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ABSTRACT

This thesis presents a technique to determine the effects of an earthquake
on road traffic conditions by linking seismic hazard and bridge fragility
models with a traffic model and traffic sensor data. Using the earth-
quake characteristics as an input to the traffic model, the traffic condi-
tions are sequentially estimated given traffic sensor measurements using
an ensemble Kalman filter. The proposed algorithm is tested through
numerical experiments and the results show that integrating the seis-
mic hazard and bridge fragility model with the traffic model and traffic
sensor data improves the post-disaster traffic estimate. The supporting
source code and data used in this thesis are available for download at
https://github.com/rotsuka/UIUCthesis.
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Chapter 1

Introduction

1.1 Post-disaster traffic estimation as a sequential

state estimation problem

Earthquakes are devastating events that can have a number of social, economic, and

structural consequences. One of the structural ramifications that could result from

the propagation of earthquake shock waves is damage to transportation infrastruc-

ture. As observed in recent earthquake events, bridges are especially susceptible to

damage (Akiyama et al., 2013; Basöz et al., 1999; Kosa, 2012; Schanack et al., 2012).

Structural damage to bridges can cause disconnections in the transportation net-

work and reductions in traffic flow capacity, which in turn slows down post-hazard

recovery efforts. If accurate traffic estimates can be calculated immediately follow-

ing an earthquake, it could be very helpful in expediting post-hazard rescue and

recovery efforts. The problem addressed in this thesis is to estimate post-disaster

traffic conditions using measurements from traffic sensors and information about

the earthquake’s characteristics and bridge fragility. In this work, the magnitude

of the earthquake and its proximity to the bridge corresponds to changes in bridge

traffic capacity, affecting the traffic conditions of the network.

To this end, the post-diaster traffic estimation problem is posed as a sequential

state estimation problem as follows. Suppose the traffic evolution equations are
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constructed from a scalar macroscopic traffic model, denoted by f . The function

f describes how the traffic state x, i.e. a vector of traffic densities (e.g. veh/km)

at various locations along the roadway, evolves from time n − 1 to time n. The

evolution and observation equations (Simon, 2006) are given respectively as

xn = f (xn−1,θ,wn) (1.1)

yn = hn (xn) + vn, (1.2)

where θ is a time-invariant vector which contains the parameters of road such as the

maximum traffic capacity, the speed limit, and the maximum backward propagating

wave speed. The term yn is a vector of traffic sensor measurements, hn is an

observation operator that relates the system state with the measurements, wn is

the model noise, and vn is the measurement noise. Note that the model noise here

is not additive, which allows us to keep the mass conservation of f .

Given the model evolution (Equation (1.1)) and observation (Equation (1.2))

equations, the post-disaster traffic estimation problem can be posed as estimating

the traffic state xn given measurements y1, · · · ,yn. However, following an earth-

quake, an online implementation would not be able to detect any discrepancies in

the network until the congestion generated by the capacity reduction is detected by

the traffic sensor. Additionally, dedicated traffic sensors may be sparsely distributed

throughout the network due to the high cost of installation and maintenance. Thus,

to improve the estimation performance, we augment the model evolution equation

by feeding in real-time information about the earthquake immediately after the oc-

currence at time step nEQ, and every time step thereafter. We then rewrite Equation

(1.1) as

xn = f (xn−1,θ, un,wn) , (1.3)
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and un is the earthquake input factor defined as

un =


1 if n < nEQ

α if n ≥ nEQ,

(1.4)

where α is the traffic capacity ratio, 0 ≤ α ≤ 1. Though the lane parameters θ are

time-invariant, un is multiplied by the element in θ that corresponds to the maxi-

mum traffic capacity of the bridge to allow for the fact that the roadway capacity

may change following an earthquake. Due to the nonlinearity of the traffic model,

we propose to use an ensemble Kalman filter to solve the sequential state estimation

problem.

1.2 Related work on post-disaster transportation

networks and traffic state estimation

With the number of natural disaster occurrences worldwide, researchers are focusing

on the post-disaster resilience of infrastructure systems. Specifically, there have been

several studies which employed investigative techniques to study the post-disaster

performance of transportation systems. Chang and Nojima (2001) developed post-

diaster performance measures and applied them to rail and highway transportation

networks in Kobe, Japan following the 1995 Hyogoken-Nanbu earthquake. Nakanishi

et al. (2013) performed travel demand modeling for the recovery phase following the

2011 Tohoku earthquake and applied it to the city of Ishinomaki, Japan.

Recently, software and simulation techniques have also been developed to ana-

lyze transportation systems following a disaster such as an earthquake. The Califor-

nia Department of Transportation (Caltrans) uses ShakeCast and ShakeMap (Wald

et al., 2008), software developed by the United States Geological Survey (USGS),

to obtain the likelihood of damage to bridges and other structures following an
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earthquake. These systems provide Caltrans with insight on how to reroute traf-

fic due to potential road closures. Nojima and Sugito (2000) proposed a model

to simulate and evaluate the post-earthquake functional performance of a high-

way transportation system using Monte Carlo (MC) simulation and the modified

incremental assignment method (MIAM) to simulate the traffic states. Similarly,

Shizunoka et al. (2003) integrated bridge fragility models with an MC analysis of

traffic flows to study the degradation of capacity of the Caltrans network following

the 1994 Northridge earthquake.

System reliability analysis (SRA) techniques have also been developed to aid in

understanding the post-disaster behavior of transportation networks. SRA meth-

ods are capable of integrating analyses across physical scales and combining models

and data from multiple fields of science and engineering for quantifying risk at the

system level. For example, Lee et al. (2011) evaluated the probabilities of various

damage scenarios using a matrix-based reliability method (Kang et al., 2008, 2012;

Song and Kang, 2009) and a network flow analysis for a sample bridge transporta-

tion network. While these attempts have been successful in determining failures of

bridges in networks and changes in flow capacity, they do not explicitly model the

traffic dynamics.

Sequential estimation in traffic applications dates back several decades to the

1970s when Gazis and Knapp (1971) used the Kalman filter (KF) (Kalman, 1960)

and Szeto and Gazis (1972) used the extended Kalman filter (EKF) (Anderson and

Moore, 1979) to estimate the traffic density in the Lincoln Tunnel of New York City

for optimal traffic control applications. Recent uses of the KF and EKF for traffic

applications include Jabari and Liu (2013) and Wang and Papageorgiou (2005).

The mixture Kalman filter (MKF) (Chen and Liu, 2000) is an extension of the

KF and has been applied in the transportation community using a switching mode

traffic model (Sun et al., 2004) and GPS data from cell phones (Herrera and Bayen,
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2010) for traffic state estimation. Another filter of note is the unscented Kalman

filter (UKF) (Julier and Uhlmann, 1997), which was developed for highly nonlinear

systems and has been used to estimate traffic on a Belgian highway (Mihaylova

et al., 2006).

