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    ABSTRACT 

 

The purpose of this thesis is to report the development of a quantitative second 

harmonic generation technique that quantifies the 2 dimensional spatial 

orientation of collagen fiber samples under dynamic conditions. The technique is 

demonstrated both for a well aligned tendon sample and a randomly aligned, 

sparsely distributed collagen scaffold sample. For a fixed signal-to-noise ratio, the 

applicability of this technique is confirmed for various window sizes (pixel sizes) 

as well as with using a gridded overlay map that allows for the correlations of 

fiber orientations within a given image. Additionally, we adapted a graphics 

processing unit (GPU) to the image analysis with an aim to provide a reduction in 

image processing time. There, we demonstrate the temporal advantage of the 

GPU-based approach by computing the number of frames analyzed per second for 

SHG image videos showing varying fiber orientations. In comparison to a CPU-

based image analysis technique, the GPU-based system results in ~ 10x 

improvement in computational time. This work has direct impact to in vivo 

biological studies by incorporating simultaneous SHG image acquisition and 

analysis.The adaptation of a GPU to the analysis also introduces this approach to 

other quantitative, nonlinear imaging techniques. 
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Chapter 1 

Introduction 

1.1 Overview 

Second harmonic generation (SHG) is a second order nonlinear process where a 

noncentrosymmetric material – a material with no center of symmetry – converts 

a part of the incident light to scattered light at twice the incident frequency. The 

first demonstration of this nonlinear optical technique was performed by Franken 

et al.[1] in the sixties, which was lateradapted to a nonlinear imaging modality. 

Even though the initial experiments constituted imaging inorganic crystals [2, 3], 

the technique soon became popular in imaging biological samples pioneered by 

the work of Freund and Deutsch to image rat tail tendon [Freund]. Since then 

SHG microscopy has continued to be recognized as a versatile imaging technique 

for biological samples, due to its high 3D spatial resolution and high contrast, and 

specificity to some biological structures, such as myosin and fibrillar collagen[4-

6]. Recently SHG has been demonstrated to be an effective and accurate modality 

to ascertain quantitative information from various collagen-based biological 

tissues.  For example, with respect to collagen fiber organization, the preferred 
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orientation, and orientation anisotropy have provided significant information. 

Indeed, these metrics have been applied to obtaining structural information of 

non-pregnant rat cervical tissue[7], differentiating healthy and injured horse 

tendon[8], assessing age related changes in porcine cortical bone[9], and 

quantifying dissimilarities in stromal collagen fiber organization in human breast 

biopsy tissues at various pathological stages [10]. 

In spite of the aforementioned developments, a complete applicability of 

quantitative SHG imaging would require its adaptation to in vivo biological 

processes. To address this, we demonstrate the adaptation of quantitative-SHG 

(Q-SHG) to dynamic conditions, i.e, computation and display of quantitative 

information simultaneously with image acquisition.Performing image acquisition 

and processingsimultaneously provides several advantages over image post 

processing. Primarily, it provides useful information which allows an user to alter 

any imaging parameter based on the quantitative information received,while 

image acquisition is in progress. Additionally, this method could provide added 

efficiency in disease diagnosis by reducing the feedback time between primary 

diagnosis and further action. We believe these benefits would prove to be 

significant for in vivo studies. 

Recently graphics processing units (GPU) have emerged as more efficient 

alternate computational devices to traditional CPUs. Due to its inherent ability to 

provide processing units with parallel computation capabilities, it has gained 
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widespread usage in computational imaging applications where processing time is 

expensive [11-13]. With an aim of taking our Q-SHG imaging system towards a 

video rate analysis, we have incorporated an NVIDIA GPU to our dynamic image 

analysis technique, enabling parallel processing of the dynamic imaging 

algorithm. This improvement in processing time makes our approach attractive to 

other nonlinear imaging modalities that are modified for quantitative analysis.  

 

1.2 Organization of chapters  

This thesis focuses on the development and demonstration of a quantitative SHG 

(Q-SHG) imaging technique under dynamic conditions. Chapter 2 outlines the 

motivation and the background to developing a Q-SHG technique for dynamic 

conditions. Chapter 3 focuses on the development and experimental 

demonstration of the technique to dynamic samples. It includes the methodology 

of dynamic Q-SHG, its application to tendon and scaffold samples under various 

dynamic conditions. Chapter 4 elaborates on the adaptation of a GPU to the 

dynamic Q-SHG technique and discusses in detail on the temporal advantages 

derived from it. Chapter 5 is the general conclusion of the thesis. 
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Chapter 2 

 

Background 

2.1   Motivation 

This section discusses about the motivation behind quantifying the 2D collagen 

fiber orientation. Collagen constitutes approximately a quarter of the total protein 

mass of mammals[14, 15]. As a fibrous and insoluble protein it is found in the 

extra-cellular matrix (ECM) of several significant tissues of the body, such as the 

cornea, sclera, tendon, bone and skin. [8-10, 14-16].  Among the 20 different 

types of collagen present in the human body, collagen type I is the most prevalent 

type. Type I collagen is a fibrillar structure with the ability to withstand strong 

mechanical loads. The spatial organization of collagen fibers in a particular tissue 

can determine the type of mechanical property showcased by that tissue. An 

example of this scenario can be the spatial arrangement of collagen fibers in 

bones. Bones are functionally graded materials, and so the spatial arrangement of 

its constituents change over its volume. In compact cortical bones, collagen fibers 

are packed tightly in concentric rings around each osteon[9, 17]. However a 

different orientation is observed in trabecular bone, where the fibers are oriented 

along the longitudinal direction of the trabecula such that the load is transmitted 

from the diaphysis to the joint along the spongy bone framework in the 
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epiphysis[17]. Thus, quantification of the spatial organization of collagen fibers in 

biological tissues is important to study their mechanical properties and functions.  

 

 

2.2   Quantitative second-harmonic generation imaging 

As mentioned in the previous section, Second-harmonic generation (SHG) is a 

nonlinear optical process. In this process, two input photons of the same 

frequency are simultaneously obliterated to generate a single photon of double the 

frequency. Unlike fluorescence, in SHG the signal is generated from a virtual-to-

ground state transition, which results in no energy absorption during the process. 

Therefore SHG has lower photo toxicity when compared to fluorescence. SHG 

requires a non-centrosymmetric sample being irradiated with a high intensity 

input beam. As such high contrast images of non-centrosymmetricfibrillar 

biological tissues can be obtained via SHG microscopy without the necessity for 

exogenous staining. Because of its minimally invasive requirements for sample 

preparation and high specificity SHG microscopy has become an increasingly 

popular technique for imaging collagen-based biological materials. 
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Fig.2.1: Schematic diagram showing second harmonic generation from a non-centrosymmetric 

collagen fiber [10] 

 

Recently, several efforts have been made to develop quantitative metrics for SHG 

microscopy. For example, the forward-to-backward SHG intensity ratio have been 

obtained to provide information regarding the ionic environment of a 

tissuewhereas polarization SHG  has been used to observe alteration in the 

structure of collagen molecules[18-21]. Apart from these, orientation anisotropy 

and preferred orientation focus on quantifying the spatial arrangement of collagen 

fibers with the potential of providing bio-mechanical properties of various tissues 

[8, 22]. As such, thesemetrics have been used to assess injuries in horse tendon 

[8], explore age-related changes in porcine cortical bone[9] and to detect spatial 

differences in collagen fiber arrangement between normal and malignant human 
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breast biopsy tissues[10]. In view of the promising potential showed by this latter 

quantitative metric, we have developed an image analysis technique that uses the 

intensity gradient of image pixels to calculate the preferred orientation and fiber 

organization.  

