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ABSTRACT

We extend interferometric synthetic aperture microscopy (ISAM) to opti-

cal coherence tomography (OCT) data collected with multiple positions of

the focal plane. Multifocal ISAM achieves spatially invariant resolution like

ISAM by applying the solution of the inverse problem to the forward model

for each channel. A general regularized solution eliminates artifacts that

affect multibeam OCT while achieving better signal-to-noise ratio over the

entire image than is possible with single-focus ISAM. We present detailed

theory, computer simulation, experimental results and analysis.
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CHAPTER 1

INTRODUCTION

1.1 Working Principles of OCT

Optical coherence tomography (OCT), is an optical imaging method that

is able to reveal the 3D structure of optical scattering media with micron-

resolution [1, 2, 3, 4, 5, 6, 7]. OCT has proved useful in many fields including

ophthalmology [8, 9, 10, 11, 7, 12, 13], dermatology [14, 15, 16], and cardi-

ology [17]. In addition, more novel applications [18, 19] are being developed

by researchers all over the world.

The working principle of OCT is similar to that of ultrasound, in that

both try to measure the distributed back-scattering of the incident wave

to reconstruct the distributed scattering coefficient at each position of the

sample.

There are many variants of OCT, namely time domain OCT (TD-OCT)

[20], spectral domain OCT (SD-OCT) [21, 20, 22], and swept source OCT

[23]. Each has a slightly different physical configuration, but they all produce

equivalent data under appropriate transformations. There are also various

geometries, such as wide-field [24], rotational [25] and scanning geometries

[26]. Here we take focused scanning spectral domain OCT as an example.

The setup for SD-OCT includes a broadband source connected to a fiber-

based Michelson interferometer, where one of its arms is a fixed mirror, and

on the other arm is a focusing lens projecting the beam into the sample.

The beam illuminates the sample, and is partially scattered back and again

collected by the focusing lens. The collected light interferes with the light

from the other arm and is recorded by a spectrometer.

A-scan, B-scan, and C-scan are the terms from ultrasonography used to

describe the dimensionality of the scan, which also apply to OCT. When the

scanning beam is focused at some transverse position (x, y) of the sample,
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Figure 1.1: Illustration of a) A-scan, b) B-scan, and c) C-scan.

an A-scan can be performed to detect the one-dimensional structure of the

sample along z-direction, as is shown in Figure 1.1 a). Multiple A-scans along

a certain axis form a B-scan, from which the cross sectional structure of the

sample can be obtained, as is shown in Figure 1.1 b). Similarly, a series of

B-scans along the other dimension form a C-scan, which is a volume scan of

the sample, as is shown in Figure 1.1 c).

By performing a C-scan over an area of a sample, the sample structure

can be reconstructed using a Fourier transform of the collected dataset.

This relation is based on two assumptions, the first Born approximation and

pencil-beam approximation. The first Born approximation assumes single-

scattering and neglects higher-order scattering, which has proved to be a

good approximation for many applications including biological tissue imag-

ing [26]. Nevertheless, multiple-scattering artifacts have been observed in

some situations [27, 28]. The pencil-beam approximation assumes that the

width of the focused, scanning beam remains constant along depth direction,

which is, in general, a bad approximation. The variation of the focused Gaus-

sian beam width along the propagation direction depends on the numerical

aperture (NA) of the system. Figure 1.2 shows the focused Gaussian beam

1/e2 intensity contour of 1µm wavelength light with various NA. It can be

observed from the figure that the pencil-beam approximation can only be

applied to low-NA system (≤ 0.2). However, for high-NA systems, crucial

for achieving high transverse resolution, this assumption is no longer valid,

as the beam width diverges quickly far away from the focusing plane. This

causes the decay in transverse resolution of OCT reconstructions at positions

2



Figure 1.2: Beam 1/e2 contour of focused Gaussian beam at 1µm
wavelength with various NA.

far from the focusing plane.

1.2 Trade-off in OCT between Resolution and Imaging

Depth

In OCT, there are two important figures of merit, imaging depth and trans-

verse resolution. However, by the laws of physics, it is theoretically impossible

to improve both at the same time. For a given OCT system, the transverse

resolution at certain depth is equivalent to the width of the scanning beam

at that depth. The transverse resolution is best on the focal plane, where

the scanning beam has minimum beam width. The beam-waist width is

w0 =
λ

2n ·NA
. (1.1)
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The transverse resolution degrades as the position of reconstruction is further

away from focal plane, where the scanning beam diverges in width,

w(z) =

√
w2

0 +

[
λ(z − z0)
πnw0

]2
. (1.2)

Because of the decay in transverse resolution, the reconstructed image be-

comes defocused at positions far away from the focal plane. Therefore, the

usable imaging depth of the OCT system is usually taken to be within a

Rayleigh range (ZR) of the focal plane. The Rayleigh range is defined as the

distance from the focal plane to the plane where w(z) =
√

2w0. Here we

take the imaging depth to be the confocal range which is twice the Rayleigh

range so that the worst transverse resolution is
√

2w0. The confocal range of

an OCT system can be expressed as

Confocal Range = 2ZR = 2nπw2
0/λ, (1.3)

which is proportional to transverse resolution square.