Recently, stochastic filtering methods (Evensen, 2009; Gordon et al., 1993) have

been applied to traffic estimation. The performance of the particle filter (PF) (Gor-

don et al., 1993) has been tested on a Belgian freeway using experimental and

synthetic traffic data (Mihaylova et al., 2007) as well as Interstate 66 in the United

States (Chen et al., 2011). A recent application of the PF is given in Chen and Rakha

(2014) for real-time travel time prediction. The PF has been further expanded into

the parallelized particle filter (PPF) and parallelized Gaussian sum particle filter

(PGSPF) for use in large-scale traffic network systems (Mihaylova et al., 2012).

Work et al. (2010) applied the ensemble Kalman filter (EnKF) (Evensen, 2009) to

San Francisco Bay Area highway networks to estimate traffic velocities. Using a sim-

ilar approach, Hong and Fukuda (2012) implemented an EnKF system for the Tokyo

Metropolitan Highway during rush hour that showed the effect of sensor spacing on

the estimation results. The interested reader is directed to Blandin et al. (2012) for

a recent review of sequential estimation techniques for scalar traffic models. While

sequential estimation techniques have been used with traffic dynamics to accurately

estimate traffic states, they have not been integrated with seismic hazard and bridge

fragility models in post-disaster scenarios.

1.3 Outline and contributions of this thesis

The main contribution of this thesis is the design and analysis of an estimation

framework to determine the post-diaster traffic conditions of a transportation net-

work. We propose combining a seismic hazard model, a bridge fragility model, and
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a traffic model with traffic sensor data in an EnKF framework to account for the

nonlinearity of the model. Figure 1.1 illustrates the framework. Earthquake data

is obtained and used as inputs into the hazard model. The hazard model quanti-

fies the severity of the earthquake through the peak ground acceleration which is

then used in the fragility model to determine the damage state of the bridge and

the resulting traffic capacity. This information is then input into the traffic model,

which is combined with traffic sensor data in the filtering framework to get a best

estimate of the traffic conditions of the system. This estimate is fed back into the

traffic model at the next time step, creating an iterative process.

The remainder of this work is summarized as follows. In Chapter 2, the traf-

fic evolution, earthquake hazard, and probabilistic fragility models are introduced.

Chapter 3 gives a brief introduction to sequential state estimation and presents the

KF and EnKF algorithms and the observation equation used in the proposed frame-

work. Chapter 4 evaluates the framework for several numerical experiments and

quantifies the benefit of using both knowledge of the earthquake characteristics and

traffic sensor data as inputs into the estimator.
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Hazard model 

EnKF Best estimate 

of traffic state 

Traffic data 

Traffic model 

Fragility model 

Earthquake data 

Figure 1.1: Proposed model framework: The upper left boxed portion shows the
three dynamic models our framework utilizes. Earthquake data is used as an input
into the forward model, which consists of seismic hazard, bridge fragility, and traffic
evolution models. These are integrated with traffic sensor data as inputs into the
filter. The EnKF runs an error variance minimizing scheme to produce the best
estimate of the traffic state. The traffic states are fed into the forward model at the
next time step.
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Chapter 2

Overview of traffic flow, seismic

hazard, and earthquake fragility

models

This chapter gives a brief introduction to the model of traffic dynamics, and the

seismic hazard and bridge fragility models. Combining these elements is the basis

for the forward model (Equation (1.3)).

2.1 Macroscopic traffic model

The Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) (Lighthill

and Whitham, 1955) is a conservation law used to model the evolution of the traffic

density, ρ, which is a measure of the number of vehicles on a given length of road

(veh/km). It is a continuum model that describes the conservation of vehicles:

∂ρ

∂t
+
∂Q(ρ)

∂x
= 0, (2.1)

where Q(·) is the flux function, or fundamental diagram. The traffic flow, or traffic

flux, is a measure of vehicle throughput per unit time (veh/h). The fundamental

diagram is constructed from an empirical relationship between density and speed
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qmax 

Q(ρ) 

vmax 

0 

-w 

ρc ρj ρ 

Figure 2.1: Newell-Daganzo flux function: Densities in the range ρ ∈ [0, ρc] are in
the free flow region and densities in the range ρ ∈ [ρc, ρj] are in the congested region.

v = V (ρ) as follows:

Q(ρ) = ρV (ρ).

One widely used fundamental diagram is the triangular Newell-Daganzo flux

function (Daganzo, 1995; Newell, 1993), shown in Figure 2.1. It is a piecewise linear

function of the density, with different slopes in the free-flow and congestion regions:

Q(ρ) =


ρvmax if ρ ∈ [0, ρc]

w (ρj − ρ) if ρ ∈ [ρc, ρj],

(2.2)

where vmax is the free-flow speed, ρc is the critical density where traffic transitions

from free flow to congestion, and ρj is the jam density where traffic is fully congested

and vehicles are stationary. The maximum flux is given by qmax = ρcvmax and the

maximum backward propagating wave speed is given by w = vmaxρc/(ρj−ρc). From

Equation (2.2), it is observed that the three variables qmax, vmax, and w are adequate

to define the triangular fundamental diagram (Figure 2.1).

For numerical implementation, Equation (2.1) is discretized in time and space

using a Godunov scheme (Godunov, 1959) as described below. The time and space

domains are discretized by introducing a discrete time step ∆T , indexed by n ∈
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{0, · · · , nmax}, and a discrete space step ∆x, indexed by i ∈ {0, · · · , imax}. The

space discretization yields cells. The density at the next time step (n+ 1) for cell i

is computed as

ρin+1 = ρin +
∆T

∆x

(
q
(
ρi−1n , ρin

)
− q

(
ρin, ρ

i+1
n

))
, (2.3)

where the numerical flux q(·, ·) is a function used to compute flow across the bound-

ary of two adjacent cells. Equation (2.3) is commonly referred to as the cell-

transmission model (CTM) (Daganzo, 1994, 1995) for triangular fundamental di-

agrams. The flow, q(·, ·), can be computed as

q
(
ρu, ρd

)
= min

{
S (ρu) , R

(
ρd
)}
, (2.4)

where the sending function, S(·), and receiving function, R(·), represent the traffic

that is sent by the upstream cell and the traffic that is received by the down-

stream cell, respectively, and ρu and ρd represent the densities of the upstream and

downstream cells. The sending and receiving functions are constructed from the

fundamental diagram as shown in Figure 2.2. Intuitively, as the upstream density

increases, more vehicles are available to be sent into the downstream cell, resulting

in an increased flow, up to the maximum flow, qmax. Beyond the critical density,

ρc, even if the density continues to increase, the flow sent to the downstream cell

cannot be greater than qmax (Figure 2.2a). Similarly, when there are few vehicles in

the downstream cell, the downstream cell can receive a flow up to qmax. This is true

for any ρd < ρc. If the density continues to increase, the flow that can be received

decreases (Figure 2.2b).