 

 

2.3   Dynamic quantitative second-harmonic generation  

To complement the developments obtained in quantitative SHG (Q-SHG) 

imaging of collagen fibers, a complete applicability of a suchtechnique would 

require its expansion to dynamic conditions. Even though there have been 

progress in using SHG imaging for in vivo studies [23-25], to our knowledge, 

there are no reports of dynamicquantitativeSHG imaging, i.e., computing some 

quantitative parameters of interest with simultaneous image acquisition. 

Invariably such a system would present several benefits over a system dependent 

on post image processing. Performing image acquisition and analysis at the same 

time would be beneficial to an end user. Based on the quantitative information 

obtained in real-time the user can choose the parameters of interest, for example, 

fibers of a particular preferred orientation. In addition this technique would 

provide a faster method for initial disease diagnosis by reducing the feedback time 

between primary diagnosis and further diagnostic action. Finally a quantitative 
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study on a dynamic sample would be significant for in vivo studies. Considering 

these benefits we have applied our Q-SHG technique to dynamic conditions.  
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Chapter 3 

Development of dynamic Q-SHG 

 

3.1 Introduction 

3.1.1   Motivation 

As mentioned in the previous chapters SHG microscopy has become increasingly 

recognized in bio-imaging studies for its unique imaging features, namely, high 

3D spatial resolution along with high contrast and specificity to some biological 

structures such as myosin and fibrillar collagen[4-6]. Several approaches have 

been developed to identify useful quantitative metrics for this imaging 

modality[26-31]. For example, recently Fourier-transform-second harmonic 

generation imaging (FT-SHG) has been developed, whereby either 2D or 3D 

spatial-frequency analysis is used to quantify the spatial organization of structures 

at cellular scales (300 nm – 100 µm), particularly type I collagen fibers[7-10, 16, 

22, 32, 33].These efforts have led to the use of metrics, such as the preferred 

orientation (of collagen fibers) to differentiate the structure of healthy and injured 

horse tendons[8] anddetermine structural  changes in cortical bone with time[9]. 

Further efforts have seen the quantification of thediscrepancies in the collagen 

fiber organization in human breast tissues at various pathological stages[10], and 
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the development of amethod of obtaining 3D spatial arrangement of collagen 

fibers, in general, and especially in the cervix[7, 32]. 

 

3.1.2      Background 

Notwithstanding the appreciable developments in quantitative SHG imaging, their 

extension to dynamic situations is required for its complete applicability to 

biological samples. Even though SHG imaging has been used for in vivo 

studiespreviously [23-25], there has been no known reports of real-time 

quantitative SHG imaging, i.e., presenting quantitative parameter(s) of interest 

with simultaneous image acquisition. The simultaneous operation of these two 

processes would allow the user to alter imaging parameters while imaging to suit 

the necessity.Quite clearly, this type of a modality would greatly enhance imaging 

quality and prove to be important for in vivo studies. In addition, simultaneous 

image acquisition and processing could potentially translate into added efficiency 

in disease diagnosis by reducing the feedback time between various stages of 

disease diagnosis.   
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3.1.3   Dynamic Q-SHG  

With an aim to adapt quantitative SHG imaging to eventual in vivo biological 

studies, we examine the experimental conditions that permit quantitative SHG 

imaging under dynamic conditions. We look at two extreme conditions of test 

samples: stained tendon with well-aligned, highly organized collagen fibers and 

unstained, synthesized collagen scaffold. Using these samples, we apply 

quantitative SHG imaging to two dynamic situations. The first determines fiber-

orientation information as the samples are spatially scanned in a plane. The 

second situation computes the same information for a collagen gel sample as it 

dries to form a 2D collagen scaffold assembly. The 2D intensity gradient method 

(which is applied to the intensity of the images in real-space) is employed to 

calculate the preferred orientation. Furthermore, we apply our approach to an 

example application to image and quantitatively analyze stromal collagen fibers 

belonging to individual cores in a standard breast tissue microarray (TMA) 

sample as they are progressively stage scanned, and where each core has been 

clinically classified as either benign or malignant.  

This chapter is organized in the following way: section 3.2 describes the sample 

preparation, experimental setup, and quantitative measures used. Section 3.3 

presents the results and discussion, while section 3.4 gives the conclusion briefly 

summarizing our observations.    
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3.2   Methods 

 

3.2.1 Sample preparation  

 

Tendon, collagen scaffold, and tissue microarray samples were used in this study. 

Porcine tendon tissues were obtained from a local abattoir and embedded and 

preserved in OCT compound at -80° C. Next, the samples were brought to -20° C 

and 4-μm thick sections were cut using a cryostat (Leica CM3050S). They were 

then thawed and stained with a hematoxylene and eosin (H&E) stain. Finally, 

each tissue section was mounted with a permanent mounting media (Permount) 

onto a microscope coverslip (No 1.5). 

The procedure for synthesizing the collagen scaffold follows closely to that 

described in the literature[34]. High concentration type I collagen solution (BD 

Biosciences) was extracted from rat tail tendon. A solution of 50 μL of 10x PBS 

was added to 426 μL of ultra-pure H2O, followed by 0.5 μL of 1 N NaOH and 

23.5 μL of collagen solution. The components were mixed in an eppendorf tube, 

sealed and refrigerated at 4° C for 24 hours. During experimentation, 10 μl 

volumes were transferred onto a coverslip for imaging.  

A breast tissue microarray sample (US Biomax BR1003) was obtained from 

formalin-fixed, paraffin-embedded tissue. The sample comprised 1-mm diameter, 

5-μm thick, cores of histologically variant classes of tissues (e.g., normal, 
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dysplastic, and malignant). The samples were stained with H&E and mounted 

with xylene mounting medium onto a microscope coverslip (No 1.5).  

 

 

3.2.3    Experimental setup & image analysis  

Figure 3.1(a) shows the schematic of the experimental setup used for the purpose 

of this study. All experiments were carried out with a spectrally tunable, 

Ti:sapphire pulsed laser (Spectra-Physics Mai-Tai HP DeepSee), producing 100-

fs duration pulses with 80-MHz repetition rate. The excitation wavelength used in 

this study is spectrally centered at 780 nm, and a combination of half-wave plate 

and polarizer are used to control the input power. A pair of galvanometer-based 

scanning mirrors (GVS012, Thorlabs) is used to scan the beam over a desired 

rectangular area. Scanning incorporates two triangular patterns of the same 

amplitude but with frequencies that are not harmonically related. This ensures, 

fast and uniform illumination over the entire scanned area. Next, the scanned 

beam is reflected by a short pass, 670-nm dichroic beam splitter, and subsequently 

focused onto the sample using a 1.4 NA oil-immersion objective lens (Olympus U 

Plan S Apo 100x). The backward emitted SHG signal is collected by the same 

illumination objective followed by a laser-blocking filter (Semrock FF01-680/sp-

25) and an SHG filter (Semrock FF01-390/18-25). The signal is captured using an 
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EMCCD camera (Hamamatsu EM-CCD C9100-13) with a total pixel area of 512 

x 512 with a constant EM gain of 100x for all images. 

 

 

Fig. 3.1: (a) Schematic of the experimental setup used and  (b) an example SHG image of stained 

tendon sample with associated circular histogram (top right) and FFT spectrum (bottom right). See 

text for details. 

