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ABSTRACT 
 

The early postpartal period is characterized by marked changes in hormonal, 

metabolic, and immune/stress-like conditions all of which may contribute to regulating 

dry matter intake (DMI) and the supply of nutrients to mammary gland. Peripartal cows 

are likely to undergo a negative methionine (Met) balance due to increased requirements 

of tissues and cells for methylated compounds and Met for milk protein production. 

Therefore, supplementation of rumen-protected Met during the peripartal period may 

improve yield of milk and protein, and also help coordinate immunometabolic 

adaptations of the cow. Supplementation of rumen-protected Met in the form of 

MetaSmart (MS) or Smartamine (SM) improved milk production at least in part by 

increasing voluntary DMI and perhaps by optimizing the use of body lipid reserves as 

observed in chapter 2. In fact, an overall milk protein and milk fat was positively affected 

by Met supplementation. Improvements in production were accompanied by a faster 

recovery to a positive energy balance coupled with a lower predisposition to develop 

ketosis in Met-supplemented cows, which indicates that overall health was at least not 

compromised and perhaps improved.  

Results from chapter 3 indicate that supplementing Met during the peripartal 

period promoted favorable alterations of inflammatory and oxidative stress status of 

cows. The greater albumin in response to Met-supplementation may indicate enhanced 

liver function and improved AA status. Overall blood and liver biomarkers analyzed 

indicated that improved postpartal performance when feeding SM and MS was due partly 

to a better immunometabolic status.  
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Relative mRNA expression of targeted genes associated with biological processes 

of interest such as the Met cycle, inflammation, and oxidative stress, among others, were 

evaluated in chapter 4. Results indicated that feeding MS or SM to cows during the 

peripartal period could profoundly affect the hepatic transcriptomics of Met metabolism, 

PPARA activation, hepatokines synthesis, and gluconeogenesis.  

To better understand the molecular effects of peripartal Met-supplementation on 

hepatic metabolism in Holstein dairy cows, a microarray platform with advanced 

computational and bioinformatics techniques were used in chapter 5. Hepatic 

transcriptome analysis revealed a high impact on metabolism especially in pathways AA 

metabolism.  

Overall supplementing rumen-protected Met to peripartal dairy cows will improve 

DMI, milk yield and components, and energy balance by enhancing liver function, 

increasing antioxidant capacity, and ameliorating the inflammatory response, and that in 

turn these effects are controlled at the molecular level by cross-talk of gene expression.  
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CHAPTER 1  

LITERATURE REVIEW 

 

INTRODUCTION 

The transition period is associated with the peak incidence of production 

problems, metabolic disorders, and infectious diseases in dairy cows (Drackley, 1999). 

During this time the cow’s immune system seems to be suppressed; it is apparent that 

metabolic challenges associated with the onset of lactation are factors capable of 

affecting immune function. However the reasons for this state are not entirely clear (Goff, 

2006). The hormonal changes within the days leading to calving (i.e. decreased insulin) 

coupled with negative energy balance has been associated with pronounced mobilization 

of fatty acids in adipose tissue towards the liver, thus, causing marked elevations in blood 

non-esterified fatty acids (NEFA) and hydroxybutyrate (BHBA) concentrations 

(Drackley et al., 2001). Prepartal level of dietary energy can potentially affect the 

postpartal rate of lipolysis/esterification in adipose tissue and, thus, the amount of NEFA 

released into blood and available for metabolism in liver (Drackley et al., 2005). The 

current recommended feeding practices (NRC, 2001) for pregnant non-lactating cows 

have been questioned because increasing amounts of moderate- to high-energy diets (i.e., 

those more similar to lactation diets in the content of energy) during the last 3 wk 

postpartum have largely failed to overcome peripartal health problems, excessive body 

condition loss after calving, or declining fertility (Beever, 2006).  

Besides prepartal energy intake control, Methionine (Met) supplementation to the 

metabolizable Met pool of peripartal cows has been recently evaluated (Socha et al., 
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2005; Ordway et al., 2009). Research has shown that this could increase both the sparing 

of essential amino acids (EAA) pool in a cow with low dry matter intake (DMI), and the 

export of lipids from liver. Current prepartal feeding practices can lead to elevated 

intakes of energy, which can increase fat deposition in the viscera and upon parturition 

lead to compromised liver metabolism (Drackley et al., 2005). Therefore, our general 

hypothesis was that supplementing rumen-protected Met to peripartal dairy cows will 

improve DMI, milk yield and components, and energy balance by enhancing liver 

function, increasing antioxidant capacity, and ameliorating inflammatory response, and 

that in turn these effects are controlled at the molecular level by cross-talk of gene 

expression.  

 

Transition period  

The transition period, as defined by Drackley (1999), is the most challenging 

stage in the lactation cycle when most metabolic disorders and infectious diseases occur.  

Primarily, this is due to several conditions including immunosuppression, changes in 

endocrine status, and decrease in dry matter intake (DMI) that collide during this relative 

short period of time between late gestation and early lactation (Grummer, 1995; 

Drackley, 1999).  Most of these negative effects occur during the last 3 wk of gestation 

until 3 wk after parturition, which in turn has defined the length of the transition period 

(Grummer, 1995; Drackley, 1999).  
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Physiological regulation and adaptations of the periparturient cow 

Late in pregnancy and in early lactation, the nutrient demand increases quite 

considerably. In late pregnancy nutrient demand increases as a result of fetal 

development, but at the onset of lactation the nutrient demand increases dramatically 

(Ingvartsen, 2006). This triggers a coordinated response of biological processes in 

different tissues resulting in metabolic changes to ensure high milk yield concurrently 

with maintenance of homeostasis (Ingvartsen, 2006). From a deductive standpoint, the 

transition period may be broken down into three main components: from 3 wk to 

parturition (close-up), calving time, and calving to 3 wk in lactation (fresh); in particular 

this may give a better insight into the physiological and metabolic adaptations but also 

allows more accurate interpretations from research experiments.  

As the cow enters the close-up period, nutrient requirements for pregnancy and 

colostrogenesis increase exponentially (Bauman and Currie, 1980; Bell, 1995), while 

DMI often decreases over time due to several factors such as physical compression of the 

rumen from the growing fetus and uterus as well as endocrine and metabolic changes.  

These include decreasing insulin, and increasing glucocorticoids, growth hormone, and 

non-esterified fatty acids (NEFA). At the same time tissue sensitivity to glucocorticoids 

increases and sensitivity to insulin decreases (Bell, 1995; Ingvartsen and Andersen, 

2000). This array of changes has been described by Bauman and Currie (1980) as 

homeorhesis, a coordinated control in metabolism of body tissues necessary to support a 

physiological state. This underlines the importance of the close-up period to “prime” the 

cow for her next lactation. In contrast, at calving the cow will experience the most drastic 

and abrupt hormonal and physiological changes during the entire lactation. Therefore, 
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abundant literature (Gundelach et al., 2009; Paolucci et al., 2010) has underlined this 

relative short period of time as a major checkpoint to prevent infectious diseases and 

metabolic disorders and eventually transduce an improvement of both productive and 

reproductive performance of the cow. Finally, the fresh period represents an additional 

adaptation period for the transition cow, where further increases in the nutrient demand 

sustains a constantly increasing exportation of nutrients through milk production. For 

instance, a cow with a maximum milk yield of 50 kg secretes approximately 2 kg of milk 

fat daily, 1.6 kg of milk protein, 2.5 kg of lactose, 65 g of Ca, 50 g of P, and 8 g of Mg 

daily, which, of course, increases the demand for dietary energy, protein and minerals 

(Ingvartsen, 2006).   

 

Energy balance and metabolism 

Energy balance has been conventionally characterized as the balance between 

energy needs and energy supply (Grummer, 1993; Ingvartsen and Andersen, 2000; 

Janovick and Drackley, 2010). Although pregnancy requirements increase exponentially 

during late gestation, energy intake is likely sufficient to sustain pregnancy until 1 wk 

prepartum (Grummer, 1995); on the contrary energy intake shortly after calving is not 

adequate to sustain milk production requirements. In fact, negative energy balance (NEB) 

is universal among dairy cows for a transient period of days around calving, and the 

extent of this condition may predispose cows to metabolic disorders. The latter is 

associated with a greater breach in energy balance between energy intake and increased 

energy requirements before and after calving for fetal growth and milk production, 

respectively. Consequently, NEB precipitated by the lactating mammary gland places a 
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large demand on the body and requires orchestrated changes to ensure that needs for milk 

production are met.  

 

Canonical metabolism during the postpartum period 

During extended episodes of NEB the rate of lipid esterification in adipose tissues 

is lower than the rate of lipolysis. During the postpartum period blood NEFA 

concentrations commonly increase, where NEFA are initially hydrolyzed from adipose 

tissue triglycerides (TAG) and then transported through the bloodstream to peripheral 

tissues for use as an energy source. However, the liver is the most important site for 

removal of NEFA from circulation (Bell, 1979). Extreme rates of lipid mobilization lead 

to increased uptake of NEFA by liver and increased TAG accumulation (Drackley, 1999). 

Once taken up by liver, NEFA have several fates including secretion in bile, oxidization 

to CO2, partial oxidation to ketone bodies, storage in the liver as TAG, or secretion as 

lipoproteins (Emery et al., 1992). Biliary lipid secretion by ruminant liver is a minor 

source of fatty acid removal from the liver primarily as phosphatidylcholine for dietary 

FA absorption in the small intestine (Christie, 1978). Oxidation and partial oxidation are 

initiated by cytosolic NEFA being activated to fatty acyl-CoA by the enzyme acyl-CoA 

synthase. Translocation of the fatty acyl-CoA into the mitochondria matrix, where β-

oxidation will occur, is carried out by a carnitine shuttle involving carnitine 

palmitoyltransferase I (CPT-I) and carnitine palmitoyltransferase II (CPT-II), where 

CPT-I converts fatty acyl-CoA into acylcarnitine that can be transported over the internal 

mitochondrial membrane and CPT-II, in the internal membrane, re-converts acylcarnitine 

into acyl-CoA (Ingvartsen, 2006). The product of β-oxidation of acyl-CoA is acetyl-CoA, 



 6 

which can be further oxidized for energy in the citric acid (TCA) cycle. However, fatty 

liver can develop when the hepatic uptake of NEFA exceeds the oxidation and secretion 

of lipids by the liver (Bobe et al., 2004). Additionally, if the amount of acetyl-CoA 

generated via fatty acid β-oxidation overwhelms the capacity of the TCA cycle or if the 

normal activity of the TCA cycle is truncated due to lower amounts of intermediate 

components such as oxaloacetate, then acetyl-CoA will be used for biosynthesis of 

ketone bodies (Drackley, 1999).  

 

Ketosis 

Ketogenesis has been associated with the degree of NEFA infiltration (West, 1990). 

The ketone bodies acetoacetate (ACAC), β-hydroxybutyrate (BHBA), and acetone are 

then exported from the liver into the blood (Bell, 1979). If the rate of ketone body uptake 

by peripheral tissues is lower that the rate of hepatic ketone body production then an 

increase in the concentration of ketone bodies in blood will be observes, also known as 

hyperketonemia (Ingvartsen, 2006).  

 

Fatty liver and lipotropic nutrients 

Fate of newly synthesized TAG in the liver between secretion and storage has been 

discussed extensively (Grummer, 1993; Drackley, 1999; Ingvartsen, 2006) as a major 

determinant of the onset of fatty liver or “fat cow syndrome” (Bauchart et al., 1996; 

Hocquette and Bauchart, 1999; Bobe et al., 2004).  Hepatic secretion of TAG in the form 

of lipoproteins, of which very low density lipoproteins (VLDL) constitutes the largest 

part (Ingvartsen, 2006), occurs in most species but it is well known that ruminants have a 
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small capacity to synthesize VLDL (Kleppe et al., 1988; Pullen et al., 1990). Perhaps this 

is related to a natural inadequacy of some the constituents of VLDL, such as TAG, 

cholesterol, phospholipids, and apolipoproteins. In fact, it was suggested (Marcos et al., 

1990) that the latter is reduced during cases of fatty liver. Similarly, precursors of 

phospholipids, e.g., choline, have been identified as promoters of VLDL secretion in rats 

(Yao and Vance, 1990), and comparable effects have been suggested in dairy cattle 

(Grummer, 2008). Finally, apolipoproteins such as apolipoprotein B100 and apolipoprotein 

E play important roles in the nascent VLDL in terms of stabilization and the 

assembly/secretion cascade (Fazio and Yao, 1995; Bernabucci et al., 2004). In parallel to 

this finding, methionine (Met) supplementation has been observed to exert lipotropic 

effects in cows (Durand et al., 1992). 

  

Peroxisomal β-oxidation 

Besides mitochondrial oxidation of fatty acids, peroxisomal β-oxidation can 

account for up to 50% of initial β-oxidation in cows in contrast to 26% in rats (Grum et 

al., 1994). This pathway is similar to mitochondrial oxidation except the first step is 

catalyzed by acyl-CoA oxidase, producing hydrogen peroxide (H2O2) instead of NAD, 

and oxidation is not coupled to an electron transport chain so less ATP is produced 

(Drackley, 1999). Thus, peroxisomal β-oxidation may play an important role in processes 

such as oxidative stress, by promoting reactive oxygen metabolites (ROM) such as H202 

and further hepatic accumulation of ROM could lead to tissue damage and inflammation.  
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The immune system 

The immune system of vertebrates consists of a number of organs and cell types 

that specialize in pathogen recognition and elimination as a defense mechanism 

(Perdigon et al., 1995). The immune system can be divided into two systems: 1) innate 

immunity and 2) adaptive immunity (Sordillo et al., 1997).  Innate immunity is rapidly 

activated and is the primary immune defense in the early stages of an infection. Innate 

immunity is carried by leukocytes such as polymorphonuclear neutrophils (PMN) and 

macrophages among others (Paape et al., 1991). In contrast, the adaptive immune system 

relies on bone marrow-derived and thymus-derived lymphocytes (B cells and T cells, 

respectively) that generate distinct and unique receptors during development by 

rearrangement and rejoining of a relatively small number of genes in a ‘combination 

gene’ encoding the receptor. This ability to modify the immune response to substances 

encountered in multiple occasions is the basis for immunologic memory, one of the 

hallmarks distinguishing the adaptive from the innate immune system (Doan, 2013).  

 

Polymorphonuclear neutrophils 

Granulocytes, a subcategory of leukocytes, comprise PMN, eosinophils, and 

basophils based on differential cytoplasmic characteristics and cellular morphology. For 

example, PMN present azurophilic granulocytes and a multilobed nucleus (Goldsby et al., 

2007).  The PMN constitute 50% to 70% of circulating leukocytes. Before circulation, 

PMN are synthesized via hematopoiesis and matured in the bone marrow, a process that 

takes about ~14 d (Bainton et al., 1971). Once released in the peripheral blood PMN can 

circulate for 7 to 10 h before migrating into tissues undergoing inflammation or an acute 
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phase response, where PMN have a life span of only a few days (Paape et al., 2002; 

Goldsby et al., 2007). In response to an infection the bone marrow will release significant 

number of PMN (leukocytosis). Upon pathogen recognition PMN will eliminate the 

pathogen by phagocytosis, a process that involves engulfing and killing pathogens via 

production of ROM. Because ROM is non-specific to pathogens, they can also damage 

the host’s cells tissues. Therefore, the life span of PMN is tightly regulated in order to 

minimize host tissue damage (Capuco et al., 1986). 

 

Macrophages 

After being synthesized in the bone marrow, promonocytes are released into the 

bloodstream where they differentiate in mature monocytes (MO). Once they migrate into 

tissues, MO differentiate into tissue-specific macrophages, for example intestinal 

macrophages in the gut, Kupffer cells in the liver, and osteoclasts in bone (Goldsby et al., 

2007). Although macrophages can be activated by a variety of stimuli including 

cytokines from epithelium and white blood cells (Paape et al., 2000) the difference 

between activated and non-activated macrophages is substantial. For example, activated 

macrophages have greater phagocytic activity, increased ability to kill ingested microbes, 

increased secretion of inflammatory mediators, and expression of higher levels of class II 

MHC molecules, allowing them increased ability to activate T cells through the antigen-

presenting process (Goldsby et al., 2007). Therefore, upon activation, macrophages will 

1) detect and recognize non-specific foreign pathogens; 2) release cytokines that will 

initiate immune response as well as recruit PMN to the site of infection; 3) phagocytize 

and kill invading pathogens; and 4) serve as a bridge between the innate and adaptive 
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immune response through antigen presentation to activate T cells (Rainard and Riollet, 

2006).   

 

Lymphocytes 

Lymphocytes constitute 20% to 40% of the body’s white blood cells and 99% of 

the cells in the lymph (Goldsby et al., 2007). Lymphocytes are produced in bone marrow 

by white blood cells through hematopoiesis and become activated due to response to 

local antigenic stimulation (Sordillo and Streicher, 2002). They proliferate and recognize 

foreign antigens through membrane receptors. Lymphocytes consist of T and B 

lymphocytes (Sordillo et al., 1997). The T cells can be sub divided into T-helper and T-

cytotoxic (CTL) lymphocytes. The T-helper cells produce cytokines, such as interleukin- 

2 (IL-2) and interferons (IFN), which are crucial for an effective cell-mediated immune 

response. The B lymphocytes differentiate to produce proteins called antibodies or 

immunoglobulins (Ig) and effector B cells, or plasma cells (Sordillo et al., 1997).  Plasma 

cells are central molecules of the specific immunity that have a short half-life and that 

produce and secrete antibodies. 

 

Infection and the innate immune response 

In general, an acute inflammatory response has a rapid onset and lasts a short period 

of time, which is generally followed by a systemic reaction known as the acute-phase 

response. When pathogens trespass natural barriers such as skin and mucous membranes, 

the injured tissue will initiate a cascade of events known as the inflammatory response.  

Within minutes the damaged tissue will increase the vascular diameter (vasodilation), 
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consequently increasing the blood flow to the area. This, coupled with the release of 

chemotactic factors, will attract leukocytes to the site of infection. It is likely that a small 

number of tissue macrophages in the vicinity will arrive first. Macrophages will be 

activated by gamma interferon (released from T-helper cells), antigens produced via 

phagocytosis, or by components of bacterial cell walls such as lipopolysaccharide (LPS) 

or lipoteichoic acid (LTA) on Gram-negative and Gram-positive bacteria, respectively 

(Schroder et al., 2003). Activated macrophages release a broad spectrum of mediators in 

which cytokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF) play an 

important role recruiting additional immune cells (Baumann and Gauldie, 1994). 

Consequently, these cytokines will induce the expression of glycoproteins such as E-

selectin and P-selectin in the tissue endothelial cells. Then, the circulating neutrophils 

express mucins such as PSGL-1 that will bind to either E- and P-selectin. Following this 

fundamental PMN-endothelial interaction during the inflammatory response, the PMN 

will adhere to endothelial cells in the inflamed region and pass through the walls of 

capillaries into the tissue spaces, through a process call extravasation. Neutrophil 

extravasation can be divided into four steps: 1) rolling, 2) activation by chemoattractant 

stimulus, 3) arrest and adhesion, and 4) trans-endothelial migration. Rolling is initiated 

during PMN-endothelial low affinity interactions between glycoproteins and mucins. As 

the PMN rolls over the inflamed region it will encounter chemoattractants and 

chemokines such as IL-8 that in turn will trigger the G-protein-mediated activating signal 

that leads to a conformational change in the integrin adhesion molecules, resulting in 

neutrophil strong affinity adhesion (between β2 integrins and ICAMs from PMN and 

endothelium, respectively) and subsequent transendothelial migration (Goldsby et al., 
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2007).  Once the endothelial barrier has been traversed, the PMN submerge into a 

complex soup of chemoattractants and inflammatory stimulants, both host derived and of 

pathogenic origin. In the interstitial space, the PMN follows chemotactic gradients 

toward the invading microbes.  During this process several chemokines (e.g IL-8), 

pathogen-derived chemoattractants (e.g. fMLP), and specific pathogen-recognition 

receptors (e.g. TLRs) will further activate the PMN oxidative burst machinery and 

enhance effective functional responses in PMN (Amulic et al., 2012). Upon finally 

reaching a point of highest chemoattractant concentration, the neutrophil halts and begins 

the final release of its antimicrobial arsenal; the neutrophil is now fully functional. At this 

stage the primary killing functions are phagocytosis, degranulation, NETosis 

(Neutrophils extracellular traps; (Amulic et al., 2012). The deployment of PMN is tightly 

regulated since PMNs not only are destructive toward invading microbes but also towards 

host cells. Therefore, resolution of inflammation is an active process that limits further 

leukocyte infiltration and removes apoptotic cells from inflamed sites. The latter is 

carried out mainly by macrophages that upon phagocytosis of apoptotic PMN will be re-

programmed to adopt an anti-inflammatory phenotype. This process is essential for 

maintenance of tissue homeostasis and, if impeded, leads to unresolved inflammation, a 

problematic condition that contributes to many diseases (Amulic et al., 2012). 

 

Changes in immunometabolic and innate immune response 

The inflammatory response provides early protection following infection or tissue 

injury by restricting the tissue damage to the affected site. The inflammatory response 

involves both localized and systemic responses. Here, the mechanism by which the 
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systemic response interacts with the innate immune system will be discussed with a focus 

on the transition period. The most common phenomena during a systemic response, also 

known as acute phase response, include fever, leukocytosis, and the over- or under-

expression of a large family of structurally un-related proteins, the acute phase proteins 

(APP) (Ceciliani et al., 2012). The liver is a central organ during an acute phase response 

in the organism. It is responsible for determining the level of essential metabolites during 

the critical stages of stress. The APP posses a pathogen pattern recognition capacity and 

their main role is the activation of the complement system cascade that concludes in the 

pathogen destruction (Goldsby et al., 2007). Most of the APP concentration increase 

during inflammation (positive APP); this group includes fribrinogen (FBG), α1-acid 

glycoprotein (AGP), haptoglobin (HP), α1-proteinase inhibitor (API), α1-

antichymotrypsin (ACT), C-reactive protein (CRP), C3 complement (C3C), serum 

amyloid A (SAA), α2-macroglobulin (A2M) and α1-cysteine proteinase inhibitor (CPI). 

Oppositely, the concentration of some APP decrease (negative APP) during 

inflammation; these proteins include albumin (BSA) and transferrin (Koj et al., 1988; 

Bertoni et al., 2008). As mentioned above tissue macrophages will release the first wave 

of cytokines that includes IL-1 and TNFα and a small amount of IL-6. Absorption of the 

first wave of cytokines into surrounding cells is followed by a second wave of cytokine 

release, including a large amount of IL-6 that promotes massive production of APP by 

hepatocytes (Parker and Picut, 2005). Additionally, Mackiewicz (1992) proposed other 

mediators of APP production, including IL-1, insulin-like growth factors (IGF), and 

glucocorticoids. In fact, these mediators can be grouped into four major categories: IL-6 

type cytokines, IL-1 type cytokines, glucocorticoids, and growth factors (Baumann and 
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Gauldie, 1994). Inteleukin-6 type cytokines include IL-6, interleukin-11, leukemia 

inhibitor factor (LIF), oncostatin M (OSM) and ciliary neutrophic factor (CNTF); these 

groups, in particular IL-6, have been recognized to be the principal regulator of most APP 

including HP, FBG, API and A2M (Mackiewicz, 1992). The IL-1 type cytokines (i.e. IL-

1α, IL-1β, TNFα and TNFβ) regulate the AGP, SAA and CRP (Baumann and Gauldie, 

1994). Glucocorticoids stimulate the expression of APP directly (AGP) and indirectly by 

enhancing the effect of the IL-1 and IL-6 types (Sayers et al., 1990). Finally the growth 

factors include IGF, insulin, hepatocyte growth factor (HGF), fibroblast growth factor 

(FGF) and transforming growth factor-β1 (TGF-β1). These mediators are able to 

suppress IL-1 and IL-6 type cytokines, having an indirect impact on the APP 

(Mackiewicz et al., 1990).  