In Figure 1.3, the curve represents all combinations of imaging depth and

transverse resolution theoretically possible at wavelength of 1µm and with

refractive index of 1.4. For example, if the desired transverse resolution is

1.2µm on the above mentioned condition, which can be achieved by using

a 0.3 NA focusing lens, the achievable imaging depth is 12.7µm, as can be

seen at the lower sample point. On the other hand, if the imaging depth is

increased to 112µm, which can be implemented using a 0.1 NA focusing lens,

the best possible transverse resolution degrades to 3.6µm, as can be seen at

the upper sample point.

Although OCT is limited by the above-mentioned trade-off, it is possi-

ble to mitigate the trade-off by improving either the physical setup or the

reconstruction algorithm. There are two existing solutions, interferometric

synthetic aperture microscopy (ISAM) and multifocal OCT, each having its

own advantages and challenges.
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Figure 1.3: Trade-off between imaging depth and transverse resolution in
OCT.
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1.3 Multifocal OCT

Multifocal OCT, also called multibeam OCT or multichannel OCT [29, 30], is

a parallel version of OCT, where multiple apertures are used simultaneously

in scanning, as is shown in Figure 1.4. Each aperture is focused at a different

depth of the sample during the scan. One set of data is collected from each

aperture.

Figure 1.4: Physical setup of multifocal OCT.

In multifocal OCT, since there are multiple apertures scanning simulta-

neously, each aperture receives not only the back-scattered light contributed

by its own illumination, but also the back-scattering from the illumination of

other apertures, as is seen in Figure 1.5. If the illumination of each aperture

is coherent to some degree, i.e. if they share the same light source and the

difference in optical path-length is less than the coherent length of the light

source, the aperture crosstalk will be detected by the interferometer. This

will result in multiple ghost images overlapping each other in the reconstruc-

tion. For example, if we assume three apertures are scanning simultaneously

and the waist planes of the Gaussian beams are coherent with each other,

the reconstruction from aperture 1 is shown in Figure 1.6. This effect is in

general undesirable, and can be eliminated either by using a different light

source for each aperture (which is expensive), or inserting a fiber bundle be-

fore each aperture so that the optical path-length is much larger than the

source coherent length.
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Figure 1.5: Illustration of the different components of the aperture crosstalk
in multifocal OCT.

Figure 1.6: Panels a), b), and c) are simulated components of multifocal
OCT signal of aperture 1 contributed by a) aperture 1, b) aperture 2, and
c) aperture 3. Panel d) is the overall OCT signal of aperture 1.

An image stitching method is used to combine each set of data. A simu-

lation of cross-sectional scan (B-scan) in 2D with noise included is done to

illustrate the method. The sample used in the simulation consists of a se-

ries of point scatters positioned along the diagonal axis. The horizontal axis

corresponds to the transverse direction, while the vertical axis represents the

depth into the sample. Three apertures focused at -20 µm, -60 µm and -100

µm are used in the simulation, which are shown in Figure 1.7 a), b) and c)

respectively. As is illustrated in Figure 1.7 d), the image stitching method

takes the part with the best transverse resolution from each set of data, and

stitches them into the final reconstruction. Compared with each set of OCT

data, the multifocal OCT image shows an improved resolution over the whole

depth, or from another point of view, enables a larger imaging depth.

7



Figure 1.7: Illustration of the image stitching method.

Consider the case of a multifocal OCT system with 3 identical apertures.

The distance between two adjacent focal planes is set to be 1 confocal range,

(i.e. three apertures focusing at the depth of 0.5, 1.5 and 2.5 confocal ranges).

In this case, the transverse resolution in reconstruction is always equal to or

better than
√

2w0, which is similar to our assumption in OCT. Figure 1.8

plots the trade-off curve of multifocal OCT compared with OCT. As three

stacked apertures are used, for any value of transverse resolution, multifocal

OCT provides 3 times the imaging depth compared with OCT; or on the

other hand, for the same desired imaging depth, multifocal OCT can achieve

improved transverse resolution compared to OCT.