 

Figure 3.1(b) displays the interface used for the real-time quantitative SHG 

analysis.  Continuous frames of 512 x 512 pixel images are captured by the 

EMCCD camera and displayed on the screen. A customized MATLAB code 
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permits simultaneous data analysis with image capture. A 2D intensity gradient 

method[35, 36] is employed to determine the fiber orientation. First, a region of 

interest (ROI) is identified (outlined by the green rectangle). Next, the preferred 

fiber orientation at each pixel within the ROI is obtained by calculating the local 

intensity gradient and the result is subsequently depicted in the form of a circular 

histogram [Fig. 3.1(b), top right corner]. The associated circular variance, which 

varies from 0 to 1, renders a quantitative measurement of orientation isotropy, and 

information about it can be found elsewhere[37, 38]. An FFT spectrum of the ROI 

is also displayed [Fig. 3.1(b), bottom right corner], which can be used to directly 

determine preferred fiber orientation[33]. 

 

 

3.3    Results and discussion 

In order to determine the capabilities of our approach under dynamic conditions, 

we first examine the application of quantitative SHG for two sample types for 

various imaging areas. Specifically, we estimate the acquisition time and 

processing time as a function of input power, sample type, scan area, fiber 

density, and desired signal-to-noise ratio (SNR). Figure 2 summarizes the results 

of this experiment, where (a) corresponds to images of tendon and (b) images of 

collagen scaffold for window sizes (green box) referring to (i) 120 x 120 (ii) 240 
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x 240 (iii) 360 x 360 and (iv) 512 x 512 pixels. As mentioned earlier, these two 

sample types are representative of two of the more extreme conditions: well-

aligned, highly organized, dense (stained) collagen fibers, and randomly aligned, 

fairly disorganized, more sparse (unstained) collagen fibers. To make any 

comparison between the two image types feasible, an SNR of 7 is maintained for 

both samples by using an input power of ~ 3 mW and 40 mW for the tendon and 

scaffold samples, respectively. In terms of the fiber orientation analysis that is 

typical for quantitative SHG, it is clear from Figs. 3.2(a) and (b) that a change in 

the window size does not bring about any significant changes in the preferred 

orientation results (indicated at the bottom of each image). Indeed, we observe 

across all window sizes, the circular variance is lower for tendon than scaffold, 

consistent with the fact that the latter is a more randomly aligned sample. Figure 

3.2(c) depicts the acquisition time per window size for each sample, ranging from 

~ 400 ms to 6 sec. Note that although the EMCCD camera can capture a frame in 

~ 32 ms, we use much longer image acquisition times to account for the low 

conversion efficiency of second-harmonic generation[39]. In addition, we confirm 

that the acquisition time scales with window size for the first three pixel areas; 

however, for 512 x 512 pixels, more than 4x the base window size (120 x 120), 

the corresponding acquisition time is ~12x longer. This comes from the fact that 

the average power is distributed over a larger area, and thus, the corresponding 

laser dwell time per point needs to increase in order to generate SHG.  Therefore, 
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it is expected that for increased window sizes and fixed input power, the 

acquisition time will increase in order to maintain the same SNR between various 

window sizes. Finally, Table 3.1 presents the processing time required for each 

image size for each sample. The time is observed to scale with both the image size 

and the distribution of fibers on the image, as can be observed for tendon and 

scaffold images of the same size; hence, for the same pixel area, tendon sample 

requires a longer processing time compared to the sparsely distributed scaffold 

sample. It should be noted that the three parameters considered, namely, imaging 

window size, SNR, and acquisition time, are all interdependent.  For our 

purposes, we have chosen the SNR to be the fixed parameter since we believe it to 

be the more pragmatic choice to a microscope user. 

Using the information summarized in Fig. 3.2 and Table 3.1, we next consider 

two dynamic situations. A video of the first case was constructed(Media 3.1), 

select frames of which are shown in Fig. 3.3(a). Here, the tendon sample is 

scanned by moving the stage laterally in 5-m steps [relative to the initial position 

(0, 0)] in arbitrary directions, the lateral coordinates (x, y) of which are shown in 

the bottom, right-hand corner of each image. The window size used here is 240 x 

240 pixels, with an acquisition time of 1.2 s per location and a fixed input power. 

The preferred orientation and circular variance are computed simultaneously as 

the sample is scanned. The same procedure is repeated and captured in a 

video(Media 3.2) for the collagen scaffold sample, select frames from which are 
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shown in Fig 3.3(b). A 1.2 s acquisition time per location is also used here, with 

an adjusted input power of 40 mW. Overall, we observe that ~2s is required for 

image acquisition and processing; therefore, dynamic processes that are of the 

order of 2s or longer can be simultaneously captured and analyzed (using our 

metrics) without any tradeoffs.   Again, we observe that for the case of collagen 

scaffold, the circular variance is almost twice that of tendon. 
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Fig. 3.2: SHG images of (a) tendon and (b) collagen scaffold fibers for various pixel areas and a 

fixed SNR of 7. The corresponding pixel areas are: (i) 120 x 120 (ii) 240 x 240 (iii) 360 x 360  and 

(iv) 512 x 512 pixels. The same scale applies to all images. (c) The acquisition time for each 

image area is plotted against the pixel area. 
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Table 3.1Image processing time for various image sizes. 

Image Area 

Image Processing time 

(ms)  

(Square pixels) Tendon Scaffold  

120 x 120 420  280  

240 x 240 570 430  

360 x 360 680 570  

512 x 512 950 750  

 

 

Fig. 3.3:  SHG images of stage-scanned (a) tendon (Media 3.1) and (b) collagen scaffold fibers 

(Media 3.2) at different locations. The lateral coordinates for each image, relative to the initial (0, 

0), are provided in the bottom right hand corner for each frame. The same scale applies to all 

images. See text for additional details. 

 

For the second dynamic situation, we attempt to carry out quantitative-SHG 

imaging of a collagen gel solution in real time, as it dries at room temperature 

(~23°C) over a period of 30 min. In this case, 10 μL of solution dries to form a 2D 
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collagen fiber layer on a microscope coverslip. To visualize this process, the 

objective lens is focused on to the bottom of the coverslip. A video (Media 3.3) is 

captured and select frames are shown in Fig. 3.4. Initially, blurred images are 

observed, consistent with the fact that collagen fibers occupy a 3D volume, 

causing SHG signals to be generated and scattered from various layers within that 

volume. As the fibers begin to settle down, the SNR increases [see Fig. 3.4 (ii)-

(iv)]. In addition, we confirm that the preferred orientation and circular variance, 

our metrics of interest, can easily be computed during drying; note that the 

circular variance decreases with time as more defined fiber structures become 

visible. It is worth mentioning here, that collagen scaffolds are extremely 

important to many areas of tissue and bioengineering, especially for bone repair 

applications. An approach that noninvasively monitors the drying and assembly of 

such fibers in situ, while simultaneously quantifying fiber organization would be 

attractive to these fields, and could ultimately facilitate new strategies in fiber 

scaffold design.   
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Fig. 3.4:  SHG images of collagen scaffold fiber formation (Media 3.3) at different times in (i) 10 

(ii) 11.4 (iii) 11.6 (iv) 12.2 minutes. The same scale applies to all images. 

 

It is interesting to consider how our approach may be useful in a clinical setting. 

Let us consider a scenario where a pathologist would be interested in analyzing 

several tissue biopsies (e.g., breast or skin samples) for malignancy. It would be 

tremendously useful to be able to simultaneously image and analyze each sample 

in order to promptly make an initial recommendation. To simulate such a 

scenario, we next apply quantitative SHG to stromal collagen fibers from breast 

tissue biopsies from various cores in a TMA as the cores are continuously stage 

scanned; such TMA slides offer clinical compatibility and are used for gold-

standard histopathological diagnosis of cancer.  FT-SHG has previously been 

applied to such tissue cores, where it was found that there exists clear differences 

in regularity of fiber orientation between healthy and malignant tissues. 