2.1.1 Non-additive noise model

As mentioned previously, the model evolution equation does not have additive noise.

The noise is instead embedded in the fundamental diagram and thus directly affects
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qmax

S(ρ)

0 ρc ρj ρ

(a) Sending function

qmax

R(ρ)

0 ρc ρj ρ

(b) Receiving function

Figure 2.2: Sending and receiving functions of Newell-Daganzo flux: The fundamen-
tal diagram is shown as the light dotted line. In free flow conditions, the sending
function shares the same behavior as the fundamental diagram. In congested condi-
tions, the receiving function shares the same behavior as the fundamental diagram.

the sending and receiving functions. We treat the fundamental diagram as an upper

bound on the flow that can be sent across a cell boundary at any given time. A

lognormal distribution is used for the noise and it is subtracted from the fundamental

diagram to generate more realistic functions consistent with experimental data from

inductive loops (Caltrans, 2014):

Ŝ(ρ) =


S (ρ)− εS if ρ ∈ [0, ρc]

S (ρ)− εQ if ρ ∈ [ρc, ρj],

(2.5)

and

R̂(ρ) =


R (ρ)− εQ if ρ ∈ [0, ρc]

R (ρ)− εR if ρ ∈ [ρc, ρj],

(2.6)

where εS ∼ LN (λS, ξ
2
S) and εR ∼ LN (λR, ξ

2
R) are noises associated with the free

flow region of the sending function and the congested region of the receiving function,

respectively, and λ and ξ are the respective location and scale parameters. We

introduce a third noise, εQ ∼ LN
(
λQ, ξ

2
Q

)
to represent the noise on the maximum

flow. The noise on the receiving function is greater than that on the sending function.
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Figure 2.3: Noisy sending and receiving functions: Using the sending and receiving
functions derived from the fundamental diagram as an upper bound, logarithmic
noise is subtracted to obtain the flow. There are 5000 sample points on each graph
to illustrate the relative magnitudes of the means and variances associated with each
function.

An example of noisy sending and receiving functions is shown in Figure 2.3. The

solid line represents the deterministic sending and receiving functions.

Note that for densities near zero or the jam density, Equations (2.5) or (2.6)

may result in a negative flow. To avoid negative flows across cell boundaries, the

numerical flow is taken as the maximum of the minimum value of Equations (2.5)

or (2.6), and 0. Thus, we rewrite Equation (2.4) as

q
(
ρu, ρd

)
= max

{
min

{
Ŝ (ρu) , R̂

(
ρd
)}

, 0
}
. (2.7)

2.2 Seismic hazard and fragility models

Two main characteristics of an earthquake are its magnitude and location. Using

these characteristics and site conditions of the structure, peak ground parameters

are computed through the use of attenuation relationships. By mapping these pa-

rameters to existing fragility models, the probabilities of a bridge being in different

damage states are determined. From knowing the damage states, the percentage

of maximum flow capacity that is allowed for each bridge based on a probabilistic



2. Overview of traffic flow, seismic hazard, and earthquake fragility models 13

draw of the bridge damage distribution is obtained.

2.2.1 Attenuation relationship

The peak ground acceleration (PGA) exerted on a structure from an earthquake is

dependent on a number of factors, including the magnitude of the earthquake, the

distance of the structure from the epicenter, the site conditions (soil profile), and the

fault type. PGA is related to the mentioned factors by attenuation relationships. In

this work, we use the attenuation relationship by Campbell (1997) as an example:

lnAH =− 3.512 + 0.904M − 1.328 ln

√
r2 + (0.149 exp (0.647M))2

+ (0.440− 0.171 ln r)ssr + (0.405− 0.222 ln r)shr (2.8)

+ (1.125− 0.112 ln r − 0.0957M)Ft,

where AH is the horizontal component of the PGA (in g), M is the magnitude, r is

the distance to the epicenter (in km), Ft is the fault type, and ssr and shr define the

local site conditions. We can write Equation (2.8) as follows:

AH = fe (M, r, ssr, shr, Ft) (2.9)

For simplicity, we assume that we have a slip-strike fault (Ft = 0) and alluvium

or firm soil (ssr = shr = 0). For simplicity, but without loss of generality, in this

work AH is assumed to depend only on the magnitude and the distance from the

structure to the epicenter, which are both dependent on intrinsic properties of the

earthquake.

2.2.2 Fragility curves

Fragility curves define the conditional probability of exceeding certain limit states

(LS) as a function of a selected intensity measure (IM) of ground motions. Fragility
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is often modeled by a lognormal cumulative distribution function, where the demand

D and capacity C are assumed to be lognormally distributed variables. The safety

factor F (Rosenblueth and Esteva, 1972) can then be computed as

F = lnC − lnD, (2.10)

where F ≤ 0 represents the failure event. Since C and D are both assumed to be

lognormal variables, their logarithms are both normal, and thus F is also normal.

Since F ∼ N (µF , σ
2
F ), let the standard normal variable Z = (F − µF ) /σF . The

conditional probability of exceedance given an intensity measure is given as

P (F ≤ 0|IM) = P

(
Z ≤ −µF

σF

∣∣∣IM)
= Φ

(
−µF (IM)

σF (IM)

)
, (2.11)

where Φ(·) is the normal cumulative distribution function (CDF). Since there are

multiple limit states possible (based on different levels of drift, peak ground param-

eters, etc.), the conditional probability needs to be computed for each limit state.

The fragility curve used in this work is a univariate model where the probability

of exceedance is only dependent on the PGA in the horizontal direction, AH. As a

result, we can write Equation (2.11) in the following form (Nielson and DesRoches,

2007):

P (Fi ≤ 0|AH) = Φ

(
lnAH − ln (x̃i)

ζi

)
, (2.12)

where Fi is the failure event, x̃i is the median capacity of the structure in PGA,

and ζi is the dispersion value belonging to the ith limit state. Table 2.1 provides

the fragility curve parameters for several bridge classes typical to the Central and

Southeastern United States, excerpted from Nielson and DesRoches (2007).
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Bridge Class
Median PGA (g)

ζ
Slight Moderate Complete

MSC concrete 0.15 0.52 1.03 0.70
MSC steel 0.18 0.31 0.50 0.55
MSSS concrete 0.20 0.57 1.17 0.65
MSSS steel 0.24 0.44 0.82 0.50

Table 2.1: Median and dispersion values in g for seismic fragility curves of bridges
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Figure 2.4: Fragility model for MSC steel bridges: The fragility curves represent the
three limit states.

