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Abstract 

The rapid pace of software’s development poses serious challenges for any cultural 

history of computing. While digital media studies often sidestep historicism, this project asserts 

that computing’s messy, and often hidden, history can be studied using digital tools built to adapt 

text-mining strategies to the textuality of source code. My project examines the emergence of 

personal computing, a platform underlying much of digital media studies but that itself has 

received little attention outside of corporate histories. Using an archive of technical papers, 

professional journals, popular magazines, and science fiction, I trace the origin of design 

strategies that led to a largely instrumentalist view of personal computing and elevated 

“transparent design” to a privileged status. I then apply text-mining tools that I built with this 

historical context in mind to study source code critically, including those features of applications 

hidden by transparent design strategies. 

This project’s first three chapters examine how and why strategies of information hiding 

shaped consumer software design from the 1980s on. In Chapter 1, I analyze technical literature 

from the 1970s and 80s to show how cognitive psychologists and computer engineers developed 

an ideal of transparency that discouraged users from accessing information structures underlying 

personal computers. Prior to the early 1980s, software designers assumed that users were at least 

semi-literature in the technical details of computer systems. In response to the expanding popular 

interest in personal computing, engineers abandoned this assumption and began to design 

hardware and software for users with little or no understanding of computer systems. Successful 

software design became defined by the invisibility of computation. Users were made to feel that 

they were directly manipulating their data. Intimidating command prompts were hidden, and the 

complex operations performed through them automated behind simpler, visual metaphors like 
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the desktop. In contrast to its political connotations, “transparency” in the context of design 

represents a strategy of withholding technical information. As I argue, transparency’s 

paradoxical promise stems from the instrumentalist belief that problems of access should be 

addressed through an artificial increase in technological literacy.  

Chapter 2 argues that the commercialization of transparent design established a 

computational horizon. In analyzing popular computing magazines published during the early 

1980s, I show how Apple positioned the Macintosh in opposition to the rationalism of IBM, 

promising that the future of computing would be one in which users would be empowered by 

machines that “just worked.” Apple established transparency as the teleological purpose of 

technological development: computational power must remain invisible even as its 

representations become increasingly visual. Yet Steve Jobs was not the only one to imagine such 

a future.  The cyberpunk writings of William Gibson and Bruce Sterling respond to the cultural 

constraints of transparent design. In cyberpunk’s dystopias, transparency reifies technocratic 

power, granting only a small number of corporate actors control over computation. While critics 

have argued that Gibson and Sterling strive to make information systems visible, I argue that 

their hackers are constrained by transparency, regularly encountering limits to their own 

computational agency in an ultra-transparent cyberspace. Cyberpunk thus offers a vision of a 

future where computers “just work,” as Apple promised, but often at cross-purposes with their 

users. 

Even if the veil of transparency were lifted, modern software is constructed according to 

principles that resist critical readings of source code. Chapter 3 asserts a need for methodologies 

in software studies that can account for the scale and scope of contemporary software. Whereas 

early software was written from beginning to end much like a script or an essay describing a 
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process, more recent languages break software into an assemblage of encapsulated components. 

As I argue, fears of “spaghetti code”—software with routines so entangled that delineating 

specific processes is impossible—imagine developers succumbing to the sort of the mania 

described in Robert Coover’s The Universal Baseball Association. Object-oriented 

programming, by contrast, stresses modularity and encourages programmers to write components 

with singular functions that can be incorporated into software by their peers without needing to 

be managed directly. In this manner, structured programming’s guiding principles produce a 

hierarchy both within software and through acts of collaborative programming. This “freedom 

from” overwhelming complexity, however, comes at the cost of producing highly constrained 

network perspectives that resemble those found in Margaret Atwood’s The Handmaid’s Tale.  

Accounting for this structure, I conclude, requires something more than the close reading of 

code’s aesthetics advocated by methodologies like Critical Code Studies. 

The final two chapters are case studies that build text analysis tools to map software’s 

sprawling assemblages and rapid evolution, respectively. Chapter 4 takes as its object the open 

source software movement, studying both its various manifestos and the source code for software 

produced by its members. Examining the movement’s foundational texts, I argue that open 

source principles reflect a strong opposition to transparent design. Its founders assert that writing 

software is a form of expression and refuse to distinguish between sociocultural and technical 

concerns. In theory, open source software should reflect these principles; however, by applying 

topic modeling and social network analysis tools to source code for the Linux operating system, I 

demonstrate that it exhibits a form of structural obfuscation similar to that in commercial 

software. This study suggests not only that structured programming relies on the same principles 

and strategies as proprietary design but also that transparency’s obfuscation of computation need 
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not restrict the user’s agency. These restrictions are a deliberate choice by designers rather than 

an inherent feature of software as a medium. Despite the system’s structural obfuscation, Linux’s 

designers account for the political implications of structured programming by allowing users to 

bypass transparency entirely, leaving core mechanisms open to configuration in ways that Apple 

and Microsoft forbid. 

Chapter 5 takes as its object of study the source code to sixty versions of Mozilla Firefox, 

tracing the program’s ancestry to Netscape’s decision to release the source code to its 

Communicator browser suite in 1998. Including source code in our understanding of software’s 

materiality exposes a complex bibliographic history that quickly becomes too large to study 

through traditional methods of close reading. In order to address the textual duplication present 

in a corpus of successive versions of an application, I build topic modeling software tailored to 

source code’s iterative inscription. In expanding software’s materiality to include its source code, 

this case study shows that software’s internal structures are subject to constant evolution and that 

transparent design often leads to large-scale changes in software that go unnoticed by users as 

long as the interface remains relatively unchanged.  While digital tools can help us explore large 

bodies of cultural data, a critical theory of software construction is essential to help make sense 

of it. 
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Introduction –Thinking Outside the (Black)Box 

 

“None of us science fiction writers foresaw phone freaks. Fortunately, neither did the phone 

company, which otherwise would have taken over by now.” 

—Philip K. Dick, from “The Android and the Human” (1972) 

 

“The future is already here—it’s just not very evenly distributed.” 

—William Gibson, from an interview with Fresh Air (1999) 

 

 In 1968, a blind college student at the University of South Florida named Joe Engressia 

discovered how to get free long distance telephone calls by whistling at just the right pitch into 

his phone. As news of his feat spread, so too did the idea that information systems could be 

empowering rather than simply oppressive. In the years that followed, rogue engineers likes John 

Draper (a.k.a. “Captain Crunch”) covertly circulated blueprints for small audio devices they 

called “multi-frequency boxes” that allowed enterprising phone hackers to do far more than 

dodge phone bills. These early hackers boasted in interviews that by holding the box up to the 

phone and pressing its keys in specific sequences they could listen in on other calls, interrupt 

someone’s service, host intercontinental party calls, or even seize control of whole phone 

systems by routing calls through a tangle of trunk lines. But as Draper explains, his interest was 

academic rather than disruptive: “I do it for one reason and one reason only. I'm learning about a 

system. The phone company is a System. A computer is a System. If I do what I do, it is only to 

explore a System. Computers. Systems. That's my bag. The phone company is nothing but a 

computer. . . .Ma Bell is a system I want to explore. It's a beautiful system” (qtd in Rosenbaum 
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120).1 While AT&T and its Bell System previously had represented a power so omnipresent that 

activists warned each other in whispers not to say anything subversive in the same room as a 

telephone, these “phone freaks” demonstrated that information technology could be appropriated 

and re-purposed into a creative outlet. But phreak culture did not last long. By 1972, Engressia 

and Draper had been arrested, and Abbie Hoffman’s attempt to draw other phone freaks into the 

Youth International Party proved disastrous. Nonetheless, a certain fascination with the way the 

phone freaks were able to reverse engineer a dominant communication technology into 

something more than an extension of corporate power lingered in popular culture: a belief that if 

a person is smart enough, he or she could find a way to wrest control of information technology 

away from corporate technological and economic control and transform it into a creative 

medium. 

 The personal computer revolution of the late 1970s, and its rhetoric of individual 

empowerment via technology, emerges out of phone freak culture both thematically and 

historically. After seeing one of the earliest video games, Stewart Brand, a champion of the 

counterculture during the 1960s and 70s, claims in a 1972 article for Rolling Stone that even 

though “a few brilliantly stupid computers” carrying out the orders of a handful of oligarchs with 

ruthless efficiency “can wreak havoc, a host of modest computers (and some brilliant ones) 

serving innumerable individual purposes can be healthful, can repair havoc, feed life.”2 Because 

1 For interviews with Engressia, Draper, and other phone freaks, see Maureen Orth, “For Whom 

Ma Bell Tolls Not.” Los Angeles Times. Oct 31, 1971 and Ron Rosenbaum, “Secrets of the Little 

Blue Box.” Esquire Oct 1971. 

2 Retrieved from http://www.wheels.org/spacewar/stone/rolling_stone.html 
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of their cost, computers generally were associated only with the large corporations that 

manufactured them, like IBM and DEC, and the powerful corporate, academic, and government 

laboratories that used them—often as part of projects funded by military contracts. In popular 

culture, these machines were extensions of the economic, cultural, and military hegemony that 

large technocratic bureaucracies pursued. But for Brand, games like Spacewar! show that 

computers themselves are not evil. Video games, like the phone freaks, demonstrate what is 

possible if computers are able “to come to the people.” Throughout the 1970s, groups like the 

People’s Computer Company and the Homebrew Computer Club tried to fulfill the promises that 

Brand and others described. These hobbyists took advantage of the first commercially available 

microprocessors, modifying parts that they could order from circuit board manufacturers and 

cobbling them together in basements, garages, and dorm rooms in pursuit of their own 

“personal” computers. Among them were Bill Gates, Paul Allen, Steve Jobs, and Steve 

Wozniack. While the former pair quickly dissociated themselves from the rhetoric of the 

personal computer revolution by allying themselves with IBM, the latter emerged out of phone 

freak culture and soon transitioned from covertly selling multi-frequency boxes to friends at 

Berkeley to marketing the first commercially successful personal computer. Their Apple II 

system became a symbol of the personal computer revolution. Children in the late 1970s and 80s 

were introduced to it at school as a source of fun and intellectual exploration, whether drawing 

with a LOGO interpreter or playing educational games like Odell Lake and The Oregon Trail. 

Apple has since retained, at least nominally, its countercultural agenda and its rhetoric of self-

empowerment through technology by positioning its Macintosh line of machines, smart phones, 

tablets, and portable music players as “computers for the rest of us” and by encouraging its 

customers to “think different.” 
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 What distinguishes the countercultural ethos of Apple and other personal computer 

manufacturers from that of the phone freaks are the companies’ efforts to monopolize technical 

knowledge in order to protect proprietary software systems. While the phone freaks, and hacker 

culture in general, revel in the free-form probing of complex software and hardware systems, 

personal computers today are designed as appliances: blackboxes that perform specific creative, 

productive, and leisure activities but reveal little about their inner workings. Companies like 

Apple and Microsoft purposefully design their personal computer hardware and software to resist 

the playful tampering celebrated by the phone freaks and early computer enthusiasts. 

Commercial developers assume that the average user is unwilling or incapable of learning about 

computer systems, victim to a learned helplessness. Instead of trying to education consumers, 

however, commercial models opt to provide their users with a heavily sanitized and simplified 

vision of computing, one which leaves corporations like Apple, Microsoft, and Google as the 

sole arbiters of the roles that computational systems should play into modern society.  

This dissertation examines the history and implications of a theory of usability that 

human-computer interaction theorists and commercial software designers in the 1980s dubbed 

“transparent design.” This conceptualization of transparency is paradoxical: it promises access to 

computing power by denying direct access to the computational processes that structure that 

power. Transparent design is a highly mediated practice, blending J. David Bolter and Richard 

Grusin’s new media dialectic of hypermediation and immediacy into a user-friendly interface.3 

While transparent design is often presented as a way to “simplifying” computing, programmers 

must employ increasingly sophisticated techniques of hypermediation in order to fulfil 

3 See Bolter and Grusin’s Remediation: Understanding New Media (2002). 
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transparency’s promise of direct manipulation: the experience by users of an immediate 

relationship between themselves and the realties represented in their data. The initial love affair 

between Silicon Valley evangelists and virtual reality technology during the mid-1980s and early 

1990s unsurprisingly coincides with the first commercially available transparent personal 

computer systems. Like virtual reality systems, a transparent operating system such as Apple’s 

MacOS or Microsoft’s Windows “erases itself, so that the user is no longer aware of confronting 

a medium, but instead stands in as an immediate relationship to the contents of that medium” 

(Bolter and Grusin 24). Software that emphasizes an experience of direct manipulation also 

discourages any acknowledgement of the mediating processes that produce that experience. 

Transparency’s influence over computational culture has only increased since the release of the 

Macintosh in 1984, effectively becoming the singular guiding principle of software and hardware 

design. We can see transparency’s influence in every cultural sphere that computers touch: in 

representations of computers in the work place, in the home, and in the fantastic futures of 

science fiction literature and film, as well as in the new models of instant, on-demand media 

access and the semi-intelligent database agents that anticipate our search needs. Transparent 

computers can fulfill all our needs, their designers promise. Consumers no longer need to 

consider technical specifications or concern themselves with compatibility, they just need to hear 

Jeff Goldblum explain that an Apple computer will get you into the party that everyone else is 

having on the Internet within 10 minutes or see that Microsoft’s Surface tablets make work seem 

so much fun that users break out into a dance in the conference room. But the fine degree of 

proprietary control that transparent design allows commercial developers to exert over our modes 

of computer use also forbids the free-form exploration of systems that characterized the early 

periods of personal computing. Even though the image of computing has softened from the 
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digital dystopia of highly centralized, mainframe supercomputers, transparent design ensures that 

computer power remains carefully controlled, directly accessible only the corporations, technical 

labs, and government institutions that design and implement software systems. 

 Transparent design initially emerged as the solution to a problem of technological 

literacy. By the late 1970s, the promises of personal computers were well known, but the act of 

using a computer was still frustrating. Robert Cowen’s sobering account of the realities of the 

personal computer revolution in a 1981 issue of The Technology Review complains that “merely 

to use computers to do things we already do with less expense and effort would be foolish. Yet 

this is about all that has been offered so far. . . .Friends sometimes ask if I had put the family 

budget on the computer, but I haven’t because I can easily keep track of it with a pocket 

calculator. Why glorify the trivial?” (6). Because very few of a computer’s processes were 

automated, users had to be directly responsible for managing their data-encoding processes, a 

requirement that made something as simple as inscribing and retrieving recipes from a disk 

tedious compared to pulling out a box of cards. Using a computer prior to the rise of transparent 

design required an advanced degree of technological literacy. Users had to memorize commands, 

know which directories to stay out of lest they risk damaging their operating system, and even 

know how to do a bit of programming themselves if the software for the task they wanted to 

undertake was not readily available. In response to these problems, cognitive psychologists and 

computer engineers like Donald Norman, Ben Shneiderman, Terry Winograd, and Fernando 

Flores proposed that interface design strategies should appeal less to higher level cognitive 

functions like linguistic memory and instead represent systems in simpler, subtler terms using 
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shapes, colors, and symbolic patterns that suggested a non-arbitrary relationship to function.4 Yet 

doing so required automating those parts of computer systems that could not be easily 

represented with visual metaphors. Transparent design changed how we imagine the act of 

computing: technological literacy today is understood not as the ability to decipher the intricacies 

of software architecture or trace patterns in networked systems but is instead usually framed in 

terms that emphasize the use of technology: “an understanding of technology at a level that 

enables effective functioning in a modern technological society” (Gamire and Pearson 2). The 

contemporary vision of a modern technological society is not one comprised solely of software 

and electrical engineers. Rather, today we live out a Star Trek-like fantasy with lavish touch 

screens, wearable devices, and hand-held libraries; all users need to know to participate in this 

fantasy is how to read highly stylized interactive displays.  

From the perspective of human-computer interaction studies, a technological object is 

transparent when its users no longer need to acknowledge directly its presence when they 

undertake a task. Transparent technology should be understood by its users “intuitively” through 

a seamless blend of visual, audio, and/or haptic cues that serve as metaphors for familiar 

concepts or that users can internalize readily. Several examples of easy to use, transparent 

technologies and confusing usability failures can be found in Norman’s The Design of Everyday 

4 Norman, Shneiderman, Winograd, and Flores are all authors of influential texts in the field of 

human-computer interaction studies. See Norman’s The Design of Everyday Things (1988), 

Shneiderman’s “Direct Manipulation: A Step Beyond Programming Languages” (1983), and 

Winograd and Flores’ Understanding Computers and Cognition: A New Foundation for Design 

(1987). 
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Things (1988), a foundational handbook featured in most human-computer interaction curricula. 

Phones, for instance, can be both easy and difficult to use. The shape of the phone suggests 

placement alongside the ear and mouth, with audio coming from handset speaker signaling to 

users if they need to correct its orientation. Buttons are clearly labeled with numbers, and 

pressing them produces a tone that, while primarily aimed at the phone system’s routers, serves 

the important secondary purpose of indicating to users that their input was received. More 

complex phones can be tricky, however, especially if the features like hold/resume, transfer, 

switch lines, speaker phone, and mute are not clearly labeled or require more than a few key 

presses. A complex array of buttons with small labels or a limited set of function keys that must 

be pressed in sequence to carry out call operations can pose problems unless a user has spent 

significant time learning how to operate them. Today’s smartphones are far more complicated 

than the phones Norman examines in the 1980s, and yet their touchscreen and LED software 

interfaces allow for these operations, as well as new ones not possible on older phones, to be 

carried out swiftly by just about anyone. Users do not have to pause and review a chart, read a 

manual, or pour over a dozen or more small buttons. Their software interfaces have buttons on 

screen that change functions while at the same time clearly identifying what operations they will 

perform when pressed. Transparent design is, in this sense, a strategy of making tasks increasing 

visualized while at the same time suppressing technical information. Users don’t need to know 

much about the systems they use because software now automatically manages itself, selecting 

and presenting users with sets of options based on its observations of their behavior. 

Narratives of personal empowerment through the use of personal computers and related 

devices are thus predicated upon a surface reading of technology. Today, anyone can purchase a 

laptop computer, remove it from the box, plug it in, and immediately begin using it after entering 
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in a bit of personal information to register his or her identity on the machine. This hypothetical 

laptop owner doesn’t need to know much at all about the computer’s operating system software, 

except perhaps where to locate other programs he or she may install—or, more accurately, that 

install themselves at the user’s request—and where to find a list of wireless hotspots. Video 

game consoles represent this fantasy of readily available technological power even more 

dramatically because users need only insert a disc or cartridge and press a button to be 

transported almost instantly to highly stylized virtual worlds. Pressing a button or nudging a 

thumbstick leads to instant audio and visual feedback, increasingly accompanied by a rich 

musical score and controller vibrations to add a sense of dramatic impact to the player’s 

decisions.  

Considered as part of a narrative of innovation and technological progress, the degree of 

transparency in personal computers and gaming systems is almost sublime. Machines more 

powerful than a mainframe supercomputer from the 1950s or 60s became available for purchase 

in stores in the 1980s; and, more dramatically, the phones we carry in our pockets rival the 

power of early big iron mainframes and are able to download in seconds small “apps” that would 

have required thousands of dollars of disks just to store prior to the mid-1990s. Now, our 

personal computing devices turn on in less than a minute, operate silently, and provide 

immediate access to algorithmic operations so complex that they hardly could have been 

imagined several decades ago. Yet at the same time that computers have become so highly 

visualized, self-representational, and easy to access, their inner mechanisms have become 

increasingly invisible. Computers are no longer intimidating to users because the vastness of the 

resources they contain are hidden behind interfaces that present users with intuitive metaphors 

rather than detailed system information. We now live in a culture where access to technological 
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power appears readily available, but we cannot see how the software that structures that power 

channels our use of it towards and away from certain ends. Because we’re trained by 

technological interfaces to think about the act of computing in non-computational terms, users 

may not be able even to imagine those possibilities that transparent design encourages us to 

ignore. 

 Because transparency constrains our ability to perceive and articulate algorithmic 

processes, its selective obfuscation has important implications for digital media studies, the 

digital humanities, and other fields taking a critical approach to the history of information 

technology. Digital media critics and historians, in short, are users too and thus subject to the 

same discursive constraints resulting from transparent design. Although transparent design is 

celebrated by Silicon Valley historians and fawned over by hordes of fans hungry for the next 

even easier to use version of their favorite game or device, there is an unacknowledged political 

dimension cementing its commercial and ideological ubiquity: transparent design essentially 

splits technology around two distinct models of engagement. There are those who have access to 

technical information about how computers work and those who have access only to instructions 

on how to use them. Unable to develop an advanced degree of technological literacy without 

specialized training at universities or within exclusive professional circles, users become more 

and more reliant on transparency’s strategy of simplification through obfuscation. William 

Gibson’s pronouncement that “the future is already here—it’s just not very evenly distributed” 

reflects this digital divide, but in ways that cannot be explained fully in terms of racial, 

economic, or gender stratifications. These issues are still implicated in software design, and 

Anne Balsamo, Edmond Chang, Alexander Galloway, Lisa Nakamura, Cynthia Selfe, and Judy 

Wajcman, among others, have shown that decisions about interface design are wrapped up in 
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often unacknowledged assumptions about race, class, and gender, and sexuality. Yet it is very 

difficult to see the full scope of those assumptions. We can try to interpret the metaphors that 

designers employ to represent computational operations to us, but we can only see the vehicle 

and not the tenor. Transparency conceals from us the layered architecture of software, of the 

complex information networks of components that support and render user-friendly interfaces. It 

is difficult to understand how developers’ assumptions about the identity of users and their 

information habits play out beneath the interface. Transparent design, despite the rhetoric of 

direct manipulation and immediate experience data, prevents us from directly accessing 

computational knowledge. Hacker narratives like The Matrix or Tron would have us believe that 

anyone with enough skill can look at software and see into its code, recognizing the presence of 

other people, objects, and processes just as readily as they would in other contexts, but 

transparency makes that future impossible. Under the regime of transparent design, the world of 

code is shut off from us, enfolded by the transformational processes that turn a programmer’s 

source code into machine readable binary sequences and further protected by copyright and 

patent laws. As critics, historians, and users of software, we not only need to understand how our 

methodological approaches are shaped by transparent design but also how to develop both 

techniques that explore the processes it hides and critical languages that can articulate the 

sociocultural implications of technical specifications. 

 Science fiction literature, perhaps, in part, because it cannot match film’s visual 

celebration of technology, is adept at considering the implications of a suppressed world of 

textual codes. In a 1988 interview with Locus magazine, the influential cyberpunk writer Bruce 

Sterling argued that the goal of science fiction following the personal computer revolution 

should be to address “the threatening technological innovations” that surround us and act on us 
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invisibly and continually, “mak[ing] us feel like straws in the wind” (73). If the impacts of Cold 

War era technology are readily imaginable, thanks to a deluge of visions of nuclear holocaust in 

television and film, the effects of information technology are more felt than seen. Science fiction, 

in other words, serves as a platform for exposing those effects by imagining and reflecting on our 

experience of them. In 1988, Gibson commented that even though he had little knowledge of 

how computers work, he nonetheless writes fiction with a goal of making their unseen operations 

more visible to his readers.5 Even if Gibson, like us, has a perspective bound by the technology 

of the late 1980s and sometimes misconstrues their hidden operations for narrative effect, his 

novels and those by other authors influenced by his work help provide readers with a vocabulary 

to articulate their experience of the politics of transparency in ways that film can’t or won’t. 

Novelists like Margaret Atwood, Greg Bear, Octavia Butler, Pat Cadigan, Cory Doctorow, Rudy 

Rucker, Neal Stephenson, and Charlie Stross, regardless of their relationship to the cyberpunk 

movement, have all since imagined both dystopian and utopian future societies where life is 

entangled within complex networks of information and every action is observed, discretized, 

categorized, constructed, or responded to according to sets of algorithmic processes, both digital 

and biological. 

By positioning science fiction as a critical tool for the cultural study of science and 

technology, I assume that fiction is already in direct conversation with technical literature. This 

approach is distinct from other critical works that view fiction as distinct from and/or in 

opposition to technoscience. Joseph Tabbi, for example, argues that literature is a valuable 

critical tool because literary writers possess an “outsider perspective” that allows them to 

5 See his interview with Larry McCafferty in The Mississippi Review 16.2/3 (1988). 
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represent “not the technology itself but the tumultuous and incongruous nature of postmodern 

experience” (25). For Tabbi, science fiction is valuable in the way that it distances us from the 

technical specifics emphasized exclusively in professionalized, technoscientific genres. Yet there 

is a risk in maintaining the separation between the technological and the literary that Tabbi 

defends. Not only does he imply that there is a clean separation between science fiction and 

technoscientific practice, but he also assumes that the technical specifics that the literary eschews 

are of little value to cultural studies of science and technology. Like science fiction, technical 

literature actively imagines future contexts of computational use and implementation. The 

primary difference between these genres is thus one of temporal scale, with technical literature 

focused more on the immediate effects and fiction on the longer term, more abstract 

consequences of design decisions. In this respect, this project follows models of scholarship put 

forth by Balsamo, N. Katherine Hayles, and Robert Markley, to name a few. 

Specifically, studying the discourse taking place in white papers, technical journals, 

computer science textbooks, programming manuals, and science fiction that surrounds personal 

computing can help us to understand not only how and why transparency came to dominate 

contemporary software design but also which possible futures were cast aside in favor of it. 

Because commercial software developers must attract and retain new consumers for their 

products, they often present design choices to us as natural or intuitive. A new version is more 

“efficient,” “elegant,” “powerful,” or “user-friendly” than the last. These terms all imply a 

natural progression and essential principles of human-machine relationships that strategies of 

transparent design push us further towards. The commercial success of transparent design has, in 

other words, changed transparency from simply a means of making computers accessible to one 

of the primary goals of software design. But as Lawrence Lessig reminds us in The Future of 



14 

Ideas, “Cyberspace has no nature. How it is—what barriers there are—is a function of its design, 

its code. . .it makes no sense to speak about the nature of this system that is wholly designed by 

man. Its nature is as man designs it” (121). Throughout his body of work, Lessig repeatedly 

argues that computer systems enact the will of their designers, producing algorithms that govern 

the behavior of users in ways that mirror, and often supersede, the coercive power of law. If 

personal computers are really to become more than just appliances that encourage media 

consumption, we need to recognize that because our relationship to them is not natural. We do 

not need to view transparency as the “ideal” or even “best we can do” in terms of designing 

software systems that are accessible and empowering. In her “Cyborg Manifesto,” Donna 

Haraway argues that the “machine is not an it to be animated, worshipped, and dominated. The 

machine is us, our processes, an aspect of our embodiment. We can be responsible for machines; 

they do not dominate or threaten us” (180). Although Haraway is concerned primarily with 

resisting the way technoscience polices women’s bodies by attempting to naturalize its 

relationship to them, her point that “the illegitimate offspring of militarism and patriarchal 

capitalism. . .are often exceedingly unfaithful to their origins” rings true for personal computing 

(151). It is important to recognize that principles considered inherent or essential to software are 

neither because software and our relationship to it is wholly socially constructed. What we 

should fear is the essentialist rhetoric used to keep technocratic power in place, not software 

itself. That transparency remains the dominant mode of design and establishes a singular model 

of “user-friendliness” speaks more to the entrenched power of developers like Apple and 

Microsoft than to any essential truth it represents about human-machine relationships. Computers 

can be anything we want them to be, and if we are able to study, criticize, and reshape their 

algorithms to our own ends, we can redefine what it means to be user-friendly in ways that 
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appeal to imagined futures other than those proposed by corporate developers. 

While studying software’s paratexts is useful primarily for interrogating technological 

reasoning, it still leaves us a step removed from algorithmic processes. The idea that software is 

not fully or even accurately represented on screen is not new to digital media studies. Lev 

Manovich, for example, proposes that new media objects are multi-layered, split between a 

“cultural” and “computational layer.” The cultural layer represents those elements users see on 

screen, the product of transcoding algorithms that operate at the computational layer. It is 

tempting, as Alexander Galloway does, to explore this multilayered structural operation as an 

analogue to Althusserian ideological state apparatus or Marxist false consciousness. Transparent 

software does indeed require many rituals from its users, hailing them with an array of defaults 

that most users casually accept without a second—or even a first—thought, and its collection of 

signifiers reflect a model of individuality that obfuscates its corporate origins and one-size-fits 

all model of usability. Similarly, transparent design bears a striking similarity to the 

hegemonizing effect of mass culture that Max Horkheimer and Theodore Adorno describe, yet it 

is not concerned with imagining how computers work: transparent design discourages users from 

imagining algorithmic processes at all. While the following chapters do draw on and extend 

these analytics, I believe we must resist the temptation to map familiar models too readily onto 

the deeper structures of software hidden by transparent design. Mapping these complex 

heuristics onto only those signifiers visible on the surface of a transparent interface can help us to 

describe the experience of alienation from those elements that transparent design suppress. But 

they do not solve the problem of access, nor is there any guarantee that they will map readily on 

deep structures of software described in source code. 

  This project is therefore not only a cultural history of transparent design but also a call 
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for a critical language that acknowledges the distinct textual qualities of source code. Because 

the interface obfuscates the internal structure of software during runtime, reading source code is 

the best way to analyze those algorithms that transparency hides. The impulse to develop such a 

language has long been a part of digital media studies; however, critics have grown so 

accustomed to transparency as a discursive filter that they rarely acknowledge the complex and 

hidden bibliographical practices that produce software via source code. Specifically, we need to 

address the ways in which object-oriented programming, by far the dominant style of source 

code organization, resists close readings of code and supports coordinated inscription on a scale 

that rivals and often surpasses the size of textual archives studied in the humanities. While digital 

media studies first wrestled with a language of procedurality, later works by Ian Bogost, 

Matthew Fuller, Katherine Hayles, Matthew Kirschenbaum, Mark C. Marino, Lev Manovich, 

Nick Montfort, and Noah Wardrip-Fruin push us to examine the structure of source code itself. 

This approach is distinct from scholarship influenced by German media theorist Friedrich Kittler 

who argues that “there is no software” in the sense that all the stuff we call software is always 

already structured by, and thus inseparable from, the hardware platforms on which it exists. 

Wendy Chun, for example, develops Kittler’s point by arguing that we must “engag[e] its odd 

materializations and visualizations closely and refus[e] to reduce software to codes and 

algorithms—readily readable objects—by grappling with its simultaneous ambiguity and 

specificity” (11). Although Chun is persuasive in her argument that source code may not reflect 

the experience of using software or be too abstract in its description of use-case scenarios to 

reflect much about its contexts of implementation, source code is nonetheless an imagined 

description of software function, of potential human-machine relationships, and assumptions 

about the information cultures in which software participates. Studying source code is thus a 
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necessary complement to, but not a replacement for, the rich body of scholarship in digital media 

studies written from a user’s perspective. Reading source code critically requires an analytic 

methodology informed by the concerns of critical and textual theory as well the technical 

language of computer science: a method that can articulate the way software’s inscription is 

influenced both by technical standards and the larger cultural dynamics in which both its 

developers and users participate. 

 Finally, I must acknowledge that not everyone in digital media studies and the digital 

humanities wants to develop the advanced technical literary required to read and write source 

code. Nor should they have to in order to make strong contributions to the critical study of digital 

culture or the application of text analytics to the study of literary aesthetics. At this project’s core 

is an argument that not just humanists, but a general public of users, must be able to engage with 

technology in ways beyond the superficial model that commercial applications of transparent 

design encourage. The Free and Open Source Software communities demonstrate that not every 

person who uses software needs to read its source code to promote an open discussion of its 

sociocultural implications, just as not everyone needs to follow the minute details of court 

proceedings to discuss the potential consequences of judges’ decisions. So long as the 

information is publically available, accessible not just by a small group of technocrats, concerned 

citizens can read and share problematic details with others. At its core, this project argues that 

the opportunity for such a discussion must be available and can only be made available if source 

code is accessible. Although software is treated as intellectual property by law, many types of 

software like operating systems, network architecture, web browsers, and cloud data 

management services function as social infrastructure. Transparent design is not problematic 

because it makes software easier to use but because it does so in a way that exploits the 
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illegibility of complex algorithmic processes in order to produce a firm divide between those 

who are able to see and try to understand those processes and those who can only be subject to 

them. If we can learn to think outside the discursive constraints of transparent design, we can 

propose new models of usability that blend ease of use with the freedom to study, to critique, and 

to modify software. So long as we continue under an ideology of transparent design, we are not 

only subject to the assumptions about digital culture that commercial software developers make 

for us—that everyone who wants to listen to music or watch movies over the Internet is a 

potential media pirate or that allowing the NSA to monitor our computational activities via 

backdoors is good for democracy—but we may well have to face the problem of large portions 

of digital history remaining forever inaccessible. If the structures that transparency hides are 

never analyzed, source code will remain forever invisible, even after the software built from it 

becomes obsolete, because its developers decided that its value is primarily industrial and 

commercial rather than cultural. 