The periparturient cow is regarded as a immune-compromised animal, characterized 

by inflammatory conditions such as infectious diseases and metabolic disorders that often 

result in proinflammatory cytokine release, e.g. IL-1, IL-6, and TNFα (Bertoni et al., 

2008). In turn, any increased amount and time of exposure to these proinflammatory 

cytokines will likely induce the hepatic production of positive APP (e.g. haptoglobin and 

ceruloplasmin) or negative APP (e.g. albumin, retinol binding protein, apolipoproteins) 

(Drackley et al., 2005; Bionaz et al., 2007; Bertoni et al., 2008). The physiological 

function of many APP is still not completely understood but some of these proteins are 

part of the innate immune system (Goldsby et al., 2007). In fact, the most sensitive acute 

phase proteins are HP and SAA, the concentration of which in serum can increase over 

100-fold in response to acute inflammation. Also, a moderate APP in cattle is AGP, 

which has a lower relative increase indicating chronic conditions (Pyorala, 2003). 
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Haptoglobin is mostly produced in the liver and has been identified as a hemoglobin 

binding protein, which essentially prevents hemoglobin-driven oxidative tissue damage 

during intravascular hemolysis due to iron stabilization of the hemoglobin and preventing 

dissociation of ferric heme from globin (Melamed-Frank et al., 2001). In the same 

context, haptoglobin can exert an anti-inflammatory function through the haptoglobin-

hemoglobin complex by binding to monocytes/macrophages, inducing the release of anti-

inflammatory mediators such as in IL-10 (Ceciliani et al., 2012) . Additionally, 

haptoglobin can down-regulate the activity of PMN by inhibiting both lipoxygenase and 

cycloxygenase (Saeed et al., 2007). Haptoglobin concentration in healthy bovine plasma 

is commonly under 0.1 g/L; in contrast, during the onset of acute phase response, the 

concentration of haptoglobin increased to 1.62 ± 0.47 g/L (Ceciliani et al., 2012) . Also, 

within the same range Trevisi et al. (2010) observed concentrations of haptoglobin of 

0.14 ± 0.1 and 0.75 ± 0.6 for pre-calving and post-calving, respectively, for cows with 

lower liver functionality based on inflammatory and immune parameters in blood and 

milk. Therefore, haptoglobin is an important APP during peripeturient period.  

  The SAA is so named due to its involvement in reactive amyloidosis (Ceciliani et 

al., 2012) , which is associated with the accumulation of insoluble proteins sharing 

structural traits, usually inappropriate protein folding. They have been classified as acute 

phase SAA (A-SAA) and the constitutive SAA (C-SAA). Three genes, i.e. SAA1, SAA2, 

and SAA3 encode A-SAA, while SAA4 encodes for C-SAA. During the induction of acute 

phase response by pro-inflammatory cytokines such as IL6 and TNFα the liver produces 

SAA1 and SAA2 (Uhlar and Whitehead, 1999). Although other biological functions of 

SAA are still to be uncovered, at least three main functions have been explored, 
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encompassing binding of cholesterol, immunomodulatory activity and opsonization. 

From a structural standpoint SAA is an apolipoprotein, thus it can replace ApoA1 in 

HDL after being synthesized (A-SAA) during an acute phase response, resulting in the 

uptake and removal of cholesterol from the inflammatory site (Coetzee et al., 1986). 

Enhancing cholesterol binding is especially important to reduce the accumulation of 

atheriosclerotic plaques from dying cells (Manley et al., 2006). Additionally, SAA has 

been associated to exert effects on immune cells such as neutrophils and monocytes by 

acting as a chemoattractant and mediating migration, adhesion and tissue infiltration 

(Badolato et al., 1994). Human SAA can act as a pathogenic recognition protein by 

opsonizing a wide range of gram-negative bacteria (Ceciliani et al., 2012) . Unlike 

human, the range of bovine SAA activity is probably wider, since it is directed toward 

both gram-negative and gram-positive bacteria. Under healthy conditions SAA 

concentration in bovine blood has been reported to be around 1.3 ± 0.4 mg/L, which can 

increase to 115 ± 37 mg/L under acute phase conditions (Ceciliani et al., 2012) . 

Comparably, Meglia et al. (2005) observed an increase from 2.4 ± 1.4 mg/L at -10 to -7 

day prepartum to 77.5 ± 1.3 mg/L between 0 and 3 days postpartum. Furthermore, cows 

in early lactation that had been diagnosed with left or right displaced abomasum had an 

increase of 43 mg/L and 78 mg/L in SAA compared to healthy cows (Guzelbektes et al., 

2010).  Besides Hp and SAA, several other positive acute phase response proteins such as 

AGP, LBP, and ceruloplasmin have been studied in order to extrapolate their known 

function to the context of the periparturient cow.  
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Nutritional management of the periparturient cow 

Previous reviews (Drackley, 1999; Bobe et al., 2004; Ingvartsen, 2006) have 

provided comprehensive and insightful knowledge not only about the condition of cows 

undergoing the transition from pregnant to early lactation but also suggestions on what 

nutritional management approaches can be taken to minimize the incidence of metabolic 

and reproductive related disorders or diseases postpartum. One of the main conclusions 

pointed out by Drackley (1999) is that prepartum intake has a major effect on postpartum 

DMI and periparturient lipid metabolism, that in turn have a direct influence on DMI and 

incidence of health disorders. Later, in the same context, Ingvartsen (2006) suggested that 

because of the link between body fatness at calving and subsequent degree of lipid 

mobilization, avoiding prepartum over-conditioning of cows will eventually decrease the 

risk of developing health disorders. However, other factors such as hormonal changes and 

incidence of infections during parturition can increase mobilization of NEFA from 

adipose tissue (Goff and Horst, 1997). Therefore, besides manipulation of energy intake 

prepartum in order to control body-fatness, additionally interest has been directed to 

enhancing clearance of TAG from liver via VLDL synthesis and export into bloodstream 

(Bobe et al., 2004). Thus, lipotropic factors such as certain amino acids (AA), propylene 

glycol, niacin, and carnitine have received attention by ruminant researchers and 

nutritionists (Bauchart et al., 1998).  Among the AA, the sulfur-containing Met has been 

reported to have beneficial effects in dairy cow performance, especially milk fat and 

protein production (St-Pierre and Sylvester, 2005; Ordway et al., 2009). Most of these 

effects have been associated with stimulation of synthesis and secretion of VLDL 

particles rich in TAG by the liver (Bauchart et al., 1998). Although Met has been reported 
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to have an effect on dairy cow performance, the extent of the effect of Met during the 

periparturient period has been evaluated in relatively few experiments (Phillips et al., 

2003; Socha et al., 2005; Johnson-VanWieringen et al., 2007; Ordway et al., 2009). 

 

Amino acid balance for optimal metabolizable protein 

Commonly dietary protein is divided into dietary protein metabolized in the rumen, 

called rumen degradable protein (RDP), and rumen undegradable protein (RUP), which is 

dietary protein that bypasses the rumen. After being metabolized in the rumen, RDP can 

become microbial protein and is later digested in the small intestine. In contrast, RUP is 

readily digested in the small intestine without making further changes to its AA profile 

(NRC, 2001).    

The importance of balancing AA has been denoted by Schwab (2012) to include the 

following: 1) AA are the building blocks of protein synthesis; 2) the ideal profile of 

essential AA (EAA) may differ among physiological states (e.g. maintenance, growth, 

pregnancy and milk production) and even at different genetic merits (e.g. high vs low 

milk production cows); and 3) providing a more balanced profile of absorbable EAA 

allows meeting AA requirements with less dietary protein. Lysine and Met have been 

frequently used to balance the profile of AA as they have been identified as the two most 

limiting AA for lactating dairy cows in North America (NRC, 2001). Thus, by 

supplementing the most limiting AA such as Lys and Met, AA requirements are being 

met with lower concentrations of dietary protein. The NRC (2001) suggests that the 

required amounts of Lys and Met in metabolizable protein for optimal milk protein 
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production are 7.2% and 2.4%, respectively. Thus, when balancing diets it is important to 

maintain a 3:1 ratio of Lys and Met.  

 

Rumen-protected methionine 

Although a considerable amount of rumen microbial protein reaches the small 

intestine where it is digested and utilized as metabolizable protein, the AA profile within 

microbial protein might not allow cows to reach optimal performance. Therefore, 

providing an RUP source with optimal balance of AA to escape the rumen and 

consequently be utilized as metabolizable protein could enhance the performance in dairy 

cows.  A considerable amount of research has been done in promoting a more efficient 

RUP in terms of AA profile (NRC, 2001). Diets where supplemental RUP was provided 

as soybean products, animal-derived proteins, or a combination of the two have been 

observed to be most limiting in Met (Armentano et al., 1997; Rulquin and Delaby, 1997). 

Current dairy systems generally supply RUP through soybean products and animal-

derived proteins, thus increasing the importance of supplemental rumen-protected Met 

because of lower contents of that AA. Besides, physical-chemical properties of Lys are 

such that applications of most rumen protection technologies have been challenging 

(NRC, 2001). 

 According to the NRC (2001) the methods for protection of AA from ruminal 

degradation include 1) surface coating with fatty acid/pH-sensitive polymer mixture, 2) 

surface coating or matrices involving fat or saturated fatty acids and minerals, and 3) 

liquid sources of Met hydroxy analog (DL-2-hydroxy-4-methylthiobutanoic acid; HMB). 

Recently an isopropyl ester of HMB (HMBi) has been evaluated (Graulet et al., 2005). 
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For the purpose of this document we will focused on the pH-sensitive polymer mixture 

and HMBi. Due to the context of our research we will discuss the pH-sensitive polymer 

mixture and hydroxyl analog as they pertain to Smartamine and MetaSmart, respectively 

(Adisseo, Alpharetta, GA).   

 

pH-sensitive polymer mixture 

As a postruminal delivery system this method is independent of digestive enzyme 

function but is dependent on the differences in pH between the rumen and abomasum. 

This technology provides characteristics of a ruminally inert product, while providing 

high intestinal (~80% bioavailability) release of the coated AA (NRC, 2001; Schwab, 

2007). Studies have shown that these forms of rumen-protected Met were effective for 

increasing both milk and milk component yields (Armentano et al., 1997; Rulquin and 

Delaby, 1997).    

 

Methionine hydroxy analog 

Esterification of HMB with isopropanol decreases the extent of its ruminal 

breakdown (Robert et al., 2001). In fact, Graulet et al. (2005) observed that as much as 

50% of orally fed HMBi was absorbed across the rumen wall, with the remaining 50% 

being metabolized by rumen microbes, which are eventually utilized as microbial protein. 

Thus, HMBi offers the potential to both stimulate ruminal microbial activity and supply 

metabolizable Met (Chen et al., 2011). Therefore, HMBi has been proposed to improve 

three aspects of production: milk volume, milk fat percentage, and milk protein 

percentage, by acting to increase microbial protein and increase the supply of 
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metabolizable Met. Greater milk yield response in postpartal dairy cows supplemented 

with HMBi has been previously reported (St-Pierre and Sylvester, 2005). Similarly, 

secretions of milk fat and protein have been improved when supplementing cows with 

HMBi (Rulquin et al., 2006; Chen et al., 2011).  

 

Transcriptomics in bovine hepatic and immune cells 

Development of high-throughput sequencing and transcriptomics technologies has 

dramatically accelerated the rate at which biological and genetic information can be 

gathered (Loor, 2010). These technologies allow study of genes from a cell or tissue, not 

only at the mRNA (transcriptome) level but also at a DNA (genotype) or protein 

(proteome) level. Microarray technology, in particular, is a powerful tool for the 

simultaneous analysis of the expression of thousands of genes in tissues, organs or cells. 

The University of Illinois developed a 13,257 oligonucleotide bovine microarray, which 

essentially represented an expansion of the original 7,000 cDNA microarray platform 

(Everts et al., 2005). Details of the development of the microarray platform used can be 

found in the Supplementary Materials and Methods from Loor et al. (2007). Functional 

genomics, generally defined as the study of the transcriptome, uses the expression 

profiling of mRNA to provide a condition-specific and time-specific genome-scale 

snapshot of the transcriptome (Schoolnik, 2002).  

The liver, as a central organ that orchestrates metabolism and other functions, has 

been most studied in terms of defining changes in mRNA expression of genes encoding 

proteins that participate in various aspects of lipoprotein assembly (Bernabucci et al., 

2004), ketogenesis (Loor et al., 2007), growth hormone signaling (Rhoads et al., 2004), 
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gluconeogenesis (Rhoads et al., 2004), and ureagenesis (Hartwell et al., 2001). Different 

studies have explored and linked large-scale liver (Loor et al., 2005; Loor et al., 2006; 

Loor et al., 2007) tissue gene expression data with typical blood metabolite, performance 

and liver composition data to study tissue function under different physiological 

conditions. The integration of functional genomics technology with measurements of 

metabolism obtained by conventional methods is particularly promising to find new 

information (Drackley et al., 2006). Findings of the experiments previously mentioned 

have revealed genes that could play key roles in hepatic metabolic adaptations to negative 

energy balance. Coupling metabolic and performance data with gene expression allowed 

the development of an integrative model of liver function during ketosis (Loor et al., 

2007). Similarly, other studies have used the periparturient period or induction of 

negative energy balance to study the transcriptome of bovine PMN and its adaptations 

during these stressed periods (Madsen et al., 2004; Wang et al., 2009; Moyes et al., 

2010). In fact, Madsen et al. (2004) observed a decrease in the expression of genes 

associated with apoptosis, oxidative stress responses, and pro-inflammatory genes. 

Evaluation of NEB effects on PMN function revealed a down-regulation of genes 

associated with antigen presentation, respiratory burst, and cytokine secretion, but an up-

regulation of TLR signaling (Moyes et al., 2010). Additionally, Burton et al. (2005) 

proposed that changes of hormones such a glucocorticoids during calving can trigger 

substantial alterations in the expression of a large number of genes that cluster into ~20 

ontological categories and that primarily induce rapid translocation of glucocorticoids 

receptors into the nucleus of the PMN, inducing potent signals that delay apoptosis, 

activate immune response, and promote tissue remodeling.    
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Dynamic impact approach (DIA): A new approach for functional analysis of 

microarray datasets with time-course and multiple-treatments 

Enrichment analysis, also called the overrepresented approach (ORA), has been 

commonly used as the gold standard for high-throughput datasets (Huang et al., 2009). 

Biological functions represented through Gene Ontology (GO; 

http://www.geneontology.org/) annotations have  been used in ORA analysis to 

investigate whether gene sets are statistically overrepresented or enriched in the identified 

gene groups within a biological term. Consequently, the enrichment of genes of a 

particular biological term is a strong indicator of the modulation of the functions 

associated with the biological term within the cell in a non-random fashion (Bionaz et al., 

2012). Furthermore, this particular biological term is functionally relevant under the 

conditions studied. Although ORA can provide quick and reliable information regarding 

important biological terms in a list of annotated genes/proteins, this approach has some 

limitations, including the inability to compare results from multiple gene lists particularly 

with time-course experiments or those involving multiple treatments. To overcome such 

limitations, a novel method termed DIA has been proposed (Bionaz et al., 2012). The 

DIA provides an estimate of the biological impact of the experimental conditions and the 

direction of the impact. Biological impact is a function of the number of differentially 

expressed genes (DEG) with log2 mean fold change and mean –log P-value from all the 

genes associated with the biological term. The direction of the impact is calculated as the 

difference of the impact of the up-regulated DEG and down-regulated DEG associated 

with the biological term. Overall, DIA represents an alternative to ORA for functional 

http://www.geneontology.org/
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analysis of time-course experiments and those involving multiple treatments (Bionaz et 

al., 2012).      

 

Summary 

The transition period is considered the most important phase during the lactation 

cycle (Drackley, 1999). The increase in nutrients demand, the drastic changes in 

endocrine status and the decrease in DMI during late gestation influence metabolism and 

render cows to a state of immunosuppression that leads to increased susceptibility to 

metabolic disorders (Drackley, 1999; Ingvartsen, 2006). Energy consumption may be a 

determinant factor for the success of the transition period; regardless of the diet 

adjustments during the dry-off and close-up, there is evidence that dairy cows can easily 

consume more energy than required during these periods (Dann et al., 2006). Therefore, 

it is important to avoid overconditioning of cows during gestation, which will eventually 

reduce excessive lipid mobilization after calving (Ingvartsen, 2006). However, as NEB 

postpartum is universal for cows, in the same way lipid mobilization is ubiquitous during 

this time. In this context, it is possible that small alterations in management or 

complications at calving might trigger consecutive effects of hormonal and metabolic 

alterations that eventually predispose cows to infectious diseases and metabolic disorders.  

Methionine supplementation of cows during lactation has a consistent effect in 

improving cow performance (Armentano et al., 1997; Rulquin and Delaby, 1997; Chen et 

al., 2011). Although similar effects have been observed when supplementing Met to 

peripartal cows (Phillips et al., 2003; Socha et al., 2005; Ordway et al., 2009), there is 

still a shortage of data in this regard. Rumen-protected Met is expected to spare EAA 
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once metabolized; consequently it can serve as a methyl donor or a backbone for 

gluconeogenesis, and also can stimulate the clearance of TAG from liver via assembly 

and secretion of VLDL. Taken together, it seems likely that liver functionality in 

peripartal cows supplemented with Met may be increased after calving. Furthermore, Met 

may have important implications in terms of acute phase response. In fact, cows with 

high liver functionality also have high levels of immune markers and low levels for 

inflammatory markers even before calving (Trevisi et al., 2010).  Additionally, as the AA 

pool is spared by Met supplementation, the concentration of certain AA such as cysteine 

can increase, which subsequently should increase endogenous antioxidants such as 

glutathione. 

Our general hypothesis was that supplementing rumen-protected Met to peripartal 

dairy cows will improve DMI, milk yield and components, and energy balance by 

enhancing liver function and antioxidant capacity, and decreasing the inflammatory 

response, and that in turn these effects are controlled at the molecular level by cross-talk 

of gene expression. The overall objective of this dissertation was to evaluate the 

performance parameters, blood and liver biomarkers, and hepatic transcriptomics 

alterations on diary cows supplemented with Met in the forms of Smartamine (SM) or 

MetaSmart (MS) during the peripartal period. 
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CHAPTER 2 

SUPPLEMENTAL SMARTAMINE M OR METASMART DURING THE 

TRANSITION PERIOD BENEFITS POSTPARTAL COW PERFORMANCE AND 

BLOOD NEUTROPHIL FUNCTION  

 

INTRODUCTION 

Nutritional requirements of dry cows increase as gestation progresses because of a 

function of fetal growth, which is exponential in late gestation (NRC, 2001). Conditions 

such as increased blood glucocorticoids, lipid mobilization, and fetal size contribute to 

reducing voluntary DMI. In turn, nutrient availability for the cow and fetus decreases 

(Ingvartsen and Andersen, 2000). Clearly, the amount of metabolizable protein (MP) 

flowing to the intestine from both dietary and microbial sources can be diminished by 

lower DMI around calving.    

Rumen undegradable protein (RUP) is ca. 50% of the total MP and limited 

research suggests that increasing RUP during late gestation improves subsequence 

lactation performance (Huyler et al., 1999; Greenfield et al., 2000). Thus, the RUP is 

important as a source of essential AA (EAA), e.g. methionine (Met), for body tissues and 

are the building blocks of enzymes and hormones of importance in a number of 

biological functions. Therefore, an adequate profile of EAA in RUP is crucial for a 

successful transition for both the cow and the unborn calf. Research has determined that 

Met and Lys in MP are the most-limiting AA in a wide-range of diets for dairy cows 

(NRC, 2001). In fact, Met is typically first limiting, supplementation of Met alone 

improved overall lactation performance in dairy cows (Armentano et al., 1997; Rulquin 

and Delaby, 1997).  
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Among the various biological functions besides milk protein synthesis for which 

Met availability is important, some of the most relevant to the peripartal period include 

its role in liver lipoprotein synthesis, as substrate for antioxidant reactions, and the 

immune function (Durand et al., 1992; Soder and Holden, 1999; Chen et al., 2007). 

Perhaps the most important metabolic role of Met at the level of liver is as a lipotropic 

agent that can stimulate the synthesis of very-low density lipoproteins (VLDL), and 

consequently help minimize the accumulation of triacylglycerol (TAG) (Bauchart et al., 

1998; Martinov et al., 2010). Oxidative stress status also could be influenced by Met 

availability because it could serve as a substrate for glutathione synthesis via 

homocysteine produced in the Met cycle (Martinov et al., 2010). Glutathione is one of the 

most abundant natural antioxidants produced within liver, and a reduction in its synthesis 

in rodents leads to steatosis, mitochondrial damage, and marked increases in lipid 

peroxidation (Chen et al., 2007).       

There is still a limited amount of data on the efficacy of supplementing Met 

during the peripartal period, i.e. the last 3 wk through the first 3 wk relative to parturition 

(Phillips et al., 2003; Socha et al., 2005; Johnson-VanWieringen et al., 2007), and 

specifically for the isopropyl ester of 2-hydroxy 4-(methylthio)-butanoic acid (HMBi, 

MetaSmart® (MS); Adisseo Inc., Antony, France) (Ordway et al., 2009). A common 

objective of previous experiments (Armentano et al., 1997; Rulquin and Delaby, 1997) 

has been to achieve optimal or near optimal level of Lys in MP to maintain a ratio of 3:1 

of Lys to Met  as estimated by NRC (2001), especially after calving. These previous 

studies have not reported incidence of clinical disease, thus, it is difficult to ascertain 

what affects MS or SM might have in that regard. 
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Based on previous research in lactating dairy cows (Rulquin et al., 2006; Chen et 

al., 2011) and peripartal cows (Socha et al., 2005; Ordway et al., 2009) we hypothesized 

that either Smartamine® M (SM) and MS would improve DMI, milk yield, and milk 

protein. Because ca. 50% of HMBi in MS is hydrolyzed into HMB and further degraded 

by rumen microorganisms, we also hypothesized a greater response in milk fat for cows 

fed MS. Additionally, L-Met supplementation has been previously associated with an 

improvement of hepatic lipid metabolism in calves (Auboiron et al., 1994; Auboiron et 

al., 1995) and dairy cows (Durand et al., 1992), thus, it is conceivable that inclusion of 

SM or MS during the peripartal period might alleviate overload of fatty acids in liver and 

consequently decrease the incidence of fatty liver and ketosis. The objective of this 

experiment was to evaluate the effects of supplementing during the peripartal period (-21 

through 30 DIM) SM or MS in amounts that would result in a predicted 2.9:1 ratio of Lys 

to Met. 

 

MATERIALS AND METHODS 

 

Experimental design and dietary treatments  

The Institutional Animal Care and Use Committee (IACUC) of the University of 

Illinois approved all procedures for this study (protocol #09214). The experiment was 

conducted as a randomized complete block design where 45 cows were blocked 

according to parity, previous lactation milk yield, and expected day of calving. Eleven 

cows were later included to substitute cows that had to be removed inadvertently from the 

experiment. A total of 56 multiparous Holstein cows were fed experimental treatments 
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consisting of a basal control diet (CO, n = 24) with no Met supplementation, CO plus MS 

(n =15) at a rate of 0.19% of DM, and CO plus SM (n = 18) at a rate of 0.07% of DM. 

After calving a total of 17 cows were removed from the experiment based on clinical 

disease (per IACUC guidelines) or twinning. This translated into removal of 10, 3, and 4 

in CO, MS, and SM, respectively (Table 1). Therefore, the numbers of cows in Table 1 

reflect the fact that more cows had to be allocated to CO diet in an attempt to balance the 

replicates among the treatments.  The complete dataset from 14, 12, and, 13 cows in CO, 

MS, and SM, respectively, was used for statistical analysis. All cows received the same 

far-off diet (1.24 Mcal/kg DM, 14.3% CP) from -50 to -21 d before expected calving, 

close-up diet (1.54 Mcal/kg DM, 15% CP) from -21 d to expected calving, and lactation 

diet from calving (1.75 Mcal/kg DM, 17.5% CP) through 30 DIM (Table 2). Methionine 

supplements were top-dressed from -21 to 30 DIM.  

