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Abstract 

 

The goal of this dissertation is to understand nutrient delivery processes in river networks, 

including the processes and factors controlling both the flow generation and nutrient retention 

mechanisms. An analysis framework that synthesizes the bottom-up and top-down approaches is 

implemented in this dissertation to explore these questions. In the top-down approach, empirical 

data from several catchments within the continental United States is analyzed to generate 

patterns across gradients of scale, climate, and topography to guide the study of the underlying 

mechanisms as well as to serve as the inspiration to generate hypotheses regarding possible 

explanations of the empirical observations. In the bottom-up approach, models are developed 

based on the understanding gained in through the data analysis to test hypotheses and to discover 

previously hidden relationships and laws which could further facilitate future data collection, 

data analysis and model development. 

 The dissertation is separated into two parts governing the two major perspectives that 

underpin nutrient transport and transformation processes in river networks: hydrology and 

biogeochemistry. Part one focuses on how soil moisture and the dominant hydrological processes 

change across a climate gradient, the factors governing these spatio-temporal patterns, and in 

particular, the effects of climate (i.e. aridity, seasonality). Analysis of the flow regime curves 

reveals the dominant runoff generation processes in catchments across the continental United 

States and is used in the model development that follows. The study of flow recession curves 

also reveals insights for the future modeling of the storage-discharge relationship governing 

subsurface stormflow. These studies demonstrate the overall influence of climate (i.e. seasonality 

and aridity) on the various hydrologic processes through long-term co-evolution of climate, soils, 

vegetation and topography.   

 With the understanding gained of the processes related to the movement of water, the 

carrier and controller of nutrients, the second part of the dissertation looks at the nutrient delivery 

and uptake processes across the river network: the influence of spatial scale on these processes, 

and the effects of temporal variability of flow inherited from climate. Empirical relationships 

between several nutrient uptake metrics and the flow condition and nutrient concentration level 
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are derived from field measurements and are incorporated into a coupled hydrology and 

biogeochemistry model to simulate the nutrient uptake processes across river networks, from the 

small headwater streams all the way to big rivers. The effect of hydrologic variability inherited 

from climate on nutrient uptake is then examined. The studies highlighted the contribution of big 

rivers downstream to overall nutrient uptake and also have emphasized the important role of flow 

variability on nutrient retention. 

 The results arising from this dissertation research have helped to significantly improve 

our understanding of nutrient transport and transformation processes across river networks, 

which could prove extremely useful to government agencies and community organizations on the 

effective use of land use management and water quality regulation to alleviate water quality 

problems in rivers and in receiving waters such as the Gulf of Mexico. On the other hand, this 

work has demonstrated the feasibility and power of the study framework that combines both the 

bottom-up and top-down approaches to the study of complex environmental problems, and could 

be adopted in future studies involving hydrologic and/or biogeochemical processes.  
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Chapter 1. 

Introduction 

1.1 Motivation for the Study 

Oxygen depletion in receiving waters such as rivers, lakes, estuaries and coastal areas is a 

worldwide environmental problem. Excess nutrient loading from landscapes to these aquatic 

systems is one of the key factors that contribute to eutrophication (Viney et al., 2000). Excess 

nutrients stimulate phytoplankton growth, which then blocks sunlight, depletes dissolved oxygen 

needed for their decomposition, and in this way it threatens the survival of fishes, reduces 

aquatic species diversity, leading to overall water quality degradation. One prominent example is 

the development of the hypoxic zone in the Gulf of Mexico, which is also known as the “dead 

zone”, and the consequent threats to aquatic life (Rabalais et al., 2002). The overloading of 

nutrients in the Gulf of Mexico is sourced to the Mississippi and Atchafalaya Rivers (Dunn, 

1996), parts of which drain through the agricultural areas in the US Midwest (i.e., the so-called 

Corn Belt region) where more than 65% of the land is put to agriculture. Tile drainage 

construction in the Midwest, which helped to drain out the soil water quickly, also enhances 

nitrogen loss in the landscape through rapid subsurface flow. The shortened channels, stabilized 

river banks and levee constructions in aid of agricultural use designed for rapid drainage also 

contributed rapid nutrient transport in the rivers and have prevented absorption and removal by 

the alluvial soils in rivers and in river banks (Abernethy and Turner, 1987). Assuming a soil 

layer of one meter thickness with 2% organic matter, the current nutrient (carbon, nitrogen and 

phosphorous) yield of the Mississippi River Basin caused by the agricultural land use change is 

less than 0.1% of the soil nutrient storage. Therefore, any further land use change in this area (i.e., 

biofuel crop harvest), even a small one, could have a significant impact on water quality in the 

Mississippi river and in the Gulf of Mexico (Turner and Rabalais, 2003).  

To solve the eutrophication problems in the aquatic environment, it is essential to 

understand how nutrients added for agriculture eventually ending up in the ocean (or other 

receiving waters) after being transported through river networks and transformed along the way 

through biogeochemical reactions (Bencala and Walters, 1983; Dodds et al., 2002; Donner et al., 
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2002; Alexander et al., 2009; Claessens and Tague, 2009; Claessens et al., 2009; Mulholland et 

al., 2010). Besides the nutrient, being the carrier of nutrients (especially in the case of dissolved 

nutrients) as water is, its dynamics is intimately connected to the dynamics of nutrient transport 

and transformation processes from points in the landscape where nutrients are added as fertilizer 

and going all the way to the receiving waters through a multiplicity of flow pathways. The 

accompanying biogeochemical, geomorphological, and ecological processes in the river network, 

all exhibit considerable heterogeneity, and enormous process complexity arising from the 

process interactions and feedbacks. To understand these processes and process interactions and 

to provide scientific guidance for management actions aimed at alleviating the eutrophication 

problems in the receiving waters, we need fundamental knowledge of water flows and nutrient 

transport and reaction processes from the hillslopes to the estuaries through river network, as 

well as predictive tools (i.e. models) built based on such understanding.  

This dissertation is aimed to exploring dissolved nutrient cycling at the catchment scale 

in general, and in particular it is concerned with understanding how and why the magnitudes of 

nutrient retention and export might vary with the increasing size of catchment s under different 

climatic and landscape characteristics, and how they would be impacted by temporal variability 

of streamflow generation processes, and the particular role of seasonality of climate. This 

introduction chapter presents the analysis framework that is adopted in this dissertation to 

address this problem. Each chapter of the dissertation can be seen as a piece of a jigsaw puzzle; 

taken together they try to answer the questions in a more holistic manner. The adopted 

framework will be applied in each of the chapter, and serves as an overall guide to the study. In 

this introductory chapter, the contents are organized as follows: Section 2 provides a background 

to nutrient transformation and transport at the catchment scale and the challenges faced in this 

area; Section 3 will present the overall study framework as a combination of both bottom-up and 

top-down approaches applied across places; Section 4 discusses the advantages and supports 

gained from GIS tools and platform; the Section 5 presents the general outlines of the specific 

research that will be presented in the various chapters of this dissertation. 
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1.2 Scientific Background 

1.2.1 Catchment runoff generation mechanisms 

Soluble nutrients such as nitrates, are chemically transformed, dissolved in soil water, and 

retained with soil water storage, and then delivered to the river network along with runoff, 

especially subsurface runoff. Water being the solvent of dissolved nutrients water cycling is 

closely connected to nutrient cycling, both physically and also interactively. The cycling of 

dissolved nutrients exhibits major differences with that of particulate nutrients such as 

phosphorus, which is transported by fast, surface runoff pathways. Different runoff generation 

mechanisms impact nutrient transformation and transport in different ways: surface runoff, 

characterized by short and fast flow pathways tends to carry phosphorus along with the sediment 

but less nitrogen, whereas subsurface flow has much longer pathways and travel times and 

therefore carries more nitrogen in dissolved form, but carries less phosphorus.  

The total amount of runoff generated during and between rainfall events and the 

partitioning of the runoff between surface and subsurface components is a result of the combined 

effects of climate, soils, topography and vegetation cover. In this way, the hydrologic regime, i.e., 

reflecting the dominant runoff generation processes, can impact the magnitude and timing of 

nutrient transport and transformation processes. Therefore, the understanding of dominant 

hydrological processes, their temporal variability during and between precipitation events, and 

how these vary across gradients of climate and landscape characteristics (e.g., soils and geology) 

are a prerequisite for the conduct of nutrient studies, including model development, especially if 

the goal is to develop theories and models that work everywhere.  

Historically, several key runoff signatures extracted from runoff observations are used to 

quantify different aspects of temporal runoff variability and to characterize the dominant 

hydrologic processes operating in a catchment. Examples include the flow duration curve (FDC), 

the regime curve (RC), and the recession curve (RC). FDC presents observed daily streamflow 

magnitude as a function of the occurrence frequency (instead of as time series). RC describes the 

mean seasonal variation of streamflow. RCs measure the flow recession profile at the end of 

individual storm events. Each signature describes a different aspect of a catchment’s streamflow 

behavior, and in this way reveals different aspects of the interactions of climate variability with 
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the landscape, the different pathways and residence times of water, and in this way helps to 

decipher the relative roles of climate and landscape characteristics. These are discussed in detail 

in the next sections. 

Flow duration curve and regime curve 

The flow duration curve (FDC), is a frequency-based manifestation of the filtering of daily 

precipitation variability by runoff generation and movement along the multiplicity of flow 

pathways that water follows within a catchment. In effect, the shape of the FDC acts as bridge 

between the fast, slow and intermediate runoff processes, and in this way it helps to identify the 

dominant processes operative within the catchment (Yaeger et al., 2012). As a classical signature 

in the realm of hydrology, FDC has been studied for a long time graphically (Ward and 

Robinson, 1990; Vogel and Fennessey, 1994, 1995) or stochastically (Castellarin et al., 2004; 

Iacobellis, 2008) by fitting to appropriate statistical distributions with optimal parameters. 

Although widely used and studied for predicting flood or drought magnitude and frequency, not 

much work has been done on exploring the climatic and landscape controls on the shape of the 

FDC (Yokoo and Sivapalan, 2011). In view of the role of runoff variability in governing the 

variability of nutrient cycling processes, the understanding of the physical controls of the FDC in 

a fundamental way has become critical.  

There has been recent progress in the development of process based models to connect 

the dynamics of runoff variability to the variability in climate variables (Botter et al., 2007, 2009; 

Muneepeerakul et al., 2010). These early studies were built on the assumption that rainfall 

arrives as a Poisson process (identically and independently distributed events), without the 

explicit carryover of soil moisture storage between events and, in particular, between seasons. 

Although these simplifying assumptions enable insightful analytical solutions to the problem, the 

non-inclusion of the carryover between different seasons precludes their adoption in situations 

where the seasonality of precipitation and solar energy (or potential evaporation), such as 

California which has a Mediterranean climate, or Florida which experiences tropical cyclones on 

a seasonal basis.  

Yokoo and Sivapalan (2011) recently proposed a new process-based framework to the 

study of FDCs, but without the assumption of Poisson storm arrivals. Instead of the Poisson 
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storm arrivals, observed actual precipitation data or synthetic precipitation series that preserve 

both the inherent randomness and seasonal variability in precipitation and potential evaporation 

were used as climate forcing to a physically based hydrologic model to derive the FDCs. 

Importantly, the carryover of soil moisture between events and between seasons is enabled 

because of the use of a continuous simulation model. The numerical simulations with the 

hydrological model under different combinations of climate and landscape characteristics 

enabled Yokoo and Sivapalan (2011) to partition FDC into three parts: the upper limb, middle 

part, and the lower limb, corresponding to fast flow, slow flow and evaporation, respectively. It 

turned out that the middle limb of the FDC, serving as the bridge between the high/fast and 

low/slow flows at either ends of the FDC, can be represented by the regime curves (i.e., mean 

seasonal variability of flow), which reflects the strength of seasonality of streamflow in the 

catchment.  This not only confirmed the importance of seasonality in governing the shape of 

FDCs, but also showed that understanding of the physical controls of the regime curve can assist 

in achieving the same regarding the FDC.  

Streamflow recession curve 

The recession curve (RC) (Brutsaert and Nieber, 1977) is one of the most widely used signatures 

that provide insights into (slow) subsurface flow generation processes (Tague and Grant, 2004). 

RC measures how river streamflow recedes at the end of a storm event, and is thus a measure of 

the drainage characteristics of a catchment, i.e., the net effects of the behaviors of the population 

of hillslopes (of various sizes and shapes) that constitute the catchment, and independent of the 

event characteristics. For convenience, the recession behavior of catchments is usually expressed 

in terms of the so-called recession-slope curve, the relationship between streamflow itself (i.e., Q) 

and its rate of decline (i.e., -dQ/dt), in terms of the following power-law relationship:  

Q
dt

dQ


    (1) 

which is often found to remain invariant and thus represents a unique signature of the catchment 

response.  The coefficient  and exponent  in Equation (1) can be directly estimated from 

observed recession curves by curve fitting, and reflect the net effects of climatic and catchment 

characteristics (e.g., soils, topography, and network structure).  
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One of the ways to decipher the physical meaning or controls of the parameters  and  

is through recourse to the fundamental equations governing saturated-unsaturated subsurface 

flow (i.e., Richards equation), based on application of Darcy’s law. Application of such 

physically based models to understand the controls on recession curve parameters must 

accommodate the considerable heterogeneity of both soil properties (e.g., soil depth, porosity and 

hydraulic conductivity) and topography (e.g., slope, shape). Approximations to Richards’ 

equation in the case of saturated flow in shallow subsurface homogeneous and unconfined 

aquifers, such as the Boussinesq equation, have been used in the past in a theoretical way to 

explore the effects of soils and topography on the shape of the recession curves. These 

theoretical studies suggest that the shapes of the recession curves are strongly related to the 

hydraulic conductivity and its vertical and horizontal heterogeneity (Rupp and Selker, 2005; 

Rupp and Selker, 2006; Harman et al., 2009). Other studies have studied the effects of landscape 

geomorphologic structure on the shapes of the recession curves (Biswal and Marani, 2010; Lyon 

and Troch, 2010). Due to the many simplifying assumptions and lack of data, most of the 

pioneering studies have been largely theoretical, and only applicable at the scale of individual 

hillslopes; only a few studies have looked at implementation and validation of the so-derived 

equations in real catchments (Harman et al., 2009; Lyon and Troch, 2010). In fact, very few 

studies have looked at the up-scaling of hillslope recession behavior all the way to the scale of a 

whole catchment, incorporating the significant heterogeneity of both soil properties and 

topographic variables that exist amongst the population of hillslopes constituting the catchment 

(Ali et al., 2013).  

The above theoretical approach, based on the Richards equation, involving either 

approximate analytical solutions or numerical simulations at the hillslope scale and up-scaling to 

catchment scale, can yield results that are physically consistent. Yet, their applicability in actual 

catchments is hampered by our inability to fully characterize the heterogeneity of soils and 

topography present in actual catchments. Some of the organized heterogeneity can be observed 

and mapped, and yet there is much other heterogeneity and complexity that are hidden and are 

harder to measure and map. Examples include networks of macro-pores and other preferred 

pathways, the flows through which are difficult to characterize in terms of the Richards equation.  
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On the other hand, empirical relationships extracted directly from observed recession 

curves are much more realistic in terms of revealing the net emergent effects of the full range of 

heterogeneity and organization that is present within a catchment. However, they remain 

empirical and are not physics based, which makes it difficult to interpret them physically and to 

extrapolate from gauged to ungauged sites. One solution is to undertake a reconciliation or 

synthesis of the outcomes of both the empirical (i.e., top-down) and theoretical (i.e., bottom-up) 

approaches, and in this way develop relationships that may be valid across a range of climates 

and locations, and yet are physically meaningful. This will be discussed later in the methodology 

section. 

1.2.2 Nutrient retention and transport in river network 

Once the dissolved nutrient arrives in the stream from adjacent hillslopes, it is transported into 

receiving waters such as lakes, estuaries and oceans through the river network. Nutrient release 

experiments have been conducted in streams to measure the nutrient retention rate. Most of the 

nutrient release experiments are carried out in headwaters during low flows (Tank et al., 2008). 

The hydrologic condition can be considered as being at steady state during low flows, and the 

retention efficiency can be expected to be the highest in these headwaters. Besides, nutrient 

release experiments are typically more tractable in such small headwater streams than in larger 

rivers or during times of high discharge (Hall et al., 2009).  

Measurement results show that a large part of nutrient retention occurs in the transient 

storage (TS) zone (Runkel and Bencala, 1995), which refers to the region with water flow 

pathways for which the velocity is much smaller than that in the main channel (MC). Examples 

include surface water “dead zones” such as pools, off-channel storages such as floodplains, the 

hyporheic zone, and other flow non-uniformities where the velocity is much smaller than that in 

the MC.  On the modeling side, consistent with the reach scale observations, the nutrient 

transformation and transport in the TS and MC zones are usually described by a one-dimensional 

transport model with inflow and transient storage (i.e., OTIS) in time and space (Runkel, 1998). 

Field measurements of solute concentrations and loads are used within this formulation to 

characterize reach-scale hydrologic and biogeochemical processes and their parameterizations.  
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There are two major challenges in extrapolating what can be learned from such steady-

state, small reach scale studies to make predictions at the whole catchment scale and over the 

annual timescale: (i) considerable heterogeneity in the size, shape of the set of reaches that 

constitute the river network, and (ii) the accommodation of the effects of within-year variability 

of runoff and nutrient inputs from hillslopes (e.g., within-even and between-event variability as 

well as that of seasonality). Distributed modeling studies have now called attention to the issue 

of network effects, the effects of increasing spatial scale, and the effects of the dynamics of 

within-year hydrologic variability on nutrient transport in river networks at the river basin scale 

(Wollheim et al., 2006; Tank et al., 2008; Helton et al., 2011; Ye et al., 2012). For example, 

despite the relatively low retention efficiency compared to the efficiency in small headwater 

streams, big streams behave not just as pipes, as is often assumed, and instead, due to the long 

travel times, they may contribute a much larger amount of nutrient retention or removal than 

previously assumed. A similar situation arises during high flows, compared to during low flows 

(Ye et al., 2012). The steady state assumption is no longer valid at annual timescales, and the 

impact of within-year (within-event, between-event and between-season) hydrological variability 

on nutrient retention and delivery has to be taken into account as well.  

The importance of the scaling issue and the impact of temporal hydrologic variability on 

nutrient retention have been confirmed both by observations, analysis of observed data, and 

through numerical simulations (Basu et al., 2010; Basu et al., 2011a, b). For example, the 

nutrient release experiments of Tank et al. (2008) in the Upper Snake River, Wyoming, a 

medium size pristine river, indicated a surprisingly high biotic demand for nitrate and 

ammonium. Long term data from even larger river basins with intense anthropogenic activities 

(Mississippi-Atchafalaya River basin and Baltic Sea Drainage Basin) reveal a chemostatic 

pattern, where the concentration of nitrogen and phosphorous are invariant at annual scale and 

the total-N and total-P loads are dominated by total streamflow (Basu et al., 2010). The 

importance of hydrologic variability has also been highlighted during an experiment conducted 

in a mountain stream (Hall et al., 2009) that suggested that biological demand for nitrate was 

much higher than expected during floods and that reach scale nutrient uptake during low flows 

and spring floods were indeed similar. This can potentially be attributed to the presence of a 

large hyporheic zone (i.e., increased extent of the hyporheic zone during flood events) relative to 

the size of the drainage area. The impact of the temporal organization of storm events (i.e., 
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within year hydrological variability) have also been reproduced in the numerical simulations.  

The simulation results of Basu et al. (2011a) indicated that, in “flashy” streams with high flow 

events distributed less uniformly, less nutrient is processed in the stream, with most of the 

nutrients being exported out of the basin, whereas when the flow events are distributed uniformly, 

a larger amount of nutrients stays in channel which helps further in-stream processing, thus 

reducing export. Particularly for larger river basins with strong human influences, the variability 

of nutrient load is dominantly controlled by within-year streamflow variability because of the big 

nutrient storage in soil from fertilizer application (Basu et al., 2011b). 

Although the OTIS model (Runkel et al., 1998) provides an excellent description of the 

nutrient retention and transport processes in a channel reach, including the factors that influence 

these processes, it is meant to be applicable for a single reach. To characterize how nutrient 

transport and transformation processes evolve in the downstream direction, including in a river 

network, and how they impact retention and delivery at the catchment scale, we need catchment 

or network scale models that can accommodate distributed loading from the hillslopes that 

organized around the network, and transport and transformation along the river channel network 

itself.  

Several biogeochemical models are in wide use to predict nutrient transport at a range of 

spatial scales (e.g., Smith et al., 1997; Donner et al., 2002; Mulholland et al., 2002; Seitzinger et 

al., 2002, Wollheim et al., 2006, 2008; Alexander et al., 2009). Many of these models use 

observed data to predict nutrient transport as a function of hydrologic variables (i.e., stream 

depth, travel time). These empirical relationships are then applied at the catchment scale to 

obtain estimates of annual nutrient export (Smith et al., 1997). Other models have applied the 

one-dimensional advection-dispersion equation with effective parameters to capture reach scale 

nutrient cycling processes for each month, expressing a bulk retention coefficient ke as a function 

of nutrient concentration, flow depth and water temperature (e.g., Alexander et al., 2009). Many 

of these models have assumed steady flow conditions, and although they capture the impact of 

seasonal variability on nutrient transport, they are unable to make predictions under highly 

variable flow conditions that occur during flood events, as well as seasonally over the year, or in 

space (e.g., across the river network), a notable exception being the work by Wollheim (et al. 

2008). 
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1.3 Study framework: a combination of two worldviews and approaches 

Questions similar to “how do nutrients get transported within a catchment” that we have asked 

here have been raised and studied, albeit in different contexts, throughout human history: what 

does this world look like and why is it the way it is. Traditionally in hydrology, we answer this 

kind of how and why questions in a Newtonian way (Sivapalan et al., 2011): we study problems 

of small spatial extent, explore the associated physical processes in the laboratory or in the field 

to develop governing equations (i.e. Richards equation, Saint Venant equations, etc.), from 

where we then up-scale to the larger scales (i.e. larger catchment scale, regional scale, global 

scale, etc.) at which predictions are required. The resulting process based models are often 

developed and calibrated in catchments that have considerable historical data available, and 

validated in other catchments over different time periods. The strength of this approach is that 

the physical meaning of both the processes and the parameters are easily interpreted. However, 

these equations are developed in the laboratory or in the field under somewhat ideal conditions 

or assumptions, and when applied to real (larger) catchments they need to be characterized with a 

large number of parameters that may not be easy to acquire in reality. If the system is too 

complex, with many processes operating over different time scales, some of which not even 

recognized beforehand, then in spite of obtaining good fits to observed data during calibration, 

such models may not be able to capture the actual processes occurring in these catchments. This 

characterization and application process would be even harder when we bring the biological and 

biogeochemical processes to account for nutrient transformation and transport.  

An alternative view to address these questions follows the Darwinian way: this embraces 

the heterogeneity within and among these catchments and the different histories followed by 

each catchment, by studying emergent patterns and comparisons among catchments 

simultaneously to generate generalizable understanding and predictive capability. As we look 

around, we appreciate how beautiful this ever-changing nature is. Unlike some of the modern 

architecture, nature never bores us: lives change from sunrise to sunset, and everything is 

different from place to place, there are no two same leaves on this planet. This endless variation 

constitutes spectacular landscapes, but also increases the difficulties for us to understand the 

underlying mechanisms and essential functions. Each catchment is different from the others with 

unique climate, topography, ecosystem, etc. Consider the mechanisms underlying the whole seen 
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as white light, the characteristics of each catchment are like different kinds of prism or filter: 

only part of the solar spectrum is represented in these filters, these are the dominant processes or 

influencing factors we see in each catchment. For example, a Midwestern tile drained catchment 

filters out most of the subsurface flow generation processes leaving mainly the tile drainage and 

creates a nutrient enriched aquatic ecosystem; on the other hand a high attitude low vegetation 

snow dominated catchment in Idaho could screen out most of the flow generation processes to 

emphasize the snowmelt and thus maintain a pristine low nutrient river.  

Therefore, what we see in an individual catchment under the Newtonian view is just a 

combination of some parts of the spectrum. However well we can model the catchment, we can 

only understand what is left from the filters, not the whole spectrum. On the other hand the 

Darwinian view could provide us the resources we can put together to make up the whole solar 

spectrum. Both approaches have advantages and disadvantages. To understand the natural 

system, we need a synthesis of both Newtonian and Darwinian views to identify each process as 

the wavelength in the range but without missing the whole pattern of the spectrum. Since the 

goal of this study is to develop generalizable understanding of nitrogen cycling at river basin 

scale, and over annual and longer timescales, we will emphasize slightly more on the Darwinian 

approach in this study but the Newtonian view is also used. All of the studies proposed here will 

be carried out under the framework of the synthesis of both Newtonian and Darwinian 

approaches with different preferences on either worldview depending on the specific topic. The 

Darwinian approach will involve using empirical data analysis to first identify and extract 

emergent patterns or signatures, and then to use process based models of appropriate complexity 

to interpret these emergent patterns, and in this way to help make general statements about 

climate and landscape controls on nutrient retention and delivery at the river basin scale. 

1.3.1 Top-down approach: Learning from data 

The MOPEX dataset (Duan et al., 2006) will be used for empirical analysis of dominant 

hydrological processes as well as the factors controlling slow flow generation. Daily 

precipitation (P), temperature (T), and potential evaporation (PET) time series are used as 

climate inputs, while daily flow data are used to generate the regime curves (RCs), which are 50-

year averages of streamflow for each day of the year in 197 catchments with more than 50-years 
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data. Regime curves derived here are used for model development, calibration and comparative 

performance assessment in later work.  

For the parameterization of the storage-discharge relationship, recession curves will be 

the runoff signature used to derive the underlying relationship and to study the influence of 

catchment characteristics on that relationship. Daily flow data from 428 MOPEX catchments 

with over 10-years of record will be used to derive parameterizations of the recession curves, 

which can be used to estimate the coefficient and exponent of a power-law type storage-

discharge relationship. The aridity index (PET/P) and the topographic slope data from the 

MOPEX dataset, drainage density estimates extracted from the National Hydrography Dataset 

(NHD) (http://nhd.usgs.gov/) and soil properties from the USGS SSURGO dataset 

(http://soils.usda.gov/survey/geography/ssurgo/) in 50 selected MOPEX catchment will be used 

to describe climatic, topographic characteristics.  

Flow and nutrient (nitrate, ammonium and phosphorous) data from pulse experiments in 

fifteen western and Midwestern rivers with discharges > 10,000L (provided by Dr. Jennifer Tank 

of the University of Notre Dame and the Big River team) will also be used to parameterize the 

nutrient spiraling model at the river network scale to study the nutrient spiraling in the river 

network across a range of land use, hydrologic dynamics and biological activity.  

1.3.2 Bottom-up approach: Model interpretation 

With the understanding gained from the data analysis, we then build hydrological and 

biogeochemical models to help interpret the patterns we have obtained from the empirical studies. 

To explore the dominant flow generation processes, we start with a simple two-stage bucket 

model; incorporate additional processes we hypothesize would be able to fill the gap when 

parameterization of current model is not able to generate reasonable results. The parameters are 

calibrated automatically via the Markov Chain Monte Carlo (MCMC) algorithm, a tool designed 

to search a multi-dimensional parameter space more efficiently than brute force. The 

performance of the various models for each catchment, containing differing numbers of 

parameters, are compared with the use of the Akaike Information Criterion (AIC), which 

assesses the marginal value of each new parameter added to address the relative differences in 

complexity. 
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Once the nutrient enters channel with flow, a dynamic hydrologic network model, 

coupled with a transient storage zone solute transport model, will then be used to simulate 

dissolved nutrient (i.e. nitrate, nitrite, phosphate, etc.) retention processes during transient flow 

events at the channel network scale. Flow will be routed in each river reach via the river network, 

and the nutrient exchange between the main channel and the transient storage zone will also be 

taken into account.  

1.4 GIS support  

With the capability of spatial (geographically referenced) data manipulation and presentation, 

GIS is essential to the whole work as prerequisite tool for model and data analysis and as an 

important platform for model presentation and future development.  

The modeling units are delineated based on the Digital Elevation Model (DEM) by the 

GIS software and the river networks are also extracted from the DEM by the same platform. 

These are the prerequisites to the hydrological and biogeochemical modeling. Moreover, spatial 

information such as topography and soil property characteristics are also collected, calculated, 

and organized with GIS tools. For example, the soil property characteristics were aggregated 

from the spatial data set from USGS soil survey.  

Besides pre-processing of data, once the whole coupled hydrologic and biogeochemical 

model is completed, it could be incorporated into GISolve, a framework that can be used to solve 

computationally intensive and associated problems in GIS and spatial analysis (Wang, 2010). As 

a synthesis of cyberinfrastructure (which integrates distributed information and communication 

technologies), GIS and spatial analysis, this framework (GISolve) could provide data 

management, high performance computing and spatial information visualization online. Once the 

coupled model is incorporated into the platform, researchers from the world could run the model 

for their study areas online using the computing resources behind the platform and visualize the 

simulated flow and nitrogen results. With further developments and enhancements expected in 

the future, scientists everywhere could be directly involved in further model improvement 

through this platform utilizing their process understanding and knowledge about particular places 

to make the model more sophisticated and more widely applicable. 
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1.5 Outline of this dissertation  

The proposed framework is broad and could be used to study a range of problems. The work 

presented here is an application of this framework to nutrient transformation and transport at the 

catchment scale. Each chapter focuses on different parts of the nutrient transport questions and is 

explored under this synthesis framework with an emphasis on one or both of the world views. 

The major objectives are the following two questions: 

1. How will soil moisture and dominant hydrological processes change across a climate 

gradient, what are the controlling factors governing these processes, and in particular, what 

are the effects of climate, i.e. aridity, seasonality? 

2. How do the nutrients get retained and delivered across river network, what is the spatial 

scaling influence on these processes, and what are the effects of temporal variability in flow 

that is inherited from climate?  

To answer these two questions, we divide the work into two parts, the water and the 

nutrient for each question, respectively. The first part focuses on the question how soil moisture 

and dominant hydrological processes change across a climate gradient, and in particular, what 

the effects of climate seasonality are? Since the nutrient delivery is intimately connected to soil 

water storage, runoff generation mechanisms, and flow variability in the river network, the 

knowledge of hydrological processes is a prerequisite to understanding of nitrogen cycling 

processes. Due to the significant influence of seasonality of runoff generation processes, this 

study will mainly focus on the impact of seasonality on nitrogen retention and transport under 

different hydrological conditions. Chapters 2 and 3 explore the process controls underpinning 

regional patterns of variations of streamflow regime behavior across the continental United 

States. Chapter 2 applies a two-stage bucket model which is systematically enhanced through 

addition of new processes on the basis of model performance assessment in relation to 

observations in the MOPEX catchments to determine the dominant processes for each catchment. 

Chapter 3 is aimed at deriving regionalized parameterizations of the storage-discharge 

relationship relating to subsurface stormflow from a top-down empirical data analysis of 

streamflow recession curves for the same catchments studied in Chapter 2. 
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With the understanding of water movement, the second part is about how nutrient 

retention and delivery across a river network are affected by climate seasonality and other 

catchment characteristics. Chapter 4 uses a dynamic hydrologic network model, coupled with a 

transient storage zone solute transport model, to simulate dissolved nutrient retention processes 

during transient flow events at the channel network scale in an idealized river network. In 

Chapter 5, the theoretical model developed in Chapter 4 is modified based on the field 

measurement data of 15 Big Rivers in Midwestern and Western United States, and is applied to 

these 15 catchments to examine the spatial patterns of nutrient uptake within the catchment 

(small streams vs. big rivers)  and how it varies across catchments and across solutes. Chapter 6 

is a repeat of Chapter 4 with the model improvements obtained in Chapter 5 with observational 

support. 

 Finally Chapter 7 is the concluding chapter which summaries the major findings from 

this dissertation and outlines future opportunities for extensions of this work, as well as potential 

other applications of the adopted study framework. 
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Part I: Climate and Hydrology 

Chapter 2. 

Exploring the physical controls of regional patterns of Flow Duration Curves: 

Role of seasonality, the regime curve, and associated process controls 

Abstract1 

The goal of this paper is to explore the process controls underpinning regional patterns of 

variations of streamflow regime behavior, i.e., the mean seasonal variation of streamflow within 

the year, across the continental United States. The ultimate motivation is to use the resulting 

process understanding to generate insights into the physical controls of another signature of 

streamflow variability, namely the flow duration curve (FDC). The construction of the FDC 

removes the time dependence of flows. Thus in order to better understand the physical controls 

in regions that exhibit strong seasonal dependence, the regime curve (RC), which is closely 

connected to the FDC, is studied in this paper and later linked back to the FDC. To achieve these 

aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, 

which is systematically enhanced through addition of new processes on the basis of model 

performance assessment in relation to observations, using rainfall-runoff data from 197 United 

States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the 

determination of required model complexity are carried out through model-based sensitivity 

analyses, guided by a performance metric. Results indicated systematic regional trends in 

dominant processes: snowmelt was a key process control in cold mountainous catchments in the 

north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the 

north-east; seasonal vegetation cover dynamics (phenology and interception) were important 

along the Appalachian mountain range in the east. A simple two-bucket model (with no other 

additions) was found to be adequate in warm humid catchments along the west coast and in the 

south-east, with both regions exhibiting strong seasonality, whereas much more complex models 

are needed in the dry south and southwest. Agricultural catchments in the mid-west were found 

to be difficult to predict with the use of simple lumped models, due to the strong influence of 

human activities. Overall, these process controls arose from general east-west (seasonality) and 
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north-south (aridity, temperature) trends in climate (with some exceptions), compounded by 

complex dynamics of vegetation cover and to a less extent by landscape factors (soils, geology 

and topography). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1This work has been submitted for publication to Hydrology and Earth System Sciences as: Ye, 

S., M. Yeger, E. Coopersmith, L. Cheng, and M. Sivapalan, Exploring the physical controls of 

regional patterns of flow duration curves – Part 2: Role of seasonality, the regime curve, and 

associated process controls. All figures, tables and data were created by Sheng Ye unless 

otherwise indicated.  
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2.1 Introduction 

This is the second paper of a 4-part series (the others being Cheng et al., 2012; Coopersmith et 

al., 2012; and Yaeger et al., 2012) that attempt to understand the physical controls on regional 

patterns of variations of signatures of streamflow variability, with a particular focus on the Flow 

Duration Curve (FDC). Instead of directly exploring the FDC, a key frequency-based signature 

of daily streamflow variability, as in the first paper (Cheng et al., 2012), we will approach it from 

a different perspective, exploring regional patterns of another  signature of streamflow variability, 

the regime curve (RC), which denotes the mean seasonal variation streamflow. This is motivated 

by a previous modeling study in hypothetical catchments by Yokoo and Sivapalan (2011), which 

suggested that the regime curve contains valuable information on the middle part of the FDC, 

serving as the bridge between the high and low flows at either ends of the FDC, and that 

understanding the physical controls of the regime curve can assist in achieving the same 

regarding the FDC.  An empirical study of the FDCs of 197 catchments across the United States 

presented by Cheng et al. (2012), as part of the present study, has provided empirical support to 

these model predictions.  

 Motivated by the findings of Yokoo and Sivapalan (2011) and Cheng et al. (2012), the 

goal of this study is to explore the process controls of regime behavior, i.e., seasonal variation of 

streamflow, through a comparative study of 197 catchments located across the continental 

United States, covering a range of climates and physiographic properties, and belonging to the 

MOPEX dataset. This is essentially a data-based study, assisted by process-based modeling. 

Instead of applying an existing model to all 197 catchments, the analysis involves systematic 

model development and assessment of model predictions and performance in comparison to 

observed data. This downward or top-down approach to model development (Klemeš, 1983; 

Jothityangkoon et al., 2001; Farmer et al., 2003; Sivapalan et al., 2003; Bai et al., 2009; 

Thompson et al., 2011) commenced with the development of a simple two-bucket model 

(hereafter referred to as the “base model”). This model was initially applied to all 197 

catchments, and its performance assessed. Guided by alternative hypotheses regarding the 

reasons for the poor fits against regime curves estimated from observed streamflow data, the 

model was enhanced step by step through addition of new processes initially left out of the base 
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model. Model development was continued until the model performance could not be improved 

any longer. The complete model was then utilized in sensitivity studies to (a) decipher the 

dominant process controls on the regime curve, and (b) the minimum complexity of models (i.e., 

the mix of processes required) needed to achieve a satisfactory fit to the empirical regime curves. 

In this way it is hoped to develop an understanding of the process controls of the regime curves 

across the continental United States, and also the main climatic and landscape factors that 

contribute to the regional patterns of the process controls underpinning the regime curves.  

 The work presented in this paper is an exercise in comparative hydrology (Falkenmark 

and Chapman, 1989; Sivapalan, 2009), where the goal is to develop generalizable understanding 

through comparative analysis of rainfall-runoff data in catchments located along a climatic or 

other gradient. Instead of studying one catchment in considerable detail, the focus is on the use 

of simpler models to discover features or process controls that are similar or different amongst a 

population of catchments (Sivapalan et al., 2011). Finally, the assessment of catchment response 

is with respect to holistic signatures of catchment response (e.g., flow duration curves, regime 

curve, flood frequency curve etc.) and not in terms of detailed process descriptions. This 

Darwinian (Harte, 2002; Sivapalan et al., 2011) and functional (Black, 1997; Sivapalan, 2005; 

McDonnell et al., 2007; Wagener et al., 2007; Sawicz et al., 2011) approach to comparative data 

analysis and modeling is in contrast with much of the past research in catchment hydrology 

modeling, which has focused on developing predictive understanding in individual catchments 

on the basis of models based on individual processes or internal descriptions (Dooge, 1986). 

Such bottom-up approaches have been hampered by the inability to map the heterogeneity of 

subsurface pathways and process complexity. Extrapolation to and prediction of catchment 

responses across different places and a range of scales has remained a challenging problem. A 

synthesis of these two top-down and bottom-up approaches is possibly the key to developing 

new understanding and new theories of hydrologic responses at catchment scales. The present 

study is a step in this direction.  

 The paper begins with information on the data used in the study and the methodology 

used to achieve its aims, which is presented next in Sect. 2. This section presents in particular the 

outlines of the downward approach to model development adopted in the paper, and procedures 

for model calibration and model performance assessment. Section 3 presents an illustration of the 
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model development exercise, using the results from 9 selected example catchments. This is 

followed, in Sect. 4, by a comparative assessment of model performance to determine (a) the 

dominant process control of the regime curve for the entire population of catchments, (b) the 

minimum model complexity required to achieve satisfactory predictions of the regime curves, 

and (c) the manifestations of these process controls on the shapes of the FDCs. The results are 

summarized in the form of a schematic diagram. Section 5 summarizes the main conclusions of 

the study and recommendations for further research.  