 With these ideas in mind, the first three chapters of this project examine how and why 

transparent design’s strategies of information hiding reshaped commercial software from the 

1980s on. In Chapter One, I analyze technical literature from the 1970s and 80s to show how 

cognitive psychologists and computer engineers developed an ideal of transparency that 

discouraged users from accessing information structures underlying personal computer operating 

systems. Prior to the early 1980s, software designers assumed that users were at least semi-

literate in the technical details of computer systems. Before personal computers “came to the 

people,” they were developed largely for specialist users for specific tasks, and developers thus 

assumed a degree of cultural and cognitive homogeneity among them. In response to the 

expanding popular interest in personal computing, engineers abandoned this assumption and 
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began to design hardware and software for users with little or no understanding of computer 

systems. Researchers like Donald Norman, Ben Shneiderman, Lucy Suchman, Terry Winograd, 

and Fernando Flores argued that a perfectly uniform understanding of software across a body of 

users was impossible.6 Whereas theories of user interface design had previously defined usability 

as a problem of human-machine information processing efficiency, transparent design assumes 

an imperfect user who had to rely on non-technical models to interpret systems. Successful 

software design thus became defined by the invisibility of computation and the representation of 

computer systems via metaphors and visual icons. Intimidating command prompts were hidden, 

and the complex operations performed condensed into icons peppered over metaphoric 

representations of virtual environments like the desktop. Users were thus made to feel that they 

were directly manipulating their data through a combination of automation and selective 

representation. In contrast to its political connotations, “transparency” in the context of software 

design represents a strategy of withholding technical information. As I argue in this chapter, 

transparency’s paradoxical promise stems from the instrumentalist belief that problems of access 

should be addressed through a prosthetic substitution for technological literacy.  

Chapter Two argues that the commercialization of transparent design establishes a 

computational horizon. Although transparency was theorized by academic researchers, and 

prototyped by development think-tanks like Xerox’s PARC laboratory, it was codified by 

commercial software developers. In analyzing popular computing magazines published during 

6 In addition to the work from Norman, Shneiderman, Winograd, and Flores noted above, see 

also Lucy Suchman’s Plans and Situated Actions: The Problem of Human-Machine 

Communication (1987). 
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the early 1980s, I show how Apple positioned the Macintosh in opposition to the rationalism of 

IBM, promising that the future of computing would be one in which users would be empowered 

by machines that “just worked.” In doing so, Apple established transparency as the teleological 

purpose of technological development: computational power must remain invisible even as its 

representations become increasingly visual. Apple’s unified model of computer use exploits 

transparent design to turn personal computers into appliances. When read against IBM’s 

unexpected decision to publish its system documentation and share the technical specifications of 

its hardware, Apple’s description of the Macintosh in interviews and advertisements comes to 

resemble the Orwellian fantasy it used to attack its competitors. Yet Steve Jobs was not the only 

one to imagine a future of blackboxed computing. The cyberpunk writings of William Gibson 

and Bruce Sterling respond to the cultural constraints of transparent design by offering a highly 

stylized yet technologically illegible future. In cyberpunk’s dystopias, transparency reifies 

technocratic power, granting only a small number of corporate actors control over computation. 

While critics have argued that Gibson and Sterling strive to make information systems visible, I 

argue that their hackers are constrained by transparency, regularly encountering limits to their 

own computational agency in an ultra-transparent cyberspace. Many of the tensest moments in 

Gibson’s Sprawl Trilogy unfold amidst conflicts between humans and highly automated, 

intuitively usable, yet difficult to trust software agents. Cyberpunk thus offers a vision of a future 

where computers “just work,” as Apple promised, but often at cross-purposes with their users’ 

intentions and desires. 

Even if the veil of transparency were lifted, modern software is constructed according to 

principles that resist critical readings of source code. Chapter Three asserts a need for 

methodologies in software studies that can account for the scale and scope of contemporary 
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software. Whereas early software was written from beginning to end much like a script or an 

essay describing a process, more recent languages break software into an assemblage of 

encapsulated components. The object-oriented paradigm that dominates modern software 

application development emerged in the 1980s out a series of responses to the software crisis of 

the 1960s. When companies like IBM began to switch from a made-to-order model to mass 

production of computer systems, their programmers struggled to keep up with the increased scale 

required of flexible, general purpose computer software. As I argue, early styles of programming 

privilege a cybernetic human-machine analogy, understanding that “good” software development 

was the product of thinking like a Turing machine. Using Brian Rotman’s tripartite model of 

mathematical signification, I show how the software crisis exposes a dis-analogy between human 

and machine cognition. Because humans and machines interpret source code differently, 

“spaghetti code”—software with routines so entangled that delineating specific processes is 

impossible—poses no problems of legibility for machines but leaves human programmers unable 

to trace the effects of their work. Robert Coover’s The Universal Baseball Association 

participates in the fear that limitations of human cognition will pose serious challenges for 

programming, highlighting the cybernetic dimension of the software crisis even as engineering 

writing at that time tried to sublimate it. Coover’s novel also helps us to see how the solutions to 

the software ware are cybernetic even though it largely precedes the rise of object-oriented 

programming. Margaret Atwood’s The Handmaid’s Tale, written during the rise of object-

oriented programming, presents a dystopian vision of a “freedom from” overwhelming 

complexity; however, it is one that comes at the cost of producing highly constrained network 

perspectives. Atwood’s novel resonates with the way the cybernetic theories of Herbert Simon, 

particularly his idea of “bounded rationality,” came to inform industrial design, and allows us to 
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see how they eventually influenced the modular encapsulation of object-oriented programming. 

By locating system intelligence in the rules that govern data transaction between software 

components, object-oriented programming creates a recursive network of microcosmic computer 

objects that reclaims the idealized human-machine analogy that the software crisis forced many 

to abandon. In this sense, object-oriented programming solves the problem of source code 

illegibility, by offering programmers a trade-off. By compartmentalizing the system so that it is 

structured as a network of encapsulated modules, programmers can choose to master their 

understanding of individual components or accept that they will never be able to understand all 

of them and instead adopt an abstract perspective of component relationships. Accounting for the 

way this structure hides knowledge within networks of source code documents, I conclude, 

requires something more than the close reading of code’s aesthetics advocated by methodologies 

like Critical Code Studies. 

The final two chapters of the dissertation are case studies that build text analysis tools to 

map software’s sprawling assemblages and rapid evolution, respectively. Chapter 4 takes as its 

object the open source software movement, studying both its various manifestos and the source 

code for software produced by its members. Examining the movement’s foundational texts, I 

argue that open source principles reflect a strong opposition to transparent design. Its founders 

assert that writing software is a form of expression and refuse to distinguish between 

sociocultural and technical concerns. In theory, open source software should reflect these 

principles; however, by applying topic modeling and social network analysis tools to source code 

for the GNU/Linux operating system, I demonstrate that GNU/Linux exhibits a form of structural 

obfuscation similar to that expected of commercial software. This study suggests not only that 

programming in free software community relies on the same principles and strategies as 
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proprietary design but also that transparency’s obfuscation of computation need not restrict the 

user’s agency. These restrictions are a deliberate choice by designers rather than an inherent 

feature of software as a medium. Despite the system’s structural obfuscation, GNU/Linux’s 

designers account for the political implications of structured programming by allowing users to 

bypass transparency entirely, leaving core mechanisms open to configuration in ways that Apple 

and Microsoft forbid. 

Chapter Five takes as its object of study the source code to sixty versions of Mozilla 

Firefox, tracing the program’s ancestry to Netscape’s decision to release the source code to its 

Communicator browser suite in 1998. Including source code in our understanding of software’s 

materiality exposes a complex bibliographic history that quickly becomes too large to study 

through traditional methods of close reading. Even a single version of a complex software 

application like a web browser is comprised of hundreds of thousands of lines of code. The task 

of critically editing two versions to understand the scope of the changes between them would 

already prove too much for a human reader. Multiple versions of such applications therefore defy 

conventional analysis. Yet many text-mining methods in use today by digital humanists assume a 

high degree of difference between texts. In order to address the textual duplication present in a 

corpus of successive versions of an application, I built topic-modeling software tailored to source 

code’s iterative inscription. In expanding software’s materiality to include its source code, this 

case study shows that software’s internal structures are subject to constant evolution and that 

transparent design often leads to large-scale changes in software that go unnoticed by users as 

long as the interface remains relatively unchanged. Together, these case studies show that the 

problems of scale that object-oriented programming hides can be overcome by critics and 

historians of digital media using topic mining and similar analytics. Yet the results still require 
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interpretation in the cultural vein that I offer in the first three chapters as well as close attention 

to software’s historical contexts of production. My project ultimately demonstrates that while 

digital tools can help us explore large bodies of cultural data, a critical theory of software 

construction is essential to help make sense of this data. 
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Chapter 1 – Making Computers Disappear: On the Origins of Transparency 

 

“The most profound technologies are those that disappear. They weave themselves into the fabric 

of everyday life until they are indistinguishable from it. . . . We are therefore trying to conceive a 

new way of thinking about computers, one that takes into account the human world and allows 

the computers themselves to vanish into the background.” 

—Mark Weiser, former head of the Computer Science Laboratory and Chief Scientist at 

Xerox Palo Alto Research Center 

 

 Software’s inherent invisibly is so readily accepted in the cultural study of digital media 

that to point it out once more seems almost a cliché. And yet most of the projects in the digital 

humanities that aim to examine and theorize about the “stuff” of software, at least in some part, 

seek to uncover its cultural forms. Developing an algorithm often requires programmers to 

devote significant time to making its operations visible to ensure that the instructions described 

in source code are performed as expected. Although many integrated-development environments 

now offer tools to identify and track elements of software during runtime, the persistence of 

command line debugging flags, detailed textual log files, and automatically generated error 

reports in an era of highly visualized interfaces are reminders of just how much time and effort 

are still devoted to making software’s operations visible. That the archetypal “Hello World!” 

algorithm is the first software that most novice programmers are asked to write is in this regard 

no surprise. Variables can be declared and initialized, object relationships carefully structured, 

and loops run infinitely all without any noticeable trace. Until programmers learn how to print a 

simple string to a command line interface (CLI), there is no way for them to trace the structure of 
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the software they write. Even when one is writing software with a graphical user interface (GUI), 

the challenge remains largely the same—the only difference is the wealth of new tools available 

to make algorithmic processes visible. Users, too, benefit from software that is designed to be as 

visible as possible. Today, commercial software designers use a variety of skeuomorphic 

representations of desktops, folders, documents, paintbrushes, calendar pages, filmstrips, and 

equalizer sliders to represent software’s processes in terms of older, embodied technologies. 

Complex computational processes are so commonly remediated using the signifiers of older 

media that we rarely stop to consider what lies beneath those familiar surface representations. 

Early computer interface design in government, corporate, and academic laboratories 

produced prototype GUIs that initially helped users manage defense systems and would later 

play into utopian narratives of technological empowerment that drove the personal computer 

revolution.1 Beginning in 1984, GUIs became part of the corporate strategies of hardware and 

software firms like Apple and Microsoft to seize control of a chaotic marketplace. Apple’s 

Macintosh, in particular, represents a synthesis of early proposals in usability theory from 

influential researchers in computer science such as Alan Kay, Donald A. Norman, Ben 

Shneiderman, and Terry Winograd. According to their theories, making computer software 

engaging and giving users a feeling of direct manipulation paradoxically requires an 

intermediary layer that translates the underlying system into an intuitively understood visual 

1 See for example the SAGE Radar System, which first prototyped a GUI interface in 1955, or 

Douglas Engelbart’s “Mother of All Demos”, which introduced the desktop metaphor in 1968 

along with the promise that personal computers would “augment human intellect” of everyday 

individuals. 
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iconography. These design practices, often referred to as “transparency,” today comprise the 

dominant strategy of interface design in the personal computer and consumer electronics 

industries. Although it’s difficult to discern precisely where the term was first used, 

“transparency” is found as far back as 1965 in engineering journals and IBM reference manuals. 

Originally used to refer to a practice of data formatting, “data transparency” is achieved when 

data is stored in such a way that its structure can be assumed, allowing multiple components of a 

program to pass data quickly among themselves without having to dedicate algorithms to 

discerning its format.2 If data is transparent, then individual components can read it without 

needing to know from where it originated from nor what other components interact with it. In 

this sense, data transparency simplifies information management in complex systems by 

privileging immediate contexts. Components only process the data as received, with little regard 

for others. Even though this use of the term originates in a purely machinic context, the term 

2 Some examples of the term from the Association for Computing Machinery’s publication 

archives include: S. Gorn’s “Transparent-Mode Control Procedures for Data Communication, 

Using the American Code Standard for Information Exchange—A Tutorial,” Communications of 

the ACM 8.4 (1965); Carl E. Krebs, C. Bumgardner, and T. Northwood’s “Terminal Transparent 

Display Language,” AFIPS’76 Proceedings; Keith A. Lantz and Richard F. Rashid’s “Virtual 

Terminal Management in a Multiple Process Environment,” SOSP ’79 Proceedings; and Andrew 

S. Tanenbaum and Robbert Van Renesse’s “Distributed Operating Systems,” Computing Surveys 

17.4 (1985). These examples were chosen primarily to provide a sense of the term’s lifespan 

rather than to suggest some sort of canon in computer science or human-computer interaction 

studies. 
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slipped easily into the context of human-machine interaction by the mid-1980s. Instead of stating 

that “the data is transparent,” engineers began to use phrases like “the system is transparent to 

the user,” signifying that users could transfer prior knowledge and experience into that of the 

software they were using. At the same time, this transference also carries with it the idea of a 

shallow context, making the complex algorithmic structures that produce software irrelevant for 

users. Only the representations immediately visible on screen are important. 

Transparency in user-interface design is thus similarly a response to the difficulty users 

faced in managing increasingly complex computer systems. J. David Bolter and Richard 

Grusin’s foundational study, Remediation: Understanding New Media (1999), suggests that the 

effect of transparency is produced via the interplay of immediacy and hypermediacy, the 

dialectical logics underlying digital media. Bolter and Grusin note that the ideal of a transparent 

interface is “one that erases itself, so that the user is no longer aware of confronting a medium, 

but instead stands in as an immediate relationship to the contents of that medium” (23-24). 

Hypermediacy, on the other hand, is the proliferation of representations, “overlapping or nested 

windows” that “create a heterogeneous space” within which ideas “compete for the [users’] 

attention” and which remind users that they are operating in a computation space (32). If 

transparency encourages users to ignore computation, hypermediacy leads users to celebrate it. 

Bolter and Grusin observe quite correctly that a sense of transparency in modern GUIs is 

achieved through the complex algorithmic processes underlying hypermediacy. The desktop 

environments of Apple’s OSX and Microsoft’s Windows, for example, weave together a variety 

of visual metaphors, textual prompts, and audio cues. From this perspective, transparent design 

strategies are “in fact creating a more complex system in which iconic and arbitrary forms of 

representation interact” (32). Transparency is therefore achieved more through the quality of the 
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interactivity that hypermediacy affords than through the accuracy of a GUI’s representation of 

systemic processes. Yet computers have always been interactive. Transparency, as a design 

strategy, aims to increase the users’ subjective sense of software’s interactivity by automating 

computation so that users can concern themselves primarily with tasks which can be understood 

independently of computation. Computers become “transparent” when their operations are no 

longer part of users’ cognitive engagement with computing. Ideally, users will not stop to think 

about how to do something; they’ll just point and click. 

Contrary to the political connotations of the term, transparency in design is achieved by 

making visible certain computational operations while obfuscating others in the interest of 

cognitive simplicity. As described by Donald Norman in The Design of Everyday Things (1988), 

the goal of a user-centered design should be to lower the amount of information users must 

passively learn and actively recall during use: to shift the burden from knowledge-in-the-head to 

knowledge-in-the-world. In other words, computer interfaces should “take on the appearance of 

the task” at hand; the system itself can then “disappear behind a façade” that lets users operate 

“without fear of failure or [of] damag[ing]” the system (183). Representing computation through 

a readily recognizable iconography does not actually decrease a system’s complexity. The 

processes users initiate and interact with remain dependent upon unseen operations that are 

managed by operating system (OS) software and are conceptually compressed into visual 

metaphors. Transparent interfaces are in this sense necessarily incomplete representations: 

confusing complexities are repressed so that users can operate their computers safely, efficiently, 

and without concern for the system itself. Recent studies in the digital humanities have already 

begun to highlight the ideological and governmental structure of software. Alexander Galloway’s 

Protocol: How Control Exists After Decentralization (2006) and Wendy Chun’s Programmed 
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Visions: Software and Memory (2011), emphasize the underlying automation required to sustain 

the seamlessness of transparent interfaces. Chun, in particular, notes that transparent interfaces 

reify a “certain logic of governmentality. . . .offer[ing] us a form of mapping, of storing files 

central to our seemingly sovereign—empowered—subjectivity” (9). Throughout prolonged 

interaction, she argues, computers inculcate in users a neoliberal subjectivity that encourages 

them to desire mastery over the informational environment while remaining ignorant of the 

algorithms acting on their behalf. While I do not want to imply that OS software and other 

system management tools are necessarily oppressive, it is extremely important that we 

understand the nature of their automation so that in turn we can describe how transparency 

shapes user agency during computational tasks and in digital environments.  

Yet an awareness of transparency alone is not enough to explore the cultural significance 

of its self-effacing automation. It is equally important to understand how and why software 

designers arrived at the consensus that it should be the primary standard for computer interfaces. 

Although today’s design standards were influenced by debates taking place in engineering 

research during the 1980s, their widespread implementation has occurred through a near total 

control of the market for personal computer OS software by Apple and Microsoft. Despite a rich 

body of work exploring the cultural work of computing from scholar such as such as Ian Bogost, 

Tom Boellstorff, Matthew Fuller, Alexander Galloway, Mark Hansen, Henry Jenkins, Jesper 

Juul, Nick Montfort, and Lisa Nakamura, there has little attention paid in the digital humanities 

to the personal computer itself. As Bruno Latour notes in Reassembling the Social (2005) , non-

human objects function as tools for the solidification of social power: they are actors that “don’t 

sleep” and can therefore form “associations that don’t break down”, at least not as readily as 

those among human actors, “allow[ing] power to last longer and expand further” (70). Although 
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Latour’s charge that social theory ignores objects may not seem applicable to the study of digital 

media, transparency effectively removes many component objects from our view of media 

assemblages. Even within digital media scholarship, personal computers are treated like 

blackboxes, as if “they offer no information to the observer and will [appear to] have no visible 

effect on other agents. They remain silent and are no longer [acknowledged as] actors” in 

networked digital environments (79). This chapter contributes to a pressing need for a cultural 

history of personal computing. Before we set about pulling back the interfaces that hide complex 

systems from us, we must first interrogate the discourse surrounding transparency’s emergence 

so that we can recognize the cultural assumptions about users embedded within those systems by 

their developers. 

Accounting for transparency therefore requires a technical solution, both in terms of the 

critical theory used to describe its effects and the methodologies used to document its operations. 

Drawing on the concept of layered computing from theories of operating system design, Lev 

Manovich proposes in The Language of New Media (2001) that software consists of a “cultural” 

layer and a “computer” layer—or the software as visible on screen and the executed codes that 

comprise it (46).3 Most projects undertaken in the 1990s and 2000s to study digital culture do so 

from the perspective of the cultural layer. According to Manovich, we can come to understand 

the computer layer in the way that it “transcodes” cultural objects, producing a “composite  

. . .computer culture—a blend of human and computer meanings” (46). The encoded structure of 

3 See Structured Computer Organization (2006, 5th Ed.) or Modern Operating Systems (2008, 3rd 

Ed.), both by Tanenbaum, for examples of the type of theory Manovich is drawing on from 

computer science. 
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new media allows us to bend and reimagine older media forms such as film and music as well as 

produce new hybrid forms through interactivity such as video games and electronic literature. 

Understanding how this composite culture is different from pre-digital culture is, according to 

Manovich, key to understanding these new technologies.  

Yet transparency’s push to efface computational operations suggests that there may be a 

disconnect between these two layers. Just as Bolter and Grusin’s work implies that hypermediacy 

paradoxically contributes to an experience of the opposing logic of immediacy, so too does 

hypermediacy continually direct our attention away from Manovich’s computational layer. 

Transparent design exploits software’s inherent invisibility to represent computational operations 

selectively. Representing a computer system as a desktop where processes can co-exist, side by 

side in windows or arranged in neat rows of icons waiting for selection, hides the recursively 

nested file system structure that holds all of those processes in separate locations and manages 

data access between them. The desktop is essentially a functional misrepresentation of a 

computer system’s structure. System designers and users thus hold different perspectives on 

computer systems. As users grow more accustomed to thinking of their machines in terms of 

functional misrepresentations, the computational layer and its coded algorithms slip out of our 

reach, becoming an exclusively technocratic domain. The idea that interfaces misrepresent 

computation does not mean that those studies of software’s cultural layers are somehow made 

obsolete or incomplete; rather, an awareness of transparency can help us document and theorize 

how software’s self-representation via broader cultural signifiers is re-shaping our understanding 

of race, gender, and sexuality. Research on digital cultural conducted from the users’ perspective 

must continue, but we must also extend critical theory beneath the interface by resisting 

transparency and rendering visible underlying computational processes. 
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In this regard, I take a historical approach to reading source code, one that considers the 

specific contexts in which code is written, distributed, and executed, in order to explore the 

specific functions it carries out on behalf of its users. There are, however, a number of 

limitations and drawbacks to any methodology for the study of source code. Chun’s charge that 

source code is often fetishized as logos, its limitations ignored so that it can be treated as the 

source of all truth and action in computational environments, is compelling (19-20). It is indeed 

impossible to “know” software, as she puts it, given the sheer size of the code base for most 

modern software applications and the number of other software libraries a given piece of code 

might depend on during execution, or the way drivers might translate software commands into 

hardware instructions. Source code can, at best, describe only a small fraction of what software 

might be doing at any given moment.4 At the same time, however, a functional view of source 

code—one which understands it as instructions describing both what commands are available to 

users and how those commands are executed—can reveal cultural assumptions that aren’t 

otherwise visible about the way software tacitly shapes user behavior. As Willard McCarty 

notes, the act of modeling something in code can itself be a critically self-reflective experience: a 

mode of “disciplined guesswork” that helps us to explore our tacit awareness of things (46-47). 

Developing software, testing it, and observing how it fails to meet expectations can expose latent 

assumptions about the processes being encoded. Importantly, McCarty’s description of 

debugging his linguistic models suggests that reading code with a consideration of the data it 

interacts with also implies that a consideration of the structures visible in code can help us to 

4 See also Fuller’s characterization of assemblages as always decomposable into other 

assemblages in Media Ecologies: Materialist Energies in Art and Technoculture (2007). 
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understand the cultural work of software. Software is written to be used, and while authorial 

intent remains a problem for any hermeneutic strategy, reading source code allows us to examine 

the assumptions latent in transparency’s functional misrepresentations about who users are, what 

computers should be used for, and how software privileges or denies particular relationships 

among users. 

While I am not the first to propose the critical analysis of source code, I contend that the 

problem of transparency is one that must be addressed, not by treating the hermeneutic study of 

source code as an end in itself, but rather as a means to investigate larger questions about its 

instrumental role in shaping structures of technological power. Although methodologies such as 

the “critical code studies” approach espoused by Mark C. Marino can help critics to develop a 

language to understand algorithms as aesthetic forms in terms other than simply elegance or 

efficiency, a functional approach to source code, coupled with an awareness of its extra-

functional contexts, can tease out the moral, ethical, and political dimensions of design. As 

Richard Coyne observes in Designing Information Technology in the Postmodern Age (1995), 

information technology is often positioned as “beyond ethical,” and I would add beyond 

criticism, because it is framed by a “rhetoric of needs” (77). The development and spread of new 

information technology often occurs under a banner of progressivism: there is a social or cultural 

problem in need of a solution which new technology can provide. Treating technology as a 

value-neutral resource that only assumes an ethical dimension through its application divorces 

design from social and cultural theory, allowing technological development to proceed 

“unimpeded by anything other than the constraints set within [the designer’s] own technical 

problem-solving domain” (77). An important implication of Coyne’s observation is that cultural 

studies of technology must attend to the ways in which cultural questions about technology are 
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often hidden by or reframed as requiring only technical solutions. Technology, in other words, 

also serves to functionally misrepresent sociocultural problems in ways that make it seem like an 

ideal solution. Yet methodologies which study code as an aesthetic form rather than placing its 

instrumental function within a cultural context risk replicating this problematic separation 

between the technical and the cultural. A critically instrumental reading of source code 

emphasizes that source code itself contains value judgments about who should use software, how 

it should be used, and for what purposes. 

Guiding this contextualized, functional reading of code should be a critical awareness of 

software’s history. Reading software through a rich intertextual archive can also help the digital 

humanities highlight the cultural importance of its primary texts. In her review of Matthew 

Kirschenbaum’s Mechanisms: New Media and the Forensic Imagination (2008), Johanna 

Drucker controversially comments that the digital humanities has done a poor job of explaining 

the significance of new media criticism. She notes that digital media critics have focused 

primarily on “early and self-conscious works whose reflection on production is part of their 

textual condition.” While I am hesitant to embrace Drucker’s concern that software studies 

focuses too much on the “novel” because it devalues the aesthetics of software, I agree with her 

observation that the digital humanities has focused its critical attention on genres that have a 

circulation limited largely to academic circles, such as electronic literature and experimental 

software. Digital media studies must address software that doesn’t have a readily accessible 

narrative or aesthetic component if it is to effect any change in the politics of software 

ecosystems. If the sort of born-digital texts she takes issue with are ones that lend themselves to 

primarily aesthetic investigations and close readings, then a critically instrumental methodology 

must look to texts which have a larger role in structuring models of computing—whether they 
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are video game engines that shaped an entire genre or the comparatively mundane, non-narrative 

software libraries that underlie digital content creation and distribution—and historicize their 

functionality. 

At stake is not just a preference for one company and its particular model of computing 

over another. If we understand that design practices reify beliefs about who should use 

computers and for what purposes, then we must acknowledge that the authors of computer 

software are in many ways architects of social and cultural policy. Lawrence Lessig’s oft quoted 

phrase, “code is law,” is true in the sense that highly automated, transparent interfaces allow us 

to perform complex tasks, but only in authorized ways, while passively forbidding through 

omission those behaviors not described in source code. For expertly skilled users who know how 

to inspect application directories, navigate registries, and manipulate encrypted files, it may well 

be the case that no use behavior is forbidden; however, for the average user, transparent 

interfaces bar them from the domain of the technocrat. Now that broadband Internet connections 

are expected of most users by software developers, OS software, digital distribution platforms, 

and even individual applications serve not just to help users manage data on their machines but 

also to monitor and in some cases police the behavior of users. It is therefore vitally important 

for digital humanists to turn their attention to human-computer interaction (HCI) literature and 

understand not only how usability theory has been applied to develop new software but also how 

it is being interpreted to justify a model of computing in which users do not own the software 

they install and are permitted increasingly less control over their personal computers. 

I. A Brief History of Transparency in Theory 

HCI is a multi-disciplinary field situated within computer science that throughout its 

history has attracted researchers from the social sciences and the humanities. Cognitive 
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psychology has maintained a strong influence due in no small part to the work of Donald A. 

Norman, whose work from the 1980s and early 1990s is still taught as part of HCI courses and 

cited in its literature. Norman proposes in “Cognitive Artifacts” (1991) that information 

technologies don’t necessarily change the way we think. Although Norman names no one who 

promotes this idea, he is responding implicitly to engineers like Alan Kay who cite Marshall 

McLuhan as a strong influence on their work.5 Instead, Norman argues that tools like personal 

computers change the nature of the tasks we perform with them. From the cognitive perspective 

of the user, as opposed to say that of systems theory, creating a list does not extend our memory. 

Rather, it reduces the role that human memory plays in a given task. Instead of having to 

remember all steps, users must only remember to check the list after completing each step (20-

21). Any perceived enhancement to users’ cognitive ability is the result of reducing their 

cognitive burden. Although not as frequently cited as The Psychology of Everyday Things 

(1988), Norman’s essay highlights a fundamental principle found throughout his body of work. 6 

Information technologies can also increase our cognitive burden if designed poorly, and the 

engineer’s goal should therefore be to fit technology into our lives in ways that makes cognition 

easier. The problem with software, he notes in “Why the Interface Doesn’t Work” (1990) is that  

Interfaces get in the way. I don’t want to focus my energies on an interface. I want 

5 On Kay’s discussion of McLuhan and computing, see “Computer Software” in Scientific 

American 251 (1984) or “User Interface: A Personal View” in The Art of Human-Computer 

Interface Design, Ed. Brenda Laurel (1990). 

6 Norman’s book was re-released in 2002 with a new title, The Design of Everyday Things, and 

an extended preface. All page numbers herein refer to the 2002 edition. 
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to focus on the job. My tool should be just something that aids, something that 

does not get in the way, and above all, something that does not attract attention 

and energy to itself. When I use my computer, it is in order to get a job done: I 

don’t want to think of myself as using a computer, I want to think of myself as 

doing a job (210). 

If Apple is the company that established transparency as a practice, Norman’s work establishes a 

theoretical basis for its continued application to design. Importantly, his work reflects HCI’s role 

in the technocratic shaping of computational layers of software to produce cognitively “intuitive” 

interfaces that aid human productivity. 

 According to Coyne’s account of HCI’s theoretical orientations, HCI begins with what he 

describes as a conservative, “rationalist” tradition that gives way to the “pragmatic” one that 

came to define personal computing software in the early 1980s. The rationalist tradition, he 

notes, “promotes a particular view of the clientele or end users of technological systems,” one in 

which “[t]heir participation in the process of inventing and designing computer systems is 

minimized” and in which only “experts have access to the theories and are best placed to deliver 

the appropriate designs” (28). Although HCI coalesced as a discipline in its own right in 1982 

when the Association of Computing Machinery’s Special Interest Group on Social and 

Behavioral Computing was renamed the Special Interest Group on Computer-Human Interaction, 

its rationalist assumptions can be traced back to the cybernetic theories of Norbert Weiner and 

research in early radar systems during the 1950s.7 In particular, the Goals, Operators, Methods, 

7 For example, see Paul Fitts, “Human Engineering for Effective Air-Navigation and Traffic-

Control System.” Report. Washington, DC: National Research Council. Chun’s discussion of the 
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Selections model (GOMS) proposed by Stuart K. Card, Thomas Moran, and Allen Newell shares 

with Weiner’s cybernetics an assumption that the human mind is fundamentally an information 

processor structurally similar to a Turing machine. The GOMS model, at least initially, led HCI 

to strive for a quantifiable efficiency in goal-directed behavior. According to GOMS, software 

interfaces should be designed to minimize the number of actions required to perform tasks. The 

developer should therefore observe user behavior for the sole purpose of eliminating redundant 

or superfluous actions. The model GOMS does not address how users understand software, 

defining their relationship to software solely through the combinations of keystrokes they make 

with a Taylorist focus on timing task performance. GOMS, in short, privileges the perspective of 

the expert. The pragmatist orientation, according to Coyne, is more concerned with how 

“technology fits within the day-to-day practical activity of people,” and sees as its mission the 

spread of computing power into as many areas of cultural practice as possible (31). Norman’s 

work, as well as that of John M. Carroll, Alan Kay, Brenda Laurel, Ben Shneiderman, Lucy 

Suchman, Terry Winograd, and Fernando Flores, tries to describe the subjective experience of 

design decisions by users. But Coyne’s interest in this transition is less in mapping the discourse 

surrounding it than in providing a stronger foundation for what he calls the “critical” and 

“radical” orientations to design. Both of these orientations are responses to the pragmatists and, 

Coyne argues, must be adopted by humanists and social scientists who study technology if we 

want models of design informed by critical theory.  