For simplicity, we assume three limit states, slight, moderate, and complete, as

shown in Table 2.1 for multispan continuous (MSC) steel girder bridges (Nielson and

DesRoches, 2007). The fragility curve corresponding to each limit state is given in

Figure 2.4. The probability of exceedance of a less severe limit state is greater than

the probability of exceedance of a more severe limit state. Also, as AH increases the

probability of exceedance of any limit state increases monotonically. Both of these

observations are intuitive considering the mathematical formulation of the fragility

curves.
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2.2.3 Creating probability of damage states tables

Once the fragility curves have been modeled, it is possible to determine the probabil-

ity of being in different damage states by looking at the difference between fragility

curves for a given AH. The three limit states stated previously yield four damage

states (DS) defined as D = {insignificant,medium, high, total}, following a similar

procedure to Bai et al. (2009).

Consider the probabilities of exceedance of the three limit states: PS (slight), PM

(moderate), and PC (complete), which are listed in increasing severity. The second

column of Table 2.2 shows how the probability of occurrences of each damage state

is computed using the fragilities for a given AH. If damage events d ∈ D are defined

such that they are mutually exclusive and collectively exhaustive (MECE), for a

given AH the following holds:

∑
d∈D

P (xd|AH) = 1, (2.13)

where xd is the actualization of a damage state. Assuming damage states are MECE

events is important because it allows D to define the full distribution of damage

states given the earthquake magnitude and location.

2.2.4 Mapping damage states to traffic capacity

For numerical simulation purposes, we assume quarter-based capacities are used to

relate the bridge damage state to traffic capacity, similar to the assumption used

by Mackie and Stojadinović (2006) and Murachi et al. (2003). The third column of

Table 2.2 shows the mapping between the damage state and traffic capacity ratio.

Note that this mapping is used as an example and more detailed models could be

constructed.
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Damage State Probability α
insignificant 1− PS 1
medium PS − PM 0.75
high PM − PC 0.5
total PC 0

Table 2.2: Probability of being in different damage states and their associated traffic
capacity ratios, α

2.2.5 Fragility model as an input to the traffic model

At a given time n ≥ nEQ, we can compute the probability distribution of the damage

states (Chapter 2.2.3) using the earthquake magnitude and location. This distri-

bution of damage states maps to a distribution of traffic capacity (Chapter 2.2.4)

which can be included explicitly as an input into the CTM (Equation (1.3)). In this

way, the existence of an earthquake and its subsequent damage to the transportation

infrastructure has a direct influence on the maximum flow, qmax, at a given instance

in time.
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Chapter 3

Sequential state estimation

This chapter briefly reviews sequential state estimation. It also introduces the

Kalman filter and ensemble Kalman filter sequential state estimation algorithms

used in this work. The observation equation (Equation (1.2)) is also defined.

3.1 Kalman filter

When the model evolution and observation equations are linear with additive white

noise, Equations (1.1) and (1.2) can be written as the following:

xn = Fnxn−1 +wn (3.1)

yn = Hnxn + vn, (3.2)

where Fn is the linear model operator and Hn is the modeled measurement matrix,

which is also indexed by n to integrate the possibility of moving sensors (e.g. in

vehicles) and intermittently operating fixed sensors. The model and measurement

noises are wn ∼ N (0,Wn) and vn ∼ N (0,Rn), respectively, where Wn is the model

error covariance matrix and Rn is the measurement error covariance matrix at time

n. The KF (Kalman, 1960) computes the posterior state, xn|n, given xn−1|n−1 and
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measurements yn, and is given as

Prediction:


xn|n−1 = Fnxn−1|n−1

Pn|n−1 = FnPn−1|n−1Fn + Wn

(3.3)

Update:


Kn = Pn|n−1H

T
n

(
HnPn|n−1H

T
n + Rn

)−1
xn|n = xn|n−1 + Kn

(
yn −Hnxn|n−1

)
Pn|n = Pn|n−1 −KnHnPn|n−1.

(3.4)

The model prediction step (Equation (3.3)) propagates the mean (xn−1|n−1) and

covariance (Pn−1|n−1) of the state at the previous time n− 1 forward through Fn to

obtain xn|n−1 and Pn|n−1. The measurement update step (Equation (3.4)) computes

the posterior mean (xn|n) and covariance (Pn|n) by taking into account observations

given up to step n. The Kalman gain, Kn, is chosen such that the resulting filter is

a best linear unbiased estimator (BLUE) of the state for linear systems, where best

is in the sense of minimal variance of the posterior state error covariance (Simon,

2006).

Due to the nonlinearities of the CTM (Equation (2.3)), a nonlinear extension of

the KF, the EnKF, is used in this work. The EnKF is a Monte Carlo approximation

of the KF, which represents the prior and posterior distributions by randomly gener-

ated ensembles. Rather than obtaining the covariance matrix through Fn (Equation

(3.3)), the EnKF evolves the covariance matrix indirectly through the individual en-

semble evolutions of the prior distribution. The EnKF is described in the following

section.

3.2 Ensemble Kalman filter

The ensemble representations of the model states and observations indexed by e ∈

{1, · · · , N} are given as
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xe
n = f

(
xe
n−1,θ, u

e
n,w

e
n

)
(3.5)

ye
n = yn + ven, (3.6)

where we
n and ven are the realizations of the model noise, wn, and measurement

noise, vn. The variable uen is also indexed by e to show that each ensemble is

associated with its own realization from the damage state distribution. In the limit

of an infinite number of ensembles, the EnKF converges to the KF for linear systems

(Mandel et al., 2011). The model prediction and measurement update steps for the

EnKF are given as

Prediction:


xe
n|n−1 = f

(
xe
n−1|n−1,θ, u

e
n,w

e
n

)
xn|n−1 = 1

N

∑N
e=1 x

e
n|n−1

Pn|n−1 = 1
N−1

∑N
e=1

(
xe
n|n−1 − xn|n−1

)(
xe
n|n−1 − xn|n−1

)T (3.7)

Update:


Kn = Pn|n−1H

T
n

(
HnPn|n−1H

T
n + Rn

)−1
xe
n|n = xe

n|n−1 + Kn

(
ye
n −Hnx

e
n|n−1

)
Pn|n = Pn|n−1 −KnHnPn|n−1.

(3.8)

After the posterior ensembles from the previous time (xe
n−1|n−1) have been propa-

gated forward in time through the nonlinear model f to obtain the prior ensembles,

xe
n|n−1, the sample mean and the state error covariance matrix are computed from

the ensembles. In the analysis step (Equation (3.8)), a posterior ensemble, xe
n|n

is computed using the prior ensemble (Equation (3.7)) and the ensemble observa-

tion (Equation (3.6)). The posterior state mean, xn|n, can be computed similarly

to xn|n−1. Notice the posterior error covariance, Pn|n, and Kalman gain, Kn, are

computed in exactly the same way as that of the KF (Equation (3.4)).
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Note that Equations (3.7) and (3.8) illustrate the structural similarities to the

linear KF (Equations (3.3) and (3.4)). For the numerical experiments shown next,

we use a more efficient implementation described in Evensen (2009). Rather than

obtaining each ensemble state vector recursively, a matrix form of the analysis equa-

tion for fast implementation is employed to reduce the computational cost of the

algorithm. A detailed explanation of the matrix scheme and algorithm is given in

Evensen (2009).

