figure

5.44 displays the mean seasonal frequencies for each group from Figure 5.43 for both the 20th

and 21st centuries. Like the ERA-Interim Master SOM (Figure 3.2), the patterns display

prominent seasonality.

Table 5.3 shows the 20th century CCSM4 mean annual grouped frequencies for each season

when mapped to the CCSM4 Master SOM (Figure 5.43). During winter, Group 1 in Figure

5.43 predominates, occurring on average ~37 days out of the 90 day season, with broad high

pressures over the ice cover and continents. Group 1 is quite similar to the "High Pressure

Bridges" group in Figure 3.2 (the ERA-Interim Master SOM), although the CCSM4 Master

SOM does not produce as many high pressure weather patterns. The high pressure patterns

that are simulated generally do not have pressure gradients conducive to �ow through the Fram

Strait that was earlier shown to be important for year-to-year ice loss (e.g., patterns 1 and 7 in

Figure 5.43, which have pressure gradients that are conducive to packing ice on the northern

side of Greenland). Winds associated with high pressure features have been shown to be

important to recent record ice losses (Ogi et al. (2010)). Group 4 is the next most prominent

winter group (mean frequency of 25 days per season), which features the Icelandic and Aleutian

low storm tracks and strong low pressure features over the ice cover, which are not present in

the observations during winter (Figure 3.2 and see Serreze and Barry (2005)). Consistent with

de Boer et al. (2011), Group 4 displays storm tracks that penetrate too far northward into

the Arctic, especially during winter. Screen et al. (2011) showed that an increase in cyclonic

activity over the central Arctic during MJJ helped to preserve ice cover in the subsequent

September. It is unclear, however, if this would be the case during winter, as the e¤ect of

synoptic activity or storms on winter ice variability has not been extensively studied to my
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knowledge. Group 2, similar to the "Beaufort Highs/Eurasian Lows" group in Figure 3.2, are

also a predominantly spring group (occurring ~23 days annually). Group 3 is most similar

to the "Weak Features" group in the ERAI Master SOM and is also a predominantly summer

group (occurring ~17 days annually), but low pressures are deeper.

During spring, Group 2, dominated by high pressures, occurs ~32 days on average. The

next most prominent spring group is Group 5, occurring 20 days on average. The model

simulates strong high pressure bridges ~15 days during the spring season (Group 0). During

summer, Groups 3 and 5 occur 75% of the summer season (mean frequency of occurrences of

approximately 17 and 51 days, respectively), associated with the summer cyclone maximum

over the ice. This further signals the model�s failure in simulating Beaufort Highs during the

summer associated with ice loss (e.g., Chapter 4 and de Boer et al. (2011)). Fall resembles

winter with Group 0 occurring 18 days our of the season, although stronger-than-observed low

pressure signals still dominate, with Groups 1 and 4 occurring ~34 and 33 days on average

during the season, respectively.

An important aspect to investigate is the change in synoptic activity between the 20th

and 21st centuries as the Arctic climate is projected to prominently change. Maslanik et al.

(2011) discussed the increased mobility of a thinner ice pack, so quantifying projected changes

in synoptic activity is relevant to many issues, such as inundation and erosion of coastal Arctic

communities and associated with enhanced wave activity from cyclones in an increasingly ice

free Arctic and vessel navigation for naval and private prospects. Arctic ice extent is projected

to become ice free (ice extent spanning less than one million km2) in September by 2074 in

Ensemble #6 (Figure 5.45).

Table 5.4 shows the mean annual frequencies by season for the CCSM4 21st daily SLP
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�elds mapped to the CCSM4 Master SOM (Figure 5.43). Composite di¤erences for each

season (21st century minus 20th century) are displayed in Figure 5.46. The most prominent

di¤erences occur in summer (JAS), likely associated with an essentially ice free Arctic during

September (with pan-Arctic ice extent less than one million km2). This �nding contrasts to

Vavrus et al. (2011), who showed that autumn (speci�cally November, followed by October)

were the months during which the most drastic Arctic climate change occurred for all variables

investigated (e.g., SLP, air temperature, and ice concentration). This could also be associated

with temporal resolution, as Vavrus et al. (2011) studied the full 21st century run (2006 to

2100). This is associated with SOM group mean SLP �elds decreasing in pressure in the

21st century climate (not shown). This, however, highlights SOM�s utility as an additional too

to study synoptic climatology in a changing climate. Features that may be averaged out of

seasonal composites are captured in the full synoptic setup portrayed by SOMs.