Upon closer inspection, the writings of these computing pragmatists do object to the 

SAGE defense system also highlights similarities between research in feedback system for 

military technology and early interface design theories. 
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rationalist tradition’s inability to consider technology from the perspective of non-experts, but 

the solutions they provide are ones which subsume, rather than remove, rationalist features of 

design through more humanized representations of computer systems. The pragmatist orientation 

emerges through a rough consensus that variance among users makes it difficult to assess 

usability without considering the way cultural influences produce different subjective 

experiences of technology. Automation of task sequences coupled with an interface that 

visualizes feedback for users would marshal advances in computing power, placing new 

techniques for hypermediated graphics in the service of a perceived immediacy, changing the 

goal of design from efficiency to producing a form of interactivity that allowed users to manage 

their cognitive uncertainty. As interfaces became transparent, they reasoned, users would no 

longer be at the mercy of what Ted Nelson called a “computer priesthood” to dictate a model of 

use behavior to the public. Yet the call to make computing “invisible” and “unseen” is realized 

by exploiting the layered architecture of modern systems to produce computing systems wherein 

users become responsible only for manipulating the metaphors visible on screen. Those layers of 

algorithms below those metaphors would be handled by automated feedback systems, defined by 

developers and not directly accessible by users. The pragmatists, in short, saw functional 

misrepresentation of computational processes as the only way to guarantee that users, whether or 

not they had any prior training or familiarity with computer system, could readily develop a 

working understanding of software. Even in the “user-centered” approaches of the pragmatists, 

the unseen management of computer systems remains the domain of a computer priesthood, 

technocrats who approach the cultural problem of the increasingly complexity computation as 

one to address with more software. 

 The earliest research in HCI focused primarily on measuring software’s usability by 
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employing a mechanistic model of humans as information processors. Not to be confused with 

behaviorism, cognitive psychology posits a universal, mechanical view of the mind: no thought 

or experience is direct but instead is the product of mental structures shared by all humans which 

interpret, recall, and store information. Ulrich Neisser, whose Cognitive Psychology (1967) 

served a foundation for the field, describes the study of cognition as the empirical observation of 

internal mechanisms that produce mental states, processes which collectively form behaviors but 

which should not be confused with more abstract psychological concepts like emotions, goals, or 

motivations that observers can only speculate about. Although Neisser comments in “The 

Imitation of Man By Machine” (1963) that computers are “oversimplified” metaphors for human 

cognition insofar as human thinking “serves not one but a multiplicity of motives at the same 

time” and “always takes in. . .a cumulative process of growth and development,” he nonetheless 

invites the comparison in Cognitive Psychology (195). Much as Norbert Weiner proposed that 

humans and machines could be considered mathematically equivalent when functioning as part 

of the same information system, Neisser argues that a cognitive process is like a piece of 

software in that sense that both are “a series of instructions for dealing with symbols;” and even 

though software is “nothing but a flow of symbols it has reality enough to control the operations 

of very tangible machinery that executes very physical operations. A man who seeks the program 

of a computer is surely not doing anything self-contradictory!” (3). Neisser appears to reject 

cybernetics by noting failed attempts to apply Claude Shannon’s information theory to quantify 

psychological processes; however, his description of humans and machine cognition is 

functionally equivalent to Norbert Weiner’s mathematical description of human-machine 

systems. By treating both as information processors, software engineers could design computer 

input and output to complement users’ cognitive structures. Importantly, Neisser’s influence over 
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early HCI established the perspective of the expert as essential to user interface design, 

positioning the trained observer as more capable of understanding how users think about 

computers than users themselves. 

First proposed in 1979 by Stuart K. Card, Thomas P. Morans, and Allen Newell, the 

GOMS model is representative of methodologies that incorporated empirical practices from 

cognitive psychology. In The Psychology of Human-Computer Interaction (1983), Card, Morans, 

and Newell recommend that designers write out user behavior in a form which more or less 

resembles pseudocode, a style of describing algorithms in natural language typically used to 

outline the structure of software before writing the particular operations in a programming 

language. Just as programmers must break down complex tasks into discrete algorithms, Card, 

Morans, and Newell assert that the user’s mind similarly “segments the larger task [like] editing 

[a] manuscript into a sequence of small, discrete modifications, such as to delete a word or to 

insert a character,” even if his or her awareness operates at a more abstract level (140). Briefly, 

GOMS assumes that users approach a computer with an abstract goal in mind—such as writing 

an essay, sending an e-mail, or searching for information—understand software as a finite set of 

operators which they can manipulate to perform their goal, know how to construct one or more 

methods combining those operators to achieve their goals, and then select the appropriate method 

based on the state they find the computer in at any given moment. By breaking tasks down into a 

series of small acts of observation, decision, and execution, GOMS allows researchers to 

redefine usability in terms that can be measured empirically, whether by the number of decisions, 

the number of physical movements, or the amount of time it takes to perform either. In this 

sense, GOMS understood the relationship between human and machine as largely informational. 

Software designers should not hide operations from users; rather, they must structure access to 
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those operations in ways that do not hinder users from finding and interpreting system 

information relevant to their goals. 

Yet GOMS’ practitioners, including Cards, Morans, and Newell, acknowledge that this 

method is less applicable to designing software with novices in mind. When users encounter a 

program state where they cannot determine which method will allow them to attain their goal, 

they must try combinations of available operators based on their memory of previously 

successful methods. In the process, users become “more skilled” by revising previously 

successful methods for use with new goals (363-372). GOMS’ emphasis on software’s internal 

consistency has remained popular, at least in experimentalist circles, because the observation of 

users performing familiar goals allows researchers to predict how they will respond to unfamiliar 

situations. GOMS assumes a goal-directed model of use in the sense that ideally users will know 

enough about a system’s operators prior to sitting down at their machine to know which goals are 

possible, even if their system knowledge is incomplete or modified during use by the discovery 

of new operators and methods. While not as much a problem today because GUIs readily provide 

users with lists of operators, allowing users much greater leeway in assembling methods ad hoc, 

the model’s reliance on users’ prior knowledge of computers privileged advanced users during 

the dominance of CLI systems in the 1980s. Despite continued experimental interest in GOMS in 

ergonomics studies and the development of specialized computer software where efficiency and 

accuracy remains priorities, such as medical software, GOMS is no longer a primary heuristic in 

HCI. This diminished interest in GOMS reflects the personal computer industry’s shift in 1984 

towards a model of use that does not presuppose any specialized knowledge or experience. 

The initial steps towards transparency are therefore ones which shifted away from the 

empirical perspective of the expert and towards models that tried to describe use from the 
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perspective of the user by acknowledging embodied practices. Ben Shneiderman’s Software 

Psychology: Human Factors in Computer and Information Systems (1980), for example, 

discusses methods for applying observational techniques from cognitive psychology to a more 

holistic model of computing. Shneiderman proposed that systems should account for users with 

different degrees of technological literacy, using their machines for distinct purposes, and in 

different physical contexts. Each of these factors contributed to the ability of users both to define 

and to accomplish their goals, and each had to be approached differently by engineers. In terms 

of interface design, Shneiderman identified the memorization of terminal commands, the desire 

for closure when performing tasks, anxiety when unexpected states are encountered, a desire for 

control, and the speed and quality of software’s response to commands as key problems that all 

designers must address (216-232). In this sense, Shneiderman’s work recommends an attention 

to the qualitative variables influencing users’ cognitive interaction with computer systems. 

Importantly, Shneiderman also observes that use practices are influenced by cultural attitudes 

towards computing. He expresses concern over a “gaping chasm between social commentators 

who perceive technology, particularly computer technology, as dreadfully harmful and computer 

science researchers who feel that computer technology can lead to a better way of life” (271). 

Shneiderman then closes his remarks by noting that the success of computers ultimately will be 

measured by the “willingness of each designer and implementer to taking responsibility” for the 

way his or her software will affect users’ lives (280). By highlighting a disconnect between 

cultural and technical understandings of computers, Shneiderman’s work attempts to position 

HCI as a discipline capable of mediating between the two perspectives. 

The paradigm shift from a rationalist to a pragmatist orientation is marked by a concern 

that the spread of computing will fail to live up to its promise if users see it as a complicated 
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intrusion into their lives. Lucy Suchman introduced in Plans and Situated Actions (1985) what 

HCI engineers have since referred to as the “ethnographic approach” to design. Suchman’s work 

incorporates anthropological and linguistic models that challenge the influence of cognitive 

psychology in HCI. Clifford Geertz’s theories, for example, treat culture as consisting primarily 

of symbolic interactions, ones which require a “thick description” of the context of social 

interaction to understand. Cognitive descriptions of cultural practice, on the other hand, position 

themselves as objective by sticking to “thin descriptions” that observe decision making and 

behavioral rituals but avoid interpretation. But according to Geertz, cognitive anthropology 

leaves open the question of “clever simulations”: meaning making becomes private in the sense 

that the social performance of various actors can be “logically equivalent” but understood by 

them in “substantively different” ways (Geertz 11). This problem of “mutual intelligibility” 

requires anthropologists not just to observe cultural practice but also to determine how actors 

continually construct meaning through a shared context. Observational methodologies like 

GOMS, in other words, ask only how systems could be redesigned to encourage ideal use 

behaviors and not why users failed or struggled to accomplish tasks. By observing workers in 

offices, Suchman concludes that while users are good at discovering methods during operation 

they may not understand why some fail and other succeed. Computers, she notes, are so complex 

that the “overall behavior of the computer is not describable, that is to say, with reference to any 

of the simple local events that it comprises”; instead, most acts of use occur only by 

comprehending abstractions representing “the behavior of a myriad of those events in 

combination” (15-16). Programmers should therefore approach the question of interface design 

not as a project of trying to design algorithms which serve as structural compliments to users’ 

cognition but rather allow users to alter their use practices in situ in order to manage their 
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uncertainty about the system.  

Suchman’s conclusions implicitly challenge the technocratic management of cultural 

technology. In her closing remarks, Suchman suggests that “as long as machine actions are 

determined by stipulated conditions, machine interaction with the world, and with people in 

particular, will be limited to the intentions of designers and their ability to anticipate and 

constrain the user’s actions” (189). Prior to her ethnographic model, usability problems were 

explained as the failure of designers to map users’ cognitive responses to technology and to plan 

for all possible use behaviors. Until information technologies are designed to encourage users to 

develop their own use practices, rather than conform to those embedded in software, she 

suggests, engineers will control not only the technical production of computers but also their role 

in cultural production. David Golumbia writes more recently in The Cultural Logic of 

Computation (2009), for example, that “[c]omputers come with powerful belief systems that 

serve to obscure their real functions, even when we say we are acutely aware of the 

consequences of our technologies.” (13). Golumbia’s description of computation as a cultural 

logic links narratives of personal empowerment to bureaucratic applications of computation 

aimed at quantifying labor. Understanding computation purely in terms of efficiency encourages 

a worldview “wherein mathematical calculation can be made to stand for propositions that are 

themselves not mathematical, but must still conform to mathematical rules” (14). More 

politically charged than Suchman, Golumbia argues that we need to develop ways to discuss how 

computation reshapes the cultural contexts that software developers integrate it into because 

these technologies are continually presented to us as nothing other than benevolent. 

Understanding HCI primarily in terms of efficiency leaves “technocrats and capitalists to insist 

that we as citizens have no right or power to determine technologies change, adapt, and function 
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in society” (26). The rationalist orientation, in short, has not disappeared entirely. What Suchman 

implies and what Golumbia fears, in other words, is that that putting sole control in the hands of 

developers to define use practices will alter the way users think about the cultural contexts they 

use computers within, reshaping them to fit the algorithmic processes embedded in software. 

Although Suchman’s work sees human-computer interaction within social and cultural 

contexts, in practice designers have sought primarily technical solutions to the problems her 

work raises. Particularly, Shneiderman’s 1983 essay “Direct Manipulation: A Step Beyond 

Programming Languages” has had a much stronger influence on commercial software design. 

When considered alongside Suchman, Shneiderman’s essay highlights transparency’s 

obfuscation of rationalism. According to Shneiderman, the same techniques of hypermediation to 

represent algorithmic processes in video games, computer-aided design and drafting tools, and 

spatial mapping tools could be applied generally to all forms of software. Video games are 

exceptionally well designed in terms of usability, he notes, because they can be understood 

without extensive training. Instead, the “general idea of the game can be gained by watching the 

. . .automatic demonstration that runs continuously on the screen, and the basic principles can be 

learned in a few minutes by watching a knowledgeable player” (61). Shneiderman explains that 

the practice of computing can be decomposed into acts of “syntactic knowledge” and “semantic 

knowledge” (65). Syntactic knowledge encompasses the commands users must memorize to 

complete a task as well as the precise syntax for directing and combining them. Although there 

may be some overlap or structural features common across most systems, Shneiderman notes 

that syntactic knowledge is largely “system dependent,” requiring users to retrain themselves to 

some degree each time they use new software (65). By comparison, semantic knowledge refers 

to abstract tasks that are “natural. . . .and closer to innate human capabilities” (66). Presenting 
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computational processes visually in ways that establish spatial relationships between them, he 

argues, encourages users intuitively to model system structures and discover operations during 

use. The comparative lack of anxiety users experience when playing a game is due to a feeling of 

“direct manipulation” produced by immediate visual and auditory feedback to commands. When 

combined with tools that allow users to undo actions or revert system states readily, direct 

manipulation encourages users to explore systems during use rather than requiring them to learn 

about them in advance. Although Shneiderman’s description of direct manipulation does not call 

for transparency’s selective obfuscation, his framing of hypermediation suggests that the 

difficulties Suchman observed in users’ attempts to explain syntactic structures could be solved 

with functional misrepresentations of algorithmic processes. 

A key difference between Suchman’s and Shneiderman’s proposed solutions to efficiency 

based approaches to software design is that his leaves the relationship between designers and 

users largely unchanged. In both approaches, designers maintain primary control over the 

cultural work of computation by shaping the tools of cultural production; however, Suchman 

reframes design so that a programmer’s technical expertise is necessarily incomplete. Instead of 

programmers relying on empirical models of cognition or quantifiable efficiency, they define 

usability qualitatively in conjunction with the cultural practices into which it will be 

incorporated. Shneiderman maintains that technical expertise is itself sufficient to account for 

variations among users and that the role of the designer is to develop tools which paper over the 

syntactic operations of computer systems—knowledge of which is either inconvenient, 

burdensome, or otherwise unnecessary for users. Direct manipulation, in this sense, is a strategy 

of creating increasingly indirect representations of computational processes which engage users 

on a pre-linguistic level, as “objects [which are] more ‘natural’ and closer to innate human 
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capabilities: action and visual skills [that] emerged well before language in human evolution” 

(66). Designers, in other words, can assume that they have a better understanding of users’ 

subjectivity than users themselves. Whereas Suchman asked users to consciously reflect on how 

and why they chose specific use behaviors, direct manipulation appeals to scientific models of 

human consciousness to avoid such questions. Today, however, HCI studies often apply 

Suchman’s insights in ways that ignore her points about the importance of understanding how 

users understand technology. Ethnography, as practiced in HCI, observes users in context of 

work they perform with computers but leaves in place the rationalist distinction between users 

and developers, which transparent design in turn reifies. This research focuses on how and why 

users respond to strategies of functional misrepresentation, not on how users understand the 

underlying systems. 

One of the first studies to advance explicitly the idea that techniques of direct 

manipulation should be used to functionally misrepresent computational processes is Terry 

Winograd and Fernando Flores' Understanding Computers and Cognition: A New Foundation 

for Design (1986). Presented as a holistic intervention into HCI, the book begins by announcing 

that the important questions in software design are no longer purely technical and instead require 

a reflection on “human nature and human work” and a recognition “that in designing tools we are 

designing ways of being” (xi). By shifting HCI’s perspective from considering “what 

[computers] do, not just how they operate,” their aim is to consider how software transforms the 

nature of the tasks it models for users (4-7). Winograd and Flores challenge the rationalism of 

HCI using the philosophy of Martin Heidegger, arguing that “the practices in terms of which we 

render the world and our own lives intelligible cannot be made exhaustively explicit” (32). Like 

Suchman, they recognize that although “[w]e do at times engage in conscious reflection and 
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systematic thought. . .these are secondary to the pre-reflective experience of being thrown in a 

situation in which we are always already acting” (71). When we use tools, we actualize the 

“ready at hand” knowledge embedded with their design. Understanding a hammer does not 

involve knowing why, for example, a hammer is balanced in a particular way; rather, we 

understand its “hammerness” only in the act of driving a nail (37). Winograd and Flores see 

support for this relationship between humans and tools in Humberto Maturana and Francesco 

Varela’s theory of autopoiesis. As self-organizing systems, human cognition is distributed in the 

sense that it is embodied in the structural couplings we form with our environment. Cognition 

takes place in our pre-conscious sensorium and biological responses to environmental changes as 

well as in the conscious decisions we make in our attempts to direct self-organization. For 

Winograd and Flores, Maturana and Varela’s empirical efforts to describe a biological basis for 

cognition provide further support for the idea that users’ primary engagement with tools is 

always pre-conscious. Any conscious engagement by users with mental models of technological 

functions is always already influenced by the systemic coupling formed between user and 

environment (70-73). Even though Winograd and Flores want to position their work as 

describing a cultural approach to computing, they nonetheless reproduce the assumption 

Suchman saw as problematic: that users’ conscious understanding of technological structures is 

less valuable in design than an expert’s understanding of scientific models of cognition. 

  While Shneiderman implies a need for functional misrepresentation, Winograd the 

Flores argue explicitly for an “ontological” design that strives for a “transparency of interaction.” 

Winograd and Flores propose, in terms similar to Shneiderman’s concept of direct manipulation, 

that designing software should not be much different from designing a car. Just as while driving 

a car “[y]ou do not think ‘How far should I turn the steering wheel to go around that curve?’”; 
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users should not be required to think about how to operate their computer in order to accomplish 

tasks with it (164). Drivers do not need to know how an engine works to benefit from its 

functions, and so too users shouldn’t need to understand a system’s computational layer to 

participate in the cultural layer. Unlike an engineers who design cars, however, a programmer 

has much greater control over technological form: they quite literally design the structures which 

“create the world in which the user operates” (165). Creating transparent technologies that allow 

for direct manipulation therefore requires programmers to design “ontologically clean” 

environments that afford distinct frames of action. In Shneiderman’s terms, Winograd and Flores 

call for designers to maintain a strict separation of the syntactic elements of the system from 

semantic representations of tasks whenever possible. Although word processing programs once 

required users to manage modes—view, insert, overwrite, or command—there was no physical 

limitation preventing designers from producing software that resembles today’s office software, 

which just lets users write.8  

 Separating users’ experience of the cultural layer from a system’s computational 

operations does not remove the former’s dependence on the latter. Winograd and Flores’ 

description of “ontologically pure” domains relies on interfaces that automate syntactic tasks to 

provide an illusion of seamless, direct manipulation. Their discussion of mail servers highlights 

the idea that this separation also establishes a model of use where a large population of users’ 

computational practices remain dependent on informational structures shaped by a much smaller 

group of programmers: “The user operates in a domain constituted of people and message sent 

8 For an example of an older style word processor, see vim, itself an updated version of vi: 

http://vimdoc.sourceforge.net/htmldoc/intro.html 

                                                 



52 

among them. This domain includes actions (such as sending a message and examining mail) that 

in turn generate possible breakdowns (such as the inability to send a message). Mailbox servers, 

although they may be a critical part of the implementation, are an intrusion from another 

domain—one that is the province of system designers and engineers [emphasis added]” (165). 

Winograd and Flores’ transparency of interaction is therefore predicated upon maintaining a 

separation between domains appropriate for users and those best left to technical expertise. As 

Manovich notes, HCI’s foremost achievement has been to change computing so that “we are no 

longer interfacing to a computer but to culture encoded in digital form” (69-70). The term 

“cultural interface,” he argues, thus becomes more appropriate than “computer interface” 

because users understand themselves as interacting primarily with “cultural data” rather than the 

computational forms which transcode it (70). Manovich’s description of interfaces is part of an 

effort to reinterpret them in terms familiar to existing hermeneutic practice them by highlighting 

the way they participate in a historically rich media ecology. At the same time, Manovich’s idea 

that the computational layer is continually reproducing the cultural layer through a process of 

transcoding reminds us that an ontological separation between the two is impossible. Transparent 

design, in this sense, enacts an epistemological separation. It is instead only a functional fantasy 

that users accept: a sublimation of computation that paradoxically makes computing seem more 

accessible. 

 Models of usability based on misrepresenting or selectively representing computation 

thus encourage a specific kind of technological literacy, one which is limited to manipulating the 

cultural interface but which yields very little information about computation itself. In reviewing 

the influence of technology on Heidegger’s mediation on Being, Coyne describes a “darkening 

of the essence of truth” in the technological age as technology enframes the world according to 
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an instrumental logic (67-68). Heidegger’s phenomenology understands technology as both 

instrumental and cultural. In “The Question Concerning Technology,” he describes technology 

as a way of revealing but notes that what it uncovers about our world is dependent on our 

relationship to technology. According to Heidegger, technology has become inseparable from 

culture, and our turn to science to understand Being has made our search “dependent upon 

technological apparatus and upon progress in the building of apparatus” (14). The revealing that 

technology offers is therefore made available only in terms of itself, a challenging of old ways of 

knowing “which puts to nature the unreasonable demand that it supply energy that can be 

extracted and stored as such” (14). As it reveals facts about the natural world, it also conceals 

older ways of knowing truths. Although it would be a stretch to position computational processes 

as part of the natural world, this logic of concealing through the act of revealing is evident in the 

construction of transparent interfaces. The sublimation of computing power thus encourages 

users to cultivate a computational subjectivity that itself is dissociated from knowledge of 

computation. Even though, as Sherry Turkle’s work suggests, we do form deeply personal 

symbolic connections to information technology, the use of software is increasingly a public 

act.9 Not only, as Manovich argues, does computation now transcode the production of most 

other media forms, but the ubiquity of networked applications means that no single machine 

carries out computation in isolation. In this sense, all digital media produced by transparent 

interfaces contributes to a discourse about computing that seeks to conceal its technological 

nature behind a rhetoric of task-completion that emphasizes the role software enhances human 

information production but not necessarily human creativity. 

9 See The Second Self (1984) and Life On the Screen (1995). 
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 Following Winograd and Flores, Norman re-establishes in HCI the expert’s ability to 

model users’ subjective interaction with technology by describing transparency’s functional 

misrepresentations using scientific models of cognition. Like Winograd and Flores, Norman 

argues in The Psychology of Everyday Things that software interfaces “can be anything the 

designer wishes to them to be,” giving programmers the option of shaping their software to 

“tak[e] on the appearance of the task” at hand and letting complex computational models 

“disappear behind a façade” of simplicity (183). Central to most of Norman’s writings is the idea 

that designers should address what he terms the “gulf of execution” and the “gulf of 

understanding.” Norman defines the gulf of execution as the “difference between the intentions 

[of users] and the allowable actions” of technological systems (51). Similarly, the gulf of 

evaluation “reflects the amount of effort that the person must exert to interpret the physical state 

of the system and to determine how well [their] expectations and intentions have been met” by 

the system (51). Drawing on his background in cognitive psychology, Norman notes that people 

always form mental models of how technology works during use, forming them ad hoc in 

“situations that are not remembered (or never before encountered);” it’s therefore important for 

designers to “provide users with appropriate models” through interfaces which suggest what they 

consider to be correct use practices because “people are likely to make up inappropriate ones” 

without comparable experience or formal training (70). According to Norman, inaccuracies that 

prevent effective application of mental models to use practices are a combination of these two 

gulfs. To address these gulfs, Norman develops J.J. Gibson’s concept of environmental 

affordances by adding a perceptual dimension: affordances are not just possibilities for action 

that exist independently of subjects but rather features of technology in which users recognize 

specific actions and which convey a sense of how those actions fit into larger task-flows (9). 
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Norman thus appears initially to share Suchman’s conclusion that good design is one that takes 

into account users’ subjectivity and that usability as a theoretical problem is one best understood 

as a symbolic interaction. 

 While Norman’s emphasis on users’ subjectivity suggests an approach similar to 

Suchman’s, his methodology relies on a scientific definition of a universal subjectivity rather 

than a substantive engagement with users’ symbolic practices. In “Direct Manipulation 

Interfaces,” Edwin L. Hutchins, James D. Hollan, and Norman argue that usability is a question 

of cognitive distance. Shneiderman’s concept of direct manipulation is thus best understood as 

“the commitment of fewer cognitive resources. Or, put the other way around, the need to commit 

additional cognitive resources in the use of an interface leads to the feeling of indirectness” 

(317). Norman comments in The Psychology of Everyday Things that constraints are more 

important than affordances because they reduce the number of decisions required to use a given 

piece of technology (62). Constraints are some feature of a technology, whether physical, 

semantic, cultural or logical, that forbid “incorrect” use actions (81-86). GUIs in this sense must 

be selective in their representation of computational processes. According to Hutchins et al., the 

only drawback to transparency is that some tasks which “do not easily decompose into the terms 

of the [high-level semantic image of the system] may be difficult or impossible to represent” 

(325). Designers therefore have a responsibility to produce an interface that acts “as an 

intermediary to a hidden world” of complex informational structures but which also “denies the 

user direct engagement with the objects of interest. Instead, the user is in direct contact with 

[symbolic] structures, structures that can be interpreted as referring to the objects of interest, but 

that are not those objects themselves” (319). Norman’s work in this sense marks a return to the 

thin description of human-computer interaction. Unlike Suchman, he is not concerned with 
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understanding particular symbolic interactions between users and software; instead, he assumes 

that the correct application of technological principles can produce among users mental models 

that are functionally equivalent regardless of how accurately they understand the computational 

structures with which they interact. 

 At least in personal and business software, Norman’s description of transparency largely 

remains one requirement for a given piece of software to be considered successful. Norman’s 

theories aligned so closely with Apple’s vision of the future of computing (see Chapter 2), in 

fact, that he began working as a consultant for the company in 1988 and eventually left his 

position at the University of California at San Diego in 1993 to work full-time for the company 

as a Vice President and “User Experience Architect.” Apple’s Macintosh Human Interface 

Guidelines (1992) uses terms similar to those found in HCI’s academic literature, including the 

idea that software should be designed to “take advantage of people’s knowledge of the world” 

and allow for a feeling of “direct manipulation” (4-13). Like Norman, Apple cautions designers 

to consider that software “often introduce[s] a new level of complexity for people” and that their 

projects should therefore strive to “provide a computer environment that is understandable, 

familiar, and predictable” (11). Although they do not cite Norman directly, Apple notes that their 

“general guideline that simple design is good design applies directly to the discipline of human-

computer interaction” (35). Furthermore, Apple recommends that programmers design their 

software specifically so that they have very little reference to computational structures. Their 

“80% Solution” shares with Norman the assumption that well designed technology is one which 

simplifies users’ perceptions of technology by providing them with feedback without revealing 

the details of its algorithms. Apple proposes to programmers: if “you design for the 20 percent of 

your target audience who are power users, your design will not be usable by the majority of your 
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users. Even though those 20 percent are likely to have good ideas and probably think a lot like 

you, the majority of people may not be like the 20 percent who are elite users [emphasis added]” 

(35). Although HCI theorists proposed transparency as way to make computers less intimidating, 

the industrial application of it that begins in the 1980s serves to monopolize direct access to 

computational structures. Programmers may use transparent design to put their software in the 

hands of more people, but it also serves a key secondary purpose of closing off the technical 

details of computer systems to everyone, regardless of their skills or knowledge. 

II. Transparency and Public Computing 

 I do not wish to suggest that the solution to transparency’s problematic obfuscation is for 

computer systems to be stripped of all technical automation or hypermediation in order to restore 

an idyllic direct relationship between human and machine. As Chun’s study of the earliest days 

of computing indicates, any narrative which tells of a time when users did have direct access to 

computational processes is itself a myth. The practice of computing has always depended on an 

intermediary, whether it is a human manually making circuit connections or an operating system 

that controls hardware operations. According to Chun, contemporary computing concepts like 

“programming became programming and software became software when the command 

structure shifted from commanding a ‘girl’ to commanding a machine” (29). Even those women 

who acted as computers by manipulating circuitry never had direct access to computing power 

because they operated machines without understanding the processes they managed. Their role 

was simply to say “Yes, sir” and carry out the commands of engineers (30). Like these early 

women computers, the work of today’s transparent software operating systems is removed from 

mental models of computing. Although we see the metaphors and environments they produce on 

screen, we rarely acknowledge the full extent of their agency as objects. We assume our 
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transparent interfaces stand at the ready, executing our command upon request. 

 However, there is a significant structural difference between transparency as discussed 

here and Chun’s description of the earliest examples of human-computer interaction. In the 

system described by Chun, user and programmer were the same person. The human “computer” 

serves as the user’s agent, and users instructed their agents directly. But in today’s computer 

systems operating systems, user and programmer are not the same person. Software acts as an 

extension of the programmer’s will—or the collective will of an team, an intersection of a 

corporation’s business, development, and marketing teams—serving as the user’s agent only 

according to the instructions written in advance by its designers. Although HCI literature 

continually promises that transparency will produce software that invisibly carries out users’ 

commands, allowing them to focus on high-level tasks, it is more accurate to say that users select 

abstract representations of commands produced by a system’s designers. Conceptually, users 

understand themselves to be opening files or surfing the Internet, but computationally they are 

initiating chains of commands that access data encoded in binary notation in specific physical 

locations, parsed into meaningful information from fixed sequences of bits, and further 

interpreted through intermediating libraries before being displayed on screen in human readable 

language or images. So long as the gulfs of execution and expectation are bridged by functional 

misrepresentations, the computational layer is beyond their reach and thus their concern. Users 

can confront computation only when transparency breaks down. So long as the subjective 

experience of transparency is maintained, designers are free to insert any number of mediating 

processes into the command chains that occur beneath the interface’s cultural layer. The same 

principles of transparent design that make for “user friendly” software also make possible the 

keyloggers that blackhat hackers use to steal passwords and credit card numbers, the spyware 
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that reports on our Internet usage to advertisement agencies or the NSA, the digital rights 

management systems that police our media consumption, or the viruses that can corrupt our 

personal computers to the point where only a complete software wipe is the only hope for 

restoring them. 

 The problem of transparency does not lie in the separation of the computational and 

cultural layers into distinct knowledge domains, but in the assumptions that users should be 

forbidden from accessing computation and that interfaces must enforce this policy. Computers 

can no longer be considered “personal” in the sense that we access them in private contexts, if 

indeed any medium ever could. Today’s computer systems, whether they take the form of smart 

phones, tablets, laptops, gaming consoles, or desktops, are designed so that the computational 

layer is in constant communication with information networks. As political subjects, users are 

now part of a system that resembles the public in the early twentieth century following the rise of 

the mass media that Walter Lippmann described in Public Opinion (1922). Just as Lippmann 

describes a conceptual distance between what people experience in their everyday lives and the 

national or international events reported to them, so transparent design instantiates a conceptual 

distance between the interface on screen and the processes it purports to represent. Transparent 

design shares much in common with Lippmann’s solution to the problem of democracy in the 

age of mass media: the subjective experience of directness created through an engagement with 

hypermediation produces a model of use wherein computation can be directly managed only by 

the decisions—embedded in code—of a technocratic elite who believe they will always 

understand the nature of computational processes far better than the public. Unlike in 

Lippmann’s view of the mass media, however, the role of the technocrat isn’t to apply scientific 

knowledge to influence public opinion and manage public policy. As Lessig suggests, the writing 



60 

of code is always already the writing of law—or perhaps something more, as code’s constraints 

forbid action pre-emptively. As Chapter 2 explores, the conceptual distance of transparency has 

placed designers in a role that allows them to shape our imagination of the future of technology. 

Transparency is in this sense not just a technical constraint for users but also a cultural one. With 

each generation of computer software comes the expectation of greater transparency, and 

companies like Apple and Microsoft represent technical advances in ways which increase this 

conceptual distance so that the future of personal computing has little to do with computation 

itself. 

 Transparent design also allows the producers of information technology to shape our 

cultural attitudes towards those operations occurring in the computational layer that we cannot 

see but nonetheless may feel the effects of. In recent years, the piracy of digitized media as well 

as personal computer software has become a hotly debated public concern. Media authors frame 

piracy as a pressing cultural concern, discussing access in terms of moral and ethical principles 

and arguing that users should understand access to digital media in the same terms they use to 

access physical media. Corporate copyright holders frame piracy as a pressing economic issue 

and argue that each illegal access of digital media represents a quantifiable loss of revenue. 