MetaSmart® was supplied as a dry powder consisting of 57% isopropyl ester of 

HMBi, which in turn is 78% Met equivalent, of which 50% is absorbed through the 

rumen wall (Graulet et al., 2005); therefore, for each 10 g of MS, the cow received 2.22 g 

of Met. In contrast, SM contains 75% DL-Met, physically protected by a pH-sensitive 

coating, which is considered to have a Met bioavailability of 80% (Schwab, 2007) 

therefore, per 10 g of SM, the cows received 6 g of metabolizable Met.  Using these Met 

estimates for MS and SM, the quantity of product to be top dressed for the respective 

diets was calculated to result in predicted concentrations of 6.19% and 2.12% of MP for 

Lys and Met for the MS and SM diets according to the NRC (2001) (Table 3). 

Additionally, TMR DM for close-up and lactation diets was measured weekly in order to 
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estimate daily TMR DM offered. In turn, the amount of Met supplements (g) for MS 

(0.19%) and SM (0.07%) were calculated over the amount of TMR DM-basis offered.  

 

Animal management  

 All cows were enrolled in the experiment from mid-October 2009 until early-July 

2010 with average temperature of 9.6 ± 10.5 °C (Illinois State Water Survey, 

http://www.isws.illinois.edu/atmos/statecli/cuweather/index.htm). Cows were fed 

individually once daily at 0630 h using an individual gate system (American Calan, 

Northwood, NH). Cows were housed in a ventilated enclosed barn during the dry period 

and had access to sand-bedded free stalls until 3 d before expected parturition, when they 

were moved to individual maternity pens bedded with straw until parturition. After 

parturition, cows were housed in a tie-stall barn and were fed a common lactation diet 

once daily (Table 2) and milked 3 times daily. At 30 DIM cows returned to the farm herd. 

Feed offered was adjusted daily to achieve 5 to 10% refusal. 

 Body weight was measured weekly before the mid-day milking for each cow at 

the same time after the morning feeding. A BCS (scale 1 = thin to 5 = obese, with 

quarter-point increments) was assigned to each cow weekly by two individuals and the 

average score was used for statistical analysis. Intake of DM was recorded daily. Milk 

yield was recorded daily during the first 30 DIM. Also, milk composition was analyzed 

while ECM and EB were calculated from calving to 30 DIM.   

 

 

 

http://www.isws.illinois.edu/atmos/statecli/cuweather/index.htm
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Feed and milk samples  

 Dry matter of individual feed ingredients was determined weekly and rations were 

adjusted accordingly to maintain DM ratios of ingredients in the TMR. Weekly samples 

of ingredients and TMR were frozen at -20°C and composited monthly for analysis of 

DM, CP, NDF, ADF, Ca, P, K, and Mg by standard wet chemistry techniques at a 

commercial laboratory (Dairy One, Ithaca, NY). Consecutive morning, mid-day, and 

evening milk samples were taken weekly until 30 DIM. Composite milk samples were 

prepared in proportion to milk yield at each milking, preserved (800 Broad Spectrum 

Microtabs II; D & F Control Systems, Inc., San Ramon, CA), and analyzed for contents 

of fat, protein, lactose, SNF, milk urea N, and SCC (Dairy Lab Services, Dubuque, IA). 

Based on milk sample analysis, the energy corrected milk (ECM) (at 3.5 % fat) was 

calculated daily as: 

 

(Hutjens, 2010).  

 Energy balance (EB) was calculated for each cow using equations from the NRC 

(2001). Intake of NEL was determined using daily DMI multiplied by NEL density of the 

diet. Maintenance NEL was calculated as BW0.75
 × 0.080. Requirements of NEL for milk 

production were calculated as NEMILK = (0.0929 × fat% + 0.0547 × protein % + 0.0395 × 

lactose%) × milk yield. Net energy requirement for pregnancy (NEP; Mcal/d) was 

calculated as [(0.00318 × day of gestation − 0.0352) × (calf birth weight/45)]/0.218. The 

equation used to calculate prepartal EB (Mcal/d) was EBPRE = NEI − (NEM + NEP) and 

EB (% requirements) EBPRE = [NEI / (NEM + NEP)] × 100. The equation used to calculate 
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postpartal EB was EBPOST (Mcal/d) = NEI – (NEM + NEMILK) and EB (% requirements) 

(Mcal/d) = [NEI / (NEM + NEMILK)] × 100. 

 

Blood collections and analyses 

 Blood was sampled from the coccygeal vein every Monday and Thursday before 

the morning feeding from -25 to 30 d. Samples were collected into evacuated serum tubes 

(BD Vacutainer, BD and Co., Franklin Lakes, NJ) containing either clot activator or 

lithium heparin for serum and plasma, respectively. After blood collection, tubes with 

lithium heparin were placed on ice and tubes with clot activator were kept at 21 °C until 

centrifugation (~30 min). Serum and plasma were obtained by centrifugation at 1,900 × g 

for 15 min. Aliquots of serum and plasma were frozen (-20 °C) until further analysis. 

Measurements of NEFA and BHBA were performed using commercial kits in an 

autoanalyzer at the University of Illinois Veterinary Diagnostic Laboratory (Urbana). 

Glucose and TAG was measured using a commercial kit (LabAssay Triglyceride; Wako 

Chemicals Inc., Richmond, VA). Insulin concentration was quantified using a 

commercial bovine insulin ELISA kit (Cat# 10-1201-01; Mercodia AB, Uppsala, 

Sweden). Concentration of VLDL was analyzed using an HDL and LDL/VLDL 

cholesterol quantification kit (Cat# K613-100; Biovision, Mountain View, CA). 

Apolipoprotein B-100 was measured using a commercial kit (Bovine Apolipoprotein 

B100 ELISA kit, ABO Switzerland Co., Ltd., China). Quantification of growth hormone 

(GH), insulin-like growth factor 1 (IGF1), and leptin concentration was as described by 

Graugnard et al. (2013). 
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Liver tissue composition 

 Liver was sampled via puncture biopsy (Dann et al., 2006) from cows under local 

anesthesia at approximate 0800 h on d -10, 7, and 21 relative to parturition. Liver was 

frozen immediately in liquid nitrogen and stored until further analysis for concentration 

of total lipid and TAG.    

 

Whole blood phagocytosis  

The phagocytic capacity of PMN isolated from heparinized whole blood was 

determined at 21 d postpartum using the Phagotest® kit (ORPEGEN Pharma, 

Heidelberg, Germany) (Ballou, 2012) following the manufacturer’s instructions. In brief, 

20 µL of bacteria E. coli was added to 1 of 3 whole blood samples (100 µL) in test tubes 

(Falcon, Becton Dickinson, Franklin Lakes, NJ) and incubated for 10 min at 37 °C. The 

cells were resuspended in 200 µL of DNA-staining solution, and light-protected in an ice 

bath until analyzed by flow cytometry (LSR II, Becton Dickinson, San Jose, CA).  

 

Statistical analysis  

Data were analyzed using the MIXED procedure of SAS with the preplanned 

contrasts CO vs. SM+MS and SM vs. MS according to the following model: 

 

where   is the dependent, continuous variable;  is the overall mean;  is the fixed 

effect of the ith diet (i = 1, 2, 3);  is the fixed effect of the jth parity (j = 1, 2, 3);  is 

the random effect of the kth block (k = 1, ….15);  is the random effect of lth cow 

within the ith treatment, within the jth parity, and within the kth block (l = 1,….,  );



 42 

 is the fixed effect of the mth time (day or week) of the experiment (m= 1,…,n);  

is the fixed effect of the ith treatment by the mth time of the experiment interaction;

 is the fixed effect of the ith treatment by the jth parity by the mth time of the 

experiment interaction; and  is the residual error.  Blood metabolites, insulin, 

and liver composition were analyzed at various time points that were not equally spaced 

therefore an exponential correlation covariance structure SP (POW) was used for 

repeated measures.  The covariate of previous 305-d milk yield was maintained in the 

model for all variables for which it was significant (P < 0.05). Health and twinning data 

were analyzed with the FREQ procedure in SAS, and interpreted using Fisher’s exact test 

probabilities. Statistical differences were declared significant at P ≤ 0.05 and tendencies 

at P ≤ 0.15. 

 

RESULTS 

 

Ingredient and nutrient composition of diets  

 The ingredient compositions of the diets are presented in Table 2. The nutrient 

composition (Table 3) was determined by analyzing each individual feed ingredient for 

its chemical composition and then entering the feed analysis results into the NRC (2001) 

model. 

 

Prepartal DMI, BW, and BCS 

 An interaction (P = 0.009) of diet by time (D × T) was observed for prepartal 

BCS (Table 4; Figure 1C); however, this could be more associated to transient 



 43 

differences between cows rather than a direct dietary effect (P = 0.90). In fact, prepartal 

BW, BCS, DMI (Figure 1E), DMI as % BW (Figure 1G), and prepartal EB (Figure 2A 

and 2C) were not affected overall by dietary treatments (Table 4). Analysis of MS+SM 

vs. CO indicated a tendency (P = 0.12) for lower prepartal BW for cows fed MS+SM; 

however, this effect was primarily due to a lower (P = 0.03) BW during the last week 

prepartum for Met-supplemented cows in comparison to CO (Figure 1A). Prepartal BW 

and EB were the only variables for which parity did not explain some of the variation. 

 

Postpartal DMI, BW, and BCS  

Main effects and interactions for postpartal BW, BCS, DMI, DMI as % BW, and 

postpartal EB are presented in Table 4. In Met-supplemented cows tendencies for 

postpartal BCS (P = 0.11), DMI (P = 0.18), and DMI as % BW (P = 0.12) were reflected 

via the contrast MS+SM vs. CO in lower BCS (P = 0.06), greater DMI (P = 0.06), and 

greater DMI as % BW (P = 0.04). A noticeable lower BCS was observed for MS and SM 

from calving to 3 wk postpartum (Figure 1D). An increase in DMI (kg/d and as % of 

BW) for MS+SM vs CO was evident from 7 d until 21 d postpartum (Figure 1F and 1H). 

There was an interaction (P = 0.11) of D × T for EB postpartum, which can be explained 

by the differences in DMI and milk production among them. Although a pronounced (P = 

0.06) drop in EB of 4.8 Mcal/d (Figure 2B) was observed within 1 wk postpartum for 

MS+SM vs CO cows, EB as % requirements was 12.7% lower (Figure 2D) for MS+SM 

vs CO cows and did not differ (P = 0.82). Most of this effect was associated with a 

numerical deficit of 5.6 Mcal/d (P ≤ 0.14) for SM vs CO+MS during 1 wk (Figure 2B). 
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Although EB at 4 wk vs 1 wk for MS+SM was different (P ≤ 0.001), EB for CO cows did 

not differ (P = 0.39) throughout the 4 wk of lactation studied. 

 

Milk production and composition  

Main effects and interactions for postpartal production variables, milk:DMI, and 

ECM:DMI are presented in Table 5. An interaction (P ≤ 0.03) was observed for milk fat 

%, fat milk fat yield (Figure 3B), Milk:DMI, and ECM:DMI. A large degree of the effect 

observed in milk fat % was not only due to a greater (P  = 0.006) fat content in SM cows 

during 1 wk postpartum, but also to a greater fat content in MS vs SM during wk 2 (P = 

0.12) and wk 3 (P = 0.05) (Figure 3A). That effect coupled with numerically greater milk 

production (Figure 3E) for SM cows during wk 1, was associated with the greater (P < 

0.001) fat yield observed during the same time-frame (Figure 3B). Similarly, MS cows 

tended (P < 0.13) to have greater fat yield during 7 d to 21 d postpartum (Figure 3B). 

Although D × T was significant (P = 0.006) for ECM:DMI, neither diet nor Met contrasts 

were significant (Figure 3G). Therefore, this effect was mainly due to the greater (P = 

0.07) Met effect during 1 wk postpartum.  

Overall milk yield (Figure 3E), milk protein % (Figure 3C) and yield (Figure 3D), 

milk fat yield (Figure 3B), and ECM (Figure 3F) tended (P ≤ 0.15) to be affected by diet. 

Contrast analysis, however, revealed a greater response due to feeding the Met diets than 

control for milk yield (P = 0.08), milk protein % (P = 0.05) and yield (P = 0.03), milk fat 

yield (P = 0.04), and ECM (P = 0.03) (Table 5).  
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Health  

 Health-related problems that occurred during the experiment are summarized in 

Table 1. Among the 4 main health-related problems observed, ketosis was clearly 

associated with diet as indicated by the tendency for fewer (P = 0.15) clinical cases in 

cows fed SM and MS than controls. It should be noted, however, that incidence of ketosis 

in two cows one fed MS, the other SM was confounded by retained placenta. Similarly, 

two other cows one fed CO and the other SM was diagnosed with ketosis and displaced 

abomasum after calving. The least-affected (P = 1.00) health-related problem was 

displaced abomasum. 

 

Blood and liver metabolites 

 The main effects of parity, diet, time, and their interactions on blood metabolites, 

insulin, GH, IGF1, leptin, PMN phagocytosis, and liver tissue concentration of total lipid 

and TAG are presented in Table 6. The only significant D×T effect was observed for 

NEFA (P < 0.001), which increased substantially after calving and to a greater extent in 

cows fed MS on d 7 postpartum (Figure 4D). Although, diet did not significantly affect 

any of the blood metabolites and hormones or liver tissue concentration of lipid and 

TAG, there were strong tendencies observed for NEFA (P = 0.12), GH (P = 0.07), PMN 

phagocytosis (P = 0.07), and liver TAG (P = 0.15), where Met-supplemented cows had 

greater (P < 0.07) GH (7.51 vs 5.03) and PMN phagocytosis (50.4 % vs 38.5%). Unlike 

GH and phagocytosis, NEFA and liver TAG concentration was greater with MS and 

lower with SM in comparison with CO (Table 6). Unlike ApoB-100, all other blood and 

liver parameters had a time effect with concentrations changing over time, i.e. insulin, 
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glucose, TAG, and VLDL decreased between at least -17 d through 14 d postpartum 

(Figure 4 and 5). However, concentration of VLDL increased to values observed 

prepartum on d 21 (Figure 5).   

The parity effect was significant for GH (P = 0.03), IGF1 (P = 0.04), total liver 

lipid (P = 0.023), and TAG (P < 0.001). As observed with blood data, the concentration 

of total lipid and TAG in liver changed over time due to marked increases between d -10 

and 7 relative to the postpartum (Figure 6). Despite the numerically greater concentration 

of total lipid on d 21 in cows fed CO, there was no statistical difference in concentrations 

of lipid and TAG between d 7 and 21.  

 

DISCUSSION 

 

Ingredient and nutrient composition of diets  

 Mean chemical composition of feed ingredients throughout the experiment were 

used to evaluate prepartal and postpartal diets through the NRC (2001) model. Unlike 

prepartum, postpartal MP balance was negative across dietary treatments. Met-

supplemented diets (MS+SM) provide ca. 28 g/d more MP during the close-up than CO. 

However, during the postpartal period MS+SM vs CO had a relative more negative MP/d 

balance of 42.5g due to a greater (321.5 g/d) MP requirement in MS+SM vs CO in order 

to sustain a greater yield of milk (Table 5) during the same period.  

The importance of adequate RUP supply during the transition period was further 

confirmed by a15 times increase in required RUP regardless of treatment from the close-

up to postpartal period. Therefore, Met-supplemented diets provided ca. 0.34 percentage 
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units more Met in terms of % MP, which was enough to maintain a more desirable 

Lys:Met ratio of 2.93 vs 3.4 for MS+SM and CO. Concentrations of NEL, CP, NDF, and 

ADF throughout the experiment did not differ greatly between dietary treatments. 

Overall, postpartal MP balance in Met-supplemented cows was lower (-153 g/d vs -617 

g/d) in comparison with levels reported previously by Ordway et al. (2009). Those could 

have been associated with greater Lys and Met (as % MP) of 0.85 and 0.16 percentage 

units more than those reported in our experiment. That effect could be attributed to 

supplying 0.35% and 0.06% of DM of MS and SM from -21 to calving and increase this 

rate to 0.54% and 0.10% of MS and SM from calving to 140 d (Ordway et al., 2009). It is 

likely that these differences in MP balance between studies were due to greater inclusion 

rates of Met supplements and length of experimental period. During the close-up period, 

cows on the MS and SM diets received similar amounts of MP-lysine and 7 g more MP-

Met than the CO cows. After calving Met-supplemented cows received an extra ca. 15 g 

of MP-Lys and ca. 11 g of MP-Met (Table 3).  Similar to our results, (Chen et al., 2011) 

achieved an increase of 0.37 percentage units of Met over controls in terms of % MP with 

Met supplementation of 0.17% of DM in the form of MS and 0.06% of DM in the form 

of SM. 

 

Effects on DMI, BW, and BCS 

 Although a significant interaction of D × T was observed for BCS prepartum, this 

result was not associated with main effects of diet (P = 0.90) or Met supplements (P = 

0.72); rather, the marked changes in time plus the effect of between-cow variation 

appeared to explain this interaction. Our results are in agreement with previous research 
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(Socha et al., 2005; Ordway et al., 2009) where providing Met supplements prepartum 

did not affect DMI, BW, or BCS.  

 Methionine supplementation after calving was associated with an overall increase 

in DMI (Table 4), along with an even more pronounced effect on DMI and DMI as % 

BW after 7 d postpartum and throughout d 30 (Figure 1F and 1H). In this regard, 

previous work with MS and SM supplementation has yielded mixed results. For instance, 

Ordway et al. (2009) observed an increase in postpartum DMI when supplementing MS 

while SM did not differ from controls. Another study (Chen et al., 2011) found no effect 

of MS supplementation during a 12-wk period with cows at >88 DIM (0.17% of DM) on 

DMI. In contrast, Socha et al. (2005) reported a tendency (P ≤ 0.15) for a decrease of 

DMI postpartum when supplementing 15 g/d of SM to a basal diet producing an 

imbalance in the Lys:Met, particularly before calving (2.7:1) but also after calving 

(3.22:1), i.e. too much Met relative to Lys or vice versa.  

The inconsistent results reported to date might have been related with differences 

in level of Met supplementation, length of feeding, and stage of lactation, i.e. greatest 

responses to optimal Lys and Met nutrition occur during the early stages of lactation 

when the need for absorbed AA, relative to absorbed energy, is the highest (Socha et al., 

2005). Our results underscore the benefit of achieving an optimal Lys:Met via MS or SM 

during the peripartal period on enhancing voluntary feed intake during this critical 

physiological stage of the lactation cycle. Furthermore, it is unlikely that the intake 

response was solely due to supplemental Met postpartum, i.e. there might have been 

carryover effects of supplemental Met during the close-up period. 
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Milk production and composition  

 The strong tendency (P = 0.08) for an effect of supplemental Met on milk yield 

underscores the importance of optimal Met to fine-tune the profile of essential AA in MP 

available to the early lactation cow. In fact, greater responses in milk yield to postpartum 

supplementation of SM or MS have been reported previously (St-Pierre and Sylvester, 

2005). Although D × T interactions were observed for milk fat % and milk fat yield, this 

was primarily associated with Met supplementation (P ≤ 0.08) effects because at least 

one Met treatment behaved differently than the other. The latter is further supported in 

Figure 3B where SM improved milk fat yield during wk 1, whereas MS had the effect 

during wk 2 and 3. Similar to our findings others (Chen et al., 2011) have observed an 

increase in milk fat % or milk fat yield when supplementing cows with Met and 

especially MS. Milk protein % and yield was greatly affected by Met supplementation 

increasing by ca. 0.18 percentage units and 0.12 kg/d, respectively, over CO. This effect 

has been consistently reported throughout the literature, underscoring that milk protein is 

affected in direct proportion with adequacy of Met in MP (NRC, 2001). 

 

Feed intake and apparent efficiency 

 The interaction observed for ECM:DMI could be explained mainly by an increase 

for MS (3.75) and SM (3.52) vs CO cows (3.0, P=0.07) during wk 1 postpartum (Figure 

3G). These results are in agreement with those of Socha et al. (2005) and Chen et al. 

(2011) where an increase in ECM:DMI was observed when supplementing basal diets 

with rumen-protected Met or rumen-protected Met  and Lys. Although EB had a D × T 

interaction (P = 0.11), this result was not associated with a significant main effect of Met; 
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however, evaluation of Figure 2B and 2D suggested that cows receiving MS or SM 

experienced a greater demand for nutrients, especially during 1 wk, which was noticeable 

across milk yield, milk fat yield, and ECM (Figures 3E, 3B, and 3F, respectively).  

Although EB in cows fed MS+SM vs CO was lower during wk 1, EB in CO cows 

did not improve at 4 wk vs wk 1, which was opposite to the response observed in cows 

fed MS or SM. When evaluating data from Figure 2B the EB as % change with respect to 

wk 1 (Figure 2E) we observed that EB in MS and SM increased by >40% at 4 wk vs 1 

wk; whereas, CO cows remained below 20% of EB at wk 1. This response was consistent 

with both the observed 4 kg/d increase in ECM for cows supplemented with MS+SM 

(Table 5) and the increase in DMI (Figure 1H).  

Socha et al. (2005) and Ordway et al. (2009) reported mean values of EB between 

-4.15 and -2.15 Mcal/d between the period of calving to 105 d and 140 postpartum. 

However, it is likely that differences between those studies and ours are mostly due to 

experimental design, i.e. starting supplementation during the close-up period (-14 vs -21 

d). Interestingly, Ordway et al. (2009) reported an improvement in EB when 

supplementing MS, while SM did not alter EB over CO. That response could have been 

associated with a greater (0.54% vs 0.17% of DM) rate of inclusion of MS in the diet in 

comparison with our experiment.  

 

Blood and liver tissue metabolites as it relates to health 

 Ketosis is a common disease during starvation or negative EB episodes, when the 

large uptake of adipose tissue-derived long chain fatty acids by liver results in incomplete 

oxidation to ketone bodies (Bauchart et al., 1998). Other studies reported an increase in 
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the occurrence of ketosis when feeding moderate-energy diets similar to ours during the 

dry period (Van den Top et al., 1996; Dann et al., 2006; Janovick et al., 2011). Thus, the 

tendency for lower incidence of clinical ketosis due to inclusion of SM and MS during 

the peripartal period suggests that supplemental Met might have influenced lipid 

metabolism in liver.  

Any lipotropic agent such as Met or choline could help to clear lipid accumulation 

from the liver (Durand et al., 1992) at least in part by stimulating hepatic VLDL 

formation and export (Bauchart et al., 1998). Such a response consequently might lead to 

a reduction in liver TAG accumulation and of ketone body production (Waterman and 

Schultz, 1972; Bauchart et al., 1998). The lack of change in liver TAG when SM and MS 

were fed was not entirely surprising as similar responses were observed previously in 

peripartal cows fed a different Met analog (2-hydroxy-4-methylthiobutanoic acid, Alimet, 

Novus Intl.) (Piepenbrink et al., 2004). In addition, a recent study with peripartal cows 

fed rumen-protected choline did not observe differences in NEFA and BHBA despite 

lower liver TAG postpartum with choline (Zom et al., 2011). 

Although speculative, the pattern of NEFA and blood TAG observed with MS 

between the prepartum and d 7 and 14 could be taken as indication that despite the 

numerically-greater liver TAG the ability of liver to secrete TAG was not compromised. 

The actual mechanism behind such response is not readily apparent from our data; 

however, it might be related with ApoB-100 synthesis as we observed a numerically-

greater concentration postpartum in cows fed MS relative to controls. Overall, the 

concentrations of liver tissue TAG we observed on d 7 and 21 in response to MS and SM 

are within the range (4-5% wet wt basis) reported recently in cows supplemented with 
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rumen-protected choline (Zom et al., 2011). More importantly, however, our data 

underscored that liver TAG in cows fed MS or SM did not impact DMI and the ability of 

the cows fed SM or MS to produce more milk.  

 

Blood neutrophil killing capacity 

 Human lymphocytes seem to have an absolute requirement for Met to proliferate 

(Hall et al., 1986), which is partly responsible for the positive effect of supplemental Met 

on immune function of monogastrics (Nauss et al., 1982; Tsiagbe et al., 1987) and likely 

ruminants (Soder and Holden, 1999). For instance, mid-lactation cows supplemented 

with 30 g/d of rumen-protected Met (Mepron® 85) compared with 0 or 15 g/d had greater 

T lymphocyte proliferation in vitro in response to various mitogens (Soder and Holden, 

1999). The greater blood killing capacity that we observed postpartum with SM and SM 

provides additional evidence of an important role for Met in the immune response during 

the transition period. Whether the greater phagocytosis was a result of more cells or a 

more pronounced oxidative burst response (or both) remains to be established.    