3.3 Observation equation

In our model, we assume that the traffic density is observed at every time step from

sensors located at various positions on the road network. Thus, the operator h in

Equation (1.2) that relates the traffic state xn = (ρ0n, · · · , ρimax
n )

T
at a time n to

the sensor measurements must be defined. The observation operator h is defined as

follows:

hn (xn) = Hxn, (3.9)

where H is the measurement operator which indicates locations where sensor mea-

surements are obtained. Note that H is time-invariant because the sensors always

produce measurements and their positions are fixed in the following numerical ex-

periments.

For traffic sensors indexed by l ∈ {1, · · · , lmax}, the measurement error covariance

matrix, Rn, is given as

Rn = diag
(
σ2
n,1, · · · , σ2

n,lmax

)
(3.10)

where σ2
n,l is the variance of sensor l at time n.
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Chapter 4

Numerical experiments

In this chapter, we describe the numerical experiments to quantify the potential

improvements achieved by linking the seismic hazard and bridge fragility models

to the traffic model updated by traffic sensor data. First, a simple transportation

network is constructed and the macroscopic traffic model parameters on each link

are described. Using prescribed initial and boundary conditions, the forward model

(Equation (2.3)) is run once. This true model has a prescribed damage state associ-

ated with the bridge, which allows the evolution of the traffic state over time to be

solved deterministically, resulting in the true solution to be estimated. In addition

to the true model, there is an approximate model, which has its own set of initial and

boundary conditions and is used in the traffic estimation algorithm. The approxi-

mate model may or may not have the earthquake input (u) and may or may not use

the EnKF algorithm and traffic sensor data (y). Approximate models that do not

account for traffic sensor data are open loop models and those that do account for

traffic sensor data are filters. The approximate models, regardless if they are open

loop or filters, provide estimation solutions. The true solution serves to assess the

accuracy of the estimation solutions and it is also used to generate the synthetic

measurements in the filter. To quantify performance of the filter and to compare

improvements from one model to others (e.g. filter vs. open loop and earthquake

vs. no earthquake), we use the Bayesian Estimation Error Quotient (BEEQ) (Li
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Link 1 2 3 4
Length (km) 2 1 0.5 1

Cells 14 7 3 7
∆x (km) 0.143 0.143 0.167 0.143

Lanes 3 2 2 2

vmax (km/h) 100
qmax (veh/h/lane) 2400

w (km/h) 20
ρj (veh/km/lane) 144

Table 4.1: Macroscopic traffic model parameters for the true and approximate mod-
els

and Zhao, 2005). The BEEQ is also used to compare filter performance against

computational cost when different numbers of ensembles are used.

4.1 Parameters of the macroscopic traffic model

As shown in Figure 4.1, we simulate a 4.5 km stretch of roadway which contains

four links of varying length. On each link the parameters of the roadway are con-

stant. Links are further subdivided into cells and the density in each cell creates

the network traffic state vector, x.

We assume the parameters for each link between the true and approximate mod-

els are the same and are given in Table 4.1. The transition from Link 1 to Link 2

is a merge from three lanes to two, which creates a bottleneck. The simulation is

run for a duration (tmax) of 40 minutes (2400 seconds) with a time step (∆T ) of

5 seconds, resulting in 481 (nmax) time steps starting at t = 0 seconds. Since the

speed limit, vmax, does not vary between links, each link is discretized into cells of

approximately equal length as shown in Table 4.1. This discretization obeys the

Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1967), which is required

for numerical stability of the CTM (Equation (2.3)). The fundamental diagram

(Figure 2.1) is computed using vmax, qmax, and w.
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Traffic Flow

10 km

Link 3Link 2Link 1 Link 4

Epicenter

Traffic Sensors

Figure 4.1: Schematic of model simulation: The roadway is composed of four links
of varying length and number of cells. Squares denote locations of inductive loop
detectors and the earthquake epicenter is located 10 km downstream from the center
of Link 3, the bridge.

Link 3 represents a bridge susceptible to damage from an earthquake, as shown

in Figure 4.1. Inductive loop detector sensors are located in cells 1 and 15 of the

discretized model and traffic flows from left to right. Although Figure 4.1 shows

a transition from three lanes to two lanes, the CTM computationally treats this

transition as a point.

4.2 True model assumptions

In addition to earthquakes which cause insignificant damage (i.e. flow is uninter-

rupted), there are three main types of earthquakes for the true model which are

outlined in Table 4.2. When the values for M and r from Table 4.2 are substituted

into Equation (2.9), the resulting PGA value when mapped to the fragility model

(Figure 2.4) results in the damage state defined by those M and r values to have

the highest probability of occurrence. The third column shows the earthquake is

located at the coordinates (13.25,0). This is due to the upstream end of Link 1 being

initialized at (0,0), which, in turn, results in the center of Link 3 being located at

(3.25,0). Thus, the distance between the bridge center and the earthquake epicenter
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Damage Magnitude, M Epicenter (x, y) Distance, r (km)
medium 6.0 (13.25,0) 10
high 7.0 (13.25,0) 10
total 8.0 (13.25,0) 10

Table 4.2: Earthquake characteristics

is 10 km, as shown in Figure 4.1 and confirmed in Table 4.2.

We initialize the model with the traffic state in free flow and the upstream and

downstream boundary conditions (UBC, DBC) are both in free flow. The initial

and boundary conditions are given in the second column of Table 4.4. At t = 10

minutes (600 seconds), an earthquake occurs. We draw a realization of qmax from the

damage state distribution and use this to propagate the forward deterministic model

in Equation (2.3). This is the true solution with which we compare the accuracy

of our estimates. The density contour in the time-space domain is shown in Figure

4.2a for an earthquake which resulted in a 50% reduction in traffic capacity of the

bridge (i.e. high damage). The true solution will be analyzed further in subsequent

sections.

4.3 Approximate model assumptions

In the approximate model, we draw earthquake characteristics for each ensemble at

each time step from normal distributions whose means are the true characteristics of

the earthquake (Table 4.2). We assume we are able to get relatively accurate details

of the earthquake such as the magnitude and location once the earthquake occurs.

Therefore, the variance of the distribution we assign to the noises is fairly small.

Table 4.3 shows the standard deviations of the earthquake parameters (σM , σx, σy)

as well as the other noise parameters used in the approximate model. In a real world

implementation, the traffic measurements would be taken directly from the sensors.