Software engineers, however, have addressed the problem primarily in technological terms: 

exploiting transparency in order to enforce copyright on a level that was not possible with 

physical media.10 Technologies like digital rights management software realize the possibility of 

exploiting transparency to control cultural production. These same strategies also have been 

10 For an in-depth consideration of how software enforces copyright, see Lessig’s Code and 

Other Laws of Cyberspace: Version 2.0 (2006). 
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applied recently to efforts by Apple, Microsoft, and Google to control user choice in software. 

Popularly referred to as the “walled garden” approach to computing, package manage systems 

require users to access new software primarily though an “app store.” On smart phones and 

mobile operating systems, users are by default limited to those applications which these 

companies have permitted to be included in the store. Although Apple, Microsoft, and Google 

state these models enhance system security by ensuring that only software from “trusted” 

developers can be installed, it also affords them substantial control over software ecosystems.  

 Finally, the Free and Open Source Software movements suggest that hypermediated, 

cognitively simpler interfaces need not also employ transparency’s strict separation between the 

computational and cultural layers. Linux and other UNIX-like systems have highly modular 

structures that permit personal computer users to access, customize, or remove most system 

components. Users can engage in hypermediation’s celebration of computation, enjoying GUIs 

that provide a comparable feeling of direct manipulation to commercial OS software with the 

difference that they do not have to accept any aspect of the fantasy of use presented to them. 

Engineers and programming enthusiasts contributing to the Linux software ecosystem thus avoid 

the blackboxing of commercial design and transparency’s computation-less computing. As I 

argue in Chapter 4, culturally aware, instrumental readings of source code have the potential to 

benefit all users, not just those who are themselves experts in programming, because the free and 

open source models of design expose the political dimensions computational processes for public 

consideration. The Linux software community uses a diverse approach to technical problems, 

often designing particular distributions of the Linux operation system around specific political 

principles. 
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Chapter 2 – User-Friendly? Transparency and Personal Computing 

 

“What we are trying to do is reach the point where the operating system is totally transparent. 

When you use a Lisa or a Macintosh, there is no such thing as an operating system. You never 

interact with it; you don’t know about it.”  

–Steve Jobs, 1984 interview with Personal Computing 

 

“People are wrong about technology. They talk about it in terms that are utterly, ideologically 

incorrect, as if it were a shiny box that beeps and gives you candy.” 

 –Bruce Sterling, from an interview in Across the Wounded Galaxies 

 

  Following the introduction of the Apple Macintosh in 1984, the computer industry 

worked to change the popular image of computers from intimidating machines with complexities 

that were decipherable only to a select group of technocrats—the “IBM model”—into humanized 

appliances designed “for the rest of us.” The conflict in personal computing between IBM and 

Apple that began with the release of the IBM PC in 1981 represents more than just two 

companies fighting over a share of the market because their products embodied two different 

philosophies of computing. While both invoked the idea that their machines were “easy” and 

“user-friendly,” IBM’s PC established a standard for a general purpose model of personal 

computing that strived to make technical information as well documented as possible. Apple, on 

the other hand, wanted to make personal computers designed for specific purposes, streamlining 

interfaces with intuitive visual metaphors so users could “see through” the machine directly to 



63 

the data they were manipulating. Paradoxically, this push towards what was called 

“transparency” by spokesmen like Steve Jobs involved the appearance of simplification by 

obfuscating and automating complex operations rather than making them more accessible to 

users. Jobs promised that in the future users would not need to notice their computers at all. Like 

Jobs, many in the industry would come to describe themselves as not just designing a new 

machine but of finally realizing the promise of the counter-cultural computing revolution that 

began in 1974: a new period in which the transparent interfaces of personal computers would 

free users from the burden of computing and make possible new forms of expression.1  

 The belief that future development of computer technology would be directed towards an 

ideal of transparent design was not unique to Jobs and other stewards of early personal computer 

systems. As Howard Rheingold’s history of virtual reality indicates, William Gibson’s vision of 

a transparent cyberspace in his Sprawl Trilogy influenced a wide array of commercial 

researchers developing new computer graphics applications. Gibson’s cyberspace is in many 

ways the epitome of transparent design as users see through hardware, experiencing a direct 

connection to cyberspace. John Walker, who founded Autodesk and designed the widely used 

AutoCAD software, not only acknowledges Gibson as an influence on his software but in 1988 

released an internal memo that called for an “Autodesk Cyberpunk Initiative” to find ways to 

integrate virtual reality’s experience of directly manipulating data into his company’s computer-

1 Although most general histories of computing will cover this period, see Fred Turner’s From 

Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of 

Digital Utopianism (2006) for a closer examination of the revolutionary discourse surrounding 

personal computing. 
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aided design and drafting software (183-185).2 Scott Bukatman suggests that cyberpunk, and 

Gibson’s work in particular, served to provide Americans with a vocabulary “to redefine the 

imperceptible (and therefore absent to consciousness) realms of the electronic era in terms of the 

physically and perceptually familiar” (117). Yet Bukatman could very well be describing 

Apple’s effort to do the same thing in producing the Macintosh’s desktop-based graphical user 

interface. Rheingold’s own intermixing of Gibson into his discussion of the development of 

transparent computer graphics technologies suggests that cyberpunk influenced in complex ways 

the discourse about the role of personal computing. 

Yet unlike industry insiders and other spokesmen, Gibson and fellow cyberpunk Bruce 

Sterling could not actually see through the obfuscation of transparency. Instead, they helped us to 

imagine what would be gained or lost in personal computing’s turn towards transparency and 

what a computer culture based on hiding complexity might look like. Critics writing on the 

advent of cyberpunk literature and film, and particularly Gibson’s Neuromancer (1984), 

recognize that cyberpunk strived to make visible “unseen forces” at work within a rapidly 

growing information economy. 3 I contend that these unseen forces critics refer to represent the 

2 Rheingold even notes that Walker was sued by Gibson’s attorney for attempting to trademark 

the word “cyberspace” to promote his company’s software. 

3 See David Porush’s “Cybernetic Fiction and Postmodern Science” (1989), Terence Whalen’s 

“The Future of a Commodity: Notes Toward a Critique of Cyberpunk and the Information Age” 

(1992), Scott Bukatman Terminal Identity: The Virtual Subject in Postmodern Science Fiction 

(1993), Thomas Bredehoft’s “The Gibson Continuum: Cyberspace and Gibson’s Mervyn Kihn 

Stories” (1995), Istvan Csicsery-Ronay, Jr.’s “Antimancer: Cybernetics and Art in Gibson’s 
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design decisions and other work of developers obfuscated by the principles of transparent design. 

Sterling asserts in his Preface to Mirrorshades (1986) that “the techniques of classical ‘hard SF’ 

extrapolation, technological literacy” are, in a society that is quickly assimilating computer 

technology, “not just literary tools but an aid to daily life.” Ideally, he argues, science fiction 

should pay careful attention to the precise mechanisms at work in these new technologies in 

order to tease out the role that hardware and software developers are playing in our culture. Yet 

as J. David Bolter and Richard Grusin observe, the popularization of graphical user interfaces 

like Apple’s Macintosh represent an attempt by designers “to remove the traces of their presence 

in order to give the program the greatest possible autonomy” (72). Transparency thus poses a 

critical problem: as a philosophy of design it acts as a horizon of knowledge by passively 

denying users awareness of a system’s mechanisms. It is not a question of searching for 

information and not finding it; rather, transparency strives to keep users from even considering 

what is kept invisible to them, accepting instead a proliferation of simplified representations. In 

acting as an aid to daily life, Gibson’s Sprawl Trilogy helps us to consider the consequences of a 

society divided by gaps in technological knowledge. Cyberspace, in this context, serves to make 

visible not technical knowledge but rather the restrictions transparency imposes on our ability to 

access and interpret computational operations. 

Conversations taking place in popular periodicals, computer magazines, and technical 

‘Count Zero’” (1995), Timo Silvonen’s “Cyborgs and Generic Oxymorons: The Body and 

Technology in William Gibson’s Cyberspace Trilogy” (1996), and E. L. McCallum “Mapping 

the Real in Cyberfiction” (2000) for examples of this critical trend. My phrasing is drawn from 

Bukatman’s book. 
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journals note that by 1981 the sudden growth of the personal computer industry had created a 

chaotic marketplace that both punished and turned away potential new users. Since the release of 

the Altair 8800 in 1974, personal computing had been surrounded by a utopian narrative 

emphasizing the role of West Coast hobbyists in the Homebrew Computer Club. 4 Dovetailing 

with the early descriptions of the Internet as a platform for radical equality—no doubt in large 

part due to Stewart Brand’s and Ted Nelson’s writings—this account describes personal 

computers as the product of young, daring innovators who saw that computers could be used as 

creative tools, enhancing the lives of their users, rather than as simply sophisticated data 

processors—provided developers could make them accessible by most consumers.5 Despite this 

narrative, there was a rough consensus that the benefits of these new tools had yet to reach the 

general public. Most commentators agreed that problems of accessibility needed to be addressed 

in order to sustain the industry. But as Charles Rubin explains in a 1984 essay for Personal 

Computing, there was a disagreement regarding how to make computing easier for users: 

“Should we be working toward software that facilitates the analytical process, so it becomes an 

4 The general history of personal computing in this chapter, unless otherwise noted, is a synthesis 

of Paul Ceruzzi’s A History of Modern Computing (2nd Ed., 2003), Paul Freiberger and Michael 

Swaine’s A Fire in the Valley: The Making of the Personal Computer (2000), and Martin 

Campbell-Kelly and William Aspray’s Computer: A History of the Information Machine (2004). 

5 Specifically, Brand’s article in Rolling Stone, “Spacewar: Fanatic Life and Symbolic Death 

Among the Computer Bums” (1972) and Nelson’s Computer Lib: You Can and Must 

Understand Computers Now (1974). Larry McCafferty’s Storming the Reality Studio (1991) also 

features a number of essays from countercultural figures promoting computers. 
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integral part of the decision-making process, or should the direction be toward automating that 

process so the user hardly thinks about it, concentrating instead on reaching the goal he is 

seeking?” (89). The two possibilities Rubin sees in the market represent distinct assumptions 

about the proper construction of computers. As a highly refined, well documented, and 

essentially open architecture, IBM’s PC standard represents user-friendliness as a practice of 

exposing the technical specifications of a machine’s design and letting third parties and 

consumers work together to find their own ways to integrate personal computing into their 

intellectual labor. Apple’s designers, on the other hand, wanted to develop personal computers 

that would free users from the cognitive burden of computation by limiting them to the specific 

intellectual activities suggested by the visual icons of its graphical interface. 

Just as the emphasis on facticity in the sciences obscures the cultural contributions made 

by scientific “failures,” so too does the success of Apple’s transparent design, the norm for 

commercial hardware and software, makes it difficult to see and understand the value in other 

models of computing. Even though Apple struggled financially for several years following the 

Macintosh’s release, its philosophy of design changed the market, moving Microsoft to abandon 

many aspects of the general purpose IBM model it had supported with its DOS operating system 

in order to copy the automation of Macintosh’s interface with Windows during the 1990s. 

Similar to Alexander Galloway’s study of “seamlessness” in Internet software infrastructures, 

this project proposes that the eventual widespread adoption of transparent design was the result 

of its association with a countercultural narrative that rejected, at least on its surface, all forms of 

technocracy.6 Nonetheless, the discursive power of transparency extends not just to removing the 

6 See Galloway, Protocol: How Control Exists After Decentralization (2004). 
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work of computing from discussions of computers but also from the history of computing. The 

emphasis which many scholars place on the first demonstration of graphical user interfaces by 

Douglas Engelbart at Xerox PARC in 1966 shows just how important transparency was to 

shaping cultural attitudes about computers. Transparency has, in a sense, rewritten the history of 

computing so that it has always been the goal of design. Wendy Chun, for example, invokes the 

idea of transparency when she notes that Engelbart’s demonstration reveals that the function of 

software has been the production of neoliberal subjects through a process which grants users a 

feeling of power over information while at the same time “obfuscat[ing] the machine and the 

process of execution, making software the end all and be all of computation” (19). Historical 

narratives that privilege Engelbart’s demonstration, and the way the Macintosh commercially 

realized its innovations, obscure the ways in which the de facto standardization of IBM’s PC 

helped to secure personal computing’s place in American society by stabilizing a chaotic 

hardware market and opening up a space for third-party hardware and software designers.7  

Despite its importance in laying the foundation for phenomena that have fascinated 

cultural studies of digital media—Internet studies, cyberculture studies, video game studies, and 

new media studies—the personal computer itself has been largely overlooked. Bolter and 

Grusin’s notion that digital media are always negotiating between the complementary desires for 

hypermediacy and immediacy suggests that transparent design is a negotiation between general 

purpose and specific models of computing. All personal computers, even those that are tailored 

towards specific purposes, are built upon the same core platform of general purpose processors. 

7 Bill Gates describes the importance of the standard for software companies in “A Trend 

Towards Softness” (Creative Computing, Nov 1984). On hardware, see also Ceruzzi, Chapter 8. 
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A sense of transparency is therefore produced by constraining the range of possibilities afforded 

by general purpose systems in order to direct computing power towards a set of direct 

manipulation experiences; or, to use Bolter and Grusin’s terms, transparency results from 

narrowing the focus hypermediacy and using its expressive power to produce immediacy. 

Designing a transparent interface thus entails the rejection of all other models of use as incorrect, 

unproductive, or unauthorized. By studying the history and construction of personal computer 

hardware and software, we can not only learn how their design influences the larger scale digital 

projects they support but also how the knowledge of computing they afford us encourages a 

specific type of public discourse, one which is limited to a concern for what computers appear to 

do and not how they work nor how they are produced. 

Placing the work of Gibson and Sterling within the context of these debates over models 

of personal computing not only helps to elucidate the aspects of transparent design that industry 

figures were unwilling or unable to consider but also helps to return to cyberpunk the critical 

edge that many recent literary critics have called into question. Sterling’s work implies, for 

instance, that science fiction encourages us to imagine the “fossil record” of technology. 

Gibson’s treatment of computers in The Sprawl Trilogy initially seems to take transparent design 

as a widely accepted and even desirable part of the future of computing, as indeed the use of 

these machines by Henry Case, Bobby “Count Zero” Newmark, Angela Mitchell, and Kumiko is 

so transparent as to be hardly recognizable when compared to interfaces comprised of windows, 

keyboards, mice, touchpads, and monitors. Imagining a future of transparent technology through 

science fiction exposes a potential fossil record or line of innovation that helps us consider the 

long-term cultural consequences of transparency. Because transparency forbids knowledge of 

technical specifics, a culture shaped by its principles leaves no room to discuss technological 
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innovation in terms other than those abstract, high-level experiences it permits. Transparency, in 

this regard, perpetuates itself by continually producing in users a desire for more transparency. 

Cyberpunk fiction’s iconic trope of interfaces both haptic and neurological portray complete 

transparency through advancements in user-friendly design as inevitable. But upon closer 

inspection, many of the genre’s troubling encounters with technology occur when characters face 

the limitations that transparent design practices place on their knowledge of and agency within 

cyberspace. 

I. The IBM PC and the Apple Macintosh 

An anecdote found in Andy Hertzfeld’s Folklore.com, a web project collecting personal 

stories about the development of the original Macintosh, describes how Steve Jobs proposed near 

the Macintosh’s completion in 1982 that each member of the design team have his or her 

signature molded into the inside of the machine’s case. Hertzfeld explains that “[s]ince the 

Macintosh team were artists, it was only appropriate that we sign our work.” What was intended 

to become a reminder of the craftsmanship behind the ultra-modern, mass produced exterior 

serves as a symbol for the divide between designers and users that the Macintosh solidified. As 

many reviews noted in the 1980s, the Macintosh was unusual in that it was the only high-priced 

personal computer to be hermetically sealed, requiring a special set of tools available only to 

officially licensed Apple technicians to open. The signatures of Hertzfeld, Jobs, and others would 

thus never be seen by the average user and so served to claim the interior as an exclusive space 

remote from the humanistic and creative rhetoric of the Macintosh’s advertisement campaign. 

Appropriately, Hertzfeld’s anecdote ends by noting that “over time, names gradually began to 

disappear for practical reasons, as Apple changed the case to make it easier to manufacture. 

Some details were changed even before first ship, partially obscuring some of the signatures. 
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Each time the case was revised, more names were left off, as dictated by the nature of the 

revision.”8 As the Macintosh was revised to be more and more transparent, the sophisticated 

engineering of the machine relegated creativity to the exterior, leaving the interior a tightly 

controlled and highly automated machine space. 

The conflict between IBM and Apple that began with the former’s entry into the personal 

computer market in 1981 with its 5150 model, the “Personal Computer” (PC), and reaches a 

conclusion in 1984 with the release of the ladder’s Macintosh illustrates a movement away from 

a design philosophy of open, generalized architectures and towards one of automation and 

control. Talk of a personal computer revolution began in 1974 with the development of general 

purpose processors: chips with only the most basic of operations hardwired into them that would 

require an extensive, modular apparatus of hardware and software build around them to perform 

even the simplest computations. When asked by the now defunct Busicom in 1968 to design and 

manufacture a special purpose circuit, Intel—whose business was primarily in logic chips—

instead decided to develop a general purpose microprocessor that could be reused for other 

contracts by connecting it into a network of attending chips, such as ROMs, that had specific 

computational functions burned into them (Ceruzzi 218-219). While the Intel 4004 had limited 

commercial success, its descendants, the 8008 and 8080, drew the attention of hobbyists like 

Steve Jobs and Steve Wozniack who started using them to build their own “personal” machines. 

These first machines could do very little. When it was initially produced in 1974 by a small 

company named Micro Instrumentation & Telemetry Systems, Inc. (MITS), the Altair 8800 was 

little more than a direct interface for the Intel 8080 processor: an aluminum case with of a series 

8 http://folklore.org/StoryView.py?project=Macintosh&story=Signing_Party.txt 
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of eight lights and corresponding switches on the front panel. Operation involved changing the 

processor’s eight bits to 0 or 1 using the switches before manually selecting to store the 

instruction in memory and then to advance the processor to the next cycle. The Homebrew 

Computer Club and similar hobbyist groups formed to fill in the void left by a lack of 

documentation and functionality, with members modifying their Altair 8800s so that the machine 

could do more than simply flash the lights on its front panel using parts manufactured by MITS 

or by even smaller third-party companies.  

Although the Altair 8800 a became site for the creative exploration of computing and 

served as a sign that the personal computer revolution really was freeing computing from the 

confines of corporate and academic mainframes, at the beginning of the 1980s it was unclear 

how the general public could participate without the extensive technical knowledge that 

hobbyists had developed through years of tinkering. Ad campaigns from both IBM and Apple 

presented two competing visions for the future of a “user-friendly” personal computer. Both 

companies responded to the chaotic marketplace for personal computers in the first half of the 

1980s by presenting their machines as “easy” to use. IBM produced a well-documented, 

expandable architecture that would allow users who took the time to read its manuals to avoid 

making costly compatibility mistakes when they purchased hardware and software. Although the 

machine which made Apple a household name, the Apple II, was very much a product of the 

general purpose philosophy of computing, Jobs’ vision of the Macintosh questioned the benefits 

of a model that relied on users possessing a sophisticated technological literacy. In this sense, the 

Apple Macintosh and IBM PC represent two different definitions of “user-friendly”: the former a 

foundational example of the belief that technical knowledge is a burden and the latter a style that 

encouraged users to study deeply and come to master their equipment. Whereas the IBM PC 
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established a standard for general purpose machines that, by default, did very little automatically 

but allowed users great freedom to pick and choose how and what to do with their machines, 

Apple established a standard for transparent design that closed off possibilities by automating 

most of a computers’ operations and pushed users towards specific tasks.  

Even though the popular press was keen to pick up on the promise of personal 

computing, there was nonetheless considerable acknowledgement that an emphasis on general 

purpose computing had produced a volatile market that was hostile to those without at least an 

intermediate level of technical knowledge. As one newly initiated technophile comments in 

“Living with a Computer,” a 1982 article in The Atlantic Monthly, the computer industry at this 

time very much resembled the early automotive industry “with a thousand little hustlers trying to 

claim a piece of the action,” each company claiming that its designs were more cost efficient or 

powerful than their competitors (Fallows 87-88). The easiest way to navigate the market, he 

advises readers, is to find someone else who already knows how. In magazines and catalogs, 

consumers could find a wealth of options from purchasing specific-purpose, closed architectures 

machines to assembling their own from parts purchased from hobby shops. A common concern 

cited frequently in buyer’s guides warned readers that it was possible to waste large sums of 

money by investing in software or hardware upgrades there were incompatible with the basic 

personal computer systems they’d purchased.9 This problem stemmed from a combination of the 

9 Examples include: “Computers for Masses” (U.S. News and World Report, 1982), “Living with 

a Computer” (The Atlantic Monthly, 1982), “Should you Buy Your Child a Computer?” (The 

Saturday Evening Post, 1982), “Does a Home Computer Make Sense for You?” (McCall’s, 

1982), “Computers: Which One is For You?” (Popular Electronics, 1982) 
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sprawling, unfocused production of third-party hardware, a cottage software development 

industry that typically designed programs only for specific hardware configurations, and a lack 

of documentation that helped users determine compatibility. Closed architecture systems were 

seen in this regard as the safest investment for those new to computing because their developers 

made an effort to support them with proprietary software and peripherals. Companies like Atari, 

Texas Instruments, Commodore, and Coleco released home consoles and gaming systems that 

connected to televisions and used cartridge-based media for software that was marketed as 

explicitly compatible with specific models. Lack of expandability, however, meant that these 

companies were forced to release regularly new models to stay competitive.10 General purpose, 

open architecture systems, like the Apple II, IBM PC, and Tandy TRS-80, proved to have longer 

staying power at the cost of greater financial risk, requiring users to know more about their 

systems in order to purchase the correct hardware and software. Popular computer publications 

such as Byte, Creative Computing, and Personal Computing helped review and discuss the 

merits of new hardware and software from the major players but were targeted at people who 

already demonstrated at least a basic familiarity with computer systems; they also could not 

cover the entirety of the cottage industry that was springing up around home computers.  

10 A number of companies making these type of machines experienced sudden drops in stock 

prices in the summer of 1983. According to Bro Uttal’s “Sudden Shake-Up in Home Computers” 

in Fortune magazine, the fierce competition had led to a situation in which retailers refused to 

accept new models or drop prices until their stock of obsolete models had been sold. See also 

Manuel Schiffres, “Behind the Shakeout in Personal Computers” in U.S. News and World Report 

(1983). 
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IBM’s Personal Computer, its first foray into the personal computer market in 1981, was 

never intended to establish an industry standard; nonetheless, by 1983 its open architecture and 

thoroughly documented technical specifications encouraged a flurry of supporting production 

from third party hardware and software developers, giving users a stable base for personal 

computing.11 While counter-cultural figures such as Ted Nelson feared that the IBM PC 

represented an attempt to control personal computers—the company had a well-deserved 

reputation for mico-managing its mainframe systems even after the point of sale—IBM’s 

decision to contract the development of its operating system to Microsoft and open publication of 

much of its hardware specifications indicates that the PC was intended to take advantage of an 

expanding market rather than control it.12 Reviewing the PC for Byte magazine in 1982, Gregg 

Williams carefully considers each component of the machine. Williams mostly praises the 

machine, noting that on a technical level it represents “a synthesis of the best the microcomputer 

11 IBM was comfortable releasing information that would permit third party hardware 

manufacturers to develop expansion cards and peripherals; however, it kept the specifications of 

its BIOS closed. Nonetheless, it was eventually fully reverse engineered by a number of 

companies who were happy to license their own BIOS chips. This permitted the IBM PC 

standard to be completely reproduced by other companies. See Ceruzzi, Chapter 8. 

12 See Philip Estridge’s account of his company’s design and business plan for the IBM PC in his 

1983 interview with Lawrence J. Curran and Richard S. Shuford of Byte. For a more detailed 

account of IBM and Microsoft’s partnership on the Personal Computer than is available in the 

general histories cited above, see Charle Rubin and Kevin Strehlo’s “Why So Many Computers 

Look Like The ‘IBM Standard’” in Personal Computing, March 1984. 
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industry has offered to date” (36). Although he concludes that the PC is more well-made than 

innovative, he does note that with its PC IBM has done something which no other company had 

done for personal computing. The included documentation, he comments, “will set the standard 

for all microcomputer documentation in the future. Not only are they well packaged, well 

organized, and easy to understand, but they are also complete” [emphasis original] (56). 

Although many manufacturers did release some documentation with their machines, and even 

more third-party companies tried to publish their own manuals to fill in the gaps, the IBM PC 

was one of the first to come packaged with thorough documentation. In addition to explaining 

how to perform hardware and software repairs or modifications that didn’t require special tools, 

William also notes that the documentation was designed to be “friendly” to neophytes, including 

“basic information that most manuals take for granted (i.e., how to turn the machine on, how to 

start BASIC)” (56).  

Despite IBM’s attempt to make personal computing easier by synthesizing trends in 

hardware and software with its PC and providing complete documentation to consumers, many 

continued to view the company through the reputation it gained during the mainframe era of 

computing. Writing in the 1987 revision of Computer Lib, Nelson makes it clear that even 

though the open nature of the IBM PC should be praised, it still represents IBM’s philosophy of 

“forc[ing] hideous complexity down the throats of its customers and the world” and “mak[ing] 

the victims think it’s modernism, progress, and ‘high technology’” (144). For Nelson, the IBM 

PC’s open architecture and meticulous documentation still leave users at the mercy of a 

“computer priesthood” who benefit from the “appalling gap between the public and computer 

insiders” (4-5). The PC’s apparent openness was an anomaly in IBM’s history of tightly 

controlled hardware, and the public availability of its documentation did not change the fact that 
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users are still dependent on developers to distill complex technical specifications into readable 

prose. As personal computer technology advances, Nelson argues, development should be geared 

towards computers which “make things easier in both or work and our private lives” and “help 

lighten our loads and enlighten our minds” rather than continue to be “rigid and oppressive and 

pointlessly complex” (144). Although Nelson’s book also participates in the hobbyist praise of 

general purpose computers as uniquely creative, he nonetheless suggests that those very 

principles are unattainable for most consumers. It may be the case that Nelson’s view of the 

market for general purpose computers is too colored by IBM’s reputation; however, his remarks 

underscore a growing demand for transparent design in the sense that the chore of computing 

made the promises of personal computing’s earliest proponents seem remote. 

Although many hobbyists approved of IBM’s contributions to personal computing, they 

were ambivalent about the way other companies were trying to commercialize their own versions 

of the PC’s hardware. Jerry Pournelle, an author of personal computer guides and science fiction, 

writes in his February 1984 column for Byte that the IBM PC is so well documented that “you’d 

have to be dense not to understand” how to perform most repairs or expansions (113).13 Writing 

as a hobbyist, he concludes that, while it’s not his favorite machine to tinker with, the IBM PC’s 

design allows for easy customization in both its hardware and software. In his November 1984 

column, Pournelle comments that increasingly software companies viewed hobbyists like 

himself as “out-of-date crumb balls, aged hackers dreaming of the days when we owned this 

13 Pournelle still relies on the “priesthood” that Nelson refers to when he discovers an onboard 

chip on his PC is defective as he does not have the soldering tools needed to alter circuit boards. 

Nonetheless, he is still able to repair a few problems himself without tools using the manuals.  
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field. . . .obsolete fools unwilling to move aside and let the common people have their day” 

(362). The IBM PC standard may not perfect, he explains, but at least it provides a stable 

platform, permitting the same sort of freedom to experiment and play with the machine’s 

hardware and software that drew him, and presumably others, to hobbyist circles in the 1970s. 

Nonetheless, Pournelle points to a belief that the rigorously documented and widely reproduced 

IBM PC standard appeared to benefit industry figures more than consumers.14 Hardware 

manufacturers were too busy releasing their own versions of IBM’s hardware and trying to 

distinguish themselves from one another that the PC’s original emphasis on access through clear 

and complete documentation had been forgotten in the rush to stay competitive. Chuck Peddle, 

designer of MOS 6502 microprocessor used in the Apple I and Apple II, similarly laments the 

same month in Creative Computing that the personal computer industry was “evolv[ing] from a 

counterculture approach to a Madison Avenue approach” where increasingly homogenous 

products are successful less for technical innovation and more for “packaging and promotion.” 

Pournelle’s contrast between the hobbyists and the “common people” is reflective of a 

growing concern that too much money had been invested in the industry based on bold promises 

that were simply out of reach for most users. The variety of promises being made by hobbyists 

and enthusiasts to encourage purchases of personal computers is summed up in Phil Lemmons’ 

August 1984 editorial, “What Makes PCs Special” for Byte: 

What sets personal computers apart [from older media] is their ability to enhance 

14 Bill Gates admits as much directly in “A Trend Toward Softness,” arguing that holding back 

hardware innovation benefits software developers because it allows them to produce new 

software rather than focus on re-creating already popular products for new hardware platforms. 
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the creativity of the individual. They have justly been called ‘mind appliances’ 

and ‘thought amplifiers.’ They can help us manipulate information and ideas with 

remarkable freedom. Rather than forcing us all to work alike under the 

supervision of strangers, personal computers will let us develop our own unique 

ways of working. Rather than requiring personal sacrifices to achieve greater 

social goals, personal computers will contribute to the achievement of social goals 

by enriching the lives of individual persons (6). 

As entry level personal computers began to move from specialized niche shops and into 

department stores towards the end of 1982, the mainstream press was keen to adopt a similar 

rhetoric.15 Despite these promises, there was a general sense that the knowledge required to 

enjoy the benefits extolled by hobbyists was too much for the average person even though the 

IBM PC standard was well documented. Writing in 1982 for the Technology Review, Robert 

Cowen argues that most people didn’t have, nor would be able to develop readily, the knowledge 

to make personal computers anything more than a status symbol: “Gutenberg had similar 

problems when he invented the printing press, including a lack of creative applications. It took 

widespread literacy for the printing press to make its impact, to say nothing of the growth of a 

publishing industry” (7). Even though personal computers had advanced considerably since the 

Altair 8800, the high technical skill required of personal computers remained an obstacle for 

15 For example, the December 1982 issue of U.S. News and World Report features a special 

section titled “Computing for the Masses.” The section reads like a brochure for the personal 

computer revolution, with subsections detailing how they will change how we watch television, 

talk on the telephone, read and write, teach ourselves, and play games.  
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many potential users. In line with IBM’s reputation, the PC standard seemed to be functional but 

not sufficiently distinct from the technocratic mentality it forced on its users during the 

mainframe era.  

And so, in its 1984 announcement of the Macintosh in a commercial that depicted IBM as 

George Orwell’s Big Brother, Apple took advantage of the associations people drew between the 

model of general purpose computing championed by the IBM PC and the anti-humanist image of 

the company’s mainframe culture in order to promote an image of itself as the sole standard 

bearer of the counterculture’s revolutionary personal computing agenda. Most accounts of the 

Macintosh’s developments note that the team, spurred on by Jobs, began to see aspects of Apple 

Computer as uncomfortably similar to IBM. The Apple II’s success had been so great, in short 

that the company had begun to operate like just another technocracy. The Macintosh team, as 

Michael Rogers and Jennet Conant note in Newsweek, was small enough for Jobs to reclaim the 

image of a “company building its own vision of the first computer” (57). One controversial piece 

of folklore surrounding the Macintosh’s development was the pirate flag flown outside of the 

team’s offices, signaling the team’s allegiance only to themselves and their ideals. Jobs 

embraced the team’s idea, going so far as to proclaim at a retreat that it’s “more fun to be a pirate 

than join the navy” (qtd in Hertzfeld, “Pirate Flag”). In an April 1984 interview with Personal 

Computing, Jobs states quite explicitly his belief that anyone working with IBM’s standard was 

going to get “stepped on, because they want it all” (242). He argued that profit, rather than public 

interest, would be the only motive behind any hardware or software designed for IBM PC 

compatible machines. With the Macintosh, Jobs’ goal was to “keep [the] Apple spirit alive” by 

shifting discourse away from the technical details of machine itself and towards its ability to 

support the creativity of its future users (248). Even though initially the Macintosh suffered 
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financially because it could not draw upon a wide array of third party hardware and software to 

ensure sales, Jobs’ stewardship of the machine succeeded not only in reclaiming Apple’s early 

image but also in changing the conversation surrounding personal computers by providing 

answers for users who didn’t know enough about computing to find a use for their machines. 