2.2 Data and Methodology 

2.2.1 Data 

This is a study in comparative hydrology and uses data from 197 catchments located across the 

continental United States belonging to the MOPEX dataset and spanning a variety of climates 

and physiographic regions, with over 50 years of continuous daily climatic and flow data. Daily 

precipitation (P), temperature (T), and potential evaporation (PET) time series are used as 

climate inputs, while the daily flow data are used to generate regime curves (RCs), 50-year 

averages of streamflow for each day of the year, which are used for model development, 

calibration and comparative performance assessment. The PET was calculated based on the 

NOAA Pan Evaporation Atlas (NOAA, 1982), where it was estimated using Penman (1948)’s 

method, and the solar radiation required in the calculation was estimated from percent sunshine 

(Hamon et al., 1954). The mix of vegetation types for each catchment and the characteristic LAI 

(leaf area index) profiles for each vegetation type were obtained from the NASA Land Data 

Assimilation Systems (available at: http://ldas.gsfc.nasa.gov/nldas/NLDASmapveg.php). The 

composite LAI profile for each catchment, which is then used as input to the models, is 

calculated as the average of the monthly values for each vegetation type from the Mosaic 

vegetation dataset (University of Maryland (UMD) vegetation classification, with 14 classes in 

total), weighted by the area fraction of each vegetation type within the catchment.   

 Nine example catchments, chosen from this dataset and spread across the country, (from 

north to south, west to east, and dry to humid) are used to highlight the diversity of regime 

behaviors exhibited within the continental United States. Besides, they are also used to illustrate 

the systematic, downward approach to model development (Sivapalan et al., 2003) that is 

http://ldas.gsfc.nasa.gov/nldas/NLDASmapveg.php
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eventually implemented in the 197 study catchments. They are selected based on both their 

locations and their classes within the Köppen climate classification map. Therefore, we can 

consider them representative of the climate conditions under the regional similarity assumption 

(Merz and Blöschl, 2004; Patil and Stieglitz, 2011), even though they are not wholly 

representative of the whole country. Figure 2.1 presents the empirical regime curves of the 9 

selected catchments (estimated over the calendar year), which are located in the states of 

Washington (WA), Idaho (ID), New York (NY), California (CA), Missouri (MO), Georgia (GA), 

Texas (TX) and Florida (FL). Regime curves are presented for P, PET, and total streamflow (Q), 

as well as the fast flow (Qf) and slow flow (Qu) components of measured streamflow. The fast 

flow and slow flow components were obtained by the baseflow separation algorithm of Lyne and 

Hollick (1979), 
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where a is the filter parameter, which was set to 0.925 (Brooks et al., 2011). Since the hydrologic 

partitioning is not strongly sensitive to baseflow separation methods, (Troch et al., 2009) we will 

use this easily implementable algorithm for the baseflow separation in this study. The RCs for 

PET show evident similarity with an almost sinusoidal variation with a uniform peak near the 

middle of the year, and also differences in amplitudes across the continent, exhibiting significant 

regional variations.  For comparative purposes, the aridity index (AI), which is the ratio of 

annual PET to annual precipitation, is also noted in Figure 2.1.  

 Individually, catchments near the east coast (NY, GA, FL) are relatively humid with 

AI<1. In the north-east, e.g., NY, precipitation tends to remain constant throughout the year 

without much seasonality. In the south-east, rainfall seasonality increases north to south (GA, 

FL), with FL exhibiting strong precipitation seasonality that is almost in-phase with PET, due in 

part to the influence of the hurricane season. Consequently, while within-year variability of 

flows tends to decrease as we move from north to south along the east coast, the timing of peak 

flow shifts from March in NY to September in FL. As we move east to west in the north (NY, ID, 

WA), seasonality of precipitation increases, indeed becoming out of phase with PET (note ID 

and WA, which exhibit strong out-of-phase seasonality). NY and ID exhibit pronounced peak 

flows during spring not seen in the south, evidently due to snowmelt, whereas the catchment in 
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WA experiences bi-modal streamflow variability, during spring and again in winter. In the 

middle of the continent, the aridity index increases from the north (ID) to south (TX), with the 

seasonality of precipitation undergoing a significant transformation, culminating in a bi-modal 

distribution in TX (peaks in spring and again in autumn). In TX, because of high aridity, with 

PET > P over the entire year, there is hardly any streamflow observed. Catchments on the west 

coast are very diverse, although they all display a precipitation seasonality that is out-of-phase 

with PET. The Washington catchment has flow peaks not only in winter but also in spring (likely 

arising from mountain snowmelt), whereas the catchment in Northern California remains humid, 

exhibiting high flows due to strong winter precipitation that coincides with low PET but without 

the spring flow peak caused by snowmelt.  In Southern California, in spite of the fact that the 

climate is as dry as Texas, there is spring streamflow due to the out-of-phase seasonality between 

precipitation and PET. Overall, the variability captured in the 9 example catchments presented in 

Figure 2.1, provides a snapshot into the enormous spatio-temporal variability of climate and 

hydrology across the continental United States.  

 

Figure 2.1: Observed regime curves of precipitation, PET, fast flow (Qf), slow flow (Qu) and 

total flow (Q) in the nine selected catchments across the country, AI is the Aridity Index (PET/P). 
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Figure 2.2 shows the corresponding FDCs of the nine selected catchments, which are plotted 

as the sorted 50-year daily streamflow against the frequency of occurrence. They indicate clear 

differences between the shapes of the FDCs of fast flow, Qf (which show significant 

ephemerality in all cases), and those of slow flow, Qu, and total flow, Q.  On the other hand, for 

each catchment, the FDC of Qu and Q show strong similarities to each other. In spite of this, 

there are regional differences between the FDCs, with the 9 catchments dividing into two groups, 

organized around the aridity index: TX and Southern CA exhibiting strong ephemerality of flows, 

and all of the remaining (more) humid catchments exhibiting similar FDCs, in spite of the strong 

differences in the timing of the within-year variability of climate and streamflow. In other words, 

much of the richness in the regime curves presented in Figure 2.1 is lost in the FDCs, due to the 

fact that the timing of flows is ignored in the construction of the FDCs.  

 

Figure 2.2: Observed flow duration curves of selected 9 catchments: (a) fast flow (Qf); (b) slow 

flow (Qu); (c) total flow (Q). 

 

2.2.2 Downward Approach to Model development 

We have already seen a glimpse into the enormous diversity of both regime behavior and FDCs, 

and the connections between the two. The main goal of this paper is the elucidation of the 

process controls underpinning regional patterns of variation of streamflow regime. To achieve 

this, we adopt a comparative modeling approach, using data from 197 catchments belonging to 

the MOPEX dataset, and representing strong gradients of climate (including aridity and 

seasonality), as well as soils, geology, topography and vegetation.  
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 The model development follows the downward approach pioneered by Jothityangkoon et 

al. (2001) and Farmer et al. (2003), and later reviewed by Sivapalan et al. (2003). Model 

development commences with a simple two-stage bucket model, which we call the base model. 

We initially apply the base model to all the study catchments, and attempt to obtain the best 

possible fits to the empirically derived regime curves using an automatic calibration algorithm. 

Since our motivation is to explore the first order effects only, regime curves can provide 

sufficient information for this study. To keep it simple and robust, we use the regime curves 

estimated over the full length of record for the calibration. Being a simple model, it is not likely 

that the base model will be adequate in many catchments. In catchments where improved 

parameterization cannot improve the predictions, we incorporated additional processes that we 

hypothesized would be able to fill the gap between predictions and observed data. We then 

reapply the improved model to the study catchments, especially to catchments for which the 

previous model was found deficient, calibrate the parameters, assess the resulting improvements 

in model performance, and explore possible further improvements. We continue this process of 

model development until no further improvements can be obtained in model performance. 

Through this systematic assessment of model prediction, model updating, and model re-

assessment, we used the model as a tool to explore the catchments’ runoff characteristics.  Note 

that the focus of the modeling is on comparative assessment across many catchments, and 

exploration of dominant process controls, and not on obtaining perfect fits to the observed 

streamflow hydrographs or quantifying model performances in detail for any given model or 

catchment.  

The details of the base model, several model enhancements that were made to the base 

model as part of the downward approach outlined above, and the final complete model will be 

presented later in Sect. 3 together with the results of each improvement (Figure 2.3). We next 

describe the approach adopted for model calibration and parameter estimation, and methods used 

to carry out comparative assessment of model performance as a way to elucidate dominant 

process controls and the minimum complexity required to reproduce observed regime behavior. 
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Figure 2.3: Structure of the complete model, reservoirs are represented in solid green boxes; 

green is used for state variables, blue for fluxes and brown for model parameters red boxes 

represents the added processes, and dashed lines denote the fluxes from these added processes. 

 

2.2.3 Parameter Calibration and Model Performance Assessment 

The distillation of dominant processes from these 197 catchments and the heterogeneous features 

that describe them is accomplished in four parts.  First, we must determine which parameters are 

required – this was achieved, as described in Sect. 2.2, by sequentially increasing model 

complexity, adding new processes until the model’s performance is adequate.  Second, these 

parameters must be automatically calibrated for all the 197 catchments – this is done via the 

Markov Chain Monte Carlo (MCMC) algorithm, a tool designed to search a multidimensional 

parameter space more efficiently than brute force.  Third, the model’s performance must be 

assessed – this is done by a simple sum of squared errors between the observed and predicted 

regime curves.  Finally, the performance of the various models for each catchment, containing 

differing number of parameters, must be compared, addressing the relative differences in 
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complexity.  This last step is managed with the use of the Aikake Information Criterion (AIC) 

(Akaike, 1974), which assesses the marginal value of each new parameter added. This section 

will discuss the last three parts: parameter calibration, model performance assessment, and 

process selection. 

2.2.3.1 Parameter Calibration and Validation 

The measured total streamflow was separated into fast flow and slow flow through the 

application of the baseflow separation algorithm of Lyne and Hollick (1979), and regime curves 

of both flows were calculated for the purpose of model performance assessment.  The full model 

(i.e. the base model with all modifications) was applied to all 197 MOPEX catchments to 

simulate the regime curves of both the fast and slow flow; explicit Euler was used to solve the 

model equations; and model parameters were estimated through automatic calibration, by 

comparing the predicted streamflow regime curves to those estimated from observed data.  

We adapted the parameter estimation method from Harman et al. (2011), in what is called 

a naïve Bayesian model. Based on the fits obtained during model application, we assume that the 

errors associated with predicted fast flow and slow flow regime curves (Qf, Qu) are 

approximately normally distributed,  i.e., N[x|(,2)]. We also assume Qf and Qu are normally 

distributed with their means as the values predicted by the model (Qf = f(P, PET, GSI, LAI, Sb1, tw, 

tc), Qu = g(Qw, PET, GSI, Se, Sb2, tu, tc) with unknown variances (f
2u

2). The likelihood 

function L (X|) of the observations X = {Qf1, Qf2, …, Qfn, Qu1, Qu2, …, Qun}, given the model  = 

{ Sb1, tw, tc, Se, Sb2, tu, f
2u

2} with P, PET, GSI as input, can be calculated as follows: 

  )), t,t,S,SGSI,PET,,Q(|()),t,,t,SLAI,GSI,PET,P,(|()|( 2

cub2ew

2

cwb1 fuiffi fQNfQNXL   (2) 

The posterior likelihood function of the model based on the Bayes’ theorem is then: 

)(

)()|(
)|(

XL

LXL
XL


  ,    (3) 

where L() is the prior distribution; since we do not have definite information about the variables, 

it is set to unity as a uniform prior distribution. L(X) is the probability of the observations, 
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although it is not necessary to evaluate it since the sampling method we use depends only on 

ratios of successive likelihoods, and so this term cancels.  

 We then employ the Metropolis algorithm (Metropolis et al., 1953; Kuczera and Parent, 

1998) adapted from Harman et al. (2011) to sample the parameter space towards constructing the 

posterior distribution. The algorithm, a Markov Chain Monte Carlo (MCMC) technique, is able 

to sample the parameters efficiently in the vicinity of the maximum likelihood. Starting with an 

optimum based on previous model development, we calculate the likelihood value for each 

randomly selected set of parameters (i+1) near the current parameter value (i). The new 

parameter set is accepted if it leads to a larger likelihood value (L(X|θi+1)>L(X|θi)), i.e., it helps 

predict the streamflow regime better than the previous set, and then a new search starts from a 

new set (i+1). However, there is the possibility that this set can lead to another local optimum. 

To reach the globally optimal parameter set, we accept the inadequate parameter set if the ratio 

of the likelihood values L(X|θi+1)/L(X|θi) is larger than a uniform random value between zero and 

one. We run this algorithm to search the next available parameter set that improves upon the 

largest likelihood and save the 500 samples in a chain. This algorithm is run twice to generate 

1000 samples in total for each site. The parameter set with largest likelihood was selected as 

optimal for the full model. 

Table 2.1: Overview of the estimated parameters for all the satisfactory catchments. 

 Sb1 

(mm) 

tw   

(days) 

 Se  

(mm) 

tu(days) Sb2 

(mm) 

tc 

(days) 

Minimum 0.001 0.013 0.000 0.037 1.548 4.184 0.073 

Mean 0.069 0.189 0.274 49.756 187.987 326.358 1.538 

Maximum 1.013 0.533 0.300 339.181 1301.191 879.561 9.659 

SD 0.14 0.09 0.14 69.44 221.68 183.98 1.51 

Median 

Rel. Error 

(%) 

33.57 33.31 23.74 46.73 24.05 11.54 29.19 

 

 One of the advantages of a Bayesian framework is that we can estimate uncertainty (Bai 

et al., 2009; Harman et al., 2011): the upper and lower bounds are defined from the plot of 
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likelihood and parameter values. For each catchment, throughout the MCMC sampling, there is a 

chain of likelihood values which are added cumulatively from the smallest parameter value; the 

upper and lower bounds are then defined when the sum of the likelihood values just exceeds 95% 

and 5% of the total. The relative error is calculated as half of the range between the upper and 

lower bounds as a percentage of the parameter with the maximum likelihood value. Median 

relative error presented in Table 2.1 is the median of the uncertainty among the catchments. 

Since our goal is not to deliver precise predictions of the streamflow time series, but 

rather to gain a general understanding of first order impacts of different processes on flow 

generation mechanisms along a climatic or other gradient, a qualitative validation, also called 

“scientific validation” (Biondi et al, 2012) suits our purpose better. Scientific validation can be 

used to identify integral processes for which the model should account, as well as to demonstrate 

the model’s ability to adequately represent reality, since validation tests alone may not guard 

against an equi-final solution (Biondi et al, 2012). This is the essence of the downward approach 

to modeling, as outlined in Sect. 2.2, and it is this systematic model development procedure itself 

that helps to validate the importance of each remaining process. As a model could produce good 

results with a wide range of specific parameter values, to ensure that the model produces 

reasonable results with realistic parameters, the parameter set should be considered as a 

combined set (Freer et al., 1996). The Bayesian framework we used is able to find optimum 

parameter sets by giving greater weight to the better simulations. These parameter sets and 

predictions then can be chosen as more likely than others.  In addition to the assessment of model 

hypotheses and parameters, a multi-criteria approach can also be used to verify model 

performance. In this work, we calibrate the parameters to optimize both the fast flow and slow 

flow simultaneously. This multi-objective check helps provide information regarding where 

individual subsystems or processes are significant in the catchments. For example, some 

processes may not affect the total discharge, but could influence the quantities of observed fast 

flow (Figure 2.6 and 2.7). A multi-objective calibration enables us to detect those improvements 

in model performance that negatively affect the global discharge but are beneficial for 

characterizing the fast flow component and detecting the main control processes.   
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2.2.3.2 Performance Assessment for the full model in all 197 catchments 

Even with all modifications, the model is still relatively simple, and it is probable that even the 

full model may not be able to reproduce streamflow satisfactorily in catchments that have other, 

perhaps anthropogenic, factors dominating the flow generation mechanism. Therefore, after the 

calibration, we assessed the model performance for all 197 catchments and removed 45 

catchments where the full model failed to generate adequate predictions. These were mostly 

located in the agricultural Mid-west, many of them known to be dominated by tile drains or 

irrigation.  

Different catchments have distinct flow characteristics (i.e., the magnitude and the 

variability of the flow). To compare the performance among catchments, the model predictions 

are then assessed through the use of a performance indicator, the mean square error (MSE) 

estimated on the standardized flows (separately for both fast and slow flows) as follows:  

   N

SQSQ
MSE

simobs 


2)(

   (4) 

where SQobs and SQsim are standardized flow value for observed and simulated flow, and N is the 

length of data. Both flows are standardized by the observed mean and standard deviation to 

remove the influence of the flow characteristic differences: 

    
)( 

)( 
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Qstd

QmeanQ
SQ




   (5) 

where Q represents the time series of flows (observed for SQobs or model-predicted for SQsim), 

Qobs is the time series of observed flow, SQobs is the standardized observed flow, and SQsim is the 

standardized simulated flow, both SQobs and SQsim are represented by SQ in the equation as they 

are calculated in the same way. The summations in Eq. (4) and Eq. (5) are over 1-365 days, 

considering that we are dealing with the regime curve only. 

2.2.3.3 Process selection for catchments with satisfactory prediction by full model 

For the catchments classified as satisfactory, we assume the full model captures the dominant 

processes in those catchments. For each well-modeled catchment, we then performed 
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comparative assessments of the models using different combinations of the four modified 

processes identified through the model’s development. The comparative assessment is carried 

out (a) to determine dominant processes that contributed most to the reproduction of the 

observed regime curves, and (b) the minimum model complexity (i.e., the number and type of 

model enhancements needed to be added to the base model to reproduce the observed regime 

curve).  

 The Akaike Information Criterion (AIC) is used to perform this comparative performance 

assessment (Akaike, 1974). The AIC is a statistical metric often used to measure the relative 

goodness of fit of models by generating a measure of information loss, and is used in model 

selection to choose the candidate model that minimizes information loss. Recently, it has also 

been used to assess needed model complexity to achieve the required quality of model 

predictions (Engelhardt, et al., 2012). The smaller the AIC value, the less information is lost, and 

the better the model. Assuming, for simplicity, a Gaussian distribution for the streamflow, we 

can estimate the AIC using the following expression: 

  kSQSQnkLikelihoodMaximumAIC simobs 2)( ln 2) ( ln 2       (6) 

where n is the sample size (i.e., in this case 365 days as we resolve the regime curve on a daily 

basis) and k is the number of parameters used in each model.    

 The difference between the AIC of the model prediction after each model enhancement 

1 = AIC0-AIC1, is used as a measure of the 

improvement in model performance. Comparative assessments of the model performance after 

the addition of each process enhancement at the first level can be used to determine the dominant 

process, i.e. the one process that helps most to improve the prediction in comparison to that of 

the base model. Similarly, the required minimum model complexity is inferred also through the 

use of the AIC, when it can be determined that the addition of a particular process enhancement 

does not lead to significant improvement in model performance.  

2.3 Illustrative Results: Progression of Model Development 

In this section we present the detailed development and results of the model enhancement 

process, including the thought processes involved in making the model choices. In this 
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presentation, we focus on bringing out the process controls of the streamflow regime curve in 

qualitative terms, using some of the 9 catchments presented in Figure 2.1 and Figure 2.2 as 

examples. 

2.3.1 Base model  

Yokoo and Sivapalan (2011) suggested, in terms of reproducing the Flow Duration Curve, that a 

catchment’s streamflow response can be partitioned into two different components: fast flow 

(e.g., surface streamflow processes whose variability directly reflects that of event precipitation), 

and slow flow (e.g., subsurface flow whose variability reflects the strong filtering of precipitation 

variability by flow pathways with significantly longer residence times, and is therefore reflected 

in the catchment’s regime curve).  

 Guided by this thinking, we start with a nonlinear, six-parameter model operating as a 

two-stage filter, with two buckets arranged in series and simulating both fast flow and slow flow 

and their interactions (Figure 2.3). In the first stage, precipitation events are filtered nonlinearly 

into fast streamflow and soil wetting (infiltration to deeper soil). In the second stage, the 

infiltrated water is filtered (somewhat more linearly), governed by the competition between 

topographically-driven subsurface drainage and vegetation-driven evapotranspiration. In terms of 

streamflow generation, the first bucket is treated as an overflow bucket, whereas the second is 

treated initially as a leaky bucket (with no overflows). Each of the two filters (buckets) is 

assigned a storage capacity (i.e., Sb1 and Sb2, respectively, although in the base model Sb2 is not 

invoked) and associated characteristic response times (i.e., tw and tu, respectively). The second 

(deeper) bucket is also assigned a root zone storage capacity (i.e., Se) that is used in the 

prediction of transpiration. Two more buckets are added to route the fast flow and slow flow 

components separately. In reality, once the fast flow and slow flow enter the channel, both flows 

are routed together. However, since we are not aiming to predict the hydrograph or peak flow 

precisely, but rather, to appropriately predict regime behavior, such a technique is acceptable for 

our purposes. Because the drainage area of these catchments varies from hundreds of square 

kilometers (102 km2) to tens of thousands of square kilometers (104 km2), these two routing 

buckets are used to introduce lag time for the flow and to attenuate the variability to obtain a 

smoother regime curve more closely resembling the observed regime curve. A sixth parameter 

(i.e., tc) is used here to represent the lag times introduced by flow routing in the river network.  
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The water balance equations for the two storage buckets are as follows: 
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where S1, S2 are the water storage in the 1st stage and 2nd stage, P is the precipitation, Q1f = (S1 – 

Sb1)/∆t, is saturation excess streamflow from the 1st bucket, Qw = S1 / tw, is the wetting 

(infiltration) into the second bucket, ET1 = PET (S1 / Sb1), is evapotranspiration from the 1st 

bucket, Q2u = S2 / tu, is the subsurface drainage from the 2nd bucket, ET2 = PET (S2 / Se), is 

evapotranspiration from the 2nd bucket.  The water balance equations for the two stream routing 

buckets are as follows: 
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where Sc1 is the water storage in the river network from the 1st bucket, Qf  = Sc1 / tc is the fast 

flow at the catchment outlet after stream routing, Sc2 is the water storage in the river network 

from the 2nd bucket, and Qu = Sc2 / tc  is the slow flow at the catchment outlet after stream 

routing. The parameter tc is the mean residence time – the catchment-scale-averaged time 

raindrops need to travel from hillslope to catchment outlet. It relates to the drainage area, river 

network structure, topographic gradient, etc.; however, in this paper we will estimate it through 

calibration. In spite of treating these runoff components separately because of their distinct 

generation mechanisms and flow paths, still they are routed together in the network once they 

enter river channels; thus we use the same mean residence time parameter for both fast flow and 

slow flow.  

This base model works well in humid catchments that exhibit strong seasonality (Figure 

2.4) such as those found in Northern CA, WA, and FL. In this case, there was little enhancement 

needed in spite of the fact that these are vegetated catchments. Since precipitation is a main 

driver of the model, it is reasonable to say that the model works well in catchments whose 

streamflow response follows a similar pattern as that of the precipitation.  
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Figure 2.4: Comparison of regime curves of P, PET, ET, Q, Qf and Qu in a catchment in 

Northern CA between observation (blue line) and base model simulation (red line). 

 

2.3.2 Modification 1: Snowmelt  

The base model worked well in many humid catchments that exhibited strong seasonality (e.g., 

catchments in North CA and Florida, Figure 2.1). However, it failed in over half of the 

catchments, many of which were the northern, colder catchments. As seen in Figure 2.1, most of 

these catchments (e.g. WA, ID, NY), experience sharp peak flows in spring. Considering the 

temperatures at this time of the year, a plausible reason for this is snowmelt, especially in ID and 

NY. Winter precipitation at these latitudes, especially in mountainous regions, is typically in the 

form of snow which accumulates on the ground during winter months and remains there until 

spring when the temperatures increase and the snowpack melts. To improve the model further in 

these catchments, we incorporated a simple snowmelt component to the base model using the 

degree-day factor method (e.g., Eder et al, 2003), based on available mean daily air temperatures. 

The snowmelt component added to the model is as follows: 
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where Sn is the storage in the snow pack, Ps is the precipitation in the form of snow, Pr is the 

precipitation in the form of rain, Qn is the snowmelt, Tcrit is the snow-rain transition temperature 

(assumed here as 0oC), ddf (1.5mm/day/K) is the degree day factor, and Hpos is the temperature 

excess over the critical temperature, used in combination with the degree-day factor, as a 

surrogate for the driving forces for snowmelt. 

 

Figure 2.5: Comparison of regime curves of P, PET, ET, Q, Qf and Qu in a catchment in ID 

among observation (blue line), base model (B, red line) and base model with snowmelt 

component (BS, solid red line). 

 

Figure 2.5 presents a comparison of the predictions of the base model with those of the 

enhanced model that included the snowmelt component for the catchment in Idaho. The results 

show that the enhanced model leads to a dramatic improvement in the ability to predict 

streamflow timing, duration and magnitude, even though the enhancements for snowmelt have 
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been rather parsimonious. On the other hand, the catchment in NY (we are not presenting a 

figure for the sake of brevity) required further modifications to reproduce the observed regime 

curves.  

2.3.3 Modification 2: Subsurface influenced fast flow  

With the incorporation of the snowmelt component, the model was able to capture the flow peak 

during late spring and early summer that was caused by snowmelt. It performed well in the 

northern mid-western mountainous catchments (e.g., ID, WY, etc.), but continued to under-

estimate the fast flow during late winter and early spring, in the northeastern catchments (e.g. 

NY) where snowmelt was significant, and also southeastern (e.g. GA, VA) catchments, which 

exhibit low seasonality of precipitation and present little or no snowmelt impact. The rainfall 

during this period is similar to the rainfall experienced in summer but generates much larger 

streamflow and this non-linear rainfall-runoff response could be related to the high water-table 

(Lana-Renault et al., 2007; Li et al., 2011). These studies have shown that during the wet season, 

the hydrological response could be more dependent on the water table level than simply the 

precipitation characteristics (depth and intensity). Along with the influence of the rising water-

table level, the dominant flow generation mechanism would then switch from infiltration excess 

to saturation excess. Analysis of internal dynamics based on model predictions (not presented 

here for brevity) showed that the under-estimation of fast flow during spring was accompanied 

by large amounts of water stored in the 2nd bucket, suggesting that water that otherwise would 

overflow to the river is being kept in storage due to the absence of an overflow mechanism in the 

second bucket. This may explain the under-estimation of fast flow during spring, when PET and 

ET are small.  

 As a result, an overflow mechanism that mimics a saturation excess induced fast flow 

(Q2f) mechanism (albeit in a somewhat conceptual or qualitative manner) was introduced: 
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where  Q2f is the overflow from and Sb2 is the threshold storage capacity of the second bucket. 

To illustrate the impact of this process, we applied the model to a catchment with little 

snowmelt influence. Figure 2.6 presents a comparison of model predictions in GA between the 

base model (with snowmelt included) and an enhanced model that included the snowmelt and the 
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subsurface-influenced fast flow component. The results show that this enhancement indeed 

helped to increase fast flow during winter and early spring, but still over-estimated the fast flow 

during summer and fall seasons; the underestimation in slow flow was not improved. The 

improvement due to this component is less significant than the improvement due to the snowmelt 

component in the ID mountainous catchment because there, snowmelt is the dominant 

streamflow generation mechanism, and as such was able to transform both the timing and 

magnitude from precipitation to streamflow. In GA, other processes such as interception loss and 

phenology are all important in streamflow generation, and thus the streamflow regime curves 

follow the trend of precipitation regime curves, which has already been captured by the base 

model. The addition of these other processes helps to adjust the peak flows rather than alter both 

timing and magnitude of the streamflow dramatically, as snowmelt did in the ID catchment. 

However, this does not mean that subsurface-influenced fast flow is not important; as we will 

show in Sect. 3.5, the combination of all three processes does improve considerably the 

estimation of both streamflow timing and magnitude.    

 

Figure 2.6: Comparison of regime curves of P, PET, ET, Q, Qf and Qu in a catchment in GA 

among observation (blue line), base model with snowmelt (BS, solid red line) and base model 

with snowmelt as well as subsurface-influenced fast flow component (BSG, red dotted line). 
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2.3.4 Modification 3: Interception Loss  

Although the incorporation of the subsurface-influenced Qf helped improve the fast flow 

prediction during late winter and early spring, we still tended to over-estimate the magnitude of 

Qf for most of the year. This was especially evident in several humid catchments where 

seasonality of precipitation is not significant (e.g., no snow and precipitation is uniform 

throughout the year) and vegetation cover variability is the strongest controlling factor. In these 

catchments, Qf tended to be over-estimated during the growing season (from late spring to fall) 

when vegetation cover begins to reach its maximum value. Since catchments on the east coast 

have dense vegetation cover; the overestimation of surface flow during the growing season and 

the underestimation during the non-growing season could be caused by the presence of 

vegetation. One of the effects of vegetation on the water cycle is canopy interception (Savenije, 

2004). It has been shown that interception could have a significant impact on the water cycle 

(Beven, 2001; Savenije, 2004); evaporation from intercepted water may reach 35% of total 

rainfall in wet catchments and over 40% in dry areas (Calder, 1990). This influence can then 

affect the infiltration, antecedent soil moisture, and runoff generation (Keim, 2006). Given the 

high proportion of vegetation cover in these catchments, the interception mechanism should not 

have been ignored. Therefore, to reduce the overestimation of surface flow during the growing 

season, we added the interception loss component I, as follows:  

    max

  
LAI

LAI
PI 

    (15) 

where  is the fraction of precipitation that is intercepted (a model parameter, to be estimated by 

calibration), LAI is remotely sensed estimates of LAI, and LAImax is the annual maximum of the 

LAI used to normalize the LAI time series.  

Figure 2.7 shows the comparison of model predictions by the model enhanced with both 

the snowmelt and the subsurface-influenced fast flow component and a further enhanced one 

with snowmelt, subsurface-influenced fast flow, and interception loss. The results show that the 

incorporation of canopy interception helps reduce the fast flow magnitude throughout the year 

and increases the slow flow during winter and early spring slightly, but is still not able to capture 

the strong seasonality in the flow.  
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Figure 2.7: Comparison of regime curves of P, PET, ET, Q, Qf and Qu in a catchment in GA 

among observation (blue line), base model with snowmelt and subsurface-influenced fast flow 

component (BSG, solid red line) and base model with snowmelt, subsurface-influenced fast flow 

and interception loss component (BSGI, red dotted line). 

 

2.3.5 Modification 4: Phenology  

In several catchments where the intra-annual variability of precipitation is relatively small, 

seasonality of flow is nevertheless much stronger than that of precipitation. The incorporation of 

the interception loss reduced the fast flow magnitude without differentiation, but was not able to 

increase the seasonality in the flow; the model continued to underestimate the spring flow peak 

of both fast and slow flow components. This is even more pronounced in some semi-humid and 

humid catchments (e.g., GA, VA), where rainfall arrives year-round without significant 

seasonality, as illustrated by GA in Figure 2.1. We attribute this discrepancy to the growth cycle 

of vegetation and its impact on both interception and transpiration. Therefore we applied a 

correction to the PET data using a Growing Season Index (GSI) (Thompson et al., 2011) in order 

to improve the estimates of actual evapotranspiration and account for the effects of these plant 
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water-use patterns, i.e. phenology. The phenology-corrected PET, denoted as PETc, is estimated 

as follows: 

GSIPETPETc       (16) 
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where Tmin and Tmax were originally proposed as the minimum and maximum threshold soil 

temperatures of -2oC and 5 oC (Jolly et al., 2005) to cover a large range of species, Here, we 

approximate them by air temperatures of -5oC and 10 oC (Thompson et al., 2011) due to the non-

availability of soil temperatures.  

 Figure 2.8 shows the comparison of the predictions by the base model with snowmelt, 

subsurface-influenced fast flow, and interception added to it and an enhanced model that 

incorporated phenology as well. The introduction of the Growing Season Index (GSI) affects the 

value of both Qf and Qu by increasing it substantially during winter and spring when transpiration 

from the vegetation is much smaller. This can also be seen in the simulated ET, where the ET for 

the model without phenology closely follows the PET during winter (since there is no restriction 

on water availability during this period), whereas ET for the enhanced model is much lower from 

November to April, thus increasing both the slow flow and fast flow substantially. With these 

three modifications, the model now performs well in these forested catchments. As a result, we 

reach the final and complete model resulting from the four different enhancements presented 

above (Figure 2.3), and the final water balance equations for the two complete hillslope buckets 

are shown below: 
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Figure 2.8: Comparison of regime curves of P, PET, ET, Q, Qf and Qu in a catchment in GA 

among observation (blue line), base model with snowmelt, subsurface-influenced fast flow and 

interception loss component (BSGI, solid red line) and the complete model (BSGIP, red dotted 

line). 

 

2.4 Comparative model performance assessment  

2.4.1 Performance of complete model across study catchments 

The key aim of this paper is to use the complete model developed through the use of the 

downward approach above to explore (a) the dominant process controls that underpin the 

magnitude and timing of the regime curve, and (b) the minimum model complexity, in terms of 

the mix of processes, needed to reproduce the observed regime curves. Before we embark on this 

exploration, which is the subject matter of this section, we need to reassure ourselves that the 

complete model is sufficient for these purposes.  For this reason we assessed the quality of model 

predictions on the basis of the MSE for normalized flows (see Eq. (4)). Simulation results with 

the full model showed that model simulations of the 50-year averaged fast flow and slow flow 

regime curves fitted the corresponding empirical regime curves well in the eastern and western 
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catchments, but failed in several mid-western catchments (e.g., Iowa) and also in extremely dry 

catchments in Oklahoma and Texas.  

 Catchments in the southwest (TX, OK) are very dry, with aridity indices exceeding 1.5. 

The primary vegetation cover is grassland, and rivers are ephemeral – there can be as few as just 

one flow event during the entire year. Catchment responses in these areas were found to be much 

more difficult to predict with the use of simple lumped models, compared to the humid, and 

more forested catchments in the east, or the highly seasonal catchments on the west coast. 

Another area where the complete model did not produce good predictions is in the Midwest 

(especially catchments in Iowa) where the dominant vegetation cover is agricultural and 

anthropogenic effects related to agricultural water extractions cannot be ignored. For example, in 

the Raccoon River catchment in Iowa, subsurface (i.e. tile) drainage is estimated to cover over 

40% of the area (Zucker and Brown 1998). Additionally, there appears to be considerable 

human-induced water extraction (Hatfield et al., 2009). These human activities have significantly 

altered the hydrologic response, which our simple model is not yet able to address.  

 

Figure 2.9: Spatial distribution of the goodness of the model prediction in 197 catchments 
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As a simple model, we would not expect that it could accommodate anthropogenic 

activities or very complex catchments; therefore, we need to eliminate these catchments where 

the model performs poorly. To ensure that the model captures the dynamics as well as the 

volume of the streamflow, we use MSE as our criterion. The decomposition of the MSE (or 

Nash-Sutcliffe efficiency) shows that the MSE consists of three components: the mean, variance 

and correlation coefficient (Gupta et al., 2009). However, as the error is scaled by the standard 

deviation, it can be problematic for comparisons amongst catchments. To avoid this, we 

standardized the flow before the MSE calculation. We selected the 90% of the catchments with 

the lowest MSE in fast flow, slow flow, and total flow separately and then obtained the 

intersection of these three sets to determine those catchments that had the lowest MSE in fast 

flow, slow flow, and total flow simulation. The resulting 152 catchments were then considered as 

“satisfactory” catchments, and the regional breakdown of the MOPEX catchments into 

“satisfactory” and “not satisfactory” is presented in Figure 2.9. Note that the “not satisfactory” 

catchments are left out from the analyses of comparative performance assessments presented 

next.  

2.4.2 Regional distribution of model parameters  

In the rest of the analysis we will focus on the catchments in which the complete model 

generated satisfactory regime curves for both fast flow and slow flow. Table 2.1 presents the 

overview of the parameters in all the “satisfactory” catchments: the mean, minimum, maximum, 

standard deviation and median relative error. The median relative error is the lowest, close to 

10% (11.5%) for the 2nd bucket capacity (Sb2), around 20% for interception loss () and the 

subsurface flow drainage time scale (tu), around 30% for the mean residence time associated with 

river network routing (tc), the characteristic time scale of wetting (tw) and the 1st bucket capacity 

(Sb1), and 46% for the root zone soil moisture capacity (Se). Given the simplicity of the model 

and the large variations between catchments, this is deemed acceptable.  

The average values of the key parameters are presented in Table 2.2 in detail for three 

catchment groups to give an impression of the regional distribution of these parameters: eastern 

US, central US, and western US. The eastern catchments are located near the east coast and 

within the Appalachian mountain region, while the western catchments are those located on the 
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west coast and in the Rocky Mountains area; the remainder of the catchments forms the central 

US group (after removal of catchments deemed “not satisfactory”). Nevertheless, these results 

should be considered as indicative only, given the conceptual nature of the models and the 

relative parsimony of model structures used.   

Table 2.2: Mean value of 7 parameters for eastern, central and western catchments 

  Sb1 

(mm) 

tw   

(days) 
 Se  

(mm) 

tu 

(days) 

Sb2 

(mm) 

tc 

(days) 

East Mean 0.065 0.218 0.306 36.846 120.260 281.858 1.469 

SD 0.158 0.078 0.128 49.540 64.644 163.704 1.268 

Median Rel. 

Error (%) 

31.47 30.35 13.87 42.65 21.10 9.49 24.26 

Center Mean 0.068 0.140 0.221 78.007 323.567 350.640 1.763 

SD 0.098 0.084 0.147 101.615 282.408 160.895 2.049 

Median Rel. 

Error (%) 

11.32 17.50 20.93 32.46 16.78 9.34 14.39 

West Mean 0.062 0.159 0.225 56.099 189.287 394.281 1.447 

SD 0.094 0.100 0.132 81.326 351.256 262.644 1.826 

Median Rel. 