 

Endocrine responses 

 The temporal changes observed for the concentration of insulin, GH, IGF1, and 

leptin agree with the expected patterns for these hormones around parturition (Radcliff et 

al., 2003; Rabelo et al., 2005; Janovick et al., 2011). To our knowledge, endocrine effects 

to supplemental rumen-protected Met in peripartal cows have not been reported. 

However, studies performed with post-peak lactating dairy cows have reported (Blum et 

al., 1999; Misciatteilli et al., 2003) greater insulin in response to SM at doses greater than 
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the ones used in the present study which would be expected because amino acids are 

insulinotropic.  

The tendency for greater GH with Met supplementation, namely MS, was 

unexpected because in a previous study with lactating dairy cows supplemental SM did 

not alter GH or IGF1 concentration (Misciatteilli et al., 2003). It is well-established that 

in non-lactating ruminants low-protein diets reduce circulating IGF1 and the 

responsiveness of liver to GH (Breier et al., 1988; Wynn et al., 1991).  Work with sheep 

hepatocytes in vitro demonstrated that Met availability is essential for IGF1 mRNA and 

protein synthesis, and that limitations in Met dampen the ability of GH to stimulate IGF1 

synthesis (Stubbs et al., 2002). The reduction of GH receptor expression in liver of 

peripartal cows is one factor that accounts for the low mRNA expression and blood 

circulation of IGF1 particularly after calving (Radcliff et al., 2003). Whether 

supplemental Met is functionally related with the GH/IGF1 axis during the peripartal 

period remains to be determined. 

 

CONCLUSIONS 

 The findings of this study reveal that supplementation with MS or SM, when Lys 

is adequate to achieve a ~2.9:1 Lys:Met ratio can improve milk production at least in part 

by increasing voluntary DMI and perhaps by optimizing the use of body lipid reserves. 

Such responses were more evident during the first week postpartum when SM or MS-

supplemented cows increased ECM:DMI while in more negative EB with respect to CO 

cows, and regaining similar EB as CO by 2 wk. As originally hypothesized, the overall 

milk protein and milk fat was positively affected by Met supplementation. To the 
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authors’ knowledge this is the first study where a simultaneous improvement in postpartal 

DMI, milk production-related traits, and better leukocyte killing capacity have been 

observed while supplementing basal diets with MS or SM, further supporting the benefit 

of using those products for fine-tuning of EAA in MP. 
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TABLES AND FIGURES 

 

Table 1. Frequency of occurrence of health problems and twinning in cows supplemented 
with MetaSmart or Smartamine M during the peripartal period.  

Variable 
Diet1  P-value 

CO MS SM  Diet Met 
n 24 15 17  --- --- 

Twins 2 0 1  0.78 0.57 

Ketosis2 6 1 2  0.34 0.15 

Displaced abomasum 3 2 2  1.00 1.00 

Retained placenta3 0 1 1  0.32 0.50 

Excluded cows4  10 3 4  --- --- 
1CO = Control, MS = MetaSmart (Control + MS 0.19% of DMI), and SM = 
Smartamine® M (Control + SM 0.07% of DMI).  
2Defined as cows having moderate (~40 mg/dL) or large ketone concentrations (>80 
mg/dL) in urine as detected using a reagent strip and treated by veterinarians with 
oral propylene glycol or intravenous dextrose.  
3Defined as fetal membranes retained >24 h postpartum. 
4Actual number of cows excluded from the experiment, where 4 cows were 
diagnosed with two clinical diseases after calving.  
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Table 2. Ingredient composition of diets fed during far-off (-50 d to -21 d relative to expected 
calving), close-up (-21 d to calving), and early lactation1.  

Component1 Far-off Close-up 
 

Lactation  
Ingredient, % of DM     
Alfalfa silage 12.00 8.20  5.00 
Alfalfa hay --- 3.50  4.00 
Corn silage 33.00 35.90  33.00 
Wheat straw 36.00 15.40  4.00 
Cottonseed --- ---  3.50 
Wet brewers grains --- 6.00  10.00 
Ground shelled corn 4.00 13.00  22.20 
Soy hulls 2.00 4.00  4.00 
Soybean meal, 48% CP 7.92 3.10  3.30 
Expeller soybean meal2 --- 2.00  6.20 
SoyChlor 0.15 3.80  --- 
Blood meal 85% CP 1.00 1.00  0.30 
Urea 0.45 0.30  0.14 
Rumen-inert fat3 --- ---  1.00 
Limestone 1.30 1.30  1.18 
Salt (plain) 0.32 0.30  0.27 
Dicalcium phosphate 0.12 0.18  0.27 
Magnesium oxide 0.21 0.08  0.14 
Magnesium sulfate 0.91 0.97  --- 
Sodium bicarbonate --- ---  0.75 
Potassium carbonate --- ---  0.10 
Calcium sulfate --- ---  0.10 
Mineral-vitamin mix4 0.20 0.20  0.20 
Vitamin A5 0.015 0.015  --- 
Vitamin D6 0.025 0.025  --- 
Vitamin E7 0.38 0.38  --- 
Biotin --- 0.35  0.35 

1Basal close up and lactation diets were considered as CO = Control, MS = MetaSmart 
(Control + MS 0.19% of DMI), and SM = Smartamine® M (Control + SM 0.07% of 
DMI).   
2SoyPLUS (West Central Soy, Ralston, IA) 
3Energy Booster 100® (MSC, Carpentersville, IL) 
4Contained a minimum of 5% Mg, 10% S, 7.5% K, 2.0% Fe, 3.0% Zn, 3.0% Mn, 5,000 
mg/kg of Cu, 250 mg/kg of I, 40 mg/kg of Co, 150 mg/kg of Se, 2,200 kIU/kg of vitamin 
A, 660 kIU/kg of vitamin D3, and 7,700 IU/kg of vitamin E. 
5Contained 30,000 kIU/kg. 
6Contained 5,009 kIU/kg. 
7Contained 44,000 IU/kg. 
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Table 3. Nutrient composition and evaluation (NRC, 2001) of prepartal and postpartal diets fed to cows supplemented with 
MetaSmart or Smartamine M during the peripartal period1.  

Chemical component2 

Prepartum  
Postpartum 

Far-off 
Close-up  

CO MS SM  CO MS SM 

Chemical analysis         
NEL, Mcal/ kg DM 1.24 1.54 1.53 1.54  1.76 1.74 1.73 

CP, % DM 14.30 15.0 15.1 15.1  17.4 17.5 17.4 

NDF, % DM 51.2 42.3 42.2 42.3  35.2 35.3 35.2 

ADF, % DM 35.5 28.4 28.3 28.4  22.6 22.6 22.6 

RDP supplied, g/d  1,277 1,217 1,265 1,235  1,453 1,631 1,655 
RDP balance, g/d 153 32 35 40  35 30 16 

RUP supplied, g/d  499 618 654 631  859 1,022 1,062 
RUP required, g/d 138 119 103 114  1,535 1,745 1,790 

RUP balance, g/d 361 499 551 518  -676 -723 -728 

MP supplied, g/d  1,059 1,191 1,248 1,209  1,563 1,812 1,869 

MP balance, g/d 282 395 437 410  -574 -613 -620 

Lys:Met 3.84:1 3.59:1 2.82:1 2.76:1  3.43:1 2.82:1 2.82:1 

Lys ,% of MP 7.30 6.66 6.60 6.62  6.17 6.09 6.06 

MP-Lys, g 77 79 82 80  96 110 113 
Met, % of MP 1.87 1.86 2.35 2.38  1.81 2.15 2.15 

MP-Met, g 20 22 29 29  28 39 40 
1NRC evaluation of diets was based on final DMI and production data and feed analysis. 
2Composition MetaSmart (MS) and Smartamine® M (SM) supplied by Adisseo Inc. (Antony, France, and Alpharetta, GA).
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Table 4. Effects of supplementing cows with MetaSmart or Smartamine M during the 
peripartal period on DMI, BW, and BCS.  

Parameter 
Diets1 

SEM2 
P 

CO MS SM Diet Met3 Par4 Time DxT5 
Prepartum           

BW, kg 773.7 762.8 766.2 4.8 0.26 0.12 -- <0.001 0.14 
BCS 3.18 3.17 3.16 0.04 0.90 0.72 0.04 <0.001 0.009 
DMI, kg/d 12.2 12.7 12.3 0.48 0.67 0.49 0.05 <0.001 0.42 
DMI, % BW 1.54 1.68 1.60 0.07 0.35 0.23 0.003 <0.001 0.70 
Energy balance, Mcal/d 8.6 9.0 9.1 0.81 0.85 0.58 -- <0.001 0.70 

Postpartum          
BW, kg 670.8 660.3 645.3 20.5 0.56 0.37 -- <0.001 0.23 
BCS 2.79 2.52 2.66 0.09 0.11 0.06 -- <0.001 0.75 
DMI, kg/d 13.3 15.2 15.6 1.01 0.18 0.06 -- <0.001 0.78 
DMI, % BW 1.88 2.24 2.31 0.18 0.12 0.04 -- <0.001 0.50 
Energy balance, Mcal/d -7.6 -8.9 -9.5 1.71 0.69 0.43 -- <0.001 0.11 

1CO = Control, MS = MetaSmart (Control + MS 0.19% of DMI), and SM = Smartamine® M 
(Control + SM 0.07% of DMI).  
2Greatest SEM. 
3Contrast statement of CO vs MS+SM. 
4Parity effect was used in the model depending on significance.  
5Interaction of diet × time.   
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Table 5. Effects of supplementing cows with MetaSmart or Smartamine M during the 
peripartal period on production variables. 

Parameter 
Diet1 

SEM2 
P 

CO MS SM Diet Met3 Par4 Time DxT5 
Milk yield, kg/d 35.7b 38.1ab 40.0a 1.6 0.15 0.08 -- <0.001 0.86 
Milk fat, % 4.27 4.68 4.09 0.22 0.59 0.36 0.05 <0.001 0.004 
Milk protein, % 3.04b 3.26a 3.19ab 0.08 0.13 0.05 -- <0.001 0.23 
Milk fat yield, kg/d 1.64 1.84 1.81 0.08 0.11 0.04 -- 0.04 0.009 
Milk protein yield, kg/d 1.11a 1.23a 1.24a 0.05 0.08 0.03 -- 0.02 0.14 
ECM, kg/d 41.0b 44.8a 45.0a 1.55 0.09 0.03 -- <0.001 0.07 
Milk:DMI 2.89 2.81 2.69 0.18 0.71 0.50 -- 0.089 0.03 
ECM:DMI 3.00 3.39 3.05 0.22 0.42 0.40 -- <0.001 0.006 

1CO = Control, MS = MetaSmart (Control + MS 0.19% of DMI), and SM = Smartamine® M 
(Control + SM 0.07% of DMI).  
2Greatest SEM. 
3Contrast statement of CO vs MS+SM. 
4Parity effect was used in the model depending on significance.  
5Interaction of diet × time. 
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Table 6. Effects of supplementing cows with MetaSmart or Smartamine M during the 
peripartal period on blood metabolites, liver composition, and phagocytosis. 

Parameter 
Treatment 

SEM1 
P-value 

CO MS SM Diet Met2 Par3 Time D×T4 
Blood          

NEFA, mEq/L 0.432 0.494 0.420 0.029 0.12 0.43 -- <0.001 <0.001 
BHBA, mmol/L 0.687 0.697 0.645 0.057 0.80 0.82 -- <0.001 0.33 
TAG, mg/dL 300.9 327.2 300.1 23.8 0.65 0.66 -- <0.001 0.65 
Insulin, μg/L 0.43 0.50 0.45 0.07 0.79 0.65 -- <0.001 0.68 
Glucose, mg/dL 55.6 55.6 55.4 1.3 0.74 0.74 -- <0.001 0.82 
GH, ng/mL 5.03 7.62 7.40 0.89 0.07 0.02 0.03 <0.001 0.73 
IGF1, ng/mL 58.9 52.0 57.3 4.9 0.59 0.47 0.04 <0.001 0.97 
Leptin, ng/mL 5.42 4.36 4.40 1.24 0.78 0.49 -- <0.001 0.12 
VLDL, µg/µL 0.43 0.45 0.47 0.05 0.86 0.65 -- <0.001 0.57 
ApoB-100, ng/mL 17.4 23.2 20.6 2.1 0.16 0.14 -- 0.97 0.75 

Phagocytosis, %5 38.5 55.1 45.8 5.6 0.07 0.07 -- -- -- 
Liver, % wet wt          

Total lipid 10.55 9.53 8.66 1.09 0.39 0.24 0.023 <0.001 0.17 
TAG 4.27 4.55 3.14 0.54 0.15 0.50 <0.001 <0.001 0.46 

1Greatest Standard error mean of all treatments 
2Contrast statement of CO vs MS+SM 
3Parity effect was used in the model depending on significance  
4Interaction of treatment by time   
5Whole blood leukocyte phagocytosis at 21 DIM.   
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Figure 1. Prepartal (A) and postpartal (B) BW, BCS (C, D), DMI (E, F), and DMI as percentage 
of BW (G, H) in cows supplemented with MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) during the peripartal period. CON = control. Values are 
means, with standard errors represented by vertical bars. 
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Figure 2. Prepartal energy balance (EB; Mcal/d; A), postpartal EB (Mcal/d; B), prepartal EB (% 
of requirements; C), postpartal EB (% of requirements; D), and EB (% change with respect to 1 
wk; E) in cows supplemented with MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) during the peripartal period. CON = control. Values are 
means, with standard errors represented by vertical bars. 
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Figure 3. Milk fat percentage (A), milk fat yield (B), milk protein percentage (C), milk protein 
yield (D), milk yield until 30 DIM (E), ECM (F), and ECM:DMI ratio (G) in cows supplemented 
with MetaSmart (MS; Adisseo Inc., Antony, France) or Smartamine M (SM; Adisseo Inc.) 
during the peripartal period. Mean separation between diets (P < 0.05) were evaluated via 
contrasts: control (CON) versus MS + SM (*), CON versus MS (**), and CON versus SM (***). 
Values are means, with standard errors represented by vertical bars.
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Figure 4. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on insulin (A), glucose (B), BHBA (C), NEFA (D), 
growth hormone (GH; E), leptin (F), and IGF1 (G) in dairy cows during the transition 
period. Mean separation between diets (P < 0.05) were evaluated via contrasts: control 
(CON) versus MS + SM (*), CON versus MS (**), and CON versus SM (***). Values 
are means, with standard errors represented by vertical bars. 
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Figure 5. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on blood triacylglycerol (TAG; A), very low density 
lipoproteins (VLDL; B), and apolipoprotein B-100 (ApoB-100; C) in dairy cows during 
the transition period. CON = control. Values are means, with standard errors represented 
by vertical bars. 
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Figure 6. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on liver composition in terms of total lipids (A) and 
triacylglycerol (TAG; B) in dairy cows during the transition period. Values are means, 
with standard errors represented by vertical bars. 
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CHAPTER 3 

BIOMARKERS OF INFLAMMATION, METABOLISM, AND OXIDATIVE 

STRESS IN BLOOD AND LIVER REVEAL A BETTER IMMUNOMETABOLIC 

STATUS IN PERIPARTAL COWS SUPPLEMENTED WITH SMARTAMINE M 

OR METASMART 

 
INTRODUCTION  

There is research with ruminant animals supporting the hypothesis that increasing 

the supply of methionine (Met) could enhance the capacity of liver to export 

triacylglycerol (TAG) in the form of VLDL (Durand et al., 1992; Auboiron et al., 1994; 

Auboiron et al., 1995) and help ameliorate the negative effects of fatty acid accumulation 

in the liver soon after parturition (Drackley, 1999). Within liver, Met can also be 

transformed into S-adenosylmethionine (SAM) the most important methyl-donor 

(Martinov et al., 2010), and in turn SAM can be used to methylate 

phosphatidylethanolamine (PE) to produce phophatidylcholine, which is a main 

constituent of VLDL. Besides the methylation of PE, SAM is also involved in 

methylation of DNA, which can have profound regulatory effects on gene expression 

(Kass et al., 1997).     

It is well-established that around parturition the dairy cow experiences a state of 

depressed liver function coupled with increased inflammation and oxidative stress 

(Bionaz et al., 2007; Trevisi et al., 2012). Bilirubin, glutamic-oxaloacetic transaminase 

(GOT), γ-glutamyltransferase (GGT) along with albumin and paraoxonase (PON) are 

commonly-used biomarkers of liver status around calving (Bertoni et al., 2008). While 

the liver is responsible for clearance of bilirubin (Bertoni et al., 2008), higher GOT and 
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GGT are related with liver cell damage (i.e. lysis and necrosis).  The peripartal 

inflammatory response is characterized by an increase in the production of positive acute-

phase proteins (APP) such as haptoglobin and serum amyloid A (SAA), and a 

concomitant decrease in the production of negative APP such as albumin. At the level of 

liver, the well-established triggers of these responses are the pro-inflammatory cytokines 

IL-6, IL-1, and TNF-α (Kindt et al., 2007). The concentrations of these cytokines in turn 

are driven by several factors including tissue damage, pathogen invasion, and potentially 

excessive fat deposition (O'Boyle et al., 2006; Loor et al., 2013). 

Excessive fat deposition leading to high BCS has been proposed to increase the 

release of TNF-α (O'Boyle et al., 2006), while the uterine bacterial contamination that 

commonly occurs after calving also contributes to the release TNF-α and IL-6 (LeBlanc, 

2012). In fact, the endometrial epithelium can secrete prostaglandin F during calving, and 

after calving prostaglandin E in response to bacteria. Both molecules can further 

stimulate the pro-inflammatory response, but also are related with the metabolism of 

arachidonic acid, which is an important contributor of reactive oxygen metabolites 

(ROM) in the circulation (Haeggstrom and Funk, 2011; LeBlanc, 2012).  

Oxidative stress is driven by the imbalance between the production of ROM and 

the neutralizing capacity of antioxidant mechanisms in tissues and in blood. Some of the 

well-established antioxidants include glutathione, superoxide dismutase (SOD), and 

vitamins A and E (Bernabucci et al., 2005). Additionally, the concentration of PON is 

inversely related with oxidative stress partly because it helps protect both LDL and HDL 

against lipid peroxidation (Aviram and Rosenblat, 2004). 



 73 

Our general hypothesis was that rumen-protected Met supplementation in the 

form of Smartamine (SM) and MetaSmart (MS) during the peripartal period ameliorates 

the negative effects of peripartal adipose tissue lipolysis that often leads to excessive liver 

TAG accumulation and consequently places cows at greater risk of developing ketosis 

(Osorio et al., 2013). As such, supplemental Met would have a positive effect on liver 

function, inflammation, and oxidative stress status. Blood serum and plasma from cows 

fed SM and MS (Osorio et al., 2013) were used to address this hypothesis. 

Concentrations of total bilirubin (TB), GGT, GOT, cholesterol, and PON were used to 

assess liver function and integrity; creatinine and urea to evaluate skeletal muscle mass 

catabolism; ceruloplasmin, SAA, haptoglobin, and IL-6 to assess inflammation status; 

and concentrations of nitric oxide (NOx) and constituents [nitrite (NO2
-) and nitrate (NO3

-

)], oxygen radical absorbance capacity (ORAC), ROM, retinol, tocopherol, β-carotene as 

well as liver glutathione to assess oxidative stress status.  

 

MATERIALS AND METHODS 

 

Animals, experimental design and dietary treatments  

The Institutional Animal Care and Use Committee (IACUC) of the University of 

Illinois approved all protocols for this study (protocol no. 09214). Details of the 

experimental design have been published previously (Osorio et al., 2013). Briefly, 45 

multiparous Holstein cows were fed experimental treatments consisting of a basal control 

diet (CON, n = 13) with no Met supplementation, CON plus MS (n = 11) at a rate of 

0.19% of DM, and CON plus SM (n = 13) at a rate of 0.07% of DM. All cows received 
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the same Far-off diet (1.24 Mcal/kg DM, 14.3% CP, 10.3 RDP % of DM, 4 RUP % of 

DM, Lys 7.3 % of MP, Met 1.87 % MP) from -50 to -21 d before expected calving, 

close-up diet (1.54 Mcal/kg DM, 15% CP, 10 RDP % of DM, 5.1 RUP % of DM, Lys 

6.66 % MP, Met 1.86% MP) from -21d to expected calving, and from calving (1.75 

Mcal/kg DM, 17.5 % CP, 10.9 RDP % of DM, 6.5 RUP % of DM, Lys 6.17 % MP, Met 

1.81 % MP) through 30 DIM (Table 8). From -21 to parturition, Met supplements were 

top-dressed to increase the Met (% MP) from 1.86 (CO) to 2.35 (MS) and 2.38 (SM). 

From 1 to -21 to 30 DIM, Met supplements were top-dressed to increase the Met (% MP) 

from 1.81 (CO) to 2.15 (MS and SM). 

 As described in Osorio et al. (2013) before calving all cows were individually fed 

once daily at 0630 h using an individual gate system (American Calan, Northwood, NH). 

Cows were housed in a ventilated enclosed barn during the dry period and had access to 

sand-bedded free stalls until 3 d before expected parturition, when they were moved to 

individual maternity pens bedded with straw until parturition. After parturition, cows 

were housed in a tie-stall barn and were fed a common lactation diet once daily and 

milked 3 × daily.  

 

Blood samples and biomarker analyses  

Blood was sampled from the coccygeal vein and was collected using a 20-gauge 

BD Vacutainer needles (Becton Dickinson, Franklin Lakes, NJ) at -26, -21, -10, 7, 14, 

and 21 d relative to calving. Blood was collected into vacutainers (5 mL, BD 

Vacutainer, Becton Dickinson, Franklin Lakes, NJ) containing either serum clot 

activator or lithium heparin. After blood collection, tubes with lithium heparin were 
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placed on ice and tubes with clot activator were kept at 21°C until centrifugation (~30 

min). Serum and plasma were obtained by centrifugation of clot activator and lithium 

heparin tubes, respectively, at 1,900 × g for 15 min.  

Blood samples were analyzed for albumin, cholesterol, TB, creatinine, urea, GOT, 

haptoglobin, ceruloplasmin, IL-6, PON, NOx, NO2
-, NO3

-, ROM and GGT using kits 

purchased from Instrumentation Laboratory (IL Test) following the procedures described 

previously (Bionaz et al., 2007; Trevisi et al., 2012) using a clinical auto-analyzer (ILAB 

600, Instrumentation Laboratory, Lexington, MA, USA). Total anti-oxidants were 

assessed through the ORAC assay. This method measures a fluorescent signal from a 

probe (fluorescein) that decreases in the presence of radical damage (Cao and Prior, 

1999).    

 

Statistical analysis 

The data of blood and liver metabolites were analyzed with the PROC MIXED of 

SAS 9.3 (SAS Institute, Inc., Cary, NC, USA). The fixed effects in the model included 

diet, time, and their interactions. The random effect was cow nested within treatment. 

Unequally-spaced data were analyzed using the exponential correlation covariance 

structure SP for repeated measures. Blood results obtained at -26 d for various 

biomarkers were used as covariates. Least-squares means separation between time points 

was performed using the PDIFF statement. Statistical significance was declared at P ≤ 

0.10 and tendencies at P ≤ 0.15. 
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RESULTS 

 

Biomarkers of muscle mass catabolism and N metabolism 

 Main effects of diet, time, and interactions are presented in Table 7. Unlike urea, 

concentration of creatinine had an interaction (P = 0.10) of D×T that resulted from a 

greater (P < 0.05) concentration at 7 d in CON cows compared with MS + SM (Figure 

7A). Although overall concentration of urea was affected (P = 0.005) only by time 

(Figure 7B), the contrast comparing prepartum versus postpartum concentrations was (P 

= 0.08) significant in CON cows but not in MS (P = 0.33) or SM cows (P = 0.62) (Table 

8). 

 

Biomarkers of liver function 

Main effects of diet, time, and interactions are presented in Table 7. The 

interaction D×T was not significant (P > 0.05) for any of the liver function biomarkers.. 