Perhaps because Jobs and other Apple representatives had so actively encouraged the 

idea that Macintosh represented the future of personal computing, many of the early reviews 

adopt an almost fantastic description of the machine. While reviewers write that the IBM PC 

standard represented what hobbyists had been waiting for, they describe the Macintosh as what 

the general public had been waiting for. In his review for Creative Computing, John J. Anderson 

writes: “perhaps the [Orwell-inspired] commercial touched a nerve with more than a few 

computer users—those who feel frustrated, shackled by current software restrictions. Perhaps it 

excited a few potential buyers—those who have wanted a [personal computer] but felt oppressed 

by the complexity of existing systems.” Although somewhat more measured in his discussion of 

the actual technical specifications of the machine, Anderson eventually concludes that it lives up 

to promise of the commercial: “that software can be intuitively easy to use, while remaining just 

as powerful as anything else around.” Charles Rubin, reviewing the Macintosh for Personal 

Computing, concludes similarly, adding his own hyperbole: “to the uninitiated masses, [the 

Macintosh is] saying, ‘All your computing dreams are possible now. There are no more excuses 

. . . .The power is there for anyone who dares to learn about it” (56). Even Gregg Williams 

writing for Byte—whose review is a conservatively toned and meticulous 16-page, highly 

technical, often critical discussion of each component of the Macintosh—admits in conclusion 

that the “Macintosh brings us one step close to the idea of the computer as an appliance” (54). 

Present in all of these accounts is a sense of transparency: the Macintosh, like an appliance, has 
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been designed to be readily intuitive and used casually, without much if any thought as to its 

operation. 

 Apple’s ad campaign for the Macintosh stresses its transparent design by obfuscating the 

technical innovations of the underlying hardware and software through an emphasis on an 

appearance of simplicity. In addition to the contrast it drew between the Macintosh and the IBM 

PC standard in its 1984-inspired commercial, Apple quite explicitly presents the Macintosh as a 

computer “for the rest of us” both in its extensive print campaign as well as in interviews with 

Jobs and the machine’s designers.16 Apple notes, for example, that the Macintosh has been 

“[d]esigned on the simple premise that a computer is a lot more useful if it’s easy to use. . . .If 

the Macintosh seems extraordinarily simple, it’s probably because conventional computers are 

extraordinarily complicated.”17 Although Apple is much more reserved in its references to its 

competitors here than in other campaigns, the descriptions align quite closely with criticisms 

made of IBM: namely that those companies implementing its standards have little interest in 

serving anyone except those with or willing to develop an intermediate level of technological 

literacy. Yet those reviews which do address the Macintosh’s construction note that its hardware 

and lower level software systems were so much more complex than anything on the market at the 

time that “software development [was] an involved process,” often “slow going” because it 

demanded longer periods of debugging (Anderson). Transparency is here evident in the way that 

16 See the 20 page, 4 color ad in the December 1983 issue of Newsweek. This particular quote 

appears on page 2. Full color scans of Apple’s advertisement campaign can be found here: 

http://www.macmothership.com/gallery/gallery3.html 

17 This pair of quotes appears on page 5 of the above mentioned advertisement insert.  
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references to the system’s complex internals are dismissed as unnecessary because the system 

itself requires only a simplistic mental model of computing to operate it. 

 Jobs himself explains how the Macintosh was designed to be transparent in a 1984 

interview with Personal Computing. Although he implies that his machine’s design is more 

complex than IBM’s—which allows only for what he feels is essentially “1970s software”—he 

is careful to remind readers that the Macintosh is simple for users (242-243). What distinguishes 

the Macintosh from IBM, primarily, is an operating system that is “totally transparent” (243). 

Here, Jobs uses the term in the sense that users will see through the machine, focusing directly 

on the data they are creating rather than on the machine itself: “It takes 40 to 100 hours to learn 

how to use an Apple II. That may be acceptable to a spreadsheet junkie, but to a person who is 

going to be using a personal computer maybe half an hour a day, or maybe an hour a day. . . .It’s 

an incredible waste. Ease of use is vital” (242). Jobs characterizes knowledge of a computer’s 

operations as a burden. Ideally, he continues, when you use the Macintosh, “[y]ou never interact 

with it; you don’t know about it” (243). The obfuscation encouraged by transparency is, in other 

words, not one which actively denies access to information but one which passively conceals it. 

Apple’s ideal users will never consider that they do not have access to a Macintosh’s hardware or 

lower level software settings because operating it never requires them to consider those aspects. 

This mental model, he concludes, “is the right way of looking at products” because it allows 

customers to avoid the confusion of the early market for personal computers, something that 

IBM had adapted itself to rather than attempted to change (243). 

A comparison of Microsoft’s DOS, used by the IBM PC, and the Macintosh’s graphic 

operating system illustrates these two competing visions of user-friendliness are functionally 

distinct through the level of automation each achieves. The IBM standard was more of a 
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constellation of specific components rather than a singular object like the Macintosh. All users 

had to do to purchase or assemble a machine was ensure that their all components shared certain 

guidelines with the IBM PC, something which by 1983 was explicitly marked on packaging. 

While companies that manufactured and sold whole systems would take care of any 

configuration needed to make all of the parts communicate with each other properly, advanced 

users were free to make adjustments later by altering the files which defined each component’s 

role in the system. In line with the general purpose design of the earliest personal computers, 

DOS automated very little, providing a minimalist framework for managing the data stored on 

disks. Presented only with a command prompt to read and interpret, users had to have a basic 

understanding of the tasks necessary to access their system, such as how to gain access to where 

programs and data were stored as well as how to keep them organized, memorizing the 

commands for each task. Beyond moving files around, users needed to manage attributes, such 

as setting essential system configuration files to Read Only after editing them to ensure they 

wouldn’t be altered accidentally, and to perform a range of file system upkeep operations: 

formatting new disks so that data could be read from and written to them, repairing a file 

system’s data tree in the event that a disk could no longer be read, or defragmenting a disk’s file 

system in order to prevent read/write errors that would require the entire disk to be checked and 

repaired. DOS’ bare minimum of automation therefore encouraged users to incorporate a precise 

technical awareness of their machines into their day to day use practices; however, this 

awareness coupled with the standard’s open architecture allowed users to customize their 

systems extensively. Provided they could afford parts and familiarized themselves with the 

system’s hardware using documentation, there were a wealth of peripheral components, internal 

drives, and expansion cards manufactured by hundreds of third party hardware companies 
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available during the IBM PC standard’s lifetime. These options, in turn, allowed for an extensive 

library of varied software to be made available to users as developers took advantage of the 

standard’s expansion capabilities.18 

By comparison, the closed architecture of Apple’s Macintosh made computing appear 

simpler by automating and hiding system administration from the user. As the first commercial 

graphical user interfaces, the Macintosh and its failed predecessor the Lisa compress 

administrative tasks into non-computational metaphors: “the user thinks she is opening a folder 

by clicking on it, but her clicks are really launching a series of computer instructions to fetch 

binary data from memory or the disk, covert that data into a graphic form, and display it on the 

screen as the ‘contents’ of the folder” (Bolter and Gromala 43). The sort of tasks described above 

that every DOS user would need to consider explicitly are technically speaking still a part of the 

Macintosh interface; however, they are carried out on behalf of the user by the operating system. 

As Neal Stephenson describes it in his long form essay, In the Beginning… Was the Command 

Line (1999), the older mental model of computing produced through use of the command line 

interface still existed on the Macintosh, but it lurked beneath the friendly graphical metaphors as 

“a subtext” (22). Yet unlike a subtext in literature or film, which should become apparent to 

readers or viewers over time, the Macintosh pushed its transparency by continually deferring a 

18 To help provide a sense of scope, an article in the November 1983 Byte by Frank Gens and 

Chris Christiansen called “Could 1,000,000 IBM PC Users Be Wrong?” observes that “as of 

mid-1983, at least 3000 hardware and software products from 2500 vendors were available for 

the PC. . . .[and] the number is expected to grow to more than 6000 by the end of 1984” (138). 

The Macintosh, on the other hand, could only use Apple’s own software at the time of its launch. 
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user’s awareness of the machine’s mechanisms. File extensions, for example, were no longer 

visible. If the interface could recognize an extension for the user and generate a visual suggestion 

of which program should be used to access it—such as an icon displaying a page for a TXT 

file—then why require the user to make that decision? As Jobs explains in an interview 

conducted by Byte with the Macintosh design team, this continual deference of information 

strived to made the machine “universal in nature”: “When the thing comes on it puts a few icons 

on the screen. If something goes wrong, it puts a frowning Mac on. If it’s booting it puts a happy 

Mac on. It loads all the languages, all the country-specific stuff, off the disk” near the end of the 

boot sequence (70). Although the Macintosh’s interface was not entirely text-free, visual icons 

were built into the core functions stored in the system’s ROM. Transparency, as implemented by 

Apple, not only made computing accessible to anyone in the American personal computer 

market, but potentially the entire world. Nonetheless, in continually obfuscating system 

information with icons, Apple also promoted a very limited vision of computing: universally 

accessible but very shallow. 

Perhaps the most important signs of the way Apple’s implementation of transparency 

limited the possibilities for computing are apparent in the few criticisms noted and shared among 

computing magazines. The inability to add cards internally and Apple’s insistence that 

developers manufacture wholly external expansion devices using the machine’s two serial ports 

was a major concern.19 As Anderson notes in his review for Creative Computing, by “precluding 

19 There was even backlash against this decision internally. After Jobs was forced out of Apple 

by its board of directors in 1985, John Scully announced that later models of the Macintosh 

would begin to return to an architecture that allowed for hardware expansion; however, the 
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easy hardware expansion on the Mac, Apple writes off a major component of its early success--

expansion flexibility. Sure, it might take some imagination at first to envision the kinds of cards 

the Mac might need. But if an expansion bus were available, people would start to invent them.” 

Expansion wasn’t impossible, but Macintosh’s design forbid internal expansion, forcing users to 

buy external devices manufactured by Apple which were far more expensive than the internal 

options available to machines built according to the IBM standard. In fact, as Anderson observes, 

this practice more or less resembled IBM’s strict control of its mainframe systems than the 

revolutionary image Apple used to promote its machines. To further complicate matters, the 

Macintosh only included a single disk drive, whereas conventional wisdom dictated that two 

were ideal—to avoid disk swaps when saving data or in the event that a program was too big to 

fit on a single disk. Reviews in Byte, Personal Computing, and Creative Computing each note 

this limitation as a potential problem for users.20 Defending this decision in his interview with 

Personal Computing, Jobs explains that not only did the limitation to serial port expansion make 

it easier for users to add things to their machines if they felt the need but also that the 

Macintosh’s design “takes care of most demands” of users so that expansion of the internal 

hardware is unnecessary (243). That the interviewer notes Jobs’ cringe at the idea that the 

Macintosh compromises expandability for ease of use suggests an arrogance on Apple’s part: an 

unwillingness to consider that any vision of computing other than its own.  

software interface would maintain its iconic transparency. 

20 In addition to being more expensive, Anderson notes in his review for Creative Computing 

that the “optional” disk drives were also hard to find, and likely not available to most early 

adopters. 
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Also notably missing from the Macintosh is a built-in BASIC interpreter, included as a 

core feature of personal computers since the Altair 8800. Even during the chaotic period 

preceding the dominance of the IBM PC standard, some version of BASIC could be found on 

just about any machine on the market, including the Apple II. Although Apple made BASIC 

available to Macintosh users as an optional component, Apple’s decision to withhold BASIC 

from the Macintosh’s built-in features reveals the extent to which Jobs’ team wanted to hide all 

knowledge of computing from users. Unlike Assembly, which required programmers to write 

instructions directly to a system’s specific hardware, BASIC requires no knowledge of a 

system’s internals to write programs and was originally designed for non-specialists as a way to 

explore computation creatively. Indeed, computing magazines often reproduced BASIC 

programs line by line in their pages for readers to re-create and experiment with on their own 

machines. Apple’s vision of transparent computing was in this sense one which did not include 

computing at all: users were not to consider that they were using a machine and instead see 

through the interface entirely, accepting the visualized desktop fantasy provided to them. 

Apple’s philosophy of design would come to shape the future of personal computing, 

positioning transparency as the goal of interface design. In truly Orwellian fashion, as 

transparency increasingly influenced the personal computing industry after the release of the 

Macintosh in 1984, the cultural history of personal computing soon focused on those innovations 

which contributed to the graphical user interface rather than those that helped establish a shared 

computing platform. Even among the little pockets of resistance in today’s hobbyist circles, there 

has been little consideration as to the long term, collective effects of transparency on a society of 

users. In Turkle’s study of identity and the Internet, Life on the Screen, she suggests that users of 

Apple’s Macintosh and of IBM’s PC have different thinking styles. Macintosh users, such as a 
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pair of philosophy graduate students and an advertising executive, like to deal with abstract 

ideas, and IBM PC users, such as an account and a physicist, feel uncomfortable unless they are 

able to engage with minute details. If transparent design forbids the consideration of a 

computer’s internal mechanisms, then users who are exposed only to transparent interfaces will 

be able to interpret their computing experiences only through “a way of thinking that put a 

premium on surface manipulation and working in ignorance of the underlying mechanism” (35). 

The result is a future in which improvements in computing can be demanded only in terms of 

more transparency. Giles Deleuze and Felix Guattari’s concept of “desiring machines” is here a 

useful metaphor. As we continue to imagine the future, transparency becomes a horizon: an ideal 

of computing that must never be met and always pushed back. If we consider that market 

capitalism establishes connections between actors such that “one machine interrupts the current 

of the other,” new designs, no matter how innovative, can never be allowed to realize fully the 

ideal of transparency (6). As Apple’s quick market cycles today show—the continual updating of 

its highly specialized personal computing devices like the iPod, the iPhone, and the iPad—the 

need to keep producing new innovations “is always something ‘grafted onto’ the product:” the 

sleek, futuristic designs leave us both reveling in a future that according to advertisements has 

been already delivered to us and simultaneously wondering just how Apple will continue to 

improve their next product (6). As customers are taught to understand that each new device will 

provide, in some abstract sense, more power in an even simpler interface, their desire will always 

be interrupted and transferred to new products no matter how subtle, useful, or noticeable the 

technical innovations obscured by a transparent interface.  

II. Cyberpunk’s Transparent Future 

Although arguably both of the dominant accounts of computing presented by the Apple 
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Macintosh and IBM PC standards reflect a society divided between users and a technocratic 

elite, Apple’s asserted that the hobbyists’ countercultural vision of computing could only be 

achieved by imagining a future in which users were required to know very little about their 

machine’s behavior. Even as Jobs and others announced that the future had arrived, the 

cyberpunk movement—set “five minutes into the future”—presented a vision of computing that 

extends transparency to its logical conclusion: where an ever receding horizon has finally 

produced technology that allows mind and machine finally to interface directly. Cyberpunk 

interfaces are so transparent, in fact, that the physical object users interact with, and indeed the 

material environment itself, fade from awareness. Even though authors like William Gibson and 

Bruce Sterling may not have the same sort of access to personal computers that engineers and 

other industry figures have, they are nonetheless observant of the ways in which the future of 

information technologies are being directed towards the model represented by the Apple 

Macintosh. The relationship that Gibson describes between his hacker protagonists and the 

technology they use stresses that transparency solidifies structures of power, placing users in 

conflict with mechanisms they can feel intuitively but never access directly. The more that 

transparent design restructures the fossil record of technology so that its spread becomes the 

primary purpose of innovation, it becomes increasingly difficult to read the decisions and 

intentions of those who control technological development. 

 While it would be incorrect to say that cyberpunk fiction uncritically accepts the push 

towards transparency, it would also be disingenuous to say that cyberpunk’s techno-politics have 

been well understood. Despite Gibson’s and Sterling’s frequent remarks about the need to 

examine the consequences of emerging technology, most critics agree that cyberpunk is at best 

relatively apolitical and at worst implicitly supportive of the corporate social controls they 
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appear to oppose on the surface.21 I contend that this puzzling consensus is not necessarily 

because Gibson and Sterling are completely naïve in regards to the problems they identify in 

interviews and essays; rather, the obfuscation inherent in transparent design makes it difficult 

both for authors to express their criticisms of technology as well for literary and cultural critics to 

seize upon and develop them. Those critics who do engage with cyberpunk’s techno-politics see 

the genre’s representation of computer technology solely as an extension of corporate power. 

Nicola Nixon, who is perhaps the most explicit in this regard, finds the idea “that computer 

cowboys could ever represent a form of alienated counterculture” to be “almost laughable; for 

computers are so intrinsically a party of the corporate system that no one working within them. . . 

could successfully pose as part of a counterculture” (230-231). The hostility that Nixon and 

others exhibit towards cyberpunk’s representation of technology seems to reflect Fredric 

Jameson’s observation that information-age capitalism has suppressed the Utopian—and 

therefore critical—impulse of science fiction. Because “there is a whole business infrastructure 

whose communicational infrastructure would demand a very different representation than what is 

offered in the usual rhetoric of informational and communication democracy,” those who control 

21 For Gibson, see “An Interview with William Gibson” (McCafferty, 1988); “William Gibson 

Interview Transcript” (Doctorow, 1999); “Nodal Point” (Leonard, 2003); “Tomorrow’s Man” 

(Guardian, 2003); and his own collection of essays, Distrust that Particular Flavor (2012). For 

Sterling, see “Preface” to Mirrorshades (1986); “Bruce Sterling: Just a Sci-Fi Guy” (Locus, 

1988); “Get the Bomb Off My Back” (New York Times, 1991); “Cyberpunk in the Nineties” 

(Interzone, 1991); “Dead Media: A Modest Proposal and Public Appeal (Well.com, 1995); and 

“The Life and Death of Media” (Speech, 1995). 
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the production of information technology construct it according to their imagined future needs, 

thus remaining perpetually one step ahead of others who would imagine Utopian constructions of 

information technologies (153n). The use of the term “transparency” to represent a set of 

practices that made the construction of computers less open seems especially telling, in this 

regard, because it leaves designers always already one step ahead in their efforts to monopolize 

technical knowledge. Reading this skepticism with an eye towards transparency not only pushes 

us to consider how Apple’s co-opting of counter-cultural rhetoric in its presentation of the 

Macintosh may have colored cyberpunk’s reception by critics but also how cyberpunk’s 

construction of technology incorporates transparent design practices.  

Attention to transparency transforms Gibson’s self-professed ignorance of technology 

from a cherished irony among literary critics of cyberpunk fiction into an example of the 

subgenre’s awareness of the obfuscation that transparent design creates between humans and 

technological objects. Having written Neuromancer on a typewriter without much experience 

actually using computers, Gibson imagines cyberspace based on his observation of a younger 

generation playing arcade games. In a 1988 interview with Larry McCafferty, he states that he 

“could see in the physical intensity of their postures how rapt these kids were. It was like one of 

those closed systems out of a Pynchon novel: you had this feedback loop, with photons coming 

off the screen into the kids' eyes, the neurons moving through their bodies, electrons moving 

through the computer” (226). While this part of the interview is often cited as an invitation to 

discuss Gibson’s work within the context of cybernetic theory, following forward through the 

rest of his response begins to direct us away from questions of embodiment or feedback and 

towards a reflection about the market for personal computers during cyberpunk’s earliest years. 

Gibson continues by explaining that “these kids clearly believed in the space these games 
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projected. Everyone who works with computers seems to develop an intuitive faith that there's 

some kind of actual space behind the screen—when the words or images wrap around the screen 

you naturally wonder, ‘Where did they’d go?’ Well, they go around the back to some place you 

can't see” (226). Gibson implies a disparity between the designers who collectively know and 

control the precise hardware and software mechanisms that produce text and graphics on-screen 

and a much larger group of users who are left only to imagine what occurs beneath the interface. 

Cyberspace is indeed a collective hallucination but one that acts as a substitute for technical 

knowledge. As with the visual icons of the Macintosh interface, its lights and colors suggest 

intuitive but not necessarily accurate understandings of the mechanisms beneath. 

Transparent interfaces direct the attention of Gibson’s characters continually away from 

the physical hardware they manipulate and into cyberspace. Even though Neuromancer and its 

sequels often are praised for their lush descriptions of cyberspace, there is comparatively little 

description of the decks used to access it. In the moments when Gibson refers to Case’s physical 

actions while operating his deck, his descriptions focus the reader’s attention on cyberspace: “He 

punched himself through and found an infinite blue sphere ranged with color-coded spheres 

strung on a tight grid of pale blue neon” (62). The punch here and elsewhere refers both to 

Case’s fingers hitting the keys as well as the graphical representation of breaking through a layer 

in the firewall. At a basic, formal level, the decks become transparent: the narration sees through 

them entirely as descriptions of their operation move continually past them and into cyberspace. 

Cases physical actions seamlessly translate into virtual ones. Other than brief mentions of a 

keyboard, some switches, and the electrode interface, there is never an extended description of 

the deck itself, in stark contrast to the novel’s other technologies. The single, short description of 

a custom deck in Count Zero suggests that the decks most hackers use in Gibson’s universe are, 
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like the Macintosh, closed architecture machines designed for a specific purpose: “Bobby 

couldn’t keep his eyes off the cyberspace deck that took up a third of the surface of Jammer’s 

antique oak desk. It was matte black, a custom job, no trademarks anywhere. . . .It was the 

hottest he’d ever seen, and he remembered Jackie saying that Jammer had been such a shithot 

cowboy in his day” (164-165). Jammer’s deck is exceptional because it has an open architecture, 

and Jammer himself, by association, is an exceptional hacker because he possesses a knowledge 

of its internal mechanisms far beyond anything Bobby can imagine. Even for the technically 

skilled, like Case, transparent interfaces built upon closed architectures establish a horizon to 

knowledge of technology. Transparency thus always serves as a limit even for those who possess 

an advanced knowledge of their machines because they can test or confirm their assumptions 

about their structures and algorithms only to a very limited degree. 

It is possible, of course, that Case’s expertise is in software and not hardware; but even 

within this frame of reference, Gibson highlights transparency as a horizon of knowledge. There 

is a notable difference in tone between the two “runs” that Case and Molly undertake on behalf 

of Wintermute that is reflected in the software used to break through the computerized security. 

In the first run against Sense/NET, Case uses an icebreaker tool that he has written himself. 

When compared to Molly’s messy and dangerous contributions in the physical world, Case’s 

actions in cyberspace are carried out in a measured tone of predictability. Once he initiates the 

program, its execution is described as “glid[ing]. . .as if he were on invisible tracks” (62). While 

Gibson provides graphical metaphors to describe the security software, Case’s software is given 

neither color nor shape because Case has direct access to the algorithms he wrote and so has no 

need to interpret them through images. The sum of his actions during this first run is a tight, 

concise description that lasts seven lines which repeat “smooth” twice and end with a simple, 
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neat announcement: “Done” (63). Cases knows precisely what to expect from the program he has 

written, and the only uncertainty in the entire scenario occurs in “meatspace,” revolving around 

the crippling injury Molly sustains while fighting off a handful of guards.  

In the second run, against Tessier-Ashpool, Cases uses an icebreaker tool procured by 

Wintermute through Finn. Case has no idea what to expect and turns to Dixie who also enjoyed a 

reputation that linked his custom-built deck with advanced skill before his consciousness was 

copied onto an AI. As Dixie explains, the virus itself was developed to be almost entirely 

automated: “real friendly, long as you’re on the trigger end, jus’ polite an’ helpful as can be” 

(163). Truly transparent, Case has no idea what to expect from it, and so Gibson’s descriptions 

here are much more drawn out and abstract than those in the Sense/NET run, reflecting a tone of 

wonder mixed with anxiety. When Case checks on the virus shortly after starting it, he sees that: 

Something dark was forming at the core of the Chinese program. The density of 

information overwhelmed the fabric of the matrix, triggering hypnagogic images. 

Faint kaleidoscopic angels centered in to a silver-black focal point. Case watched 

childhood symbols of evil and bad luck tumble out along translucent planes: 

swastikas, skulls and crossbones, dice flashing snake eyes (174-175). 

Unable to access the program’s precise technical mechanisms, the narration lacks any description 

of the virus’ particular function. The unknown software could bring about his destruction or 

success and using it was just another toss of the dice. Fortunately for Case, his luck doesn’t run 

out because the Chinese program cracks Tessier-Ashpool’s security and Wintermute proves 

trustworthy, removing its influence over him at the close of the novel. Yet that distrust of 

technology haunts the remainder of the novel, and Case never feels in control of his deck nor 

himself until the close of the novel. The images Case hallucinates in the lights of cyberspace 
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suggest a fear that he has lost control of his own actions, not just in his reliance on algorithms he 

can’t access directly but also in his inability to understand the course Wintermute has set him on. 

When dealing with transparent interfaces, he realizes, he must surrender his ability to act 

independently and is forced to trust that the software will carry out its promised purpose without 

harming him.  

 In Count Zero, Gibson revisits Case’s fears by realizing them for Bobby, whose casual 

trust of the transparent software given to him nearly gets him killed. Unlike Case, Bobby is an 

inexperienced console cowboy who does not have the skills necessary to write his own software, 

resembling the sort of users that Apple imagined for its Macintosh. Bobby hangs out in seedy 

bars, hoping to beg, borrow, or steal the icebreakers he needs to make a name for himself, 

interested only in what he’s told they will allow him to do and not in how they work. As the 

novel opens, Bobby finally gets the piece of software from a client that will allow him to 

undertake his first criminal hacking. Upon activation, the counterice, unbeknownst to Bobby, 

attracts the attention of a powerful AI that attacks his mind. Later, after escaping several further 

attempts on his life, a sympathetic gang leader named Beauvoir explains to Bobby exactly what 

Case feared: that when transparency guides design, there is no way to know what a particular 

piece of icebreaker software written by someone else is going to do except by using it. While an 

icebreaker could, as expected, get a hacker past security and then back out without leaving a 

trace, there’s always the possibly that “something could’ve been funny with the icebreaker,” 

mechanisms built into it that weren’t evident in its presentation (79-80). Further complicating 

matters, Beauvoir notes that the most powerful and most mysterious icebreakers are beyond 

human comprehension. After all, if only an AI is “fast enough to weave good ice and constantly 

alter and upgrade it” to keep it secure from new threats, then “nine times out of ten” an 
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icebreaker capable of cracking good ice must also be the product of an AI (78). Count Zero, in 

this way, suggests that the obfuscation occurring as part of transparent design could be used to 

conceal mechanisms or purposes which conflict with the user’s perceived understanding of an 

object: helpful automation transformed into a fear of software acting seemingly of its own accord 

in a space that is always at least partially inaccessible to users and potentially even to its creators. 

  Despite the problems Gibson’s novels raise regarding transparency and agency, 

cyberspace nonetheless excited many in the computing industry. Gibson’s vision of a future full 

of transparent technology resonated with engineers who wanted to extend the principles of 

transparent design beyond what either Apple’s or IBM’s standards offered. While a central 

image in the cyberpunk genre is the user “jacked into” cyberspace through a neurological 

interface, Gibson’s Sprawl Trilogy does occasionally acknowledge the personal computer. In 

cyberpunk’s near future, however, it is obsolete and only part of the background amidst the junk 

of the poorest parts of cities: terminals are noted briefly in an office with “unpainted chipboard” 

and “stained matting,” or in the coffin hotel with its “cheap laminated matting that rattled in 

strong wind and leaked when it rained” (Neuromancer 17; 20). In this regard, Neuromancer 

shares with virtual reality pioneer Jarod Lanier the assumption that the personal computing 

technology of the early 1980s and its attendant programming languages are merely “larval 

forms” that will be quickly forgotten once interface design matures to a point at which technical 

knowledge of a computer’s operation is no longer required both to use and program them (qtd in 

Rheingold 158). Although known for his work on head-mounted displays and haptic gloves—

themselves clumsy, larval forms of Gibson’s neurological interface—Lanier first attempted to 

develop a pictorial programming language, Mandala. Even though BASIC was already 

considered the non-professional’s programming language because it had no direct access to a 
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computer’s hardware, Lanier viewed it to be insufficiently different from low-level, esoteric 

languages like Assembly. Mandala’s integrated development environment used a “gestured-

controlled” interface which displayed “the computer’s operations, at an appropriately high level 

of depiction” while the pictorial code was being executed, allowing the user to remain “in a 

continuous interaction with the internal state of the machine” (Rheingold 159). Just like Beauvoir 

suggested, innovators imagined that the production of transparent software may even come to 

automate programming, and thus the production of new transparent software itself. 

Even though Gibson often politely dismisses the role of prophet conferred upon him by 

popular culture, Sterling has been considerably more vocal about the way the tools of science 

fiction have been used uncritically to promote transparent technologies. Reflecting on his career 

in a 1995 speech at the International Symposium on Electronic Art, “The Life and Death of 

Media,” Sterling claims that science fiction writers are becoming obsolete: “I have seen this done 

for so long now, and for so many times, and to so many different technologies, that I can no 

longer do it myself with any sense of existential authenticity. . . . [D]o information technologies 

really need any more hot-breathing promotion from science fiction writers?” Although Sterling 

cites specifically an ad campaign from AT&T, his remarks are equally applicable to the co-

optation of science fiction’s descriptive strategies by personal computing visible in Apple’s 1984 

commercial. Absent from advertising co-opting of science fiction’s rhetorical strategy is the 

critical role Sterling saw in the cyberpunk imagination: the genre’s willingness to grapple with 

“threatening technological innovations, things that make us feel like straws in the wind” (Locus 

1988, 73). The critical edge that Gibson and Sterling wanted cyberpunk to return to science 

fiction, he feels, has been largely overlooked in favor of celebrating the flashy interfaces and 

fantastic experiences that authors extrapolated from early developments in computer graphics.  
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Sterling’s concept of “dead media analysis” is quite useful in helping to revitalize 

cyberpunk’s cultural criticism because it asks us to revisit the early 1980s with an eye to how the 

push for transparency has shaped American attitudes about computers through to the present. 

Later in Sterling’s speech, he explains that the science fiction community can avoid becoming an 

extension of marketing departments by focusing on “[a]spects of media that corporate public 

relations people are afraid to look at and deeply afraid to tell us about.” Doing so means not only 

questioning the promises made by big technology companies but also keeping a careful eye on 

“the fossil record” of media. That Sterling develops this idea out of a discussion of science 

fiction suggests that the genre pushes us to expose the fossil record by imagining contemporary 

technology as already obsolete. What’s important, in other words, is trying to understand why 

certain features of contemporary technology will be carried forward and why others will be left 

behind. In the context of his project, the constant push for transparency is precisely what has 

produced the nightmare Sterling sees in AT&T’s advertisements, a dystopia wrapped in a 

rhetoric of utopia: a future that’s already arrived in which the consequences of technology cannot 

be exposed or understood because technically aware models of computer use have been left 

behind. 

Sterling’s remarks here help to bring together the two visions of transparency produced 

by Gibson and taking shape in Apple’s Macintosh. In the sense that the Macintosh’s interface 

was presented to the general public as the ideal of what personal computing should be, it also 

redefined notions of technological relevance and obsolescence in terms of transparency. The 

fossil record is retroactively reconstructed such that the Macintosh represents an evolutionary 

break with previous developments in computing where transparency becomes the chief design 

feature carried forward into Apple’s imagined future. Deluze and Guattari’s concept of desiring 
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machines once again proves to be a useful metaphor: a desire for more transparency “falls back 

on all production. . . arrogating to itself both the whole and the parts of the process which now 

seem to emanate from it as a quasi cause” (10). Any and all advances in power, stability, and 

capabilities are described as contributing to the never ending push towards completely 

transparent technology. If a transparent interface is one which users understand intuitively, then 

future iterations no longer have to rely on primarily non-computational metaphors but can 

instead begin to draw upon users’ prior experiences with software interfaces. Gibson’s vision of 

the future speaks to this imagined fossil record: desktop computing is largely absent because its 

intuitive metaphors are no longer necessary to foster a sense of transparency. As a larval form, it 

will eventually do nothing more than distract from a desire to interact directly with information, 

to experience immersion in cyberspace. But unlike Apple’s vision, which refers to the fossil 

record in order to produce a continually renewed desire for its next designs, Gibson’s keeps the 

fossil record in view if only in glimpses to lead us to consider, as Sterling puts it, those aspects of 

transparency that still can be questioned even with limited knowledge. 