Error (%) 

29.19 23.86 20.34 51.94 29.30 7.71 27.28 

 

Table 2.2 shows that interception loss as a fraction of precipitation (), which has a 

significant impact on the water balance, especially on evaporation (Liu, 1997), lies in the 20-

30% range. Generally, it is larger in the east coast where vegetation is dense, and smaller in the 

dry catchments in the west and south-west (e.g., Texas and Southern California). This is 

consistent with what would be expected: forests are believed to be able to intercept more rainfall 

than grasslands (Deguchi et al., 2006); while coniferous forests tend to retain more rainfall than 

broad-leaved forests (Marin et al., 2000). Average bucket storage capacities of the 1st (surface) 

bucket (e.g., Sb1) do not exhibit significant differences between the three regions. On the other 

hand, bucket capacities of the 2nd (subsurface) bucket (e.g., Sb2) show considerable variation: the 

mean value of Sb2 in eastern U.S. catchments is comparatively smaller than those in the central 

US, which is smaller yet than those in the west, suggesting effectively deeper soils as we move 

towards the west and south-west. The root zone soil moisture capacity, Se, is small in north-

eastern catchments and in some southern mountainous catchments, reflecting the presence of thin 

soils and shallow-rooted trees.  Root zone storage capacity turns out to be highest in central parts 

of the continent, reflecting deeper soils and deep rooted vegetation. This increasing trend of soil 
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moisture capacity from east to west may be related to climate seasonality (Samuel et al., 2008): 

in the eastern, humid catchments, where rainfall arrives throughout the year, the low moisture 

storage capacity and higher slopes help to drain this water quickly, leading to a smaller quantity 

of storage; in the center of the continent, with moderate seasonality and flat topography, the 

Midwestern catchments are usually characterized by deep soils and stronger soil moisture 

retention characteristics (Endres et al., 2001; McIsaac et al., 2010);  near the west coast, due to 

the strong seasonality in P which is out of phase with PET, the soil moisture tends to accumulate 

during the wet season, leading to higher overall storage. The characteristic time scale of wetting 

(tw) is longest in the east, smaller in the west, and smallest in the central US. This trend is 

opposite to that of the subsurface flow drainage time scale (tu). This must reflect the effects of 

soil permeability and topographic slope, which show a similar regional pattern with respect to tu. 

This is consistent with the findings of McGuire,et al. (2005) in seven catchments with diverse 

geologic and geomorphic conditions: instead of basin area, the residence time is strongly related 

to terrain indices representing flow path distance and gradient. The mean residence time 

associated with river network routing (tc) is a function of topographic slope and drainage area: 

the larger the drainage area, the flatter the topography, the longer is the network residence time. 

In any case, the tc values are much smaller than those of subsurface flow residence time, tu. Since 

we are mainly concerned with the regime curve, the magnitudes of tw and tc are too small to have 

any impact on the streamflow regime curve, whereas the magnitude of tu is highly critical.  

2.4.3 Elucidation of dominant processes for fast flow and slow flow 

Having completed the modeling of all 197 catchments, we then sought to identify which of the 

four process modifications we made to the base model contributed most to improving the model 

performance. This involved systematic sensitivity analyses with the model, where we run the 

base model with each one of the process enhancements, one by one, while maintaining all 

remaining model parameters at their previously calibrated values. For presentation purposes, we 

will denote the base model and the 4 subsequent additions by the names M0 to M4, where the 

numbers (1-4) refer to the number of processes added to the model. We then use the letters P, I, S, 

G to specify the added process, respectively as phenology, interception, snowmelt, or subsurface 

influenced fast flow. For example, M1P is a Level 1 model, i.e., the base model plus phenology, 

and M3PIS is a Level 3 model, with base model plus phenology, interception and snowmelt. We 
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estimated the AIC for the base model (AIC0) and the AICs for each of four Level 1 models 

(AIC1P, AIC1I, AIC1S, and AIC1G), along with the corresponding reductions in AIC (AIC1P, 

AIC1I, AIC1S, and AIC1G). Based on assessments of model performance of the four Level 1 

models (M1), the process addition that leads to the highest improvement in model performance 

(i.e., in relation to the base model) would then be deemed as the dominant process. For example, 

in the Idaho catchment (Figure 2.1 and Figure 2.5), AIC1S turned out to be largest, on the basis 

of which we could conclude that snowmelt is the dominant process in this catchment.  

 Note that if in a particular catchment, none of the processes contributed to a decrease in 

AIC through its addition to the base model, or if the reduction is too small (e.g., less than 3%), 

we would then consider the base model to be sufficient. The latter means that the magnitude of 

precipitation and its seasonality are the main or dominant controls on the regime curve, and the 

roles of vegetation, temperature and topography are second order effects, and thus can be left out 

in any initial model simulations.   

 Figure 2.10 presents the results of this assessment of dominant processes for the 152 

satisfactory catchments, separately for fast flow and slow flow. For fast flow (Figure 2.10a), 

generally the dominant process in northern catchments is snowmelt due to the considerable 

amount of precipitation as snow (these catchments are circled and labeled as a, b, c, and d). Yet 

there are slight differences among them: the northwestern catchments (circles a, d) are 

mountainous catchments, and snowmelt is the only additional process needed. Moving east to the 

center of the continent, i.e. catchments in the Midwest such as in Indiana (circle b), catchments 

are much flatter and winter temperatures are higher than in the northwestern mountainous 

catchments. Snowmelt is no longer the only dominant process for these catchments, some are 

dominated by subsurface influenced fast flow, due to the fact that the soil in these places is silty 

clay loam with relatively smaller subsurface drainage rates, and consequently the water table 

could rise to the surface during parts of the year, generating saturation excess overland flow. On 

the other hand, on the east coast, the Appalachian catchments are covered with dense vegetation, 

and phenology is therefore dominant. The snow influence fades in the central and southern 

catchments, where
 
vegetation impact increases (circles e, f, g). For the central catchments in 

Missouri (circle e), snow and vegetation impacts are equally important; in some of the northern 

catchments snowmelt helps to reduce AIC more and in others phenology and/or interception 
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reduces AIC more. Looking at the eastern forested catchments (circle f) where snow is rarely 

seen, phenology and interception are the most dominant processes in some of them, and in others, 

due to the small soil moisture storage capacity, subsurface driven fast flow appears to be 

important. Catchments in New Mexico and Arizona (circle g), even though they are arid, do 

contain woodland or wooded grassland coverage over 60% of the catchment areas, and given the 

dry climate, streamflow is extremely sensitive to vegetation effects. Southeastern catchments 

(circle h) are marked here as base model dominant. Although there is dense vegetation coverage 

in these catchments, seasonality in climate makes simulation much easier. The catchments in 

Florida experience a wet season from mid-summer to early fall (Figure 2.1(i)); they receive 

abundant rainfall that is caused by frequent convective activity as well as the occasional tropical 

storms similar to those experienced in monsoon Asia (Fernald and Purdum, 1998). The 

catchments in Georgia also display seasonality of precipitation; they receive heavy rainfall 

during winter and spring when the evapotransipiration rate is quite low, thus enhancing the 

seasonality observed in streamflow generation (Opsahl et al. 2007). The phenology influence is 

mitigated somewhat in these southern catchments since the duration of vegetation coverage is 

much longer than the Appalachian Mountain catchments.  

 When it comes to slow flow, spatial patterns of dominant processes are, for the most part,
 

similar to those for fast flow: snowmelt dominates in northern catchments, replaced by 

vegetation effects in southern catchments. Snowmelt is the most dominant process in north-

western catchments (catchments located within circles a, d, e.g., ID). As we move further east 

vegetation cover increases and phenology appears to be the dominant process in many 

northeastern catchments (circles b, c). Most of the catchments in the Mississippi River region 

(circle e) indicate phenology to be the dominant process given the considerable vegetation cover 

and intermediate rainfall. As in the case of fast flow, phenology is dominant in Arizona and New 

Mexico, and these otherwise dry catchments appear to be highly sensitive to vegetation effects 

(circle f). The dominant processes in southeastern catchments for slow flow generation appear to 

be more diverse than in the case of fast flow. In this case all four process additions are 

sufficiently involved in slow flow generation; their effects are of a similar order and not one 

process is most dominant.  
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Figure 2.10: The most important process in catchments with effective model prediction: (a) fast 

flow, (b) slow flow. The circled areas represent regions of process similarity. 

 

2.4.4 Minimum model complexity for reproduction of regime curves 

Although the full model generated acceptable predictions of the streamflow regime for all 

“satisfactory” catchments, especially outside of the mid-west and south-west (see Figure 2.9), we 



52 

 

discovered in the previous section that the importance of each process addition was not the same 

everywhere. Some of the processes are never invoked (i.e. snowmelt in warm catchments) or 

could easily be left out in some of the catchments without loss of overall performance (i.e. 

phenology in southern catchments where the weather is always warm). In this section, we want 

to determine the minimum model complexity that can generate satisfactory predictions, including 

all processes that are deemed essential to reproduce the regime curve to reveal and concentrate 

on the most necessary processes in those catchments. In some catchments this is obvious; for 

example, snowmelt is clearly not needed in southern catchments. In many other catchments, this 

is not so self-evident, and we can only determine this through careful quantitative assessment.  

 Once again we use the AIC to measure model performance. However, this time we apply 

the optimized parameter sets for the full model repeatedly to the 15 possible model structures 

(including one Level 0 model (i.e., the base model), four Level 1 models, six combinations of 

Level 2 models, and four combinations of Level 3 models). In each case we estimate the AIC of 

the total flow predictions for each of the 15 models. Starting from the base model (M0), we 

compare the AIC at every modeling step with the AIC of the full model (AIC4): if the AIC of the 

base model (AIC0) is smaller than that of AIC4, then we can say that the base model is adequate 

to generate satisfactory predictions. Otherwise, we continue to the Level 1 model (M1) and after 

comparing AIC1 with AIC4, if none of the M1 models can reduce AIC from AIC4, we continue to 

the Level 2 models, and so on. This comparative assessment comes to an end when we arrive at 

model structure that produces the smallest AIC.  

 Since interception and phenology are both vegetation effects, to reduce the number of 

models for presentational purposes (i.e., to obtain a clearer picture), we combine interception and 

phenology into a single category of “vegetation effects”. In this way half of the model classes are 

eliminated, with only 8 remaining model groups. Figure 2.11 presents the results of this analysis, 

displaying regional patterns of needed model complexity.  

 One can see in Figure 2.11 that the base model is sufficient for the west coast catchments 

as well as the southeastern catchments in Florida (circles a, i) where the climate is humid and 

seasonality is strong. Consistent with what was found in the case of the dominant process for fast 

and slow flows (Figure 2.10), snowmelt is again found to be important in many northern 

catchments (circles b, c, d, e). Most of the northwestern mountainous catchments (circle b) need 
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the base model plus snowmelt only, although some indicate the need to include vegetation 

effects and also subsurface-influenced fast flow (presumably reflecting the presence of thin soils 

and substantial vegetation cover). Moving further east, both snow and vegetation effects are 

found to be necessary (circles c, d). This is again consistent with the dominant processes 

identified for fast and slow flow (Figure 2.10), where both phenology and snow were seen to be 

equally important. On the east coast (circle e), not only vegetation and snow, but also subsurface 

induced fast flow are found to be necessary (reflecting the occurrence of saturation excess 

streamflow). In southern catchments (circles h, f, g), snow is obviously not needed, but 

vegetation effects and subsurface influenced fast flow must be accounted for. In North Carolina 

(circle g), vegetation effects are seen as the only addition needed, while both vegetation and 

subsurface influenced fast flow are found to be needed in Georgia and Missouri (circle f). 

 

Figure 2.11: The needed process complexity for catchments that produced satisfactory simulation 

performance. The circled areas represent regions of process similarity. 
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2.4.5 Mapping the model process classes 

The results from the model performance assessments presented in the previous sections, 

especially those presented in Figure 2.10 and Figure 2.11, can now be synthesized to develop 

broad classifications regarding dominant processes underpinning regional patterns of the 

variation of streamflow regimes across the continental United States. The results are presented in 

Figure 2.12, along with the cluster plot of the observed flow regime curves, to demonstrate this 

regional and functional hydrological similarity. Although these results must be looked at with 

some caution, considering that they are based on analysis of the 152 satisfactory catchments, the 

broad generalizations presented in Figure 2.12 can serve as the foundation or even motivation for 

further detailed data analyses and modeling investigations.  

 

Figure 2.12: Conceptual map of the spatial distribution of the controlling processes and the 

regime curve clusters: “B” refer to the base model, “S” refers to snowmelt, “V” denotes 

vegetation impact (phenology and/or interception), “G” stands for subsurface influenced fast 

flow, and “Human impacted” means with strong anthropogenic activity impact. 
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 The results shown in Figure 2.12 indicate, firstly, that the base model is sufficient to 

capture the regime curve in western and south-eastern catchments where seasonality dominates. 

In north-western mountainous catchments, such as in Idaho, the addition of snowmelt to the base 

model is sufficient to capture the shorter duration high flows occurring in late spring and early 

summer. Going west to east in the northern humid/cold regions, seasonality of precipitation 

decreases, vegetation cover becomes denser, and models must capture both snowmelt and 

vegetation effects, as well as the possibility of saturation excess overland flow.  Moving north to 

south (in the east), the importance of snowmelt decreases, and only vegetation effects and 

saturation excess streamflow remain important. As one approaches Florida, once again the base 

model appears to be sufficient. As one moves east to west from Florida, catchments become drier, 

with much reduced streamflow, and prediction of regime behavior becomes increasingly difficult 

with simple lumped models, until one reaches Southern California, where again the base model 

appears sufficient due to the out-of-phase seasonality experienced there.   

 Figure 2.12 also summarizes the main drivers of the regional patterns of dominant 

processes and needed model complexity. In broad terms, seasonality increases east to west, while 

temperature and climate aridity increase north to south and phenology decreases north to south. 

There are exceptions to these trends as well. For example, the extreme south-east experiences 

strong seasonality, likely due in part to the influence of hurricanes as well as close proximity to 

two large bodies of water – the Gulf of Mexico and the Atlantic Ocean. Likewise, the north-west 

(e.g., Washington State) is warmer than would be expected for such northern latitudes. 

Additional features that are critical include the occurrence of precipitation as snow in northern 

latitudes, and vegetation cover dynamics (i.e., phenology) in the forested regions in the north-

east and in the Appalachian region. The mid-west region proved difficult to model due to strong 

anthropogenic effects. One key factor that would be expected to have an impact on the regime 

behavior is topography, since it can potentially impact both subsurface drainage and saturation 

excess overland flow. However, this could not be conclusively assessed, due to the small number 

of catchments in key (e.g., mountainous) regions with which to carry out detailed comparative 

studies.  

 The flow regime curve clusters presented in Figure 2.12 suggest a regional and functional 

self-similarity, though with some variability due to the large numbers of catchments. Generally, 
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in western mountainous catchments with snowmelt dominance (BS), the flow regime curves tend 

to have a sharp peak in late spring and early summer. Moving east, the flow peak becomes wider 

and the duration much longer as vegetation effects and saturation excess flow comes into play 

(BSGV, BSV), but there is still an obvious rise in flow during spring. This rise disappears as we 

move south (BV) as the snow impact fades and the vegetation seasonal activity enhances the 

seasonality gently in the semi-humid and humid catchments. For the Midwestern catchments 

where the more sophisticated model is required (due to human impacts), the flow regime curves 

display more variance as well as a weak, dual-mode profile. The base model (B) performs well 

on the western coast and in Florida, but the flow profiles are completely different: in the west the 

flow is out of phase with potential evaporation while in the southeast it is in phase. Thus we can 

see that the seasonality of flow does share some similarity for catchments within the same model 

process class, and these model process classes do cluster geographically. However, there is still 

some variability in the flow regimes within a model process class, as illustrated by the western 

coast and the Florida catchments. A more detailed classification system, such as that developed 

by Coopersmith et al. (2012), may be needed to group catchments more accurately.  

2.4.6 From Regime Curves to Flow Duration Curves 

Our work on the regime curves was motivated ultimately by the quest to understand the physical 

and process controls of Flow Duration Curves (FDCs). We have already seen that the regime 

curve exhibits considerable variability across the continental United States. In order to illustrate 

the process controls on FDCs, we carried out model-based sensitivity analyses. Figure 2.13 

presents the observed FDCs of total flow based on simulations with the complete model, as well 

as by four ”reduced” models in which one of the four processes from the complete model is 

removed, leaving only three processes. The parameter set, optimized for the full model, is 

applied to all five models.  

 We first compare the FDCs produced by the full model against those estimated from the 

observed record. Although the full model can predict the RCs reasonably well, the prediction of 

the FDC is not so good. This is to be expected since a model focused on predicting the regime 

curves only cannot be expected to predict well the high and low flows; therefore, the model 

needs to be further enhanced to achieve this.  
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Figure 2.13: Flow duration curves of 9 selected catchments, B, I, P, S, G indicates the base 

model and four processes: interception, phenology, snowmelt, and subsurface influenced fast 

flow respectively. Thus, BIPS refers to the Level 3 model: base model with interception, 

phenology, and snowmelt. 

 

 The results also demonstrate that in some catchments (WA, MO, and FL) removal of a 

process does not have an obvious effect on the FDC. Conversely, for snowmelt dominated 

catchments such as the one in Idaho, the removal of snowmelt makes the FDC much flatter. This 

is consistent, given that snowmelt is the most important process addition in Idaho. On the other 

hand, in eastern catchments with dense vegetation cover (e.g., NY, GA), removal of phenology 

actually steepens the FDC. In dry catchments (Southern CA, TX), only the influence of 

phenology is recognizable, although we have learned from the regime curves that the other three 

processes are also important. Thus, differences in dominant processes can contribute to 

significant differences between the regime curves, which cannot be easily recognized in the 
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FDCs because of the strong influence of high flows and low flows. In general, because of  the 

connection between the RC and the FDC, seasonality is present in the FDC, though not as 

obviously as in the RC, due to the loss of temporal information. While the time element is lost in 

the FDC, information on extreme values and frequencies, which are averaged out in the RC, is 

gained. 

2.5 Discussion and Conclusions 

The goal of this paper has been to identify the dominant processes underpinning streamflow 

regime behavior across the continental United States. For this reason, we analyzed rainfall-runoff 

data from 197 catchments belonging to the MOPEX dataset. The analyses involved a systematic 

process of model development following the downward approach (Sivapalan et al., 2003); 

starting with a simple base model, it is enhanced through the addition of key processes needed to 

reproduce the regime curve.  

The resulting final (complete) model was then used to perform sensitivity studies to (a) 

decipher the most dominant process control, and (b) to determine the minimum model 

complexity needed to generate a satisfactory reproduction of the empirical regime curves. The 

sensitivity analyses were carried out in opposite directions. In one case, we started with the base 

model, and then increased model complexity by including additional processes one by one until 

we reached the final form of the model, all the while monitoring the improvement in model 

performance. In the other case, we start with the full model, and drop processes one by one until 

we arrive at the minimum model complexity needed to achieve satisfactory predictions.  

 The results revealed interesting regional patterns in the process controls of the regime 

curves across the continental United States, which is also related to Köppen’s climate 

classification map. Snowmelt was found to be the most important process for modeling 

northwest catchments which falls in Köppen’s snow steppe climate class (Dsa) for both fast and 

slow flows. However, it was not sufficient for slow flow prediction in cold, north-eastern 

catchments (the snow, fully humid, warm summer class (Dfb)), where the vegetation effects take 

over as most important due to the presence of significant forest cover. Vegetation effects and the 

role of rising water table are found to be significant for fast flow in the Appalachian and southern 

catchments. The requisite processes for modeling cold, mountainous forested catchments is 
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snowmelt; for cold, forested catchments near the east coast, however, they include both 

snowmelt and vegetation; the warm, humid catchments in the south-east with strong seasonality 

can be easily modeled with the simple base model (the warm temperate, fully humid, hot 

summer class (Cfa)), while the warm, very dry catchments in the south and south-west (Bsk: arid 

steppe cold arid) require much more complex models.  

 The reasons for the regional patterns of process controls of regime curves across the 

United States also became clear through these regional studies. The obvious reasons are 

seasonality (which increases east to west, with some exceptions), aridity (which increases north 

to south with some exceptions) as well as temperature (which increases north to south, again 

with exceptions due to effects of mountain topography, and proximity to oceans). As the 

seasonality increases from east to west, needed model complexity decreases (except in the mid-

west due to human interferences); the same phenomenon is also observed as we go from south to 

north with the decrease in aridity; and importance of snowmelt increases from warm to cold 

catchments (south to north).  

 Despite the understanding gained regarding the process controls underpinning regional 

variations of regime curves, their impact on the shapes of FDCs has been found to be less strong. 

Two different processes that occur during different times of the year could have a significant 

effect on the shape of the regime curve, yet may not significantly affect the shape of the FDC. 

However, interesting regional patterns were seen in both the process controls on the regime 

curve determined here, and the empirically-determined parameters of the mixed gamma 

distribution as applied to the FDC determined in Cheng, et al. (2012). Sorting these catchments 

into classes may be a way to provide more explanatory power for these patterns and process 

controls, thus motivating the development of the classification scheme outlined in Coopersmith 

et al. (2012).  
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Chapter 3. 

Subsurface Stormflow Parameterization for Land Surface Models: Derivation 

from Regional Analysis of Streamflow Recession Curves 

Abstract1 

Subsurface stormflow is an important component of the rainfall-runoff response, especially in 

steep terrain. However; its contribution to total runoff is poorly represented in current generation 

of land surface models. The lack of physical basis of their common parameterizations precludes 

a priori estimation (i.e. without calibration), which is a major drawback for prediction in 

ungauged basins, or for use in global models.  This paper is aimed at deriving regionalized 

parameterizations of the storage-discharge relationship relating to subsurface stormflow from a 

top-down empirical data analysis of streamflow recession curves extracted from 50 eastern 

United States catchments. Detailed regression analyses were performed between parameters of 

the empirical storage-discharge relationships and the controlling climate, soil and topographic 

characteristics. The regression analyses performed on empirical recession curves at catchment 

scale indicated that the coefficient of the power-law form storage-discharge relationship is 

closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic 

theory derived mainly at hillslope scale. As for the exponent, besides the role of field scale soil 

hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by 

climate (aridity) at the catchment scale. At a fundamental level these results point to the need for 

more detailed exploration of the co-dependence and co-evolution of climate, soil, vegetation and 

topography. 

 

 

1This work has been submitted for publication to Journal of Hydrology as: Ye, S., H-Y. Li, M. 

Huang, M. Ali, G. Leng, L. R. Leung, S-W. Wang, and M. Sivapalan, Subsurface Stormflow 

Parameterization for Land Surface Models: Derivation from Regional Analysis of Streamflow 

Recession Curves. All figures, tables and data were created by Sheng Ye unless otherwise 

indicated.  
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3.1 Introduction 

Land surface processes are an integral part of the Earth system. By regulating surface moisture 

and heat fluxes, land surface processes can provide important feedbacks to climate and influence 

the regional and global hydrologic cycle (e.g., Koster et al., 2004; Seneviratne et al., 2010). To 

improve predictions of future climate, it is crucial to understand and constrain uncertainty 

stemming from parameterizations used in land surface models (LSMs). Recently Hou et al. 

(2012) and Huang et al. (2013) used an uncertainty quantification framework to assess 

hydrologic parameter uncertainties in Version 4 of the Community Land Model (CLM4) 

(Lawrence et al. 2011). Applying their framework to 13 flux towers and 20 catchments across 

the U.S. spanning a wide range of climate and landscape characteristics, they found that the 

simulated land surface water and energy fluxes as well as runoff showed the largest sensitivity to 

parameters related to subsurface runoff generation (Niu et al., 2005; 2007). This highlights the 

need to improve subsurface runoff generation schemes in LSMs.  

As shown by several previous studies, subsurface runoff generation can be parameterized 

using storage-discharge relationships of a power law form, which can capture the asymmetric 

response of subsurface hydrologic processes to floods and droughts (e.g., Eltahir and Yeh, 1999; 

Liang et al., 2003). Such parameterizations, including the TOPMODEL approach (Beven and 

Kirby, 1979, Beven et al. 1984; Beven, 1997) used in CLM4 and the ARNO model (Francini and 

Pacciani, 1991; Todini, 1996), are now widely used in LSMs (e.g., Liang et al., 1994; Huang and 

Liang, 2006; Warrach et al., 2002; Niu et al., 2005; 2007; Oleson et al., 2010; 2013; Ringeval et 

al., 2012), although each approach still suffers from limitations and can be further improved. 

Recent reviews on the advantages and disadvantages of these parameterizations can be found in 

Huang and Liang (2006), Huang et al. (2008), and Li et al. (2011). A particular challenge in 

applying these parameterizations in Earth system models is the limited availability of naturalized 

streamflow data for calibrating model parameters globally, and reducing the dependence of 

parameterizations on calibrations is a key requirement. This is the first of a two-part paper (the 

other being Ali et al., 2013) that aims towards developing improved parameterizations of shallow 

subsurface flow for land surface models such as CLM4, expressed in terms of the power-law 

form of a lumped storage-discharge relationship: 
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baSQ      (1) 

where Q is subsurface flow and S is saturated subsurface storage, both at the catchment scale, 

and a and b are parameters that represent the effects of land surface heterogeneity (i.e., of both 

soil hydraulic properties and topography). Ideally, for subsurface flow to be predicted using Eq 

(1) without calibration (e.g., in ungauged basins or landscapes), the parameters a and b must be 

estimated a priori on the basis of measurable landscape characteristics. Such a parameterization 

of the subsurface flow must capture the effects of soil and landscape properties in a simple way, 

accounting for the effects of spatial heterogeneity without the need to resolve flows at smaller 

scales explicitly. This is the motivation for the work behind this paper. We have approached this 

estimation problem from two alternative perspectives: (i) empirical (top-down), and (ii) 

theoretical (bottom-up).  

The theoretical (or bottom-up) approach (see accompanying paper by Ali et al., 2013) 

involves the use of numerical simulations that help to derive closure relations through 

application of detailed, distributed physically based hydrological models using appropriate 

boundary conditions and assumed forms of spatial variability of soil and topographic properties 

(Robinson and Sivapalan, 1995; Viney and Sivapalan, 2004). We categorize the spatial 

heterogeneities entering the problem here as (i) within hillslope, where the heterogeneity is 

assumed to relate to soil only, and topography is taken to be fixed, and (ii) between hillslopes, 

where the heterogeneity arising from topography is explicitly resolved, while the effects of 

within-hillslope heterogeneity of soil properties is parameterized from (i). The theoretical 

approach of Ali et al. (2013) is based on Richards equation based simulations at the hillslope 

scale, parameterizing the effects of within-hillslope heterogeneity and their subsequent up-

scaling to the catchment scale, incorporating the effects of topographic variability between 

hilslopes. 

The empirical (or top-down) approach (the subject of this paper) involves (i) making 

inferences of the storage-discharge relationships, and associated parameters a and b, directly at 

the catchment scale on the basis of analysis of observed streamflow recession curves in a large 

number of catchments, followed by (ii) multiple regression analyses of the estimated recession 
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parameters a and b against measurable climatic and landscape (soils and topography) 

characteristics. 

The streamflow recession curve (Brutsaert and Nieber, 1977) is one of the most widely 

used catchment runoff signatures, and provides insights into the subsurface flow generation 

processes (Tague and Grant, 2004). It measures how river flow recedes at the end of a storm 

event, and is therefore a holistic measure of the catchment’s drainage characteristics. For 

convenience, the recession behavior of the catchment is often expressed in terms of the so-called 

recession-slope curve, the relationship between the rate of decline rate of flow (-dQ/dt) and Q:  

Q
dt

dQ


    (2) 

which is often found to remain invariant and thus represents a unique signature of the catchment 

response.  The coefficient  and exponent  can be directly estimated from observed recession 

curves by curve fitting, and reflect  the net effects of the population of hillslopes (of various sizes 

and shapes) and the soils that constitute the catchment.   

Considerable work has been carried out to derive analytical solutions to the Boussinesq 

equation governing saturated subsurface drainage from an unconfined homogeneous aquifer into 

the river below to aid the deciphering of the physical meaning and controls of both recession 

parameters  and . Several studies have explored the effects of catchment-scale heterogeneity 

on the shape of the recession curves. These theoretical studies suggest that the shapes of the 

recession curves are strongly affected by soil hydraulic conductivity and its vertical and 

horizontal (downslope) heterogeneity (Rupp and Selker, 2005; Rupp and Selker, 2006; Troch et 

al., 2008; Harman et al., 2009). Landscape geomorphologic features too can contribute to the 

shape of the recession curves (Biswal and Marani, 2010; Harman et al., 2009; Lyon and Troch, 

2010). However, due to the many simplifying assumptions and lack of data, most of the 

pioneering studies in this area have been largely theoretical, and only a few went further and 

validated the equations derived on the basis of the recession curves in real catchments (Harman 

et al., 2009; Lyon and Troch, 2010).  

The storage-discharge (closure) relationship that we are interested in can be derived from 

the recession-slope curve in a straightforward manner by utilizing the relationship that exists 
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between parameters a and  b of the storage-discharge relationship and the  parameters  and  of 

the recession-slope curve, which can be derived in a straightforward manner by combining 

equations (1) and (2): 

)2/(1)]2([  a    (3a) 




2

1
b

    (3b) 

In this study, we explore the nature of the storage-discharge relationship and its controls through 

empirical analysis of the recession curve data from hundreds of catchments across the 

continental United States, and their connection to measureable catchment characteristics such as 

topography, soil properties, and other geomorphologic features.  

The theoretical (or bottom-up) approach will follow in the second paper of the series (Ali 

et al., 2013), which can yield results that are physically consistent, but their applicability in 

actual catchments is hampered by our inability to fully characterize the heterogeneity of soils 

(and even some aspects of topography) present in actual catchments, including especially the 

self-organized heterogeneity that is often present, such as soil catena, and the presence of macro-

pores and other preferred pathways, whose effects on flow are difficult to characterize in terms 

of the Richards equation. On the other hand, empirical relationships extracted from observed 

recession curves, such as those presented in this paper, are much more realistic in terms of what 

may emerge at the catchment scale, but are empirical rather than physics-based, which makes 

them difficult to interpret physically and to extrapolate from gauged to ungauged basins.  

Success in our quest for physically based closure relations for subsurface flow will come only 

through a reconciliation of the outcomes of both the empirical (top-down) and theoretical 

(bottom-up) approaches. This will be pursued in subsequent research, and may be the subject of 

a future publication.   

This paper, which presents the outcomes of the empirical (top-down) approach, begins 

with a summary of the data (climate and streamflow data, and detailed information on catchment 

characteristics) presented in Section 2 that also describes the methodology that is used to extract 

the coefficient and exponent from the recession curves. Section 3 presents the spatial (regional) 

distribution of the parameters  and  across the continental US, and their interpretation. This is 
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followed, in Section 4, by a variable selection scheme that is used to define the most important 

climate and catchment characteristics that determine the observed recession behaviors, along 

with the validation of the so-derived empirical relationships. Section 5 summarizes the main 

outcomes of the study, their connection to the results of the modeling work (Ali et al., 2013), and 

possible avenues towards synthesis. 

3.2 Data and Methodology 

3.2.1 Data 

This study is carried out with the climate and flow data and topographic information taken from 

the Model Parameter Estimation Experiment (MOPEX) dataset, drainage density data extracted 

from the National Hydrography Dataset (NHD) (http://nhd.usgs.gov/), and soil properties from 

the USGS SSURGO dataset (http://soils.usda.gov/survey/geography/ssurgo/). The MOPEX 

dataset (http://www.nws.noaa.gov/oh/mopex/index.html) provides daily climate and streamflow 

data from 438 catchments across the continental US, covering a wide range of climate conditions, 

landscapes, and ecosystems, ranging from very humid environments on the north-west coast 

(Aridity Index = 0.25) to extremely arid conditions in New Mexico (Aridity Index = 5.5). Aridity 

Index (AI) is defined as the ratio of mean annual potential evaporation to mean annual 

precipitation. The MOPEX dataset includes catchments of different drainage areas, ranging from 

66 km2 to 10,328 km2, consisting of very flat to very steep (10%) hillslopes, permitting the 

derivation of recession curves for a wide range of catchment conditions. Of the 438 catchments, 

428 catchments with longer than 10 years of continuous historical data are used in this study to 

estimate the recession curve parameters  and . 

Subsequently, a subset of 50 of these MOPEX catchments are selected to generate 

regional relationships between the recession curve parameters and several measureable climatic 

and landscape characteristics. These catchments were chosen under the following criteria to 

minimize the influence from other confounding factors: reasonable number of flow events, 

minimal impact of regional groundwater and/or snowmelt, minimal human impact and maximum 

data availability. We avoided the extreme arid catchments in the south-west (e.g., Arizona, Texas) 

as there tend to be fewer than ten flow events during the record period, and some of the events 

are too small to perform recession analysis. Mountainous catchments with significant snowmelt 

http://soils.usda.gov/survey/geography/ssurgo/
http://www.nws.noaa.gov/oh/mopex/index.html


72 

 

influence (i.e., ID, WY, etc.) were also excluded, since these tend to have just a single big event 

that occurs each year in late spring or early summer caused by snowmelt (Ye et al., 2012). 

Likewise, although most MOPEX catchments have limited human influence, considerable 

human activities such as agriculture are still present in several Mid-western catchments (Wang 

and Hejazi, 2011). In the presence of artificial water extraction (Hatfield et al., 2009) and tile 

drainage (Li et al., 2010), the recession parameters derived from data are not representative of 

the natural storage-discharge relationships. Furthermore, since the soil dataset we used (i.e., 

SSURGO) has not been extended to fully cover the western states (i.e., WA, CA), in this study, 

we will focus only on the eastern catchments with sufficient number of flow events in a year and 

with minimal influence of processes other than subsurface stormflow generation. Figure 3.1 

depicts the 50 catchments selected, which are devoid of such obvious data problems. General 

information on the selected catchments is provided in Table 3.1. 

 

Figure 3.1: Map of the selected catchments 

 

For this purpose the Aridity Index, topographic slope, the mean and standard deviation of 

saturated hydraulic conductivity at the surface, the vertical (exponential) decay parameter of the 

saturated hydraulic conductivity, soil porosity, soil depth and drainage density were all estimated 

for the selected catchments. The drainage density was estimated from the NHD dataset as the 

ratio of the total channel length within a catchment to the catchment area. Although the MOPEX 

dataset also provides estimates of saturated hydraulic conductivity, it was an earlier qualitative 
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estimate based on soil texture, and the resolution was deemed too coarse for this study. Therefore, 

we used the USGS SSURGO dataset (http://soildatamart.nrcs.usda.gov) to extract the mean and 

standard deviation of the saturated hydraulic conductivity at the surface and also a vertical 

exponential decay parameter. The SSURGO dataset is provided by the National Resource 

Conservation Service (NRCS); it includes both spatial data of the measured map unit, and tabular 

data of the measurements done within each map unit. Although the coverage of the SSURGO 

dataset is not as wide as the earlier version of the USGS State Soil Geographic (STATSGO) soils 

data, we chose to use the SSURGO dataset for this study due to its higher resolution and better 

data quality. The STATSGO dataset was generated for multi-state, regional, and state level 

analysis, with the map scale compiled at a scale of 1:250,000, while the SSURGO dataset is 

compiled at the scales of 1:12,000 and 1:24,000. That is, the resolution of the SSURGO dataset 

is about 10 times higher than the STASGO dataset (Earls and Dixon, 2005; Bliss et al., 2010). 

The quality of soil databases is also higher in the SSURGO dataset as the result of the NRCS 

efforts (Bliss et al., 2010) to provide more precise and detailed spatial and vertical measurements 

(Anderson et al., 2006). As we will learn from the results, the soil hydraulic properties play a 

critical role in the subsurface flow generation process, and the SSURGO dataset fits our interest 

better despite of the more limited coverage.  

Table 3.1: Characteristics of the 50 selected catchments 

 

 Min Mean Max 

 1.40 2.37 3.84 

 0.99 1.46 1.91 

Area(km2) 66.60 1731.02 9062.40 

AI 0.39 0.82 1.5 

Slope (degree) 0.41 5.72 22.84 

Ks (um/s) 2.5 18.70 74.60 

Std. Dev of Ksat 1.27 12.13 31.88 

Drainage density (km/km2) 0.04 0.62 1.91 

Depth x Porosity (m) 0.18 0.48 0.70 

f parameter (m-1) 0.11 0.81 2.36 
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3.2.2 Methodology 

3.2.2.1 Data processing 

The recession periods in the continuous multi-year hydrographs were extracted by an automatic 

algorithm developed by Vogel and Kroll (1992). Based on the 3-day moving average of a 

hydrograph, the falling limb is defined as the segment between each pair of peaks and valleys. 

To avoid the influence of overland flow, only the late 70% of a falling limb was recorded as a 

recession period. We adopted Vogel and Kroll’s (1992) algorithm for the recession period 

selection instead of that used by Brutsaert and Nieber (1977), who defined recessions as flow 

periods when the rainfall ends, because along the east coast of the United States (e.g., NY, VA, 

MA, etc.) rainfall happens all year round. Given the relatively coarse temporal resolution (daily 

time scale), it is hard to retrieve recession curves long enough without interruption by subsequent 

rainfall events to give meaningful regression results. To remove possible noise from small events 

and fluctuations in big events, only recession periods longer than 10 days were selected, and also 

recessions with peak flows less than the 10th percentile were excluded. Figure 3.2 shows an 

example of recession periods identified using our criteria.  

 

Figure 3.2: Automatic separation of the recession periods.  and  are estimated for the 

recessions that occur during winter when the ET impact is smallest. 
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Taking the natural logarithm of equation (2), we then have the linear relationship: 

Q
dt

dQ
lnln)ln(  

                                   (4) 

This relationship is used to fit the extracted recession curve data as: 

)
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
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tt

QQ
QQ 

  (5) 

where t is the tth day of a recession record, Qt-1, Qt, Qt+1 are the flow over three consecutive days. 

Initial evaluation of and values showed significant seasonal variation in several regions, due 

to the drying effects of evapotranspiration (ET), which is usually highly seasonally dependent. 

Therefore, as a way to minimize the influence of the unknown ET, in this study we used the 

and values extracted from recessions occurring during winter (December, January and 

February) only, when ET is deemed the lowest.  

The Aridity Index (=PET/P based on mean annual estimates) was calculated from annual 

precipitation (P) and annual potential evapotranspiration (PET) data from the MOPEX dataset. 

The same was done for average topographic slope and soil porosity, which are provided in the 

MOPEX dataset. Drainage density (=L/A) was estimated from the stream length (L) and drainage 

area (A) extracted from NHD dataset.  

The SSURGO data was downloaded as feature dataset by county. For this study, we 

needed the soil data at the catchment scale in a raster format so as to calculate the standard 

deviation. A procedure was developed to merge the SSURGO data, clip the data by the 

catchment boundary, retrieve the soil porosity (), which can be used to describe the soil water 

storage capacity when combined with soil depth (d, saturated hydraulic conductivity at the top 

and bottom layer as well as the vertically averaged value for each map unit, and then convert the 

data to raster data type. These reconstructed raster data with the average porosity or saturated 

hydraulic conductivity at the surface were then used to compute the spatial average hydraulic 

conductivity value and its standard deviation.  