Multifocal OCT also faces challenges such as intensity discontinuities along

stitching edge in the reconstructed image [29, 30]. Although artificial blend-

ing can be used to mitigate this effect [31], it is not physically derived and

thus does not always provide accurate image reconstruction.
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Figure 1.8: The trade-off curve of multifocal OCT compared with OCT.
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1.4 Interferometric Synthetic Aperture Microscopy

The ISAM experiment is similar to that of OCT. ISAM takes the OCT data

and corrects for the spreading of the beam using the solution to the inverse

problem of OCT [32, 33, 34]. The algorithm can be efficiently implemented

using a frequency domain resampling technique [33, 26], which can be ex-

pressed by Equation (1.4) [26], where |S〉 represents the OCT data.

〈r|η〉 = w(z − z0)
∫

d2k‖
〈
r‖|k‖

〉 ∫
dβ 〈z| − β〉

×H−1F
〈
k‖,

1

2

√
β2 + k2

‖, z0n|S
〉

(1.4)

Because the depth of focus of OCT is infinitely extended by applying the

algorithm, ISAM is able to provide spatially invariant resolution, as opposed

to the decaying resolution of OCT along depth axis. ISAM has been validated

and is proved to provide accurate reconstruction with good resolution [32, 35].

However, ISAM faces the challenge of signal-to-noise ratio (SNR) decreas-

ing with 1/z, which limits its effective imaging depth [32]. Assume SNR at

focus is SNR0 (linear), and the smallest tolerable SNR is SNRL, imaging

depth is limited by
SNR0

ω(z)/ω0

≥ SNRL, (1.5)

which has the following solution:

SNR Range =
2πnω2

0

λ0

√(
SNR0

SNRL

)2

− 1. (1.6)

Figure 1.9 plots the trade-off curve of ISAM when SNR0/SNRL = 10.

Compared with multifocal OCT, ISAM further shifts the curve to the up-

right direction, mitigating the trade-off. This can be partially explained by

the fact that human eye is less sensitive to decaying SNR than decaying

resolution.
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Figure 1.9: The trade-off curve of multifocal OCT compared with OCT.
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CHAPTER 2

METHODOLOGY

In this chapter, some notation and methodology useful in subsequent chapters

are introduced.

2.1 Notation

Following [26], all equations in this thesis are written in Dirac (bra-ket) nota-

tion and use similar symbol conventions. In this section, some basic symbol

conventions will be introduced to aid the understanding of the equations

appearing in this thesis.

The symbols used in this thesis include r, k, r‖, k‖, z, and kz. The symbols

r and k are vectors in R3, which describe the position in three-dimensional

spatial and frequency domain, respectively, as are shown in Equation (2.1)

and (2.2). In this thesis, z is defined as the direction of propagation of the

beam; and x and y directions are defined as the parallel directions. Therefore,

r‖ and k‖ are vectors in R2, which describes the position in two-dimensional

spatial and frequency domain respectively, as shown in Equations (2.3) and

(2.4). Directions z and kz are in R1 and describe the position in the z-axis

in spatial and frequency domain; that is,

r =

 x

y

z

 , (2.1)

k =

 kx

ky

kz

 , (2.2)
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r‖ =

(
x

y

)
, (2.3)

k‖ =

(
kx

ky

)
. (2.4)

The vector |r〉 will represent a basis vector, labeled by r for L2(R3), the

space of square-integrable functions on R3. We will also use another set of

basis vectors |k〉 with the relationship to |r〉 that 〈r|k〉 = (2π)−3/2eik·r. It will

be useful to recognize that |r〉 = |x〉 |y〉 |z〉; that is, |r〉 may be written as a

vector product of basis vectors in L2(R). Thus we will construct mixed basis

vectors
∣∣k‖, z〉 =

∣∣k‖〉 |z〉 such that 〈r′|kx, ky, z〉 = (2π)−1eikxx
′+ikyy′δ(z′ − z),

etc.

The symbol |η〉 represents susceptibility, or the ability of the material to

scatter light. It is a vector in L2(R3). 〈r|η〉 is the representation of the sus-

ceptibility in three-dimensional spatial domain. Similarly, 〈k|η〉 represents

three-dimensional susceptibility distribution of the sample in frequency do-

main, which relates to 〈r|η〉 through a three-dimensional Fourier transform.

Since the Fourier transform can be performed on a single dimension in a

multidimensional matrix, without affecting the basis of other dimensions,

kets like |S〉 ∈ L2(R4) can also be projected onto the spatial domain coordi-

nates on some dimensions and onto frequency domain coordinates on other

dimensions, which is represented in a way such as
〈
k‖, k, z0n|S

〉
.

2.2 Pseudo-inverse

Operators represent the linear mapping from one vector space to another.