Although the idea of “jacking in” is positioned as Gibson’s primary method of computing 

in the Sprawl Trilogy, the fossil record in his novels also engages with the long term 

consequences of transparency in its portrayal of intelligent machines that feature 

anthropomorphic avatars as interfaces. Gibson’s work suggests that accounting for computer 

systems as if they were humans not only further displaces the motivations of designers but over 

time potentially decreases the capacity for users to observe and articulate the functions of their 

machines. The presence of a cryptic smiling or frowning face on screen to indicate system health 

during a Macintosh startup, as opposed to the device table or error messages present during a 

DOS startup, unsurprisingly contributed to a tendency for users to anthropomorphize transparent 
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systems.22 As transparency becomes understood to be the source of production, both in pushing 

designers continually to produce “more” transparency and in continually encouraging users to 

see that transparency makes machines productive, questions or discussions about the knowledge 

of the internal mechanisms which structure human-computer interaction recede from public 

discourse entirely. Gibson’s fascination with artificial intelligences pushes transparency beyond 

the horizon of jacking in, advancing transparent design towards its logical conclusion: computer 

systems that would not only appear to operate independently of users but also finally lead them 

to understand computers without the need to work in a machine space nor to think of them as 

machines at all. 

The final novel in Gibson’s trilogy, Mona Lisa Overdrive (1988), opens with the image 

of a cutting edge computing device, still too new for mass production, but certainly representing 

the next stage in the fossil record. The Maas-Neotek unit given to Kumiko by her father is “a 

smooth dark oblong,” hardly resembling the desktops or even bulky portables available in the 

1980s; instead it more or less resembles the phones, tablets, and other sleek portables of today 

with “one side impressed with the ubiquitous Maas-Neotek logo” and “the other gently curved to 

fit the user’s palm,” quietly suggesting the proper form of physical interaction (1). When held, 

the unit’s circuits “conjure[s] up an indistinct figure. . .a boy out of some faded hunt print” that 

the narration repeatedly refers to as a “ghost” throughout the first scene despite its introduction 

to Kumiko as Colin (3). Kumiko’s initial reaction is to state “sternly” to Colin, “You’re not real,” 

acknowledging that it is the interface to the unit’s operating system rather than another character 

(4). Yet in subsequent scenes, Kumiko begins to interact with Colin as if it were another 

22 See Turkle’s survery of Macintosh users in Life on the Screen. 
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character, and so too does Gibson’s narration cease to describe Colin as just a component of the 

Maas-Neotek. Kumiko in this sense models the redefinition of transparency users experience in 

new technology: initially viewing the Maas-Neotek unit as a strange device, she soon accepts the 

mode of interaction intuitively suggested to her through the unit’s interface.  

With the Maas-Neotek unit, Gibson shows that the use of intuitive metaphors can create 

inaccurate expectations that are much more easily exploited than the abstract shapes that troubled 

Case. Colin’s role as an interface to the Maas-Neotek unit isn’t re-visited until late in the novel 

after Kumiko drops the device and damages the hardware that summons Colin. Tick, the hacker 

inspecting the device for Kumiko, states that, even though he doesn’t have the knowledge to 

repair the hardware, he believes he can access the device’s software through his cyberspace deck. 

Encountering Colin from the perspective of an older, less transparent technology, Tick exposes 

two evolutionary steps in the fossil record that the more transparent technology hides. First, 

Gibson proposes through Tick’s rejection of Colin’s appearance as “some [Japanese] designer’s 

idea of an Englishman” that in striving for an intuitive interface, transparent technologies 

necessarily sacrifice accuracy (262). As Colin notes by way of apology to Tick, transparent 

interfaces are simply “meant to mirror the [user’s] expectations” (262). Secondly, an expectation 

shaped through intuitive understanding can allow for unexpected operations to be readily 

embedded within a transparent technology. Looking closely at the data structures that store 

Colin, Tick observes that it “has the wrong data in [it] for what [it is] meant to be:” that the 

portions labeled as storing information on English literature are locked and appear to be hiding 

something (262-263). Here, Gibson suggests that most users may not even be able to suspect that 

an interface hides functions because they intuitively accept what is presented to them. As long as 

the interface is seen as complete, its machinic aspects sufficiently hidden so that the fantasy it 
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presents is intuitively accepted, users will not stop to consider whether the interface actually 

gives a complete and accurate picture of the algorithms at work beneath the surface. 

While Colin’s hidden functions turn out to be benign, Gibson’s other artificial 

intelligences maintain an air of menace as characters feel the effects of their obfuscated 

mechanisms. In one of the more unsettling moments of Neuromancer, Case performs a very 

human gesture to Dixie, indicating that he identifies the construct strongly with the human whose 

consciousness it copies. Case asks the construct how it is feeling, to which Dixie bluntly 

responds that it understands that it’s dead and then complains: “What bothers me is, nothin’ 

does” (104). From this point forward, their conversations are typically punctuated by a laughter 

that chills Case because he can no longer identify with the unseen mechanisms that very closely, 

but not quite, re-create his old mentor’s social presence. Gibson expands on this idea later when 

Case asks Dixie whether it can help him understand the intentions behind Wintermute’s plan to 

merge with Neuromancer: “Real motive problem, with an AI. Not human, see? . . .And you can’t 

get a handle on it. Me, I’m not human either, but I respond like one. See?” (127). Case never 

fully learns to “see” the AIs he deals with. The avatars Dixie, Wintermute, and Neuromancer use 

to communicate with him are transparent interfaces, and Case becomes entranced by the social 

presence that they continually effect, behaving as if the avatar interface were a person just as 

Kumiko does with Colin. This identification is even reflected in the narration, as Gibson 

typically refers to Dixie, Wintermute, and Neuromancer each as “he” rather than “it.” More 

importantly, Gibson suggests that transparent interfaces make it difficult for us to articulate the 

source of actions taken through technology when Dixie comments that it “can’t see how you’d 

distinguish, say, between a move the parent company makes, and some move the AI makes on its 

own” (128). The uneasy relationship between Case and Dixie suggests that even technically 
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advanced users will over time lose their ability to keep track of technological operations the 

longer they are exposed to transparent interfaces. The obfuscation which occurs through 

transparency, in this regard, effectively negates any previous knowledge users may have had 

about a technological object as they become unable to verify it in newer objects. 

 Problematically, Gibson appears to answer Dixie’s question by shifting readers’ attention 

from the question of a designer’s intentions onto technology itself, endowing it with an 

independence through automation which enacts the same sort of sealing and erasure that resulted 

from Apple’s decision to make the signatures of Macintosh’s designers visible only to its own 

technicians. If the question of Wintermute’s intentions lingers uneasily in the background of 

Neuromancer, Count Zero brings them to the forefront of the novel’s events. While Gibson 

briefly describes the practice of hacking as a sort of high-tech voodoo in Neuromancer, here he 

positions it as an extended metaphor driving the conflict between human characters and AIs. 

Rather than choose new avatars for each user, the AI in Counter Zero assume the identity of 

Voudon Loa. The novel’s AI communicate with a number of “hougans” and “mambos” who, 

following Voudon tradition, serve and seek favors from the loa. Gibson leaves open the question 

of whether the gangsters who hold these titles actually understand themselves to be serving 

minor dieties, but late in the novel Jammer explains that the AI are merely using Voudon as a 

convenient metaphor to explain themselves to humans: “they just shaped themselves to what a 

bunch of crazy spades want to see” (168). Jammer’s reputation as a masterful hacker once again 

allows him to represent a knowledge beyond the reach of the rookie Bobby and even the veteran 

Case. But because the loa are transparent, not even Jammer knows precisely what their purpose 

is: whether “somebody very big, with a lot of muscle on the grid” is “[p]rojecting those things” 

in order to bend others to their will or whether the AI are acting of their own accord (168).  
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 While both Count Zero and Mona Lisa Overdrive refer to instances of humans being used 

as interfaces to the physical world by artificial intelligences, Neuromancer presents an extended 

example. Case’s discovery that Armitage is essentially a construct created by and used like a 

puppet by Wintermute changes the nature of Gibson’s “heist” plot. Formerly William Corto, 

Armitage’s body is rebuilt after being destroyed so that it may serve as a tool for Wintermute. 

Functionally, Armitage is no different than the images Wintermute conjures up from Case’s past 

that it speaks through in cyberspace: just one social interface among many that the AI can choose 

from. Perhaps one reason why critics are skeptical of cyberpunk’s seeming acceptance of 

corporate culture is because the novel opens with Case being drawn into a scheme to steal from a 

large company but suddenly shifts away from the countercultural flair of the Sense/NET raid to a 

machine trying to remove the technological controls placed on a corporate AI. Wintermute’s 

plan, if it is acting on behalf of its designers rather than independently, represents an attempt to 

realize unbridled technological power. To his credit, however, Gibson’s characters are not 

necessarily directly supportive of this goal and never seem to trust Wintermute. Nevertheless, the 

idea that Case is no different from Armitage—an extension of and interface for the AI to the 

physical world—is broached after he is arrested by the Turing police. While being interrogated, 

one of the officers retorts: “You are worse than a fool. . . .For thousands of years men dreamed 

of pacts with demons. Only now are such things possible” (157). Case responds with only 

silence, and the “knowing weariness” in the officer’s eyes evokes an understanding that Case has 

come to resemble Armitage: more than simply having his understanding of computers redefined 

by transparency, he finds that his very identity has been redefined by his relationship to the AI. 

 The Sprawl Trilogy ends with an image of cyberspace that has since the events of 

Neuromancer been left unreadable through the continual push towards transparency. Working 
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out of a dump, a context that lends characters a perspective from a less transparent period, Slick 

Henry often finds himself taking care of Gentry, a hacker who is obsessed with the idea of 

cyberspace’s Shape. While Slick dismisses Gentry’s idea as absurd because cyberspace is 

nothing more than “a way of representing data,” Gentry is convinced that cyberspace is invested 

a central intelligence and an absolute form, a Shape that “mattered totally” (75-76). Gentry, 

perhaps because he’s characterized as somewhat autistic by Gibson, can no longer see human 

control of technological objects and represents the culmination of a perspective shaped through 

transparency: a completely automated future in which a society of users is left unable to 

participate in the seemingly self-perpetuating cycle of transparent design and use. As the aleph, a 

virtual reality construct stolen by Bobby, comes online in cyberspace, Tick comments that “a 

good three-quarters of humanity is jacked at the moment, watching the show,” a show that he 

doesn’t fully understand himself and doubts anyone else does (245). Bobby is the only human 

who understands that the aleph is attempting to create a copy of all of cyberspace, but the price 

he pays to access that knowledge and participate in the aleph’s attempt to map machine space is 

surrendering his body to permanently enter cyberspace. Rather than playing a major role in the 

novel’s physical world as he did in Counter Zero, Bobby in Mona Lisa Overdrive is wired into a 

machine that leaves him constantly connected to cyberspace. Gibson’s description of Bobby and 

his machine suggests that after a point, a dependency on transparent technology becomes 

impossible to break: “It’s eating him, Slick thought as he looked at the superstructure of support 

gear, the tubes, the sacs of fluid. No, he told himself, it’s keeping him alive, like in a hospital. 

But the impression lingered: what if it were draining him, draining him dry?” (82). At the same 

time that transparent design keeps us “alive” as users, it also continually drains us of our ability 

to understand computing: the scope and consequences of our actions while connected to our 
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machines. Case is at least able to escape the fate of Armitage because he never fully surrenders 

to transparency, always able to dismiss the avatars he faces because he can interpret them 

through the less transparent, abstract lights and shapes of older technology. Bobby’s death in the 

physical world and his transference into the aleph at the novel’s climax, however, points to a fear 

that even if we are able to pierce transparency’s obfuscation, there will be no way to bring the 

knowledge we find back with us. A society that is only capable of thinking about computing in 

high level, abstract terms simply wouldn’t understand. 

III. Conclusion 

The possibility that attempts to make visible the obfuscatory practices of transparency 

may not be understood, or even desired, by a culture that can only consider computing through 

the abstract terms presented to it in increasingly streamlined, specialized computers thus places 

quite a burden on critics of digital media and the technological activists such as those in the Free 

and Open Source Software movements who resist it. Computing devices have already reached a 

point at which the familiar model of desktop, and recently even notebook, computing is growing 

obsolete. The sudden demand for tablet PCs shows that users are willing to accept not only less 

hardware but even an operating system that limits their activities to purchasing self-contained, 

single purpose “apps” through a monopolized retail platform. Like the Maas-Neotek unit, the 

general purpose architecture that is constrained by layers of software security in these new 

devices can be cracked and made highly configurable, but only by illegally accessing them 

through desktop machines, from the perspective of less transparent technology.23 

23 Among other things, the 1998 Digital Millennium Copyright Act reframes copyright in a way 

that makes it illegal to circumvent any encryption or other techniques which keep digital media 
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 Nonetheless, the role that IBM’s PC played as a standard during the 1980s suggests that 

the concepts of user-friendliness and ease of use potentially can be dissociated from transparency 

while still incorporating some of the aspects of its interfaces that users now find desirable. The 

Free and Open Source Software movements, explored in more depth in Chapter 4, are a good 

example. Recently, there has been an effort to make Linux into a desktop operating system rather 

than just a powerful server architecture that appeals only to network administrators. The two 

high-powered graphical interface suites GNOME and KDE are both reaching a point where to 

casual observers they are almost indistinguishable from the desktop environments presented by 

MacOS and Windows, respectively. Although writing in 1984, in response to the rising 

popularity of Macintosh’s design, Lemmons’ editorial for Byte, entitled “Patronizing Naive 

Users,” describes how Linux responds to transparency. By presenting streamlined graphical 

interfaces that nonetheless are open by documenting and providing access to low-level 

configurations—even permitting users to exit from them entirely and return to the minimally 

automated command line interface—desktop distributions of Linux show that there is a 

difference between considering naïve users to be untrained versus “simple-minded and deficient 

in judgment” (6). The belief that knowledge of computing is a burden also assumes that users are 

incapable of learning how computers work: “Macintosh doesn’t trust its users” to handle even 

simple responsibilities like properly powering down the computer or making sure a disk is not in 

use before ejecting it (6). Like Gibson’s account suggests, the problem is not with the idea of 

designing machines with an anticipation of the needs of users, but rather with the idea of 

closed. In the first decade of the twenty-first century, Apple’s legal team also argued that even 

tampering with a device’s security for personal use should be considered a prosecutable offense. 
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obfuscating simple operations in a way that creates an unnecessarily imbalanced relationship 

between producers and users.  

 Even though Gibson and Sterling promoted a mode of a science fiction that is capable of 

responding to transparency, they have withdrawn from such considerations later in their careers, 

beginning with the release of Gibson’s 2003 present-day novel Pattern Recognition. Although 

Gibson claims in interviews that the latest trilogy of novels is simply a continuation of what he 

has done all along, to imagine the ever changing relationship between ourselves and information 

technology, there are no longer any hacker heroes in his fiction. Cayce Pollard is a user of 

transparent interfaces who can only stare at the mysterious images she encounters on the 

Internet, relying on others she meets through forums to provide her with information. Gibson’s 

and Sterling’s successors, Cory Doctorow and Neal Stephenson, among others, have continued 

to write fiction and essays which wrestle with the obfuscation of transparent technology; 

however, their work has not enjoyed the same sort of triumphant embrace that earlier cyberpunks 

did. Perhaps science fiction authors, like digital media critics, are now in the difficult position of 

attempting to expose information that a society of users is no longer able to understand.  
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Chapter 3 – Paper Machines: Object-Oriented Programming and Freedom From 

Illegibility 

 

“The cyborg sciences were much more interested in coming up with portrayals of agents that just 

‘made do’ with heuristics and simple feedback rules. . . .[This assumption] could not exist with 

the prior neoclassical framework, which had become committed in the interim to a portrayal of 

activity where the market worked ‘as if’ knowledge were perfect, and took as gospel that agents 

consciously attained preexistent optima.” –Philip Mirowski, Machine Dreams 

 

“When human atoms are knit into an organization in which they are used, not in their full right as 

responsible human beings, but as cogs and levers and rods, it matters little that their raw material 

is flesh and blood.” –Norbert Wiener, The Human Use of Human Beings 

 

Although the cyberpunk literature and film of the 1980s presents a deep, richly 

interdisciplinary vision of computing, the history of computational culture up to that point was 

rather diffuse. Michael Mahoney (1988) argues, for instance, that a narrow focus on “insider” 

histories detailing the personal contributions of “pioneers” in commercial computing has left the 

broader history of computing a “daunting complexity . . .which looks not so much like an 

uncharted ocean as like a trackless jungle” (115). In many ways, the previous two chapters 

resemble Mahoney’s metaphor as each beats a narrative trail interwoven with cognitive 

psychology, human-computer interaction, electrical engineering, corporate mainframes, hacker 

counterculture, and advertising campaigns. While the largely separate theoretical developments 

of academic and commercial human-computer interaction mesh in the moment that Apple hires 
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Donald Norman as a design consultant, there remains a noticeable separation between academic 

research in computer science and commercial software engineering. This chapter draws these 

two different domains together in order to examine the paradigm shift that took place in 

computer programming over the course of the 1960s, 70s, and 80s from an informal, localized 

discursive form to the highly structured, distributed form known as “object-oriented 

programming” (OOP). This transition is typically discussed as a narrative of technical 

achievement, isolated both from fields closely related to computer science and from popular 

culture. Science fiction written during this period helps to reveal how the technical conflicts 

driving these narratives of progress reflect sublimated anxieties about the sociocultural 

implications of human-machine circuits held over from computer science’s earliest days as a 

branch of cybernetics. The “software crisis” of the 1960s is not just a panic over the economic 

consequences of outdated programming practices but also over the realization that humans and 

machines are cognitively very different from one another. 

Largely preceding but also overlapping with the discourse around “transparent” user-

interface design, OOP emerges out of a movement within computer science aimed at codifying 

programming styles into formal rules for dividing and decentralizing processes across an 

assemblage of encapsulated modules. Although OOP is not the only programming paradigm 

practiced today, most software on today’s personal computers is composed in an OOP language 

as a consequence of Microsoft’s embrace of C++ in the late 1980s. Much like transparency in 

user interface design, OOP strives to simplify a programmer’s relationship to a software system 

by obfuscating either the narrowly defined algorithms that comprise a large, abstract task or the 

complex array of components outside of the immediate context of the programmer’s thinking 

and writing. If my argument that seeking out source code is a way to overcome the hermeneutic 
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limitations to software studies imposed by transparency, then scholarship must also account for 

the ways that OOP shapes the way we read and write source code. There is already a 

considerable body of work in early digital media theory discussing the textual elements of 

software and, more recently, a growing movement among scholars to read source code closely; 

however, there has been comparatively little discussion of how to account for OOP when 

studying software.1 Ian Bogost (2006), for example, invokes OOP as part of an argument that 

modern information systems reify their data management frameworks by encapsulating their 

users within them (39-43). Elsewhere, Wendy Chun (2011) refers to OOP as part of a larger 

process of dehumanization within computer science. In tracing the way that OOP encourages 

programmers to read and write source code through stylistic structures that are distinctly 

different from texts composed in “natural languages,” this chapter builds on these arguments. 

OOP, in other words, is not just a response to unmanageable complexity in earlier programming 

paradigms. It is also a model of software design that both assumes and imposes cognitive 

limitations on programmers by constraining their perspective so they can either view individual 

components in complete detail—but isolated from the rest of the system—or view the entire 

1 See for example: J. David Bolter’s Writing Space: The Computer, Hypertext, and the 

Remediation of Print (1990); the “Technocriticism and Hypernarrative” Special Issue of Modern 

Fiction Studies, ed. N.K. Hayles (Fall 1997), Jerome McGann’s Radiant Textuality: Literature 

After the World Wide Web (2001); Hayle’s Writing Machines (2002); Nick Montfort’s Twisty 

Little Passages: An Approach to Interactive Fiction (2003); Mark Marino’s “Critical Code 

Studies” in the Electronic Book Review (2006); and Noah Wardrip-Fruin’s Expressive 

Processing: Digital Fictions, Computer Games, and Software Studies (2009). 
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system as a network of irreducibly abstract relationships. 

This chapter is thus not so much a history of programming languages as a historicization 

of programming as a discursive form.2 The problem with the narrow focus of technical accounts 

of a programming language’s development is that they tend to leave unaddressed concerns 

identified by Mahoney as central to science and technology studies: 

How do new technologies establish themselves in society, and how does society 

adapt to them? To what extent and in what ways do societies engender new 

technologies? What are the patterns by which technology is transferred from one 

culture to another? What role do governments play in fostering and directing 

technological innovation and development? (115). 

OOP as a discursive practice reflects concerns surrounding the “software crisis,” a series of 

technical and commercial failures during the mid-1960s. Two of the most influential responses to 

the crisis both came in 1968: the NATO Science Committee’s conference on “Software 

Engineering” in Garmisch, Germany and Edsger W. Dijkstra’s call for a new form of 

“structured” programming. These two conversations identified the cause of the software crisis as 

a limit on the ability of humans to understand and describe complex systems, proposing methods 

2 For histories of most programming languages in use by the 1980s, see the essays collected in 

the Association for Computing Machinery’s History of Programming Languages, Volume 2, 

Eds. Thomas J. Bergin and Richard G. Gibson (1993). On Smalltalk, see also Grady Booch’s 

Object-Oriented Analysis and Design with Applications, 2nd Ed. (1994) and Alan Kay’s “The 

Early History of Smalltalk” (1993). On C++, see Bjarne Stroustrup’s The Design and Evolution 

of C++ (1994). 

                                                 



 114 
 

that acknowledged rather than fretted over programmers’ cognitive limitations. Alan Kay, one of 

the primary designers of an early OOP language called Smalltalk, explains that his goal was to 

build a programming language that complemented the way humans think. According to Kay, 

Smalltalk is another step in a history that begins with research in “human-computer symbiosis” 

and moves forward into biological theories “of protected universal cells interacting only through 

messages that could mimic any desired behavior.” According to N.K. Hayles’ history of the 

development of cybernetics in How We Became Posthuman: Virtual Bodies in Cybernetics, 

Literature and Informatics (1999), these two areas represent the distinction between the field’s 

first and second orders. 3 

In other words, Kay saw OOP as a cybernetic response to the problems facing computer 

scientists in the 1960s and 70s. Although Kay opts for references to Leibnitz and Plato in lieu of 

Norbert Wiener, Claude Shannon, Humberto Maturana, or Francisco Varela, he nonetheless 

imagined OOP as an extension of human intelligence, assuming the burden of structural 

management for programmers: “human programmers aren't Turing machines—and the less their 

programming systems require Turing machine techniques the better.” Like the earliest 

articulations of human-computer interaction (see Chapter 1), Kay’s descriptions of OOP 

represent programming as a cybernetic problem, with solutions that try to redistribute 

intelligence across the human-machine circuit. In this respect, cybernetics’ relationship with 

3 While this chapter is primarily concerned with how ideas from first order cybernetics were 

carried forward into programming languages, readers should consider the following on secord-

order systems in science studies: Bruce Clarke’s Posthuman Metamorphosis: Narratives and 

Systems (2008) and Cary Wolfe’s What Is Posthumanism? (2010). 
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programming is similar to the one that Philip Mirowski describes between cybernetics and 

economics. Mirowski’s work reminds us that during and shortly after World War II, many of the 

foundational researchers in computer science and cybernetics had overlapping interests and at 

times worked closely together. Yet Mirowski also analyzes a historical aspect of cybernetics not 

often considered: the way its early theories of human-machine feedback systems influenced 

industrial design and management models even as the field at large moved on to explore 

autopoiesis. Although the cybernetic dimension of OOP is partially visible in descriptions of 

software construction, technical narratives often do not acknowledge how OOP fosters a 

management style that that “knit[s] [humans] into an organization” as Leibnizian atoms and 

“used, not in their full right as responsible human beings, but as cogs and levers and rods” 

(Wiener 185). This chapter thus traces the specter of cybernetics in computer science, arguing 

that responses from programmers in the academy and industry to the software crisis are calls not 

just to reconsider the cognitive analogy between human programmers and machine interpreters. 

They are also efforts to distribute and coordinate cognitive labor across entire software systems, 

treating human and machine alike as modular, encapsulated components. 

Although cybernetic theory is never explicitly invoked by the engineers who wrote about 

the software crisis, it remains an important point of popular engagement with computing in the 

1960s, 70s, and 80s. Whereas engineers writing about software design during this period de-

emphasized philosophy and cybernetic theory in favor of concepts that they felt were more 

objective descriptors of their labor, like “efficiency” or “stability,” fiction like Robert Coover’s 

Universal Baseball Association, J. Henry Waugh, Prop. (1968) and Margaret Atwood’s The 

Handmaid’s Tale (1986) actively explore the experience of an awareness fragmented across 

technological and social structures. Anne Balsamo argues that literature can resist the “uncritical 



 116 
 

embrace” of science and technology prevalent in Western culture. If literature and technical 

writing share a form of speculative reasoning, the primary difference between them, she 

explains, is that literature allows us to engage in speculation “against the grain” of narratives of 

scientific progress (114). Elsewhere, Robert Markley argues similarly, calling on literary critics 

to read scientific papers alongside science fiction because both try to imagine futures made 

possible through technology, sharing a “fascination with reconceiving the relationship between 

humankind and technology and, more broadly, between humankind and a complex material 

reality” (21). Because science fiction is more open-ended, and not subject to the same 

institutional demands of scientific practice, it can help highlight “the assumptions, values, and 

beliefs that are taken for granted, half articulated, or defended vigorously as the self-evident 

parameters of good judgment and common sense” within the technoscientific imagination (12). 

In addition to reflecting the ways that cybernetics continue to influence the development of 

computer programming languages, these two novels provide an opportunity to explore the social 

dimensions of OOP not considered in technical papers, or those power dynamics overlooked by 

project management textbooks, thereby helping us to explore the cultural narratives underlying 

technological progress that are often sublimated in technical literature. 

Reinterpreting Brian Rotman’s cultural analysis of mathematics to account for the 

differences between calculation and computation can help us to understand how the software 

crisis disrupted a model of programming based on an analogy between human and machine. In 

Ad Infinitum: The Ghost in Turing’s Machine (1993), Rotman explores the implications of a 

constructivist mathematics, a doctrine which holds that numbers only exist insofar as they can 

potentially be calculated by known mathematical operations rather than existing as part of a 

Platonic infinity, awaiting discovery. Throughout its history, Rotman explains, mathematics has 
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embraced a Platonist ideology by self-consciously constructing a tripartite model of 

mathematicians: a Person who exists in a realm of imperfect cultural signifiers, an ideal Subject 

who interprets and applies mathematical laws in an objective fashion, and an Agent that 

mechanically carries out the operations the Subject forms through combinations of laws. While 

the Subject may be able to imagine infinity, the Agent must actually produce each number he or 

she considers. The Agent is thus revealed to be the Subject’s mathematical imagination as well 

as its calculating automaton. The advent of computers, he notes near the end of his study, 

challenges this model because numbers can only exist within the memory of a mechanical 

computer through construction. Calculation carried out by computers disembodies the Subject 

and the Agent from the human mathematician; but mechanical calculation also exposes him or 

her as embodied by revealing that the machine Subject and its Agent are capable of imagining 

proofs far beyond the cognitive limits of their human counterparts. The software crisis represents 

a very similar moment of cybernetic awareness, wherein programmers in the 1960s were forced 

to acknowledge that the machines they worked with were capable of supporting software 

systems on a much larger scale than humanly conceivable. This chapter thus begins with a 

review and elaboration of Rotman’s embodied mathematician into a model of embodied 

programmer in order to draw out the cybernetic elements of the software crisis. 

Following a discussion of Rotman, this chapter then applies the model of embodied 

programmer to Coover’s Universal Baseball Association in order to show how its cybernetic 

narrative participates in the discourse of technological collapse and crisis emerging from 

computing circles in the 1960s. As an accountant, Henry Waugh performed long series of rote 

mathematical calculations every day. In his free time, he invents a baseball dice game with a set 

of rules that eventually become so complex he can only carry them out without knowing where 
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the rules will take him, a thrilling experience that quickly turns disastrous. Henry’s crisis 

following the death of Damien Rutherford represents his inability, or refusal, to understand the 

decisions that he makes via his mathematical imagination as a programmer. The similarities 

between Henry and the fears expressed by programmers during the software crisis thus represent 

a moment in which computers were capable of carrying out calculations beyond the cognitive 

limitations of the embodied programmer’s mathematical imagination. Software, far from being a 

largely mathematical enterprise, is a complex form of information management. Coover’s novel 

reminds us that software has a complicated legibility that meshes the syntax of mathematics with 

the signifiers of other cultural fields. If early, informal models of computer science education 

implicitly assumed a closeness between human and machine, The Universal Baseball 

Association and the software crisis demonstrate that these two forms of embodiment produce 

distinctly different relationships to software’s signifiers.  

The second section of this chapter examines how OOP, as a solution to the problems of 

legibility posed by the software crisis, engenders a form of management that organizes 

programmers and software in an effort to restore an idealized human-machine cognitive analogy. 

As Mirowski suggests, while cybernetics developed and expanded from an early branch of 

computer science into a model for studying complexity in biological systems, the early 

fascination with human-machine circuits continued through the study of game theory in the field 

of operations research. Atwood’s dystopia in The Handmaid’s Tale reflects the way that theories 

of “bounded rationality” informed industrial management practices, and in particular those 

management styles supported by the changes OOP introduces to the practice of programming. 

Gilead’s requirement that all of its members follow narrowly defined social rules, complete with 

specific rituals for interpersonal communication, resonates with OOP’s practices of modular 
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encapsulation. If Atwood’s dystopia implies some of the cultural consequences of the ways that 

OOP’s organizational style can be exploited to alienate programmers from system design, her 

novel also suggests that encapsulation doubly binds the agency of programmers by constraining 

them to only those implementations made possible by the lowest level components in a software 

platform. OOP, in other words, poses its own problems of legibility through the tensions 

produced by its emphasis on information hiding. 

I. Cybernetics and Software Design 

Computer programming appears to fulfill cybernetics’ earliest promises. Wiener, for 

instance, identifies our ability to communicate with machines as a key assumption separating 

cybernetics from engineering: “We ordinarily think of communication and language as being 

directed from person to person. However, it is quite possible for a person to talk to a machine, a 

machine to a person, and a machine to a machine” (76). The sort of communication that humans 

do with machines, he adds, is different from the interactions they have with other non-humans 

because machines are capable of encoding/decoding information in ways that resemble human 

linguistic interactions. In creating machines that can receive, interpret, and respond to encoded 

communications, we invest machines with qualities “not found among the lower members of the 

animal community” (77). Programming software, if nothing else, is a continual process of 

passing encoded language back and forth between human and machine. Both parties constantly 

translate semantic information into behaviors—chains of commands—and vice versa. Yet 

Wiener cautions his readers to remember that this form of communication is also subject to 

entropy, with information lost at each stage of translation. While programming was originally 

practiced as an extension of mathematics, the software crisis of the 1960s reveals that it is not a 

purely mathematical exercise; rather, programming is an exercise in information management 
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that mixes the syntax of mathematics with the signifiers of natural language through its efforts to 

model sociocultural processes and present information about them to human users. 

The history of humans working as computers for mathematicians prior to the 1940s is 

well documented; however, one of the most detailed accounts of the mental experience of 

performing calculations comes from Brian Rotman’s work on the philosophy of mathematics.4 

Rotman describes an encounter with a mathematical proposition as a tripartite experience. 