We assumed that the saturated hydraulic conductivity decreases exponentially with depth: 

)exp( fdKK sb 
  (6) 
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where Ks, Kb are the surface and bottom saturated hydraulic conductivity, f is the decay 

parameter, and d is the soil depth. Each of these parameters is highly variable in space, including 

the exponential decay parameter, f. In order to obtain a more robust estimate of f at the catchment 

scale, we estimated spatial (arithmetic) averages of both surface and bottom saturated hydraulic 

conductivity values using available point values, as well as the spatial average of their vertical 

mean, and a spatially average depth. Then it can be shown that the vertical decay parameter can 

be obtained from:  

dK

KK
f bs

.




  (7) 

where sK is the spatially averaged surface saturated hydraulic conductivity, dK  is the spatially 

averaged bottom saturated hydraulic conductivity, K is the spatial average of the vertical mean 

saturated hydraulic conductivity, d is the spatial average of the surveyed soil depth. Clearly, this 

is only an approximate estimate of the exponential decay parameter, yet this is the best that can 

be achieved at such large scale, given the paucity of datasets currently available.  

3.2.2.2 Parameter regionalization: variable selection procedure 

Several recent studies have attempted to understand how soil properties and topographic and 

geomorphologic characteristics control subsurface flow generation in a quantitative way (Rupp 

and Selker, 2006; Troch et al., 2008; Biswal and Marani, 2010). Estimated values of andin 

their original or logarithmic forms were first plotted against all the candidate predictors to derive 

individual relationships between the predictors and  and. Although not all the relationships 

for the recession coefficient and exponent would be statistically significant, they provide 

information for down-selecting the predictors. In this paper, to determine the most influential 

factors, we experimented with different forms of the predictor and the response using linear 

regressions. Both and obtained from winter recessions and their natural logarithmic forms 

were used as the response in the linear regression, while all parameters including AI, slope, 

drainage density, porosity, soil depth, mean, standard deviation and vertical decay parameter of 

saturated hydraulic conductivity, and others, and their natural logarithmic forms were used as 
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candidate predictors. A variable selection scheme was developed to eliminate redundant or 

insignificant predictors.  

Due to the limited sample size, cross validation was employed to improve the reliability of the 

final selected regression model. That is, 75% of the data were randomly selected as training data 

used to fit the model and for the variable selection. After the selection, the remaining 25% of the 

data were used to validate the model selection results (Figure 3.3). This cross-validation was 

conducted 50 times on average in order to reduce the potential bias in the sample selection (we 

repeated this three times and obtained similar results). The predictors retained by the model 

selection criteria and the R2 of the validation in the test data were recorded each time. Finally, an 

averaged R2 over all 50 validation tests is calculated and the frequency for each predictor chosen 

by the different criteria was also recorded. The predictors that were retained most often in all 

three methods were considered the most influential factors in predicting  and derived from 

the recession curves. 

 

Figure 3.3: Flow chart of the variable selection process 

 

Three statistical criteria were used in the variable selection: the Akaike Information Criterion 

(AIC), the Bayesian Information Criterion (BIC), and the least absolute shrinkage and selection 

operator (LASSO). The AIC is a statistical metric used in model selection, with a penalty term 
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for increase in model size (2k), to choose the most suitable model with the least information loss 

(Akaike, 1974). It has also been applied to assess the necessary model complexity to get the 

required quality of model predictions (Engelhardt et al., 2012). For linear regression models, it 

can be computed as follows: 

knkLikelihoodAIC 2
n

)y-ŷ(
 ln 2) ( ln2

2




    (8) 

where n is the sample size (=50 here) and k is the number of predictors used in each model, ŷ is 

the value of the response (i.e.  or  or their logarithmic forms) predicted by the fitted linear 

regression model, while y  is the mean of the sample response. BIC is also a model selection 

criterion based on the likelihood function (Schwarz, 1978). Like AIC, it also has a penalty term 

for the increase in model size, but is larger than AIC (k ln(n)): 

)ln(
n

)y-ŷ(
 ln )ln()( ln2

2

nknnkLikelihoodBIC 


    (9) 

Both AIC and BIC select a subset of the candidate predictors. The variables are either retained or 

removed. This is a discrete process, which often leads to high variances and does not help reduce 

the error in the full model. The class of methods called shrinkage methods are more continuous 

and could avoid the high variability in AIC and BIC by estimating the regression coefficients 

that minimize the penalized residual sum of squares. LASSO is one of the shrinkage methods 

that do both shrinkage and variable selection by selecting those variables that minimize the 

following objective function (Hastie et al., 2009): 

 ||||ˆ|| 2

jyy 
  (10) 

where ŷ is the value of the response (i.e.   or their logarithmic forms) predicted by the fitted 

linear regression model, y is the observed value of the sample response, is the coefficient to be 

optimized, j is the coefficient of each predictors. A large will force some of the coefficients to 

be zero, which is part of the variable selection process. As a result, AIC is more focused on 

minimizing the prediction error, which favors larger models. BIC, in contrast, tends to select 
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smaller models as it imposes larger penalty on the model size, while LASSO helps minimize the 

variance and is more consistent in selecting the models (Hastie et al., 2009). In this study, we 

tested all three methods, counted the times different predictors were selected by each method in 

the 50 tests, calculated the frequency they were selected by different methods, and lastly 

finalized a set of predictors that were more often retained than removed (that is, the frequency 

each predictor was chosen must be larger than 50%) in all three methods. 

3.3 Results  

3.3.1 The spatial patterns of  

Before we take a closer look at the 50 selected catchments, we look at the regional patterns of the 

regressed  values from the recession curves of all 428 catchments estimated from winter 

recessions to see if we can gain any insight into what could explain these patterns. These are 

presented in Figure 3.4. Finding common catchment characteristics with similar ranges of  

may provide clues about factors that may be relevant.  

It is noted that has a larger range than  although most of them fall in the interval 

between 2 to 4. As we can see from the figure,  is generally larger along the eastern and 

western coasts as well as the upper Midwest where climate is more humid, smaller in catchments 

in or near the Appalachian Mountain, and is even smaller in the semi-arid and high mountain 

regions of the west (NM, ID, AZ, etc.). There are some exceptions, e.g., in Texas, where some 

arid catchments also have large  values: this could be related to uncertainties in the model 

fitting and selection processes due to the ephemeral streams that limit the number of observations 

available from the 10 years record used for deriving the recession periods. 

Figure 3.4b illustrates the regional pattern of , which exhibits a more diverse pattern. 

Roughly there is a decreasing trend in  from the coastal regions towards the interior. 

Specifically,  is around 2 in the catchments along the east coast except for those in Florida, it 

drops to values less than 1.5 in catchments in the central US. In the mid-western and western 

mountainous catchments, as well as in catchments in the arid southern US,  is around 1. Its 

value again increases to over 1.5 in catchments along the west coast. Looking at this in another 

way,  is large in humid and steep catchments near the Appalachian mountain as well as along 
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the western coastal range, but is small in extremely arid catchments in the south (i.e. NM, AZ, 

TX, etc.) and topographically flat catchments in the Midwest. An exception is that  is small in 

the coastal mountainous catchments in the West, which are humid as well as steep. This could be 

caused by poor data quality as those catchments are dominated by a single flow event per year, 

driven heavily by snowmelt. The significant snowmelt overwhelms the contribution from 

subsurface flow, leading to unreliable estimates of and .  

 

Figure 3.4: Spatial distribution of  and .  



81 

 

3.3.2 Variable selection results 

Figure 3.5 presents the initial scatter plots of possible relationships between and and various 

climatic, geomorphologic and soil hydraulic properties for the 50 selected catchments: aridity 

index AI, the drainage area, topographic slope, , drainage density, Dp, soil water storage 

capacity, d, mean and standard deviation of surface saturated hydraulic conductivity (i.e., Ks, 

Ks) and the vertical exponential rate of decay saturated hydraulic conductivity, fAlthough these 

candidate variables individually do not explain much of the variances in  (i.e., R2 < 0.5), 

many of them do have significant relationships with and (i.e., p-value < 1%). As seen from 

Figures 3.5 and 3.6, the aridity index and topographic slope are closely related to both and, 

while  is also related to drainage density and the mean and standard deviation of surface 

saturated hydraulic conductivity (Ks, Ks).  

 

 

Figure 3.5: Individual scatter plots of each predictor versus 
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Figure 3.6: Individual scatter plots of each predictor versus . 

 

In the next step, we determined variables that together give a better prediction of  and . 

As R2 always benefits from having more predictors, to avoid over-fitting, a variable selection 

procedure was carried out to identify the most influential predictors. Figure 3.7 presents the 

frequency that each variable was selected by the three statistical criteria discussed earlier in 

Section 2.2.2 for  and . For , the variables selected more than half of the time for all three 

criteria are: Dp,  Ks, (d) and f. For , a smaller number of predictor variables were retained 

most often in all three methods (AIC, BIC and Lasso), and only AI and f were selected. The 

resulting regressions are: 

07.017.0

06.0

)(

)009.001.0exp(67.1

fd

KD sp









   (11)
 

05.053.0.27.2 fe AI            (12) 

 

As we can see from both equations, the decay parameter f is found to be important for both  and 

;  is also related to other soil and topographic properties while, interestingly, is also 

influenced by climatic aridity index (AI) besides the decay parameter f. 
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Figure 3.7: Frequency selected for  and  prediction.  

 

Table 3.2 presents the averaged R2 values over the 50 runs, for the calibration and 

validation sets for the full models that kept all the candidate variables, and the reduced model 

with only the selected variables. To reduce the bias due to our relatively small sample size, we 

randomly selected 75% of the catchments (training dataset) to do the calibration and used the 

remaining 25% catchments for validation. The model fits the data well for the training set both 

for the full model and the reduced new model with R2 values larger than 0.8. Although R2 drops 

in the testing dataset used for validation, the reduced model is more accurate than the over-fitted 

full model with R2 improved to 68%. The regression obtained for  is also good in the training 

dataset, with R2 equal to or larger than 0.75. Although the prediction precision drops in the 

testing dataset, the reduced model improved R2 by 80%. One possible reason for R2 dropping 

from calibration to validation is the limited sample size, since only 12 catchments were used for 

validation: the small sample size may add variance to the prediction and decrease R2 of the 

validation. 
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Table 3.2: The averaged R2 of the full model with all the variables, and the new model with only 

the chosen variables after the selection 

  R2_Full model R2_New model 

 Calibration 0.84 0.85 

Validation 0.32 0.54 

 Calibration 0.84 0.75 

Validation 0.27 0.49 

 

3.4 Discussion: Interpretation of the derived functional forms of  

The derived functional forms for and  (Eqs. 11 and 12), though completely empirical, are still 

consistent with trends suggested by the application of hydraulic theory governing shallow 

subsurface flow on hillslopes expressed in the form of the Boussinesq equation (Brutsaert and 

Nieber, 1977; Rupp and Selker, 2005, 2006). Since our work was carried out at catchment scale, 

and most of the previous analytical derivations were derived for a single aquifer at the hillslope 

scale, we would not expect similar functional forms for the storage-discharge relationship. 

However, the variables that are found to be important from our empirical analyses are the same 

as the variables that appear in these analytical results. For example, in the case of hydraulic 

theory, the coefficient of the recession-slope curves,  for a homogeneous aquifer, was found to 

be a function of the hydraulic conductivity (Ks), average aquifer thickness (d), length of the river 

network (L), drainage area (A), and porosity() (Brutsaert and Lopez, 1998,1999): 

Ad

ALdK s

)(

)/4)(( 222








    (13) 

where () is a polynomial function of In subsequent work (Rupp and Selker, 2005) showed 

that  can be strongly affected by the vertical decrease of the saturated hydraulic conductivity, 

and showed that = (2h+1)/(h+1), where h is a parameter of the power-law relationship of Ks 

with depth. This is also the case in the results of our analysis here (i.e., Equations 11 and 12), 

except that the stream length and drainage area were combined into a drainage density, as was 

done by Biswal and Marani (2010).  
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The analytical derivations of Rupp and Selker (2005) through the application of the 

Boussinesq equation to sloping aquifers highlighted the role of topographic slope, which is also 

confirmed in the present study. Finally, the study by Rupp and Selker (2005) also highlighted the 

impact of the vertical decrease of saturated hydraulic conductivity on the exponent , although in 

their case they assumed a power law decay in the vertical (as opposed to the exponential decay 

used here). Rupp and Selker (2005) also showed that the it is the decrease in saturated hydraulic 

conductivity in the vertical that gives rise to the exponent  being greater than 2.  

Our empirical analyses also show that the exponential decay rate of the saturated 

hydraulic conductivity is one of the two most influential variables governing the magnitude of 

the exponent . In fact, the exponential decay parameter f is the only variable that is considered 

important for both the coefficient, , and exponent, . Although the importance of vertical 

decrease of hydraulic conductivity has been recognized and understood within the broader 

context of flow convergence (Chapman, 1999; Harman and Sivapalan, 2009), our study has 

helped to confirm it in many actual catchments. Although the estimate of the f parameter used 

here is only approximate due to paucity of measurements, its appearance in the regressions still 

underlines its importance in controlling the shape of the recession curve.   

Besides the vertical convergence of water movement controlled in this case by the 

vertical decay of the hydraulic conductivity, our results also indicate that the recession exponent 

at the catchment scale is also strongly related to the aridity index (AI). This climate impact is not 

explicitly included or needed in either the hydraulic theory or heterogeneity theory (Harman et 

al., 2009; Harman and Sivapalan 2009). Not only was this parameter clearly selected in the 

reduced models, but the magnitude of the coefficient before it in the functional form for  is at 

least one order of magnitude larger than that of the hydraulic conductivity decay parameter. This 

inconsistency with hydraulic or heterogeneity theory is also apparent in the comparison of the 

expressions for  and  derived here with the equivalent results (not presented here for reasons 

of brevity) obtained by numerical simulation and up-scaling derived by Ali et al. (2013), in 

which case only the hydraulic conductivity, its variability in space (both vertical and lateral), and 

topographic slope were the most important parameters needed for regionalizing the recession 

curve parameters.  
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One can attribute two reasons as to why climate in the form of the aridity index, AI, has 

an impact on the shape and magnitude of the recession curve. Firstly, the component variables 

such as Ks, d, , and Dp are all individually and collectively dependent on climate, and this 

enables it to appear in the empirical regression relationship for . Secondly, climate aridity 

impacts differently the actual heterogeneity of both soils and topography that is present in a 

catchment and that impacts the drainage behavior of the catchment over and above what is 

captured by the point scale (soils) and hillslope scale measures of soils and topography used in 

the current study. The first relates to differences between mean properties of many catchments 

caused by climate differences, whereas the second relates to differences in heterogeneity. But 

both of these effects are the result of co-evolution of climate, topography and soils, mediated by 

vegetation, through the erosional and pedogenic processes that contribute to soil formations, but 

none of them is yet to be captured by extant hydraulic and/or heterogeneity theories. Our 

empirical results show that  is more strongly related to AI but not . This may be due to (i) the 

influence of climate on the vegetation that develops in a given area, and the role of vegetation, 

through the action of roots in soil development, leading to vertical gradients of soil hydraulic 

properties, such as the hydraulic conductivity.  

 

Figure 3.8: Individual scatter plots of each predictor versus AI. 

 

There is increasing evidence of such co-evolution in the organized heterogeneity 

exhibited by many landscape properties. For example, Wang and Wu (2013) found in 185 

MOPEX catchments across the continental U.S. that the scaled perennial drainage density 

decreases monotonically with AI. Likewise, Xu et al. (2012) found that in several Australian 
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catchments the fractions of vegetation cover that are deep rooted perennial or shallow rooted 

ephemeral show a systematic relationship with AI. In the case of the 50 study catchments used 

here, we therefore explored possible co-dependence between climate and landscape properties, 

using the available data, even if these are somewhat limited. Figure 3.8 presents scatter plots of 

the relationships between topographic slope, drainage density, and saturated surface hydraulic 

conductivity.  They point to some co-dependence, even if not compelling enough for a claim that 

there is a clear dependence on climate. Nevertheless, given the clear dependence of the 

parameter on AI, this co-dependence is worthy of more detailed analysis on a larger set of 

catchments (around the nation and around the world) that have the necessary soils and 

topographic data available. This is beyond the scope of this study.  

3.5 Conclusions 

The goal of this study has been to develop an empirically-based parameterization of storage-

discharge relations for subsurface stormflow for use in land surface models (LSMs) or 

catchment-scale rainfall-runoff models. The approach adopted capitalizes on a straightforward 

relationship between the storage-discharge relations and a catchment’s recession curve (or the 

recession-slope relationship). In this case, the storage-discharge relationship was developed 

based on inferences from measured catchment streamflow recession curves in several catchments 

across continental United States, followed by performing multiple regressions of the recession 

curve parameters against measurable climate, soil and topographic properties.  This analysis also 

helped to identify the climatic and catchment characteristics that control the recession behavior 

without recourse to extant theory relating to shallow subsurface flow in heterogeneous 

catchments. 

The analyses reported here were carried on 50 selected catchments mostly in the eastern 

half of the U.S., chosen from the widely available MOPEX dataset. The parameters relating to a 

power-law type recession-slope curve, a coefficient  and the exponent , were extracted from 

observed streamflow hydrographs in all 50 catchments during the winter period in order to 

minimize the influence of evapotranspiration. Any connection between these two parameters and 

climatic and landscape properties were explored through initial scatter plots between  and 

these catchment and climate characteristics on an individual basis. This indicated that  is related 
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to aridity index, drainage density, topographic slope, saturated hydraulic conductivity at the 

surface and its spatial variance, whereas  was found to be only related to aridity index and 

topographic slope. None of the properties was sufficient individually to predict the recession 

curve parameters.  

We then applied three different model selection methods to choose variables that would 

collectively help predict the empirically observed and values. This analysis showed that the 

soil water storage capacity, drainage density, topographic slope, mean saturated hydraulic 

conductivity at the surface and its vertical decay parameter with depth are essential for predicting 

, while the aridity index and the parameter describing vertical decay of saturated hydraulic 

conductivity are the only variables needed for predicting . This analysis resulted in statistically 

significant predictive relationships in terms of the predictor variables for both and.  

The trends indicated by these empirically derived functional relationships are found to be 

consistent with corresponding expressions presented in the literature that were derived from 

extant hydraulic or heterogeneity theory. In this sense, these results are a confirmation of the 

predictions from existing theories. For example, the importance of the vertical decay of saturated 

hydraulic conductivity with depth in governing the exponent  is consistent with theoretical 

predictions and in general confirms the role flow convergence on the nature of subsurface flow 

recession behavior. Yet, the empirical analyses also, for the first time, revealed the important role 

of climate, in the form of the aridity index, on the recession curve parameters. There is no 

explanation for this in existing theories, as also confirmed by the parallel work of Ali et al. 

(2013), which do not and cannot presently incorporate the effect of climate.  We attributed this 

climate dependence to the role of co-dependence of catchment landscape properties and climate, 

possibly in the context of their long-term co-evolution.  

There remains the question of how to benefit from the regionalized equations derived in 

this paper for the original goal of the research: develop parameterizations of subsurface 

stormflow for land surface models. The statistical model derived here has in effect captured the 

net effects of co-evolution and is therefore useful for extrapolations in the region within which it 

was derived. Although the statistical model provides important insights into the factors that 

control the recession curves, due to the limited number of catchments and the relative humid 
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climate of these catchments, its validity for extrapolation to regions other than the relatively 

humid eastern U.S. is not clear. The empirical relationship may or may not change when one 

moves from the relatively humid catchments to more arid ones, since the physical meaning 

behind the statistical model is still not clear. On the other hand, parameterizations derived on the 

basis of traditional hydraulic theory (e.g., Ali et al., 2013) also have limitations, because so far 

they do not include the effects of co-evolution. There is therefore a clear need for a reconciliation 

of these approaches so that we can derive parameterizations that are based on widely applicable 

physics, and yet capture the net effects of co-evolution of climate, soils, topography and 

vegetation. This is beyond the scope of this study, and is left for future research.  
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Part II: Nutrient Transport 

Chapter 4. 

Dissolved Nutrient Retention Dynamics in River Networks: A Modeling 

Investigation of Transient Flows and Scale Effects 

Abstract1 

We have used a dynamic hydrologic network model, coupled with a transient storage zone solute 

transport model, to simulate dissolved nutrient retention processes during transient flow events at 

the channel network scale. We explored several scenarios with a combination of rainfall 

variability, and biological and geomorphic characteristics of the catchment, to understand the 

dominant factors that control the transport of dissolved nutrients (e.g., nitrate) along channel 

networks. While much experimental work has focused on studying nutrient retention during base 

flow periods in headwater streams, our model-based theoretical analyses, for the given parameter 

combinations used, suggest that high-flow periods can contribute substantially to overall nutrient 

retention, and that bulk nutrient retention is greater in larger rivers compared to headwaters. The 

relative efficiencies of nutrient retention during high- and low-flow periods vary due to changes 

in the relative sizes of the main channel and transient storage zones, as well as due to differences 

in the relative strengths of the various nutrient retention mechanisms operating in both zones. 

Our results also indicate that nutrient retention efficiency at all spatial scales of observation has 

strong dependence on within-year variability of streamflow (e.g., frequency and duration of high 

and low flows), as well as on the relative magnitudes of the coefficients that govern 

biogeochemical uptake processes: the more variable the streamflow, the greater the export of 

nutrients. Despite limitations of the model parameterizations, our results suggest that increased 

attention must be paid to field observations of the interactions between process hydrology and 

nutrient transport and reaction processes at a range of scales to assist with extrapolation of 

understandings and estimates gained from site-specific studies to ungauged basins across 

gradients in climate, human impacts, and landscape characteristics. 
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4.1 Introduction 

The phenomenon of oxygen depletion, or “hypoxia”, in receiving waters such as lakes, estuaries 

and coastal areas is now a worldwide environmental problem. This is partially caused by excess 

nutrient loading from terrestrial landscapes to aquatic environments that stimulates 

phytoplankton growth, the decomposition of which leads to depletion of dissolved oxygen. A 

large hypoxic zone occurs periodically in the northern Gulf of Mexico, where aquatic life is 

under threat due to nutrient induced eutrophication (Rabalais et al., 2002). Over 98% of the total 

nitrogen and phosphorous loading to the Gulf of Mexico is sourced to the Mississippi and 

Atchafalaya Rivers (Dunn, 1996), much of which originates from fertilized agricultural lands in 

the Mid-west region of the United States. With increased attention to the eutrophication 

problems in the Gulf of Mexico and the greater Mississippi River Basin, there has been 

considerable emphasis given to quantifying the sources of nutrients, and the processes associated 

with the uptake, retention, and/or removal of nutrients within the catchments and sub- 

catchments (Bencala and Walters, 1983; Dodds et al., 2002; Donner et al., 2002; Mulholland et 

al., 2002; Alexander et al., 2009; Claessens and Tague, 2009; Claessens et al., 2009). To avoid 

the confusion it might cause, in this paper we define nutrient retention as the temporary storage 

of nutrients in biomass (i.e., uptake) and removal as the permanent loss of nutrient from the 

system (i.e., denitrification). We acknowledge that this retention is not necessarily equal to net 

loss from the stream system because it does not include contributions from remineralization 

(Brookshire et al., 2009) or groundwater recharge (Covino et al., 2010b). Brookshire has found 

that during baseflow periods streams could maintain steady state with equivalent nutrient loss by 

retention and gain from remineralization and groundwater inputs.  However, in the absence of 

adequate information or data (e.g., denitrification rate, mineralization rate, groundwater 

concentration) to constrain a more complex representation of the nutrient cycle (e.g., including 

uptake, denitrification, mineralization), in this paper we limit our model to account for gross 

retention of inorganic nitrogen.  More complex representations that incorporate various 

components of the nutrient cycle, transport of particulate organic nitrogen, and transport of other 

nutrients could be accounted for in our model given adequate process parameterizations or field-

based evidence to constrain these additional aspects of stream biogeochemistry. 
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The study of nutrient retention and removal processes within large catchments can be 

organized into two distinct, but interacting, components: (i) the terrestrial landscape, and (ii) 

river networks, which are reactive pathways that connect the outputs of terrestrial systems to 

receiving waters. Both components involve interactions of flow (hydrological) processes with 

biogeochemical, geomorphological, and ecological processes on land and in the river network, 

all of which exhibit considerable heterogeneity and process complexity. In order to understand 

these processes and to use such understanding for management, we need predictive tools (i.e., 

models) that are based on fundamental theories of flow, transport and reaction across the 

landscape and in the river network. This paper is aimed at describing the processes and 

interactions occurring exclusively within the river network and for this reason many details of 

landscape (hillslope) processes are left out. Previously, there have been several catchment 

modeling studies that have focused on landscape (hillslope) biogeochemical scale processes 

(Viney et al., 2000; Li et al., 2010). The work presented here focuses on dissolved nutrients, e.g., 

nitrate; however, the model can easily be further adapted to handle other solutes. The 

accompanying papers in this special section by Harman et al. (2011), Thompson et al. (2011), 

Guan et al. (2011) and Basu et al. (2011) address separately the transport and biogeochemical 

transformations in several components of the landscape and stream network, such as in the 

vadose zone, individual stream reaches, and in small catchments. Furthermore, the paper by Basu 

et al. (2011) specifically addresses the effects of intra-annual streamflow variability on nitrate 

retention at the catchment scale, using a stochastic modeling approach.   

 The theory of “nutrient spiraling” (Webster and Patten, 1979; Newbold et al., 1982) 

serves as the foundation for much of the experimental and modeling work being carried out in 

the area of dissolved nutrient transport in river networks. It describes the coupled hydrological 

(e.g., advection) and biogeochemical (e.g., uptake) processes that control downstream nutrient 

transport and the cycling, or “spiraling”, of nutrients between inorganic and organic forms 

(Newbold et al., 1982). Bencala and Walters (1983) proposed the “transient storage” model, 

which separates the river channel into two interacting compartments: the flowing water column 

or “main channel” (MC) zone and a more stagnant “transient storage” (TS) zone. The TS zone is 

a general term that represents any flow path where the velocity is much smaller than that in the 

MC. Examples include surface water “dead zones” such as pools, off-channel storages such as 

floodplains, the hyporheic zone, and other flow non-uniformities where the velocity is much 
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smaller than that in the MC (Stofleth et al., 2008; Stewart et al., 2011). Bencala and Walters’ TS 

model is the basis for the now widely used one-dimensional transport model with inflow and 

transient storage (OTIS) (Runkel, 1998). The OTIS model uses coupled partial differential 

equations in time and space (downstream distance) to characterize nutrient transport and 

transformation in rivers; it can consider transport and retention from both the MC and TS zones, 

including exchanges between the two. The model is also widely used, in combination with field 

measurements of solute concentrations and loads, to characterize reach-scale hydrologic and 

biogeochemical processes and their parameterizations (Runkel, 2007; Böhlke et al., 2009).  

 The mean distance a nutrient travels downstream before being taken up is defined as the 

uptake length, SW [L] (Newbold et al., 1982). The traditional approach to estimating SW is to 

perform isotopic tracer or nutrient addition experiments within a stream reach and then plot the 

decline in nutrient concentration against downstream distance – the negative inverse of the slope 

(e.g., regression line) of this decline is SW (Stream Solute Workshop, 1990; Payn et al., 2008; 

Böhlke et al., 2009; Hall et al., 1998, 2009a). Since SW is related to hydrologic characteristics 

(e.g., velocity, depth), an uptake velocity defined as vf = (Q/w)/ SW (where, Q [L3/T] is stream 

discharge, and w [L] is wetted stream width), which partially accounts for hydrologic influences, 

is often computed to compare streams of different sizes and flow states (Stream Solute 

Workshop, 1990). Accordingly, uptake velocity vf [L/T] reflects biological demand relative to 

available nutrient concentration (Wollheim et al., 2006).  

Previous studies have suggested that transient storage zones play an important role in 

nutrient retention within river channels (Runkel and Bencala, 1995). They can act as a sink at the 

beginning of tracer injection experiments and as a source after injection is complete (Bencala and 

Walters, 1983). It has been hypothesized that an increase in ATS/AMC, the ratio of the cross-

sectional area of the TS zone (ATS) to the cross-sectional area of the MC zone (AMC) can promote 

nutrient uptake (Bencala and Walters, 1983; Mulholland and De Angelis 2000; Paul and Hall, 

2002).  However, there have been several studies that cast doubt on the existence and possible 

effects of these linkages (Hall et al., 2002; Ensign and Doyle, 2006). Further work is still needed, 

at a range of scales, to understand and clarify the relative contributions of retention mechanisms 

in MC and TS zones. 
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A majority of nutrient release experiments have been carried out in small headwater 

streams (Tank et al., 2008) during low flow conditions (Hall et al., 2009b), which may represent 

times and conditions of high nutrient retention (Peterson et al., 2001; Böhlke et al., 2009).  

Nutrient release experiments are typically more tractable in small headwater streams than in 

larger rivers or during times of high discharge (Hall and Tank, 2003; Hall et al., 2009b). 

However, Hall et al.’s (2009b) work in a mountain stream suggested that biological demand for 

nitrate was much higher than expected during floods and that reach scale nutrient uptake during 

low flows and spring floods were similar. This can potentially be attributed to the presence of a 

large hyporheic zone (i.e., increased extent of the hyporheic zone during flood events) relative to 

the size of the drainage area. Furthermore, recent modeling studies have indicated that in spite of 

the low efficiency of retention and removal per unit length, larger rivers, with associated longer 

travel times and larger mass input, can have significant contributions to transport of nutrients 

throughout the overall network in spite of lower nutrient retention efficiencies (Wollheim et al., 

2006; Ensign and Doyle, 2006), the reasons for which are not fully clear. Combined, these 

results suggest that it is important to understand nutrient retention processes across a range of 

flow states and stream sizes. 

 Characterization of biogeochemical processes in streams is typically accomplished 

through a combination of field experiments and process models (Bencala and Walters, 1983; 

Runkel, 1998; Claessens and Tague, 2009; Claessens et al., 2009; Covino et al., 2010a). The 

results of these field experiments are used to estimate model parameters and to understand the 

factors affecting nutrient transport at the reach scale. To understand how nutrient transport 

processes evolve in the downstream direction, and how they impact the dynamics in larger rivers, 

we need catchment network scale models that can accommodate terrestrial loading, transport and 

transformation along the river channel network. There are several biogeochemical models that 

are in wide use to predict nutrient transport at different spatial scales (e.g., Smith et al., 1997; 

Donner et al., 2002; Mulholland et al., 2002, 2008; Seitzinger et al., 2002, Wollheim et al., 2006, 

2008; Alexander et al., 2009). Many of these models use observed data to predict nutrient 

transport as a function of hydrologic variables (i.e., stream depth, travel time). These empirical 

relationships are then applied at the catchment scale, to obtain annual estimates of nutrient export 

(Smith et al., 1997; Goolsby et al., 2000). Other models have applied the one-dimensional 

advection-dispersion equation to capture reach scale nutrient cycling processes for each month, 
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and have expressed bulk retention ke as a function of nutrient concentration, flow depth and 

water temperature (e.g., Alexander et al., 2009). Many of these models have assumed steady 

flow conditions, and although they capture the impact of seasonal variability on nutrient 

transport, they are unable to make predictions under highly variable flow conditions that occur 

during flood events, as well as seasonally over the year, or in space (e.g., across the river 

network), a notable exception being the work by Wollheim et al. (2008). The work presented in 

this paper specifically addresses the problem of characterizing the likely impacts of variable flow 

dynamics (within-event as well as inter-event) on nutrient retention and export processes, and 

associated scale effects.  

Every catchment possesses unique hydrological, biological, and geomorphic 

characteristics.  These factors, which partially control nutrient transport, may vary both within 

catchments, as well as between catchments. Without a more complete understanding of the 

process controls on nutrient transport and transformation and their variability across spatial and 

temporal scales, it is difficult to develop generalized models and predictions. Furthermore, field 

experiments have produced contradictory results, and the existence of relationships between the 

size of the TS zone and nutrient uptake remain inconclusive (e.g., Marti et al., 1997; Ensign and 

Doyle, 2006). This is partially due to uncertainty regarding retention and/or removal rates in the 

MC and TS zones, knowledge of the relative sizes of the TS and MC zones, and consequently 

the relative contributions from the two zones that combine to produce bulk nutrient retention. 

Lack of resolution of these questions will have significant impacts on our ability to predict 

nutrient transport at the catchment scale. For example, moving in the downstream direction in a 

river network, nutrient retention may: be reduced by the increase of both flow depth and flow 

velocity; potentially increase due to increasing ATS/AMC ratio accompanying the increase in 

stream size; or remain constant due to the compensating effects of the above two factors.  

 To address these questions, a comprehensive numerical framework that can accommodate 

the impact of various process controls (i.e., hydrology, biogeochemistry and geomorphology) on 

nutrient transport within catchments is needed.  Ideally, models of nutrient transport processes at 

the network scale must be consistent with more widely accepted process representations, such as 

those represented in the OTIS model, and with field observations. This has been the motivation 

for the modeling study presented here. A recent review by Helton et al. (2011) has highlighted 
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major weaknesses in the current generation of nitrogen cycling models in river networks in that 

they: oversimplify catchment hydrology; oversimplify network hydrogeomorphology;  

incorporate unidirectional uptake of nitrogen rather than cycling in the context of other elements 

(i.e., stoichiometric constraints); and focus on base-flow or annual mean conditions, ignoring the 

ecological relevance of seasonal cycles and faster temporal dynamics.  

 This paper focuses on the last of these, namely, the influence of temporally dynamic 

hydrology on nutrient export, and particularly we: distinguish between retention during high 

flow and low flow periods; determine the relative contributions of the TS and MC zones to 

retention; and, investigate the roles of hydrologic variability (as governed by climate and 

landscape filtering), network geomorphology, and scaling these dynamics across space and time. 

We implement a coupled hydrological-solute-transport model to address the following questions: 

(1) How much nutrient retention occurs during low flow periods versus during high flow periods, 

and what are the contributions to retention from the main channel (MC) and the transient 

storage (TS) zones? 

(2) What are the impacts of within-year streamflow variability on the fraction of nitrate removed 

and delivered at the catchment scales?  

(3) How are the answers to the two questions posed above influenced by scale effects (i.e., size 

of river or contributing catchment area), including how retention rates and their process 

controls change as one moves from the reach scale to the network scale?  

Through implementation of the model across the river network of a ~500km2 catchment 

we seek to elucidate catchment scale biogeochemical and hydrological responses, as different 

from reach scale process representations, and to understand how hydrologic variability interacts 

with network structure and patterns of hydraulic geometry and solute transport processes, giving 

rise to these newly emergent properties.   

4.2 Methodology 

The modeling framework we use here combines a dynamic flow model in a river network, based 

on the representative elementary watershed (REW) theory of Reggiani et al. (1998, 1999, 2001), 

with a network nutrient transport and retention model based on upscaling of the OTIS model 
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equations for dissolved nutrients (Bencala and Walters, 1983; Runkel, 1998), with explicit 

inclusion of the interactions between the MC and TS zones. The focus of the present paper is on 

the network nitrate (NO3-N) retention processes; for this reason hillslope processes are somewhat 

over-simplified and hillslope flow response is simulated with a linear bucket model with an 

assumed mean residence time. NO3-N concentrations of hillslope flows are assumed constant in 

time and space, and yet, since discharge is highly variable, the nitrate load is variable as well. 

The details of each of the model components are given in Figure 4.1. More advanced versions of 

these components are elaborated upon in the accompanying papers by Harman et al. (2011), 

Thompson et al. (2011), and Guan et al. (2011).  

 

Figure 4.1: Schematic of the coupled hydrological-solute-transport model: (a) Watershed 

discretization into several REWs organized around the river network; (b) each REW includes a 

hillslope (landscape element) and a channel reach; (c) two-zone solute transport model that 

includes the main channel (MC) zone and a transient storage (TS) zone;  is a coefficient that 

governs nutrient exchange between the MC and TS zones. 

4.2.1 Study area 

The nominal study area is the Little Vermilion River catchment (Figure 4.2) and the river 

network is extracted from a DEM for this catchment. This catchment drains a 489 km2 area 

across three counties, Vermilion, Champaign and Edgar, and is generally flat with a slope of 1% 
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or less (Mitchell et al., 2000; Algoazany, 2006). It is a typical agricultural catchment in east-

central Illinois that is drained by an extensive network of tile drains. The land use in Little 

Vermilion is quite intensive. Nearly 90% of the area is planted with a rotation of corn and 

soybean crops. The dominant soil type in this catchment is silty loam and silty clay loam, with 

low hydraulic conductivity values. 

 

Figure 4.2: Map of the study area, Little Vermilion Basin in east-central Illinois, including the 

delineation of 29 REW boundaries. Bold line is the river network 

 

4.2.2 Network hydrologic model  

The network flow model, based on the REW approach, builds on the balance equations for mass 

and momentum for a hierarchical river network derived by Reggiani et al. (2001). The REW 

approach disaggregates the whole catchment into a number of sub- catchments (REWs), with the 

REWs being considered the smallest functional units of the model, with each REW having only 

one stream reach and being linked to all other REWs via the river network. Tian (2006) 

developed a numerical model, THREW (TsingHua Representative Elementary Watershed), 

based on a set of ordinary differential equations (ODEs) of the coupled mass and momentum 
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balance equations at the REW scale (Li and Sivapalan, 2011), including extensions to 

incorporate explicit formulations for energy balance applicable to cold regions (Tian et al., 2006).   

Since our objective is to explore process controls on nitrate transport in a river network 

only, we use a simplified version of THREW, where each REW is divided into two sub-regions 

only: a hillslope region and a channel region (Figure 4.1). We use a simple lumped bucket model 

to represent the hillslope response to precipitation for REWi: 
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where Si
h is water storage of REW i in the hillslope [L3], P is the rainfall intensity [L T-1] and is 

assumed uniform across the catchment, Ai is the area of REW i [L2], Qi
h is flow that enters the 

channel network directly from the local hillslope area [L3 T-1], h is the mean residence time with 

respect to subsurface flow [T], ETi is the evaporation [L3 T-1], and e is mean residence time with 

respect to evapotranspiration [T]. The presence of an extensive network of tile drains leads to the 

dominance of subsurface drainage while surface runoff is rare (Li et al., 2010). These 

considerations justify the use of simple conceptual models of the hillslope hydrologic response 

(Basu et al., 2009), such as the one adopted here.   