Among the biomarkers related with liver function only albumin showed a tendency for 

greater albumin in Met-supplemented cows than CON throughout the experiment (Table 

7). In fact, albumin decreased significantly in CON (P = 0.01) cows while it remained 

unchanged in MS (P = 0.88) and SM (P = 0.21). The nadir of albumin at 7 and 14 d 

postpartum in CON cows confirmed the latter (Figure 8A). The concentration of TB 

(Figure 8B; P < 0.001), GOT (Figure 8C; P < 0.001), and cholesterol (Figure 8D; P = 

0.02) increased significantly from prepartum to postpartum across all treatments (Table 

8). Concentration of GGT (Figure 8E) did not change from prepartum to postpartum in 

MS (P = 0.20) cows while it increased significantly in CON (P = 0.002) and SM (P < 
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0.001) cows (Table 8). In contrast, PON (Figure 8F) remained unchanged from 

prepartum to postpartum in SM (P = 0.19) cows while it decreased in CON (P = 0.002) 

and MS (P = 0.02).   

 

Biomarkers of inflammation and APP 

 Main effects of diet, time, and interactions for inflammation and APP biomarkers 

are presented in Table 7. The interaction D×T was not significant (P > 0.05) for any of 

the inflammation and APP biomarkers. Unlike haptoglobin and IL-6, ceruloplasmin 

(Figure 9A) had a diet effect (P = 0.03) and specifically because of lower (P = 0.009) 

concentration in Met-supplemented diets (CON vs MS + SM). Similarly, SAA (Figure 

9B) concentration was lower (P = 0.06) in Met-supplemented cows than CON. Although, 

diet had no effect IL-6 concentration, when comparing prepartum vs postpartum there 

was a significant decrease in cows fed MS (P < 0.001) and SM (P = 0.05) while it 

remained unchanged in CON (P = 0.14) cows (Table 8). Consistent with a non-

significant (P = 0.24) overall time effect for SAA (Table 7), the concentrations did not 

differ (P = 0.43) between prepartum and postpartum regardless of treatments (Table 8). 

There was a tendency (P = 0.11) for a decrease in haptoglobin from prepartum to 

postpartum (Figure 9D) in MS cows while no change (P = 0.45) was observed in CON 

and SM cows (Table 8).   

 

Biomarkers of oxidative stress 

 Main effects of diet, time, and interactions for biomarkers related with oxidative 

stress are presented in Table 7. There was a significant interaction of D×T for NOx (P = 
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0.06) and NO3
- (P = 0.04). This effect was associated with a greater (P < 0.05) 

concentration of NOx in CON vs MS + SM cows at -21 d (Figure 10A), and a greater 

concentration of NOx (P = 0.10) and NO3
- (Figure 10B; P = 0.02) in SM vs CON at 7 d 

postpartum. In fact, NO3
- did not change from prepartum to postpartum in SM (P = 0.12) 

cows, but decreased in CON (P < 0.001) and MS (P = 0.04; Table 8). Unlike NOx and 

NO3
-, ORAC (Figure 10C; P = 0.04) and liver glutathione concentration (Figure 10F; P = 

0.04) were greater in MS + SM cows than CON. Although, ROM (Figure 10E) and NO2
- 

(Figure 10D) were only affected by time (Table 7), there was a substantial increase in 

ROM from prepartum to postpartum in CON (P = 0.06) and SM (P = 0.007) but not in 

MS (P = 0.11), while NO2
- decreased in CON (P = 0.02) and MS (P = 0.04) but not in 

SM (P = 0.18) cows (Table 8).      

 

Vitamins 

 Main effects of diet, time, and interactions for vitamins are presented in Table 7. 

Only retinol was affected (P = 0.06) by the interaction D×T, namely due to an increase (P 

< 0.003) in SM at 21 d postpartum compared with other treatments (Figure 11A). In fact, 

retinol in SM cows did not change (P = 0.24) between prepartum to postpartum, while it 

decreased in CON (P = 0.006) and MS (P = 0.06) cows (Table 8). Tocopherol and beta-

carotene were affected by time (Table 7) and they decreased (P < 0.06) across treatments 

between prepartum to postpartum (Table 8).  
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DISCUSSION 

Supplementation with MS or SM improved milk production at least in part by 

increasing postpartal DMI and by reducing the loss of BCS (Osorio et al., 2013). 

Postpartal negative energy balance (NEB) in dairy cows is commonly associated with 

lower DMI with respect to the greater energy requirements for milk production. In the 

companion study we observed that Met supplementation (SM or MS) led to a faster 

recovery from NEB toward a positive energy balance during the first 4 wk postpartum 

(Osorio et al., 2013). Supplemental Met also resulted in a tendency for lower incidence of 

ketosis postpartum.  

 

Biomarkers of muscle mass catabolism and N metabolism 

Creatinine is an important indicator of body muscle mass and its concentration 

typically decrease around parturition (Kokkonen et al., 2005; Pires et al., 2013). Although 

Pires et al. (2013) observed a decrease in creatinine from -4 wk to 7 wk relative to 

calving, the differences reported between -4 wk to 4 wk were marginal. The time effect 

observed for creatinine in the present study did not result in an overall decrease during 

the peripartal period (Table 8). However, our results encompass the period from -3 wk to 

3 wk, which in turn are similar to those reported by Pires et al. (2013). This suggests that 

although cows normally experience a decrease in body weight couple with decrease in 

BCS, the decrease in body muscle mass is more likely to occur during extended periods 

(>7 wk) of NEB as tissue mobilization of lipids precedes that of AA. Pires et al. (2013) 

also observed that cows with a low BCS (≤2.5) had lower creatinine concentration in 

comparison with medium and high BCS (≥2.75) cows. We observed a similar effect in 
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CON cows which had a greater postpartum BCS than MS and SM (Osorio et al., 2013), 

and also greater creatinine concentration (Figure 7A) at 7 d postpartum.   

Decrease in ruminal ammonia concentration has been associated to a decrease in 

blood urea N, as the latter is transfer into the rumen in order to serve as a buffer against 

excessively low ruminal ammonia and to supply amino N for microbial function (Firkins 

et al., 2007). It’s likely that decreased postpartal DMI in CON cows (Osorio et al., 2013) 

might had also decreased the total N intake available for microbial protein synthesis, 

which in turn might had lead to an increase in the recycle of blood urea into the rumen 

(Bach et al., 2005), and thus decreasing blood urea in CON cows (Table 8). The latter 

could also be associated to lower milk protein % and milk protein yield observed in CON 

cows (Osorio et al., 2013), where lower total N intake might had impair microbial protein 

reaching the small intestine.   

 

 Biomarkers of liver function  

The fact that albumin is classified as a negative APP implies that hepatic 

production (the main site in the body) is commonly reduced during the onset of 

inflammation (Bertoni et al., 2008). Therefore, the substantial decrease of albumin in 

CON cows during the transition period (while MS and SM maintained same levels, Table 

8) is consistent with the animals experiencing more pronounced inflammatory conditions. 

Liver function has been previously classified as upper, upper intermediate, lower 

intermediate, and lower in terms of blood PON concentration (Bionaz et al., 2007) or 

plasma negative acute phase proteins such as albumin, retinol-biding protein, and total 

cholesterol (Bertoni et al., 2008). Then, cows classified as upper postpartal liver function 
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have albumin concentrations ranging between 34 to 35 g/L (Bionaz et al., 2007; Bertoni 

et al., 2008), whereas in Met-supplemented cows was above 35 g/L throughout the 

peripartal period (Figure 8A). Although albumin in CON cows were within physiological 

levels, its concentration decreased ~2 g/L from prepartum to 7 d postpartum, similar 

decreased was observed in Bionaz et al. (2007) within cows in the lower liver function 

group. Furthermore, the fact that albumin in CON cows remained lower than prepartal 

levels for ~ 2 wk could suggest additional liver damage during this time.  

The increase in GOT (58.9 versus 116.9 U/L; Figure 8C) across treatments 

between pre and postpartum is to some extent consistent with the increase of GGT 

(26.2%; Figure 8E).  However, in the case of GGT it did not increase in MS cows (P = 

0.2; Table 8). The mechanism by which MS supplementation did not increase 

concentration of GGT after parturition remains unknown. However, this lack of effect 

could be partly explained by transient effects due to animal variation rather than an actual 

treatment effect. Although this might suggest that liver damage in MS cows was less 

severe, it is well-known that concentration of both enzymes (GOT and GGT) in blood 

increases after calving (Bertoni et al., 2008; Graugnard et al., 2012).  

Overall, the decrease in PON around parturition and specifically at 7 d postpartum 

is in agreement with previous work (Bionaz et al., 2007; Grossi et al., 2013). Regardless 

of this overall reduction, the concentration of PON remained unchanged in SM cows but 

decreased in CON and MS cows (Table 8). The decrease in serum PON at the end of 

pregnancy and after calving has been functionally linked with liver dysfunction due to the 

reduction of cholesterol HDL which is the main carrier of paraoxonase molecules in 

blood (Turk et al., 2005), and which is justified by inflammation and oxidative stress 
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(Bionaz et al., 2007). Some of these mechanisms could partly explain the results in the 

present study. For instance, SM cows had numerically-lower (P = 0.15) NEFA 

concentrations than CON and MS (Osorio et al., 2013), and ROM (Figure 10E) was 

numerically-greater but less affected (P = 0.56).    

 

Biomarkers of inflammation and APP 

 Concentrations of ceruloplasmin and SAA are likely to increase during 

inflammatory episodes such as those occurring in the peripartal period (Ceciliani et al., 

2012). Although, ceruloplasmin was not affected by the interaction D × T, it was 10.7% 

lower (Table 7) in Met supplemented diets, which was more noticeable at -10 d 

prepartum (Figure 9A). Despite the lack of time effect for the concentration of SAA most 

of the 30.9% increase in CON cows over Met-supplemented could be attributed to 

numerically-greater concentrations of SAA at -10 and 14 d relative to calving (Figure 

9B). Although IL-6 was not directly affected by Met supplementation (Table 7), the 

tendency for a decrease (P = 0.14) in IL-6 concentration observed between prepartum and 

postpartum with MS and SM could be taken as indication that supplemental Met 

decreased the synthesis of this proinflammatory cytokine. The latter could have elicited 

an effect on the liver, effectively reducing the production of positive APP such as 

ceruloplasmin and SAA.  

It could be envisioned that any factor reducing the synthesis of positive APP by 

the liver would spare some AA for the liver synthesis of negative APP and perhaps for 

utilization by the mammary gland. Under such scenario, supplemental SM and MS would 

have increased Met availability to the mammary gland and partly explain the greater 
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overall milk production and ECM (Osorio et al., 2013). Similar effects have been 

observed in chickens when they are raised under stressful environments that induce both 

an immune response and partitioning of nutrients, e.g. Lys and Met, towards immune 

cells (e.g. increasing IL-1) (Klasing and Barnes, 1988). The end result being a reduction 

in the AA requirements for growth and tissue accretion.  

 

Biomarkers of oxidative stress 

 The total NO2
- and NO3

- concentration is a valid estimation of NOx generation in 

biological samples; NOx from NO2
- and NO3

- is referred to as NOx (Komine et al., 

2004).  The similar profiles in the concentration of NOx (Figure 10A), NO2- (Figure 

10E), and NO3- (Figure 10B) agree with the proposed definition of NOx. We are unaware 

of previous studies reporting the pattern of NOx concentration blood around calving. 

However, milk secretions sampled at 4 wk intervals during the dry period and throughout 

lactation had greater concentration of NOx prepartum than postpartum (Bastan et al., 

2013), which is similar to our results in blood.  

Previous work with dairy cows demonstrated that NOx is a potent vasodilatory 

compound that can be produced locally by the mammary gland (Prosser et al., 1996). In 

turn, an increase in local NOx and NO3- could increase the flow and mammary uptake of 

fatty acids and AA for milk synthesis (Bastan et al., 2013). Therefore, it could be possible 

that the greater concentration of NOx in SM at 7 d had a mechanistic role in the 

substantial increase in milk production (+2.7 kg/d greater than CON), fat yield (+0.48 

kg/d greater than CON) and protein yield (+0.33 kg/d greater than CON) observed in SM 

cows within the first wk of lactation (Osorio et al., 2013).  
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 The ORAC capacity was 5.9% greater in Met-supplemented cows, which could 

have been at least in part by the greater (22.6%) liver glutathione concentration and the 

greater concentration of vitamins such as retinol (Figure 11A). The total liver glutathione 

effect can be directly associated with Met supplementation because Met can be 

incorporated up-stream in the pathway for de novo glutathione synthesis (Halsted, 2013). 

Although, no significant D ×T interaction was observed in liver glutathione, there was an 

evident greater prepartal concentration in Met-supplemented cows (Figure 10D) that 

eventually decreased as lactation progressed. In mice, liver glutathione has been 

described as a reservoir for supplying AA such as Cys to the γ-glutamyl cycle (Lu, 2009). 

Glutathione in dairy cows can supply AA such as Cys to the mammary gland for milk 

synthesis (Pocius et al., 1981). Taken together, it is plausible that the accumulation of 

glutathione in liver during the close-up period in cows fed MS and SM served after 

calving as a “buffer” to spare Cys to promote milk synthesis, which was reflected by the 

greater milk production, milk protein %, and milk yield (Osorio et al., 2013). 

 The overall increase in ROM from pre to postpartum deviates slightly from 

findings observed previously by Bionaz et al. (2007), and Trevisi et al. (2009), where 

ROM concentration peaked at 7 d postpartum and substantially decreased by 28 d. 

Despite the lack of a D × T interaction, compared with CON and SM there was an 

evident reduction (15.6%) of ROM in MS from 7 d to 21 d postpartum (Figure 10E). 

These results coupled with the greater postpartal neutrophil activity in Met-supplemented 

cows (Osorio et al., 2013) indicate that ROM concentration was not entirely driven by 

concentrations of O2- and H2O2 (e.g. produced during phagocytosis). There might be 

other underlying factors such as changes in NADH/NADPH oxidase, xanthine oxidase, 
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and arachidonic acid metabolism controlling the overall oxidative status (Cepinskas et al., 

2002).  

It also could be hypothesized that cows fed MS might have relied on other 

antioxidant sources such as vitamin E in the form of tocopherol or SOD to neutralize and 

lessen ROM levels arising from oxidative stress around parturition (Bionaz et al., 2007). 

The increases in concentration of tocopherol of 91.3% and 106% between 7 d to 21 d 

postpartum in cows fed MS and SM support its use as an anti-oxidant.  

It has been previously observed that postpartal activity of SOD is lower 

particularly in cows with greater BCS before calving (Bernabucci et al., 2005). Taking 

that and the lower postpartal BCS in Met-supplemented cows (Osorio et al., 2013) into 

account, it could be possible that SOD activity partly influenced the reduction of ROM in 

MS cows after 7 d postpartum. Although this idea should also hold for SM cows, it is 

possible that rates of BCS loss postpartum (Bernabucci et al., 2005) and/or reduction in 

zinc and copper availability (Muehlenbein et al., 2001) after calving might have 

influenced SOD activity in SM cows.  

 

Vitamins 

 Overall, the decrease in concentration of vitamins (Figure 11) from prepartum to 

7 d postpartum is similar to results observed by Graugnard et al. (2012). The sharp 

increase from 7 to 21 d in concentration of retinol and tocopherol are in agreement with 

Bertoni et al. (2008). Moreover, those increases in retinol and tocopherol were 

particularly evident in the Met-supplemented cows (Figure 11A and 11B). Thus, results 

agree with previous data reporting that feeding methyl-deficient (choline and folate) diets 
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leads to a reduction of vitamin concentrations (ascorbic acid, α- and γ-tocopherol, and 

retinol) in tissues (i.e. lung, liver, and heart) and plasma (Henning et al., 1997).  

In the case of α-tocopherol, Henning et al. (1997) attributed those effects to 

disturbances in VLDL synthesis (as a result of feeding choline-deficient diets) coupled 

with fatty acid and TAG accumulation in liver. The latter can affect the hepatic transport 

of α-tocopherol in the VLDL (Jenkins et al., 1993; Henning et al., 1997) where Jenkins et 

al. (1993) attributed a decrease in plasma retinol to an impairment of the release and/or 

transport of retinol in the blood via retinol-binding proteins.  

From the above discussion it can be suggested that cows fed SM might have had 

greater ability to export/transport retinol into the blood stream at 21 d postpartum (Figure 

11A).  

 

CONCLUSION 

  Overall, the responses observed at the level of IL-6 and acute-phase proteins in 

cows supplemented with Smartamine M and MetaSmart revealed favorable alterations of 

the inflammatory and oxidative stress status of cows. The greater albumin in response to 

Met-supplementation suggested that rumen-protected Met promoted an enhanced liver 

function. Biomarker analyses in blood and tissue suggests that the beneficial effect of 

feeding SM and MS on postpartal cow performance is due partly to a better 

immunometabolic status.  
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TABLES AND FIGURES 
 
Table 7. Effects of supplementing cows with MetaSmart or Smartamine M during the 
peripartal period on liver glutathione and blood biomarkers for muscle body mass catabolism, 
liver function, inflammation and APP, oxidative stress, and vitamins. 

Parameter 
Treatment 

SEM1 
P-value 

CON MS SM Diet Met2 Time D×T4 
Muscle mass catabolism and N metabolism       

Creatinine, µmol/L 97.5 96.6 95.7 1.56 0.38 0.43 < 0.001 0.10 
Urea, mmol/L 4.87 4.87 4.87 0.19 0.70 0.97 0.005 0.90 

Liver function         
Albumin, g/L 35.1 36.1 35.7 0.53 0.28 0.15 0.04 0.20 
Total bilirubin,3 µmol/L 0.88(1.84) 0.58(1.49) 0.57(1.48) 0.49 0.66 0.70 < 0.001 0.97 
GGT, U/L 24.9 24.1 27.2 2.26 0.61 0.78 < 0.001 0.48 
AST/GOT, U/L 98.7 95.8 86.6 7.04 0.39 0.34 < 0.001 0.63 
Cholesterol, mmol/L 3.22 3.29 3.36 0.15 0.77 0.52 < 0.001 0.96 
PON, U/mL 64.9 68.3 63.6 3.74 0.64 0.80 < 0.001 0.81 

Inflammation and APP         
  Ceruloplasmin, µmol/L 3.02 2.68 2.71 0.10 0.03 0.009 < 0.001 0.67 

SAA, µg/mL 61 40.7 43.5 9.3 0.17 0.06 0.24 0.47 
  Haptoglobin,3 g/L -1.48(0.36) -1.70(0.31) -1.67(0.31) 0.18 0.6 0.32 0.01 0.60 

IL-6, pg/mL 612.1 546.3 447.4 93 0.40 0.29 < 0.001 0.73 
Oxidative stress         

NOx, µmol/L 23.5 22.8 23.5 0.67 0.69 0.69 < 0.001 0.06 
NO3

-, µmol/L 17 16.5 16.9 0.51 0.7 0.57 < 0.001 0.04 
ORAC, mol/L 11.9 12.9 12.4 0.29 0.05 0.04 < 0.001 0.66 
Liver glutathione, mM 1.27 1.55 1.73 0.14 0.09 0.04 < 0.001 0.45 
ROM, mg H2O2/100 mL 13.7 12.8 14.2 0.61 0.24 0.73 < 0.001 0.62 
NO2

-, µmol/L 6.42 6.7 6.6 0.54 0.92 0.70 < 0.001 0.27 
Vitamins         

Retinol, µg/100 mL 40 37.7 42.3 2.3 0.40 0.98 < 0.001 0.06 
Tocopherol, µg/mL 3.44 3.79 3.06 0.51 0.58 0.98 < 0.001 0.21 
β-carotene, mg/100 mL 0.19 0.21 0.24 0.02 0.34 0.22 < 0.001 0.22 

1Greatest standard error of the mean. 
2Contrast statement of CON vs MS+SM. 
3Data were log-transformed before statistics. Back-transformed least square means are shown in parentheses. The 
standard error of the means associated with log-transformed data are in log scale.  
4Interaction of treatment by time.   
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Table 8. Contrast estimates of blood biomarkers concentrations for muscle body mass, liver 
function, inflammation and APP, oxidative stress, and vitamins between prepartum (-21 and -10 
d relative to calving) versus postpartum (7, 14, and 21 d relative to calving) in cows 
supplemented with MetaSmart or Smartamine M during the peripartal period.  

Parameter 

Contrast prepartum vs postpartum 
CON MS SM 

Estimate1 P-value Estimate P-value Estimate P-value 
Muscle mass and N metabolism       

Urea, mmol/L 0.49 0.08 0.29 0.33 0.16 0.62 
Creatinine, µmol/L 0.06 0.98 -3.4 0.14 0.44 0.85 

Liver function       
Total bilirubin, µmol/L -3.2(0.11) < 0.001 -3.7(0.10) < 0.001 -3.2(0.11) < 0.001 
AST/GOT, U/L -67.0 < 0.001 -53.1 < 0.001 -54.0 < 0.001 
Cholesterol, mmol/L -0.43 0.02 -0.47 0.02 -0.65 0.02 
GGT, U/L -5.68 0.002 -2.41 0.2 -9.5 < 0.001 
PON, U/mL 13.5 0.002 11.1 0.02 6.4 0.19 

Inflammation and APP       
  Haptoglobin, g/L -0.23(0.85) 0.45 0.53(1.44) 0.11 -0.03(0.98) 0.94 
  Ceruloplasmin, µmol/L      -0.53 0.002 -0.55 0.003 -0.75 < 0.001 

IL-6, pg/mL 70.4 0.14 192.9 < 0.001 95.5 0.05 
Albumin, g/L 1.43 0.01 -0.09 0.88 -0.81 0.21 
SAA, µg/mL 4.8 0.75 -13.9 0.43 -12.9 0.46 

Oxidative stress       
ROM, mg H2O2/100 mL -1.6 0.06 -1.5 0.11 -2.6 0.007 
ORAC, mol/L -653 0.06 -820 0.02 -911 0.02 
NOx, µmol/L 4.3 < 0.001 3.2 0.001 2.1 0.04 
NO2

-, µmol/L 1.65 0.02 1.63 0.04 1.12 0.18 
NO3

-, µmol/L 2.67 < 0.001 1.30 0.04 1.02 0.12 
Vitamins       

Retinol, µg/100 mL 9.29 0.006 7.43 0.06 4.78 0.24 
Tocopherol, µg/mL 1.54 < 0.001 0.92 0.06 1.76 0.002 
β-carotene, mg/100 mL 0.08 0.008 0.06 0.06 0.10 0.007 

1Estimate of the contrast of blood biomarkers concentrations prepartum [-21 plus -10 d relative 
to calving] versus postpartum [7, 14, and 21 d relative to calving], where positive (+) estimates 
represent a decrease and negative estimates (-) an increase in concentrations.    
 
 
 

 

 



 93 

 

Figure 7.  Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on biomarkers of muscle body mass catabolism (urea and 
creatinine) in dairy cows during the transition period. Mean separation between diets (P < 0.05) 
were evaluated via contrast: control (CON) versus SM (*).  
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Figure 8. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on liver function-related biomarkers in dairy cows during the 
transition period. Mean separation between diets (P < 0.05) were evaluated via contrast: control 
(CON) versus MS + SM (*). GOT = glutamic-oxalacetic transaminase, GGT = gamma-glutamyl 
transferase. 
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Figure 9. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on inflammatory biomarkers in dairy cows during the 
transition period. Mean separation between diets (P < 0.05) were evaluated via contrast: control 
(CON) versus MS + SM (*). IL-6 = Interleukin 6, SAA = serum amyloid A.  
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Figure 10. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on oxidative stress biomarkers in dairy cows during the 
transition period. Mean separation between diets (P < 0.05) were evaluated via contrast: control 
(CON) versus MS + SM (*) and CON versus SM (**).  NO = nitric oxide, NO3 = nitrate, NO2 = 
nitrite, ORAC = oxygen radical absorbance capacity, ROM = reactive oxygen metabolites.  
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Figure 11. Effects of supplemental MetaSmart (MS; Adisseo Inc., Antony, France) or 
Smartamine M (SM; Adisseo Inc.) on concentration of vitamins in dairy cows during the 
transition period. Mean separation between diets (P < 0.05) were evaluated via contrast: control 
(CON) versus SM (*). 
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CHAPTER 4 

HEPATIC TRANSCRIPTOMICS OF PERIPARTAL DAIRY COWS 

SUPPLEMENTED WITH SMARTAMINE M OR METASMART  

 
INTRODUCTION 

 The importance of methionine (Met) as one of the most limiting AA for milk 

protein synthesis in dairy cows has been well established by previous research (Schwab 

et al., 1992; Pisulewski et al., 1996). Similar effects have been observed soon after 

calving when supplementing Met during the peripartal period leading to increased milk 

production and milk fat yield (Osorio et al., 2013). The latter observation could be 

partially associated with an increase in postpartal DMI when cows are supplemented with 

Met (Ordway et al., 2009; Osorio et al., 2013). Improved postpartal performance also 

could be linked to a reduced peripartal inflammatory response when supplementing Met 

(Osorio et al., 2012).   