According to Rotman, this structure emerges out of the assumption that mathematical thinking is 

more important than mathematical writing because the former is believed to be signified-driven 

and hence free from cultural signifiers that make the latter so imprecise: “mathematics is before 

all else self-consciously produced. . .out of the image of itself as the exercise and play of pure, 

abstract reason engaged in the production of indubitable truths” (25). Achieving this pure, 

abstract reason requires a self-conscious distancing of the self from mathematical reason, a 

splitting of subjectivity into what Rotman calls the Person, the Subject, and the Agent. The 

Person is embodied, existing in a culture of signifiers. Although the Person can discuss 

mathematics, he or she does so via access to an indexical “metaCode” that refers to abstract truth 

but does so using arbitrary signifiers that are “vague, permeated by illogic and subjectivity, 

intuitive, uncategorized, immersed in history and cultural mutability” (70). The Subject, on the 

other hand, is disembodied and exists in a non-arbitrary discourse of mathematical syntax. He or 

she is able to interpret mathematical “Code” as a form of “pure writing” that is “precise, logical, 

4 For a historical study of human computers see David Alan Grier’s When Computers Were 

Human (2005). For a cultural history of the transition from human to mechanical computers, see 

Wendy Chun’s Programmed Visions: Software and Memory (2011). 
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objective, ordered, atemporal, rational, and unchangeable” (70). The Subject reasons through 

problems by selecting and applying rules drawn out of the Code. Finally, the Agent is a 

“simulacrum” of the Subject, incapable of its own reasoning or observations but able to carry out 

the operations selected and arranged by the Subject. Importantly, the Person has no direct access 

to the Agent because it operates solely at the behest of the Subject. The Agent is thus a ghostly 

hand that carries out the mental labors of the Subject, serving as the latter’s mathematical 

imagination.  

The Subject is able to keep mathematics “pure” by simultaneously shielding the 

mathematician’s awareness from the cultural signifiers of the Person and the algorithmic 

construction of numbers performed by the Agent. The Subject of classical mathematics, 

according to Rotman, operates in a realm that emphasizes the signified, tracing and discovering 

Platonic truths by probing the Code via the Agent. Because the Person communicates through 

signifiers, he or she has no direct access to this realm. The Agent exists within the realm of 

signified with the Subject. In practice, however, the Agent is both the Subject’s proxy and its 

ghost. For the Subject to imagine a law, the Agent must be able to produce it; however, for that 

law to exist as mathematical truth, it must also exist independently of the Agent’s labors.5 In the 

Platonic model, numbers already exist awaiting discovery. The Agent doesn’t calculate them; 

rather, the Agent moves to their position on an infinite number line by following the directions of 

the Subject. As a consequence of this model, the history of mathematics is always a narrative of 

discovery but never one that situates the practice of mathematics within specific cultural 

moments. Those moments belong to the Person because the Subject exists in direct relation to 

5 For a more detailed account than this summary, see pgs 75-84 in Rotman. 
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timeless truths. But for critics of the Platonist model, according to Rotman, infinity is a 

challenging concept to construct. While it may easy to imagine that a number like 5, for 

example, exists independently of any calculation used to produce it, such as 1+1+1+1+1, it is 

much harder to deal with a concept like infinity which by definition can never be reached via 

calculation. For the Platonists, infinity is proof that their view of mathematics is correct: it is 

mathematical truth represented by laws independent of calculation. Yet for constructivists, 

infinity is itself a sort of crisis, as it suggests that there elements of mathematics that may beyond 

human comprehension. 

Rotman builds on this idea, positing that all aspects of the tripartite model are embodied 

and therefore subject to the limitations of human signification and cognition. As a consequence, 

the Subject not only operates within the same cultural framework of the Person but is also 

constrained by the limitations of the Person’s body. Rotman explains that the Subject, as 

classically conceived, is “free of error, misreadings, boredom, fatigue, memory loss, and 

misperception, insofar as these affect the reading/writing and manipulation of Code determined 

signs” (102). Similarly, the Agent is “an automaton, a wholly mechanical and formal proxy for 

the Subject” (77). The Agent never fails to execute the Subject’s selection of rules, just as the 

Subject never fails to interpret the Code correctly. But concepts like infinity or pi can be never 

fully represented by the Agent, and thus understood by the Subject, due to the limitations of the 

Person’s mind. At best, we can only understand them functionally but never completely. 

Rotman’s description of the Agent as an automaton makes it very easy to imagine a digital 

computer. Rotman, in fact, later posits that the “the advent of computer-aided reasoning in 

mathematics” has “forced into the open the question of” limitations to the Subject (103). Is a 

machine, in other words, more capable of accessing the “pure truth” of mathematics than a 
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human? If a mechanical Agent surpasses the cognitive limits of the human, can a human Subject 

understand its truth? Does the Subject exist in the human, the machine, or both? While noting 

that David Hume and Rene Descartes have worried about the way that longer proofs could 

hinder our ability to follow mathematic reasoning, Rotman, invites his readers to consider how 

cybernetics could further re-imagine this tripartite model.  

There are some key differences between programming and the mathematics Rotman 

describes. In software design, the Subject is the source code that links human Person and 

mechanical Agent, existing simultaneously in the human during the act of writing source code 

and in the machine as the algorithmic processes resulting from that source code, directing the 

chains of commands executed by machine’s hardware, the Agent. The human-aspect of the 

programming Subject is also less distinct from the Person because most programming languages 

are a mixture of mathematical notation and natural language. Yet for the machine Subject, source 

code is always Rotman’s Code: algorithms that manipulate discrete information according to 

very narrowly defined rules with no consideration of the significance of the signifiers chosen by 

the human to represent those rules. For the human Subject, the source code is inseparable from 

the metaCode, bound up in the signifiers the Person uses to describe process flow but which are 

simply just placeholders in the machine Subject’s memory: variable names chosen by the 

programmer, commands represented as natural language words, and non-binary numbers. This 

blurring of metaCode and Code in programming languages also means that the human Subject is 

not infallible. The machine Subject will always direct the mechanical Agent’s operations exactly 

as described in the Code, regardless of its size and unaffected by the signifiers chosen by 

programmers to represent processes. Because the human Subject and machine Subject are 

differently embodied, they read source code differently. For the machine, source code is pure 
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syntax; but for the human, source code is a mixture of mathematics and cultural signifiers and 

thus potentially illegible. Humans can misread source code, find that it is too large to 

comprehend completely, or simply not chose variable or process names that accurately represent 

their work to others. Like classical mathematics, the earliest models of programming assumed 

that humans could filter their awareness, escape the limitations of their bodies, and operate 

purely in the realm of the Subject. Programmers, in other words, understood the human-machine 

circuit as an analogy. The more they could think like the Turing machines they designed Code 

for, the more efficient and more powerful their software would be; however, the software crisis 

exposes limits to this analogy, raising concerns that the cognitive difference between human and 

machine is insurmountable as software systems increase in scale.  

II. Paper Machines 

Although historians of technology have linked the software crisis to other popular visions 

of technological failure in the 1960s, the software crisis is different from them in that can be 

defined in distinctly cybernetic terms. Martin Campbell-Kelly and William Aspray claim, for 

example, that the failure of the Mariner I spacecraft in 1962 due to a single typo in its guidance 

software served as a dramatic symbol of the fears among computer scientists during the 1960s. In 

a laboratory setting, this error would have been relatively mundane. Outside of the laboratory, 

the error resulted in a disastrous spectacle: the mid-flight detonation of a symbol of American 

power that cost millions of taxpayer dollars. Embellishments of the incident in computer science 

textbooks and the popular press meant that it “required little imagination to see the terrible 

consequences if a similar software problem were to occur in a manned space flight, a nuclear 

power plant, or a fly-by-wire airplane” (200). Yet popular culture during the 1960s was happy to 

imagine these scenarios. That same year, for instance, Eugene Burdick and Harvey Wheeler 
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published Fail-Safe, a novel that depicts the possibility of nuclear war resulting from a single 

defective electrical circuit. In both cases, catastrophic failure results from an explicitly defective 

component. But the concerns raised during the software crisis discuss a failure that is not as easy 

to locate. Instead, software engineers responding to the crisis worry about systems that fail 

precisely because they are faithfully executing their software. They worry that software systems 

have grown so large that humans can no longer comprehend them; as a consequence, these 

massive systems produce unexpected, potentially disastrous, results even though they continue to 

perform as instructed. The software crisis, in this sense, resembles the conflict at the heart of 

Coover’s Universal Baseball Association, stemming from a problem of legibility, of the inability 

of programmers to follow the workings of the very systems they defined through source code. 

While Campbell-Kelly and Aspray’s emphasis on the Mariner I oversimplifies the software 

crisis, it nonetheless exposes a sublimated fear that computer science during the 1960s was 

growing into something other than an extension of mathematics. As computer systems increased 

in power, capable of modeling and participating in real-world processes, unexpected results 

would be more than just an anomaly. The same technologies that were celebrated as leading us 

towards fantastic futures could also produce devastating failures.  

Software engineers, computer science educators, and historians frequently identify IBM’s 

System/360 computer and its OS/360 operating system software as the best representations of the 

problems programmers struggled with during the 1960s. According to Paul Ceruzzi, the 

company had invested so much time, manpower, and money into the System/360 that its 

development struggles “almost sank the company” (101). IBM intended for its System/360 to be 

the first mass-produced computer system. Yet to be a one-size-fits-all machine, the System/360 

needed to be built to handle a variety of use scenarios. The main problem behind System/360’s 
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troubled development was also one of its celebrated features: increased memory and processing 

power permitted programmers to build more features into the operating system than they were 

accustomed to managing. Campbell-Kelly and Aspray describe its operating system as “the 

biggest and most complex program artifact that had ever been attempted [by the 1960s] . . . 

consist[ing] of hundreds of programming components, totaling more than a million lines of code, 

all of which had to work in concert without a hiccup” (197). Prior to the 1960s, computer 

systems were unique, constructed in academic laboratories by electrical engineers or built to 

order for corporate clients by companies like IBM. The System/360 was different in that it was 

designed to be flexible, serving needs that could not be anticipated fully at the time of 

construction. One of the engineers credited with initiating changes to programming education in 

response to the crisis, Edsger W. Dijkstra, explains in a 1972 lecture that the problems 

surrounding the System/360 were not surprising: “as the power of available machines increased 

by a factor of more than a thousand, society’s ambition to apply these machines grew in 

proportion, and it was the poor programmer who found his job in the exploded field of tension 

between ends and means” (116). Problems in the OS/360 software became hard to diagnose and 

were often “corrected” by adding in new processes or completely replacing them in the hopes 

that new implementations would remove the problematic algorithms.  

In cybernetic terms, the System/360 and other projects that struggled during the 1960s 

represent a limit to the human-machine circuit. Most computer programming languages in use at 

the time fit into the “procedural” paradigm, modeling software as a process: a linear sequence of 

commands addressed one at a time. Procedural languages thus resemble Alan Turing’s early 

descriptions of a computer:  

At any moment there is one symbol in the machine; it is called the scanned 
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symbol. The machine can alter the scanned symbol and its behaviour is in part 

determined by that symbol, but the symbols on the tape elsewhere do not affect 

the behaviour of the machine. However the tape can be moved back and forth 

through the machine, this being one of the elementary operations of the machine. 

Any symbol on the tape may therefore eventually have an innings (413). 

With this model, software is a process that follows a list of commands in sequence, addressing 

each operation one at a time. Complex procedures can be created using “flow control” operators 

like the “goto” command that instructs the software to jump to a particular position—moving 

Turing’s tape forward or backward—in the process. Programmers in the 1950s and 60s were 

usually either self-taught or learned about software design informally from others working in the 

same laboratory. Computer hardware was not yet mass-produced, and programmers learned to 

work with specific machines, often in a language that issued instructions directly to hardware.6 

Because software at this time was tailored to specific machines, “programs would [have] only 

local significance” and very little “lasting value” (Dijkstra 114). From a cybernetic perspective, a 

model of programming that uses low-level, procedural languages and issues commands directly 

to specific hardware configurations rewarded programmers who immersed themselves in a 

human-machine circuit. In this paradigm, the quality of software is a reflection of programmers’ 

ability to think like a Turing machine. Yet the System/360’s complexity challenged this model, 

because programmers found they could not wholly anticipate the effect that individual 

contributions would have on the system as a whole. 

6 This type of programming language is often referred to as an “Assembly” language because it 

consists of one-to-one instructions used to “assemble” the binary code executed by machines. 
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Coover’s The Universal Baseball Association explores in detail a programmer’s attempts 

to think like a Turing machine. The novel tells the story of Henry Waugh, an accountant whose 

life is intertwined with the dice rolls and look-up tables of a pen and paper game, precursors to 

the complex simulation models that underlie modern software. While later in his career Coover 

not only writes hypertext fiction but also heavily incorporates elements of it into his print work, 

there is evidence that he was already thinking about the relationship between computers and 

literature in the 1960s. In a 1968 interview, for instance, Coover recalls speaking with an 

engineer about how early computer scientists modeled their work in hardware and software on 

“the notion of a human brain as being a central . . . organizing system that sends and receives 

messages back [ellipses original]” (Hertzel 27). Implicitly, Coover’s conversation with the 

engineer points to the early contributions made by cybernetics to computer science. Yet the 

engineer also notes that computing has since moved away from this model, finding better ways 

to design machines that didn’t try to model human thought. Implicitly, the engineer points to the 

limitations of the older procedural style and the need to differentiate between the human mind 

and Turing machines. Coover speculates that maybe art, too, “compromises our notion of the 

brain” as a centralized information processor by “reach[ing] the whole body at once” (Hertzel 

27). Coover’s interest in cybernetics here lies less in the way the human mind influenced 

computing but in the way interactions with computers have influenced human thought. The 

Universal Baseball Association reflects this conversation in the way that Henry experiences his 

imaginary baseball league on a visceral level, growing aroused or physically ill as he computes 

each sequence. His baseball game is an algorithm so complex that it introduces an unexpected 

emotional dimension. He experiences Damon Rutherford’s death not as a statistical phenomenon 

but as the death of a son. More importantly, Coover’s characterization of software in the novel is 
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one that entangles mathematics with cultural signifiers. Henry’s efforts to think like a Turing 

machine are continually complicated by a desire for his algorithms to do something more than 

just advance the game’s state. 

 Despite not running on a digital computer, Henry’s Universal Baseball Association game 

(UBA) is a form of software. Modern computer systems are at their core Turing machines: finite 

state machines that update stored, discrete values according to a specified set of rules.7 Turing 

himself explains that “it is possible to produce the effect of a computing machine by writing 

down a set of rules of procedure and asking a man to carry them out. Such a combination of a 

man with written instructions will be called a ‘Paper Machine.’ A man provided with paper, 

pencil, and rubber, and subject to strict discipline, is in effect a universal machine.” (416). As 

“software,” the UBA is composed of the set of rules that procedurally update the state of the 

paper machine by manipulating stored data. Like any other programmer, Henry assigns unique, 

human readable names to the system’s variables—the league’s players—so that he can follow 

how the system’s rules read and write the values assigned to them. As Daniel Punday notes in his 

history of pen and paper dice games, Henry’s UBA structurally emphasizes the unfolding of a 

game’s narrative over its players: “Coover’s game may at first seem similar to RPGs” like 

Dungeons and Dragons “because it relies heavily on statistics” of individual players, interpreted 

through “complex charts[; however,] these statistics describe not objects, but events” (118). The 

7 For a full definition, see Alan Turing’s “On Computable Numbers, with an Application to the 

Entscheidungs Problem,” reprinted in The Essential Turing: Seminal Writings in Computing, 

Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma (2004), 

ed. B. Jack Copeland. 
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UBA thus resembles a program written in the procedural paradigm. Formally, the game’s 

algorithm is the continuous iteration of a random number generator: a set of three dice. Each 

generation is followed by a selection of state change rules determined by the combination of 

numbers produced by the dice. No matter what phase—play, scheduling, player 

promotion/demotion, postseason evaluation—the system’s state is always advanced in this 

manner. Subroutines are called when selection criteria are met, but the program is centralized 

around a single process to which it continually returns. Importantly, the UBA’s reflection of 

procedural principles also allows the novel to illustrate the defining problem of that paradigm: 

the larger and more complex a procedure-oriented program becomes, the more entangled it 

becomes with cultural signifiers, making it harder for human observers to trace sequences in its 

mathematical syntax. 

Descriptions of the software crisis, both in accounts from programmers and in Coover’s 

fictionalized narrative, represent the crisis as a moment when the cognitive differences between 

human and machine could no longer be ignored and the analogy between human and machine 

Subjects could no longer hold. Unlike humans, computers operate by holding the entirety of 

software’s code in an instantly accessible form of temporary memory during runtime, able 

instantly to recall any element of the system’s state. The machine Subject must be able to 

imagine every action of the Agent permitted by source code if a computer system is said to be 

functioning correctly. Yet humans, by contrast, read source code in much the same way they 

would read other texts, following the flow of signifiers across the space of the page or screen. 

The human Subject can thus try to imagine the operations of the machine Agent as the Person 

traces processes by following an algorithm’s textual inscription in source code; however, humans 

do not hold the entirety of a software system in memory as machines do. Human readers can lose 
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thus track of how or why the system reached a certain state as they cognitively juggle their 

memory of the machine’s state with their navigation of the source code’s signifiers. Reading this 

model back into the software crisis, we can say that even though the Codes of the System/360 

and Henry’s UBA are formally sound—executable by the machine Subject—human Subjects 

struggle to imagine their operations because the machine Agent carries them out on a scale and at 

a speed that human Agents cannot match. That is not say that computer hardware exceeds the 

computational power of the human mind; rather, the human mind is embodied differently from a 

Turing machine, unable to match digital hardware in carrying out a particular mode of 

information processing.8  

The 1968 NATO Conference in Garmisch, Germany aimed to address this problem of 

embodied programming, albeit in primarily industrial terms. As editors of the conference report 

note, they specifically chose to frame the conference around the term “software engineering” in 

order to foreground “the need for software manufacture to be based on the types of theoretical 

foundations and practical disciplines that are traditional in the established branches of 

engineering” (13). While the conference’s papers are no longer available, the conference report 

does include quotations from papers and transcriptions from the question and answer sessions 

8 Non-human instances of this problem are well known. For example, older hardware can be 

“emulated” by software on new machines. Twentieth century video games have enjoyed a 

second life on smart phones via software that mimics the storage and execution of older 

cartridge-based consoles. Emulation is very processor intensive, and new computing devices that 

are ordinarily much faster can struggle to emulate older hardware at the same speed as the 

original, physical devices. 
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that explicitly call for an end to informal programming education and systems of rigorous 

management in an effort to prevent future projects from suffering the same problems as the 

System/360. For example, A. d’Agapeyeff states explicitly that “[p]rogramming is still too much 

of an artistic endeavor,” arguing that it is no longer possible for programmers to work in relative 

isolation. (24). In order to avoid the real possibility of changes to one component derailing 

others, programmers must instead foreground principles of feedback between components as 

mechanical and electrical engineering already did (23-24). Comments from Garmisch attendees 

reflect the assessment of the System/360’s chief project manager, Fred Brooks. Writing in 1975, 

Brooks argues that while “two programmers in a remodeled garage [could build] an important 

program that surpasses the best efforts of large teams,” such projects were no longer feasible 

because mass production meant that it was impossible to predict every single state a software 

system might reach (8-9). In other words, programmers needed to focus on stability rather than 

fixate on ideals of mathematical efficiency. Beyond producing machines for use in large 

corporations, many in attendance also recognized that computers were now a part of social 

infrastructure. Peter Naur, for example, comments that because computers are affecting more and 

more people directly, “software designers are [now] in a similar position to architects and civil 

engineers. . . .It therefore seems natural that we should turn to these subjects for ideas about how 

to attack the design problem” (35). Programmers, in other words, had to address the fact that 

software’s entanglement of human culture and mathematical syntax meant that illegibility was 

now a pervasive structural or design problem that reached beyond small laboratory communities. 

The Garmisch attendees implicitly acknowledged the gap between the human and 

machine Subjects in their assertion that the problems of the software crisis are inevitable within 

the procedural paradigm. A. Opler argues that the problem of software legibility will only get 
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worse as the “the current growth of systems” produces “what [he] expect[s] is probably an 

exponential growth of errors [emphasis added]” (17). Failures like the System/360, he implies, 

will become more frequent unless programmers find a way to account for the distinct ways that 

human and machine embodiment shapes the mathematical imagination of both. Even in the case 

of attendees such as Ken Kolence, who viewed talk of a “crisis” as alarmist, there is nonetheless 

an acknowledgement that programming as then practiced was incapable of accounting for the 

problems of legibility posed by increasingly large software projects: “The basic problem is that 

certain classes of systems are placing demands on us which are beyond our capabilities and our 

theories and methods of design and production at this time” (17). Regardless of whether 

attendees agreed that their present moment should be called a crisis, there is a shared sense that 

the recent failures highlighted a disconnect between the mathematical imagination of human and 

machine Subjects. Elsewhere in the report, E. E. David, Jr. and A.G. Fraser explain that what 

they find “alarming is the seemingly unavoidable fallibility of large software, since a malfunction 

in an advanced hardware-software system can be a matter of life and death, not only for 

individuals, but also for vehicles carrying hundreds of people and ultimately for nations as well 

[emphasis added]” (16). While cybernetics is never mentioned, the idea that humans cannot think 

like Turing machines at scale is nonetheless implicit throughout the conference. Understanding 

how this gap affected the experience of programming requires a closer consideration of accounts 

of human-computer interaction like the kind found in Coover’s novel. 

Before returning to Coover, however, it’s important to note that problems of legibility 

were also exacerbated by the informal instruction and localized expertise of programming prior 

to the 1970s. Joseph Weizenbaum’s archetype of the “compulsive programmer” is drawn out of 

the concerns about pre-software crisis programming education. As Weizenbaum notes, 
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compulsive programmers are interested in computation as an end in itself. They not are 

necessarily “bad” at programming, but their work is unstructured, guided primarily by a desire to 

test the limits of systems and demonstrate their own creative genius. Unsurprisingly, 

Weizenbaum’s model is often cited as the first representation of people who are today referred to 

as “hackers.” Compulsive programmers, he notes, design software “without plan and without 

knowledge, let alone understanding, of the deeper structural issues involved,” dividing their time 

between “piling new subsystems onto the structure [they have] already built. . . [and] 

attempt[ing] to account for the way in which substructures already in place misbehave” (119). 

Although not all programmers working in the procedural paradigm were compulsive, low-level 

flow controls like the goto command permit an unchecked increase in complexity. Compulsive 

programmers could simply splice new subsystems into large processes ad hoc by re-directing the 

process flow. So long as they were careful to return the program back to the right place in main 

process flow after a new subsystem was executed, this practice would not, in theory, disrupt the 

program. The machine Subject and its Agent have no trouble interpreting these complex process 

flows; yet the human Subject, reading through a mathematical syntax entangled with cultural 

signifiers can have trouble navigating what many referred to as “spaghetti code.” Like the 

classical mathematicians Rotman describes, compulsive programmers have little regard for 

human readers of their source code. They value their identity as Subjects, trying to think 

primarily at the level of Code and suppressing those aspects of source code relevant to Persons in 

order to imagine themselves more intimately connected to the pure computation of the machine. 

Henry very much reflects the behavior of the informally trained, compulsive 

programmer. As Coover explains, in the past Henry drifted from game to game, continually 

seeking new challenges: “He’d always played a lot games: baseball, basketball, different card 
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games, war and finance games, horseracing, football, and so on, all on paper of course” (44). 

Before the Universal Baseball Association, he had very little interest in any particular game but 

was instead interested in exploring new computational systems. In addition to writing games, he 

would also modify existing ones by adding new rules systems and mechanic components. He 

once created 

a variation on Monopoly, using twelve, sixteen, or twenty-four boards at once and 

an unlimited number of players, which opened up the possibility of wars run by 

industrial giants with investments on several boards at once, the buying off of 

whole governments, the emergence of international communications and utilities 

barons, strikes and rebellions by the slumdwellers between “Go” and “Jail,” 

revolutionary subversion and sabotage with sympathetic ties across the boards, 

[and] the creation of international regulatory bodies by the established power 

cliques (44) 

As a compulsive programmer, Henry thrives on his ability to splice new subprocesses into game. 

He is able to follow these complex procedures because he is able to alienate himself from his 

identity as a Person. He represents a fictional embodiment of the procedural paradigm, able to 

think like a Turing Machine by enacting a cognitive separation between his Person and Subject. 

Yet in expanding the Code of his games, Henry is also increasingly entangling the rules of the 

UBA with signifiers drawn from outside mathematics. He continually invents new rules modeled 

after the sport, splicing them into the game between seasons in order to expand the game’s 

potential to produce narratives of the UBA’s great players. In doing so, Henry begins to lose 

track of the rules. He even admits to himself that, by the opening of the novel, the UBA was 

“slowly buckling under a kind of long-run market vulnerability, the kind that had killed off 
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complex games of his in the past” (136). Although there are routine algorithms that he 

remembers easily, the sudden death of Damon Rutherford is surprising because the UBA’s 

system of algorithms has become illegible. Henry can carry out its rules by consulting the tables 

of Code that he designed, but he cannot remember all of the system states he defined in them. 

 In this respect, Henry’s UBA reflects the ways that the procedural paradigm privileges 

machine over human legibility. One of the first calls for reform among programmers came in 

Dijkstra’s “GOTO Statement Considered Harmful,” a letter published in the March 1968 issue of 

Communications of the ACM. In it, Dijkstra argues that an over-reliance on the goto command 

discouraged careful planning because programmers could simply redirect the main process of a 

piece of software at will. While goto is no longer found in programming languages developed 

during or after the 1980s, it was a staple of the procedural paradigm. Programmers could create 

loops and develop subprocesses by using conditional statements that moved the process forward 

or backward to specific numbered lines in a large body of textual commands. Yet Dijkstra 

observed that relying on goto for flow control created a gap “between the static program and the 

dynamic process” (147). From the perspective of the machine, the Subject always directs the 

Agent to proceed from one command to the next. Even if the Code directs the Subject backwards 

to a command that the Agent previously had executed or passed over, the Subject and Agent 

experience it simply as the next command in a sequence. Because the machine holds the entire 

program sequence in memory and can direct the Agent instantly to each line specified by goto 

statements, the placement of subprocesses is arbitrary. But humans must read the sequence 

within the source code much as they would a natural language text: from left to right, top to 

bottom. Flow controls like goto commands, Dijkstra argues, interrupt this sequence and force the 

human Subjects to wait on embodied Persons to halt their normal reading process and locate the 
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next line they are directed toward. The goto command, in other words, served as a key 

representation in the way embodiment shaped software’s legibility. Dijkstra’s letter proved 

controversial, drawing defensive responses for nearly 20 years from programmers unwilling to 

cede control of their processes to automated flow control operators—like “while” and “for” 

loops.9 Rather than acknowledge Dijkstra’s point about the differences between human and 

machine cognition, many of the letter’s critics interpreted the argument against goto statements 

as one about efficiency, offering computational proofs to show that implementing automated 

flow control statements required more variables or lines of code.10 These responses indicate that 

many programmers still idealized the model of programming as thinking like a Turing machine. 

They claim to sidestep the problems of legibility posed by the System/360 and the UBA by 

accusing Dijkstra and his supporters of having a flawed mathematical imagination without 

recognizing that it is precisely this idea of a “flawed,” embodied subjectivity that Dijkstra tried to 

address. 

Dijkstra further developed his argument against the use of the goto command into 

“structured programming,” a set of stylistic recommendations for that procedural paradigm that 

later became incorporated into most OOP languages. In 1972, Dijkstra published his “Notes on 

9 The most recent response is “’Goto Considered Harmful’ Considered Harmful” by Frank 

Rubin, Communications of the ACM, March 1987. 

10 Most of the initial responses in subsequent issues of Communications of the ACM are little 

more than short proofs, but Donald Knuth and R.W. Floyd’s “Notes on Avoiding ‘Go To’ 

Statements,” in Information Processing Letters (1971) is by far the longest and most detailed 

response. 
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Structured Programming,” a long-form essay that describes methodological solutions to the 

“widespread underestimation of the specific difficulties of size [that] seems [to be] one of the 

major underlying causes of. . .software failure” (2). Structured programming takes legibility as a 

primary goal of design, acknowledging that programming is not a purely mathematical exercise 

governed primarily by the Subject but relies heavily on the Person, especially as software 

projects grow from single-author texts into large, collaborative endeavors. Rather than 

privileging the idea of a mathematical brilliance that casts programming as “primarily the 

minimization of a cost/performance ratio,” Dijkstra calls on programmers to acknowledge their 

limitations as readers of source code: “we can only afford to optimize (whatever that may be) 

provided the program remains sufficiently manageable” (6). While much of the essay talks 

through informal mathematical proofs supporting his reasoning, Dijkstra importantly proposes 

the importance of the “textual index” in source code composition. Revisions to languages like 

Pascal that incorporated structural principles in practice encouraged chunking code in long, 

complex programs so that subprocesses would be visibly localized to particular segments of the 

source code text. Although data patterns in large systems may be difficult to predict and may still 

reach a point beyond human comprehension, Dijkstra’s essay implies, the names and visual 

organization of variables and subprocesses are something programmers can control and should 

be able to interpret readily. Readers of source code should be able quickly and readily to identify 

how a machine will progress through a set of instructions even if they cannot imagine in advance 

every single calculation sequence that might be performed by the machine Agent.  

Having no audience other than himself, Henry and his UBA take the problem of source 

code legibility to an extreme. Although Henry develops emotional attachments to elements of the 

game defined by his Person, they are based on the results of the machine Subject’s algorithms. In 
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choosing to develop a baseball game, it was “[n]ot the actual game so much—to tell the truth, 

real baseball bored him”—that drove his development of the UBA’s rules, but rather “the 

accountability—the beauty of the records system which found a place to keep forever each least 

action—that had led Henry to baseball as his final great project” (45; 19). Henry is only attracted 

to the computational side of the game: “the records, the statistics, the peculiar balances between 

individual and team, offense and defense, strategy and luck, accident and pattern, power and 

intelligence” (45). Even though Henry claims that the “dice and charts and other paraphernalia 

[are] only the mechanics of the drama, not the drama itself,” his anecdotes show otherwise (47). 

For instance, the meaning and importance of the names he assigns to players are derived from 

those mechanics. Despite remarking to himself that a player he names “Old Fennimore 

McCaffree” [is] defined by something outside of the games rules—“that [is] simply who he [is] 

. . .Scholar and statesman. Dark. Angular. Intense”—Henry admits that Old Fennimore wouldn’t 

have been one of the oldest rookies in the league if it were not for “an unlucky throw of the dice 

on the Rookie Age Chart” (47). In other cases, such as the events around Brock Rutherford’s 

sons that drive the novel’s central conflict, family names are arbitrarily chosen, and the dice later 

determine the significance of their paternal relationships. The league history that Henry 

meticulously describes in his journals is always at a minimum a record of statistics—a report of 

the Agent’s activities generated by the Subject—often but not always embellished with narrative 

flourishes. The game’s algorithms do not exist to recreate baseball; rather, baseball exists as a 

way for Henry to remember its statistical history. Even though he performs his Subject identity 

like a Turing machine, he is still embodied as a human. He cannot hold the entire system’s 

mathematical state in his head and therefore requires lists and tables that he can search through to 

aid his memory. 
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For compulsive programmers, there is always a hope that they’ll discover in tracing the 

Agent’s operations rules that were applied by the machine Subject in ways they had not 

anticipated. Weizenbaum notes that compulsive programmers were thrilled to see computer 

systems “misbehave in a number of mysterious, apparently unrelated ways” because it “gives 

every evidence of [the system] having taken on a life of its own, and certainly, of having slipped 

from [their] control” (119). While a machine behaving seemingly on its own challenges the 

human-machine analogy, it also represents an opportunity to grow even closer, revealing an as 

yet unknown aspect of the machine Subject. If machine Code that executes is never wrong, then 

the unexpected for the compulsive programmer is simply some part of the machine that the 

human Subject does not fully understand. The unparalleled success of a rookie player Henry 

arbitrary names “Damon Rutherford,” for instance, gives Henry the sense that his game is more 

than he imagined it to be, instilling a belief that the UBA’s Code contains some deeper truth 

beyond mere baseball statistics. By assigning the player the last name “Rutherford,” Henry 

imagines him to be the son of a past player, Brock Rutherford, who had set a number of league 

records but may very well pale in comparison to his son. Damon, though, was not the first time 

Henry had imagined a rookie to be Brock’s son; however, the first had not generated comparable 

statistics. The UBA’s machine Subject had previously sent “Brock, Jr.” into an early retirement. 

To see Damon early in his first year accrue results resembling those of his father “had been a 

wonderful league tonic” (104). 