The water balance equation for the river reach i (associated with REWi), with inflows 

from the hillslope and two upstream nodes, can be written as follows: 
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where Si
MC

 is water storage at local reach i [L3], Q j
up is the inflow from upstream nodes (in a 

bifurcating network we assume there are at most two upstream reaches) [L3 T-1], v j is the 

velocity at upstream end, for reach j [L T-1 ], A j
MC

  is cross-sectional area of the jth upstream 

reach [L2], Qi
out  is the outflow from reach i  [L3 T-1], and vi is the velocity at local reach i [L T-1].  

The channel cross-sectional area Ai
MC is estimated at the beginning of any time step by 

dividing the water storage (Si
MC) at the end of previous time step by the channel reach length (Li), 

while the velocity vi is estimated through recourse to a reach scale momentum balance equation 

(i.e., Saint-Venant momentum balance equation). 
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where,  is the density of water [M T-3], A j
MC is cross-sectional area in an upstream or 

downstream reach j [L2], Li is reach length of REW i [L], g is gravitational acceleration [L T-2], 

sini is the mean slope of REW i, Pi is average wetted perimeter of local REW i [L], hi is the 

mean depth of REW i [L], i is the Darcy-Weisbach friction coefficient (i = 8g (ni)2(Ri)-1/3, ni is 

a roughness coefficient and Ri is the hydraulic radius), and ij is the angle of confluence of 

upstream reach j and local reach i. In Equation 6, when reach j is upstream of reach i, the sign in 

front of the pressure force term is generally + and is – when reach j is downstream of reach i. 

The last item in Equation 6 will remain only if the local reach is directly upstream of the outlet. 

As the influence of the confluence angle on the resulting velocity is very small, we assume it is 

equal to 1 (unity) and remove it without loss of accuracy. In this paper, for simplicity we ignore 

the inertia term in the momentum equation and we obtain the simplified equation for velocity as 

follows: 
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4.2.3 Specification of hydraulic geometry 

The size of the TS zone is directly related to the wetted perimeter of the channel, and so to 

accurately simulate the retention rate in TS, it is necessary to adequately represent the hydraulic 

geometry of the channel. The hydraulic geometry is also crucial to capture the space-time 

variations of flow velocity that ultimately determines the water residence time in the river 

reaches. An extensive survey of at-a-site and downstream hydraulic geometry has been carried 

out for Illinois streams by Stall and Fok (1968). They obtained best fits between measured top 

width, flow depth, velocity and cross sectional area as power functions of flow frequency and 

drainage area for several streams in Illinois. The relations for top width and flow depth extracted 

from the results of Stall and Fok (1968) are as follows: 

  

i

d

i

MC

i AAw ln18.0ln27.023.1ln 
top


   (8a)

 

  

i

d

i

MC

i AAhMC ln18.0ln73.023.1ln 
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where 
iw
top

is the top-width of reach i [L], hi
MC is the mean depth of reach i [L], Ai

MC is the cross-

sectional area of reach i [L2], and Ad
i is the total contributing (drainage) area for the outlet at 

reach I [L2].  We use these regionalized equations to construct the hydraulic geometry across the 

network of the Little Vermilion River catchment. Previous versions of the THREW model 

assumed the channel cross-sectional area to be rectangular (Tian, 2006; Li et al., 2010; Li and 

Sivapalan, 2011). In this paper, in order to better characterize the wetted perimeter and channel 

flow velocity and solute transformations, especially under low flow conditions, the cross-section 

was changed from rectangular to trapezoidal. Model predicted magnitudes of flow velocity, both 

at-a-site and downstream, were tested and successfully verified against the corresponding 

regionalized estimates of Stall and Fok (1968) (not included here for reasons of brevity). 

4.2.4 Network model of solute transport 

The solute transport model is derived from the One-Dimensional Transport with Inflow and 

Storage model (OTIS) applicable to a single reach (Bencala and Walters, 1983; Runkel, 1998).  
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where CMC

 
is nitrate concentration within the MC [M L-3], CTS

 
is concentration within the 

transient storage zone [M L-3], CL is the concentration of lateral inflow [M L-3], AMC is the cross 

section area of MC [L2], ATS is cross section area of TS zone [L2], x is longitudinal distance [L], 

D is dispersion coefficient [L2 T-1],  is the exchange rate between the main channel  and 

transient storage [T-1], qL is lateral inflow rate [L3 T-1 L-1], and kc and ks are the uptake rate 

coefficients for reactive solutes from the MC and the TS zones, respectively [T-1]. This model 

considers nutrient advection and dispersion in the MC, but in the TS zone solutes are assumed 

well mixed and the flow velocity is slow enough not to account for flows in the longitudinal 

direction. The nutrient exchanges between the MC and TS zones are assumed to be proportional 

to the concentration gradient between the two compartments.  

In the current study we seek to investigate nutrient transport at the network scale, across 

stream types and sizes, and during both low flow and high flow periods. Accordingly, we upscale 

the above model to the network scale, assuming that the effects of hydrodynamic dispersion are 

small and negligible compared to network dispersion (also known as geomorphologic dispersion) 

(see Robinson et al., 1995 for a justification of this assumption), and the nutrient retention in the 

MC zone is a function of water storage and the average of the upstream inflow concentrations 

and the local concentration. Upscaling of the OTIS biogeochemistry equations (Equations 9a,b) 

to the network scale then leads to the following two coupled governing equations for a stream 

reach belonging to REW i (each reach is considered as individual segment to which Equations 

9a,b are applied): 
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where Ci
MC

 
is the concentration in the local channel [M L-3], Ci

TS

 
is the concentration within the 

transient storage zone [M L-3], C j
MC is the concentration in the upstream reach j [M L-3],  is the 

exchange rate between the MC and TS zones [T-1], Si
TS is the volume of water in the TS zone [L3] 

(Si
TS = Li  Pi  hTS

i, Li is the length of the reach, Pi is the wetted perimeter, and hTS
i is the depth of 

TS zone, which is assumed constant), and ks is the uptake rate coefficient from TS zone [T-1]. 

In this paper the model is implemented with kc assumed to vary with flow depth, as kc = 

vc/h (where vc is the uptake velocity in MC [L T-1], in analogy with the relationship often 

assumed between the first order retention rate and uptake velocity of the combined system: 

ke=vf/h). In the base experiment, decreasing kc as a function of flow depth, h, assumes that 

uptake/removal on benthic biofilms dominates MC retention. There is a possibility that pelagic 

uptake could increase in the downstream direction, in which case the kc would not decrease with 

increasing depth; however in the absence of empirical evidence on pelagic uptake, we decided 

not to include this scenario here. Detailed theoretical and field investigations to quantify this 

impact could be important for future study. The uptake velocity in MC (vc) and uptake 

coefficient in TS (ks) are assumed to follow first order kinetics (as in Wollheim et al., 2006). 

Since the goal here is to examine the impact of hydrologic variability on nutrient retention and 

because limited data are available for the scaling of MC and TS uptake metrics from headwater 

to higher order reaches vc and ks are set at constant values across the catchment. As data evidence 

and process formulations advance, these aspects can be improved in subsequent versions of the 

model.  
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4.2.5 Climate and nitrate inputs 

In the research that is reported in this paper, the coupled model is driven by stochastic 

precipitation inputs that are generated by a stochastic event rainfall model developed by 

Robinson and Sivapalan (1997). In order to explore the effects of flow variability on net 

retention, we constructed three different rainfall scenarios (consisting of 10-year long synthetic 

time series), and simulated the coupled hydrological and nutrient transport processes within the 

stream network under each scenario. For illustration we have denoted these as Climates 1, 2 and 

3: Climate 1 (low variability), Climate 2 (intermediate), and Climate 3 (high variability). The 

rainfall series are a function of storm duration, tr, inter-storm period, tb, and mean rainfall 

intensity, p. The storm duration, tr and inter-storm period, tb are assumed to follow exponential 

probability density distributions, and their mean values vary sinusoidally with time of year (t = 

T+A.sin[2/(-r)/], where t represents the mean value for the exponential distribution ( for tr 

or tb) for a given time period within the year, T is the corresponding annual average value 

(annual mean of tr, tb), A is the amplitude of the seasonal variation,  is the total number of time 

units in a year (here 8760 hours per year), is the time within the year, and r is the seasonal 

phase shift); the precipitation intensity (p) is statistically dependent on tr, its conditional 

distribution (given tr) follows a gamma distribution, as the parameters of this gamma distribution 

are also a function of tr, the mean p of the gamma distribution also varies sinusoidally like tr and 

tb. All three climates share the same seasonality (the amplitude, A and the phase shiftr), in 

which rainfall occurs during the spring and fall seasons and similar annual precipitation (~1000 

mm per year) but distinct annually averaged storm duration, tr inter-storm period, tb and rainfall 

density, p. The details of the model are given in Robinson and Sivapalan (1997). 

The annual mean value of these characteristics of rainfall inputs are presented in Table 

4.1 for the three climates. There has been no attempt to match any of these climatic inputs, 

including annual rainfall and potential evaporation totals, their intra-annual variability and the 

statistical characteristics of storm events to climatic conditions prevailing in the Little Vermilion 

River catchment. All simulations used a hillslope residence time, h, of 100 hours, and 

evaporation time scale, e, of 100 hours. Figure 4.3 presents, as illustration, the time series of 
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precipitation inputs for Climate 2. Except when the focus of the analysis is on comparisons 

between different climate scenarios, most of the results presented in subsequent sections relate to 

Climate 2, with the mean annual water balances as follows: ET/P = 0.50, Q/P = 0.50, Qb/Q = 

0.22 (P, ET, Q and Qb are, respectively, annual precipitation, evaporation, total runoff, and 

baseflow).  These are not meant to be exact reproductions of the water balance of the Little 

Vermilion River catchment; nevertheless, they are representative of well-drained agricultural 

basins in much of Mid-western United States. 

Table 4.1:  Effects of hydrological variability and geomorphologic and biogeochemical factors 

on nitrate net retention rates during high and low flows 

 

 Climate 1 Climate 2 Climate 3 

Mean tr (hr) 34 34 15 

Mean tb (hr) 76 186 227 

Mean p (mm/hr) 0.4 0.8 2.0 

Mean CV(Q) of 

headwater 

streams 

2.08 3.01 3.44 

CV(Q) of outlet 

stream 
2.01 2.92 3.32 
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Nitrate concentrations of hillslope contributions to the river channels are kept constant in 

space and time at a notional value of 15 mg NO3-N/l during both flood events and baseflow 

periods, which is the mean concentration of observed tile drain data in Little Vermilion 

catchment. Low temporal variability in nitrate concentrations relative to that of water discharge 
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in intensively managed agricultural catchments (i.e., chemostatic export) has been discussed in 

recent papers (Basu et al., 2010; Thompson et al., 2011; Guan et al., 2011). 

 

Figure 4.3: Schematic describing typical time series of rainfall, hillslope inflows and sreamflows 

and nutrient concentrations for Climate 2 (see Table 4.2): (a) rainfall event patterns - 

intensity=0.8mm/hr, tr=34hr, tb=186hr; (b) hillslope inflows and streamflow for a headwater 

stream; (c) streamflow at the catchment outlet, and illustration of flow separation into high flow 

and low flow periods; (d) nutrient concentration of hillslope input (assumed constant at 15 mg 

NO3-N/l), and for a 1st order  REW and at the catchment outlet. 
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Parameters associated with the solute transport processes within the coupled model are 

also assumed to remain constant in space and time. Our assumed first-order kinetic model 

precludes any dependence on background nitrate concentrations (O’Brien et al., 2007; Covino et 

al., 2010b) and dependence on other environmental variables such as temperature are also 

ignored for the present. The parameter values are notional literature values chosen from a survey 

of field measurements, as shown in Table 4.2 (Runkel, 2000; De Smedt et al., 2005; Hall et al., 

2009b; Stewart et al., 2011). Default values of the nutrient uptake parameters used in this study 

are: vc = 0.002 m hr-1, ks=0.2 hr-1 and  = 0.1 hr-1. According to Stewart et al. (2011), the ratio of 

the size of the hyporheic TS zone to that of MC is 0.35, which is an average value for the 

Ipswich River network in Massachusetts. In this paper, in the default case, the thickness of the 

TS zone is held constant throughout the network at a value of 0.06 m; for a typical first order 

reach this produces a mean ATS/AMC = 0.35, which is consistent with Stewart et al. (2011). 

Table 4.2: The literature sources for the parameter values chosen 

Parameter  Value in base 

experiment  

Sources 

vc 0.002 m/hr 0.001 - 1.07 (Hall et al., 2009a)*1 

 0.1/hr 0.036 – 3.6 (De Smedt et al., 2005)  

ks 0.2/hr 0.01 – 7.2 ( Runkel, 2000)  

TS depth constant thickness=0.06m makes ATS/AMC~0.35 for a 1st order REW 

TS depth 

increases 

downstream 

ATS/AMC=0.35 (Stewart et al., 2010) 

*1 These only refer to the uptake velocity of the whole stream vf; the range of values for vc used 

n this paper are smaller. 

In this paper, we explore the effects of MC contributions as opposed to TS dominance of 

uptake and retention processes. As part of the sensitivity analysis presented later in the paper, we 

will also consider two scenarios in which MC and TS contributions are roughly equivalent and 

where the MC contribution is larger than TS through the use of larger vc values and smaller ks 

values. Each scenario is simulated for a 10-year period, and the initial nutrient storages in MC 

and TS are assumed to be zero (i.e., there is no nutrient stored at the beginning of the simulation). 

These sensitivity analyses are carried out to verify that the extent of emergent scaling effects 
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extracted from the simulations are not fundamentally altered by the range of parameter values 

used here. 

4.3 Results 

With the use of the coupled hydrological-solute-transport model we explore the richness of 

variability of nutrient retention process in space and time. In the time domain, we characterize 

the within-year variability by partitioning the year into event-driven high flow and subsequent 

low flow periods. In the space domain we partition the river reach into two zones: the main 

channel (MC) and the transient storage (TS). We begin the analysis in first order catchments 

(REWs), and systematically extend the analysis of the above partitioning, in a nested manner, to 

all higher order catchments, including the highest order catchment at the outlet.  

Figure 4.3 illustrates the manner in which we partition the year into high flow and low 

flow periods. It presents the synthetic time series of precipitation for Climate 2, and the 

corresponding model predicted hillslope inflows (at a constant concentration of 15 mg/l), and 

streamflows and nitrate concentrations for a first order stream (REW 24), and for the stream at 

the catchment outlet. We use the baseflow separation algorithm of Lyne and Hollick (1979) to 

partition the time series of flows in all river reaches, into separate event-associated high flow 

periods and subsequent low flow periods, as shown in Figure 4.3. This allows us to estimate the 

magnitudes of nitrate loading (inputs), retention and export separately during event (high flow) 

and inter-event (low flow) periods, for all streams of all orders, and also at the catchment 

/network scale by aggregating the estimates for all streams that lie within each nested catchment. 

We repeat the same analyses to estimate the separate contributions to retention by the MC and 

TS zones. The results are presented next. 

4.3.1 Breakdown into high flow and low flow periods, and between MC and TS zones 

Figure 4.4 presents the partitioning of the total nitrate inputs between high flow and low flow 

periods (in this and all subsequent cases the results are annual averages based on 10-year long 

simulations). In the case of the MC zone, the inputs are loadings from the hillslopes. In the case 

of the TS zone the inputs are exchanges from the MC zone, which are governed by differences in 

nutrient concentrations between the two zones. Because the nutrient concentration of hillslope 
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inflows is constant, loading into the MC during high flows is larger (~3 times) than during low 

flow periods (Figure 4.4). Regardless of the simplifying assumption of constant concentration of 

hillslope inflows, the result in terms of loading is consistent with previous research that also has 

indicated large magnitudes of nutrient loading during high flow periods (Royer et al., 2006). On 

the other hand, in the case of the TS the differences between high and low flow periods is much 

less, since the effect of the concentration gradients is modulated by differences in residence time.  

 

Figure 4.4: (a) Hillslope inputs into the MC zone as a function of drainage area, separately 

during high flow and low flow periods, respectively; (b) exchange of nitrate from the MC zone 

into the TS zone, separately during high flow and low flow periods, respectively, as a function of 

catchment size.  

 

We next present the corresponding results for bulk retention during high flow and low 

flow periods separately for the MC and TS zones, as well as for the combined system (see Figure 

4.5). We define the fractional retention as the ratio of nitrate retained in a certain zone during a 

certain period versus the total retention that occurs in both MC and TS zones through the year.  

For example, fh-MC is the percentage of nitrate retained in MC during high flow versus the total 

retention in both MC and TS zones annually. The calculation of the fractional retention during 

high flow and low flow periods is as follows: 
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where fh-MC is the fractional retention in MC during high flow, fl-MC is the fractional retention in 

MC during low flow period, Th is the duration of high flow period [T], Tl is the duration of low 

flow period [T], and T is the total simulation period [T].  

 

Figure 4.5: Fraction of retention separately during high flow and low flow periods, respectively, 

as a function of drainage area: (a) from the combined system (MC and TS zones together); (b) 

from the MC zone only; and (c) from the TS zone only.  

 

The results for fractions retained presented in Figure 4.5 indicate that even though the 

bulk loadings from hillslopes are vastly different during the two flow periods (e.g., 3.5 times 

larger during high flows, as shown in Figure 4.4), the magnitudes of the fractions retained are 

much closer in all three cases (certainly not 3.5 times different); the respective fractions (i.e., 

fractions of the total amounts of retention that occurred during the two periods) fall in the range 

0.4-0.6. The retention fraction in the MC zone in the range 0.08-0.15 is much smaller than in the 

TS zone (in the range 0.35-0.45). We also find that in the case of the MC zone, the fraction 
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retained during high flow periods is low (0.1) and remains invariant with drainage area, whereas 

the fraction retained during low periods decreases with increasing drainage area. The situation is 

reversed in the TS zone: the fraction retained during high flows increases with increasing 

catchment area in the TS zone and remains invariant with drainage area during low flow periods. 

These trends are similar to trends presented by Wollheim et al. (2008). In all three cases, despite 

the sharp discrepancies in hillslope loading between high flows and low flows, the differences in 

the actual retention are much smaller.  

This compensation in fractional retention could be related to the retention efficiency: it 

may be higher during low flows, and lower during high flows. We will now look at the 

corresponding results for retention efficiency in more detail. The retention efficiency is defined 

as the ratio between the nitrate retained in MC or TS zone during high or low flow period and the 

total nitrate load from the hillslope during the high or low flow period. Figure 4.6 presents the 

estimated retention efficiencies at the catchment scale separately for the MC and TS zones, as 

well as for the combined system. The calculation of the retention efficiency in the MC zone is as 

follows: 
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where Effh-MC is the retention efficiency within MC during high flow periods, Effl-MC is the 

retention efficiency within MC during low flow periods. The method for the calculation of 

retention efficiencies in the TS zone is similar. Figure 4.6 demonstrates that the retention 

efficiency during low flows is about three times higher than during high flows, in all three cases 

(whole system, as well as separately in the MC and TS zones), consistent with previous research 

that has noted that nitrate retention is most efficient during low flow periods (Alexander et al., 

2009). In all cases, the retention efficiency at the catchment scale is shown to increase with 
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increasing drainage area. These results indicate that although the nitrate loading from hillslopes 

during high flows is over three times higher than during low flows (see Figure 4.4), the much 

smaller retention efficiencies during high flows (i.e., about a third of that during low flow) nearly 

compensates for the differences in hillslope loadings giving rise to somewhat equivalent values 

for fractional retention during high and low flow periods, as shown in Figure 4.5 above.  

 

Figure 4.6: Retention efficiency estimated separately during high flow and low flow periods, 

respectively, as a function of drainage area: (a) from the combined system (MC and TS zones 

together); (b) from the MC zone only; and (c) from the TS zone only. 

 

We further investigate the differences between the two sets of retention efficiencies, and 

if these can be explained by recourse to estimates of three different timescales: residence time in 

the main channel (MC), nitrate reaction time in the MC zone (SRT-MC) and in the TS zone 

(SRT-TS). Following Stewart et al. (2011) and Botter et al. (2010), as a first attempt, we define 

these timescales for each REW as follows (using previous notation): 

  MC = L/v        (13a) 

  SRT-MC = h/vc       (13b) 

  SRT-TS = 
s

sTSMC

k

kAA // 

      (13c)  

The corresponding timescales at the network scale are defined as follows: 



119 

 

   jjiii wTwT         (14a) 

where 
i

d

ii AAw /         (14b) 

and 
i

d

j

d

j AAw /         (14c) 

where Ti is the total time within REW i, Tj is the total time within all upstream REWs j, i is the 

time within each reach (which can be either MC, SRT-MC or SRT-TS as per Equations 13a,b,c), 

wi is the weight for each component (which is related to the respective areas of the REWs), Ai is 

the area of REW i, Ad
i is the drainage area of current REW i,  and Ad

j is the drainage area of the 

upstream reach j.  We would expect the respective ratios of water residence time to solute 

reaction time (Damkohler number (Da), Ocampo et al., 2006) to provide a first order indication 

of the efficiency of retention in both the MC and TS zones. Since the water exchange between 

MC and TS is assumed small enough to ignore in the paper, water residence time related to 

nutrient uptake in the TS zone is therefore assumed to be the same as in MC ().  

For the reason of brevity, we will not show detailed results of the network scale residence 

times or the reaction times (calculated from Equation 14) here. The trends in these numerical 

results are that the residence time during low flows is larger than during high flows for all 

catchment sizes, while the reaction times in the MC zone, SRT-MC, and in the TS zone, SRT-TS, 

show an opposite trend in that the reaction times are much larger during high flows than during 

low flows. This suggests larger ratios of residence times to reaction times (i.e., the Damkohler 

number Da), i.e.,, higher efficiencies during low flow periods than during high flow periods. The 

shorter reaction time in TS zone than in the MC zone leads to a larger Damkohler number in TS 

zone, i.e., higher (roughly 2 to 4 times) retention efficiency in the TS zone than in the MC zone 

(Figure 4.6). This explains the much larger fractional retention by TS than by MC zone shown in 

Figure 4.5 (about 4.5 times greater during high flow and 2.5 times during low flow).  

4.3.2 Effects of within-year hydrologic variability on retention efficiency 

The results presented so far indicate significant differences between the loadings and retention 

efficiencies between high and low flow periods, including the relative contributions of the MC 

and TS zones to the overall nitrate retention processes. One can therefore foresee that intra-
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annual streamflow variability, i.e., the strength of fluctuations of streamflows between high 

flows and low flows, can significantly impact net retention and overall retention efficiency at the 

catchment (space) scale and annual timescale. In order to assess the net effect of within-year 

hydrologic variability we constructed three different rainfall scenarios and implemented the 

coupled model under each of these scenarios in Monte Carlo fashion. Summary statistics for the 

rainfall inputs and for the resulting streamflows are presented in Table 4.1, where we quantified 

the intra-annual variability of flows in terms of the coefficient of variation, CV(Q). The 

concentrations of nitrate inflows from hillslopes are still maintained at 15 NO3-Nmg/l throughout 

the year. 

 
Figure 4.7: Catchment scale retention efficiencies as a function of drainage area for Climate 1 

(p=0.4mm/hr, tr=34hr, tb =76hr), Climate 2 ( p=0.8mm/hr, tr=34hr, tb=186hr) and Climate 3 

(p=2.0mm/hr, tr=15hr, tb =227hr) for the whole system (MC and TS): (a) High Flow Periods, (b) 

Low Flow Periods. 

 

Figure 4.7 presents the variation of retention efficiencies (nitrate retained during high/low 

flow periods in MC/TS zone as percentage of total loading during those periods) as a function of 

catchment size for the three different climates considered (note that retention efficiency is the 

ratio of retention to net loading from the hillslopes). The results for the whole system (i.e., MC 

and TS zones together) indicate that the increase of hydrologic variability, as represented in the 
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three climate scenarios, with Climate 3 being most variable, leads to a reduction of retention 

efficiencies in the combined system, during high flow periods.   

 

4.3.3 Scale effects: relative roles of biogeochemical and geomorphologic factors 

So far we have explored the partitioning of retention fractions between high flow and low flow 

periods, and the breakdown of the contributions of the MC and TS zones to total retention. The 

analyses have revealed that ultimately these can be explained in terms of retention efficiencies 

and a competition between residence times and reaction times. Along the way, we also 

discovered that the richness of distribution of bulk uptakes and retention efficiencies also 

systematically change with increasing catchment size.  

The default parameterizations that we have adopted in the simulations so far have 

assumed that the thickness of the TS zone is constant across the entire network. In view of the 

demonstrated importance of the TS zone, what impact does this assumption have on the scaling 

behavior of nutrient retention? Similarly, we have assumed that the uptake rate in the MC zone is 

equal to kc=vc/h. By making this assumption, we are ensuring that the nutrient retention in the 

MC zone becomes less efficient as we move from headwater streams to the much deeper, higher 

order streams. Although the plankton in the water column also contributes to the nutrient 

retention, given the relatively shallower water column and shorter residence time available for 

uptake, it is relatively minor compared to the benthic uptake. Therefore in this paper we will 

focus on the impact of the TS depth. These are important questions because there is as of yet 

very little empirical evidence for these rather strong assumptions: whether the thickness of the 

TS zone remains constant downstream or increases with the increase in the spatial scale. In order 

to generate insights into their relative effects on the predicted scaling behavior, we carried out a 

new set of simulations where we allowed the thickness of the TS zone to increase in the 

downstream direction, in such a way as to maintain a constant ATS/AMC ratio at a value of 0.35 

(Briggs et al. 2010).   

Figure 4.8 presents a comparison of two events (approximately 25 days) in the 10-year 

long time series of retention rates from the MC and TS zones, corresponding to Climate 2, and 
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for two different scenarios: (a) thickness of TS remains constant across the network, (b) 

thickness of TS increases in downstream direction (ATS/AMC is held constant at 0.35) while in 

both scenarios, vc is held constant at 0.002 m hr-1. This part of the model sensitivity analyses 

with respect to the size of the TS zone is summarized in the top half of Table 4.3. The results are 

presented for a headwater stream and for the stream at the catchment outlet. The results indicate 

that, for varying kc (kc=vc/h, vc=constant), increase of ATS in the downstream direction leads to 

much higher retention from the TS zone with increasing catchment size: the retention rate at the 

outlet stream increases from around 7 kg/hr to 12kg/hr when ATS becomes larger in the 

downstream direction (Figure 4.8b and d) while the retention rate in MC does not change.  

Table 4.3:  Summary of different scenarios simulated in sensitivity analyses involving 

combinations of climate, geomorphology and biogeochemistry 

 
  Climate 1  Climate 2 Climate 3 

Impact of 

TS depth  

TS depth constant 

Low streamflow 

variability, TS depth 

constant with TS 

dominance 

Intermediate 

streamflow variability, 

TS depth constant 

with TS dominance 

(base experiment) 

High streamflow 

variability, TS depth 

constant with TS 

dominance 

TS depth increases 

downstream 

Low streamflow 

variability, TS depth 

constant with TS 

dominance 

Intermediate 

streamflow variability, 

TS depth constant 

with TS dominance 

High streamflow 

variability, TS depth 

constant with TS 

dominance 

Impact of 

vc, ks  

TS dominant (vc 

=0.002m/hr, ks =0.2/hr) 
 

Intermediate 

streamflow variability, 

TS depth constant 

with TS dominance 

(base experiment) 

 

MC, TS equivalent (vc 

=0.002m/hr, ks 

=0.05/hr) 

 

Intermediate 

streamflow variability, 

TS depth constant 

with equivalent MC, 

TS dominance  

 

MC dominant (vc 

=0.02m/hr, ks =0.2/hr) 
 

Intermediate 

streamflow variability, 

TS depth constant 

with MC dominance 
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Figure 4.8: Schematic describing retention rates (from MC and TS zones) for two parameter 

combinations: Case 1 (a, b) – vc maintained constant at 0.002m/hr, thickness of the TS zone 

maintained constant; Case 2 (c, d) – vc maintained constant at 0.002m/hr,  thickness of the TS 

zone increases in the downstream direction, with the ratio ATS/AMC maintained constant at 0.35: 

(a),(c) retention rates for a headwater stream; (b), (d) retention rates for the higher order stream 

at the outlet. 

 

 

Figure 4.9: (a) Fractional retention from the MC zone over the whole year, (b) fractional 

retention during high flows over the combined system (MC and TS zones together), both as 

functions of drainage area. These results are presented two scenarios of ATS/AMC ratio: (i) ATS 

constant, and (ii) ATS increases downstream (ATS/AMC=0.35).  



124 

 

Figure 4.9 summarizes the results of this sensitivity analyses (i.e., with respect to the size of 

the TS zone, as summarized in the top half of Table 4.3) in terms of (1) the fraction contributed 

to total retention (over the whole year) by the MC zone, and (2) the fractional retention from the 

combined (MC and TS) system during high flow periods. The results in Figure 4.9a indicate that 

the fractional retention contributed by the MC zone is much less when the size of the TS zone is 

allowed to increase in the downstream direction. Figure 4.9b presents the corresponding results 

for the fractional retention during high flows for the combined system. When kc decreases 

downstream, the assumption of variable TS size makes a bigger contribution to the fraction 

retained during high flows 

4.4 Discussion of results 

The results presented have demonstrated that there are substantial differences between nutrient 

retention rates during high flow and low flow periods. The differences are due to (i) variability in 

hillslope water and nitrate inputs, leading to differences in flow depth, velocity and nutrient 

concentration, and (ii) the differing roles and contributions from the MC and TS zones, leading 

to differences in retention efficiencies. Similar differences are observed between the contribution 

from MC and TS, which can be related to the parameters chosen in the simulations and the 

assumptions about the scaling affect arising from the parameters chosen (vc and ks). In the 

following we seek generalizable insights based on the use of the model, and manipulation of 

model predictions: reaction times (governed by both the solute transport properties, flow depth 

and the relative sizes of the MC and TS zones, which are indirectly affected by variable flow 

depths).  

4.4.1 Effects of hydrologic variability: bulk parameterization based on timescales 

In Figure 4.7 we demonstrated that within-year hydrologic variability can have a significant 

impact on net retention at the catchment scale, especially during high flow periods. In particular, 

increasing variability leads to decreasing retention efficiency. This can be attributed to faster 

velocities and hence shorter residence times, provided the reaction times remain relatively 

invariant.  
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The effect of hydrologic variability and the connection to residence times is illustrated in 

Figure 4.10. In this figure we first express the strength of retention for all three climate scenarios 

in terms of a catchment scale delivery ratio DR (1-Retention Efficiency), the percentage of 

nutrient exported. The delivery ratio DR estimated for the three climates is then presented as a 

function of residence time in the river network MC, (in a semi-log plot), for the whole year as 

well as for the high flow and low flow periods. The results indicate that (i) there is an almost 

exponential relationship between DR and  MC (as reflected in the straight lines in the semi-log 

plots), and (ii) the slopes of the lines tend to decrease with increasing hydrologic variability, for 

all flow periods (Figure 4.10). This confirms that the first order control of DR (and hence the 

retention efficiency) is the residence time distribution. We then fitted the empirical DR vs MC 

relationship to the following function: DR = exp (– keMC), and estimated ke, which can be 

deemed as a first-order rate coefficient ke at the catchment scale, and can be seen as a net 

measure of nutrient retention. Estimated values of ke for the three climates, during high and low 

flow periods, are presented in Table 4.1 and indicate that estimated ke values decrease with 

increasing streamflow variability, and increases with the increment in TS zone size.  

  

Figure 4.10: Catchment scale delivery ratio 1- Retention Efficiency as a function of weighted 

residence time MC (as a surrogate for drainage area) for Climate 1 (p=0.4mm/hr, tr=34hr, tb 

=76hr), Climate 2 ( p=0.8mm/hr, tr=34hr, tb=186hr) and Climate 3 (p=2.0mm/hr, tr=15hr, tb 

=227hr: (a) for the whole year; (b) during high flow periods; (c) during low flow periods. 
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4.4.2 Scaling effect: relative roles of nutrient uptake and geomorphologic factors 

The results presented so far have demonstrated the importance of the ratio between water 

residence time and solute reaction time. Two factors that play important roles in governing the 

estimates of both residence and reaction times are the flow condition in the stream, and the 

relative magnitudes of the nutrient uptake parameters kc and ks, and how they change in time and 

space (across the river network). Flow state determines (a) velocity v, which governs residence 

time MC, (b) flow depth h, which in combination with kc governs reaction time in the MC zone, 

SRT-MC, and (c) the ratio ATS/AMC, with both AMC and ATS changing with the magnitude of flow, 

which together with  kc and ks determines reaction time in the TS zone, SRT-TS.  

Because of the paucity of consistent empirical data across diverse field experiments, we 

made several assumptions in the parameterizations chosen for the base experiment: (i) that the 

TS retention is more dominant than MC, through adoption of vc =0.002m/hr and ks =0.2/hr; (ii) 

that the benthic uptake and retention is dominant over pelagic uptake, by setting the retention 

rate in the MC to decrease with flow depth (kc= vc /h); (iii) that the TS depth is constant from 

headwater to outlet, by setting the TS depth to be constant at 0.06m. These assumptions are 

critical to understanding and interpreting the model results presented in Figures 4.8 and 4.9, and 

summarized in terms of the effective rate coefficient ke in Table 4.1, since they are likely to 

impact the results of the base experiment and the effects of the three climate scenarios chosen.  

In order to generate insights into these effects, we carried out sensitivity analyses with the 

model under a new set of scenarios, where (i) TS is the major contributor; (ii) the contributions 

from TS and MC are roughly equivalent; (iii) the retention from MC is more dominant. The 

combinations of parameter values chosen for each of these scenarios are presented in the bottom 

half of Table 4.3.  Figure 4.11 presents the impacts of various combinations of vc and ks in terms 

of (1) the fraction contributed to total retention (over the whole year) by the MC zone and (2) the 

fractional retention from the combined (MC and TS) system during high flow periods. The 

results in Figure 4.11a indicate that with a smaller ks or a larger vc, the fractional retention from 

MC will increase equally across the entire network. Figure 4.11b presents the corresponding 

results for the fractional retention during high flows for the combined system. The combination 

with largest vc and ks values contributes to higher uptake and removal during high flow periods.  
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Figure 4.11: The three combinations of vc and ks impact on (a) Fractional retention from the MC 

zone over the whole year, (b) fractional retention during high flows over the combined system 

(MC and TS zones together), both as functions of drainage area. These results are presented for 

three different combinations of ks and vc: (i) MC dominant, vc =0.02m/hr and ks=0.2/hr, (ii) MC 

and TS are equivalent, vc=0.002m/hr and ks=0.05/hr, (iii) TS dominant, vc =0.002m/hr and 

ks=0.2/hr 

 

The sensitivity analysis with respect to the combination of vc and ks values (Figure 4.11) 

demonstrates that although the magnitudes of contributions from MC and TS change with the 

different parameter combinations adopted, and the contribution of TS decreases with the 

retention rate in TS (ks), the resulting change is uniform from headwater streams to the outlet. 

That is, the scaling effect of the MC and TS contributions remains, and so does the impact of 

hydrologic variability on the retention efficiencies during high flow and low flow periods in the 

MC and TS zones (details not presented here for brevity).  

The sensitivity analysis with respect to the TS thickness indicates that the scaling effect 

of the contribution of MC can be amplified or attenuated by the TS zone thickness. For streams 

where benthic uptake is dominant, increasing TS zone thickness in the downstream direction 

adds further to the decrease in the fractional retention from the MC zone from headwater streams 

to the catchment outlet. These results suggest that, when considering nutrient retention at the 

catchment scale, especially when they include large rivers, the scaling of TS thickness in the 

downstream direction can be more important than the actual retention rate. Further experiments 
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and modeling need to be done to parameterize the effects of both the morphology and the 

biogeochemistry of the transient storage zone. 

4.5 Conclusions 

One of the main conclusions from this numerical modeling study is that, within the limitations of 

the model (for example, the assumption of first order kinetics), retention of dissolved nutrients 

during high flow periods can indeed be significant, and should not be ignored. For the parameter 

combinations used in this study, the total mass retained during high flows constitutes ~50% of 

the total annual retention. This is in spite of the much lower retention efficiencies during high 

flows compared to during low flow periods. This can be attributed to much larger loading during 

high flows, which overwhelms the reduced retention efficiency, and leads to an overall higher 

retention of total N mass in the system. This difference in nutrient load is quite significant in the 

MC zone but is much smaller in the TS zone since the residence time helps modulate the 

concentration gradients to limit the nutrient access to TS zone. While previous studies have 

focused primarily on the decrease in the nutrient retention efficiency during storm events, we 

showed for the first time that despite the reduced efficiency total mass retention is greater than 

during baseflow. This result is similar to the findings of Ensign et al. (2006) who noted strong 

ammonium retention during storm events in a coastal agricultural stream in North Carolina. This 

observation calls for increased focus on understanding nutrient dynamics during storm events.  

Moreover, an important consequence of the retention during high flow periods is that the 

nature of within-year variability of streamflows can have a significant impact on the bulk 

retention, delivery ratio and retention efficiency. This is due to the differences between the rates 

of retention and the dominant retention mechanisms as streamflows change over the range from 

low to high flows. Our model simulations demonstrated that intra-annual streamflow variability 

does have a significant impact on retention rates at all scales: the more variable the streamflow is, 

compared to mean discharge, the less nitrate is retained in the channel network (i.e., greater 

export). A first order uptake rate estimated at the scale of the whole 3rd order network, ke, was 

seen to decrease with increased streamflow variability. While the importance of intra-annual 

variability has already been highlighted in previous studies (i.e., Wollheim et al. 2008; Botter et 

al. 2010), and in particular the companion paper by Basu et al. (2011), the results presented in 
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this paper for the first time quantify this effect by systematically simulating precipitation events 

of different frequencies and intensities. Climate change is forecast to alter the rainfall frequencies 

and intensities more severely than the mean values, contributing to increased within-year 

variability, which can translate to a reduction in nutrient removal efficiencies, thus exacerbating 

critical concerns about increased N export. Consequently, further investigations into the effect of 

the intra-annual rainfall variability on nutrient retention are critical.  

Finally, the contributions of high flow periods to total annual bulk retention is further 

enhanced in large rivers, even as the efficiency of retention decreases from headwater to higher 

order streams, and to large rivers. This too can be explained through recourse to the increase of 

loading in larger rivers compared to headwater streams. We have demonstrated in this study for 

the first time that despite reduced efficiency in nutrient retention with river size, the total mass 

retention is greater in larger rivers thus necessitating increased focus on understanding nutrient 

dynamics in larger rivers. Further experiments focusing on nutrient spiraling in larger rivers are 

therefore critically needed (e.g., Tank et al., 2008). 