 Increased Met bioavailability in Met-supplemented cows (Graulet et al., 2005) is 

likely to enter the Met cycle (Figure 12) that is closely related to the methylation and 

transsulfuration cycles.  Therefore, Met is intrinsically related to several processes that 

can use this AA as a precursor. For instance, Met can be converted to s-

adenosylmethionine (SAM) and used for methylation, or SAM can be further 

metabolized through the Met cycle to form cystathionine that can enter glutathione 

metabolism pathway or the Krebs cycle at the succinyl-CoA level.  

 The importance of the Met and methylation cycles has been previously studied 

during the peripartal period by supplementing methyl groups (e. g., rumen-protected Met, 

folic acid, and vitamin B12), but with limited effect on dairy cow performance (Preynat et 
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al., 2010). In contrast, Goselink et al. (2013) observed that rumen-protected choline 

reduced liver triacylglycerol (TAG) by enhancing FA processing and very-low-density 

lipoprotein (VLDL), synthesis presumably by increasing gene expression of APOB and 

MTTP.  

DNA methylation is one of the epigenetic modifications involved in the 

regulation of gene expression and hence it is an important biological function. It is well 

established that cells can undergo global DNA hypomethylation while having 

hypermethylation of a specific gene promoter; consequently the expression of the gene is 

silenced or attenuated when its promoter is heavily methylated (Wang et al., 2013).  In 

fact, methyl-deficient diets have been associated with hypermethylation of specific gene 

promoters of genes involved in lipid metabolism (Tryndyak et al., 2011). Recently, a 

study testing betaine as a methyl donor in order to reduce hypermethylation of specific 

promoter genes in male rats uncovered an up-regulation of PPARA as a result of 

hypomethylation of its promoter (Wang et al., 2013). This finding provides a novel 

insight into the important lipotropic effects of methyl-donors such as betaine or Met in 

the form of SAM. Peripartal dairy cows may benefit from activation of PPARA via Met 

supplementation, due to several adaptions at the metabolic and inflammatory level driven 

by activated PPARA (Bionaz et al., 2013). Among these adaptations by PPARA is the 

targeting of other genes such as fibroblast growth factor-21 (FGF21) and angiopoietin-

like 4 (ANGPTL4). FGF21 in turn can stimulate hepatic gluconeogenesis, glucose uptake 

in adipocytes, and fatty oxidation and ketogenesis (Schoenberg et al., 2011). Upon 

activation, ANGPTL4, a positive acute phase protein, inhibits LPL activity and enhances 

lipolysis as a response driven by undernutrition (Loor et al., 2007). Gluconeogenesis 
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activation via FGF21 encompasses the activation of genes such as pyruvate 

dehydrogenase kinase isozyme 4 (PDK4) in male rats (Palou et al., 2008), and activation 

of phosphoenolpyruvate carboxykinase 1 (PCK1) and pyruvate carboxylase (PC) in 

peripartal dairy cows (Akbar et al., 2013).       

 Our hypothesis was that dietary Met supplementation during the peripartal period 

will increase the pool of Met flowing through the Met cycle, and eventually might 

influence the RNA expression of enzymes involved in this cycle that produce 

intermediate components such SAM or cystathionine that might ameliorate negative 

effects observed during the peripartal period. While SAM can increase global 

methylation and reduce hypermethylation of specific promoters, cystathionine can be 

drawn to glutathione metabolism since previously we observed greater glutathione in 

Met-supplemented cows (Osorio et al., 2013).  

 The objective of this experiment was to evaluate at the transcriptomics level the 

effects of supplementing Met in the form of Smartamine (SM) and MetaSmart (MS) 

specifically focusing on Met, Glutathione, lipid, and carbohydrate metabolism as well as 

the growth hormone (GH)-IGF1 axis and methylation during the peripartal period, with 

the aim to draw further understanding of previous results observed (Osorio et al., 2012; 

Osorio et al., 2013).    

MATERIALS AND METHODS 

 

Animals and experimental design  

All procedures were conducted under protocols approved by the University of 

Illinois Institutional Animal Care and Use Committee. Details of the experimental design 
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have been published previously (Osorio et al., 2013). Briefly, 25 Holstein cows entering 

their second or greater lactation were enrolled in the study and were fed experimental 

treatments consisting of a basal control diet (CO, n = 14) with no Met supplementation, 

CO plus MS (n =12) at a rate of 0.19% of DM, and CO plus SM (n = 13) at a rate of 

0.07% of DM (Osorio et al., 2013). All cows received the same far-off diet (1.24 Mcal/kg 

DM, 14.3% CP) from -50 to -21 d before expected calving, a close-up diet (1.54 Mcal/kg 

DM, 15% CP) from -21d to expected calving, and a fresh-cow diet from calving (1.75 

Mcal/kg DM, 17.5% CP) through 30 DIM. Methionine supplements were top-dressed 

from -21 to 30 DIM. A subset of cows (CO, n = 8; MS, n = 8; SM, n = 9) was used to 

evaluate hepatic transcriptomic profile.    

 Animal husbandry for feeding system, sampling of ingredients and TMR, BW, 

BCS, milk weights, sampling for milk composition, and housing of cows pre- and 

postpartum were as reported previously (Osorio et al., 2013). 

 

Liver biopsy, RNA extraction, quantitative PCR, and design and evaluation of primers 

Liver was sampled via puncture biopsy (Dann et al., 2006) from cows under local 

anesthesia at approximately 0730 h on −10, 7, and 21 d relative to parturition. Tissue 

specimens were stored in liquid N2 until RNA extraction.   

Total RNA was extracted from liver samples using establish protocols in our 

laboratory (see supplementary materials or details: 

http://www.journalofdiarysciences.org/). Details of quantitative PCR, design, and primer 

evaluation are presented in the supplementary materials. Percentage relative abundance 

http://www.journalofdiarysciences.org/
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of mRNA was calculated to provide additional mechanistic information on the target 

genes (Bionaz and Loor, 2008). 

 

Statistical analysis 

The data of gene expression were analyzed with the Proc MIXED procedure of 

SAS 9.3 (SAS Institute, Inc., Cary, NC, USA). The fixed effects in the model included 

diet, parity, time, and their interactions. Cow was designated as a random effect. Parity 

and its interactions were removed from the model when these effects were non-

significant (P > 0.10). Unequally spaced data were analyzed using the exponential 

correlation covariance structure SP for repeated measures. Least-squares means 

separation between time points was performed using the PDIFF statement. Statistical 

significance was declared at P ≤ 0.10, and tendencies at P ≤ 0.15. 

 

RESULTS 

 

Methionine metabolism 

 Main effects of diet and time and interactions on genes associated with Met 

metabolism are presented in Figure 13. There was an interaction of D×T for MAT1A and 

CBS, where expression of MAT1A in MS cows was lower (P = 0.10) than CON at -10 d 

while greater (P = 0.09) at 21 d. Similarly, expression of CBS was greater (P = 0.06) in 

MS than CON at 21 d. Expression of SAHH (P < 0.01), MTR (P = 0.03), and PEMT (P = 

0.09) was greater in Met-supplemented cows; in contrast CSAD was lower (P = 0.03). 
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Expression of CTH, BHMT, and BHMT2 was affected by time only, where CTH 

decreased while in contrast BHMT and BHMT2 increased over time. 

 

Glutathione metabolism 

 Main effects of diet and time and interactions on genes associated with 

glutathione metabolism are presented in Figure 14. The interaction of D×T was not 

significant for any of the genes related to glutathione metabolism. However, the 

expression of GSS was affected (P < 0.01) by diet as reflected in a lower (P = 0.05) 

expression in Met-supplemented cows than CON. Similarly, the expression of GSR 

tended (P = 0.12) to be affected by diet, where the expression was greater (P = 0.05) in 

Met-supplemented cows than CON. Although GPX1 and GCLC were not affected by 

diet, their expression decreased (P < 0.01) during the transition period.  

 

Inflammation 

 Main effects of diet and time and interactions on genes associated with 

inflammation are presented in Figure 15. The interaction of D×T was not significant for 

any of the genes related to inflammation response. However, the expression of NFKB1 

was significantly (P < 0.01) affected by diet. Although, expression of NFKB1 greater (P 

= 0.01) expression in Met-supplemented cows than CON, this effect was a result of 

greater NFKB1 mRNA in SM cows than MS and CON. Expression of CP and SAA2 

decreased (P = 0.01) over time regardless of diet. Although similar (P = 0.65) expression 

of HP was observed at 21 d and -10 d there was an evident up-regulation at 7 d 
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postpartum primarily in Met-supplemented cows (Figure 15); however, this effect did not 

reach statistical significance. Expression of STAT3 was not affected (Figure 15).      

 

Oxidative stress 

 Main effects of diet and time and interactions on genes associated with oxidative 

stress are presented in Figure 16. There was a trend (P = 0.13) for the interaction D×T for 

SOD1 and BBOX1, where at 21 d postpartum the expression of SOD1 in MS cows was 

greater (P = 0.10) than CON, while SM cows had greater (P = 0.07) expression of 

BBOX1 than CON. Additionally, Met-supplemented cows tended (P = 0.12) to have 

lower expression of SOD1 than CON. In contrast to SOD1, expression of SLC22A5 tend 

(P = 0.13) to be greater in Met-supplemented cows. Expression of TMLHE was affected 

by time (P < 0.01), while neither diet nor time affected the expression of SOD2 (Figure 

16).       

 

 Fatty acid metabolism  

 Main effects of diet and time and interactions on genes associated with fatty acid 

metabolism are presented in Figure 17. The interaction D×T was not significant for any 

of the genes related to fatty acid metabolism. However, the expression of RXRA was 

affected (P = 0.02) by diet such that expression was greater (P = 0.06) in Met-

supplemented cows than CON. Similarly, there was a trend (P = 0.12) for a diet effect in 

the expression of PPARA, where the expression was greater (P = 0.04) in Met-

supplemented cows than CON. Like SLC22A5 and TMLHE (Figure 17), the expression of 

CPT1A increased from -10 d to 7 d postpartum, followed by a decrease at 21 d, which 
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resulted in a significant time effect (P < 0.01). Diet and time did not affect the expression 

of ACOX1 and HMGCS2 (Figure 17).   

 

Hepatokines, gluconeogenesis, and VLDL synthesis and export 

 Main effects of diet and time and interactions on genes associated with 

hepatokines, gluconeogenesis, and VLDL synthesis and export are presented in Figure 

18. The expression of FGF21 (P < 0.01) and PCK1 (P = 0.08) were significantly affected 

by the interaction D×T. Where FGF21 expression was greater (P < 0.006) in SM cows 

than CON at -10 d, expression tended (P = 0.14) to be greater in MS cows than CON . 

Similar to FGF21, Met-supplemented cows had a greater (P < 0.04) expression of PCK1 

at -10 d and 7 d, which resulted in an overall up-regulation (P < 0.01) of PCK1 in Met-

supplemented cows. Expression of ANGPTL4 resulted in a trend for the interaction D×T, 

which revealed a greater expression in both SM (P = 0.04) cows -10 d and MS (P = 0.07) 

cows at 7 d than CON cows. Additionally, SM cows tended (P = 0.13) to have greater 

expression of ANGPTL4 than CON at 7 d postpartum. While Met-supplemented cows 

had lower (P = 0.02) expression of MTTP, there was a trend (P = 0.13) for a greater 

PDK4 in comparison to CON cows. The expression of PC (P = 0.03) and APOB (P = 

0.10) was affected by diet, where PC was lower (P < 0.08) in SM cows than MS and 

CON, but APOB was greater (P < 0.10) in SM cows.  

 

Growth hormone signaling  

 Main effects of diet and time and interactions on genes associated with growth 

hormone signaling are presented in Figure 19. The expression of SOCS2 (P = 0.11) and 
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IGF1 (P = 0.13) were affected by the interaction D×T. The latter resulted in MS cows 

having greater (P = 0.11) SOCS2 than CON cows at 7 d postpartum. Expression of IGF1 

was greater in SM (P =0.06) and MS (P = 0.15) than CON cows at -10 d, followed by 

greater (P = 0.15) IGF1 in SM than CON at 21 d.  Expression of STAT5B decreased (P < 

0.01) during the transition period regardless of treatment effect.  

 

DNA Methylation 

 Main effects of diet and time and interactions on genes associated with DNA 

methylation are presented in Figure 20. The interaction D×T was not significant for any 

of the genes related to DNA methylation. The expression of DNMT1 and DNMT3A was 

not affected by diet, but decreased by 21 d postpartum. Unlike DNMT3A, DNMT1 

expression remained unchanged from -10 d to 7 d postpartum, at which point DNMT3A 

expression decreased and remained unchanged until 21 d. In contrast, DNMT1 expression 

was downregulated from 7 d to 21 d postpartum.  

 

DISCUSSION 

 In previous published data from the same experiment (Osorio et al., 2013), it was 

reported that supplementation with MS or SM improved milk production. This effect 

occurred at least in part, by increasing postpartal DMI and perhaps by reduction of 

postpartal BCS. The latter observation was also associated with an earlier recovery 

towards a positive energy balance. Additionally, there was evidence for a lesser 

inflammatory response in Met-supplemented cows during the peripartal period (Osorio et 

al., 2012).  
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Methionine metabolism 

 Activity of S-adenosylhomocysteine hydrolase (SAHH) has not been extensively 

studied in ruminants and especially in dairy cattle. However, its importance in the 

methylation cycle in connection to hypermethioninemia, by hydrolyzing SAH to Hcy, has 

been established in humans and mice (Baric, 2009). In the current experiment SAHH 

expression was the most abundant of any gene studied (Table1), which presumably 

underlines the importance of this gene under the conditions and experimental design of 

the study. Increased Met bioavailability in Met-supplemented cows in the forms of either 

MS or SM (Graulet et al., 2005) was likely to increase activity of the Met cycle and 

therefore modify the expression of genes related to the Met cycle such as MAT1A and 

SAHH. Because SAHH, a substrate-dependent enzyme, can convert SAH to Hcy or vice 

versa, this enzyme might have played an important role in both the availability of SAM 

and Hcy. Conversion of SAH to Hcy might render Hcy as a competitor against a number 

of other methyl-receptors for use of SAM (Martinov et al., 2010). On the other hand, Hcy 

could serve as an important substrate in the synthesis of compounds such as glutathione. 

The MAT1A gene encodes both MATI and MATIII isoenzymes present in the liver of 

mammals, where MATI is tetrameric and MATIII is dimeric (Martinov et al., 2010). 

Besides having different configurations MATI is inhibited by SAM, whereas MATIII is 

activated. The latter differences between MATI and MATII coupled with a prepartal 

down-regulation of MAT1A at -10 d in MS vs CON, followed by postpartal up-regulation 

at 21 d, might be an indicator of the SAM status. However, the redundancy of SAM 

synthesis via MATI/MATIII is suggestive of a more complex regulatory system for 
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SAM. Besides MAT1A, greater expression of CBS in MS vs CON could be indicative of 

greater concentration of SAM, since SAM can exert allosteric activation of CBS 

(Martinov et al., 2010).  

Greater expression of PEMT in Met-supplemented cows was more evident at 21 d 

(Figure 13), which may indicate a greater availability of phosphatidylcholine (PC; Figure 

12), an important constituent of lipoproteins such as VLDL. Synthesis of VLDL is 

essential in lactating ruminants not only to respond to the increased demand for milk fat 

synthesis, but also to mitigate hepatic steatosis commonly observed after calving. In fact, 

the latter is in agreement with previous published data (Osorio et al., 2013) from the same 

experiment where Met-supplemented cows had lower liver lipid concentration  at 21 d 

postpartum. In contrast to our results, PEMT has been previously reported to be 

unresponsive to rumen-protected Met during the transition period (Preynat et al., 2010). 

In fact, expression of PEMT decreased throughout the experiment. The previous 

differences among PEMT response to Met supplementation could be associated not only 

with a greater rate of Met supplementation in our experiment (2.25% vs 1.83%) but also 

because the ratio Lys:Met was maintained at 2.8:1 through the experiment.  

 Homocysteine is a sulfur-containing AA that upon remethylation by BHMT or 

MTR can regenerate Met from Hcy by transferring a methyl group from 5-

methyltetrahydrofolate (5-MTHF) and betaine, respectively (Preynat et al., 2010). 

Supplementation of Met affected MTR expression but not BHMT or BHMT2, which 

indicates that regeneration of Met from Hcy relied on 5-MTHF with vitamin B12 as a 

coenzyme. However, the expression of MTR decreased over time while BHMT and 

BHMT2 increased over time. This indicates that Met regeneration through methylation of 
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Hcy was pivotal having prepartal dependence on MTR and postpartal dependence on 

BHMT/BHMT2.      

 The fate of cysteine metabolism at the branch-point of cysteine sulfinic acid 

(CSA) between sulfate and taurine biosynthetic pathways has been observed to be 

regulated by CSAD activity, where decreased activity of this enzyme lead to the 

biosynthesis of taurine (Jerkins et al., 1998)  and transamination of CSA leads to 

formation of pyruvate and sulfate. Feeding high-protein diets to rats resulted in a 

decreased CSAD mRNA and consequently lower CSAD enzyme activity (Jerkins et al., 

1998). Similar results were observed in Met-supplemented cows with lower expression of 

CSAD, which indicates that cysteine that did not enter the glutathione metabolism and 

was likely to enter the sulfate pathway producing sulfate and pyruvate. The latter is an 

important substrate in gluconeogenesis, which is an essential process during the transition 

period due the greater demand of glucose for milk production.  

 

Glutathione metabolism 

 The importance of anti-oxidant activity such as glutathione peroxidase during the 

peripartal period has been well established (Spears and Weiss, 2008), and its activity 

decreases after calving (Weiss et al., 1990).  Increased Met bioavailability through Met 

supplementation can indirectly increase the production of total hepatic glutathione 

through the transsulfuration pathway (Osorio et al., 2013). Increased concentration of 

glutathione has been observed to produce a feedback inhibition effect on the enzyme 

GCL (Franklin et al., 2009), although this was not associated with a lower GCLC mRNA 

in Met-supplemented cows (Figure 14). In fact, lower mRNA of GSS and GSR was 
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observed in Met-supplemented cows, which might be related to lower oxidative stress 

that triggers greater demand for these enzymes (Lu, 2009).  This conjecture is supported 

by overall lower oxidative stress status in Met-supplemented cows as indicated by 

oxygen radicals absorbance capacity (ORAC) previously reported (Osorio et al., 2012). 

Expression of GPX1 and GCLC decreased over time, which may be related to several 

factors such as lower cysteine availability due to greater AA requirements for milk 

protein and hepatic glutathione depletion due to increased oxidative stress (Lu, 2009). 

The decrease in GPX1 throughout the experiment (Figure 14) suggests a further decrease 

in the anti-oxidant capabilities in transition cows to use reduced glutathione through GPX 

enzyme. 

  

Inflammation 

 The expression of STAT3 was not affected by diet; therefore this transcription 

factor was not likely to be responsible for greater response of NFKB1 in SM cows 

(Figure 15). However, the overall expression of NFKB1 decreased over time, which is 

consistent with previous work in our lab (Graugnard et al., 2013). Although mRNA 

expression of CP and SAA2 was not affected by Met supplementation, lower 

concentrations of these proteins were observed in Met-supplemented cows (Osorio et al., 

2012), suggesting that the genes were subjected to post-transcriptional regulations such as 

miRNA or RNA methylation.    
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Oxidative stress 

 Between the two isozymes of SOD, the SOD1 form was primarily affected by 

Met supplementation, while SOD2 was not (Figure 16). This difference suggests that 

Met-supplementation might partially have compartmentalize oxidative stress mainly 

towards the cytosolic compartment (SOD1) rather than mitochondrial (SOD2). Similar to 

GSS and GSR, lower SOD1 in Met-supplemented cows in comparison to CON can be 

associated with either a lower oxidative stress or the reliance on other antioxidants such 

as ascorbic acid and tocopherol in Met-supplemented cows. In fact, such of pivotal 

effects can be observed in greater SOD1 in MS cows at 21 d postpartum, at which point 

SM cows were previously reported (Osorio et al., 2012) to have greater retinol 

concentration.  

 Genes involved in carnitine biosynthesis such as TMLHE and BBOX1 and 

mitochondrial uptake of carnitine such as SLC22A5 are known target genes for PPARA. 

Among these, SLC22A5 was the only gene up-regulated via Met-supplementation, which 

is in agreement with PPARA activation (Figure 17) in Met-supplemented cows.  These 

changes suggest a greater mitochondrial uptake of carnitine in Met-supplemented cows. 

Overall, SLC22A5 and TMLHE expression increased at 7 d postpartum, followed by a 

decrease at 21 d postpartum, similar to those observed in Schlegel et al. (2012), where the 

expression of these genes increased at 7 d postpartum followed by a decreased at 35 d 

postpartum. Postpartal up-regulation of these genes at 7 d indicates a greater demand for 

an activation of carnitine that regulates the mitochondrial uptake of fatty acids that 

commonly accumulate in the liver soon after calving.  
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PPARA and Fatty acid metabolism  

 The evident up-regulation of PPARA via Met supplementation throughout the 

experiment was coupled with the greater expression of RXRA that further confirmed the 

functionality of PPARA as a potent metabolic regulator (Bionaz et al., 2013). Particularly 

interesting is the decreased expression of PPARA from -10 to 7 d postpartum at which 

point expression remained until 21 d. This contrasts with previous studies (Loor et al., 

2005; Schlegel et al., 2012) where PPARA up-regulation occurred as soon as 1 wk after 

calving and even when rumen-protected choline has been supplemented (Goselink et al., 

2013); however this response is not consistent in all studies (Carriquiry et al., 2009; 

Weber et al., 2013).   

Considering our results from the DNA methylation standpoint, it is plausible that 

Met as promoter of DNA methylation through SAM could have induced the greater 

PPARA activation observed in Met-supplemented cows. It is well established that cells 

can undergo global DNA hypomethylation while having hypermethylation of a specific 

gene promoter, and consequently the expression of a gene is silenced or attenuated when 

its promoter if heavily methylated (Wang et al., 2013).  In fact, methyl-deficient diets 

have been associated with hypermethylation of specific gene promoters of genes involved 

in lipid metabolism (Tryndyak et al., 2011). Recently, a study testing betaine as a methyl 

donor in order to reduce hypermethylation of specific promoter genes in male rats 

revealed an up-regulation of PPARA as a result of hypomethylation of its promoter 

(Wang et al., 2013). This finding may provide a novel insight into the important 

lipotropic effects of methyl-donors such as betaine or Met in the form of SAM. To the 

authors knowledge this is the first report of such an effect in dairy cows.    
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    Previous research has shown that HMGCS2 is likely to be a target gene for 

PPARA (Loor, 2010),  however HMGCS2 was not affected by Met-supplementation. This 

suggests that another mechanism might have overriden the effects of PPARA activation 

observed in Met-supplemented cows. Although CPT1A expression followed a similar 

pattern to those observed in SLC22A5 and TMLHE, CPT1A was not affected by Met 

supplementation. 