Specifically, malignant tissues generally have well-directed, organized fibers, and 

healthy tissues exhibit significantly more random organization[10]. In an effort to 

adapt our simultaneous imaging and quantitative analysis method to capture this 

http://www.youtube.com/watch?v=IMj69uquj2c&feature=youtu.be
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difference in fiber orientation, we have applied a gridded overlay map for each 

image as we moved from one core to another of a TMA, to allow for potential 

correlation analysis between fibers from different spatial regions within the same 

image. A video (Media 3.4) is captured and two representative frames are shown 

in Fig. 3.5. Here we use 10 mW of average power, 1.2 s acquisition time, and 512 

x 512 pixel area comprising an 8 x 8 grid (and thus each grid contains 64 pixels). 

Details on 2D quantitative-SHG analysis to calculate localized fiber orientation 

can be found elsewhere[22]. The processing times varied from 300 to 800 ms 

depending on the density of fibers. We confirm in Fig. 3.5 (and the accompanying 

video) that malignant tissues generally have well-directed, organized fibers, and 

healthy tissues exhibit significantly more random organization[10]. 

 

Fig. 3.5:  SHG images of breast tissue samples (Media 3.4) at different cores corresponding to (a) 

malignant (b) healthy tissues. The same scale applies to all images. 

 

 

http://www.youtube.com/watch?v=IMj69uquj2c&feature=youtu.be
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3.4Conclusion 

Q-SHG has beenapplied to several dynamic situations and quantitative metrics of 

interest were calculated. Primarily we have considered two extremes of collagen 

sample types: well-aligned, dense (stained) tendon samples and sparsely 

distributed, randomly aligned (unstained) collagen scaffolds. We first established 

the minimum acquisition time for a fixed input power and SNR of 7, and for 

various window sizes (pixel areas) ranging from 120 x 120 to 512 x 512 pixels. 

The acquisition time scaled linearly with window size for small to moderate pixel 

areas, and increases nonlinearly for the maximum pixel area due to increased laser 

dwell time necessary to generate an SHG signal. Quantitative metrics such as 

preferred fiber orientation and circular variance can be computed simultaneously 

for each sample as an SHG image is acquired. In one case, we computed the 

aforementioned metrics for each sample during lateral stage scanning. Here, we 

established that for a window size of 240 x 240 pixels, average input powers of 3 

mW and 40 mW were required for the tendon and collagen scaffold samples, 

respectively, with a corresponding minimum acquisition time of 1.2 s per frame 

and a processing time from ~ 500 to 700 ms depending on the density of fiber 

distribution. For the second dynamic condition we again determined the desired 

quantitative metrics during a collagen gel drying process. We observed a 

progressively smaller degree of circular variance as the fibers dried and 

assembled on the coverslip.  Our approach was also applied to a simulated clinical 
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scenario by demonstrating quantitative SHG imaging on regularly, stage-scanned 

breast tissue cores in a tissue microarray sample. By analyzing localized fiber 

orientations for each imaged area, we showed that it was possible for our 

approach to discern between healthy and malignant tissues under this dynamic 

condition. We believe that our approach has potential application to real-time 

imaging of other noncentrosymmetric biological structures such as axons for 

neuroimaging studies[40], and collagen fibers during cervical remodeling for 

studies of premature birth[7].  
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Chapter 4 

 

Adaptation of GPU to dynamic Q-SHG 

4.1   Introduction 

4.1.1    Background 

In the previous section we presented the experimental and computational 

requirements for performing Q-SHG imaging under dynamic conditions [41]. It is 

clear from the discussion that the computation time appears to be a substantial 

portion of the total procedure and its reduction would provide significantly more 

quantitative information from the imaging system. Recently graphics processing 

units (GPUs) have emerged as alternate computation devices for faster processing 

compared to standard CPUs. Such GPUs comprise several thousand times more 

processing units or cores compared to conventional computer CPUs, thereby 

permitting all cores to be used to carry out the same desired instructions in 

parallel. This facilitates its usage in various computational imaging applications, 

where processing time is expensive. For example, GPU-based algorithms have 

been used to develop spectral domain and fourier domain optical coherence 

tomography[11-13] techniques with significant reduction in computation time 
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when compared to standard CPU-based algorithms. Similar results have also been 

observed from using the GPU for reconstruction of X-ray computed tomography 

(CT) images of high contrast and precision [42] as well as performing 

deconvolution of 3D confocal microscopic images[43]. As such, the GPU would 

be extremely useful in obtaining quantitative information in real-time from fast 

dynamic imaging applications such as observed in in vivo biological processes. 

 

 

4.1.2    GPU-based dynamic Q-SHG 

In our discussion on the experimental and computational parameters for dynamic 

Q-SHG imaging, we found that for a 512 x 512 pixel area, the preferred 

orientation of collagen fibers in a densely organized tissue specimen captured by 

SHG imaging can be computed within ~ 950 ms using a standard multi core CPU. 

With an aim to obtain significant improvement in computation time, we 

incorporate an NVIDIA GPU to our image analysis system, enabling parallel 

processing of our dynamic SHG image analysis algorithm. As proof-of-concept, 

we designed several synthetic experiments, whereby we applied our GPU-based 

approach to quantitatively analyze consecutive frames from several videos of  512 

x 512 pixel SHG images. In general, the videos are of varying arrangements of 

collagen fiber organization. We compare the computation time obtained using 

GPU versus CPU. Thischapter is organized as follows : section 2 describes the 
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experimental methods and image analysis technique used. Section 3 presents the 

results and discussion, while section 4 provides the conclusion to this chapter. 

 

 

4.2 Methods  

4.2.1 Image Analysis 

We have previously provided a detailed description of our quantitative SHG 

image analysis carried out under dynamic conditions, which can be found 

elsewhere[41]. Briefly, after acquiring a 512 x 512 image, a Gaussian filter is 

applied and the image is subsequently divided into a 16 x 16 grid, whereby each 

grid contains 32 x 32 pixels. For each grid a preferred orientation is calculated 

based on the computed intensity gradient for each pixel within a grid. This 

information can then be used to estimate a global preferred orientation for the 

whole image. The accuracy of the calculated orientations is estimated by 

calculating the circular variance[35-38], a detailed description of which is 

provided in Appendix A. An intensity threshold is set to discriminate background 

from signal in a manner analogous to what we have previously reported[22]. This 

same threshold is used for calculations that are done both within a grid and for the 

global orientation estimate.  Finally, an image is displayed with a gridded overlay, 
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with arrows indicating preferred fiber orientation within each grid and the 

computed average orientation and circular variance being presented.   

MATLAB coupled with Compute Unified Device Architecture (CUDA) 

parallel computing platform was used to develop this code. The parallel 

instructions were written in C programming language, using the NVIDIA CUDA 

library version 5.0[44], and implemented in the GPU while MATLAB was used 

as the host function to acquire the image, transfer image data to and from the 

GPU, and subsequently display the results. The hardware used for implementation 

consisted of an NVIDIA GTX 590 GPU, running on a Windows 7, Core i7-

2600K processor with 32 GB RAM.  This same computer was used for the 

comparisons where GPU-based calculations were compared with CPU-based 

ones. A description of the GPU architecture and the CUDA programming model 

can be found in the CUDA Programming Guide 5.0 [44]. To facilitate its 

adaptation in the GPU architecture, the image analysis procedure was divided into 

three segments known as CUDA kernels as shown in Fig. 1. In the first kernel, the 

acquired 512 x 512 image is divided into a 43x43 grid, each of which is 12x12 

pixels in size. For this kernel, the GPU grid contains 43x43threadblocks, where 

each threadblock in the grid contains 16x16 threads. Each threadblock is assigned 

to apply a Gaussian filter over one image grid. As the pixels in the boundary of a 

grid require contributions from neighboring pixels to apply the Gaussian filter, the 