The general form of an operator is

P =
∑
k,k′

|k′〉Pkk′ 〈k| , (2.5)

where Pkk′ represents matrix elements in the matrix P . The operator takes

a vector |v〉 and map to a vector |s〉, which is denoted as

|s〉 = P |v〉 =
∑
k,k′

|k′〉Pkk′ 〈k|v〉 . (2.6)

13



By finding proper bases in both vector spaces, operator P can be written

as the transformation represented by a quasi-diagonal matrix,

P =
∑
j

|j2〉σj 〈j1| , (2.7)

where j = 1, 2, 3... labels each basis. This representation is called the singular

value decomposition of operator P , with singular values σj, and singular

vectors |j2〉 and 〈j1|. The common way to find a set of such basis is to solve

for the eigenvector |j1〉 in the eigenvalue problem

P ∗P |j1〉 = σ2
j |j1〉 , (2.8)

and use

|j2〉 = σ−1j P |j1〉 (2.9)

to find the vector |j2〉 corresponding to each |j1〉 for all j for which σj 6= 0.

If all the σj are nonzero, the inverse operator of P can be expressed as

P−1 =
∑
j

|j1〉σ−1j 〈j2| . (2.10)

However this condition is not always met in reality. For operators with some

σj = 0, only the least-squared-error inverse operator

P+ =
∑
σj 6=0

|j1〉σ−1j 〈j2| (2.11)

can be calculated. P+ is called the pseudoinverse of P . Another useful way

to calculate P+ is

P+ = (P ∗P )−1P ∗, (2.12)

which is used in later sections.

2.3 Regularization

The pseudoinverse gives the least-squared-error result in theory, when the

dataset it acts on is ideal. In reality, the dataset always contains noise

and pseudoinverse can sometimes be very sensitive to noise. For example,

14



consider the case

|W 〉 = P+ |Snoisy〉 =
∑
σj 6=0

|j1〉σ−1j 〈j2|Snoisy〉 , (2.13)

where

|Snoisy〉 = |Signal〉+ |Noise〉 . (2.14)

When there is a particular σj which is very small, the corresponding σ−1j in

the |j1〉σ−1j 〈j2|Snoisy〉 component of the pseudoinverse is very large. This

greatly amplifies the noise component 〈j2|Snoisy〉, which contaminates the

result |W 〉.
To mitigate the effect, regularization can be applied. The regularized pseu-

doinverse can be derived by replacing the σ−1j by the function R[σ−1j ], so that

P+ =
∑
j

|j1〉R[σ−1j ] 〈j2| . (2.15)

Depending on various noise models, the function R[σ−1j ] can take various

forms. For example, when the noise is zero-mean and multiplicative, Tikhonov

regularization, which has the form

P+ =
∑
j

|j1〉
σj

σ2
j + λ

〈j2| , (2.16)

provides optimum results. For zero-mean and multiplicative noise, λ = N2

is the optimum parameter to achieve least square error solution.

2.4 Method of Stationary Phase

The method of stationary phase provides a convenient way of computing the

integration of functions which are modulated by a rapidly evolving phase,

where there exists a point near which the evolution of phase stops. This

method is used in the derivation in the later sections. In this section, we will

briefly illustrate the one-dimensional case of the method of stationary phase.
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Figure 2.1: Plot of the real part of a function with a stationary point at
x = 0.

This above-mentioned integration can be typically represented by

∞∫
−∞

f(x)eiφ(x)dx, (2.17)

where f(x) represents an slowly varying envelop, and φ(x) describes the

evolution of phase along the axis of integration.

To find if there exists a point near which φ(x) stops to evolve, we take

d

dx
φ(x) = 0. (2.18)

If a solution exists, the corresponding point is called a stationary point. Here

we label it x0. An example of such point is shown in Figure 2.1.

We then take a Taylor series expansion of φ(x), and keep the first three

terms. Note since the first derivative, φ′(x0) = 0, only two terms are left.

φ(x) = φ(x0) +
���

���
��:0

φ′(x0)(x− x0) +
1

2
φ′′(x0)(x− x0)2 + ... (2.19)

We substitute the Taylor series expansion of φ(x) from Equation (2.19)

into Equation (2.17). As can be seen in Figure 2.1, the contribution to the

integral mainly comes from the stationary point. Thus, we can plug in x = x0

16



in to f(x) and get

∞∫
−∞

f(x)eiφ(x)dx

≈
∞∫

−∞

f(x)exp

[
iφ(x0) +

i

2
φ′′(x0)(x− x0)2

]
dx

≈ f(x0)e
iφ(x0)

∞∫
−∞

exp

[
i

2
φ′′(x0)(x− x0)2

]
dx. (2.20)