  

Hepatokines, gluconeogenesis, and VLDL synthesis and export 

Fibroblast growth factor-21 is potent regulator of metabolism that upon activation 

can stimulate hepatic gluconeogenesis, glucose uptake in adipocytes, fatty acid oxidation 

and ketogenesis (Schoenberg et al., 2011). Consistent with previous research (Carriquiry 

et al., 2009), overall expression of FGF21 increased after calving. Additionally, FGF21 

is well known to be a PPARA target gene (Loor, 2010); as such there tended to be a 

greater (P < 0.14) expression of FGF21 in Met-supplemented cows. In fact expression of 

FGF21 at -10 d followed that of PPARA with greater expression in Met-supplemented 

cows. Up-regulation of FGF21 in Met-supplemented cows via PPARA up-regulation ,but 

not of CPT1A as another target of PPARA, is in agreement with Akbar et al. (2013).  

Parallel to FGF21, ANGPTL4 is considered to be a PPARA target and as such its 

expression overall was greater in Met-supplemented at -10 d and 7 d postpartum. Upon 

activation ANGPTL4 inhibits LPL activity and enhances lipolysis, and its expression is 

upregulated during undernutrition episodes and NEB soon after calving (Loor et al., 

2007).  
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Expression of MTTP peaked at 7 d postpartum, with lower expression in Met-

supplemented cows throughout the experiment. This finding, together with greater APOB 

in SM cows, did not reveal a clear effect at a molecular level of Met supplementation on 

VLDL synthesis and secretion from liver. However, VLDL was not affected by Met 

supplementation from previous results obtained in the same experiment; in fact, APOB-

100 tended (P = 0.14) to be greater in Met-supplemented cows (Osorio et al., 2013). 

Taken together these results might suggest that post-transcriptional regulation might have 

an effect on final translation of MTTP and APOB into proteins.   

 The up-regulation of PDK4 and PCK1 in Met-supplemented cows suggestions 

greater gluconeogenesis activity in these cows. This seems to confirm the role of the 

PPARA-FGF21 axis as a gluconeogenesis promoter (Fisher et al., 2011). Targeting of 

PDK4 via PPARA-FGF21 axis was observed in fasted male rats (Palou et al., 2008), and 

PCK1 increased along with FGF21 expression in dairy cows (Akbar et al., 2013). 

However, these effects did not result in greater plasma glucose concentration in Met-

supplemented cows, as glucose concentration is tightly regulated in cows. Greater 

gluconeogenesis would be consistent with the increased milk production observed 

(Osorio et al., 2013). Therefore, other factors might have regulated glucose concentration 

in Met-supplemented cows such as mammary gland glucose uptake required for lactose 

synthesis. In fact insulin, even though not significant throughout the experiment, was 

~50% greater postpartum in Met-supplemented cows, which would be consistent with 

both transient increase in glucose concentration and earlier recovery towards positive 

energy balance (Osorio et al., 2013).  

 



 115 

Growth hormone signaling  

 High GH not only stimulates milk production but also enhances and sustains 

gluconeogenesis in liver and lipolysis in adipocytes (Etherton and Bauman, 1998). We 

previously reported that greater plasma GH was coupled with greater milk production in 

Met-supplemented cows of this study (Osorio et al., 2013). Although Met-supplemented 

cows had similar GH concentrations, the greater IGF1 in SM cows, but not in MS, 

suggests that the GH/IGF1 axis was differently regulated between Met sources. For 

instance, MS cows had greater GH (numerically) and NEFA at 7 d postpartum (Osorio et 

al., 2013), a pattern that has been associated with lower GH-receptor A and IGF-1 (Lucy, 

2008). Although STAT5B has been proven to play a central role in the GH-IGF1 

signaling cascade, it can be activated by multiple cytokines involved in immunity 

(Feigerlova et al., 2013). These effects might have undermined the Met supplementation 

effect in expression of STAT5B.  

 

DNA Methylation 

 DNA methylation has an essential regulatory function in tissue- and stage-specific 

modulation of gene expression. This mechanism is carried out through the covalent 

addition of a methyl group to cytosine within the context of the CpG dinucleotide, and 

has profound effects on the mammalian genome (Robertson and Jones, 2000). DNA 

methylation via non-sequence-specific binding site relies on methyl-CpG recognition and 

in this way the methylation is independent of DNA sequence (Kass et al., 1997). DNA 

methyltransferases (DNMT) are known to methylate DNA cytosine residues, and 

consequently creates methylated CpG patterns in the mammalian genome. Eventually 
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components such as MeCP2 will bind to these methylated CpG to mediate transcription 

(Sansom et al., 2007). There are many DNMT’s known to date, i.e. DNMT1b, DNMT2, 

and DNMT3b, among others, that could have affected DNA methylation (Zhang and Liu, 

2010). Interestingly, expression of DNMT3A and DNMT1 decreased from -10 d to 21 d 

postpartum regardless of treatment. That might indicate that stress periods such as the 

peripartal period promote DNA methylation. There is a lack of mechanistic information 

regarding DNA methylation during stress periods such as in the peripartal period in dairy 

cows, and on the effect of methyl donors such as Met on DNA methylation.    

 

CONCLUSIONS 

 Our findings indicate that dietary supplementation of MS or SM to cows during 

the peripartal period can affect the hepatic transcriptomics of Met metabolism, PPARA 

activation, hepatokines, and gluconeogenesis. Methionine metabolism was primarily 

affected by MTR by regenerating Met through methylation of Hcy. Geater expression 

SAHH might have promoted formation of Hcy that could have served as a substrate for 

Met or glutathione synthesis. Furthermore, the greater SAHH mRNA abundance among 

all genes evaluated reflects the importance of this gene to Met supplementation. As 

originally hypothesized, Met as a methyl donor in the form of SAM, presumably activate 

PPARA, which is a well-established transcription factor able to mediate important 

hepatokines such as ANGPTL4 and FGF21. In turn, these compounds seemed to be 

linked to activation of genes related to gluconeogenesis. To the authors’ knowledge this 

is the first study where a methyl donor such as Met might have increased the 

bioavailability of SAM and consequently activate PPARA, a master regulatory gene. 
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However, further research is needed to confirm the mechanistic connections between 

hypermethylation of PPARA promoter and decreased PPARA expression in ruminants.     
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TABLES AND FIGURES 

 
Table 9. Slope, coefficient of determination of the standard curve (R2), efficiency of 
amplification, and median cycle threshold (Ct) of quantitative reverse transcription-PCR  

Gene Slope1 (R2) Efficiency2 Median Ct3 
mRNA 
abundance4 (%) 

SAHH -3.24 1.00 2.04 17.40 17.86 
CP -3.21 1.00 2.05 18.01 12.19 
SOD1 -3.13 1.00 2.09 18.15 11.89 
APOB -3.23 1.00 2.04 18.16 10.98 
HMGCS2 -3.18 1.00 2.06 18.36 10.04 
SAA2 -3.27 0.99 2.02 18.77 5.61 
BHMT -3.36 0.99 1.98 18.93 5.61 
ACOX1 -3.24 1.00 2.04 19.05 5.39 
MAT1A -3.25 1.00 2.03 19.42 4.14 
PCK1 -3.22 1.00 2.05 19.70 3.28 
SOD2 -3.13 0.99 2.09 19.77 3.12 
HP -3.26 1.00 2.02 20.50 1.78 
GPX1 -3.06 1.00 2.12 20.80 1.47 
STAT3 -3.35 0.98 1.99 21.44 1.00 
CBS -3.26 0.99 2.03 21.52 0.92 
MTTP -3.12 0.99 2.09 22.07 0.60 
PPARA -3.21 1.00 2.05 22.33 0.49 
BBOX1 -3.10 1.00 2.10 22.49 0.42 
RXRA -3.36 0.99 1.98 22.69 0.42 
PEMT -3.23 0.99 2.04 22.70 0.39 
PC -3.59 1.00 1.90 23.00 0.38 
IGF1 -3.33 0.99 2.00 22.78 0.36 
STAT5B -3.14 0.99 2.08 22.96 0.31 
PDK4 -3.09 1.00 2.11 23.28 0.23 
SOCS2 -3.00 0.99 2.15 23.39 0.21 
NFKB1 -3.10 1.00 2.10 23.81 0.16 
CSAD -3.27 1.00 2.02 24.34 0.13 
BHMT2 -2.93 0.99 2.19 24.01 0.12 
ANGPTL4 -3.20 0.99 2.05 24.91 0.07 
TMLHE -3.29 0.99 2.01 25.29 0.07 
GSR -3.12 1.00 2.09 25.13 0.06 
GCLC -3.12 0.99 2.09 25.26 0.06 
CTH -3.12 1.00 2.09 25.44 0.05 
FGF21 -3.24 0.99 2.04 25.26 0.05 
SLC22A5 -3.08 0.99 2.11 25.63 0.04 
GSS -3.12 1.00 2.09 25.89 0.03 
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Table 9. (cont.) 

Gene Slope1 (R2) Efficiency2 Median Ct3 
mRNA 

abundance4 (%) 
MTR -3.30 0.98 2.01 26.32 0.03 
DNMT3A -2.96 0.99 2.17 27.14 0.01 
DNMT1 -2.97 0.99 2.17 27.48 0.01 

1Slope of the 7-point standard curve. 
2Efficiency of amplification [E=10(-1/slope)]. 
3Ct = median cycle threshold which is defined as the number of cycles required for the 
fluorescent signal to cross the threshold (i. e. exceed background level); and the 
amount of target nucleic acid in the sample is inversely correlated to Ct cycles (i. e., 
the greater the amount of target nucleic acid the lower the Ct cycles will be required). 
4mRNA abundance is calculated as percentage of (1/E∆Ct) specific gene in the sum 
(1/E∆Ct) all genes.  
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Figure 12. Methionine cycle. Key genes encoding enzymes analyzed: methionine 
adenosyltransferase 1A (MATIA), phosphatidylethanolamine methyltransferase (PEMT), S-
adenosylhomocysteine hydrolase (SAHH), betaine homocysteine methyltransferase (BHMT and 
BHMT2), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), cystathionine β-
synthase (CBS), cystathionine β-lyase (CTH). SAM = S-adenosylmethionine, PE= 
phosphatidylethanolamine, PC = phosphatidylcholine, SAH = S-adenosylhomocysteine, 
Ado=adenosyl, THF = tetrahydrofolate, CH3THF = 5-methyl-tetrahydrofolate, DMG = dimethyl-
glycine. 
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Figure 13. Expression of genes related to the Met cycle in cows supplemented with MS or SM 
at rate of 0.19% or 0.07% of DM feed throughout the peripartal period. The P values for main 
effect of treatment (Diet) and time and interaction of treatment and time (Diet×Time) are shown 
in figure. Mean separation between diets (P < 0.05) was evaluated via contrast: CON versus SM 
(***). Values are means, with standard errors represented by vertical bars.  
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Figure 14. Expression of genes related to the glutathione cycle in cows supplemented with MS 
or SM at rate of 0.19% or 0.07% of DM feed throughout the peripartal period. The P values for 
main effect of treatment (Diet) and time and interaction of treatment and time (Diet×Time) are 
shown in figure. Values are means, with standard errors represented by vertical bars.  
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Figure 15. Expression of genes related to the inflammation in cows supplemented with MS or 
SM at rate of 0.19% or 0.07% of DM feed throughout the peripartal period. The P values for 
main effect of treatment (Diet) and time and interaction of treatment and time (Diet×Time) are 
shown in figure. Values are means, with standard errors represented by vertical bars.  
 
 
 
 
 
 
 
 
 
 



 128 

  
 
 

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Y 
D

at
a

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Day relative to calving

-10-10 7-10-10-10-10-10-10-10-10 7777777 212121212121-10-10-10-10-10 7777 212121-10-10 7-10 7 21-10 7 21-10 7 21-10 7 21
0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

CON
MS
SM

Day relative to calving

-10-10 7-10-10-10-10-10-10-10-10 7777777 212121212121-10-10-10-10-10 7777 212121-10-10 7-10 7 21-10 7 21-10 7 21-10 7 21
3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

SOD1

TMLHE

BBOX1

SLC22A5

SOD2

Diet P = 0.08
Time P =  0.23
Diet x Time P = 0.13
Contrast P = 0.12

Diet P = 0.42
Time P <  0.01
Diet x Time P = 0.53

Diet P = 0.36
Time P <  0.01
Diet x Time P = 0.13

Diet P = 0.10
Time P <  0.01
Diet x Time P = 0.51
Contrast P = 0.13

Diet P = 0.55
Time P =  0.62
Diet x Time P = 0.26

**

***

 
 
Figure 16. Expression of genes related to the oxidative stress in cows supplemented with MS or 
SM at rate of 0.19% or 0.07% of DM feed throughout the peripartal period. The P values for 
main effect of treatment (Diet) and time and interaction of treatment and time (Diet×Time) are 
shown in figure. Mean separation between diets (P < 0.05) was evaluated via contrast: CON 
versus SM (***). Values are means, with standard errors represented by vertical bars.  
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Figure 17. Expression of genes related to the fatty acid metabolism in cows supplemented with 
MS or SM at rate of 0.19% or 0.07% of DM feed throughout the peripartal period. The P values 
for main effect of treatment (Diet) and time and interaction of treatment and time (Diet×Time) are 
shown in figure. Mean separation between diets (P < 0.05) was evaluated via contrast: CON 
versus SM (***). Values are means, with standard errors represented by vertical bars.  
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Figure 18. Expression of genes related to the hepatokines (FGF21 and ANGPTL4), 
gluconeogenesis (PDK4, PCK1, and PC), and VLDL synthesis/export (MTTP and APOB) in 
cows supplemented with MS or SM at rate of 0.19% or 0.07% of DM feed throughout the 
peripartal period. The P values for main effect of treatment (Diet) and time and interaction of 
treatment and time (Diet×Time) are shown in figure. Mean separation between diets (P < 0.05) 
was evaluated via contrast: CON versus MS + SM (*). Values are means, with standard errors 
represented by vertical bars.  
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Figure 19. Expression of genes related to the growth hormone (GH)-insulin-like growth factor 1 
(IGF1) axis in cows supplemented with MS or SM at rate of 0.19% or 0.07% of DM feed 
throughout the peripartal period. The P values for main effect of treatment (Diet) and time and 
interaction of treatment and time (Diet×Time) are shown in figure. Mean separation between diets 
(P < 0.05) was evaluated via contrast: CON versus MS (**) and CON versus SM (***). Values 
are means, with standard errors represented by vertical bars.  
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Figure 20. Expression of genes related to the DNA methylation in cows supplemented with MS 
or SM at rate of 0.19% or 0.07% of DM feed throughout the peripartal period. The P values for 
main effect of treatment (Diet) and time and interaction of treatment and time (Diet×Time) are 
shown in figure. Values are means, with standard errors represented by vertical bars. 
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CHAPTER 5 
 

PERIPARTAL SUPPLEMENTATION OF RUMEN-PROTECTED 

METHIONINE MODIFIES AA GENE NETWORKS IN DAIRY COWS 

 
INTRODUCTION 

The transition period is considered the most important phase during the lactation 

cycle (Drackley, 1999). The increase in nutrient demand, the drastic changes in endocrine 

status and the decrease in DMI during late gestation influence metabolism, rendering 

dairy cows in a state of immunosuppression that leads to increased susceptibility to 

metabolic disorders (Drackley, 1999; Ingvartsen, 2006). Energy consumption may be a 

determinant factor for the success of the transition period; there is evidence that dairy 

cows can easily consume more energy than required during these periods (Dann et al., 

2006). Therefore, it is important to avoid overconditioning of cows during gestation, 

which eventually reduce excessive lipid mobilization after calving (Ingvartsen, 2006). 

However, as negative energy balance (NEB) postpartum is universal for cows in the same 

way lipid mobilization is ubiquitous during this time. In this context, it is possible that 

alterations in management or complications at calving might trigger a chain-reaction 

effect of hormonal and metabolic alterations that eventually predispose cows to infectious 

diseases and metabolic disorders.  

Methionine (Met) supplementation of cows during lactation generally improves 

cow performance (Armentano et al., 1997; Rulquin and Delaby, 1997; Chen et al., 2011). 

Although, similar effects have been observed when supplementing Met to peripartal cows 

(Phillips et al., 2003; Socha et al., 2005; Ordway et al., 2009), there is still a lack of data 

in this regard. Rumen-protected Met is expected to spare EAA once metabolized, 
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consequently it can serve as a methyl donor, backbone for gluconeogenesis, and also 

stimulate the clearance of TAG from liver via assembly and secretion of VLDL. Here we 

evaluate these effects, specifically in hepatic tissue, through a microarray platform to 

uncover transcriptional adaptations in bovine liver response to Met supplementation in 

the form of Smartamine M or MetaSmart during the transition period.  

 

MATERIALS AND METHODS 
 

 
Experimental Design and dietary treatments  

The Animal Care and Use Committee of the University of Illinois approved all 

procedures conducted in this study. Details of the experimental design have been 

published previously (Osorio et al., 2013). Twenty-five Holstein cows entering their 

second or greater lactation were enrolled in the study and were fed experimental 

treatments consisting of a basal control diet (CO, n = 14) with no Met supplementation, 

CO plus MS (n = 12) at a rate of 0.19% of DM, and CO plus SM (n = 13) at a rate of 

0.07% of DM (Osorio et al., 2013). All cows received the same far-off diet (1.24 Mcal/kg 

DM, 14.3% CP) from -50 to -21 d before expected calving, a close-up diet (1.54 Mcal/kg 

DM, 15% CP) from -21d to expected calving, and a fresh-cow diet from calving (1.75 

Mcal/kg DM, 17.5% CP) through 30 DIM. Methionine supplements were top-dressed 

from -21 to 30 DIM.  A subset of cows (CO, n = 8; MS, n = 8; SM, n = 8) was used to 

evaluate hepatic transcriptomic profile through a microarray analysis.   
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Animal management  

 The Institutional Animal Care and Use Committee (IACUC) of the University of 

Illinois approved all protocols for this study (protocol no. 09214). Details of the 

experimental design have been published previously (Osorio et al., 2013). Briefly, prior 

to calving all cows were individually fed once daily at 0630 h using an individual gate 

system (American Calan, Northwood, NH). Cows were housed in a ventilated enclosed 

barn during the dry period and had access to sand-bedded free stalls until 3 d before 

expected parturition, when they were moved to individual maternity pens bedded with 

straw until parturition. After parturition, cows were housed in a tie-stall barn and were 

fed a common lactation diet once daily (Table 2) and milked 3 × daily. Refusals were 

recorded daily before feeding and intake was calculate base on previous day amount of 

TMR offered. After 30 d postpartum cows returned to the farm herd. Feed offered was 

adjusted daily to achieve 5 to 10% refusal. 

 

Sample collection  

Liver was sampled via puncture biopsy (Dann et al., 2006) from cows under local 

anesthesia at approximately 0730 h on d −10, 7 to 11, and 21 d relative to parturition. 

Tissue specimens were stored in liquid N2 until RNA extraction (Graugnard et al., 2010). 

 

RNA extraction 

RNA samples were extracted from frozen tissue using established protocols in our 

laboratory (Loor et al., 2007). Briefly, liver tissue sample was weighed (~0.3-0.5 g) and 

straightway was put inside a 15 ml centrifuge tube (Corning Inc. ®, Cat. No. 430052, 
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Corning, NY, USA) with 1 µl of Linear Acrylamine (Ambion® Cat. No. 9520, Austin, 

TX, USA) as a co-precipitant, and 5 ml of ice-cold Trizol reagent (Invitrogen Corp., 

Carlsbad, CA, USA) to proceed with RNA extraction. This extraction procedure also 

utilizes acid-phenol chloroform (Ambion® Cat. No. 9720, Austin, TX, USA), which 

removes residual DNA. Any residual genomic DNA was removed from RNA with 

DNase using RNeasy Mini Kit columns (Qiagen, Hilden, Germany). RNA concentration 

was measured using a Nano-Drop ND-1000 spectrophotometer (Nano-Drop 

Technologies, Wilmington, DE, USA). The purity of RNA (A260/A280) for all samples 

was above 1.81.  

 

Microarrays procedure 

An annotated bovine oligonucleotide microarray containing >10,000 unique 

elements were used in this study (Loor et al., 2007). The cDNA was obtained by RT-PCR 

in a 30 μL reaction adding 10 µg RNA, 2 µL of random hexamer primers (3 mg/ml; 

Invitrogen Corp., CA) and 1 µg oligo dT18 (Operon Biotechnologies, AL), and DNase-

RNase-free water to a volume of 17.78 μL. The mixture was incubated at 65°C for 5 min 

and kept on ice for 3 min. To the mixture 12.2 µL solution composed of 6 µL 5X First-

Strand Buffer, 3 µL 0.1 M DTT, 0.6 µL 100 mMdNTP mix (Invitrogen Corp., CA), 0.12 

μL of 50 mM 5-(3-aminoallyl)-dUTP (Ambion, CA), 2 µL (100 U) of SuperScriptTM III 

RT (Invitrogen Corp., CA), and 0.5 µL of RNase Inhibitor (Promega, WI) was added. 

The reaction was performed at 23°C for 1 min and 46°C for 9 h. The cDNA obtained was 

then treated with 10 µL 1M NaOH, and incubated for 15 min at 65°C to remove residual 

RNA. The solution was neutralized by adding 10 µL 1M HCl. The unincorporated 5-(3-
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aminoallyl)-dUTP and free amines were removed using a Qiagen PCR Purification Kit 

(Qiagen, Germany). Clean cDNA was dried and resuspended in 4.5 µL 0.1 M Na2CO3 

buffer (pH 9.0) and 4.5 µL of AmershamCyDye™ fluorescent dyes diluted in 60 µL of 

DMSO (Cy3 or Cy5; GE Healthcare, USA). Binding of Cy dyes with 5-(3-aminoallyl)-

dUTP incorporated into cDNA was obtained by incubation at room temperature for 1 h. 

The unbound dyes are removed using a Qiagen PCR Purification Kit (Qiagen, Germany) 

and clean labelledcDNA was measured by means of a NanoDrop ND-1000 

spectrophotometer (www.nanodrop.com). Sample and reference were then vacuum-dried 

in the dark. 

 

Hybridizations 

Hybridizations were performed in a dye-swap reference design. The reference 

was prepared by pooling RNA from bovine muscle, liver, and adipose tissues already 

available in our tissue bank.  Prior to hybridization, slides were re-hydrated, placed in an 

UV cross-linker, washed with 0.2% SDS solution, thoroughly rinsed with purified water 

to remove un-bound oligonucleotide, and pre-hybridized using a solution containing 1% 

albumin, 5 × SCC, and 0.1% SDS at 42 C° for ≥ 45 min with the aim of decreasing 

background. After pre-hybridization, slides were rinsed with abundant purified water and 

immersed in isopropanol for ~10s and spin-dried. Dried slides were immediately 

hybridized in a dye-swap-reference design (i.e. each sample is labeled twice with each of 

the two dyes and hybridized in each slide with the reference labeled with the opposite 

dye). Labeled cDNA of the sample was re-hydrated with 80µL of hybridization buffer #1 

(Ambion) and mixed thoroughly. This solution was used to re-suspend the reference 
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sample labeled with the opposite dye and mixed thoroughly in order to obtain a 

homogenous solution of the two-labeled cDNA. Before hybridization, the labeled cDNA 

resuspension of the sample + reference was incubated at 90-95 C for ca. 3 min to allow 

for cDNA denaturation to increase the efficiency of binding of oligos onto the slide. 

Hybridizations were carried out using humidified slide chambers (Corning) with 

cover slips (LifterSlip, Thermo Scientific) at 42 C° for ca. 40 hours in the dark. After 

hybridization, slides were removed from the chamber and washed for 5 min by agitation 

3 times with wash buffers in the following order: 1×SSC and 0.2% SDS solution 

preheated at 42°C, 0.1× SSC and 0.2% SDS, solution, and 0.1× SSC solution. Lastly, 

slides were spin-dried and inserted into a 50 mL tube prior to gassing with Argon to 

preserve dye from bleaching. Arrays were scanned with a ScanArray 4000 (GSI-

Lumonics, Billerica, MA) dual-laser confocal scanner and images processed and edited 

using GenePix 6.0 (Axon Instruments). Array quality was assessed using an in-house 

parser written in Perl language as previously described (Loor et al., 2007). Spots on the 

slide are considered “good” if the median intensity was ≥3 standard deviation above 

median background for each channel (i.e., dye). Spots are flagged “present” when both 

dyes pass the criteria, “marginal” if only one dye passes the criteria, or “absent” when 

both dyes fail to pass the criteria. Statistical analysis was conducted on oligos that are 

flagged as “present” and “marginal”. 