threadblocks contain one extra thread in each boundary. In the second kernel, the 
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filtered image is divided into a 16x16 grid of 32x32 pixels each, whereby the 

preferred orientation is calculated for each individual grid. In both these two 

kernels individual GPU threadblocks are assigned to  individual image grids, 

where  individual pixels inside the grids are computed upon by individual threads 

in the threadblock; hence, parallel operation of data points is achieved on two 

separate levels. On the first level, all the threadblocks in the GPU multiprocessors 

carry out their computation in parallel, while on the second level, the individual 

threads inside a threadblock also operate in parallel. This essentially means all 

pixels in a grid, and all grids in the image are computed upon simultaneously, thus 

reducing our computation time significantly. Finally, in the third kernel, the 

preferred orientations from the individual grids are used to calculate a global 

preferred orientation. As there are only 256 (16x16) preferred orientation values, 

a single GPU threadblock of 256 threads is sufficient. After performing the 

processing in the GPU, the image along with the quantitative information is 

returned to the CPU. MATLAB instructions are used to display the preferred 

orientation in each block of the 16x16 grid and a circular histogram showing the 

distribution of the preferred orientation values over the complete image. The 

global preferred orientation and the circular variance is also displayed.  
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Figure 4.1: Flow chart of the steps performed in the GPU-based quantitative image analysis 

modality. 

 

4.2.2   Experiment 

Both the GPU-based and the CPU-based code are applied on consecutive frames 

of three videos comprising 512x512-pixel SHG images. In the first video, we 

have consecutive frames showing SHG images of breast biopsy tissue being 

rotated at increments of 20° (relative to the horizontal) between each frame. The 

frame rate of the video is 10 frames per second (fps) and contains 20 images 

running for a total duration of 2 seconds. The contents and distribution of the 

second video is the same as the first one, except that the frame rate of the video is 

set at 33fps.  The third video is of SHG images of various collagen-based 



 

 
 

32 
 

biological tissues, namely porcine tendon, rat cervix, and breast biopsy tissues. 

The frame rate is set at 10 fps, while the number of images and total run time is 

set at 20 images and 2 seconds respectively. 

 

 

4.3.  Results and Discussion 

Figure 4.2 depicts the representative frames from the first video, as well as the 

results obtained by operating the two different computational modalities on it. 

Figure 4.2(a) shows the first 6 frames of the video, while Figs. 4.2(b) show the 

frames that are captured and analyzed by the GPU-based and CPU-based codes in 

two consecutive rows, respectively. It is clear from Fig. 4.2(b) that the GPU-based 

code successfully captures and analyzes all 6 consecutive frames of the video. For 

the given frame rate, this is consistent with the expected computation time of ~ 

100 ms for each image.   In comparison to this result, the CPU-based code only 

acquires the first frame, and fails to capture any of the subsequent frames. This 

observation supports our previously reported fact that the computation time for a 

CPU-based code is ~ 950 ms for a 512 x 512 pixel image[41], indicating that at 

10 fps it would fail to capture the next 9 consecutive frames. The same analytical 

steps were carried out for the second sample video, the results of which  are 

depicted in Fig. 4.2(c). The two consecutive rows in Figs. 4.2(c) shows the frames 
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that are captured by the GPU-based and CPU-based modalities respectively. It is 

observed from Fig. 4.2(c) that for the new video frame rate of 33 fps, the GPU 

fails to capture two out of every three frame of the video It is also observed from 

the second row in Fig. 4.2(c) that the CPU based code could only analyze the first 

frame in this case too, and fails to capture any subsequent frames. 
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Fig. 4.2: Representative frames from a video of SHG images of breast biopsy tissues. (a) The first 

6 consecutive frames in the video, showing fibers that are progressively rotated by 20° with 

respect to the horizontal. Among these, the actual frames captured and analyzed by the GPU-based 

and CPU-based image analysis are shown in (b), where the video frame rate is 10 fps. (c) shows 

the  actual frames captured and analyzed by the GPU-based and CPU-based image analysis when 

the video rate is changed to 33 fps. The scale bar corresponds to 10 μm for all images. These 

results are also compiled in the videos (Media 4.1)and(Media 4.2). See text for additional details. 
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Fig. 4.3: Representative frames from a video of SHG images of several collagen-based tissues (a) 

Frames 1, 3, and 4 are images of human breast biopsy tissues, while frames 2, 5 and 6 are of rat 

cervix and porcine tendon tissues, respectively. (b) and (c) show the frames captured and analyzed 

by the GPU-based and CPU-based codes, respectively. These results are also compiled in a video 

(Media 4.3). The scale bar corresponds to 10 μm for all images. See text for additional details. 

 

Figure 4.3 shows the results obtained from analyzing consecutive frames of a 

video comprising of SHG images of a variety of collagen based tissues. Here, the 

goal is to evaluate the performance of the GPU-based code when SHG images 

vary (in fiber density, orientation and organization) greatly between each 

consecutive image. Again, we observe in Fig. 4.3(b) that the GPU-based code 
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captures and analyzes all consecutive frames from the video irrespective of fiber 

orientation or density, while in Fig. 4.3(c) we see that the CPU-based code could 

only perform its analysis on the first frame. Thus, the processing time for the 

GPU-based approach is not influenced by fiber density and spatial organization. 

 

 

Fig. 4.4 : Image processing time required for the GPU-based analysis compared with the CPU-

based analysis for three different analysis steps.  

 

Figure 4.4 compares the performance in processing time between GPU and CPU-

based approaches for each segment of the analysis.  To get an accurate estimate of 

the processing times, the two modalities are used to analyze 20 SHG images of 
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size 512x512 pixels showing varying degrees of fiber organization and density. 

The processing time for each step for all the images are obtained and their average 

values are used in this comparison. It is observed from Fig. 4.4 that the 

calculation of the preferred orientation of individual image grids (kernel 2) takes 

the longest amount of time for both approaches. As such, to obtain a significant 

reduction in overall computation time, it would be important to reduce the time 

required by kernel 2. Our GPU-based implementation achieves a time 

improvement of ~ 20x for kernel 2, reducing it from ~ 520 ms using CPU to ~ 18 

ms. Application of a Gaussian filter and calculation of global preferred orientation 

were performed ~ 5x and ~ 35x faster, respectively.  The time required to display 

the results (not shown) is the same for both the modalities and it was observed to 

be ~ 50 ms. Overall the GPU-based code performs the analysis at an average of ~ 

10x faster than the CPU-based code.  

It is worth noting that although 512 x 512 pixel images were used for the 

proof-of-concept, the GPU-based code can also be used to analyze images of 

larger pixel sizes without any modification. The image grid size and the number 

of threadblocks in the GPU would scale according to the image size. Individual 

image grids and threadblocks would also contain the same number of pixels and 

threads, respectively. In certain cases, the individual image grid sizes may need to 

be increased to facilitate clear visualization. This would require each thread in a 

threadblock to process more than one pixel. For example, if the image grids 
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contains 64 x 64 pixels, a threadblock of 32 x 32 threads would assign one thread 

to analyze data obtained from four pixels. Note that this would require an 

increased amount of memory in the GPU which is not supported in the current 

version of the GPU that was used in this work. Apart from this, if any further 

quantitative analysis is desired from the SHG images, additional CUDA kernels 

could be constructed, which can be conveniently added to the existing code.   

 

 

4.4. Conclusion 

In this paper, we demonstrated a GPU-based quantitative analysis of SHG images. 