However, in numerical experiments, the measurements are synthesized by computing
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σM 0.3
σx (km) 5
σy (km) 5

σsensor (veh/km) 5
εS (veh/h) LN (4.82, 0.612)
εR (veh/h) LN (5.44, 0.732)
εQ (veh/h) LN (5.08, 0.672)

Table 4.3: Noise model parameters of the approximate model

Link True Approximate Absolute error (%)
1 40 20 50
2 35 20 42.9
3 35 30 16.7
4 35 30 16.7

UBC 60 40 33.3
DBC 20 20 0

Table 4.4: Initial and boundary conditions for the true and approximate models in
veh/km

the true solution and adding the measurement noise, vn. We further assume that

the each traffic sensor has the same accuracy and the accuracy of the traffic sensors

do not change after the occurrence of the earthquake. Thus, each entry in Equation

(3.10) is defined with a constant standard deviation, σsensor. The noise associated

with the sending and receiving functions (Equations (2.5) and (2.6)) are also shown

in Table 4.3.

In order to test the efficacy of our model, we initialize the approximate model

in free flow with both boundary conditions also in free flow, with values as given in

the third column of Table 4.4. The table also illustrates the absolute relative error

of the approximate model initial and boundary conditions compared to those of the

true model. The values in Table 4.4 show that the approximate model is initialized

with less vehicles than the true model. Thus, there is less chance for congestion in

the approximate model if the draw from the damage distribution does not result in

a reduced traffic capacity of the bridge. The initial values of the approximate model
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are chosen such that if an ensemble predicts an earthquake whose resulting damage

state is that of the true model, a queue will start to form from the end of Link 2.

We use N = 100 ensembles for the approximate model.

4.4 Results and discussion

As mentioned previously, whether the cell is in free flow or congestion depends on the

value of the critical density, ρc, which in this simulation is 24 veh/km/lane for both

the true and approximate models. In the true solution (Figure 4.2a), congestion

occurs near the start of the simulation (t ≈ 0) at cell 14, before the occurrence of

the earthquake. It occurs at the boundary of Link 1 and Link 2 and is due to the fact

that there is a merge from three lanes to two lanes. The outflow from Link 1 exceeds

the capacity of Link 2, thus congestion forms on Link 1 and a shock wave propagates

backward on the link. At time t = 10 minutes (600 seconds), the earthquake occurs

and damages the bridge (Link 3) such that its traffic capacity is reduced by 50%

(α = 0.5). This results in another backward propagating shock wave which starts at

the end of Link 2. Initially, the congestion caused by the reduction in traffic capacity

is less severe than the congestion caused by the merge, which is represented by the

differences in magnitude and also by the differing wave speeds. When the second

backward propagating congestion wave reaches the merge, the congestion severely

increases, as shown by the instantaneous transition from the light blue congestion

region to the orange heavy congestion region. This is a result of the fact that the

initial congestion is combined with the congestion resulting from the earthquake

damage to the bridge. Link 4 remains in free flow. The density of vehicles in Link

4 reduces because the outflow from the bridge is decreased due to the damage.

The subplots of Figure 4.2 show the various estimation results with or without

the earthquake input and/or with or without traffic sensor data. As a baseline of
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the estimator, an open loop model with no knowledge of the earthquake input is

used (Figure 4.2b). Figures 4.2c and 4.2d show the estimation results when there is

either traffic data or knowledge of the earthquake input, but not both. Figure 4.2e

shows the estimation results when there is both traffic data and knowledge of the

earthquake input.

Since the model is initialized in free flow, when there is no input from the earth-

quake in the forward model (Figure 4.2b), the traffic conditions will continue to be

in free flow. Having no earthquake input into the model is equivalent to having

no earthquake event or one that only results in insignificant damage to the bridge,

thus no disruption in traffic flow. Since traffic sensor data is not used to correct the

model (open loop) with knowledge about the congestion in the true solution (Fig-

ure 4.2a), there is also no detection of the initial congestion region at the merge.

When there is no earthquake input, but there is information fed to the filter via

traffic sensors (Figure 4.2c), the correct amount of congestion is detected in cells

where the sensors are located and the shockwave caused by the merge is detected.

Congestion detection results in the backward propagation of shocks. However, there

are two major errors in the traffic estimates of the filter. First, the magnitude of

the backward propagating shock is underestimated because there is no knowledge

of the congestion from the earthquake-damaged bridge. Second, since no congestion

is detected after cell 15, the estimator is unable to capture the second shock wave.

Figures 4.2d and 4.2e show the results of the approximate model when the earth-

quake is used as an input to the traffic model. Figure 4.2d shows that by having

knowledge of the earthquake characteristics, the shock due to the bridge capacity

reduction is detected. However, since no traffic sensor data is integrated into the

model, the congestion wave which is a result of the merge is no longer detected due

to the poor estimates of the initial and boundary conditions. With the addition

of the traffic sensor data (Figure 4.2e), the estimation of the state is significantly
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Figure 4.2: Time-space density plots for high damage: (a) Before the earthquake
occurs there is a shock that begins at the end of Link 1 due to the merge. When the
earthquake occurs that results in a 50% reduction of traffic capacity of the bridge,
another shock forms at the end of Link 2. (b) Without an earthquake input into
the model or traffic sensor data, the model fails to predict any congestion. (c) With
sensor data, the model accurately predicts the congestion level at places where there
are sensors and detects the shock wave due to the merge. (d) Supplementing the
model with data from the earthquake significantly improves the model even if there
is no sensor data. (e) The estimator in (d) performs better when traffic sensor data
is also used.
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improved, and both shocks are detected. This is an improvement on the models

that have either traffic sensor data (Figure 4.2c) or the earthquake input (Figure

4.2d) and is a significant improvement on the open loop model (Figure 4.2b). It

is still slightly incorrect, because the initial shock wave detected is travelling at a

slightly slower rate than that of the true solution (Figure 4.2a), however, both major

backward propagating shocks are successfully detected.

4.5 Changing the earthquake characteristics

In this section, model results are presented and analyzed when a less severe earth-

quake event occurs and when a more severe event occurs. Figures 4.3 and 4.4 show

the solutions for the models used to produce the results in Figure 4.2, except with

earthquake characteristics in the true model (Table 4.2) that result in medium and

total damage to the bridge, respectively. The parameters given in Tables 4.1, 4.3,

and 4.4 are applicable regardless of the resulting damage state of the bridge due to

the earthquake.