The remaining integration in Equation (2.20) can be evaluated using a

close loop integration in the complex plane to get the closed form solution,

that is

∞∫
−∞

exp

[
i

2
φ′′(x0)(x− x0)2

]
dx =

√
2π

φ′′(x0)
eiπ/4. (2.21)

Thus the integration has the following result:

∞∫
−∞

f(x)eiφ(x)dx ≈ f(x0)e
iφ(x0)

√
2π

φ′′(x0)
eiπ/4. (2.22)
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CHAPTER 3

MULTIFOCAL INTERFEROMETRIC
SYNTHETIC APERTURE MICROSCOPY

Seeing the trade-off OCT is facing and the advantages and challenges of

ISAM and multifocal OCT, we have developed a new imaging technique

which combines the advantages of both multifocal OCT and ISAM. By ap-

plying a coherent combination of the reconstruction of each channel with

appropriate regularization, higher lateral resolution and signal-to-noise ratio

can be achieved without artifacts from the synthesis of the data sets. The

experiment is similar to conventional OCT, except multiple channels, each

with a different focus, are used.

3.1 Forward Model

The sample is described by a susceptibility |η〉, and the data set by |S〉. The

position of the nth focal plane is denoted z0n. The datum at transverse-

scanning position r‖, wavenumber k0, and focal plane z0n is denoted〈
r‖, k0, z0n|S

〉
. Transverse wavevector states are denoted

∣∣k‖〉 so that
〈
r‖|k‖

〉
=

1
2π
e−ik‖·r‖ .

Equation (19.26) in [26] provides a good starting point to this problem.

The contribution to the signal from each aperture at transverse-scanning

position ra to the detection aperture at rb can be expressed as

〈ra, rb, k|S〉 =

∫
d2k′′‖

∫
d2k′‖

∫
d2r‖dze

ik′′
‖ ·rb g̃b(k

′′
‖,k)

〈
k′′‖|Gzb|r

〉
×
〈
r‖|Kza−z|k′‖

〉
e−ik

′
‖·ra g̃a(k

′
‖, k) 〈k|U0〉 〈r|η〉 . (3.1)

The signal Sn detected from aperture n can be expressed as the sum of

the contributions from each illumination aperture m, denoted as Smn, as is

illustrated in Figure 3.1. Here we assume the transverse-scanning position of

18



Figure 3.1: Illustration of the different components of the detected signal in
multifocal OCT.

the illumination aperture is infinitely close to that of the detection aperture.

Therefore, we can set ra = rb = r0, ga = gb = g, so that the problem is

converted to single static case with illumination focal plane at depth of z0m

and detection focal plane at z0n,

〈r0, k|Sn〉 =
∑
m

〈r0, k|Smn〉

=

∫
d2k′′‖

∫
d2k′‖

∫
d2r‖ dz ei(k

′′
‖−k

′
‖)·r0 g̃(k′′, k)

×[ie−ik
′′
‖ ·r‖ e

i
√
k20−k′′2

‖ (z0n−z)√
k20 − k′′2‖

][ 1
2π
eir‖·k

′
‖ei
√
k20−k‖′

2
∑
m

e(z0m−z)]

×g̃(k′‖, k) 〈k|U0〉 〈r|η〉 . (3.2)

By performing a change of basis of the equation above, the multi-foci

version of Equation 19.29 in [26] can be derived, as is shown in Equations
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3.3 and 3.4 below:

〈
k‖, k|Sn

〉
=
∑
m

〈
k‖, k|Smn

〉
=
∑
m

∫
d2r0

〈
k‖, k|r0, k

〉
〈r0, k|Smn〉

=
∑
m

〈k|U0〉
∫

dz h̃(k‖, z, k, z0n, z0m)[
〈
k‖
∣∣ 〈z|η〉], (3.3)

where

h̃(k‖, z, k, z0n, z0m) =

∫
d2k′′‖

g̃(k′′, k)g̃(k′′‖ − k‖, k)√
k20 − k′′2‖

×
∑
m

e
i
√
k20−k′′2

‖ (z0n−z)+i
√
k20−(k′′

‖−k‖)
2(z0m−z)

. (3.4)

The function h̃(k‖, z, k) in Equation 3.4 describes the point spread function

of the multifocal OCT forward problem, which consists of several components

located at different depths. Equation 3.3 can be understood as a mix of

filtering of the sample susceptibility in kx and ky axes in the frequency domain

and a convolution along the z-axis in the spatial domain, which corresponds

to the convolution of point-spread function in 3D spatial domain.

In order to eliminate the stacked point spread function, which is com-

putationally too expensive to deconvolve, we assume that the path-length

difference between channels is much larger than the source coherence length

so that cross-talk Smn where m 6= n may be neglected. This can be achieved

experimentally by inserting different length of fiber before each aperture.