We showed that the preferred orientation of collagen fibers can be determined in 

~ 100 ms, either at the level of individual elements in a 16 x 16 grid or globally 

for a 512 x 512 pixel image. As proof-of-concept we have  applied this modality 

to analyze consecutive frames of two videos of 10 and 33 frames per second, 

respectively. In the first case the GPU-based system successfully captured and 

analyzed all the frames of the video, while in the second case it succeed in 

capturing one in every three frame. In contrast, the same analysis using a standard 

CPU failed to capture all but the first frame in both the videos. Both approaches 

were again compared for a video of SHG images from more complex, collagen-

based structures, with the GPU-based method clearly outperforming the standard 
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method. This improvement in processing time makes our approach attractive to 

other nonlinear imaging modalities that are modified for quantitative analysis. 
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Chapter 5 

Conclusion 

This thesis has reported the development of a quantitative second harmonic 

generation technique that quantifies the 2 dimensional spatial orientation of 

collagen fiber samples under various dynamic conditions. Primarily two extremes 

of collagen sample types were considered, namely the well-aligned, densely 

packed (stained) tendon samples and sparsely distributed, randomly aligned 

(unstained) collagen scaffolds. We first established the minimum acquisition time 

required for a fixed input power and SNR, along with varying window sizes (pixel 

areas) ranging from 120 x 120 to 512 x 512 pixels. It was observed that the image 

acquisition time increased linearly with window size but only for small to modest 

pixel areas. Due to increased laser dwell time necessary to generate SHG signals 

the acquisition time scaled nonlinearly for the maximum pixel area. We computed 

our quantitative metrics of interest, such as preferred fiber orientation and circular 

variance simultaneously for each sample,while an SHG image is acquired. Our 

experimentation with each sample type during lateral stage scanning established 
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that significantly large differences in input power requirements were observed for 

the sparsely distributed and densely packed sample types, corresponding to the 

same image acquisition time of 1.2 s per frame. For a second dynamic condition 

we again determined the desired quantitative metrics during a collagen gel drying 

process. We observed a progressively smaller degree of circular variance as the 

fibers dried and assembled onto the coverslip. With an aim to adapt our technique 

to a clinical setting, we applied the dynamic imaging modality to a simulated 

clinical scenario. This was performed by demonstrating quantitative SHG imaging 

on regularly, stage-scanned breast tissue cores in a tissue microarray sample. By 

analyzing localized fiber orientations for each imaged area, we showed that it was 

possible for our approach to discern between healthy and malignant tissues 

dynamic conditions.  

Additionally, we have incorporated a graphics processing unit (GPU) into our 

image analyzing modality to significantly reduce the computation time. In this 

thesis we also presented the results obtained from this endeavor. We showed that 

the preferred orientation of collagen fibers in a 512 x 512 can be determined in ~ 

100 ms.This presents a ~10x improvement in the computation time compared to 

the previously discussed CPU-based image analyzing modality. As proof-of-

concept this modality was used to analyze consecutive frames of two videos of 10 

and 33 frames per second, respectively. In the first case the GPU-based system 

successfully captured and analyzed all the frames of the video, while in the 
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second case it succeed in capturing one in every three frame. Based on the frame 

rate of the videos, this validates the ~100 ms computation times obtained during 

analysis. In contrast, the same analysis using a standard CPU failed to capture all 

but the first frame in both the videos, as expected due to its ~ 950 ms computation 

times. Both approaches were again compared for a video of SHG images from 

more complex, collagen-based structures, with the GPU-based method clearly 

outperforming the standard method. This improvement in processing time makes 

our approach attractive to other nonlinear imaging modalities that are modified 

for quantitative analysis. 

We believe that our dynamic quantitative imaging approach has potential 

application to real-time imaging of other noncentrosymmetric biological 

structures such as observing the perturbation of dendrites and axons in 

neurons[40]. Additionally, this method would be beneficial for in vivo imaging 

applications[23, 25], where real-time quantitative information is pertinent in 

obtaining accurate information.  
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Appendix A 
 

Calculating preferred orientation  
 

 

The estimation of the preferred orientation of an image grid is carried out in the following steps : 

i. In the first step, a horizontal (𝑑𝐼𝑥 (𝑖,𝑗 )) and vertical (𝑑𝐼𝑦 (𝑖,𝑗 )) intensity gradient is calculated for each 

pixel. The method used is best demonstrated with the help of a 3 x 3 pixel image block, schematically 

displayed in Fig. A.1. Based on the location of each pixel within the image block, a centered, forward 

or a backward difference method is used to calculate the intensity gradient in the horizontal (x-axis) 

and the vertical (y-axis) direction. The relevant formulae are given in Table A.1, where i and j refers to 

the x and y-coordinate of the pixel location, respectively, while h represents each pixel width. As an 

example the intensity gradient for the pixel located in (1,3) can be considered. In this case, the forward 

difference method is used to calculate the intensity gradient in the horizontal direction, utilizing the 

intensities of pixels 1 and 2 - 𝐼 (1,3)and 𝐼 (2,3). Using a similar reasoning, the backward difference 

method is used to calculate the intensity gradient in the vertical direction by using the intensities of 

pixels located in (1,2) and (1,3). But in case of the pixel located in (2,2) the centered difference method 

was used to calculate intensity gradient in both the horizontal and vertical direction. Here, to calculate  

𝑑𝐼 𝑥 (2,2) we have utilized the intensities 𝐼 (1,2) and𝐼 (3,2), while intensities of pixels located in (2,1) and 

(2,3)  were used for calculating 𝑑𝐼 𝑦  (2,2). 

 

 

 
Fig A.1 : Schematic diagram of a 3x3 pixel image block.  
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Table A.1: Formulae used for calculating intensity gradients of image pixels 

 

Gradients Centered Difference Forward Difference Backward Difference 

𝑑𝐼𝑥 (𝑖,𝑗 )  𝑑𝐼𝑥 =
𝐼(𝑖+1,𝑗 ) − 𝐼(𝑖−1,𝑗 )

2ℎ
 𝑑𝐼𝑥 =

𝐼(𝑖+1,𝑗 ) − 𝐼(𝑖,𝑗 )

ℎ
 𝑑𝐼𝑥 =

𝐼(𝑖,𝑗 ) − 𝐼(𝑖−1,𝑗 )

ℎ
 

𝑑𝐼𝑦  (𝑖,𝑗 ) 𝑑𝐼𝑦 =
𝐼(𝑖,𝑗+1) − 𝐼(𝑖,𝑗−1)

2ℎ
 𝑑𝐼𝑦 =

𝐼(𝑖,𝑗+1) − 𝐼(𝑖,𝑗 )

ℎ
 𝑑𝐼𝑦 =

𝐼(𝑖,𝑗 ) − 𝐼(𝑖,𝑗−1)

ℎ
 

 

ii. The angular orientation, 𝜃, of each pixel is calculated using, 

𝜃 = 𝑡𝑎𝑛−1 𝑑𝐼𝑦

𝑑𝐼𝑥
                        (1) 

iii. The preferred orientation for each block is calculated using the angular orientation of each of its 

constituent pixels. The procedure is best explained with an example. Here an image block of 5 pixels is 

considered with arbitrary angular orientation values for each pixel.  The angular orientations are 

displayed in Table A.2 and the orientation is depicted graphically as orientation lines in Fig. A.2. 

 

Table A.2: Angular orientation of pixels in an image block 

Pixel number Angular orientation, 𝜃 (rad) 

1 0.52 

2 2.1 

3 2.36 

4 -2.61 

5 1.92 
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Fig A.2: Angular orientation of the pixels in an image block, represented in a Cartesian co-ordinate system 

 

For clarity in visualization, any angular orientation in the 3
rd

 and 4
th

 quadrant is shifted to the first 

quadrant. In this example, the angular orientation of pixel 4 (-2.61 rad) is in the 3
rd

 quadrant, so it is 

shifted by −𝜋 to the 1
st
 quadrant. The new set of angular orientation values are mentioned in Table 

A.3, and displayed graphically in Fig. A.3. 