Figure 4.3a shows the true solution when the earthquake results in only a 25%

traffic capacity reduction (i.e. medium damage,α = 0.75) of the bridge. Note that

this is less of a reduction than if there were high damage to the bridge. This is

apparent in Figure 4.3a because the congestion caused by the earthquake is of a

lesser magnitude than in Figure 4.2a. However, the initial congestion caused by

the transition from three lanes to two is exactly the same, because the initial and

boundary conditions are the same and the earthquake has not yet occurred. The

open loop model with no earthquake input (Figure 4.3b) does not result in any

congestion detection, because the network is initialized in free flow with a flow lower

than the merge bottleneck capacity. When traffic sensor data is obtained and the

filter is run (Figure 4.3c), the estimates are correct for cells where sensors are located.
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Also note that since the true solution shows the congestion due to the earthquake

and that due to the merge are similar in magnitude, the traffic state estimates for

Link 1 appear fairly accurate. However, the second, albeit less severe, shock wave

due to the earthquake is undetected, so this is still an incorrect representation of

the traffic state. When the earthquake input is used in the open loop model (Figure

4.3d) the shock wave caused by the earthquake is detected, however, the shock wave

due to the merge is nonexistent. When the shock wave propagates backward to the

merge, the resulting shock wave is of a lower magnitude and slower speed than in

the case which results in high damage to the bridge (Figure 4.2d). Finally, when the

traffic sensor data is added to the model (Figure 4.3e), the traffic state estimates

are improved drastically.

Figure 4.4a shows the true solution when the earthquake results in a 100% traffic

capacity reduction (i.e. total damage,α = 0) of the bridge. Note that this is a much

greater reduction than if there were high damage to the bridge. This is apparent in

Figure 4.4a because the area of greatest congestion is of a much greater magnitude

than in Figure 4.2a. It is actually at the jam density value of 432 veh/km (144

veh/km/lane multiplied by 3 lanes). Thus, the vehicles in the network come to a

complete standstill, which intuitively makes sense, considering that the earthquake

results in total destruction of the bridge, rendering it completely unusable. It may

be observed that at the end of the simulation there are still vehicles in Link 3,

the bridge. Although the CTM is unable to numerically capture what happens

on the bridge itself once it is damaged, it does capture the inflows and outflows

of the bridge. This explains why Link 4 is empty shortly after the occurrence of

the earthquake; the outflow from the bridge is reduced immediately to zero. The

initial shock wave due to the merge is of the same magnitude as seen previously.

The open loop model with no earthquake input (Figure 4.4b) does not result in

any congestion detection, because the network is initialized in free flow with a flow
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Figure 4.3: Time-space density plots for medium damage: (a) Before the earthquake
occurs there is a shock that begins at the end of Link 1 due to the merge. When the
earthquake occurs that results in a 25% reduction of traffic capacity of the bridge,
another shock forms at the end of Link 2. (b) Without an earthquake input into
the model or traffic sensor data, the model fails to predict any congestion. (c) With
sensor data, the model accurately predicts the congestion level at places where there
are sensors and detects the shock wave due to the merge. (d) Supplementing the
model with data from the earthquake significantly improves the model even if there
is no sensor data. (e) The estimator in (d) performs better when traffic sensor data
is also used.
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lower than the merge bottleneck capacity. With the addition of traffic sensor data

(Figure 4.4c), congestion levels are accurately detected where traffic sensors are

located and the shock wave due to the merge is detected. However, the magnitude

of the traffic state estimate in cell 15, where the second traffic sensor is located,

is underestimated. This is due to the difference in the density magnitudes of the

sensor measurements, which are based on the true solution (Figure 4.4a), and the

open loop solution (Figure 4.4b). Computationally, this results in a discrepancy

in the estimation. Also, the backward propagation of congestion information can

clearly be seen in Figure 4.4c. When the earthquake input is used in the open loop

model (Figure 4.4d), the shock wave caused by the earthquake is detected, however,

the shock wave due to the merge is nonexistent. When the shock wave propagates

backward to the merge, the resulting shock wave is of a higher magnitude and

faster speed than in the case which results in high damage to the bridge (Figure

4.2d). When traffic sensor data is added to the model (4.4e), the traffic estimates

are improved significantly. However, downstream of the merge (Link 2), the traffic

states appear to be underestimated compared to the true solution. This could

possibly be attributed to a wider distribution of damage state draws (i.e. total and

high damage states) given the true characteristics of the earthquake (Table 4.2).

The filter uses the traffic sensor data to correct some of the underestimated traffic

states downstream of the merge.

In comparing the results of the three experiments with different earthquake sce-

narios (Figures 4.2, 4.3, and 4.4), several interesting observations are noted. Due to

the same road geometry and initial and boundary conditions, the true solution of

the three experiments is exactly the same before the earthquake occurs. The open

model with no earthquake input provides no hint of congestion in any of the experi-

ments. The stronger the earthquake, the greater the traffic capacity reduction of the

bridge, and the larger the magnitude of the resulting congestion, which is intuitive.
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Figure 4.4: Time-space density plots for total damage: (a) Before the earthquake
occurs there is a shock that begins at the end of Link 1 due to the merge. When the
earthquake occurs that results in a 100% reduction of traffic capacity of the bridge,
another shock forms at the end of Link 2. (b) Without an earthquake input into
the model or traffic sensor data, the model fails to predict any congestion. (c) With
sensor data, the model accurately predicts the congestion level at places where there
are sensors and detects the shock wave due to the merge. (d) Supplementing the
model with data from the earthquake significantly improves the model even if there
is no sensor data. (e) The estimator in (d) performs better when traffic sensor data
is also used.
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Having either knowledge of the earthquake input or traffic sensor data is beneficial

for detecting the congestion caused by either the merge or the earthquake, but not

both. Finally, having both the earthquake input and traffic sensor data provides

the best traffic state estimates in all three cases, however when the bridge traffic

capacity is reduced to zero (i.e. total damage), traffic states downstream of the

second sensor are slightly underestimated.

4.6 Quantifying model performance

To quantify the performance of open loop estimators and filters, the model perfor-

mance is evaluated using the BEEQ error score (Li and Zhao, 2005). The BEEQ

of an estimator is a score of recursive estimation improvement for an Nr number

of independent simulation runs indexed by r ∈ {1, · · · , Nr}. It is defined by the

geometric mean of a data set, β =
(∏Nr

r=1 βr

)1/Nr

, which is computed through its

logarithm for numerical reasons:

log β =
1

Nr

Nr∑
r=1

log βr, βr =
‖sr − ŝr‖
‖sr − s̄r‖

, (4.1)

where sr represents the true solution, s̄r represents the prior solution, and ŝr repre-

sents the estimation solution for the rth simulation run. For our purposes, s̄r is the

open loop solution with no knowledge of the earthquake input and ŝr is one of three

solutions: the filter solution with no earthquake input, the open loop solution with

the earthquake input, or the filter solution with the earthquake input. Although

the open loop model with the earthquake input is not technically an estimator, it

is a potential improvement on the open loop model without the earthquake input,

thus we treat it as an estimator. All three solution quantities in Equation (4.1),

sr, ŝr, s̄r ∈ Rmnmax , are vectors that contain the mean densities of the cells for all
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time steps. The formulation of the BEEQ as the geometric mean ensures that er-

ror amplification and error reduction are balanced (Li and Zhao, 2005). Since the

BEEQ is essentially a ratio of the error of the estimation solution to the error of the

prior solution summed over all simulation runs, a good estimator will have a BEEQ

significantly less than unity (Li and Zhao, 2005). A BEEQ value of 1 indicates that

the error of the estimation solution is no different than that of the open loop model

and a BEEQ greater than 1 indicates that the estimation solution has a greater

error than that of the open loop model.