With this assumption, the signal detected from the nth aperture only con-

sists of the back-scattering caused by the illumination from itself, resulting

an simplified point spread function, as is described by

〈
k‖, k|Sn

〉
=
〈
k‖, k|Snn

〉
= 〈k|U0〉

∫
dz h̃′(k‖, z, k)[

〈
k‖
∣∣ 〈z|η〉], (3.5)

where

h̃′(k‖, z, k) =

∫
d2k′′‖

g̃(k′′‖, k)g̃(k′′‖ − k‖, k)√
k20 − k′′2‖

e
i
[√

k20−k′′2
‖ +

√
k20−(k′′

‖−k‖)
2
]
(z0n−z)

.(3.6)
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Since we have multiple sets of signals with different focal plane depths,

we add the dimension of z0n to accommodate all datasets obtained from

each focal plane z0n. Thus, |η〉 becomes a vector in L2(R4). The method of

stationary phase can be applied when |z0n − z| is large compared to wave-

length, where the phase is stationary around k
′′(stat.)
‖ =

k‖
2

[26], resulting in

an simplified asymptotics result,

〈
k‖, k, z0n|S

〉
= HF (k‖, z0n)

〈
k‖, z0n

∣∣ ∫ dz

〈
−2
√
k20 − (k‖/2)2|z

〉
×|z − z0n|−1 〈z|η〉 . (3.7)

When |z0n − z| is small compared to wavelength, the asymptotic result is

〈
k‖, k, z0n|S

〉
= HF (k‖, z0n)

〈
k‖, z0n

∣∣ ∫ dz

〈
−2
√
k20 − (k‖/2)2|z

〉
×1−1 〈z|η〉 . (3.8)

The term |z− z0n|−1 and 1−1 in Equation 3.7 and 3.8 can be replaced with

w0/w(z), which is 1−1 when |z0n−z| is small and decays with |z−z0n|−1 when

|z0n − z| is large. In this way both asymptotic results can be generalized by

〈
k‖, k, z0n|S

〉
= HF (k‖, z0n)

〈
k‖, z0n

∣∣ ∫ dz

〈
−2
√
k20 − (k‖/2)2|z

〉
×wr(z, z0n)−1 〈z|η〉 , (3.9)

where

HF (k‖, z0n) = 〈k|U0〉 g̃2(k‖/2, k)e−2iz0n
√
k20−(k‖/2)2 , (3.10)

and wr(z, z0n) is the relative beam width compared to w0,

wr(z, z0n) =
w(z, z0n)

w0

=
1

w0

√
w2

0 +

[
λ(z − z0)
πw0

]2
=

√
1 +

[
λ(z − z0)
πw2

0

]2
.

(3.11)
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3.2 Regularized Inverse

At this stage we have formed a complete forward model of multifocal ISAM,

which relates the susceptibility distribution |η〉 of the sample to the signal

|η〉 detected from the aperture. The next step is to derive its inverse based

on the forward problem, which enables us to reconstruct the susceptibility

distribution from the detected signal. We start from Equation 3.12 below,

which is equivalent to Equation 3.9:

|S〉 =

∫
d2k‖ dk0 dz0n

∣∣k‖, k0, z0n〉HF (k‖, z0n)
〈
k‖, z0n

∣∣
×
∫

dz dz′0n

〈
−2
√
k20 − (k‖/2)2|z, z′0n

〉
wr(z, z

′
0n)
−1 〈z|η〉 .(3.12)

The detected signal |S〉 can be seen as the result of two operators P and Z

acting on the sample susceptibility |η〉, so that |S〉 = PZ |η〉. As is described

by Equation 3.14 and 3.13, the P operator takes the data from |η〉 and remaps

on to a different grid,

P =

∫
d2k‖ dk0 dz0n

∣∣k‖, k0, z0n〉HF (k‖, z0n)

×
〈
k‖,−2

√
k20 − (k‖/2)2, z0n

∣∣∣∣ . (3.13)

The Z operator takes data from |η〉 and applies a depth dependent attenua-

tion of |z − z0n|−1 in magnitude in the z dimension,

Z =

∫
dz dz′0n |z, z′0n〉wr(z, z′0n)

−1 〈z| . (3.14)

This can be imagined as the result of the local intensity of the illuminating

beam attenuates as it spreads in the transverse direction.