Clearly, there is considerable room for the model we presented here to be substantially 

improved. A recent review paper has highlighted key areas in which the current generation of 

nitrate cycling models at the river network scale needs to be advanced (Helton et al., 2011). 

There is currently insufficient information and understanding to adequately constrain 

parameterizations (i.e. functional forms) of the various processes. For example, not much is 

known about the relative contributions of benthic and pelagic uptake, or the partitioning of 

retention between the TS and MC zones, their dependence on flow and environmental conditions 

(e.g., temperature, turbidity, nutrient concentrations, see: Covino et al., 2010b), and how these 

processes scale across stream networks and flow states. Similarly, the conceptual approach we 

have adopted to simulate the effects of the TS zone is highly restrictive, and poses problems 

towards its parameterization. These call for further detailed field investigations in large rivers, 

during both low and high flow events.  

We recognize that modeling gross retention of dissolved nitrogen in a stream network is 

simplistic, and processes like mineralization, groundwater inputs or the role of particulate 

nitrogen could also be important. A pseudo-steady state (inputs = outputs) during baseflow has 
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been observed in four southeastern small streams (Brookshire et al., 2009), where uptake was 

compensated by remineralization and groundwater inputs. However, because of lack of adequate 

information (i.e. mineralization rates of N, concentration of groundwater recharge or 

concentrations of PON); here we have focused primarily on gross nitrogen retention.  Gross 

nutrient retention has commonly been measured during baseflow periods in small streams, and 

very few studies have explored the effect of within-year streamflow variations on this metric as a 

function of spatial scale of observation. However, the model we presented here can be extended 

to study the questions on particulate vs. dissolved, organic vs. inorganic nitrogen, and gross 

nitrogen retention vs. mineralization in stream ecosystems in future studies. Given the 

importance of the impact of nutrient concentration on uptake, more field measurements 

quantifying the relationship between nutrient concentration and uptake within a single stream 

system at different catchment scales (e.g., Earl et al., 2006; Covino et al., 2010a; Covino et al., 

2010b) will be crucial for improving the ability of numerical models to simulate nutrient uptake 

over a range of nutrient concentrations. Finally, here we have chosen a simple bucket model to 

represent the hillslope contributions, where we arbitrarily assumed a constant concentration of 

hillslope inputs, which is clearly not realistic. A more sophisticated hillslope model with both 

hydrologic and biogeochemical components is needed, and is crucial to investigating the effects 

of land use changes on nutrient export. Clearly, these extensions are beyond the scope of the 

present modeling study, and are left for future research.  

4.6 Acknowledgments 

Work on this paper commenced during the Summer Institute organized at the University of 

British Columbia (UBC) during June-July 2009 as part of the NSF-funded project: Water Cycle 

Dynamics in a Changing Environment: Advancing Hydrologic Science through Synthesis (NSF 

Grant EAR-0636043, M. Sivapalan, PI). Thanks also due to Marwan Hassan and the Department 

of Geography of UBC for hosting the Summer Institute and for providing outstanding facilities. 

Work on the paper was also partially supported by NSF-Project: Using Empirical and Modeling 

Approaches to Quantify the Importance of Nutrient Spiraling in Rivers (Grant DEB-0922118, 

Jennifer Tank, PI).  



131 

 

References 

Alexander, R. B., J. K. Böhlke, E. W. Boyer, M. B. David, J. W. Harvey, P. J. Mulholland, S.P. 

Seitzinger, C. R. Tobias, C. Tonitto, and W. M. Wollheim (2009), Dynamic modeling of 

nitrogen losses in river networks unravels the coupled effects of hydrological and 

biogeochemical processes, Biogeochemistry, 93, 91-116. 

Algoazany, A. S. (2006), Long-term Effects of Agricultural Chemicals and Management 

Practices on Water Quality in a Subsurface Drained Watershed, PhD thesis, University of 

Illinois at Urbana-Champaign. 

Basu, N. B., P. S. C. Rao, H. Winzeler, S. Kumar, P. Owens, and V. Merwade (2009), 

Parsimonious modeling of hydrologic responses in engineered watersheds: Structural 

heterogeneity versus functional homogeneity, Water Resour. Res., 46 W04501, 

doi:10.1029/2009WR007803. 

Basu, N. B., P. S. C. Rao, S. E. Thompson, N. V. Loukinova, S. D. Donner, S. Ye, and M. 

Sivapalan (2011), Spatiotemporal averaging of in-stream solute removal dynamics, Water 

Resour. Res., 47, W00J06, doi:10.1029/2010WR010196.  

Bencala, K. E., and R. A. Walters (1983), Simulation of solute transport in a mountain pool-and 

riffle stream: a transient storage model, Water Resour. Res., 19(3), 718-724. 

Böhlke, J. K. , R. C. Antweiler, J. W. Harvey, A. E. Laursen, L. K. Smith, R. L. Smith, and M. A. 

Voytek (2009), Multi-scale measurements and modeling of denitrification in streams with 

varying flow and nitrate concentration in the upper Mississippi River basin, USA, 

Biogeochemistry, 93, 117–141. 

Botter, G., N. B. Basu, S. Zanardo, P. S. C. Rao, and A. Rinaldo (2010), Stochastic modeling of 

nutrient losses in streams: Interactions of climatic, hydrologic, and biogeochemical controls, 

Water Resour. Res., 46, W08509, doi:10.1029/2009WR008758. 

Briggs, M. A., M. N. Gooseff, B. J. Peterson, K. Morkeski, W. M. Wollheim, and C. S. 

Hopkinson (2010), Surface and hyporheic transient storage dynamics throughout a coastal 

stream network, Water Resour. Res., 46, W06516, doi:10.1029/2009WR008222. 

Brookshire, E. N. J., H. M. Valett, S. Gerber (2009), Maintenance of terrestrial nutrient loss 

signatures during in-stream transport, Ecology, 90, 293-299.  

Claessens, L. and C. L. Tague (2009), Transport-based method for estimating in-stream nitrogen 

uptake at ambient concentration from nutrient addition experiments, Limnol. Oceanogr.: 

Methods, 7, 811-822. 

Claessens, L., C. L. Tague, P. M. Groffman and J. M. Melack (2009), Longitudinal assessment 

of the effect of concentration on stream N uptake rates in an urbanizing watershed, 

Biogeochemistry, doi: 10.1007/s10533-009-9376-y. 



132 

 

Covino, T. P., B. L. McGlynn and R. A. McNamara (2010a), Tracer Additions for Spiraling 

Curve Characterization (TASCC): Quantifying stream nutrient uptake kinetics from ambient 

to saturation, Limnology and Oceanography: Methods, 8: 484 – 498. 

Covino, T.P., B.L. McGlynn, and M.A. Baker (2010b), Separating physical and biological 

nutrient retention and quantifying uptake kinetics from ambient to saturation in successive 

mountain stream reaches, Journal of Geophysical Research – Biogeosciences, 115, G04010, 

doi: 10.1029/2009JG001263. 

De Smedt, F., W. Brevis, and P. Debels (2005), Analytical solution for solute transport resulting 

from instantaneous injection in streams with transient storage, J. Hydrol., 315, 25-39.  

Dodds, W. K., A. J. Lopez, W. B. Bowden, S. Gregory, N. B. Grimm, S. K. Hamilton, A. E. 

Hershey, E. Marti, W. H. McDowell, J. L, Meyer, D. Morrall, P. J. Mulholland, B. J. 

Peterson, J. L. Tank, H. M. Valett, J. R. Webster and W. M. Wollheim (2002), N uptake as a 

function of concentration in streams, J. N. Am. Benthol. Soc., 21(2), 206-220. 

Donner, S. D., M. T. Coe, J. D. Lenters, T. E. Twine and J. A. Foley (2002), Modeling the 

impact of hydrological changes on nitrate transport in the Mississippi river basin from 1955 

to 1994, Global Biogeochemical Cycles, 16(3), 1043, 10.1029/2001GB001396. 

Dunn, D. D. (1996), Trends in nutrient inflows to the Gulf of Mexico from streams draining the 

conterminous United States 1972-1993. US Geol. Surv., Water-Res. Invest. Rep., 96-4113. 

Austin, TX: US Geol. Surv. 60 pp. 

Earl, S. R., H. M. Valett, and J. R. Webster (2006), Nitrogen saturation in stream ecosystems, 

Ecology, 87(12), 3140-3151. 

Ensign, S. H. and M. W. Doyle (2006), Nutrient spiraling in streams and river networks, J. 

Geophys. Res., 111, G04009, doi:10.1029/2005JG000114. 

Ensign, S.H., S. K. McMillan, S. P. Thompson, and M. F. Piehler (2006), Nitrogen and 

Phosphorus Attenuation within the Stream Network of a Coastal, Agricultural Watershed, J. 

Environ. Qual., 35, 1237-1247. 

Goolsby, D. A., W. A. Battaglin, B. T. Aulenbach, and R. P. Hooper (2000), Nitrogen flux and 

sources in the Mississippi River Basin, Sci. Total Environ., 248, 75– 86. 

Guan, K., S. E. Thompson, C. J. Harman, N. B. Basu, P. S. C. Rao, M. Sivapalan,  A. I. Packman 

and P. K. Kalita (2011), Spatiotemporal scaling of hydrological and agrochemical export 

dynamics in a tile-drained Midwestern watershed. Water Resour. Res., 47, W00J02, 

doi:10.1029/2010WR009997. 

Hall, R. O., B. J. Peterson and J. L. Meyer (1998), Testing a nitrogencycling model of a forest 

stream by using a nitrogen-15 tracer addition, Ecosystems, 1, 283– 298. 

Hall, R. O. Jr., E. S. Bernhardt and G. E. Likens (2002), Relating nutrient uptake with transient 

storage in forested mountain streams, Limnol. Oceanogr., 47(1), 255-265. 



133 

 

Hall, R. O. Jr. and J. Tank (2003), Ecosystem metabolism controls nitrogen uptake in streams in 

Grand Teton National Park, Wyoming, Limnol. Oceanogr., 48(3), 1120-1128. 

Hall, R. O. Jr., J. L. Tank, D. J. Sobota, P. J. Mulholland, J. M. O’Brien, W. K. Dodds, J. R. 

Webster, H. M. Valett, G. C. Poole, B. J. Peterson, J. L. Meyer, W. H. McDowell, S. L. 

Johnson, S. K. Hamilton, N. B. Grimm, S. V. Gregory, C. N. Dahm, L. W. Cooper, L. R. 

Ashkenas, S. M. Thomas, R. W. Sheibley, J. D. Potter, B. R. Niederlehner, L. T. Johnson, A. 

M. Helton, C. M. Crenshaw, A. J. Burgin, M. J. Bernot, J. J. Beaulieu, and C. P. Arango 

(2009a), Nitrate removal in stream ecosystems measured by 15N addition experiments: Total 

uptake, Limnol. Oceanogr., 54(3), 653-665, 2009a. 

Hall, R. O. Jr, M. A. Baker, C. D. Arp, and B. J. Koch (2009b), Hydrologic control of nitrogen 

removal, storage, and export in a mountain stream, Limnol. Oceanogr., 54(6), 2128-2142. 

Harman, C. J., P. S. C. Rao, N. B. Basu, G. S. McGrath, P. Kumar and M. Sivapalan (2011).  

Climate, soil and vegetation controls on the temporal variability of vadose zone transport. 

Water Resour. Res. 47, W00J13, doi:10.1029/2010WR010194. 

Helton, A. M., G. C. Poole, J. L. Meyer, W. M Wollheim, B. J. Peterson, P. J. Mulholland5, E. S. 

Bernhardt, J. A. Stanford, C. Arango, L. R Ashkenas, L. W. Cooper, W. K Dodds, S. V. 

Gregory, R. O. Hall Jr, S. K Hamilton, S. L. Johnson, W. H. McDowell, J. D. Potter, J. L 

Tank, S. M. Thomas, H. M. Valett, J. R. Webster, and L. Zeglin (2011), Thinking outside the 

channel: modeling nitrogen cycling in networked river ecosystems. Front. Ecol. Environ., 

9(4): 229–238, doi:10.1890/080211. 

Li, H. and M. Sivapalan (2011), Effect of spatial heterogeneity of runoff generation mechanisms 

on the scaling behavior of event runoff responses in a natural river basin. Water Resour. Res., 

47, W00H08, doi:10.1029/2010WR009712. 

Li, H, M. Sivapalan, D. Liu and F. Tian (2010), Water and nutrient balances in a large tile-

drained agricultural catchment: A distributed modeling study.  Hydrol. Earth Syst. Sci., 14, 

2259–2275, doi:10.5194/hess-14-2259-2010. 

Lyne, V. and M. H. Hollick (1979), Stochastic time-variable rainfall-runoff modelling. In: Proc. 

Hydrology and Water Resources Symposium, Perth, pp. 89-92, Inst. of Engrs. Australia. 

Marti, E., N. B. Grimm and S. G. Fisher (1997), Pre- and postflood retention efficiency of 

nitrogen in a Sonoran Desert stream. J. N. Am. Benthol. Soc. 16, 805–819. 

Mitchell, J. K., G. F. McIsaac, S. E. Walker, and M. C. Hirschi (2000), Nitrate in river and 

subsurface drainage flows from an east central Illinois watershed, Transactions of the ASAE, 

43(2), 337-342. 

Mulholland, P. J., and D. L. DeAngelis (2000),  Effect of surface/subsurface exchange on 

nutrient dynamics and nutrient spiraling in streams, pp. 149-166.  In: J. B. Jones, Jr. and P. J. 

Mulholland (eds.), Streams and Ground Waters. Academic Press, San Diego, CA. 



134 

 

Mulholland, P. J., J. L. Tank, J. R. Webster, W. B. Bowden, W. K. Dodds, S. V. Gregory, N. B. 

Grimm, S. K. Hamilton, S. L. Johnson, E. Marti, W. H. McDowell, J. L. Merriam, J. L. 

Meyer, B. J. Peterson, H. M. Valett and W. M. Wollheim (2002), Can uptake length in 

stream be determined by nutrient addition experiments? Results from an inter-biome 

comparison study, J. N. Am. Benthol. Soc., 21(4), 504-560. 

Mulholland, P. J., A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. L. 

Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, S. V. 

Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M. Valett, J. R. 

Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. Crenshaw, L. T. 

Johnson, B. R. Niederlehner, J. M. O'Brien, J. D. Potter, R. W. Sheibley, D. J. Sobota and S. 

M. Thomas (2008), Stream denitrification across biomes and its response to anthropogenic 

nitrate loading. Nature, 452, 202–205. 

Newbold, J. D., P. J. Mulholland, J. W. Elwood and R. V. O’Neill (1982), Organic-carbon 

spiraling in stream ecosystems, Oikos, 38, 266– 272. 

O’Brien, J. M., W. K. Dodds, K. C. Wilson, J. N. Murdock, and J. Eichmiller (2007), The 

saturation of N cycling in Central Plains streams: 15N experiments across abroad gradient of 

nitrate concentrations, Biogeochemistry, 84, 31-49, doi: 10.1007/s10533-007-9073-7. 

Ocampo, C. J, C. E. Oldham and M. Sivapalan (2006), Nitrate attenuation in agricultural 

catchments: Shifting balances between transport and reaction. Water Resour. Res., 42, 

W01408, doi: 10.1029/2004WR003773. 

Paul, M. J. and R. O. Hall (2002), Particle transport and transient storage along a stream size 

gradient in the Hubbard Brook Experimental Forest. J. N. Am. Benthol. Soc., 21(2):195-205. 

Payn, R.A., M. N. Gooseff, D. A. Benson, O. A. Cirpka, J. A. Zarnetske, W. B. Bowden, J. P. 

McNamara and J. H. Bradford (2008), Comparison of instantaneous and constant-rate tracer 

experiments through non-parametric analysis of residence time distributions, Water Resour. 

Res., 44, doi:10.1029/2007WR006274. 

Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. 

Marti, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. 

Hamilton, S. Gregory, D. D. Morrall (2001), Control of nitrogen export from watersheds by 

headwater streams, Science, 292(5514), 86–90. 

Rabalais, N. N., R. E. Turner and W. J. Wiseman, Jr. (2002), Gulf of Mexico hypoxia, aka “the 

dead zone”, Annu. Rev. Ecol. Syst., 33, 235-263. 

Reggiani, P., M. Sivapalan and S.M. Hassanizadeh (1998), A unifying framework for catchment 

thermodynamics: balance equations for mass, momentum, energy and entropy, and the 

second law of thermodynamics, Adv. Water Resour., 22, 367–398.  

Reggiani, P., S. M. Hassanizadeh and M. Sivapalan (1999), A unifying framework for watershed 

thermodynamics: constitutive relationships. Adv. Water Resour., 23, 15-39. 



135 

 

Reggiani, P., M. Sivapalan, S.M. Hassanizadeh and W. G. Gray (2001), Coupled equations for 

mass and momentum balance in a bifurcating stream channel network: theoretical derivation 

and computational experiments, Proc. Roy. Soc., Ser. A. Math. Phys. Engng. Sci., 457, 157–

189. 

Robinson, J. S. and M. Sivapalan (1997), Temporal scales and hydrological regimes: 

Implications for flood frequency scaling. Water Resour. Res., 33, 12, 2981-2999.  

Robinson, J. S., M. Sivapalan and J. D. Snell (1995), On the relative roles of hillslope processes, 

channel routing and network geomorphology in the hydrological response of natural 

catchments. Water Resour. Res., 31(12), 3089-3101. 

Royer, T. V., M. B. David and L. E. Gentry (2006), Timing of riverine export of nitrate and 

phosphorus from agricultural watersheds in Illinois: Implications for reducing nutrient 

loading to the Mississippi River. Environmental Science and Technology, 40: 4126–4131. 

Runkel, R. L. and K. E. Bencala (1995), Transport of Reacting Solutes in Rivers and Streams, 

Chapter 5: in V. P. Singh (editor), Environmental Hydrology, Kluwer Academic Publishers, 

Dordrecht, The Netherlands, p. 137-164, 1995. 

Runkel, R. L. (1998), One Dimensional Transport with Inflow and Storage (OTIS): A Solute 

Transport Model for Streams and Rivers. U.S. Geological Survey Water Resources 

Investigation Report No. 98–4018, http://co.water.usgs.gov/otis. 

Runkel, R. L. (2000), Using OTIS to model solute transport in streams and rivers, U.S. Geol. 

Surv. Fact Sheet, FS-138-99, 4 pp. 

Runkel, R. L. (2007), Toward a transport-based analysis of nutrient spiraling and uptake in 

streams. Limnol. Oceanogr.: Methods, 5, 50–62, 2007. 

Seitzinger, S. P., R. V. Styles, E. W. Boyer, R. B. Alexander, G. Billen, R. W. Howarth, B. 

Mayer and N. V. Breemen (2002), Nitrogen retention in rivers: model development and 

application to watersheds in the northeastern U.S.A., Biogeochemistry, 57/58: 199–237, 2002. 

Smith, R. A., G. E. Schwarz and R. B. Alexander (1997), Regional interpretation of water quality 

monitoring data, Water Resour. Res., 33 (12), 2781-2798. 

Stall, J. B. and Y. S. Fok (1968), Hydraulic Geometry of Illinois Streams, Illinois State Water 

Survey Report CR-92. 

Stewart, R. J., W. M. Wollheim, M. N. Gooseff, M. A. Briggs, J. M. Jacobs, B. J. Peterson and C. 

S. Hopkinson (2011), Separation of river network-scale nitrogen removal among main 

channel and two transient storage compartments, Water Resour. Res., 47, W00J10, 

doi:10.1029/2010WR009896. 

Stofleth, J. M., F. D. Shields Jr, and G. A. Fox (2008), Hyporheic and total transient storage in 

small, sand-bed streams, Hydrol. Process. 22, 1885-1894. 



136 

 

Stream Solute Workshop (1990), Concepts and methods for assessing solute dynamics in stream 

ecosystems, J. N. Am. Benthol. Soc., 9(2), 95-119, 1990. 

Tank, J. L., E. J. Rosi-Marshall, M. A. Baker and R. O. Hall, Jr. (2008), Are rivers just big 

streams? A pulse method to quantify nitrogen demand in a large river, Ecology, 89(10), 

2935-2945. 

Thompson, S. E., N. B. Basu, J. Lascurain Jr., A. Aubeneau, and P. S. C. Rao (2011), Relative 

dominance of hydrologic versus biogeochemical factors on solute export across impact 

gradients. Water Resour. Res., 47, W00J05, doi:10.1029/2010WR009605. 

Tian, F. (2006), Study on Thermodynamic Watershed Hydrological Model (THModel). Ph.D. 

thesis, Department of Hydraulic Engineering, Tsinghua University, Beijing, China, 168pp. 

Tian, F., H. Hu, Z. Lei and M. Sivapalan (2006), Extension of the representative elementary 

watershed approach for cold regions via explicit treatment of energy related processes. 

Hydrol. Earth Syst. Sci., 10, 619-644. 

Viney, N. R., M. Sivapalan and D. E. Deeley (2000), A conceptual model of nutrient 

mobilisation and transport applicable at large catchment scales. J. Hydrol., 240(1-2), 23-44.  

Webster, J. R., B. C. Patten (1979), Effects of watershed perturbation on stream potassium and 

calcium dynamics, Ecol. Monogr., 49, 51–72  

Wollheim, W. M., C. J. Vörösmarty, B. J. Peterson, S. P. Seitzinger, C. S. Hopkinson (2006), 

Relationship between river size and nutrient removal, Geophys. Res. Lett., 33, L06410, 

doi:10.1029/2006GL025845. 

Wollheim, W. M., B. J. Peterson, S. M. Thomas, C. H. Hopkinson and C. J. Vorosmarty (2008), 

Dynamics of N removal over annual time periods in a suburban river network, J. Geophys. 

Res. -Biogeosciences, 113, G03038. 

 



137 

 

Chapter 5. 

Scale Effects of Dissolved Nutrient Retention in River Networks: A 

Comparative Modeling Investigation 

Abstract1 

The river network is the most important connector of terrestrial ecosystems to the oceans and 

other receiving waters across spatial gradients. Water, sediments and nutrients are transported, 

cycled and altered by coupled hydrological, erosional and biogeochemical processes occurring in 

river networks. Our understanding of dissolved nutrient spiraling processes is limited in big 

rivers (>2000L/s) due to the difficulty and costs in doing empirical measurements at all scales 

across the river network. Coupled dynamic hydrologic and biogeochemical models at the 

network scale may be a way to generate hypotheses and where possible to make needed 

predictions. In this chapter we modify the coupled hydrologic and biogeochemical process model 

used previously in Chapter 4 with field measurements in small rivers as well as big rivers to 

simulate the nutrient spiraling at the network scale, and to gain understanding of the role of big 

rivers. The biogeochemical processes in the model are described based on empirical regressions 

between the uptake rates and hydrological and biological characteristics derived from field 

measurements in 15 Western and Midwestern catchments with different turbidity and land uses. 

The coupled model is then applied to the 15 catchments to explore nutrient uptake patterns 

within catchments, between catchments, and across three different solutes. The model 

simulations suggest that big rivers are not pipes, that they contribute more to nutrient uptake 

given their share of stream length. The differences between catchments can be attributed to 

differences in nutrient input loads and the uptake lengths. A regression tree model applied to 

understand the dominant controls of nutrient transport in the river network for each solute 

indicates that ammonium uptake is dominated by land use and the biotic metabolism while 

nitrate retention is mainly influenced by human impacts, in the form of land use, and ammonium 

is preferred by the microbes and algae rather than nitrate. Different from the two compounds of 

nitrogen, phosphate retention is dominated by turbidity, which may be because of the role of 

sediment sorption. With future quantification of the transient storage size and uptake rates in the 

future, this model framework could be used to estimate pelagic, benthic, and transient storage 
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uptake components of the total uptake separately to assess the hydrologic, biologic and 

geomorphologic controls on nutrient spiraling across catchments and solutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Material in this chapter work is planned to be submitted for publication to the Water Resources 

Research (or other) journal. All figures, tables and data presented here were created by Sheng Ye, 

unless otherwise indicated. 



139 

 

5.1 Introduction 

Due to increasing human activities such as urbanization and fertilizer application for agricultural 

use since the beginning of the 20th century, nitrogen and phosphorus inputs to aquatic systems 

worldwide have increased significantly (Bouwman et al., 2005; Seitzinger et al., 2005; 

Mulholland et al., 2008). These excessive nutrients have led to severe degradation of fresh water 

and coastal ecosystems, causing growth of blue-green algae, reduction of dissolved oxygen, 

increasing aquatic organism mortality, and decreasing species diversity. In this way they have 

caused damage to entire aquatic ecosystems (OECD, 1982), reduced water quality of coastal 

areas, and destroyed coastal environments through hypoxia, as is the case in the Gulf of Mexico 

(Alexander, et al., 2000; Rabalais et al., 2002). As the critical link between the terrestrial and 

coastal ecosystems, the river network plays an important role in nutrient transport and 

transformation. Despite the large fraction of nutrient transformation and removal occurring in the 

landscape itself, studies show that a large amount of nutrients can also be retained and removed 

by the aquatic system associated with the river network itself (Alexander et al., 2000; Bernhardt 

et al., 2005). In other words, the river system does not simply deliver nutrient from the landscape 

all the way to the ocean (i.e., in the form of “pipes” or conduits), but it also acts as a significant 

nutrient sink through processes such as plant uptake, bacteria-mediated denitrification and 

sediment sorption during the transport to the ocean (Billen et al., 1991).  

 Given the importance of the riverine aquatic system for nutrient retention, extensive 

research has been carried out in this area to understand how nitrogen and phosphorus are 

transformed and transported in streams/rivers, through both empirical field measurements 

(Dodds et al., 2002; Tank et al., 2008; Claessens and Tague, 2009; Claessens et al., 2009; Hall et 

al., 2009) and  model simulations (Donner et al., 2002; Seitzinger et al., 2002; Wollheim et al., 

2008a; Alexander et al., 2009; Aguilera et al., 2013). Many of the field measurements have been 

conducted in small headwaters (Ensign and Doyle, 2006; Tank et al., 2008) since nutrient 

removal rate is believed to be high in small headwater streams due to the shallow flow depths 

that normally prevail there and also because headwater streams generally make up a larger 

fraction of the total stream length in a river basin than do “big rivers” (Alexander et al., 2000; 

Peterson et al., 2001). However, recent simulation studies have found that despite their relatively 
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small fraction of the total stream length in a river basin, the big river contribution to total nutrient 

uptake can be considerably more than would be commensurate with their fraction of total stream 

length. In the 16 eastern catchments studied by Seitzinger et al. (2002), the 1st to 4th order 

streams, which constituted 90% of the total stream length, yet accounted for only half of the total 

nutrient retention while the 5th and higher order streams retained the other half of the nutrient 

uptake within the small 10% of the total stream length that they occupied. Other simulation 

based studies have also indicated that large rivers could have considerable impact on nutrient 

retention in river basins as a whole due to the effect of increases in both biological activity 

(Wollheim et al., 2006) and nutrient inputs with increasing stream size (Mulholland et al., 2008; 

Ye et al., 2012).  

If the big rivers can no longer be considered as “pipes” that merely serve as conduits (i.e., 

transporters) of nutrient transport, then the nutrient spiraling that occurs within the river system 

consisting of the hierarchical network of inter-connected stream reaches of various sizes deserve 

much more attention than they have attracted before. To better understand the role of big rivers, 

we would of course need more empirical data from field measurements carried out in streams of 

all sizes, but especially in big rivers, while respecting their position in the stream network. 

However, most previous experiments in this area have been carried out in small headwater 

streams during low flow periods with discharges less than 1000L/s, indeed mostly less than 

200L/s (Tank et al., 2008). Although several recent empirical studies are now giving more 

attention to studying big rivers (Tank et al., 2008), there is still not much published data 

available for the community to use towards the development of more universal theories 

applicable across all scales (Aguilera et al., 2013). Most previous observations have been made 

at the outlet of a single segment of the river, and there have been relatively few experiments 

conducted across the entire river network, from headwater to downstream outlet all at once 

(Seitzinger et al., 2002), probably because it is expensive and time consuming to measure the 

nutrient spiraling processes continuously and in space-time across the entire stream network 

(Helton et al., 2011). Given these measurement difficulties, river network models of nutrient 

transport and transformation may be a suitable alternative tool to upscale the mechanisms found 

at the reach scale to the observations at basin scale (Aguilera et al., 2013) and extrapolate the 

measured uptake parameters at both scales to the whole river network. Such models could also 

be used to further study the impact of network scale heterogeneity in lateral nutrient input 
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concentration, temporal hydrologic variability, and in-stream nutrient saturation, on nutrient 

retention mechanisms across the river network (Wollheim et al., 2008a, b).  

Several different models have been developed to quantify nutrient uptake during 

transport in river networks (Smith et al. 1997; Alexander et al. 2000, 2009; Seitzinger et al., 2002; 

Wollheim 2006, 2008a). Most of these models are parameterized on the basis of previous suite of 

measurements made at small streams only (i.e., LINX II dataset Mulholland et al., 2008, 2009; 

Hall et al., 2009) through developing multiple regression relationships. The potential problems 

with this approach are: 1) due to the lack of big river nutrient uptake data, it is hard to validate 

results simulated by simple extrapolation of the regressions using data from small streams to big 

rivers – even if the results were calibrated we may still obtain apparently right results for the 

wrong reasons; and, 2) there may be a significant variability in the regression relationships 

governing nutrient uptake among different catchments – especially when the magnitude of 

nutrient input grows with river size, this discrepancy between specific catchments to what is 

predicted by the regression line could be magnified by the increasing magnitude of nutrient 

inputs.  Model simulations could be improved if we could develop a relatively universal model 

framework that could scale up from the reach scale to network scale with sufficient knowledge 

of nutrient uptake mechanisms across all scales (including small streams and big rivers), 

parameterized by measurements at the outlet to account for the local characteristics of nutrient 

retention (Marti et al., 2004; Dodds et al., 2006; Tank et al., 2008; Aguilera et al., 2013). This is 

the motivation for the present work: this work is supported by nutrient uptake data collected 

during sustained field experiments in 15 big rivers across the United States, supplementing the 

previous dataset assembled in a large number of small streams (called here as the meta-data), 

which has been the subject of several previous modeling studies. 

The work presented here is aimed at developing a modeling framework that up-scales the 

reach scale measurements to the catchment scale by empirical relationships of nutrient uptake 

characteristic and the hydrologic and biogeochemical characteristics of the river network across 

scales. This is done by adjusting the relationship obtained using measured data (including meta-

data, as well as new data in 15 big rivers) and parameterize the model for these 15 specific 

catchments. The goals of the work are to: 1) develop a model that utilizes both the meta-data and 

new field measurements in big rivers to describe nutrient uptake processes at catchment scale; 2) 
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examine the spatial distribution of nutrient uptake within a single catchment, including 

quantifying the distribution as a function of river size, i.e., small streams vs. big rivers; 3) 

characterize the variation of the spatial patterns of nutrient uptake across several study 

catchments and across three different solutes; and 4) explore likely physical controls for the 

estimated within-catchment and between-catchment patterns of nutrient removals. 

5.2 Methodology 

5.2.1 Model Structure 

The coupled network flow and nutrient transport model presented here is a further extension of 

the model used previously by Ye et al. (2012; also Chapter 4 of this dissertation). The flow part 

of the model is based on the REW approach developed by Reggiani et al. (2001): the whole 

catchment is divided into a number of sub-catchments (REWs), each REW, as the smallest 

functional unit, includes one stream reach and is connected to upstream and downstream 

reaches/REWs via the river network. Tian et al. (2006) implemented a numerical model of flow 

in the river network, THREW (TsingHua Representative Elementary Catchment) based on the 

REW concepts, which was later used in a distributed runoff modeling investigation by Li and 

Sivapalan (2011). The model we use here is a simplified version of the original THREW model, 

while keeping the main mass and momentum balance equations for flow in the river network 

from the THREW model.  

The flow model has several advantages compared to models presently in use for flow and 

nutrient transport at network scale: (i) it is physically based at the scale of constituent stream 

reaches, (ii) it can easily be applied to simulate dynamic flow conditions, not just steady state, 

and (iii) it is computationally efficient, and hence can easily be applied to large networks over 

long timescales. The mass balance equations for each component stream reach are as follows: 
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where Si is water storage at local reach i [L3], Q i
l is the lateral inflow [L3 T-1], Q j

up is the inflow 

from upstream nodes [L3 T-1], v j is the velocity at upstream end, for reach j [L T-1 ], A j  is cross-

sectional area of the jth upstream reach [L2] (=Sj/L, where L is the reach length), Qi
out  is the 

outflow from reach i  [L3 T-1], and vi is the velocity at local reach i [L T-1]. Velocity vi is 

estimated by the reach scale momentum balance equation (i.e., Saint-Venant momentum balance 

equation). 
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where ni is roughness coefficient of local REW i, Ri is the hydraulic radius Pi is average wetted 

perimeter, sini is the mean slope of REW i, and hi is the mean depth of REW i [L]. Detailed 

derivation of these equations and an explanation of the assumptions behind them can be found in 

Tian et al. (2006) and Ye et al. (2012).  

 

Figure 5.1: Schematic of the solute transport model coupled with hydrological dynamics: (a) 

Catchment discretization into many representative elementary catchments (REWs) distributed 

around the river network; (b) each REW includes a channel reach receiving water and dissolved 

nutrient from lateral inflow 
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Note that, different from Ye et al. (2012), due to the lack of reliable hydraulic geometry 

information for the 15 study catchments reported here (see later), the shape of the channel is 

assumed to be rectangular and the channel width is estimated from DEMs available for these 

catchments, and then rescaled through conditioning with the measured width at the catchment 

outlet. A schematic description of the sub-catchment delineation for a typical catchment and the 

flow routing across the river network is presented in Figure 5.1.  

The nutrient part of the model, expressed in terms of the mass balance equation for nutrient 

transport and transformation, also at the scale of an individual stream reach in the river network, 

is as follows: 
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where Ci is the solute concentration (i.e., NH4, NO3, or PO4) at the local reach [ML-3], C i
l is the 

solute concentration of lateral inflow [ML-3], C j
up is the solute concentration of the upstream 

reach j [ML-3], N i
tu is gross retention in the water column  [MT-1], N i

min is the mineralization 

component returning to the water column  [MT-1]. Mineralization is estimated as a fraction of the 

total nutrient retention, represented as a constant . Based on LINX I data set (Peterson et al., 

2001),  is set to 0.185 for NH4, 0.034 for NO3 (Laura Johnson, personal communication) and 

0.045 for PO4 (Mulholland et al., 1985). The term R is the fraction of the nutrient in the water 

column that would be retained [-], and is estimated as follows (Wollheim et al., 2006): 
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where Sw
i is the uptake length at the local reach i. This formulation is identical to two alternative 

formulations that have been proposed in the literature, given by:  
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In Equation 8(a) proposed by Wollheim et al. (2006), HL [LT-1] is the hydraulic load defined as 

HL = Q/(wL), and vf [LT-1] is vertical uptake velocity defined as vf = Q/(wSw), where w is the 

width of the channel [L] and Q is discharge [L3 T-1]. In Equation 8(b) used by Ye et al. (2012; 

also Chapter 4 of this dissertation), k (T-1) is an uptake rate k (T-1), defined as the ratio of flow 

velocity (LT-1) over the uptake length Sw [L], i.e., k=v/Sw, which makes Li/vi a residence time in 

reach i. Clearly Equations 7, 8(a) and 8(b) represent equivalent formulations.  

However, in this chapter we will use the formulation in Equation (7) because it uses 

uptake length Sw, which is obtained by direct measurement in the field (both in the case of the 

LINX I dataset as well as in the “big river” experiments), as in this way we avoid the rounding 

errors that would be introduced during the conversion from one formulation to another. Also, the 

nutrient uptake metrics measured in the 15 big rivers refer to overall “bulk” uptake, instead of 

separate main channel and transient storage components (as was done by Ye et al., 2012, Chapter 

4). At present we do not have the data support to separate the total uptake into separate main 

channel and transient storage contributions.  

 We also include a mineralization component here, estimated as a percentage of the total 

uptake, where the percentage is borrowed from the previous studies in the literature. 

Theoretically the measured uptake is the net uptake, i.e., total uptake minus mineralization. 

However, since the duration of the field experiments is too short for solutes retained by the biota 

during the experiments to be mineralized back into the water column, the only amount of 

nutrients mineralized is from previous uptake, which is much smaller compared to the nutrients 

added and retained during the experiments. Therefore, we can ignore the nutrient mineralization 

during the experiments and consider the measured uptake length is approximately related to total 

net uptake, which means we need to reintroduce a mineralization component to account for 

nutrients mineralized from uptake prior to the experiments.   

5.2.2 Study catchments 

To develop the relationship between nutrient uptake and catchment characteristics across scales, 

big river measurements are needed to fill the lack of knowledge in rivers with discharges larger 
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than 2000L/s. Five Midwestern rivers and ten Western rivers across the United States, spanning a 

gradient of nutrient enrichment, biological activity and turbidity were selected by the Big River 

Team (Tank et al., 2008). These are the catchments that will be used in the comparative 

modeling investigation presented in this paper. Figure 5.2 presents a map showing the locations 

of the 15 big rivers. The Midwestern rivers are relatively nutrient enriched with high percentage 

of agricultural land use, while the ten Western rivers (five arid and five mountainous) have 

relatively low nutrient concentrations (except for the Colorado River), covering a wide range of 

sediment concentrations and turbidity. 

 The model was set up in each of these 15 catchments. The 15 rivers can be grouped into 

three classes based on their climate and land use characteristics: the five Midwest rivers 

(Muskegon, Tippecanoe, White, Manistee, and St. Joseph) with high nutrient concentrations due 

to intense agricultural land use, five mountain west rivers (Salmon, Snake, Buffalo, Seedskadee 

and Henry’s Folk) with relatively low nutrient concentration level and high forest cover, and five 

arid west rivers (Bear, Colorado, Ouray, Green, North Platte) having an arid climate. The 10 

western catchments are part of the Great Divide Basin. The uptake lengths and concentrations for 

ammonium, nitrate, soluble reactive phosphorus measured at the outlets of these catchments by 

the Big River Team were used for the model development and calibration, as discussed in 

Section 2.2. Note that, due to the presence of a reservoir along the river network, we did not 

include the Bear Lake in the Bear River catchment in the model simulations, as the model is not 

yet capable of lake or reservoir simulation.  Bear Lake is one small tributary of the Bear River, 

and also given the small influence of lakes and reservoirs on nutrient retention (Seitzinger et al., 

2002), removing the lake from further consideration is deemed acceptable for the purpose of this 

study.  