Table A.3: Angular orientation of pixels in the 1st and 2nd quadrants 

Pixel No Angular orientation,𝜃 (rad) 

1 0.52 

2 2.1 

3 2.36 

4 0.52 

5 1.92 
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Fig A.3: The angular orientation of all pixels are shifted to the 1st and 2nd quadrant and the angular domain of 0 to 𝜋 is 

divided into n regions (n = 6 in this case). 

 

Next, the angular domain of 0 to π is divided into 6 equally spaced regions. Figure A.3 shows the 

regional divisions by dotted blue lines along with the original orientation lines. The number of regions 

chosen is based on the level of accuracy required in the calculation of circular variance. For each 

region, a separate set of angular orientation data is obtained. Here, the lower of the two orientation 

lines are denoted as the division line (𝜃) and any pixel with its orientation below 𝜃  is shifted by 𝜋, 

while, any orientation value above   𝜃 +  𝜋  is shifted by – 𝜋. It should be noted that this step does not 

change the angular orientation, rather expresses it in a different angular domain. After this step the 

changed set of angular orientations for all the regions are shown in Table A.4.  As an example, for set 

5, the division line is 2.10 rad. So, the first three pixels of is observed to fall below the division line. 

So, the angular orientation values of 0.52, 0.52 and 1.92 were shifted by 𝜋 to 3.66, 3.66 and 5.06 as 

shown in Table A.4 and Fig. A.4. 

 

 

 

 

 

 

 

 

 



 

 
 

47 
 

 

Table A.4: Six sets of angular orientation for six divisions 

Pixels 1 2 3 4 5 

Sets Division 

line (rad) 

Angular orientation, 𝜃 (rad) 

1 0 0.52 0.52 1.92 2.10 2.36 

2 0.53 0.52 0.52 1.92 2.10 2.36 

3 1.06 3.66 3.66 1.92 2.10 1.36 

4 1.59 3.66 2.66 1.92 2.10 2.36 

5 2.10 3.66 3.66 5.06 2.10 2.36 

6 2.65 3.66 3.66 5.06 5.24 5.50 

 

 

 
Fig A.4: Angular orientation for set 5 corresponding to a division line of 2.1 radians. For this set the angular orientations 

for each pixel falls within a region of  2.10<θ< (2.10 + π). 

 

iv. In the next step, the circular variance is calculated. A detailed discussion of this procedure is provided 

elsewhere [37, 38]. Briefly, for each set, the angular orientations are expressed in the complex form, 

(Aexp
(iθ)

). As only the angular orientation is of importance, the amplitude A is considered 1 for all 

cases. 
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          𝒆𝒊𝜽 = 𝒄𝒐𝒔𝜽 + 𝒊 𝒔𝒊𝒏𝜽(2) 

 

 

 𝒆𝒊𝜽 =  𝒄𝒐𝒔𝜽 + 𝒊  𝒔𝒊𝒏𝜽 (3) 

 

The circular variance is calculated using the following formula, 

𝑪 = 𝟏 − 𝑹       (4) 

where, 

𝑅 =
1

𝑛
× ( 𝒄𝒐𝒔𝟐𝜽 +  𝒔𝒊𝒏𝟐𝜽)(5) 

 

The circular variance for the 6 sets of angular orientations in this case is shown in Table A.5. 

 

Table A.5: Calculated Variance 

Sets 1 2 3 4 5 6 

Circular Variance 
0.2989 0.2989 0.2748 0.2748 0.4727 0.2989 

 

v. Finally, the mean angular orientation is calculated for each set individually. All the mean orientation 

values obtained for the different transformed sets, correspond to the same original set of angular 

orientations. However, the mean with the lowest circular variance is identified as the preferred 

orientation. It is seen in Table A.5, the 3
rd

 and 4
th

 set has the lowest variance in this case. If the mean 

orientation for these two sets are calculated, they are observed to be the same value of 2.71 rad or 

~155°. This value is defined as the preferred orientation for the given set of angular orientations. 
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Appendix B 
 

List of supplemental materials 

 
 Media 3.1: Video depicting dynamic quantitative-SHG imaging of a densely packed (stained) tendon sample, 

as it is scanned by moving the stage laterally in 5 μm steps. 1.2 s image acquisition time was used per location. 

 

 Media 3.2: Video displaying dynamic quantitative-SHG imaging of a sparsely distributed (unstained) scaffold 

sample, as it isscanned by moving the stage laterally in 5 μm steps. The image acquisition time was 1.2 s per 

location. 

 

 Media 3.3: Video showcasing quantitative-SHG imaging of a collagen gel solution in real time, as it dries at 

room temperature (~ 23º C) over a period of 30 min. 

 

 Media 3.4: Video displaying dynamic quantitative SHG imaging of breast tissue microarray cores, as it 

isscanned by moving the stage laterally in 5 μm steps. The cores contain healthy and malignant tissues and is 

displayed with a gridded overlay map. 

 

 Media 4.1: Video showing a compilation of the results obtained by applying the CPU-based and GPU-based 

image analysis techniques on a video of SHG images. The video has a frame rate of 10 frames per second (fps) 

and containsSHG images of breast tissue collagen fibers that are progressively rotated by 20 º with respect to 

the horizontal. The frames that are succesfully analyzed by the two modalities are displayed. 

 

 Media 4.2: Video showing a compilation of the results obtained by applying the CPU-based and GPU-based 

image analysis techniques on a video of SHG images. The images are obtained from collagen fibers of breast 

tissue samples, and are progressively rotated by 20º with respect to the horizontal. The video containing the 

imageshas a frame rate of 33 frames per second (fps). It is demonstrated here that, as the video frame rate was 

increased, the GPU-based technique fails to capture 2 out of 3 three frames, which is consistent with the 

computational time previously observed for this technique. 

 

 Media 4.3: Video showing a collection of the results obtained by applying the CPU-based and GPU-based 

image analysis techniques on a video of SHG images. The SHG images are obtained from a variety of collagen 

based tissues, namely the cervix, tendon and breast biopsy tissues. The goal is to evaluate the performance of 

the GPU-based code when the SHG images vary in fiber density, orientation and organization. 

 

 

 

 

 

 



 

 
 

50 
 

 

References 

1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics," 

Phys. Rev. Lett. 7, 118-119 (1961). 

2. J. N. Gannaway, and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical 

microscope," Opt. Quant. Electron. 10, 435-439 (1978). 

3. R. Hellwarth, and P. Christensen, "Nonlinear optical microscopic examination of structure in 

polycrystalline ZnSe," Optics Communications 12, 318-322 (1974). 

4. P. J. Campagnola, and L. M. Loew, "Second-harmonic imaging microscopy for visualizing 

biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003). 

5. M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. 

Schanne-Klein, "Second harmonic imaging and scoring of collagen in fibrotic tissues," Opt. 

Express 15, 4054-4065 (2007). 

6. F. Tiaho, G. Recher, and D. Rouède, "Estimation of helical angles of myosin and collagen by 

second harmonic generation imaging microscopy," Opt. Express 15, 12286-12295 (2007). 

7. T. Y. Lau, H. K. Sangha, E. K. Chien, B. L. McFarlin, A. J. Wagoner Johnson, and K. C. 

Toussaint, "Application of Fourier transform-second-harmonic generation imaging to the rat 

cervix," J. Microsc. 251, 77-83 (2013). 

8. M. Sivaguru, S. Durgam, R. Ambekar, D. Luedtke, G. Fried, A. Stewart, and K. C. Toussaint, 

"Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-

second harmonic generation imaging," Opt. Express 18, 24983-24993 (2010). 