To reconstruct |η〉, we need to derive the pseudoinverse of the two operators

P and Z respectively. Here we denote them as P+ and Z+. The reconstructed

|η〉 then can be expressed as

|η〉 = Z+P+ |S〉 . (3.15)

The pseudoinverse of P can be derived in the following steps using P+ =
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(P ∗P )−1P ∗,

P ∗P =

∫
d2k‖ dk0 dz0n

∣∣∣∣k‖, z0n,−2
√
k20 − (k‖/2)2

〉
×|HF (k‖, z0n)|2

〈
k‖, z0n,−2

√
k20 − (k‖/2)2

∣∣∣∣ . (3.16)

For simplicity, a change of variables is performed. Let

β = −2
√
k20 − (k‖/2)2, (3.17)

so that

P ∗P =

∫
d2k‖ dβ dz0n

∣∣k‖, z0n, β〉 β|HF (k‖, z0n)|2

2
√
β2 + k‖

2

〈
k‖, z0n, β

∣∣ . (3.18)

The singular value in the above equation can be identified as

σ2 =
β|HF (k‖, z0n)|2

2
√
β2 + k‖

2
. (3.19)

Thus, the normal operator takes the form of

(P ∗P )−1 =

∫
d2k‖ dβ dz0n

∣∣k‖, z0n, β〉 2
√
β2 + k‖

2

β|HF (k‖, z0n)|2
〈
k‖, z0n, β

∣∣ . (3.20)

The pseudoinverse of operator P can then be expressed as

P+ = (P ∗P )−1P ∗

=

∫
d2k‖ dβ dz0n

∣∣k‖, z0n, β〉H−1F (k‖, z0n)

×
〈
k‖, z0n,

1

2

√
β2 + k‖

2

∣∣∣∣ . (3.21)

Using similar method, the exact inverse of operator Z can also be derived,

that is

Z−1 =

∫
dz dz0n |z〉wr(z, z0n) 〈z, z0n| . (3.22)

For different noise model, corresponding regularization can be applied by
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replacing wr(z, z0n) with its function, so that

Z+ =

∫
dz dz0n |z〉R [wr(z, z0n)] 〈z, z0n| , (3.23)

to achieve minimum L2 error solution.

Here for the multiplicative noise, Tikhonov regularization promises the

minimum L2 error solution of the problem. The regularizer of Tikhonov

regularization is

R (wr(z, z0n) =
wr(z, z0n)−1

wr(z, z0n)−2 + λ
. (3.24)

Thus, the regularized inverse of the Z operator is

Z+ =

∫
dz dz0n |z〉

wr(z, z0n)

1 + λwr(z, z0n)2
〈z, z0n| . (3.25)

The Tikhonov regularized solution of the inverse problem is then

〈r|η〉 =

∫
dz0n

wr(z, z0n)

1 + λwr(z, z0n)2

∫
d2k‖

〈
r‖|k‖

〉 ∫
dβ 〈z| − β〉

×H−1F (k‖, z0n)

〈
k‖,

1

2

√
β2 + k‖

2, z0n|S
〉
, (3.26)

where the factor H−1F depends on k‖, β, and the focal position z0n [36]. In

reality, we can only have discrete number of apertures, the discretized version

can be expressed as

〈r|η〉 =
N∑
n=1

wr(z, z0n)

1 + λwr(z, z0n)2

∫
d2k‖

〈
r‖|k‖

〉 ∫
dβ 〈z| − β〉

×H−1F (k‖, z0n)

〈
k‖,

1

2

√
β2 + k‖

2, z0n|S
〉
, (3.27)

where instead of performing an integration on z0n, we take the sum over all

z0n.
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3.3 Simulation

A computer simulation demonstrates the regularized solution of the multifo-

cal ISAM inverse problem in Figure 3.2. The sample used in the simulation

consists of a series of point-scatterers on the x-z plane with 5µm separation

in depth between neighboring point-scatterers, as in the simulation in Figure

1.7. An OCT system with an NA of 0.75, refractive index of 1, and wave-

length of 900nm to 1000nm was used, resulting in a transverse resolution of

0.6µm and a Rayleigh range of 1.25µm in air.

Figure 3.2: Panels a), b), and c) are three channels of OCT data, each
focused at −20µm, −60µm, and −100µm respectively. Panel d) is the
multifocal OCT reconstruction based on a), b), and c). Panel e), f), and g)
are three channels of ISAM reconstruction based on a), b), and c)
respectively. Panel h) is the multifocal ISAM reconstruction based on e), f),
and g).

The results in Figure 3.2 a)-c) show how the spreading in the OCT image

acquired with focal plane at different depth becomes more severe at large

distances from focus. Figure 3.2 d) shows the stitched image multibeam OCT

synthetized from data in a)-c). Although d) sees an immediate improvement

over a)-c), the transverse resolution achieved by multibeam OCT still varies
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spatially.