Figure 5.46 shows a sharp increase in strong low pressure patterns (Group 5) by ~12 days

annually (statistically signi�cant at 90%) at the expense of all other patterns. For example,

Groups 2 and 3, associated with weaker features, show a 90% statistically signi�cant decrease

of approximately 4 days. This �nding is consistent with Cassano et al. (2006), which studied

several CMIP3 ensembles and found an increase of strong low pressure patterns over the central

Arctic and near Greenland during winter. Fall (OND) exhibits the next most prominent pattern

changes, with a decrease in the Arctic high pressures in Group 0 high pressure patterns (by

~6 days, statistically signi�cant at 90%). All other groups show an increase, up to ~5 days

annually (Group 4), though not robust. Winter shows an increase in strong Arctic lows of

Group 5, by nearly 2 days (statistically signi�cant at 95%). The most prominent changes

(although not robust at 90% statistical signi�cance) are a decrease in strong North Atlantic
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storm tracks (Group 4) by about 5 days annually during winter (not robust). An increase in

Groups 4 and 5 highlights the projected northward shifting storm track in a changing climate

as the temperature gradient shifts northward (Bengtsson et al. (2006)). The decrease in winter

high pressures is consistent with Cassano et al. (2006). They also noted an increase in strong

North Atlantic storms during winter. Group 1, with both strong Aleutian Lows and strong

Icelandic Lows, shows an increase in winter occurrence of ~3 days (not robust at 90%). Group

2, associated with weaker Beaufort High features, does not show a prominent decrease (~1 day).

Weak low pressure patterns in Group 3 also do not change drastically, increasing by ~1 day in

winter. Spring shows the fewest frequency changes and they can be described as being similar

to the summer changes but muted. Group 5 increases in frequency by ~4 days at the expense

of all other patterns, except Group 4.

In order to investigate the linkages between synoptic activity and sea ice variability, corre-

lations between CCSM4 20th and 21st century frequencies of occurrence for grouped patterns

and year-to-year changes in September ice extent (for each respective model experiment) were

calculated. They are compared in order to examine changing responsiveness of Arctic sea as

the ice cover decreases. Correlations between 20th century SOM group frequencies and CCSM4

20th century Ensemble #6 year-to-year �SIE, shown in Table 5.5 are not as prominent as in

the observations (Table 4.2). The correlations are coherent, however. For example, broad high

pressure patterns present in Group 0 and stormy patterns with pressure gradients conducive

to warm air advection in Group 1 correlate negatively to year-to-year �SIE in all seasons (al-

though not statistically signi�cant at 90%), up to -0.29 for Group 0 during winter. These

�ndings are consistent with the importance of broad high pressures found to be important in

the observations (Table 4.2).
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Group 5 (from Figure 5.43) shows the only statistically signi�cant correlation (at 95%) dur-

ing winter and spring of 0.38. (Note that these correlations are only identical at two signi�cant

�gures.) The mean winter occurrences of this group are relatively small (~4 days annually

during winter), signaling that the correlation may be spurious. The spring correlation is more

intuitive, as it is consistent with the �nding from Screen et al. (2011) that late spring-early

summer central Arctic storminess is linked to year-to-year ice gain through physical mecha-

nisms, such as weakening the Transpolar Drift Stream. Group 2 correlates to year-to-year

ice extent in spring (AMJ). This pattern is consistent with shuttling ice towards the Fram

Strait. This group is somewhat similar to the "Beaufort Highs/Eurasian Lows" group in the

ERA-Interim Master SOM (Figure 3.2), although weaker (as discussed earlier). The summer

season shows the overall weakest correlations, likely due to the models issues in simulating the

Beaufort High-type patterns important to ice motion (see Jahn et al. (2011)). It is interesting

that the only robust correlations are for a group that is linked to sea ice gain. This hints that

other processes or variables are dominating the ice loss, such as temperature. Also, CCSM4 is

better able to simulate low pressure features over the central Arctic, associated with ice gain

(Screen et al. (2011)), so it is not surprising that synoptic-ice linkages would be more robust

with low pressure patterns.