 

Data mining  

Data from a total of 130 microarrays were normalized for dye and microarray 

effects (i.e., Lowess normalization and microarray centering) and used for statistical 
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analysis. Data were analyzed using the Proc MIXED procedure of SAS (SAS, SAS Inst. 

Inc., Cary, NC). Fixed effects were treatments (CO, MS, and SM), day (-10, 7, 21) and 

dye (Cy3, Cy5). Random effects included cow and microarray. Raw P values were 

adjusted using Benjamini and Hochberg’s false discovery rate (FDR) (Reiner et al., 

2003). Differences in relative expression due to diet or treatment were considered 

significant at an FDR-adjusted P <0.05. Computational analysis was performed by using 

a recently developed approach and online databases. 

 

Functional Enrichment Analysis 

The whole annotated microarray was used as the reference dataset (i.e., 

background) for enrichment analysis. Furthermore, we have provided functional analysis 

using the novel proposed Dynamic Impact Approach (DIA) (Bionaz et al., 2012). The 

DIA is a functional analysis tool that allows visualization of the impact and the direction 

of the impact of DEG from several annotation databases including Gene Ontology and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The DIA is described in 

detail in Bionaz et al. (2012); briefly, the impact and the direction of the impact (flux) for 

KEGG pathways were calculated for only those terms that were represented by at least 

30% in the microarray compared to the whole annotated bovine genome. 

 
RESULTS 

 
 In this experiment, repeated measures analysis with a cutoff FDR P < 0.10 and P 

< 0.05 was used for generating the list of differentially expressed genes (DEG) in all the 

comparisons mentioned. In order to analyze the gene expression data, we used the 

dynamic impact approach (DIA), a computational analysis of pathways adequately 
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represented in our bovine microarray using the KEGG database. Adequately represented 

pathways were represented > 30% (genes in pathways of whole bovine genome in 

array/gene in pathways whole bovine genome) (Bionaz et al., 2012). By following this 

criterion, 215 out of a total 230 Bos taurus KEGG pathways were represented in at least 

one within-diet or one within-time comparison in our array.  

 

Differentially expressed genes (DEGs) and their overall pattern 

 The microarray analysis of data with above mentioned cutoff values showed a 

significant effect of diet × day interaction for the bovine liver transcriptome. A total of 18 

comparisons were used for comprehensive analysis of data. Within-diet comparisons 

(same day with comparison of three diets), we analyzed 9 comparison including -10 d 

MS vs. CON, 7 d MS vs. CON, 21 d MS vs. CON, -10 SM vs. CON, 7 d SM vs. CON, 21 

d SM vs. CON, -10 SM vs. MS, 7 d SM vs. MS, and 21 d SM vs. MS (Table 10). Within-

time comparisons (same diet with comparison of three time points), we analyzed 9 

comparisons including; CON 7 d vs. -10 d, CON 21 d vs. 7 d, CON 21 d vs. -10 d, MS 7 

d vs. -10 d, MS 21 d vs. 7 d, MS 21 d vs. -10 d, SM 7 d vs. -10 d, SM 21 d vs. 7 d, SM 21 

vs. -10 d (Table 11).    

 Table 10 and Table 11 show the total number of DEG in each comparison of diet 

and time respectively. From 75-82% of the DEGs were annotated to bovine ENTREZ 

gene ID and were used for further computational gene expression analysis. We observed 

a greater number of DEG within-diet comparison at 21 d in SM vs. MS (total 731; up-

regulated: 400, down-regulated: 331), at 7 d in CON vs. MS (total 583; up-regulated: 342, 

down-regulate: 241), and at 21 d in CON vs. SM (total 508; up-regulated: 185, down-
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regulated: 323) (Table 10). Similarly, the greater number of DEGs within-time 

comparisons was observed in SM at 7 d vs. -10 d (total 1190; up-regulated: 612, down-

regulated: 578), in SM at 21 d vs. 7 d (total 1085; up-regulated: 461, down-regulated: 

624), and in CON at 7 d vs. -10 d (total 934; up-regulated: 430, down-regulated: 504) 

(Table 11). Overall, a greater number of DEGs were observed within-time comparisons.  

 

Impact of DEGs on KEGG pathways using DIA  

 

Within-diet comparisons 

An overall summary result of all major categories from KEGG analysis using 

DIA within-diet comparisons is shown in Figure 21. We observed that ‘Metabolism’ was 

the most impacted category within-diet comparisons, and the diet × time interaction of 

SM vs. MS at 21 d was the most impacted among all measured comparisons. The major 

category ‘Metabolism’ is further categorized into 11 sub-categories including amino acid 

metabolism (AAM) and metabolism of other amino acids (MOAA) which were impacted 

in all 9 comparisons. The overall effect of MS vs. CON was greater 7 d postpartum with a 

greater impact and inhibition of MOAA, in contrast this effect was least impacted at -10 

d, with MOAA the most impacted and inhibited. The effect of SM vs. CON was greater 

at 21 d with the metabolism of terpenoids and polyketides as the major sub-category 

impacted and inhibited. In contrast, impact of SM vs. CON was lower at -10 d with the 

AAM as major impacted and activated pathway. The greatest impacted sub-category was 

MOAA, in turn the highest impact and inhibition of this sub-category was observed in the 

effect SM vs. MS at -10 d. In contrast, MOAA was highly activated by effect SM vs. MS 
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at 21 d postpartum. Additionally, MOAA was activated by SM vs. CON at -10 and 7 d, 

while MS vs. CON inhibited MOAA at the same time points. In addition to 

‘Metabolism’, membrane transport under ‘Environmental Information Processing’ was 

impacted, similarly circulatory and sensory system under ‘Organismal Systems’. 

Membrane transport was activated by SM vs. CON and SM vs. MS at 7 d, while MS vs. 

CON inhibited it at -10 d. The effect SM vs. MS at 21 d postpartum activated the 

circulatory sensory systems.  

The pathways contained within the sub-categories of AAM and MOAA were 

sorted from all 9 comparisons within-diet effects and are shown in Figure 22. The 

cyanoamino acid metabolism and taurine and hypotaurine metabolism were the main 

impacted pathways within MOAA, which in turn were overall the 1st and 3rd most 

impacted pathways, respectively (Figure 23). Additionally, glutathione metabolism under 

MOAA and Cys and methionine metabolism AAM were among the 10 most impacted 

pathways (Figure 23). While MS vs. CON at -10 d inhibited both cyanoamino acid 

metabolism and taurine and hypotaurine metabolism, the effect SM vs. CON activate this 

pathways at the same time point. Although, effect SM vs. CON maintained an activation 

of cyanoamino acid metabolism and taurine and hypotaurine metabolism at 7 d similar to 

-10 d, MS vs. CON maintained an inhibitory effect in cyanoamino acid metabolism while 

activating the taurine and hypotaurine metabolism (Figure 22). Both MS and SM vs. 

CON inhibited taurine and hypotaurine as well as cyanoamino acid metabolisms at 21 d 

postpartum. Although, the glutathione metabolism was highly impacted, the within-diet 

comparisons showed a negligible impact and direction of such of impact, especially in the 

effects MS vs. CON and SM vs. CON. The effect of SM vs. CON at -10 d activated the 



 143 

lysine biosynthesis, while inhibiting the valine, leucine, and isoleucine biosynthesis 

pathway.    

 

Within-time comparisons 

 There was a strong effect of time within the same diet as shown in Figure 24. 

Similar to the within-diet comparisons in Figure 21, the category ‘Metabolism’ was the 

most impacted across the time of parturition. From these results we observed profound 

changes in metabolic pathways but especially in MOAA across diet and time 

comparisons. These changes resulted in activation of MOAA pathways from prepartum 

to postpartum in all treatments. Supplementing Met as MS and SM activate most sub-

categories under ‘Metabolism’ at 7 d vs. -10 d with the exception metabolism of cofactors 

and vitamins, xenobiotics biodegradation and metabolism, and lipid metabolism in MS, 

while glycan biosynthesis and metabolism was inhibited in SM. In contrast to similar 

patterns between MS and SM at 7 d vs. -10 d, all metabolic sub-categories were activated 

within MS cows at 21 d vs. 7 d, while SM cows have an inhibition of all these sub-

categories. In fact, overall impact of SM in ‘Metabolites’ was greater at 7 d vs. -10 d, 

while MS had a greater impact at 21 d vs. -10 d. Within the previous time comparisons 

energy metabolism was the most impacted sub-category in SM at 7 d vs. -10 d, in contrast 

MOAA was the most impacted in MS at 21 d vs. -10 d. Overall CON diet had similar 

impact pattern as SM, with greater impact at 7 d vs. -10 d comparison, and within this 

effect MOAA was the most impacted sub-category.  

 Similar to within-diet comparisons, membrane transport under ‘Environmental 

Information Processing’ was considerably impacted, where both SM and MS have a 
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significant impact and activation of membrane transport at 7 d vs. -10 d and 21 d vs. -10 

d. Most sub-categories under ‘Organismal System’ were impacted and activated 

specifically in SM at 7 d vs. -10 d. The previous effect was accompanied with a greater 

impact and activation of most sub-categories under ‘Genetic Information and Processing’ 

in SM at 7 d vs. -10 d.  

 Further analysis of pathways under the AAM and MOAA sub-categories among 9 

comparisons within-time revealed an evident overall activation of cyanoamino acid 

metabolism across time comparisons, with the exception of 21 d vs. 7 in CON diet 

(Figure 25). Additional, activation of cyanoamino acid metabolism was less pronounced 

at 21 d vs. 7 d and 21 d vs. -10 d in SM. Supplementation of SM produced activation of 

taurine and hypotaurine metabolism at 7 d vs. -10 d, in contrast CON inhibited this 

pathway. However, this pathway was activated at 21 d vs. 7 d across all dietary 

treatments. A similar patter was observed in cysteine (Cys) and Met metabolism across 

dietary treatments, where this pathway was activated at 7 d vs. -10 follow by inhibition at 

21 d vs. 7 d, however this pathway was overall activated from -10 d to 21 d postpartum. 

In contrast to a negligible impact and flux observed in glutathione metabolism observed 

in the within-diet comparisons (Figure 22), the within-time comparisons revealed a 

significant impact and flux on this pathway (Figure 25). Glutathione metabolism was 

inhibited by MS while activated by SM and CON at 7 d vs. -10 d, in contrast SM 

inhibited it while MS and CON activated at 21 d vs. 7 d. Overall glutathione metabolism 

was activated by MS and CON from -10 d to 21 d, while SM inhibited.     
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DISCUSSION 
 

 The inability of postpartal cows to consume sufficient protein to meet mammary 

and extra-mammary AA requirements, including a significant demand for hepatic 

gluconeogenesis, will likely promote active mobilization of tissue protein during the first 

2 wk of lactation (Bell et al., 2000). Therefore, supplementation of AA such as Met in the 

forms of MS and SM improves milk production at least in part due to increases of 

postpartal DMI while reducing the loss of BCS (Osorio et al., 2013). Postpartal energy 

requirements for milk production coupled with insufficient DMI will promote negative 

energy balance (NEB). Previously we observed that Met supplementation (SM or MS) 

led to a faster recovery from NEB toward a positive energy balance during the first 4 wk 

postpartum (Osorio et al., 2013). Our group has previously determined the effect of the 

transition period adaptations under either restricted or overfeeding energy prepartum in 

bovine liver using a microarray platform in quantitative gene expression (Loor et al., 

2005; Loor et al., 2006). To our knowledge, this is the first study to evaluate the effect of 

peripartal Met supplementation on hepatic gene expression of dairy cows using 

microarray techniques.   

 In this experiment, the category ‘Metabolism’ of KEGG pathways was highly 

impacted in both within-diet and within-time comparisons. Metabolism is a general 

category that is comprised of 11 sub-categories including 1.1) carbohydrate metabolism, 

1.2) energy metabolism, 1.3) lipid metabolism, 1.4) nucleotide metabolism, 1.5) amino 

acid metabolism, 1.6) metabolism of other amino acids, 1.7) glycan biosynthesis and 

metabolism, 1.8) metabolism of cofactors and vitamins, 1.9) metabolism of terpenoids 

and polyketides, 1.10) biosynthesis of other secondary metabolites, and 1.11) xenobiotics 
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biodegradation and metabolism (Kanehisa et al., 2006). The greater impact in the 

metabolism category was evident, especially in MOAA, which is obvious because 

nutrients can act as modulators of gene expression and play major role to control gene 

regulation in different cellular responses and biological processes (Bionaz et al., 2012). In 

fact, Met can exert gene expression modulation as being substrate for s-

adenosylmethionine (SAM) synthesis; in turn SAM is important methyl-donor that is 

involve in DNA methylation, and consequently regulating gene expression.   

 Supplementation of Met in the forms of MS and SM not only impacted MOAA 

and AAM sub-categories, but also modified the profile of impact and flux between the 

MS and SM vs. CON diets as well as within-time comparisons. Additionally, the MOAA 

sub-category was highly impacted in cows fed CON diet, which underlines the 

importance of AA metabolism in the adaptations that occur during the transition period. 

This is in agreement with Bell et al. (2000),where it was estimated that during the first 

week of lactation cows will undergo negative metabolizable protein balance up to 600 

g/d, and consequently high-yield cows will mobilize up to 1000 g of tissue protein/d. 

Hence, high impact and activation of MOAA was observed from -10 d to 7 d postpartum 

in SM and CON and to a lesser activation in MS. The latter effect in MS could be 

associated to inhibition of pathways for selenoamino acid metabolism and glutathione 

metabolism under MOAA. The inhibition of glutathione metabolism from -10 d to 7 d is 

consistent with a 63.3% reduction in liver glutathione concentration in MS, while a 

39.3% and 36.3% were observed in MS and CON, respectively (Osorio et al., 2012). It is 

possible that MS cows might have relied on other antioxidant mechanisms during this 

period, since the oxygen radicals absorbance capacity (ORAC) was greater (12.6 vs. 
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11.9) in both MS and SM vs. CON. Although taurine and hypotaurine metabolism was 

not represented in MS diet at 7 d vs. -10 d comparison, this was activated in SM but 

inhibited in CON. This is important, since taurine is derived from Cys, which in turn is an 

important product of the Met cycle through homocysteine (Champe et al., 2008). This 

suggests that CON favored re-methylation of homocysteine to regenerate Met in order to 

compensate for lower availability of this AA. Also, SM cows might have benefited from 

antioxidant effects of taurine previously observed in human neutrophils (Green et al., 

1991).  

 The importance of Cys as a hub between taurine and hypotaurine metabolism, 

glutathione metabolism, and cyanoamino acid metabolism might have a key role in the 

activation or inhibition of these pathways, however the specific mechanism by which Met 

in the form of MS or SM produced such alterations between these and CON remains to 

be completely elucidated. For instance, MS and SM produce an activation of cyanoamino 

acid metabolism at 21 d vs. 7 d, while this was inhibited in CON cows. This difference in 

cyanoamino acid metabolism result might be associated to inhibition of Cys and Met 

metabolism at 21 d vs. 7 d, and shifting inhibition of cyanoamino acid metabolism for 

activation of taurine and hypotaurine metabolism in CON cows. Although there is a lack 

of knowledge on the extent and role of this pathway within the context of the peripartal 

period, this was the most impacted pathway in our experiment. Hence, the study of this 

particular pathway during the peripartal period might shed new findings in the 

physiological adaptations, not only in terms of AA metabolism but also its interactions 

with other metabolisms such as lipid and carbohydrate.   
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CONCLUSIONS 

 Hepatic transcriptome analysis for this experiment indicated that Met 

supplementation during the peripartal period of dairy cows exerts profound changes on 

liver function. The main biological alterations occurred in metabolism several AA that 

can potentially determine the fate of other biological functions such as lipid and 

carbohydrate metabolism. The fact that gene networks associated with AA metabolism in 

CON cows was highly impacted, underlines the importance of AA metabolism in the 

adaptations that occur during the transition period. Further microarray data interpretation 

with accurate biological reasoning within the context of the peripartal period can help us 

uncover meaningful and novel mechanism to improve health and promote high 

performance in dairy cows.  
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TABLES AND FIGURES 
 

Table 10. Differentially expressed genes (DEG) within-diet comparisons (P < 0.05, FDR 
< 0.10) in hepatic tissue of cows (n = 8/treatment) fed a control diet (CON), CON diet 
plus MetaSmart (MS), and CON diet plus Smartamine (SM) from -21 d to 30 d relative to 
calving. 

Comparison Day DEG 
DEG annotated to 
Bovine gene ID Up-regulated 

Down-
regulated 

CON vs. MS -10 491 367 116 251 
CON vs. SM -10 388 317 150 167 
SM vs. MS -10 604 470 190 280 
CON vs. MS 7 766 583 342 241 
CON vs. SM 7 642 483 278 205 
SM vs. MS 7 637 504 249 255 
CON vs. MS 21 359 283 77 206 
CON vs. SM 21 636 508 185 323 
SM vs. MS 21 914 731 400 331 
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Table 11. Differentially expressed genes (DEG) within-time comparisons (P < 0.05, 
FDR < 0.10) in hepatic tissue of cows (n = 8/treatment) fed a control diet (CON), CON 
diet plus MetaSmart (MS), and CON diet plus Smartamine (SM) from -21 d to 30 d 
relative to calving. 

Comparison Day DEG 
DEG annotated to 
Bovine gene ID Up-regulated 

Down-
regulated 

Day 7 vs. -10  CON 1209 934 430 504 
Day 21 vs. -10 CON 797 622 340 282 
Day 21 vs. 7  CON 996 771 449 322 
Day 7 vs. -10  MS 999 787 473 314 
Day 21 vs. -10 MS 1018 800 422 378 
Day 21 vs. 7  MS 1035 811 358 453 
Day 7 vs. -10  SM 1518 1190 612 578 
Day 21 vs. -10 SM 926 740 320 420 
Day 21 vs. 7  SM 1362 1085 461 624 
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Figure 21. Impact and flux of major KEGG categories with pathways (by DIA) within-
diet comparisons (P < 0.05, FDR < 0.10) in hepatic tissue of cows (n = 8/treatment) fed a 
control diet (CON), CON diet plus MetaSmart (MS), CON diet plus Smartamine (SM) 
from  -21 d to 30 d relative to calving. Reported are the total impact (blue horizontal bars; 
larger the bars higher the impact) and the direction of the impact (or flux; green shade 
denotes inhibition and red shade denotes activation). MS vs. CON is denote by 
MSvsCON, SM vs. CON is denoted by SMvsCON, and SM vs. MS by SMvsMS at 
respective days -10, 7 and 21 d relative to calving.  
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Figure 22. Impact and flux of major KEGG categories, sub-categories and pathways (by DIA) within-diet comparisons (P< 0.05, FDR 
< 0.10) in hepatic tissue of cows (n = 8/treatment) fed a control diet (CON), CON diet plus MetaSmart (MS), CON diet plus 
Smartamine (SM) from  -21 d to 30 d relative to calving. Reported are the total impact (blue horizontal bars; larger the bars higher the 
impact) and the direction of the impact (or flux; green shade denotes inhibition and red shade denotes activation). MS vs. CON is 
denote by MSvsCON, SM vs. CON is denoted by SMvsCON, and SM vs. MS by SMvsMS at respective days -10, 7 and 21 d relative 
to calving.  
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Figure 23. Impact and flux of top-10 most impacted KEGG pathways (by DIA) across 
diet and time comparisons (FDR P = 0.10, P < 0.05) in hepatic tissue of cows (n = 
8/treatment) fed a control diet (CON), CON diet plus MetaSmart (MS), CON diet plus 
Smartamine (SM) from  -21 d to 30 d relative to calving. Reported are the total impact 
(blue horizontal bars; larger the bars higher the impact) and the direction of the impact 
(or flux; green shade denotes inhibition and red shade denotes activation). 
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Figure 24. Impact and flux of major KEGG categories with pathways (by DIA) within-
time comparisons (P < 0.05, FDR < 0.10) in hepatic tissue of cows (n = 8/treatment) fed 
a control diet (CON), CON diet plus MetaSmart (MS), CON diet plus Smartamine (SM) 
from  -21 d to 30 d relative to calving. Reported are the total impact (blue horizontal bars; 
larger the bars higher the impact) and the direction of the impact (or flux; green shade 
denotes inhibition and red shade denotes activation). Control is denoted by CON, 
MetaSmart by MS, and Smartamine by SM at respective comparisons of days -10, 7 and 
21 d relative to calving.  
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Figure 25. Impact and flux of major KEGG categories, sub-categories, and pathways (by DIA) within-time comparisons (P < 0.05, 
FDR < 0.10) in hepatic tissue of cows (n = 8/treatment) fed a control diet (CON), CON diet plus MetaSmart (MS), CON diet plus 
Smartamine (SM) from  -21 d to 30 d relative to calving. Reported are the total impact (blue horizontal bars; larger the bars higher the 
impact) and the direction of the impact (or flux; green shade denotes inhibition and red shade denotes activation). Control is denoted 
by CON, MetaSmart by MS, and Smartamine by SM at respective comparisons of days -10, 7 and 21 d relative to calving.  
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CHAPTER 6 
 

SUMMARY AND CONCLUSIONS 
 
 

The overall objective of this dissertation was to evaluate the performance 

parameters, blood and liver biomarkers, and hepatic transcriptomic alterations in diary 

cows supplemented with methionine (Met) in the forms of Smartamine (SM) or 

MetaSmart (MS) during the peripartal period. Our general hypothesis was that 

supplementing rumen-protected Met to peripartal dairy cows will improve DMI, milk 

yield and components, and energy balance by enhancing liver function and antioxidant 

capacity, and decreasing the inflammatory response, and that in turn these effects are 

controlled at the molecular level by cross-talk of gene expression.  

Supplementation of MS or SM can improve milk production at least in part by 

increasing voluntary DMI and perhaps by optimizing the use of body lipid reserves as 

observed in chapter 2. In fact, the overall milk protein and milk fat was positively 

affected by Met supplementation. Improvements in production were accompanied by a 

faster recovery to a positive energy balance, coupled with a lower predisposition to 

develop ketosis in Met-supplemented cows, which indicates that overall health was at 

least not compromised and perhaps improved.  

Results from chapter 3 indicate that supplementing Met during the peripartal 

period promotes favorable alterations of inflammatory and oxidative stress status of 

cows. The greater serum albumin in response to Met-supplementation may indicate 

enhanced liver function and improved AA status. Overall blood and liver biomarkers 
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analyzed indicated that improved postpartal performance when feeding SM and MS was 

due partly to a better immunometabolic status.  

Relative mRNA expression of targeted genes associated with biological processes 

of interest such as the Met cycle, inflammation, and oxidative stress, among others, was 

evaluated in chapter 4. Results indicate that feeding MS or SM to cows during the 

peripartal period can profoundly affect the hepatic transcriptomics of Met metabolism, 

PPARA activation, hepatokines synthesis, and gluconeogenesis.  

To better understand the molecular effects of peripartal Met-supplementation on 

hepatic metabolism in Holstein dairy cows, a microarray platform with advanced 

computational and bioinformatics techniques were used in chapter 5. Hepatic 

transcriptome analysis revealed a high impact on metabolism especially in pathways AA 

metabolism.  

In general, supplementation of rumen-protected Met during the peripartal period 

resulted in significant improvements in postpartal performance and health status from an 

immunometabolic standpoint as well as significant hepatic transcriptomics alterations. 

Our findings presented in this dissertation not only indicate that supplementing rumen-

protected Met is beneficial for peripartal dairy cows, but also has re-established the 

importance of maintaining an adequate protein balance as previous literature suggested. 

Our results may not only be restricted to the effects of a single AA as Met, but also may 

indicate that maintaining an adequate balance among AA as indicated by an optimal 

Lys:Met will promote beneficial effects in peripartal dairy cows.  The implications 

observed in this research should drive greater attention in industry by taking more 

consideration to AA when balancing rations for peripartal cows. Results in this 
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dissertation also may prompt new avenues of research by promoting the study of 

peripartal AA metabolism in a more comprehensive manner, taking advantage of new 

molecular techniques with the application of bioinformatics as a new approach to better 

understand the molecular basis of physiological effects.  
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