The results in Figure 3.2 e)-g) demonstrate how the regularization works as

weightings to scale-down the noisy signal far from focus at each channel. The

results in Figure 3.2 h) show the regularized inverse solution works effectively

in correcting the defocus and coherently combining the three datasets to

achieve a reconstruction with spatially invariant resolution. Compared with

the multibeam OCT image at d), resolution in h) again shows a significant

improvement.

Figure 3.3: Theoretical transverse resolution for three channels of OCT,
multifocal OCT and multifocal ISAM, based on a three-aperture multifocal
OCT system with focal plane at −20µm, −60µm, and −100µm.

With the same parameters as above, Figures 3.3 and 3.4 show plots of

theoretical transverse resolution and simulation measurement of multibeam

OCT and multifocal ISAM. Multifocal ISAM shows superior transverse reso-

lution, especially at larger distance from each focus, compared to multibeam

OCT.

Figure 3.4 shows a plot of theoretical signal-to-noise ratio of single-focal

ISAM and multifocal ISAM. Multifocal ISAM shows superior SNR charac-

teristics at all depths, compared to single-focal ISAM.
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Figure 3.4: Theoretical SNR of single-focal ISAM and multifocal ISAM,
based on a three-aperture multifocal OCT system with focal plane at
−20µm, −60µm, and −100µm.
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3.4 Experimental Results

Figure 3.5: Panels a), b), and c) are three channels of OCT data, each
focused at −1200µm, −1000µm, and −800µm respectively. Panel d) is the
multifocal OCT reconstruction based on a), b), and c). Panels e), f), and g)
are three channels of ISAM reconstruction based on a), b), and c)
respectively. Panel h) is the multifocal ISAM reconstruction based on e), f),
and g).

Experimental data have been taken and the regularized inverse solution for

multifocal ISAM has been applied to demonstrate the multifocal ISAM re-

construction. Three datasets were acquired separately using a single channel

SD-OCT setup. The focal plane depths of the scanning beams were adjusted

before each scan. As shown in Figure 3.5, three datasets a), b), and c) were

acquired with focal plane at −1200µm, −1000µm, and −800µm respectively.

The OCT system has a NA of 0.1, and the optical spectrum recorded by the

spectrometer had central wavelength of 1330nm and FWHM bandwidth of

150nm. Thus, the setup has a transverse resolution of ∼ 7µm and a Rayleigh

range of ∼ 100µm in air. The sample consists of a collection of sub-resolution

sized TiO2 particles embedded in a semitransparent silicone matrix, which
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has a refractive index of 1.4.

Figure 3.5 a), b) and c) are the OCT reconstructions of each set of signals.

It can be observed that the reconstructions become defocused far away from

their focal plane; thus, each set provides ∼ 200µm usable imaging depth.

After applying the image stitching method over a), b), and c), Figure 3.5 d)

is the multifocal OCT reconstruction of the datasets. It provides an imaging

depth of ∼ 600µm, from −600µm to −1400µm.

By comparing Figure 3.5 d) with h), it can be observed that after regular-

ized combination, the reconstruction in h) shows not only higher resolution

especially at far form focus, but also high SNR throughout all depths [36].
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3.5 Cost Analysis and Range of Application

Although both our simulation and experimental demonstration involve three

foci, the technique can be readily extended to accommodate arbitrary num-

bers of foci.

Data for multifocal ISAM can be acquired either in parallel using multifocal

OCT setup or in series using conventional OCT setup. For serial acquisition,

simply repeat OCT scan multiple times, with the depth of focal plane at

each time forming the desired arithmetic sequence. Serial acquisition trades

longer acquisition time (proportional to number of foci desired) for lower

setup complexity.

The computational cost for multifocal ISAM is proportional to the number

of foci desired. Reconstruction at a similar scale to Figure 3.5 can be easily

performed using current mainstream desktop computer within minutes. Fur-

thermore, it is possible to implement the algorithm on a GPU using parallel

programming language, such as CUDA, to achieve real time reconstruction

[37, 38].

Multifocal ISAM is based on the assumption of first Born approximation,

as in OCT. Under such approximation, single scattering is assumed and

higher order scattering is omitted. In many applications of OCT, this proves

to be a good enough approximation when dealing with many kinds of samples.

So, for any sample OCT can work with, multifocal ISAM can be applied to

produce images with high resolution, large imaging depth, and high SNR.
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CHAPTER 4

SUMMARY

We have shown that multifocal ISAM can realize the benefits of both single-

focus ISAM and multibeam OCT by producing a reconstruction with uniform

resolution and good signal to noise over a large range. Multifocal ISAM

provides a physically meaningful method to combine multiple ISAM data

from the same sample with different foci to achieve high SNR over large

depth. Multifocal ISAM provides a physically meaningful method to combine

multiple ISAM data from the same sample with different foci to scale up the

effective imaging depth of the image.
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