Table 5.6 shows correlations between CCSM4 21st century group frequencies of occurrence

and 21st century Ensemble #6 year-to-year �SIE. Overall, correlations are rather weak. This

is likely due 1) little year-to-year ice variability in September in a future climate (Figure 5.45)

and 2) to the ice variability being dominated by thermodynamic forcing, as opposed to synoptic

activity (Holland and Stroeve (2011)). Correlations are no longer coherent within a group (i.e.,

correlations for a given group are not of the same sign for all seasons). For example, Group 5
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exhibits negative correlations in summer and fall (of year N and year N -1, respectively). This

suggests that the ice is no longer coherently responsive to the synoptic setup. This group�s

correlations are nearly zero for winter and spring, the seasons during which they were prominent

in the 20th century. This is not surprising as Holland and Stroeve (2011) show that in the 21st

century CCSM4 climate, correlations between Arctic basin temperature and September sea ice

concentration strengthen relative to the 20th century correlations, while correlations to SLP

weaken. Summer correlations have overall become stronger relative to the 20th century. For

example, Group 0 is linked to ice loss at a correlation of -0.23 (not robust at 90% statistical

signi�cance). The most prominent changes are in fall (for grouped patterns occurring the year

previous to the year-to-year�SIE). The only statistically signi�cant robust correlation is during

Fall for Group 2 and is correlated at 0.37 (statistically signi�cant at 95%). Considering the

one-year lag, the fall correlations are assumed to be spurious since the frequencies of occurrence

are small (<1 day annually) on average.

These �ndings highlight that predicting the pressure patterns important for sea ice motion

are integral to capturing synoptic-ice variability relationships. Considering that correlations

were less robust than in ERA-Interim, this suggests that many tools should be used in sea ice

projections, such as dynamical tools (models) and other statistical tools. This is especially true

considering that CCSM4 captures the overall seasonality of ERA-Interim but exhibits biases

in the frequencies of occurrence. Other aspects of the ice state should also be studied in

order to tap into possible predictability, such as winter ice-synoptic relationships and studying

regional ice change (along with pan-Arctic changes). Studying regional changes is particularly

important since September ice trends are not uniform in all Arctic sea basins (e.g., Beaufort

versus Bering Seas), and ice loss in the 21st century is also not expected to be uniform (Figure
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5.47, taken and adapted from Deser et al. (2010b), Figure 1a). Other time slices, such as the

mid-twenty �rst century and events during which drastic ice loss or gain occur, should also be

studied within CCSM4 to quantify the atmosphere-ice relationships discussed earlier hold.

CCSM4 has been shown to reasonably capture the Arctic present-day climate but has a

low pressure bias. This under-simulation of high pressure patterns, such as "High Pressure

Bridges", "Beaufort Highs/Eurasian Lows" groups, contributes to the negative SLP bias. In

observational data, antecedent seasonal frequencies of these patterns are linked to observed

interannual ice variability. The model is missing these prominent linkages that would provide

modest amounts of interannual September ice predictability. Accounting for these pressure

biases does provide more prominent (but not robust) correlations to ice variability (e.g., in the

case of the high pressure patterns and the "Eurasian Highs/Icelandic-Aleutian Lows" group),

suggesting that the model can capture atmosphere-ice linkages when the synoptic atmospheric

circulation is correctly simulated. Teleconnection patterns linked to ice variability (the AO,

NAO, and AD) are shifted in the model, with too much interannual variability. This signals the

need for further investigation into the shortcomings of GCMs in simulating large-scale modes of

atmospheric variability and the shortcomings�roles in producing ice loss trends matching more

closely to observations (refer to Stroeve et al. (2012)).

In the late 21st century, low pressures are projected to drastically increase by approximately

24% (15 days) in summer and 16% (5 days) in fall, with implications for coastal erosion and

ocean navigation. The Arctic is essentially ice free in September for most of the late-21st

century and year-to-year ice variability is reduced, leading to weaker atmosphere-ice variability

linkages and signaling that future research should identify observed atmosphere-ice linkages in

transition seasons. For example, March ice extent in the 21st century is projected to be ~4
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million km2 less than observed (Figure 5.48) but will still be of concern to marine and private

prospects in navigating the Arctic peripheral seas.

103



Figure 5.43: CCSM4 Master SOM

Master SOM of CCSM4 20th (1974-2005) and 21st (2069-2100) century daily sea-level
pressure spatial anomalies (mb). Boxes and labels indicate groupings (Groups 0 to 5)
discussed in the text.
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Figure 5.44: Mean 20 and 21C Frequencies for the CCSM4 Master SOM

Seasonal composite frequencies (days) of grouped patterns (see Fig. 5.43) for JFM
(blue), AMJ (green), JAS (red), and OND (orange) for the 20th (1974-2005) and 21st
(2069-2100) centuries (Ensemble #6 experiments for each).