5.2.3 Model set up and parameterization 

To apply the model in real world catchments, we need the lateral inflow discharge (Ql) and 

concentration (Cl) as inputs to set up the model, and then the parameterization of the local uptake 

length for each solute in each stream reach in the river network (Sw). Below is a brief description 

of how these issues are handled in this study. 
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Figure 5.2: Map of the 15 big rivers: five mountain west rivers: Salmon River, ID (SAL); 

Henry’s Folk, ID (HEN); Snake River, WY (SNA); Buffalo River, WY (BUF); Seedskadee 

River, WY (SEE);  five arid west rivers: Bear River, UT (BEA); Green River, UT (GRE); Ouray 

River, UT (OUR); Colorado River, CO (COL); North Platte River, WY (NPL); and five Midwest 

rivers: Manistee River, MI (MAN); St. Joseph River, MI (STJ); Muskegon River, MI (MUS); 

Tippecanoe River, IN (TIP); and White River, IN (WHI). 
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Inputs: Lateral inflow and concentration 

Fifteen (15) minute flow data were collected from the USGS gauges at the outlet of each 

catchment near where the field experiments were conducted during the summer when the uptake 

length was measured, as part of the “big river” experiments. Since the experiments were 

conducted during the low flow period, the temporal variability of flow was very low and for 

simplicity in the model it was assumed to be at steady state during the measurements. An 

average value was then calculated from the three month, 15 minute flow data, normalized by the 

drainage area, which is then used as lateral inflow, assuming that it is homogeneous across the 

catchment. For each sub-catchment (REW), the lateral inputs were estimated after multiplying 

the estimated lateral inflow per unit area by the individual area of each REW.  

 Due to the lack of data on lateral inflow concentrations, and also since the aim of this 

paper is to understand how nutrients are retained in the river network, as a simplification we 

assumed a homogeneous and constant (in time) nutrient concentration of the lateral inflow. With 

the input of the lateral water inflows and nutrient concentrations, the model can then simulate the 

concentrations everywhere in the network, including at the catchment outlet, which we can then 

be compared against concentrations measured at the outlet. This provides the ability to adjust 

(i.e., calibrate) the lateral inflow concentration everywhere in the catchment such that model 

simulated concentration at the outlet matches the measured one. In addition, we collected 

nutrient concentrations from several USGS groundwater sites located within the study 

catchments and, as a check, compared these against the calibrated lateral concentrations. The 

comparisons indicated (Appendix Table A.1) that the calibrated lateral inflow concentrations for 

the three solutes (NH4, NO3 and PO4) in most of the Western rivers fell within the range of 

USGS observations. The calibrated values were however found to be larger than the USGS 

groundwater measurements in the Mid-western Rivers, especially for NO3. One likely reason 

could be the intense anthropogenic activities within these catchments: much of the nutrients in 

these river systems may come from surface or near-surface flows caused by fertilizer application 

in tile drained landscapes. Either way, the comparison gave us confidence in the calibrated lateral 

flow concentrations assumed in the model: they are within the reasonable range. 
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Parameterization: Sw  

Uptake length (Sw) is defined as the distance that a solute will travel in the downstream direction 

in the river before it is removed from the water column. However, we only have measurements 

of Sw at one point for the whole river (i.e., the outlet), whereas to model the nutrient uptake in the 

entire river network, we need the Sw for each segment of the network.  

Therefore, we need a scaling approach to estimate the Sw for each reach based on the 

measured Sw at the outlet. Based on previous experience, we know that Sw is closely related to 

the flow (Tank et al., 2008) as well as the concentration (Mulholland et al, 2008; Alexander et al., 

2009). Here we adapted the scaling approach presented in Hall et al. (2013): we perform a 

multiple linear regression analysis of the relationship between uptake length (Sw) and the flow 

condition (Q/w) as well as the concentration level (C), in the form of logSw = 1+ 

2log(Q/w)+3logC. In this study, we combine the previous meta-data used in Hall et al. (2013), 

and add to it the new data obtained during the “big river” experiments on the 15 rivers. To obtain 

the regression relationship we used the same algorithm adopted by Hall et al. (2013), and 

obtained separate scaling relationship for the three solutes (NH4, NO3, PO4) as follows:  

NH4: 
iiii

w CwQS log32.0)/log(79.018.2log    (9a) 

NO3: 
iiii

w CwQS log27.0)/log(52.052.2log    (9b) 

PO4: 
iiii

w CwQS log13.0)/log(98.046.2log    (9c) 

where Qi is the flow discharge at local reach i, wi is the width of reach i, Ci is the solute 

concentration at reach i as mentioned before. The statistics of the three regressions can be found 

in table 5.1: 

Table 5.1: The sample size n, R2 for the three regressions 

Solutes Sample size (n) R2 

NH4 159 0.70 

NO3 208 0.3 

PO4 124 0.68 
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However, the observations from the 15 big river catchments indicated large variations 

between the rivers, the difference between the actual Sw and the predicted Sw was found to be 

more than an order of magnitude in some catchments. To accommodate the variations between 

the big rivers, we rescaled the predicted Sw: assumed the relationship between Sw and the flow 

condition (Q/w) and concentration level (C) are the same across scales and the various 

catchments, that is, the two coefficients 2 and 3 are universal for all catchments, whereas the 

intercept (1) which indicates the specific biological demand in each catchment, and for this 

reason was allowed to vary from river to river based on the characteristics of the benthic and 

pelagic biota. Based on the Sw, Q/w and concentrations measured at the outlet, we can then back-

calculate the 1 value for each river. For example, take the Sw of NH4 in Buffalo River: the 

measured Sw is14868 m, the concentration is 5g/L, and Q/w is 32.67m2/min, now substitute 

these into Equation 9a: log(14868) = 1+ 0.79log(32.67) + 0.32log(5), this way we get 1=2.75. 

We then rescale the Sw for each solute in each river to get a specific scaling relationship of Sw 

over the flow condition (Q/w) and concentration level (C). 

 In the model, we applied three different scenarios to explore how different the nutrient 

uptake length would be: 1) the Sw predicted by the equation presented in Hall et al. (2013) with 

only the small stream data from previous meta-analysis (i.e., meta-data); 2) the Sw predicted by 

Equation 9 with both the small stream data and the 15 big river data (meta-data + big rivers); 3) 

and the rescaled Sw from Equation 9 as we described above (empirically re-scaled). As the 

rescaled Sw is based on the measured Sw, for the brevity of the paper, we will use the rescaled Sw 

to stand for the actual observed Sw in the paper, and use the “universal regressions” to refer to the 

Sw predicted by equation presented in Hall et al. (2013) with only the small stream data from 

previous meta-analysis and by Equation 9.  

5.2.4 Regression tree model 

The Big River Team collected not only uptake metrics but also many parameters that may be 

helpful to characterize the study catchments, such as land use information, metabolism and 

biologic activity. One of the objectives of this study is to characterize the differences in nutrient 

uptake rates between the catchments and attribute these differences to aspects of the climate and 

landscape characteristics, including biogeochemical factors. To achieve this, in this study we 
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propose to use a regression tree model to explore the relationship between the simulated reach 

scale daily net uptake rates (gross retention – mineralization) per kilometer and a suite of 

potential physical characteristics. 

 Regression tree is a nonlinear predictive model. It is constructed by recursively 

partitioning the available data set into two subsets. It begins with the whole data space, 

progresses along in steps, and stops based on the adopted stopping rule (Breiman et al., 1984). 

The terminal cells are considered as leaves and assigned an average value of the predicted 

variable. Each time the data space is divided into two child nodes (tR, tL), we aim to maximize 

the deduction of residual sum of squares (RSS) between the parent nodes and the sum of child 

nodes (t): 

))()(()()( LR tRSStRSStRSSt    (10) 

  2)()( avgi yytRSS     (11) 

where (t) is the target function, the deduction of residual sum of squares we want to maximize, 

RSS(t) is the residual sum of squares of the total data set, RSS(tR) is the residual sum of squares 

of the right tree node, and RSS(tL) is the residual sum of squares of the left tree node, yi is the ith 

value of the predict array, here it is the daily net uptake per kilometer for ith river, and yavg is the 

mean of all the predict variables, here it is the mean daily net uptake per kilometer for all the 

rivers belong to the subset. 

 The tree model is helpful when there are several candidate influential variables which are 

also inter-correlated and there is a big difference among the samples, in which case a global 

model such as linear regression, may not work for all the samples. Since we have many 

candidate catchment characteristics we think may be related to the nutrient uptake, and the 

biologic characteristics are related in a complex way, the regression tree model suits our purpose 

well. 
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5.3 Results 

5.3.1 Uptake length  

The first set of results relate to the scaling of the uptake length, Sw, on the basis of Equation 9, 

using the LINX I meta-data for small streams through combination with the “big river” data. 

Figure 5.3 presents the uptake lengths for the three solutes in all 15 catchments estimated in three 

different ways:  (1) the equation presented in Hall et al. (2013) with only the small stream data 

from previous meta-analysis (labeled meta-data); Equation 9 with the use of both the small 

stream data (i.e., meta-data) and the data from big rivers (labeled meta data + big rivers); and the 

rescaled Sw from Equation 9 using the method described in Section 5.2.3 (i.e., empirically re-

scaled). For some of the catchments, the results are left blank because the Sw there could not be 

measured. 

 As can be seen from Figure 5.3, the variation of empirically re-scaled Sw among the 

catchments is larger than the variation of Sw predicted by the two universal regressions with 

meta-data only and using meta-data plus big river data. This suggests that the biologic 

characteristics in these catchments (i.e., as inferred from the intercepts in the Sw/(Q/w) versus 

concentration relationships) are highly variable, and hence it is necessary to treat each river 

individually to account for their unique characteristics. Generally, the empirically re-scaled Sw is 

larger than the Sw predicted by meta-data or meta-data plus big river data in most of the 

catchments, except for a few catchments where they are smaller: e.g., Sw of NH4 at Snake and 

Green Rivers; Sw of NO3 at St. Joseph River; and Sw of PO4 at St. Joseph, Muskegon, Seedskadee 

and Ouray Rivers. But the differences between the empirically rescaled Sw and the Sw estimated 

from regression using the meta-data only or the meta-data plus big river data are not consistent 

across the different solutes. For example, in Muskegon River the rescaled Sw for NH4 is one 

magnitude larger than Sw predicted by the two universal regressions, but the rescaled Sw for PO4 

is only half the Sw predicted by the two universal regressions. Given the difference in the uptake 

mechanisms of nitrogen and phosphorus, it is reasonable to infer that the controlling catchment 

characteristics for different solutes could be different. We will explore this in Section 5.4.3.    
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Figure 5.3: Comparison of the uptake length predicted by small streams regression of Q/w and 

concentration (blue), small streams + big river regression (cyan) and empirically re-scaled  small 

streams + big river regression by measured data (green) (a) NH4; (b) NO3; (c) PO4 

 

5.3.2 Model simulation results 

We applied the three sets of rescaled Sw estimates from Equation 9 to all the 15 rivers, 

accounting for both between-catchment and within-catchment variations of the Sw, along with the 

lateral inflow calculated from USGS flow observations at the outlet and the lateral inflow 

concentrations calibrated to match the observed concentrations at the outlet (each time based on 

the rescaled Sw). Selected results are presented in Figure 5.4. For each of the solutes, based on 

the uptake length (Sw) shown in Figure 5.3, we selected two representative catchments to present 

in Figure 5.4: one catchment has the measured uptake length (Sw) close to the Sw predicted by the 

regression relations of Hall et al. (2013) and Equation 9; the other catchments have the measured 

uptake length (Sw) either much larger or much smaller than the Sw predicted by the regression 
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equations from Hall et al. (2013) and Equation 9, leading to very different nutrient uptake 

behaviors: different concentrations, net uptake and catchment scale total percentage of removal. 

 

Figure 5.4:  (a) Mean uptake length (Sw) ; (b) mean concentration; (c) mean cumulative net 

uptake; (d) mean cumulative percentage of net uptake for each solute at catchments predicted by 

Sw from meta data (blue),  meta data plus big river observations (red) as well as re-scaled 

empirical Sw (green): (I) NH4 at Manistee; (II) NH4 at Muskegon; (III) NO3 at Green; (IV) NO3 

at St. Joseph; (V) PO4 at Manistee; (VI) PO4 at Snake. 
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 As we can see from Figure 5.4, the differences between the Sw predicted by a 

combination of the  regression relationship of Hall et al. (2013) and by Equation 9 are small 

across the various catchments: the resulting nutrient uptake behavior characteristics are almost 

the same (i.e. concentration, daily net uptake, cumulative removal portion, etc.). While the 

nutrient transport in rivers are not only different from catchment to catchment, they are also 

different in terms of the biological activities with variable divergence from the average 

regression relationship of Sw over flow condition (Q/w) and concentration, i.e., in terms of the 

difference between the rescaled Sw and the Sw calculated from Hall et al. (2013) and Equation 9.  

For example, uptake behaviors estimated using the rescaled Sw of NH4 (Figure 5.4I) and PO4 

(Figure 5.4V) at Manistee River, NO3 at Green River (Figure 5.4III) are close to the uptake 

behaviors estimated using the Sw predicted from the meta-data or the meta-data + big river data. 

They are also quite different from each other: the rescaled Sw of NH4 at Muskegon River is one 

magnitude larger the Sw estimated from the meta-data or the meta-data + big river data, leading 

to much higher concentration, one magnitude smaller daily net uptake as well as nearly 20% 

smaller in terms of the total percentage of ammonium that is retained in the water column by the 

whole catchment (Figure 5.4II). The rescaled values of Sw of NO3 at St. Joseph River is much 

smaller than that Sw predicted from the meta-data or the meta-data + big river data, resulting in 

the concentration that is nearly one third of the concentration simulated by the other two 

universal regressions and almost three times the daily net uptake and total nitrate estimated by 

the two universal regressions (Figure 5.4IV). The rescaled Sw of PO4 at Snake River is about 

twice that of the Sw estimated by the two universal regressions. As in the case of NH4 at 

Muskegon River, this leads to a higher concentration across the catchment and much smaller 

daily net uptake and total removal from the water column (Figure 5.4VI). These results indicate 

that, given the big variations that the big rivers exhibit compared to the estimated from the 

universal regressions, it is necessary to measure solute uptake metrics for each river individually. 

5.4 Discussion of results 

Once the network model calibration is completed, the model results can be mined to gain 

considerable insights into the nutrient uptake processes across the network, including variations 

as a function of scale, as well as differences between the 15 “big river” study catchments. The 

results of these diagnostic analyses are organized into three groups: (1) scaling behavior within 
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each catchment, with a particular focus on differences between big rivers and small streams, (2) 

differences of network scale variations between different catchments, and (3) differences of 

uptake behavior between the three solutes: NO3, PO4 and NH4, and their physical controls. The 

results of these analyses are presented next.  

5.4.1 Comparison within catchment: big rivers vs. small streams 

We first look at the nutrient transport patterns within a single catchment, and the effect of scale. 

Despite the variability among catchments and among solutes, there is one trend that is consistent 

in the model predictions: big rivers are not just pipes. Their contribution to nutrient retention in 

the whole river network is significant. This is illustrated next in detail.  

If big rivers are mere pipes, then we would expect an exponentially increasing uptake 

length with increased flow in the downstream direction. If the Sw increases in the downstream 

direction, then nutrient concentration would likewise increase in the downstream direction: this 

is because nutrients will continue to come into the river network with the lateral inflow, and with 

increasing Sw, less of the nutrient would be removed from the water column. As a result, daily 

net uptake would stabilize downstream due to the low retention efficiency with increasing size of 

rivers and the cumulative uptake of the total input would decrease. In the event, the model 

simulations produced completely different results. After the rapid downstream increase from 

headwater to lower order reaches, the uptake length (Sw) tended to stabilize in bigger rivers 

(Figure 5.4, 1st column), which is consistent with the findings of Hall et al. (2013) with the use of 

a simple scaling approach based on meta-data of many small streams (Hall et al., 2013). 

According to Tank et al. (2008), if Sw increases exponentially with flow, that would mean 

hydrologic control is dominant; on the other hand, if it declines at turn points, then this allows 

biologic control to takes over in big rivers. Our simulation results indicate that more probably, in 

big rivers, biologic demand increases just as hydrologic influence increases, balancing out each 

other and creating a more stable Sw, suggesting that perhaps a dynamic equilibrium may be 

reached as a result. As we look at the nutrient uptake results, instead of increasing, we see stable 

concentrations downstream after the initial quick decline (Figure 5.4, 2nd column). Also the daily 

net uptake keeps increasing linearly with flow, and the increment does not decline downstream 



157 

 

(Figure 5.3, 3rd column); and the cumulative uptake of the total input tends to stabilize after the 

rapid increase in small order streams.  

To quantify the big river contributions to nutrient retention, we divided the stream reaches within 

the river networks into two groups: small streams with mean flow less than 2000 L/s and big 

rivers with mean flow larger than 2000L/s. Note that 2000L/s is chosen here as the threshold 

because it is the natural break-point we have inferred from the meta-analysis of previous 

measurements (Tank et al., 2008). This also happens to be where traditional stream analysis 

techniques could be used and beyond which streams are not wade-able. Figure 5.5 presents the 

partitioning between small streams and big rivers of both total flow length and total daily net 

uptake for each solute in each of the 15 study catchments. Note the daily net uptake is based on 

the empirically re-scaled Sw.  

 

Figure 5.5: Partition of the stream length and reach scale daily net uptake between small streams 

(Q<2000L/s) and big rivers (Q>2000L/s) for each solute (a) NH4; (b) NO3; (c) PO4  
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 Looking at flow length first (the left bar), we can see that total stream length varies 

between catchments, mostly related to the drainage area of the catchments (as per Hack’s law). 

Similar to flow length, daily net uptake also varies a lot between catchments. However, it is not 

necessarily proportional to stream length: large catchments with longer stream lengths could yet 

have relatively small daily net uptake (i.e. NH4 in Colorado River) whereas medium sized 

catchments may retain much more nutrients (i.e. NO3 in Midwestern Rivers). This is because 

daily net uptake is not only related to stream length, but could also be influenced by the uptake 

length and the magnitude of nutrient inputs. For example, the low NH4 uptake in Colorado River 

could be related to the relatively low lateral inflow concentration while the low NH4 uptake in 

Muskegon River is probably because of the extremely large uptake length (> 50,000m), and the 

high NO3 uptake in the two Midwestern Rivers could be attributed to the high lateral inflow 

concentration (>10000 g/L) arising from high agricultural land use. 

Figure 5.5 also indicates that the combination of all big rivers in a stream network could 

make a significant contribution to the total daily net uptake (the green portion of the right bar can 

be quite long, even longer than the cyan portion). In this case, as in Figure 5.5, stream reaches 

are divided into small reaches and big rivers using a flow break-point of 2000L/s.  To look at the 

partition between small streams and big rivers, the information in Figure 5.5 is now re-presented 

in Figure 5.6 in terms of percentages. In Figure 5.6, the left bar presents the fraction of stream 

reaches that can be considered as small streams (Q<2000L/s) and the fraction that would be 

classified as big rivers (Q>2000L/s).  

 As can be seen in Figure 5.6, the partitioning of total stream length and total nutrient 

uptake between small streams (Q<2000L/s) and big rivers (Q>2000L/s) do vary a lot from 

catchment to catchment. Despite the between-catchment differences, the big river (green) 

fraction of total nutrient uptake is larger than the small stream (yellow) fraction, and the fraction 

of nutrient retained in big rivers is larger than the corresponding fraction of total stream length in 

all 15 study catchments and for all three solutes. This suggests that the larger contribution of the 

big rivers to total nutrient uptake is not because of the longer travel distance. In other words, big 

rivers do not perform as pipes, in that they contribute more than their share of the total flow 

length. 
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Figure 5.6: Percentage partition between small streams and big rivers for stream length and net 

uptake (a) NH4; (b) NO3; (c) PO4. The blue portion represents small stream (Q<2000L/s) length 

as percentage of the total stream length, while the yellow portion refers to big river (Q>2000L/s) 

length as percentage of the total stream length. The cyan portion is the contribution of small 

stream nutrient uptake as percentage of the total nutrient uptake, while the green portion the 

percent of nutrient that is retained by big rivers. 

 

5.4.2 Comparison across catchments  

The results in Figure 5.6 showed that big rivers uptake a larger fraction of nutrients compared to 

their share of the total stream length. In spite of that common the results in Figure 5.6 also 

showed considerable variability between the catchments. For example, the partitioning of total 

stream length between small streams and big rivers are different (i.e. the small stream share of 

stream length is much smaller in the Mountain West catchments than in the Mid-west and Arid 

West catchments); partitioning of total nutrient uptake also varies from catchment to catchment.  

To better interpret and visualize how the reach-scale nutrient uptake varies spatially within each 

catchment and between catchments, we divided the uptake by the reach length. Figures 5.7 to 5.9 

present the daily net uptake per kilometer of each reach across the 15 catchments for all three 

solutes: NH4, NO3 and PO4, respectively. 



160 

 

 

Figure 5.7: Map of reach scale daily net uptake per km for NH4 at each catchment, the stream 

segments are colored by the reach scale daily net uptake per km, from high to low, they are 

colored from dark blue to red. 

 

Figure 5.7 shows the daily net uptake of ammonium (NH4) per kilometer of each reach. 

As we saw in Figure 5.6, the mainstreams, which are clearly big rivers, are highlighted by a 

warmer color, that is, the mainstreams uptake more ammonium per kilometer. Generally, the 

higher the stream order, the more the nutrient per kilometer the reach retains. This spatial 

distribution is consistent across catchments. Between the catchments, the per-kilometer-uptake is 

not uniform; the between-catchment variability could be attributed to input concentration and 

uptake capability (Sw). The uptake-per-kilometer is lowest on average in White River and 

Colorado River (the color tends to be blue or green); this is probably because of the limited 

source of ammonium in these western rivers where the inflow concentration is between 20 to 

30g/L and the concentration at the outlet is around 1g/L. Uptake-per-kilometer is highest in 

the Manistee, Tippecanoe and Seedskadee Rivers, due to the relatively small Sw and larger lateral 
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inputs (lateral inflow concentration > 150g/L, outlet concentration > 10g/L). The high inflow 

concentration is probably related to higher fertilizer application in these agricultural catchments. 

Although the concentration in Muskegon is as high as in the other Midwest catchments, the 

uptake length (Sw) is much larger, leading to a medium level uptake-per-kilometer. 

 

Figure 5.8: Map of reach scale daily net uptake per km for NO3 at each catchment, the stream 

segments are colored by the reach scale daily net uptake per km, from high to low, they are 

colored from dark blue to red. 

Figure 5.8 presents the amount of nitrate (NO3) retained in each reach per day per 

kilometer. As is the case with ammonium, the mainstreams stand out with a warmer color, 

suggesting larger amount of uptake per kilometer compared to the small tributaries. The 

variability between catchments in term of daily net uptake per kilometer is on average much 

larger than in the case of ammonium. We can see two scales in these figures, with the uptake 

rates in Midwest Rivers being nearly two orders of magnitude larger than in the western rivers. 

The large uptake (per km) in largely agricultural Midwest Rivers is mostly due to the high nitrate 

input sourcing (lateral inflow concentration > 10000g/L) from fertilizer application. In the West, 
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the uptake (per km) is much smaller, though still with considerable variability. It is higher in 

Bear and Seedskadee Rivers due to the relative high lateral inflow concentrations (> 500g/L) 

compared to the other West rivers, and lower in Buffalo and Snake because of the low inflow 

concentrations (around 10g/L) and relatively large Sw (> 10000m), the concentration in Salmon 

is also low, but due to the smaller Sw, the uptake per km is larger than in Buffalo and Snake. 

 

Figure 5.9: Map of reach scale daily net uptake per km for PO4 at each catchment, the stream 

segments are colored by the reach scale daily net uptake per km, from high to low, they are 

colored from dark blue to red. 

Finally, Figure 5.9 displays the daily net uptake of phosphate (PO4) per kilometer for 

each reach in all 15 catchments. Consistent with the within-catchment spatial patterns seen in 

Figures 5.7 and 5.8 for ammonium and nitrate, the big mainstream rivers remove more phosphate 

per kilometer. The variability between catchments is larger than in the case of ammonium but 

much smaller than that of nitrate. The daily net uptake per kilometer is lowest in Salmon and 

Snake Rivers because of the low input concentrations (< 40g/L) and relatively large Sw (> 

25000m). The daily net uptake (per km) is highest in Tippecanoe, Seedskadee and Bear Rivers 
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due to the combined impact of the high input concentrations (the lateral inflow concentration > 

500g/L) and relatively shorter Sw (< 6000m). 

5.4.3 Comparison across solutes: the controlling factors  

Apart from the differences between the catchments the nutrient uptake behavior also exhibits 

differences between different solutes, as already seen in Figures 5.7, 5.8 and 5.9. For example, 

we already saw that Muskegon has a medium per-kilometer net ammonium uptake compared to 

other catchments, but a relatively high per-kilometer net uptake of phosphate (nitrate data is not 

available). On the other hand, in Ouray, the per kilometer net uptake of is relatively low for 

nitrate, and relatively high for ammonium and phosphate. For some of the Mountain West Rivers 

(Snake, Buffalo, Henry’s Fork and Salmon), per kilometer net uptake is relatively high for 

ammonium but relatively low for nitrate and phosphate.  

From the comparison of all 15 catchments, we have already seen that these differences 

could be attributed to differences in inflow concentration and in uptake length. The medium per 

kilometer net uptake in Muskegon for ammonium is most likely due to the combined effect of 

high inflows and larger uptake lengths, while the low per kilometer net uptake of nitrate in Ouray 

is probably caused by the larger uptake length. If we want to correctly estimate the variability of 

net uptake between catchments and between solutes, it is necessary to understand the factors 

controlling the nutrient uptake, including whether these are different between the three different 

solutes.   

To address the issue of physical controls of nutrient uptake, we applied the regression 

tree model presented in Section 5.2.4 to analyze the key controlling factors for all three solutes. 

Among all the catchment parameters we put together, 22 variables were selected as candidate 

variables to be used as inputs to the regression tree model. These include total catchment area, 

land use (the actual and percentage of developed land, forest, agricultural, wetland, native land 

and agricultural plus developed land), turbidity, total suspended sediment (TSS), measures of 

metabolism (mean gross primary production (GPP) and mean ecosystem respiration (ER)), 

dissolved inorganic nitrogen (DIN), biotic activity (seston chlorophyll a, benthic chlorophyll a, 

seston ash-free dry mass (AFDM), and benthic AFDM)). 
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 Figure 5.10 presents the most dominant factors controlling the daily net uptake for NH4, 

NO3 and PO4. For ammonium, the controlling factors are land use type (area fractions of wetland 

and forest) and mean GPP, which is consistent with the findings of Hall et al. (2013). The first 

split is wetland percentage: the smaller the wetland occupation, the larger the daily net uptake; 

within the left branch, the larger the GPP, the larger the daily net uptake. For nitrate, land use 

pattern is the only dominant factor: the smaller the forest land use, the higher the daily net uptake. 

This is consistent with what we have found previously, for nitrate, where the impact of the 

amount of lateral input is overwhelming. On the other hand, turbidity is apparently the most 

important factor in the case of phosphate uptake: the higher the turbidity, the larger the daily net 

uptake. This close correlation with turbidity is probably because of sediment sorption, which is 

the hypothesized mechanism of phosphorus removal from the water column. 

 

Figure 5.10: Regression tree of the dominant factors for reach scale daily net uptake of (a) NH4; 

(b) NO3; (c) PO4. 

 

 Figure 5.11 shows the most dominant factors controlling, this time daily net uptake per 

kilometer for NH4, NO3 and PO4. More variables are needed to predict the daily net uptake-per-

kilometer for NH4, such as mean ER and benthic chlorophyll a, whereas forest cover remains 

still the only controlling factor for nitrate. This finding is consistent with the hypothesis that 

algae and microbes prefer ammonium to nitrate, and also nitrate is bio-geochemically leaky, 
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especially when human impact is significant. For phosphate, besides turbidity, mean ER is also 

influential when considering the uptake per kilometer. 

 

 

Figure 5.11: Regression tree of the dominant factors for reach scale daily net uptake per km of (a) 

NH4; (b) NO3; (c) PO4. 

 

5.5 Conclusions 

This chapter presented a model-based exploration of scale effects on bulk removal for three 

different types of dissolved nutrients in river networks, with a particular focus on the relative 

contributions of small streams and big rivers to bulk removal, and the underlying physical 

controls. For this purpose we have utilized an improved version of the coupled network scale 

hydrological and biogeochemical model used by Ye et al. (2012, Chapter 4 of this dissertation). 

The major improvement has been in the area of parameterization of nutrient removal: in this 

study we have used empirical relationships derived from field measurements, both from small 

streams (meta-data from several previous studies) and also from 15 large rivers, which were 

carried out as part of this study. Observations from 15 big rivers spanning across gradients of 

land use, turbidity and biological activity, in combination with the meta-data on small streams, 
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permitted us to generate model parameters across the entire stream network, from headwater 

streams all the way to big rivers at the outlet of the catchments.  

 Despite large variations between big rivers, we found similar trends that clearly indicated 

that big rivers are not mere pipes. The model results showed that, consistent with several 

previous studies, the uptake from big rivers is as large as, even larger than, that from small 

streams. In fact, big rivers uptake a larger fraction of nutrients relative to their fraction of total 

stream length. In addition, maps of daily net uptake per kilometer suggest that for each kilometer, 

big rivers are still more active in terms of nutrient uptake than small streams. Big rivers 

contribute a larger amount of nutrient per kilometer than tributaries due to the much larger 

nutrient source from lateral inflow as well as the leftover amounts from upstream.  

The comparison of nutrient uptake metrics between the 15 big river catchments indicated 

that the differences are most likely due to differences in lateral input nutrient loads and/or the 

nutrient uptake length. The lateral inflow nutrient concentration is usually determined by land 

use patterns while the uptake length could be influenced by many factors, e.g., in-stream biologic 

metabolism activity, flow dynamics. Regression tree analysis to explore dominant controls on net 

uptake indicated that removal of the three solutes, i.e., nitrate, ammonium and phosphate, from 

the water column happened by different mechanisms. Ammonium uptake is dominated by biotic 

metabolism as well as land use, which is related to the amount of ammonium source. Uptake of 

nitrate, being more biogeochemically leaky, is more related to land use which contributes to 

abundance of lateral input. On the other hand, phosphate retention is dominated by turbidity, 

presumably due to the role of sediment sorption. 

 The results from this study have several implications for catchment management aimed at 

contributing to reduction of eutrophication of receiving waters, such as for example the hypoxia 

in the Gulf of Mexico. Evidence that big rivers are not mere pipes, but with significant capability 

to remove nutrients, in relation to headwater streams, means that more attention should be paid 

in the future to maintain and enhance this capability of big rivers. Some of the ways that this can 

be done include naturalization of streams and rivers, allowing them to meander: these efforts 

help to lengthen travel distances, increase residence time and thus enhance biological uptake. 

Other actions include setting up vegetated riparian corridors that enhance biological demand. 



167 

 

Furthermore, customized approaches can be developed for rivers with different excessive 

nutrients. For rivers with high phosphorus flux, approaches to increases flow dynamics would be 

more efficient whereas for rivers with high nitrate flux, land use management could be more 

crucial. 

There is considerable room for further improvement of the model used in this study. 

Currently, the model simulates bulk uptake only. Model realism would advance considerably if 

the bulk uptake could be separated into its pelagic, benthic and transient storage components. 

This will require targeted field measurements aimed at quantifying the separate contributions of 

pelagic, benthic and transient storage zone uptake to the total nutrient uptake. This will help 

make better predictions for the right reasons, and also help explain the physical factors that 

control uptake of different nutrients. The hydrological part of the model is sophisticated enough 

to simulate dynamics of flow at event scale, and therefore there is potential for an enhanced 

version of the model to be used to simulate the nutrient uptake processes during different flow 

conditions, and to study the role of temporal variability, including seasonal variability, on 

nutrient removal processes. In terms of spatial variability, the model will benefit from future 

field experiments designed to collect a set of uptake rate parameters (vf, Sw, etc.) within the same 

river network from headwaters all the way down to the outlet.  
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Chapter 6. 

Modeling Dissolved Nutrient Retention Dynamics in River Networks: 

Prediction of Transient Flow Effects with Improved Empirically Derived 

Parameterizations 

Abstract 

As the corridors linking the hillslope, lakes and the oceans, river networks play an important role 

in nutrient transport and transformation from the terrestrial landscape to the estuaries and coastal 

seas. Much of our previous understanding of the nutrient spiraling process in river networks has 

been based on measurements that are limited to headwaters, and during low flow periods with 

minimal hydrologic variability. Such measurements have now been extended to big rivers as well, 

given the growing attention to their potentially large contribution to nutrient uptake in the whole 

river system. However, partly due to technical constraints, most of these experiments are still 

being carried out during low flow periods; the effects of temporal hydrologic variability are still 

not being able to be considered. In Chapter 4, we have showed the potential influence of within-

year hydrologic variability on nutrient retention efficiency at the annual time scale based on 

theoretical modeling analysis carried out in a hypothetical river network. In this Chapter, we 

revisit this issue with the model developed in Chapter 5 that was based on empirical 

measurements. This coupled hydrologic and biogeochemical process model is applied to a small 

agricultural catchment in eastern Illinois to study nitrate transport and transformation processes. 

The uptake metric is calibrated based on a six-year observation of nitrate concentrations at one 

tile drainage station and two river stations. Three different climate scenarios with increasing 

within-year hydrologic variability (same as used in Chapter 4) are applied to the catchment. The 

results suggest that even in a nitrate-enriched catchment such as this, the river is not just a pipe, 

i.e., the nutrient uptake mechanisms in the river system can still reduce nutrient concentrations 

significantly. The model simulations also confirmed the finding in Chapter 4 that nutrient 

retention efficiency at all spatial scales of observation has a strong dependence on within-year 

variability of streamflow: the more variable the streamflow, the greater the export of nutrients.  
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6.1 Introduction 

Eutrophication has become one of the most critical environmental problems affecting aquatic 

ecosystems across the U.S. (Bricker et al., 1999) causing irregular rapid propagation of algae, 

reducing dissolved oxygen, increasing aquatic organism mortality and decreasing species 

diversity (OECD, 1982). The excessive nutrients (mainly nitrogen and phosphorus) that 

contribute to the degradation of water quality in rivers, lakes and estuaries are mainly derived 

from fertilizers applied to agricultural lands and the sewage water from urban areas (Turner and 

Rabalais, 1994; Vitousek, 1997; Peterson et al., 2001). Before we can design best management 

practices to overcome water quality problems, we need to understand nutrient transformation and 

transport mechanisms in these aquatic ecosystems, and how they are inter-connected (Howarth et 

al., 2002; Ensign and Doyle, 2006).  

As the corridors that link the hillslopes, lakes and the oceans, as well as function as 

important nutrient sinks, streams and rivers have attracted considerable attention recently from 

researchers and practitioners (Bencala and Walters, 1983; Dunn, 1996; Fisher et al., 1998; Dodds 

et al., 2002; Donner et al., 2002; Mulholland et al., 2002, 2008). Nutrient (usually nitrate, 

ammonium, and phosphate) uptake metrics (such as uptake length Sw, uptake velocity vf, areal 

uptake rate U) have been measured in several locations across the continental United States 

(Bencala and Walters, 1983; Runkel, 1998; Claessens and Tague, 2009; Claessens et al., 2009; 

Hall et al., 1998, 2002, 2003, 2009a). Synthesis studies conducted on these measured uptake data 

indicate significant regression relationships between the uptake metrics and discharge 

(Alexander et al., 2000; Tank et al., 2008; Helton et al., 2011; Hall et al., 2013), e.g., the larger 

the discharge, the larger the uptake length (Sw). A similar relationship has also been found for 

nutrient uptake length with nutrient concentrations in streamflow; the nutrient uptake mechanism 

exhibits the characteristic of saturation (Mulholland et al., 2008; Hall et al., 2013): the higher the 

concentration level, the larger the uptake length (Sw). 

Because of the negative relationship between discharge and nutrient uptake, many 

previous studies have focused on headwaters or small streams and during low flow periods, since 

these are considered as the most efficient nutrient sinks (Peterson et al., 2001). Modeling results 

at the river network scale have indicated that the exclusive focus on small streams may limit our 
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understanding of nutrient transport and transformation at larger scales, since big rivers do not 

just function as pipes, i.e., they are not mere conduits for flow and nutrient transport. They are 

major critical zones for nutrient uptake, and due to the disproportional increase in nutrient input 

with increasing size of rivers from lateral flows, they tend to be responsible for more nutrient 

retention than small streams (Seitzinger et al., 2002; Ensign and Doyle, 2006; Wolheim et al., 

2006; Mulholland et al., 2008; Ye et al., 2012). This projected importance of big rivers for 

nutrient uptake at river network scale has inspired many new field measurements in big rivers to 

help understand the up-scaling of nutrient retention from small streams to big rivers (Tank et al., 

2008; Hall et al., 2013).  

Measurements in big rivers also tend to be conducted in summer during low flow periods 

because of the difficulty to measure nutrient retention during fluctuating flows (Doyle 2005). 

The principles of injection techniques that are widely used to measure nutrient retention rates are 

not applicable to variable flow conditions due to the dilution of injection solutions. However, the 

results of continuous numerical modeling carried out over longer (i.e., annual) periods have 

clearly highlighted the importance of high flow periods for nutrient uptake, since it is during 

these periods that most of the nutrients are exported from the terrestrial landscapes into rivers 

(Meyer and Likens, 1979; Jones et al., 1996; Doyle 2005). This is particularly true for phosphate, 

which usually enters the rivers with sediments in absorbed form, since these sediments usually 

enter the river network with overland flow during big flow events rather than with baseflow. 

Observations have suggested that even during the high flow periods, small streams do not 

necessarily behave as pipes; significant amount of nutrients could still be removed from the 

water column due to the exchange with the hyporheic zone (Hall et al., 2009b). Model 

simulations also indicate that, similar to the impact of big rivers, the high nutrient loading during 

high flows could compensate for the lower removal efficiency and make the high flow periods 

relatively more important than low flow periods when considering total annual nutrient uptake 

(Böhlke et al., 2009). Therefore, the understanding of uptake processes gained during low flow 

periods is not sufficient to construct the long term patterns of nutrient dynamics (Fisher et al., 

2004). 