9. R. Ambekar, M. Chittenden, I. Jasiuk, and K. C. Toussaint, "Quantitative second-harmonic 

generation microscopy for imaging porcine cortical bone: Comparison to SEM and its potential 

to investigate age-related changes," Bone 50, 643-650 (2012). 

10. R. Ambekar, T.-Y. Lau, M. Walsh, R. Bhargava, and K. C. Toussaint, "Quantifying collagen 

structure in breast biopsies using second-harmonic generation imaging," Biomed. Opt. Express 

3, 2021-2035 (2012). 



 

 
 

51 
 

11. C. M. O. Y. Wang, M. C. Oliviera, M. S. Islam, A. Ortega and B. H. Park, "GPU accelerated 

real-time multi-functional spectral domain optical coherence tomography system at 1300 nm," 

Opt Express 20, 17 (2012). 

12. N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, and J. Kim, "High speed SD-OCT 

system using GPU accelerated mode for in vivo human eye imaging," Journal of the Optical 

Society of Korea 17, 68-72 (2013). 

13. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, "Performance and scalability of Fourier 

domain optical coherence tomography acceleration using," Applied Optics 50, 1832-1838 

(2011). 

14. A. J. B. Alberts, L. Julian, R. Martin, R. Keith and W. Peter, , Molecular Biology of the Cell 

(Garland Science, 2007). 

15. P. Fratzl, Collagen: Structure and Mechanics (Springer, 2008). 

16. R. Ambekar Ramachandra Rao, M. R. Mehta, and J. K. C. Toussaint, "Quantitative analysis of 

biological tissues using Fourier transform-second-harmonic generation imaging," 75692G-

75692G (2010). 

17. M. F. Young, "Bone matrix proteins: their function, regulation, and relationship to osteoporosis," 

Osteoporosis international : a journal established as result of cooperation between the European 

Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 14 Suppl 3, 

S35-42 (2003). 

18. J. Caetano-Lopes, A. Nery, H. Canhao, J. Duarte, R. Cascao, A. Rodrigues, I. Perpetuo, S. 

Abdulghani, P. Amaral, S. Sakaguchi, Y. Konttinen, L. Graca, M. Vaz, and J. Fonseca, "Chronic 

arthritis leads to disturbances in the bone collagen network," Arthritis Research & Therapy 12, 

R9 (2010). 

19. N. Morishige, N. Yamada, S. Teranishi, T. Chikama, T. Nishida, and A. Takahara, "Detection of 

subepithelial fibrosis associated with corneal stromal edema by second harmonic generation 

imaging microscopy," Investigative Ophthalmology and Visual Science 50, 3145-3150 (2009). 

20. P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-

dependent optical second-harmonic imaging of a rat-tail tendon," Journal of Biomedical Optics 

7, 205-214 (2002). 



 

 
 

52 
 

21. P. J. Su, W. L. Chen, T. H. Li, C. K. Chou, T. H. Chen, Y. Y. Ho, C. H. Huang, S. J. Chang, Y. 

Y. Huang, H. S. Lee, and C. Y. Dong, "The discrimination of type I and type II collagen and the 

label-free imaging of engineered cartilage tissue," Biomaterials 31, 9415-9421 (2010). 

22. R. A. Rao, M. R. Mehta, and K. C. Toussaint, "Fourier transform-second-harmonic generation 

imaging of biological tissues," Opt. Express 17, 14534-14542 (2009). 

23. S. H. Huang, C. D. Hsiao, D. S. Lin, C. Y. Chow, C. J. Chang, and I. Liau, "Imaging of zebrafish 

In Vivo with second-harmonic generation reveals shortened sarcomeres associated with 

myopathy induced by statin," PLoS ONE 6 (2011). 

24. B. Cohen, "Biological imaging: Beyond fluorescence," Nature 467, 407-408 (2010). 

25. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, "Second harmonic generating (SHG) 

nanoprobes for in vivo imaging," Proc. Natl. Acad. Sci. USA 107, 14535-14540 (2010). 

26. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, "Quantitative Second Harmonic Generation 

Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation," Biophys. 

J. 94, 4504-4514 (2008). 

27. C. Xiyi, N. Oleg, P. Sergey, and J. C. Paul, "Second harmonic generation microscopy for 

quantitative analysis of collagen fibrillar structure," Nat. Protoc. 7, 654-669 (2012). 

28. T. Hompland, A. Erikson, M. Lindgren, T. Lindmo, and C. de Lange Davies, "Second-harmonic 

generation in collagen as a potential cancer diagnostic parameter," J. Biomed. Opt. 13, 054050-

054050 (2008). 

29. P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. D. L. Davies, and M. Kildemo, "Quantitative 

characterization of articular cartilage using Mueller matrix imaging and multiphoton 

microscopy," J. Biomed. Opt. 16 (2011). 

30. M. Lilledahl, O. Haugen, C. de Lange Davies, and L. Svaasand, "Characterization of vulnerable 

plaques by multiphoton microscopy," J. Biomed. Opt. 12, 044005 (2007). 

31. M. B. Lilledahl, D. M. Pierce, T. Ricken, G. A. Holzapfel, and C. D. L. Davies, "Structural 

analysis of articular cartilage using multiphoton microscopy: Input for biomechanical modeling," 

IEEE Trans. Med. Imag. 30, 1635-1648 (2011). 

32. T. Y. Lau, R. Ambekar, and K. C. Toussaint, "Quantification of collagen fiber organization 

using three-dimensional Fourier transform-second-harmonic generation imaging," Opt. Express 

20, 21821-21832 (2012). 



 

 
 

53 
 

33. R. A. R. Rao, M. R. Mehta, S. Leithem, and J. K. C. Toussaint, "Quantitative analysis of forward 

and backward second-harmonic images of collagen fibers using Fourier transform second-

harmonic-generation microscopy," Opt. Lett. 34, 3779-3781 (2009). 

34. C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, 

and S. C. George, "Noninvasive Assessment of Collagen Gel Microstructure and Mechanics 

Using Multiphoton Microscopy," Biophys. J. 92, 2212-2222 (2007). 

35. R. Gonzalez, and R. Woods, Digital Image Processing (3rd Edition) (Prentice Hall, 2007). 

36. G. Stockman, and L. G. Shapiro, Computer Vision (Prentice Hall PTR, 2001). 

37. N. I. Fisher, Statistical Analysis of Circular Data (Cambridge University Press, Cambridge, 

1995). 

38. A. S. S. R. Jammalamadaka, Topics in Circular Statistics (World Scientific, Singapore, 2001). 

39. S. Tokutake, Y. Imanishi, and M. Sisido, "Efficiency of Second Harmonic Generation from 

Amino Acids, Peptides, and Polypeptides Carrying Polarizable Aromatic Groups," Mol. Cryst. 

Liq. Cryst. 170, 245-257 (1989). 

40. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. 

Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-

harmonic generation microscopy," Proceedings of the National Academy of Sciences of the 

United States of America 100, 7081-7086 (2003). 

41. M. M. Kabir, V. V. G. Krishna Inavalli, T. Y. Lau, and K. C. Toussaint Jr, "Application of 

quantitative second-harmonic generation microscopy to dynamic conditions," Biomedical Optics 

Express 4, 2546-2554 (2013). 

42. L. A. Flores, V. Vidal, P. Mayo, F. Rodenas, and G. Verdú, "Parallel CT image reconstruction 

based on GPUs," Radiation Physics and Chemistry 95, 247-250 (2014). 

43. M. A. Bruce, and M. J. Butte, "Real-time GPU-based 3D Deconvolution," Optics Express 21, 

4766-4773 (2013). 

44. N. Corporation, "CUDA Programming Guide 5.0," (2014). 

 