105



Table 5.3: 20th century CCSM4 group frequencies of occurrence

Group Winter Spring Summer Fall
0 36.8 14.8 3.5 18.0
1 23.3 3.7 2.1 33.7
2 2.0 32.2 13.1 0.7
3 1.8 13.0 16.6 5.6
4 25.0 7.3 6.2 32.8
5 1.2 20.0 50.6 1.3

Mean annual 20th century frequencies of occurrence (days) for each group from the CCSM4 Master SOM
(Figure 5.43).
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Figure 5.45: CCSM4 ensemble member 6 sep ice extent

Time series of September pan-Arctic sea ice extent (106 km2) from CCSM4 Ensemble
#6 from model year 2069 to 2100. Sea ice extent was calculated using areas with 15%
or more of modeled sea ice concentration.
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Table 5.4: 21st century CCSM4 group frequencies of occurrence

Group Winter Spring Summer Fall
0 36.7 14.6 2.2 11.9
1 26.6 2.0 1.2 34.1
2 1.6 31.7 8.3 0.7
3 2.2 11.0 12.6 5.8
4 19.8 8.1 5.1 38.0
5 3.1 23.6 62.5 1.5

Mean annual 21st century frequencies of occurrence (days) for each group from the CCSM4 Master SOM
(Figure 5.43).
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Figure 5.46: Mean frequency of occurrence composite di¤erences: 21C minus 20C

Composite di¤erences (days) between 21st and 20th century mean annual frequencies
of occurrence (21C minus 20C) for grouped patterns from Figure 5.43. Colors indicate
season: JFM (blue), AMJ (green), JAS (red), and OND (orange). One asterisk (**)
indicates statistical signi�cance at 90% (95%) or greater.
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Table 5.5: 20th century SOM-ice correlations computed from CCSM4 Master SOM

Season
Group Winter Spring Summer Fall

0 -0.22 -0.29 -0.15 -0.28
1 -0.26 -0.16 -0.16 -0.1
2 0.03 -0.25 -0.05 0.04
3 0.18 0.17 0.08 0.02
4 0.29 0.15 0.18 0.25
5 0.38** 0.38** 0.02 0.02

Correlations between 20th century annual frequencies and year-to-year change in September ice extent.
Bold (**) indicates statistical signi�cance equal to or greater than 90% (95%).
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Table 5.6: 21st century SOM-ice correlations computed from CCSM4 Master SOM

Winter Spring Summer Fall
0 0 -0.04 -0.23 0.18
1 0.1 -0.22 -0.19 0.03
2 0.14 0.12 0.03 0.37**
3 -0.08 -0.01 -0.02 0.2
4 -0.11 -0.19 0.26 -0.19
5 0.02 0.03 -0.01 -0.21

Correlations between 21st century annual frequencies and year-to-year change in September ice extent.
Bold (**) indicates statistical signi�cance equal to or greater than 90% (95%).
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Figure 5.47: MA and MJ Sea Ice Concentrations 1980-99 and 2080-2099

Ice concentrations (%) for 1980-1999 (top) and 2080-2099 (bottom) for March and April
(MA) and May and June (MJ). Taken and adapted from Figure 1(a) of Deser et al.
(2010b).
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Figure 5.48: CCSM4 ensemble member 6 Mar ice extent

Time series of March pan-Arctic sea ice extent (106 km2) from CCSM4 Ensemble #6
from model year 2060 to 2100. Sea ice extent was calculated using areas with 15% or
more of modeled sea ice concentration.
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Chapter 6

Conclusions

The SOM analysis was employed to provide a framework for a diagnosis of synoptic patterns that

play a role in sea ice variability in both observations and a frequently used model n the Arctic,

CCSM4. This was investigated by (1) correlating the time series of synoptic patterns and groups

within the Master SOM with various sea ice metrics to examine what role synoptic patterns play

in preconditioning ice, (2) analyzing trends in time series of recent observed synoptic patterns,

(3) investigating biases in the CCSM4 present-day climate, and (4) comparing frequencies in

present and future climates. The main �ndings are summarized below:

� SOMs can identify observed synoptic patterns that correlate better to time series of sea

ice metrics than do time series of modes of atmospheric circulation variability, such as the

NAO, AO, and AD.