Due to the technical difficulties with nutrient retention measurements during variable 

flows, the use of coupled river network models of hydrologic dynamics and nutrient uptake 
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mechanisms has become an alternative approach to explore nutrient retention dynamics (Doyle 

2005). This model should be able to upscale the processes from the reach scale to the network 

scale with consideration of both the hydrologic and the biologic controls at the local scale. Many 

river network models have been developed to study the impact of hydrologic variability on 

nutrient retention processes over annual time periods (Doyle 2005; Wolheim et al., 2008; Botter 

et al., 2010; Aguilera et al., 2013). These theoretical studies have indicated that nutrient uptake 

rate is related to the frequency of rainfall events, catchment residence time, catchment shape, 

nutrient concentration level and the strength of local biological activity (Wolheim et al., 2008; 

Botter et al., 2010). The large load of nutrients during high flows could compensate for the lower 

removal efficiency, giving rise to the fact that instead of low flows, the modal discharge is the 

most representative discharge in nutrient retention studies and should be given more attention 

(Doyle, 2005). However, most of the models presented are either too theoretical (Botter et al., 

2010) or are not validated in real catchments due to the absence of the empirical data from big 

rivers (Doyle 2005; Wolheim et al., 2008; Aguilera et al., 2013). 

Here we present a coupled river network model that is developed from both the published 

small stream data as well as the big river data from the Big River Team (Tank et al., 2009) to up-

scale from headwater streams to big rivers and is parameterized using empirical measurements 

from small and big streams, as shown in Ye et al. (2014; Chapter 5). We then apply this model to 

a catchment in East Illinois where we calibrate and validate the parameters in the model with 

long-term nitrate concentration measurements at two gauges located along the river network. 

Three climate scenarios with different rainfall frequencies are introduced to the catchment to 

study the impact of hydrologic variability on the nutrient transformation and transport processes 

across the river network, and how this impact changes from headwater to big rivers downstream. 

With this understanding we can then separate the biologic and hydrologic contributions to the 

variability of nutrient uptake mechanisms across the year. 

6.2 Methodology 

6.2.1 Study area and data availability 

The study area is the Little Vermillion River (Figure 1), located in east-central Illinois. The river 

network is extracted from the DEM with 30m resolution. The total drainage area of this 
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catchment is 489 km2 with nearly 90% of the land put to agricultural use. The dominant soil type 

is silty loam and silty clay loam, with low saturated hydraulic conductivities. The topographic 

gradient is also very gentle, with the surface slope in this catchment being around 1% or less 

(Mitchell et al., 2000; Algoazany, 2006). To drain out the water for corn and soybean planting, 

extensive tile drains have been introduced in the past: studies have shown that tile drainage could 

contribute over 80% of the annual runoff in this region (Li et al., 2010).  

 Hydrological, biogeochemical and management data had been collected from 1991 to 

2000. There are in total two river stations, four subsurface stations and four surface stations to 

monitor flow, sediment and variable nutrient concentrations. For the study here, we used rainfall 

data and flow and nitrate data from one subsurface station (tile drain station B) and two river 

stations from 1993 to 1999, which is the period of overlap for the three stations. Rainfall data is 

spatially averaged at a daily time step, the temporal resolution for flow data is daily as well, 

while nitrate concentrations were measured at a frequency close to bi-weekly. Daily potential 

evaporation data from the contiguous MOPEX catchment is used for the evaporation calculation. 

 

Figure 6.1: Map of the study area, Little Vermilion Basin in east-central Illinois, including the 

delineation of 29 REW boundaries. Blue bold line is the river network, the green circle is the tile 

drain station and the green triangles are the river stations. 
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6.2.2 Model structure 

Figure 2 presents the schematic diagram of the coupled river network model that is used here. 

Based on the representative elementary watershed (REW) concept (Reggiani et al., 2001), the 

catchment is divided into 29 sub- catchments (REWs). Each REW has one hillslope component 

and one stream reach, which is connected with upstream and downstream as part of the river 

network. The water balance equation at the hillslope is as follows: 
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tile

i

s

i
i

h ETQQP
dt

dS
    (1) 

where S i
h
 is the local hillslope water storage at REW i [L3], Pi is the spatial averaged daily 

rainfall [L3 T-1], Q i
s= S i

h – Sc is the saturation excess surface flow [L3 T-1], Sc is a constant that 

refers to the soil water capacity [L3], Q i
tile = (S i

h – Stile )/Ttile is the tile drainage [L3 T-1], Stile is 

the threshold for initiation of tile drainage [L3],  Ttile is the characteristic time for tile drainage [T],  

and ETi = PET (Si
h/Se) is evaporation over the REW i [L3 T-1], PET is the observed potential 

evaporation [L3 T-1] and Se is deemed as the evaporation storage (a parameter of the model). 

Since we are focused on the impact of hydrologic variability on nutrient retention, nutrient 

storage in the soil is not modeled. A constant concentration level will be used for both the 

surface flow and tile drainage so as to exclude other influences such as coupling between lateral 

flow and nutrient concentration, so that we can focus on the hydrologic impact. 

The river network part presented here is adapted from the model developed in Ye et al. (2014; 

Chapter 5). The mass balance equations for water are as follows: 
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where Si is water storage at local reach i [L3], Q j
up =v jAj is the inflow from upstream nodes [L3 

T-1], v j is the velocity at upstream end, for reach j [L T-1 ], A j  is cross-sectional area of the jth 

upstream reach [L2] (=Sj/L, where L is the reach length), Qi
out =v iAi is the outflow from reach i  

[L3 T-1], vi is the velocity at local reach i [L T-1] and A i  is cross-sectional area of local reach i 

[L2]. Velocity vi is estimated by reach scale momentum balance equation (i.e., Saint-Venant 

momentum balance equation). 
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where ni is roughness coefficient of local REW i, Ri is the hydraulic radius Pi is average wetted 

perimeter, sini is the mean slope of REW i, and hi is the mean depth of REW i [L]. Detailed 

derivation and explanation can be found in Tian et al. (2006) and Ye et al. (2012).  

 

Figure 6.2: Schematic of the solute transport model coupled with hydrological dynamics: (a) 

Watershed discretization into many representative elementary watersheds (REWs) distributed 

around the river network; (b) each REW includes a hillslope component producing saturation 

excess flow and tile drainage and a channel reach receiving water and dissolved nitrate from 

hillslope. 

 

The mass balance equation for nutrient transformation and transport in the river network 

is as follows: 
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where Ci is the nitrate concentration (NO3) at the local reach i [ML-3], C i
l is the solute 

concentration of lateral inflow [ML-3], C j
up is the solute concentration of the upstream reach j 

[ML-3], N i
min= N i

tu is mineralization returning to the water column [M T-1],  is the estimated 

fraction of mineralization out of total nutrient retention. Based on the LINX I data set,  is set to 

0.034 for NO3 (Johnson et al., 2013). N i
tu = Ri (SiCi) is gross retention in the water column [M T-

1], and Ri is the fraction of the nutrient in the water column that would be retained [-], which is 

calculated as follows (Wolheim et al., 2006): 

)exp(1
i

w

i
i

S

L
R       (5) 

where Li is the length of the local reach i [L] and Sw
i is the uptake length at the local reach i and 

is calculated by the following regression relationship that was developed from previous data in 

small streams and recently measured data from15 big rivers (see Ye et al., 2014; also, Chapter 5): 

iiii

w CwQS log27.0)/log(52.0log     (6) 

where Qi is the discharge at local reach i, wi is the width of the reach i, Ci is the solute 

concentration in reach i as mentioned earlier and  is a constant representing the strength of local 

biological activity that will be calibrated using observed nitrate data (please refer to Ye et al., 

2014; also, Chapter 5, for detailed explanation of the development of this regression). 

6.2.3 Model calibration and validation 

There are five parameters in the model that need calibration, four in the hillslope flow 

component, soil water capacity (Sc), threshold for tile drainage occurrence (Stile), the 

characteristic time for tile drainage (Ttile) and evaporation storage (Se), and one in the river 

network nitrate component, the intercept in the uptake length estimation () (see Equation 6). 

The calibrations were conducted in two stages: firstly the intercept () in the Sw estimation and 

secondly, parameters of the hillslope flow component.  
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Calibration of the intersect ( in Sw regression 

In Ye et al. (2014; Chapter 5), the intercept in the uptake length (Sw) estimation regression was 

calculated using measured uptake length (Sw) at the outlet of the catchment. However, none of 

the nitrate uptake metrics was directly measured in the Little Vermillion River. Fortunately, 

however, we have the nitrate concentration at one tile drainage station and also in two river 

stations, and in this way Sw can be estimated through model calibration. Here, we temporarily 

dropped the hillslope flow component, and replaced the hillslope inflow (saturation excess flow 

and tile drainage) by the measured tile drainage from one subsurface station B (Figure 1). The 

observed tile drainage was normalized by the drainage area and then applied to all the REWs, 

assuming homogeneity of hillslope lateral inflow right across the network. The flow and nitrate 

measurements at river station R5: with one-third of total drainage area was used for calibration 

and the observations at river station R3 located in the middle of the catchment were used for 

validation. The overlap period of the three stations (subsurface station B, river station R5 and R3) 

dated from July 1993 to the end of 1999. The latter half year of 1993 was considered as a warm-

up period of the simulation and the results from 1994 to 1999 were counted for calibration and 

validation. 

 

Figure 6.3: Time series data from Jan 1st, 1994 to Dec 31st, 1999 of (a) observed tile drain data at 

subsurface station B; (b) model simulated (blue) and observed (red) flow data at river station R5; 

(c) model simulated (blue) and observed (red) flow data at river station R3. 
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 Figure 3 shows the measured discharge data from a tile drain at subsurface station B and 

the comparison between model simulated flow and observed discharge at river station R5 and R3. 

As we can see, the model simulation captures nearly all of the flow events quite well except for 

the flow peak in the middle of 1998. This underestimation of peak flow is because of the smaller 

tile drain observation (Figure 3a). One possible reason could be that the distribution of tile drains 

may not be as homogeneous as we assumed, and that there may be larger flows in other hillslope 

segments.  

 

Figure 6.4: Time series data from Jan 1st, 1994 to Dec 31st, 1999 of (a) observed nitrate 

concentration data at subsurface station B; (b) model simulated (blue) and observed (red) nitrate 

concentration at river station R5; (c) model simulated (blue) and observed (red) nitrate 

concentration at river station R3. 

 

Figure 4 presents the measured nitrate concentrations at subsurface station B that were 

used as inputs to the river network model as well as the model simulated and observed nitrate 

concentrations at river stations R5 and R3. Although the model simulations did not capture the 

annual cycle in the nitrate concentration fully, it managed to get the order of magnitude right as 

well as the decrease in nitrate concentrations from hillslope to reaches further downstream. The 

discrepancies in the annual cycle are most probably related to the absence of such a cycle in the 
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tile drain stations. The other possibility could be measurement errors during low flows: when the 

flow is lower than 1 m3/s at the two river stations, observed nitrate concentrations may not be 

reliable. Still, this performance is deemed sufficient for the goals of our study. 

Calibration of the hillslope flow component  

In the second stage, we added back the hillslope flow component and applied the measured 

rainfall and potential evaporation as inputs to the hillslope component. As in the case of the first 

stage calibration, we ran the model from July 1993 to the end of 1999 and used the half year of 

1993 as warm-up period and considered the results from 1994 to 1999. We calibrated the four 

parameters, i.e., soil water capacity (Sc), threshold for tile drainage occurrence (Stile), the 

characteristic time for tile drainage (Ttile) and the evaporation storage (Se), at subsurface station B 

and validated it at river stations R5 and R3.   

 

Figure 6.5: Time series data from Jan 1st, 1994 to Dec 31st, 1999 of (a) measured spatial averaged 

rainfall (b) model simulated (blue) and observed tile drainage (red) data at subsurface station B; 

(c) model simulated (blue) and observed (red) flow data at river station R5; (d) model simulated 

(blue) and observed (red) flow data at river station R3. 

As we can see from Figure 5, the model successfully captured the individual flow events and 

reproduced the dry period in flow from summer to winter despite the many rainfall events. The 
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Nash-Sutcliffe coefficients at the two river stations are larger than 0.5, suggesting a sufficiently 

good fit to the observed flows. 

6.2.4 Climate scenarios 

To explore the impact of hydrological variability on nutrient retention, we applied three 10-year 

long synthetic rainfall series to the catchment and used the hillslope flow component to generate 

hillslope inflows to the river network. The three synthetic rainfall series were generated by a 

stochastic event rainfall model developed by Robinson and Sivapalan (1997). They are 

calculated based on three characteristics: storm duration (tr), inter-storm period (tb), and mean 

rainfall intensity (p), all of which are random. Storm duration, tr and inter-storm period, tb are 

assumed to follow exponential probability density distributions, and their mean values are 

assumed to vary sinusoidally with time of the year. The precipitation intensity (p) is statistically 

dependent on tr, and its conditional distribution (given tr) follows a gamma distribution: since the 

parameters of this gamma distribution are also a function of tr, the mean p of the gamma 

distribution also varies sinusoidally, similar to tr and tb. The three climates share similar annual 

precipitation (around 1000 mm per year, which is the average for this region) and seasonality, in 

which rainfall comes during the spring and fall seasons, but different mean storm duration (tr), 

inter-storm period (tb), and rainfall density (p) to construct distinct hydro-climates. As we go 

from Climate 1 to Climate 3, within-year variability increases. The annual mean characteristics 

of the rainfall inputs and the coefficient of variation (CV) of streamflows are presented in Table 

6.1 for the three climates. Figure 6 is an example of the flow and concentration variations under 

Climate 2. The high flows and low flows are separated based by the baseflow separation 

algorithm of Lyne and Hollick (1979): 
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where Qb(t)  is the baseflow at time t, Q(t) is the streamflow at time t, and is a constant. 
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Figure 6.6: Schematic describing typical time series of rainfall, hillslope inflows and streamflows 

and nutrient concentrations for Climate 1 (see Table 6.2): (a) rainfall event patterns - 

intensity=0.4mm/hr, tr=34hr, tb=76hr; (b) hillslope inflows and streamflow for a headwater 

stream; (c) streamflow at the catchment outlet, and illustration of flow separation into high flow 

and low flow periods; (d) nutrient concentration of hillslope input (assumed constant at 15 mg 

NO3-N/l), and for a 1st order  REW and at the catchment outlet. 

 

Nitrate concentrations of the hillslope flow contributions to the river channels are kept 

constant in space and time, during both flood events and baseflow periods, at a notional value of 
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15 mg NO3-N/l, which is the mean concentration of observed tile drain data in the Little 

Vermilion catchment. Low temporal variability in nitrate concentrations relative to that of water 

discharge in intensively managed agricultural catchments (i.e., chemostatic export) has been 

discussed in recent papers (Basu et al., 2010; Thompson et al., 2011; Guan et al., 2011).  

Table 6.1:  Effects of hydrological variability and geomorphologic and biogeochemical factors 

on nitrate net retention rates during high and low flows 

 

 Climate 1 Climate 2 Climate 3 

Mean tr (hr) 34 15 34 

Mean tb (hr) 76 227 186 

Mean p (mm/hr) 0.4 2.0 0.8 

Mean CV(Q) of 

headwater 

reaches 

3.02 4.04 4.98 

CV(Q) of outlet 

reach 
3.00 4.00 4.96 

 

6.3 Results 

6.3.1 The impact of biological uptake 

Comparing the intercept for uptake length (Sw) we obtained by calibration with the intercepts 

found in Ye et al. (2014; Chapter 5) based on the measured uptake length in big rivers, we can 

see the Sw in Little Vermilion is larger than the estimated Sw values from both small streams and 

the “Big River” data for most of the rivers presented in Ye et al. (2014; Chapter 5). Therefore we 

will first study the impact of biological uptake, to find out how influential the nutrient uptake is 

in a nitrate-enriched agricultural catchment such as Little Vermillion.  

Figure 7 presents the comparison between observed nitrate concentrations and the model 

simulated concentrations under two scenarios: one without any biological uptake, the other with 

nitrate uptake calculated from the calibrated uptake length. That is, in the first scenario, the 

reduction of nitrate concentration from tile drainage station to the river station is only caused by 
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dilution, while the decrease in concentration in the second scenario is due to both dilution and 

uptake.  

 

Figure 6.7: Time series data from Jan 1st, 1994 to Dec 31st, 1999 of (a) measured nitrate 

concentration at one tile drainage station (b) measured nitrate concentration (red plus symbol) 

and model simulated concentration with (green line) and without (blue line) uptake at river 

station R5; (c) measured nitrate concentration (red plus symbol) and model simulated 

concentration with (green line) and without (blue line) uptake at river station R3. 

 

Comparing the nitrate concentration at the tile drainage station that is used as hillslope 

input with the model simulated concentration at the two river stations in the first “no uptake” 

scenario, we can see that although the concentration drops slightly due to dilution, the change is 

not very significant and the simulated concentrations at the river stations is still much higher than 

observed concentrations. The concentrations are particularly high between flow events. Although 

there is no nitrate input from the tile drain (hillslope/lateral inflow) during low flows, the 

concentration is still high at the river stations since there is no uptake; since dilution is limited 

during such low flows, the concentration remains as high as it is at the end of previous flow 

events. We then look at the simulated concentration for the two scenarios: overall, the 
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concentrations are lower when there is biological uptake included. Specifically, the difference in 

concentration is smallest during flow peaks; and largest during low flow periods. This is 

understandable: during the flow peaks the uptake length is larger, leading to smaller uptake rate, 

and the velocity is larger, causing shorter residence time, therefore the percentage of nitrate that 

can be removed from the river channel is smaller, and vice versa. This is consistent with what we 

found in Ye et al. (2012; Chapter 4): the nutrient (here it is nitrate) retention efficiency is lower 

during high flows and higher during low flow periods.  

6.3.2 High flow vs. low flow periods 

Hydrologic variability is the result of the frequency of flow events. Before we explore the impact 

of variability, we first look at the difference between high flows and low flows, i.e., the 

difference between flow events and within flow events. Figure 8 presents the mean annual input, 

net uptake retention efficiency and the partitioning between high flows and low flows under 

Climate 1 for REWs along the river network. As we can see, the mean annual nitrate input from 

the hillslopes during high flow periods is about twice the mean annual nitrate input during low 

flow periods. This difference between the two flow periods is attenuated in the annual net uptake: 

nitrate input during high flow periods is only about 50% larger than the amount of nitrate 

retained during low flow periods. 

Based on the total input and net uptake, we can estimate the retention efficiency (Effh, Effl) and 

the contribution of nitrate uptake (fh, fl) for high flow and low flow periods: 
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where the retention efficiency (Effh, Effl) is calculated as the fraction of net uptake to total input 

during high flow periods (Th) or low flow periods (Tl) and the contributions of both periods (fh, fl) 
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are calculated as the fractions of nitrate retained during high flow (Th) and low flow (Tl) periods 

to the total net uptake. 

 

Figure 6.8: Comparison between the high flow period and low flow period of (a) annual input; (b) 

annual net uptake; (c) annual retention efficiency; and (d) the fractional retention of each period. 

 

As we expected, the retention efficiency during high flows is much smaller, i.e., only a 

quarter of the efficiency obtained during low flows (Figure 6.8c). The overall mean retention 

efficiency for the whole catchment during high flows is around 0.4 while the efficiency during 

low flows is about 0.55. However, the contribution of nitrate retention during high flow periods 

should not be underestimated by the relatively small retention efficiency. Due to the much larger 

nitrate inputs during high flow periods, the nitrate retained during high flow period is more than 

that during low flow periods and this difference increases downstream. Overall, for the whole 

catchment, high flows contributed over 65% of the total nitrate uptake while the low flows 
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periods made up 35% of the total retention. Consistent with previous literature, due to the larger 

nitrate inflows from the terrestrial landscape, the high flow periods are important in the 

construction of annual nutrient budgets (Doyle 2005; Ye et al., 2012). 

 

Figure 6.9: Map of the reach scale mean daily net uptake per kilometer (a) during high flow; (b) 

during low flow. 

 

Figure 6.9 displays the daily average net uptake per kilometer for each reach during high flows 

and low flows. The amount of nitrate that is removed from the water column in one kilometer 

increases from headwaters to the outlet: the higher the stream order, the closer the reach is to the 

outlet, the more nitrate uptake occurs per kilometer. This trend is consistent during high flows as 

well as low flows. Comparing the two maps, we can see that more nitrate is retained in each 

reach during the high flow than low flow periods, and this increment in uptake per kilometer is 

larger in the main stems of the rivers than in headwaters. 

6.3.3 Impact of hydrologic variability 

We next applied the three climate scenarios to the catchment. Figure 10 shows the mean annual 

input, net uptake, retention efficiency and fractional retention during high flow and low flow 

periods under the three different climates. As we can see, most nitrate was exported into the river 

network under Climate 2, the one with medium variability, while nitrate input to the river 

network is least under Climate 1 that has the smallest variability (Figure 10a). That is, Climate 2 

generates more runoff than the other two climates. This trend remains when we look at the mean 
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annual net uptake during low flow periods. But it is not seen in the high flow periods, where the 

nitrate retained from the water column is highest under lowest variability (Climate 1) and lowest 

under highest variability (Climate 3) (Figure 10b). As a result of these two factors, retention 

efficiency decreases with hydrologic variability: it is highest under Climate 1 and lowest under 

Climate 3, with highest variability occurring during both high flow and low flow periods, 

although the difference between the two climates with higher variability is small during low flow 

periods (Figure 10c). This is consistent with the theoretical results we found in Ye et al. (2012; 

Chapter 4). The partitioning of nitrate uptake between high and low flow periods does not follow 

the climate variability trend: high flow contributes more uptake under Climate 1 with lowest 

variability, but retains least nitrate from water column during Climate 2 with medium variability. 

 

Figure 6.10: Comparison between the high flow period and low flow period for the three climate 

scenarios of (a) annual input; (b) annual net uptake; (c) annual retention efficiency; and (d) the 

fractional retention of each period. 
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6.4 Discussion and conclusions 

In this chapter, we applied the coupled hydrologic and biogeochemical river network model 

developed in Ye et al. (2014; Chapter 5) to the Little Vermillion catchment with an addition of a 

hillslope flow component to convert the rainfall into hillslope runoff for the study of the impact 

of hydrologic variability on nutrient retention. Many models have been developed at river 

network scale. Some are theoretical models without empirical data support (Botter et al., 2010; 

Ye et al., 2012), and others, due to the lack of big river measurements, are just simple 

extrapolations of understanding gained from small streams, which may underestimate the 

variability among rivers (Doyle 2005; Wolheim et al., 2006). The model presented in Ye et al. 

(2014; Chapter 5) is a combination of the theoretical approach but in combination with empirical 

observations of both small streams and big rivers, but it was applied during low flow periods 

only. In this chapter we incorporated this model with a simple hillslope bucket model to estimate 

the hillslope inflows to the river network and ran it for 10 years to study how the nitrate retention 

dynamics change with hydrologic conditions.  

 These preliminary results obtained in this study suggest that rivers do not function as 

mere transport corridors during either low flow periods or high flow periods. The comparison 

between the two scenarios (with and without uptake) showed that without uptake, the reduction 

of nitrate concentration in the river stations due to dilution is much smaller than the decrease 

caused by uptake. The difference between the two scenarios is larger during low flow periods 

and smaller at flow peaks, as the retention efficiency is low during flow events and high during 

low flows. However, even though the efficiency is low during events, it is still considerable, and 

with the much larger amount of nitrate transported during events, the amount of nitrate retained 

during high flows is in fact larger than that removed during low flow periods. This difference 

increases with river size: the higher the stream order is, the more important high flow retention is.  

 We also applied three climates of different hydrologic variability to the model, although 

the actual amount of nitrate that enters into the river or is removed from the water column varies, 

the trend we found in Ye et al. (2012; Chapter 4) with the theoretical model still stands: the 

overall retention efficiency decreases with variability of flow. The more variable the flow is, the 

less efficient the river network can be, and this is not necessarily related to the nitrate input.  
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 What is presented in this chapter is just a preliminary application of the model developed 

in Ye et al. (2014; Chapter 5); more substantial analysis could be done under this model 

framework. Other more climate scenarios can be applied to the model to explore more fully the 

impact of climate on the nutrient transformation and transport in river networks. For example, 

what impact does seasonality and the timing of rainfall events have on nutrient uptake, and how 

could the intensity and event durations influence the retention mechanisms? We could also test 

the hypothesis proposed in Doyle (2005) regarding the hydrologic regime that would be the most 

productive in terms of nutrient retention and how would it vary with river sizes or climates. The 

mechanism of benthic and pelagic uptake could also be studied separately provided there is more 

empirical support towards their parameterizations.  
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Chapter 7. 

Conclusions 

7.1 Major findings of the dissertation 

This dissertation was carried out under the guidance of the proposed study framework to explore 

the factors contributing to hypoxia issue in the Gulf of Mexico caused by excessive nutrient 

export from the terrestrial landscape. Under this study framework, through a combination of top-

down and bottom-up approaches, we studied the mechanisms of nutrient transformation and 

transport in river networks and how the characteristics of climate influence the nutrient retention 

in river networks through their influence on hydrologic processes. As introduced in the 

introduction chapter, we studied these topics from Chapter 2 to Chapter 6, approaching them 

from two directions: the downward approach that starts from the generation and model-based 

interpretation of the patterns generated through data analyses, and the upward approach based on 

the use of theoretical process based models. The exploration is carried out in two parts to 

respond to the two major objectives raised in Chapter 1: firstly how the climate casts its impact 

on hydrologic processes, and secondly how nutrient retention changes with changes of 

hydrologic variability inherited from climate. 

 This framework was first applied towards the exploration of the dominant hydrologic 

processes across the continental US. After the analysis of patterns of rainfall and runoff regime 

curves around the country, a two-stage bucket model was developed and then continually 

improved with the addition of runoff generation processes that were hypothesized as being 

essential to catchments with certain characteristics based on the comparison of the shapes of the 

predicted and observed regime curves. This comparative exploration on the dominant flow 

generation mechanisms in 197 catchments across a gradient of climates indicated that the 

seasonality in the climate could have significant influence on the hydrology at catchment scale: 

the more variable and humid the climate is, the fewer the flow generation processes necessary in 

capture the first order hydrology. 
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 We then zoom into one widely studied flow generation mechanism: the baseflow 

generation, to discover the factors controlling the associated storage-discharge relationship, with 

the view to developing empirical parameterizations for land surface models. Catchment 

characteristics from 50 eastern catchments (climate, topography, soil, etc.) were extracted and 

analyzed to study their spatial patterns and their correlation with the coefficient and exponent of 

the recession slope curve, which can be used to generate the storage-discharge relationship. The 

statistical analysis demonstrated the dominance of the soil properties such as the vertical decay 

of hydrologic conductivity on the subsurface flow parameterization. The analysis also 

highlighted the impact of climate aridity, which has not been considered in previous theoretical 

deductions. Not only did this result highlight the climate control of parameterization of 

hydrologic processes, but also showed the importance of a combination of the pattern based 

empirical analysis and model based theoretical interpretations: for example, the climate impact 

on the subsurface flow generation is usually overlooked in the derivations based on hydraulic 

theories alone.  

 With the understanding gained of the influence of climate variability on the hydrology, 

we then developed a river network model to study the effects of temporal hydrologic variability 

inherited from climate on nutrient retention in rivers. The theoretical results produced through 

modeling pointed out the importance of nutrient spiraling during high flows and their 

contributions to the annual nutrient budget despite the low uptake efficiency during such high 

flow events. This significant contribution to nutrient retention during high flows emphasized the 

impact of hydrologic variability on nutrient transport, i.e., annual nutrient removal efficiency 

changes with different combinations of the frequency of high flows and low flows. Model 

simulations showed that the overall retention efficiency would decrease with the increase of the 

temporal hydrologic variability.  

 Guided by the synthesis framework combining both data analysis and model 

interpretation, we then cooperated with stream ecologists to improve our theoretical model based 

on the patterns seen from the measurements in several “big rivers” combined with previous 

observations collected from the literature. We replaced the nutrient uptake parameters or metrics 

with new estimates obtained as functions of flow and concentration level, based on relationships 

we extracted from the empirical observations. The new coupled hydrology-biogeochemistry 
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model, with parameters derived from empirical observations, was then applied to the 15 study 

catchments drainging the 15 big rivers to discover scale effects on nutrient retention. The model 

simulations suggested that the big rivers can no longer be considered as “pipes”, in that they 

contribute more to nutrient uptake compared to their share of total stream length. The differences 

we saw between the 15 catchments were attributed to differences in nutrient input loads and the 

uptake lengths, while the differences among three different solutes (nitrate, ammonium and 

phosphate) were show to be due to their distinct biological demand (i.e. ammonium is preferred 

than nitrate) and transport mechanisms (i.e. phosphate is closely related to the sediment 

transport). 

 Finally, to complete the understanding of the impact of climate variability on the nutrient 

retention, we revisited the catchments studied in Chapter 4 with the new model that had been 

improved through empirical relationships. A hillslope hydrologic model was incorporated into 

the new model developed in Chapter 5 to receive the climate forcing and filter it to generate the 

hillslope inflow to the river network. Three different climates were applied to the new model. 

The new results, which were consistent with the results presented in Chapter 4, reiterate the 

importance of hydrologic variability on the nutrient retention. 

 To conclude, we can see the important influence of climate in hydrological processes: the 

complexity of hydrologic processes increases with the seasonality in climate, while the 

controlling factors of the flow generation mechanisms are modified by aridity during the long-

term co-evolution of landscape with the climate. Consequently, the variability in climate, 

transmitted through the temporal organization of flow events, also affects the nutrient uptake 

efficiency. These understandings could be helpful to customize the regulation of nutrient export 

to the river systems based on local climate and the hydrologic regime, river size, and land use 

pattern. For example, given the inverse relationship between the hydrologic variability and the 

nutrient retention efficiency, avoiding fertilizer application during big events could help increase 

nutrient reduction in the network. The importance of big rivers in nutrient retention also confirms 

the importance of the adoption of best management practices even in downstream parts of the 

river basin. The extension of big river travel distance through meandering or floodplain 

inundation could lead to more nutrient uptake as well.  
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7.2 Future work 

The work presented in this dissertation is an example to show how the framework proposed in 

the introductory chapter could be implemented to explore research questions related to the 

natural system, particularly in water related realms. More efforts could be invested to further 

understand the nutrient retention in detail in both the hydrology part and the biogeochemistry 

part.  

 Let us start from the biogeochemical question that is most closely related to our 

overarching objective: how is nutrient removed from the water column in river channels? In 

Chapter 5, we developed a coupled river network model to describe the nutrient uptake based on 

measurements from small streams and 15 big rivers. However, the relationship we embedded in 

the model is 1) a simple up-scaling from the measurements at the outlet from a range of stream 

sizes, without the use of actual data along the river network within the catchment; 2) only valid 

during low flows when all the measurements took place –more observations during high flow 

periods are necessary to verify the extension from low flows to high flows; 3) a lumped 

regression relationship that estimates the overall gross nutrient uptake in the water column 

without separation into its component processes: i.e. how much is retained by the biota in the 

water column, near the bed or within the transient storage zone.  

We upscaled the nutrient retention rate from the reach scale to the catchment scale based 

on the data obtained across several catchments instead of within catchments. This relationship 

could be more reliable if we can have it verified by data collected along the river network. 

Besides, studies have shown the importance of transient storage (i.e. floodplain) on nutrient 

uptake during flow events. That is, the empirical relationship between uptake length and flow 

and concentration level we developed in Chapter 5 may not prevail when the flow is higher than 

the bankfull discharge, which could lead to a nonlinear increase in the transient storage volume. 

More observations are needed to verify or modify the estimates of the uptake length during high 

flow events. Furthermore, to develop a process based model for deeper understanding, separation 

of the different uptake mechanisms is also essential. For example, given the emphasis on the role 

of transient storage on nutrient uptake during high flows, it is necessary to separate its 
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contribution from the pelagic or benthic uptake and to identify the factors contolling the nutrient 

uptake in each case.   

As demonstrated in Chapter 6, the hydrologic variability inherited from climate does 

have a significant impact on the nutrient retention efficiency in the river network at the annual 

scale. The hillslope hydrologic model presented there also indicated that the hillslope is not just a 

linear filter as we have seen from previous studies and in Chapter 2 and 3. To explore the climate 

impact on the nutrient uptake, more studies are needed on how hillslope converts rainfall into 

runoff and how the mechanism varies from place to place due to the distinct climatic, 

topographic, geomorphic, and pedologic properties. We have shown that a simple model can also 

be used to interpret catchment characteristics when combined with the information learned from 

the observed patterns. Since the goal in that study was to capture the first order temporal 

variability impact of climate, the model results were calibrated based on the regime curve. For 

the study of the nutrient retention in the long term, we need to simulate the runoff at event scale, 

that is, to calibrate on the time series of flow data. In this way we can see how the temporal 

organization of rainfall and flow events affect nutrient uptake processes, not only the impact of 

the frequency, magnitude, and duration but also timing. For instance, the rainfall event occurring 

right after fertilizer application could flush out more nutrients into the river than one occurring 

long after the application. This understanding could help us find the best time of fertilizer 

application to ensure sufficient crop growth and yet minimize nutrient losses. 

The simple model we developed in Chapter 2 failed in arid catchments or Midwestern 

catchments with significant anthropogenic activities. More sophisticated models are needed to 

simulate the hydrologic processes in arid regions as well as in human impaired regions. Not only 

can the comparative modeling approach be applied to the whole country, it can also be 

implemented within one big region with limited climatic differences, i.e. the arid region or 

northeastern mountainous area, to study in detail how dominant flow generation processes would 

change with landscape characteristics. This way, we can focus on a small amount of variables 

and study processes in more depth.  

For the study of nutrient retention, it is also important to identify different flow pathways: 

flow running through areas with different nutrient concentration could lead to large variations in 
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the amount of nutrient that eventually enters river channels. For example, due to the sorption to 

the sediment, dissolved phosphorus usually enters streams with surface flow which normally 

occurs during big rainfall events as infiltration excess runoff or rainfall after a long wet period as 

saturation excess flows. In agricultural catchments, subsurface flow close to the surface 

immediately after fertilizer application brings in the largest amount of nitrogen, while in pristine 

catchments groundwater recharge from aquifers draining through fractured rocks with high 

nitrogen content may be the biggest nitrogen source.  

Not only the flow pathways from the terrestrial landscape to the aquatic system, but also 

the flow pathways within the river network, governed by river morphology, play an influential 

role in nutrient uptake. Channel sinuosity could help increase the nutrient uptake by extending 

the travel time; while channel slope would have opposite impact by reducing the nutrient 

residence time; and bedrock geology could also influence the nutrient retention through turbidity 

and sediment supply. 

Chapter 3 is an example of the application of the adopted study framework to understand 

one specific flow generation mechanism: subsurface stormflow generation as a function of soil 

water storage. The empirical analysis indicated an interesting relationship between climate 

aridity and the coefficient and exponent in the recession curves. Synthesis between the empirical 

results and theoretical derivation suggested that climate probably is not just forcing to the 

terrestrial hydrology but also involved in the formation of hydrology through the co-evolution of 

catchment properties. 

This concept of co-evolution not only can help us acquire the big picture regarding how 

catchments evolved to the present state, and predict the processes occurring now with the 

understanding of the connection within each component and the notion of catchment evolution. 

If we could find out how catchment hydrology changed from the original state defined by local 

geology to the current status through the modification by climate, vegetation and the feedback 

between them, then we would be able to predict what kind of hydrology may develop for each 

catchment given its basic geology and long-term climate history. This is a difficult question, but 

the framework we presented here could be a useful tool for exploration of such fundamental 

questions Similar to the neuroscientists’ research about human brain functioning, starting from 



203 

 

the basic reflex and hot spots in the brain under specific stimulations, we can look at the change 

of catchment hydrology and the sensitivity analysis among catchments with a range of variability 

in one dominant factor by comparative studies of the patterns obtained or models developed for 

these catchments. 

 Finally, as a significant extension of this research, we want to know the amount of 

nutrients is exported into the aquatic ecosystem annually. To be able to estimate the nutrient 

yield, a terrestrial nutrient cycling model should be developed, which has a much closer 

relationship with vegetation and can benefit more from the concept of co-evolution of climate-

soil-vegetation and how this loop will impact the water and nutrient distribution and storage in 

the landscape. The framework we applied here could be used to guide our exploration in a 

changing world and help us manage nature to maximize both the anthropogenic and ecological 

interests.
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Appendix 

Table A.1: Calibrated lateral inflow concentration & the measured concentration at outlet 

Catchment 

Calibrated 

lateral 

NH4 

Measured 

NH4@ 

outlet 

USGS Groundwater 

data 
Calibrated 

lateral 

NO3 

Measured 

NO3@ 

outlet 

USGS Groundwater 

data 
Calibrated 

lateral 

PO4 

Measured 

PO4@ 

outlet 

USGS Groundwater 

data 

Range n Median Range n Median Range n Median 

Muskegon 68 14 [0, 20] 6 20 -- 330 [580,1800] 6 920 257 9 [0,31] 4 31 

St. Joseph -- 32 [20,440] 18 80 28,200 1100 [69,21000] 16 11450 258 11 [0,123] 11 61 

Tippecanoe 182 15 -- -- -- 18,020 1850 -- -- -- 665 67 23 1 -- 

White 21 1 [0,735] 64 680 -- 1650 [0,11900] 64 1870 -- 60 [0,20] 64 11 

Manistee 330 30 [20,30] 2 25 -- 120 [0,9100] 28 1100 110 10 [0,31] 2 31 

Snake 70 5 [0,50] 15 30 7 1 
[1450,930

0] 
15 6530 31 3 [160,1900] 15 440 

Salmon 61 5 [40,330] 8 300 24 2 [40,403] 8 403 15 4 [20,430] 8 400 

Henry’s 36 3 [30,866] 2 448 70 6 [20,1400] 4 235 -- 16 [4,60] 4 10 

Buffalo 20 5 -- -- -- 11 3 -- -- -- -- 44 -- -- -- 

Seedskadee 270 14 -- -- -- 708 19 15000 1 -- 810 22 80 1 -- 

Green 122 5 
[10,665

0] 
25 225 444 15 [0,33400] 76 180 -- 21 [10,2390] 66 40 

Ouray 58 2 [20,240] 9 35 48 7 [50,33400] 19 279 122 3 [10,50] 11 50 

North Platte 273 5 40 10 40 -- 20 [42,187] 10 91 -- 20 [0,31] 10 25 

Bear -- 12 
[10,295

0] 
7 50 1870 49 [10,15000] 13 6690 810 18 [10,790] 7 20 

Colorado 31 1 [20,171] 68 80 -- 697 [40,13700] 137 2810 227 12 [10,26] 63 14 

 