Table 4.5 shows the computed BEEQ values using each definition of ŝ stated

previously for earthquakes that result in medium, high, and total damage to the

bridge. We use Nr = 100 simulation runs. From the table, it is observed that

having traffic data (second column) or the earthquake input (third column) gives

an improvement over the open loop model with no earthquake input and this is

consistent with the graphical solutions (Figures 4.2c and 4.2d) corresponding to

these estimators.

Table 4.5 illustrates several interesting results. For an earthquake that results

in medium damage to the bridge, the BEEQ values suggest that having knowledge

of the earthquake is less beneficial than obtaining data from traffic sensors. For

more severe earthquake events, the importance of the earthquake characteristics

increases relative to the importance of the traffic sensor data, which is suggested by

a decreasing BEEQ when there is knowledge of the earthquake input. This is due

to the fact that, in this specific example, the magnitude of the congestion due to

the merge from Link 1 to Link 2 is of a similar magnitude to the congestion of the

true solution. The increasing severity of damage due to the earthquake does not

affect the magnitude of the initial shock wave until at least time t = 10 minutes

(600 seconds), at the occurrence of the earthquake. Note that this trend is specific

to the setup of our numerical simulation (e.g. road geometry, initial and boundary
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Damage
No earthquake Earthquake Earthquake

Filter Open loop Filter
medium 0.2882 0.7785 0.1159

high 0.4127 0.5552 0.0906
total 0.5476 0.4932 0.1227

Table 4.5: Computed BEEQ values for various estimators for different earthquake
scenarios averaged over 100 experiments

conditions, noise models) and might not be observed in different scenarios.

The fourth column of Table 4.5 suggests that having both the earthquake input

and traffic sensor data makes for the best estimator as the BEEQ for all three

damage scenarios is around 0.10. Put another way, using this estimator results in

about 10% as much error as the open loop solution with no earthquake input, which

is a significant improvement in performance. Using the BEEQ as a measure of filter

performance, the estimator using the earthquake input and traffic sensor data is

numerically validated for the real-time prediction of post-disaster traffic conditions.

4.7 Influence of the number of ensembles

The performance of the EnKF is dependent on the number of ensembles used. Using

too few ensembles might fail to capture the whole distribution, but using too many

could result in very high computational costs, especially for complex systems. Thus,

the performance of the proposed algorithm is also tested with different numbers of

ensembles, N . Table 4.6 shows the running times per simulation, BEEQ values, and

geometric standard deviations, σg, for Nr = 100 simulations for the estimator that

has the earthquake input and traffic sensor data. The assumed damage state of the

bridge due to the earthquake is high.

The second column shows that for each doubling of the number of ensembles

used, the running time approximately doubles. Thus, the number of ensembles
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Number of ensembles, N Running time (min/sim) β σg
25 3.4 0.0931 1.2532
50 6.6 0.0887 1.2578
100 13.0 0.0906 1.2165
200 26.5 0.0917 1.1372
500 68.6 0.0895 1.1141

Table 4.6: BEEQ values and running time for using different amounts of ensembles
for the estimator that has the earthquake input and traffic sensor data

used is a key factor to focus on when looking to reduce computational cost. The

third column is the BEEQ computed using Equation (4.1). The fourth column is

the computed geometric standard deviation of the Nr error ratios used to compute

the BEEQ. Unlike the standard deviation, the geometric standard deviation is a

dimensionless, multiplicative factor. Thus, a data set with no geometric variance

will give a σg of 1. From the table, it is observed that as the number of ensembles

increases, σg generally decreases. For this particular numerical experiment, the

number of ensembles has little effect on the efficacy of the estimator, which means

a lower number of ensembles can be used to produce similar results for a smaller

computational cost. However, since the real-time implementation only runs the

algorithm once (Nr = 1), by using a lower number of ensembles one risks obtaining

an outlier since the resulting geometric standard deviation is higher compared to

that obtained when using a higher number of ensembles.

All simulation results in this thesis were produced using MATLAB R©. The ex-

periments performed in Sections 4.6 and 4.7 were done on an Intel R© CoreTM i7-4770

3.40 GHz CPU and 8 GB of RAM. Parallel computing using four cores was utilized

to run simulations simultaneously, though the authors recognize that the ensembles

themselves could have also been parallelized.
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Chapter 5

Conclusions

In this thesis, we show proof of concept for an estimation technique for determining

the post-disaster traffic behavior due to a reduction of flow from a natural disaster

such as an earthquake. The standard additive noise model of the model prediction

step of sequential estimators is altered using a non-additive model to allow for the

conservation of vehicles of the macroscopic cell-transmission model. An ensemble

Kalman filter is proposed to predict traffic conditions using a stochastic process

which draws earthquake characteristics (magnitude, location) centered around the

true earthquake characteristics for each ensemble. Synthetic traffic data using the

true solution is used to propagate the observation equation in time. Our results

show that there are moderate improvements when either the earthquake input or

traffic sensor data is integrated into the model. We show that having both of these

elements results in a significant improvement in filter performance. The error is

in the filter is approximately 10% of the error in the open loop model with no

earthquake input across the three earthquake objects we tested.

There are several areas which are open for further exploration. In addition to

state estimation, a joint state and parameter estimation problem could result in a

better estimate of the model parameters. This joint state and parameter problem

is known as parameter estimation and requires the state vector to be augmented by

the desired parameters.
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The fragility model is another aspect that could be expanded. Though we use

a univariate model that is only dependent on the peak ground acceleration, there

are also bivariate models which make use of fragility surfaces (Huang et al., 2010).

Using bivariate fragility surfaces may give a more accurate representation of the

probability of being in different damage states.

In terms of a practical application, there are extensions to consider. Although the

results presented in this thesis were only illustrated on a single stretch of roadway,

the forward model we implemented is designed to handle networks including merges

and diverges, which may occur due to intersections or highway on-ramps and off-

ramps. The scalability of the algorithm should also be tested since increasing the

network size would result in higher computational costs and possibly reduced efficacy

of the traffic state estimation.



41

References

M. Akiyama, D. M. Frangopol, M. Arai, and S. Koshimura. Reliability of bridges un-

der tsunami hazards: emphasis on the 2011 Tohoku-Oki earthquake. Earthquake

Spectra, 29(S1):S295–S314, 2013.

B. Anderson and J. Moore. Optimal Filtering. Prentice-Hall, 1979.

J.-W. Bai, M. B. D. Hueste, and P. Gardoni. Probabilistic assessment of structural

damage due to earthquakes for buildings in Mid-America. Journal of Structural

Engineering, 135(10):1155–1163, 2009.
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