� Observed synoptic patterns containing Beaufort Highs are increasing in frequency in

spring and summer by 3 days (at 90% con�dence) and 1.8 days per decade, respec-

tively, and their spring frequencies are linked to ice loss at a 99% statistically signi�cant
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correlation of -0.50.

� Winter �High Pressure Bridges�patterns in ERA-Interim show a strong relationship to

sea ice loss through their role in advecting thick ice through the Fram Strait during

winter, preconditioning ice for loss the following summer and are increasing in frequency

(although not statistically signi�cant at 90% con�dence) and intensity during winter.

� Warm air advection associated with observed Icelandic lows (in the �Eurasian Highs-

Icelandic/Aleutian Lows�group) prior to and during the melt season favors year-to-year

decreases of late-summer sea ice.

� The CCSM4 present-day climate exhibits a low pressure bias and undersimulates high

pressure patterns important for observed ice loss, such as the "High Pressure Bridges"

group by approximately 6 and 10 days during winter and fall, respectively.

� These biases are also portrayed by producing a higher-than-observed frequency of strong

storm track features (e.g., "Icelandic Lows/Fram Strait Out�ow" patterns by approxi-

mately 20 days during the fall season); the model also oversimulates "Weak Features"

patterns in all seasons by up to 12 days in the summer season. These patterns were not

shown to be prominently linked to observed ice variability.

� When SLP bias-adjustments are applied to CCSM4 20th century daily SLP �elds, at-

mosphere -ice correlations more prominent (and closer to observed linkages), suggesting

that the model can capture atmosphere-ice linkages, at least partially, if the model simu-

lates the frequencies of important patterns correctly.

� CCSM4 overall captures large-scale atmospheric teleconnection patterns over the Arctic,
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such as the AO, NAO, and AD, but spatial shifts are apparent that a¤ect ice motion,

and the model displays enhanced interannual variability of these teleconnection patterns

relative to observations.

� The CCSM4 21st century climate shows a prominent increase in strong low pressure

patterns associated with ice loss, with an increase in strong central Arctic low patterns

(Groups 4 and 5) during fall and summer by 24% and 15% relative to the present-day

CCSM4 climate.

� The CCSM4 21st century atmosphere-ice dynamical linkages are overall weaker than the

20th century CCSM4 linkages, due to the absence of ice to provide prominent variability

in an ice-free Arctic.

The SOM analysis and time series associated with synoptic patterns provide a means to

quantify the relationships between synoptic variability and rapidly thinning sea ice. Because

SOM patterns of antecedent seasons correlate with �SIE, the �ndings obtained here imply

predictability of large-scale ice loss/gain over seasonal timescales and could add to already

available methods of atmospheric predictors of sea ice variability (NRC (2012)). Moreover, the

ice pack is thinning in all seasons, signaling that even winter and spring atmospheric circulation

patterns are important in preconditioning the ice prior to the melt season.

Since linkages between synoptic activity and �SIE are weaker in CCSM4 than observations,

model simulation of important features, such as high pressures over the Beaufort in winter

should be investigated and improved. When model biases were corrected for, patterns linked

to ice loss, such as the "High Pressure Bridges" group and "Beaufort Highs/Eurasian Lows"

patterns increase in frequency in most seasons and these patterns�correlations to interannual
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ice variability also become more prominent. These �ndings suggest that a major cause of

the weaker-than-observed atmosphere-ice coupling could be the undersimulation and spatial

shifts of important SLP patterns, not just systemic biases in temperature and cloud production

(although they are intrinsically linked to atmospheric synoptic activity), for example. Which

issues dominate the weaker atmosphere-ice linkages dominate is worthy of further investigation:

1) the model not coupling wind forcing associated with synoptic activity to interannual ice

variability, 2) the inability of the model to capture interannual atmospheric variability, or 3)

systemic biases overwhelming the atmosphere-ice linkages.

An increase in low pressure patterns in the 21st century has implications for enhanced

coastal inundation and erosion. Many Alaskan communities are already in the process of or

planning relocation and are increasingly seeking information from the Arctic science commu-

nity. Reducing biases in capturing Arctic synoptic activity is an important task for providing

reasonable Arctic climate projections. As interannual variability is reduced in September in

the late 21st century, wind-ice coupling in transition seasons should also be investigated.
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