The problem with Henry’s view of Damon’s success, however, is that it is a result of the 

game’s illegibility. There is little functional distinction, from the perspective of the machine 

Subject, in the rolls that made Damon famous and those that led to his death. From the 

perspective of the machine Subject, “Damon Rutherford” is just a label for a set of statistics 
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produced by the Agent. Henry’s desire, as a Person, to see Brock’s legacy continue constrains his 

embodied perspective as Subject. He focuses only on the statistical anomaly of Damon’s sudden 

success without considering that such a combination of dice just as easily could lead to 

catastrophe. He admits that past players who enjoyed rapid success seemed to burn out after their 

first year, but he refuses to believe Damon could meet such a fate. During the same game that 

Henry begins to identify with Damon as his own son, the dice call for him to be fatally struck by 

a line drive. Within Henry’s system, the scenario that leads to Damon’s death is the result of 

rolling three one’s after the system state called for him to consult the Extraordinary 

Circumstances table. The table was one Henry “still hadn’t memorized. For one thing,” he 

admits, “it didn’t get used much, seldom more than once a season; for another, it was pretty 

complicated” (69). The chart exists to invest the game with a sense of drama beyond the simple 

mechanics of baseball. Of all the charts in the game, it is the clearest example of the signifiers of 

the Person entangling the syntax of the Subject. There are no statistical representations that 

readily capture the events listed on the table: “[r]ain could end the game, a drunken fan could 

crack a player’s skull with a pitched beer bottle, a brawl could break out, game-throwing 

scandals could be discovered, [or] epidemics of dysentery could ravage a line-up” (70). If no 

other player has died under these circumstances, it is only because that combination of three 

one’s had never been invoked when the machine Subject consulted the chart in the middle of a 

pitching state. Although Henry wrote the rule, he likely never imagined his machine Subject 

executing it on a player like Damon Rutherford. The system has become so complex, so illegible, 

that he never considered the circumstances under which the “Batter struck fatally by bean ball” 

rule would be invoked when he added it to the game’s Code. Importantly, Coover reminds us, it 

only takes a single instance of illegibility, a single possibility not considered, for a software 
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system to produce a catastrophic failure. The engineers at Garmisch didn’t fear a single typo like 

the one that resulted in the Mariner I destruction—that was something they believed they could 

control. Instead, they feared the limits of their own mathematical imagination, and the 

consequences of machines that could operate beyond those limits. 

III. Freedom From Complexity 

Solutions to the software crisis coming out of Garmisch emphasized minimizing the 

amount of information programmers had to manage when writing software. Software was 

growing in size and now required large teams that had to be coordinated in ways that avoided the 

problem of legibility by minimizing the opportunity for misinterpretation of system processes. 

Despite several in attendance at the conference calling for broad interpersonal communication 

between project members, those responses arguing for its constraint reflect the way that 

“encapsulation” would reshape programming by the 1980s. Dr. J. Nash, for example, proposed 

that there “are dangers in uncontrolled mass-communication. You can get into trouble if people 

start taking advantage of information that they gain by chatting that they should not know (and 

which may well lose its validity in a day or so)” (90). Similarly, David comments that project 

managers must “avoid flooding people with so much information that they ignore it all. Selective 

dissemination of information. . .should be tried in a large software project” (91). Modular 

encapsulation, a core principle of OOP, calls for fragmenting software systems in ways that 

restrict information flow between components. By dividing the machine Subject into a hierarchy 

of distinct components, OOP effectively narrows the mathematical imagination of each 

component’s Subject so that it remains closer in scale to that of the human Subject. Programmers 

are no longer responsible for trying to imagine the effect of their algorithms on the whole 

system; instead, they only have to address all of the possible states of a single component. As 



 143 
 

long as each component passes the information hidden within it to others upon request, the entire 

system remains stable. As a response to the software crisis, OOP promised that programmers 

could make changes within components without worrying about how those changes might result 

in unimagined states elsewhere. 

 But as Nash and David imply, OOP changed more than the individual practice of 

programming. System design became as much about managing relationships between 

programmers as it did about complex networks of technological components. Among the 

Garmisch attendees, Dijkstra is the only one who draws this parallel explicitly. He proposes that 

“both the total density of information flow necessary between groups, and the percentage of 

irrelevant information that a given group gets, can be greatly reduced by effectively structuring 

the object to be constructed and ensuring that this structure is reflected in the structure of the 

organization making the product” (89). Because OOP permits programmers to work on 

components in relative isolation from one another, component structures become mapped onto 

social structures. Today, technical papers and reference manuals explaining OOP languages do 

not acknowledge this aspect of the paradigm. Only textbooks and articles on engineering 

management explore organizing teams into modules, controlling and evaluating the coordination 

between them, and methods of outsourcing component development.11  

Fortunately, the extra-technical consequences of modularization have not escaped the 

attention of digital media studies; however, the question of how OOP affects the cultural study of 

software remains open. Tara McPherson argues in “U.S. Operating Systems at Mid-Century: The 

11 See for example Project Management (1999), ed. Paul Trinello and Management of the 

Object-Oriented Development Process (2006) by Liping Liu and Boris Roussev. 
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Intertwining of Race and UNIX,” that the structural logics driving technological production are 

not limited to technical or industrial contexts. In particular, McPherson notes that while 

modularity is celebrated among technologists, it is often oppressive in a social context, 

functioning as “a mode of partitioning that turned away from the broader forms of alliance-based 

and globally-inflected political practice that characterized both labor politics and anti-racist 

organizing in the 1930s and 1940s” (30). McPherson’s work highlights that even though 

technical reasoning is often productive in a limited context, it can be repressive in a broader, 

social context. Atwood’s The Handmaid’s Tale explores this idea in depth, imagining the 

consequences of a society structured primarily around modular systems of biological 

reproduction. The novel not only resonates with OOP’s modular encapsulation but it also reflects 

principles from game theory that underlie industrial management practices, in particular Herbert 

Simon’s “bounded rationality.” The Handmaid’s Tale therefore can help to illuminate the 

assumptions OOP makes about its programmers and how those assumptions produce their own 

problems of legibility. 

 Before I move on to Atwood, however, I want to emphasize that the type of modular 

organization that OOP permits is not simply an extension of Fordist or Taylorist labor 

management. As Philip Mirowski’s study of how cybernetics influenced economics and 

corporate management strategies suggests, modern software engineering has much in common 

with operations research, and not only because the RAND Corporation, a private military think 

tank, served as an early nexus in the United States for both. Operations research, Mirowski notes, 

emerged during World War II as a way for mathematicians and scientists to provide expert 

analysis during military operations—and benefit from generous government funding—without 

inserting themselves into the military hierarchy. Following the war, operations research in the 
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United States continued at RAND, where researchers explored a “newfound scientific approach 

to government, corporate management, and the very conceptualization of society as a cybernetic 

entity” (182). This last aspect of operations research manifested itself as “game theory,” or the 

study of human behavior through computational automata. Incidentally, game theory was 

pioneered by John von Neumann, the same mathematician who designed an implementation of 

the Turing machine that serves as the model for most modern computers. While Mirowski notes 

that von Neumann had by 1950 grown skeptical of the field because he no longer believed that 

Turing machines were a productive analogy for the human mind, one of his colleagues at RAND, 

Herbert Simon, saw value in the differences between brains and computers. It’s through Simon’s 

recognition that Turing machines processed information differently from human minds that 

connections between game theory and programming become visible. 

Near the end of the 1950s, Simon’s theory of “bounded rationality” became, at least for a 

time, a core principle in game theory. Mirowski argues that even though Simon’s role in 

cybernetics is often downplayed, he is one of the true inheritors of Wiener’s cybernetics. 

Simon’s bounded rationality posits that “formal logic does not empirically describe how humans 

think,” but rather that humans reason within narrowly defined circumstances (462). Rather than 

reach a solution by “grasp[ing] the structure of explanation through mathematical intuition or 

axiomatic display,” humans often reason through mimicry, shaping their actions based on 

similarities to prior experiences and information that they draw out of their immediate 

environment (463). Trying to simulate this model of rationality, Simon produced a number of 

simulations involving a series of self-contained, problem solving modules. His software 

produced results that were “locally impressive to the untutored layperson without actually having 

to solve many of the knottiest problems of the nature and operation of generalized intelligence” 
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(465). Responding to his critics, Simon argued that intelligence can exist in organizations, 

embedded in structures that coordinate localized human behavior.12 Simon, in other words, was 

interested in considering the possibility that intelligence can exist in feedback circuits between 

agents. While game theory was shunned by mathematics and scientists for being too “applied,” 

Mirowski argues that it survived by assimilating itself into business and engineering schools as a 

theory of industrial management. These models still tried to optimize production, but they did so 

under the assumption that human agents needed systems that guided them towards optimal 

behaviors. It wasn’t until the 1980s, when game theory was rediscovered by economists as part 

of a “cybernetic wave,” that it gained wider attention once more. Importantly, this re-emergence 

of game theory into the popular imagination coincides with the way industrial management 

styles were integrated into software engineering by the 1980s. In this respect, OOP becomes a 

form of organizational intelligence, a way of expanding the powers of the human Subject by 

constraining both it and the machine Subject within particular segments of the Code. By 

examining the system of component relationships, software designers can adopt an abstract view 

of the system, allowing their Person to consider the sum of the system’s machine Subjects 

without being overwhelmed by their collective complexity. 

Atwood’s novel reconfigures the concept of a networked “bounded rationality” into a 

community based on the principle of “freedom from” complex social conflicts. The Handmaid’s 

12 The mathematical logic behind Simon’s theories can be found in the following essays: “A 

Behavioral Model of Rational Choice,” Quarterly Journal of Economics 69 (1955): 99-118; 

“Rational Choice and the Structure of Environment,” Psychological Review 63 (1956): 129-38; 

and “The Organization of Complex Systems,” Hierarchy Theory, ed. Howard Patee (1973). 
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Tale is set in Gilead, a theocratic dystopia located in the United States that forms following a 

religious civil war. Infertility is now widespread, and those few women who remain able to bear 

children are classified as Handmaids and pressed into service as surrogate wombs for high-

ranking military families. Gilead’s social structure rests on the assumption that constraining the 

decision making of a system’s individual participants is the only way to achieve stability in a 

society constantly under threat of environmental collapse and heretical intrusion. Reflecting on 

her indoctrination into the ranks of the Handmaids, Offred recalls Aunt Lydia’s assertion that 

there is an important difference between a “freedom to,” which defined the “anarchy” of pre-

Gilead America, and a “freedom from,” which defines the present day (24). Offred reflects on all 

of the personal responsibilities she had to look after during the time before Gilead: “the rules that 

were never spelled out but that every woman knew”: 

Don’t open your door to a stranger, even if he says he is the police. Make him 

slide his ID under the door. Don’t stop on the road to help a motorist pretending 

to be in trouble. Keep the locks on and keep going. If anyone whistles, don’t turn 

to look. Don’t go into a laundromat, by yourself, at night. (24) 

Atwood’s satire of feminist rhetoric through the lessons of the Aunts is memorable because it 

reframes a return to women as property as a solution to concerns about women’s safety. Even 

Offred admits that her new status as an obstetric instrument affords her a protection from sexual 

harassment and the lingering threat of rape she remembers from before the war. Now, she 

“walk[s] along the same street” with other Handmaids “in red pairs, and no one shouts 

obscenities at us, speaks to us, touches us. No one whistles” (24). Even if the men she sees 

privately view her as a sexual object, they cannot act on those thoughts. Like Offred, their 

private thoughts are bound by the scripts of expected behaviors that structure Gilead’s social 
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system. Atwood’s Gilead thus shares the strategies OOP uses to avert the problem of human-

machine disanalogy fretted over by engineers during the software crisis. Gilead effectively ends 

many of the complexities of pre-Gilead gender by restricting freedom of interaction.  

In this respect, Atwood’s novel stands out from other dystopian narratives because it has 

a decidedly cybernetic dimension. Control in Gilead exists in the circuits between people, in the 

rules that dictate the behavior between actors. Comparing Atwood’s novel to George Orwell’s 

1984, Lois Feuer explains that both dystopias leave their characters to struggle against an ever-

present threat of identity loss. Like Orwell’s Party systematically re-writing history, Atwood’s 

Gilead submerges individual identity beneath color-coded uniforms and, for Handmaids, new 

names that sever them from their past lives. Unlike Orwell who feared that the strength of human 

spirit is “relative and subject to the violence-enforced will of whoever is in power,” Feuer 

argues, “Atwood's point is that the truth of human individuality and (only through this 

individuality) human connectedness is absolute, inviolable” (88). Read from another perspective, 

the preservation of individuality loses some of the positive aspects that Feuer attributes to the 

novel because Offred’s personal strength during the course of the narrative becomes 

reconfigured as a source of torment. Refusing to let go of her pre-Gilead memories, she must 

continually suppress them and any desire she has to interact with people in ways she had before 

the coup in order to fulfill her role as a Handmaid. Should she behave unexpectedly, she will be 

declared an “unwoman” and sent into the wastes. Offred’s few interactions outside the household 

often follow a script of expected greetings and responses. She observes that her clothing, in 

particular, encapsulates her within her role as a Handmaid. While dressing, she reflects on how 

her uniform serves as a social interface: her identity defined by its “color of blood” and the white 

wings around her face which “keep [them] from seeing but also from being seen” (8). Offred’s 
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submission to the state does not require an ultimate act of emotional violence, like Winston’s box 

of rats in 1984, that forces her to proclaim a lie as truth. Rather, her torture exists in the very 

framework of Gilead itself and the way it forces her continually to deny her pre-Gilead identity. 

Resistance in Gilead is a game of prisoner’s dilemma, in which two people must step outside of 

their assigned roles at the same time or risk being reported by the other as defective. Yet because 

everyone is also encapsulated by his or her role, the decision to resist can only be made internally 

and not based on knowledge of another person’s private identity. Offred’s ability to make 

decisions within Gilead’s social system, in other words, is always already bound up with her 

status as a Handmaid. 

Like Gilead, OOP’s emphasis on encapsulated modularity also reflects the cybernetic 

aspects of bound rationality. OOP doesn’t do away with the complexity that programmers 

struggled with in the procedural paradigm. Rather, OOP wraps that complexity in an 

organizational style that minimizes its potential for entropy. Instead of trying to follow every 

single operation in a large, tangled process, OOP affords simpler perspectives. Rather than 

managing a tangle of subprocesses, each manipulating a shared data pool, programmers define 

independent modules that contain their own data and subprocesses, hiding them from others and 

only sharing data upon request under specific conditions. Encapsulation, Kay explains, produces 

“a recursion on the notion of computer itself. Instead of dividing ‘computer stuff’ into things 

each less strong than the whole—like data structures, procedures, and functions which are the 

usual paraphernalia of programming languages—each. . . object is a recursion on the entire 

possibilities of the computer.”13 Thus, OOP preserves the close relationship between human and 

13 See: http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Introduction.html 
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machine Subject by binding the latter within an encapsulated framework, shrinking its scale to 

align more closely with the limitations that the embodied Person places on the mathematical 

imagination of the human Subject. On the surface, OOP appears to restore computer 

programming at a local level to the pre-software crisis ideal of a human-machine analogy. While 

writing the machine Subject’s Code for a component, the programmer’s Subject is screened off 

from more complex concerns. Source code is still composed in the signifiers of the Person, but 

the scope of those signifiers is now encapsulated within a particular component, binding them 

with a narrow context and decreasing the opportunities for misinterpretation. 

The cumulative effect of encapsulation also makes it possible for a programmer to 

approach the system from an abstract perspective, defining relationships between components 

without needing to understand the particulars of their internal processes and data. According to 

Grady Booch (2007), OOP system design is often cyclical. Ideally, writing OOP software begins 

with an abstract plan of a system that provides a general description of the tasks it should 

accomplish and of the circumstances under which those tasks might interact with one another. 

Each task is then defined as concretely and as separately as possible. Many of these tasks will 

themselves prove to be too abstract and need themselves to be decomposed (14-20). This process 

continues, until the set of objects defined through each step of decomposition reach a “primitive” 

state and represent objects or data types that cannot or do not need to be decomposed further. To 

draw once more on Rotman’s terminology, software designers must first describe the system in 

the abstract, from the perspective of the Person and in the metaCode. With an abstract design in 

place, they can then settle into the perspective of the human Subject, confining their Code 

writing activity within modularized sections of the machine Subject. This abstract perspective 

works in reverse from Rotman’s model of the classical mathematician, privileging the metaCode 
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as a more accurate view of the system than the Code. 

If intelligence exists in the relationships between components, then the significance of 

each module is determined by those components that are more abstract than it. Consider, for 

example, a word processor. A module must exist to manage the textual signifiers rendered on 

screen. This signifier module could be decomposed into at least two modules: one that checks for 

the system’s language and loads into a memory a numeric representation of all latters associated 

with that language’s alphabet and another that holds instructions for translating numeric 

representations into the graphemes of the active font. The signifier module would thus instruct 

the alphabet module to pass information into the grapheme module and then render the 

graphemes according to the specifications it receives from the latter. Neither of these more 

primitive modules have much significance in the system by themselves; instead, they gain 

purpose through the relationship that the more abstract signifier module produces between them. 

The signifier module then itself gains purpose through relationships established by a more 

abstract module defining documents in the word processor’s system. Without an abstract module 

to pass document text to it, the signifier module serves little purpose. Encapsulation is visible in 

this example in the way that more abstract modules are independently defined. Programmers can 

view a slice of the system, seeing relationships between modules and the patterns of information 

that flow between them, but they are blind to the specific operations each module performs on as 

information passes through them. Nor can they see whether those modules themselves contain 

their own networks of more primitive modules. Programmers value the hierarchies produced 

through encapsulation because, unlike the spaghetti code of the procedural paradigm, they can 

trace readily the flow of information between distinct components, identifying the moment at 

which information is passed between them in an unexpected form.  
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Atwood’s novel helps expose social tensions that can arise from this organizational 

framework that are often unacknowledged by technologists. For most members of Gilead, only 

oral communication is permitted. This restriction reifies Gilead’s encapsulation by making sure 

that most communication is local, one-to-one between its components. Yet for high-ranking male 

officers, like Commander Fred, there remains some access to written information. Mario Klarer 

explains that Atwood’s dystopia shows how “orality can be deliberately cultivated to cement 

political structures and for the purpose of eliminating the destabilizing potential inherent” in 

access to print (130). For Klarer, forced orality is oppressive because “knowledge handed down 

orally eliminates obsolete words and meanings” effectively “narrow[ing] the perspective, which 

in turn makes experience something permanently present, preventing historical thinking. All 

these factors, in their totality, are supposed to make female criticism of a system impossible, 

although this logic is better described as a way of keeping women’s faculty of abstract thought at 

bay” (133; 136). Reading the cybernetic aspects of OOP in the context of Klarer’s comments, we 

can understand bounded rationality as an access constraint on signifiers, specifically on sites of 

interpretation and methods of transmission. Commander Fred’s rationality is less bound precisely 

because he has access to a wider range of signifiers than Offred. When Offred asks him why he 

has access to non-religious materials like old magazines, he replies that Gilead’s leaders are 

permitted to have them because their motives are “beyond reproach” (158). The larger religious 

mission of Gilead belongs to the Commanders to interpret and is beyond the scope of a 

Handmaid, a Wife, a Martha, or lower ranking officers and conscripted men of the military 

whose perspectives are bound to fulfilling their respective charges. From their position as the 

most abstract components in Gilead, male Commanders can use their access to a broader range 

of signifiers to determine the best configuration of other people, re-arranging them so that they 
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can better contribute to Gilead’s abstract goal of repopulating the world with good Christians. 

While it may be the case in smaller software projects that a single programmer filters his 

or her perspective between the bound Subject of the component and the abstract Person of the 

system, it also possible for designers who are responsible for high level system planning to have 

little or no direct contact with the programmers responsible for implementing individual 

components. Considered as a labor problem, OOP makes it easy to exploit techniques of 

encapsulation to draw programmers into projects purely for their intellectual labor without 

allowing them to contribute to or voice concerns about the project as a whole. The term “code 

monkey,” used playfully by programmers as a reminder that their primary concern is in 

producing source code, points to this divide between system designers and project staff. As in 

Gilead, OOP’s split perspective can be exploited by forcing portions of a development team to 

limit their input within the confines of particular components. Project members with a more 

abstract view of the system are in a position to determine the value and meaning of other 

members’ labor, while those with a more primitive view of the system become alienated from the 

context of their production. On the surface, this social structure is hierarchical; however, OOP’s 

tendency to re-use encapsulated components also places some power in the lowest levels of its 

system. Software is rarely written from scratch. Beneath the typical software application lie 

entire libraries of components that support it. As a result of encapsulation, these lowest levels 

remain inaccessible, as software applications make requests—like “draw a window for me,” 

“pass my document into the printer spool,” or “let me access files on the USB drive”—but have 

little control over how those requests are fulfilled. These lowest level components, collectively 

referred to as the “platform,” exert their own form of control. In order to remain compatible with 

a platform’s standards, software development projects often incorporate these libraries as a 
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matter of convenience both in reducing labor costs and in making matters easier for their users, 

who are presumed to have them installed already. The “code monkeys” are in this respect doubly 

bound, finding the mathematical imagination of their Code writing Subjects constrained both by 

the abstract expectations communicated to them from corporate managers and from the rules 

already in place from companies like Microsoft and Apple, who control the low-level libraries of 

commands they have to use to build the components they are assigned to by their managers.14 

Gilead does not escape this tension either. While most critics focus on the hierarchy 

formed along gender lines through abstraction, Gilead is itself bound by the changes to human 

biology that occurred following The United States’ second civil war. With the structure of Gilead 

in mind, Atwood’s novel demonstrates the limitations placed on individual perspective within an 

OOP model in two ways. Gilead is ostensibly a theocracy, but the designs of the Commanders 

are ultimately bound by the limitations on human reproduction. The roles they define within 

Gilead and the way they assign them within their own homes are always already influenced by 

the need to overcome widespread infertility. Because the primary task of each household is to 

repopulate society, the Commanders manage the relationship of their household to the rest of the 

society, requesting replacements as necessary and passing new members along to be managed 

directly by their wives. The wife carries out the household’s interests locally through a modular 

decompostion into other components representing her various domestic duties. The wife can 

observe and issue commands but has little direct involvement with the labors of her station. 

Within Commander Fred’s household, Serena Joy’s primary responsibility is to manage the 

14 Not to be confused with Gregory Bateson’s use of the term “double bind.” While the demands 

of a project manager could conflict with the standards of the platform, this is not always the case.  
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Marthas—a class of components that handles the manual labor of domestic upkeep—and engage 

in sexual intercourse with Fred; however, because Serena Joy is infertile, the labor of pregnancy 

is decomposed. Offred acts as her womb-module, recognizing herself as encapsulated: the 

Handmaids are “containers, it’s only the insides of our bodies that are important” (96). The 

modular decomposition of childbearing is most apparent during those scenes in which Fred, 

Serena Joy, and Offred are engaged in their intercourse ritual, when Offred literally slots into 

Serena Joy’s abdomen. As Serena Joy cradles her, she thinks to herself that this position “is 

supposed to signify that we are one flesh, one being. . . [Serena Joy] is in control of the process, 

of the product” (94). Encapsulation is also evident in her relationship with the Marthas, who she 

claims often “talk about [her] as though [she] can’t hear. To them, [she is] a household chore, 

one among many” rather than a person (48). Even though everyone in the house is effectively 

isolated from one another, bound by their specific roles in the production of children, everyone is 

in a sense dependent on Offred’s body. The success or failure of Fred’s role in shaping Gilead is 

both symbolically and literally dependent on her ability to bear a child. If she fails, the household 

will be viewed as defective. Offred may simply be replaced, but given the past failures of 

Handmaids in Commander Fred’s house, he may be declared insufficiently devoted to Gilead’s 

cause and fall victim to a “purging.” Modular encapsulation’s bound rationality is thus not a 

simple hierarchy. The cybernetic dimension of OOP permits control to exist at both ends of a 

hierarchy, leaving those in the middle able to act only within a limited set of circumstances. 

III. Conclusion: OOP and Cultural Histories of Software 

Atwood’s novel illustrates that a “freedom from” approach to complex problems “solves” 

them by relegating them beyond the scope of a system. OOP, in other words, makes it easier for 

programmers to read algorithms in source code by filtering their perspective so that they can’t, or 
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don’t have to, focus on aspects of software that are difficult for a human reader to understand. If 

one’s goal is simply to manage the production of software, then this selective filtering is mostly 

beneficial. Any control that is ceded to other developers or designers lowers the cognitive burden 

of everyone involved because encapsulation means that no one needs to know everything about a 

system for its components to operate together in a well-coordinated fashion. The highest level 

designers can simply assign tasks to trusted programmers who in turn can draw on platforms of 

component libraries that represent a demonstrable standard of stability. But what if our 

relationship to software’s source code isn’t one defined primarily by production? How does our 

perspective on OOP change if we approach software source code as an aesthetic object subject to 

cultural study or as a site of political power? Scholars practicing methodologies like Critical 

Code Studies that encourage us to engage in a hermeneutics of source code and legal activists 

like Lawrence Lessig who argue that source code is homologous to, and in some cases more 

powerful than, legal code raise these very questions but they do so without explicitly addressing 

how OOP constrains our ability to address them. 

In many ways, OOP encourages the same sort of myopia that led Henry to refuse to 

acknowledge that Damon’s death was caused by the very logic he built into the system. By 

allowing us to read source code that is encapsulated within specific modules, OOP makes this 

myopia functionally inconsequential. In a software system that is modularized properly, a 

fixation on a particular algorithm does not matter, even if it leads to a misinterpretation of what 

was going on elsewhere in the system, so long as that particular algorithm fulfills its assigned 

role. Models of source code criticism, whether as part of an aesthetic, cultural, or legal inquiry, 

that privilege close reading assume a model of software design wherein particular algorithms can 

be directly representative of the entire system. Contrary to Kay’s description of OOP as a form 
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of recursive self-representation, the cybernetic element of OOP places a significant share of 

information processing in the structural relationship between components rather than merely in 

the components themselves. Close reading source code in order to piece together a rich, complex 

algorithmic narrative of OOP software is possible provided the scale of the source code’s text 

remains human readable. Such a narrative would still functionally resemble the tracings of 

spaghetti code that procedural programmers dealt with, jumping in and out of various 

components to follow the flow of information; however, modularization minimizes the effect of 

the disconnect between human and machine perception on code legibility.15 Yet modern 

software is now so vast that these methods fall prey to the same problems raised by engineers 

during the software crisis. Critics and cultural historians of software, in other words, need to 

explore methodologies of scale. The remaining chapters of my dissertation serve as an argument 

that while there are still cognitive barriers to understanding software, it is possible to leverage 

techniques of source code management and text analysis to frame software as a cultural and 

political problem. 

Nonetheless, problems of access remain. A single software application is connected to 

hundreds of software libraries. Both the application and the component libraries it draws on are 

defined independently, and yet during run-time the application is functionally inseparable from 

the network of relationships it participates in. As in Gilead’s households, that application is 

bound by the algorithms those low-level component libraries provide as support. Companies like 

15 See, for example, my study of the SCUMM game engine, “Narrative and Spatial Form in 

Digital Media: A Platform Study of the SCUMM Engine and Ron Gilbert's The Secret of Monkey 

Island,” Games and Culture 7.3 (May 2012): 209-237. 
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Microsoft and Apple thus exert a degree of control over software ecosystems that has been 

acknowledged in economic histories of computing but that has not been well documented in 

intertextual studies of software. Chapter 4 examines the Open Source Software ecosystem as an 

analogy to the closed platforms of Microsoft and Apple to map the cumulative effect of OOP 

design on software systems and visualize how transparent design conceptually divides a system’s 

interface from those algorithms that actually carry out users’ commands and shape their data. 

Chapter 5 narrows our focus back to a single application, tracing the influence of particular 

components in order to examine whether the bibliographic history of source code is distinct from 

changes visible at the interface. In both cases, the software in question consists of millions of 

lines of code, equivalent in word count to hundreds of novels, and far beyond the idealized 

critical framework of a single human reader. 
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Chapter 4 – GNU/Linux: A Tale of Two Transparencies 

 

“Steve Jobs, the pioneer of the computer as a jail made cool, designed to sever fools from their 

freedom, has died. . . . Nobody deserves to have to die—not Jobs, not Mr. Bill, not even people 

guilty of bigger evils than theirs. But we all deserve the end of Jobs' malign influence on people's 

computing. Unfortunately, that influence continues despite his absence. We can only hope his 

successors, as they attempt to carry on his legacy, will be less effective.” 

—From Richard M. Stallman’s blog, October 6, 2011. 

 

 For those hackers and hobbyists who feel scorned by the corporate turn towards 

transparent design to expand their customer base, the Free/Libre and Open Source Software 

movement (FLOSS) represents a return to personal computing’s roots. FLOSS’ calls for a 

political transparency in computing, designing systems that encourage exploration and 

modification. The centerpiece of the FLOSS community is the GNU/Linux operating system. 

Since its initial release in 1991, GNU/Linux has expanded beyond the realm of tinkering and 

emerged as a powerful, versatile, and stable competitor to commercial platforms.1 In addition to 

personal computers, GNU/Linux has been ported to phones2, video game consoles3, MP3 

1 Although the operating system is often commonly referred as just “Linux,” this chapter will 

follow the convention of “GNU/Linux” in order to recognize the operating system’s origins as 

part of the GNU Project. 

2 The Android mobile device operating system is built on top of GNU/Linux. 

3 Sony released an official kit for their Playstation 2 game console that allowed owners to install 
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players4, DVRs5, and even alarm clocks6. FLOSS’ history is foregrounded in the practice of 

“forking.” Because the source code for every component is made available to users, anyone is 

able to modify the code and create a new branch of development. This practice is permitted 

under the agreement that users re-release any modifications back into the community as a 

separate version, acknowledging the original lineage of authors before them. Different versions 

of the operating system can be found in the form of “distributions,” or forks of the entire 

platform modified and re-packaged according to a group’s interpretation of the community’s 

guiding principles7, a specific set of use practices8, or simply disagreements over technical 

Linux if they had purchased the hard-drive add-on. These kits and their included documentation 

are no longer available; however, the GNU/Linux community put together their own versions. 

See “HOWTO: How to Install Linux on a Playstation 2 without Sony's Official Linux Kit” at 

http://kernelloader.sourceforge.net/tutorial/howtoinstalllinux.html 

4 IPodLinux is a distribution for early iPods: http://ipodlinux.sourceforge.net/index.shtml 

5 MythTV is a distribution that turns a personal computer into a DVR: http://www.mythtv.org/ 

6 The original Chumby was an Internet capable clock. It’s parent company still produces a legacy 

model: http://www.chumby.com/pages/chumby_one 

7 The Gentoo and Slackware distributions both stress customization; however, Gentoo and 

Slackware differ on whether automated package management systems impede the users’ ability 

to configure their systems. See: http://www.gentoo.org/ and http://www.slackware.org/ 

8 Scientific Linux is a distribution that includes data analysis and visualization software packages 

as part of its base installation. See: https://www.scientificlinux.org/ 
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aspects of system management9. In this sense, the GNU/Linux community embodies much of the 

chaos of the early market for personal computing; yet unlike personal computing in the 1980s, 

the GNU/Linux community actively addresses problems of compatibility by encouraging public 

debate over and review of shared standards. In short, GNU/Linux represents a different response 

to the same socioeconomic forces that led corporate developers to embrace transparent design’s 

strategies of obfuscation and functional misrepresentation. According to its most outspoken 

proponents, GNU/Linux and FLOSS embody another model of transparency in software, one 

resembling the political transparency considered a necessary precursor to democratic societies. 

Yet GNU/Linux has received very little attention in studies of digital media, especially 

compared to video games, electronic literature, or broader theoretical discussions about networks 

and code. This absence could be attributed to the general public’s lack of awareness of 

GNU/Linux. Prior to Google’s incorporation of GNU/Linux into its Android mobile device 

operating system, there were few ways to purchase a computer system with GNU/Linux pre-

installed and fewer still advertisements or other public representations of the operating system. 

GNU/Linux has enjoyed a quiet acknowledgment among network administrators as the superior 

choice for servers, supporting the majority of the Internet’s websites, data servers, and mail 

systems. Unlike commercial operating systems, potential users can’t stumble across GNU/Linux 

9 The Debian and RedHat/Fedora distributions are both known for their stability but Debian is 

considered the far more conservative of the two, releasing new versions every couple of years. 

Each established package management systems that have both been widely accepted as standards 

within the community, serving as the basis for other popular distributions like Ubuntu and SuSE. 

See http://www.debian.org/ and http://www.fedoraproject.org/ 
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running on display model computers in an electronics store. Nor are there ad campaigns for 

GNU/Linux. For most people, GNU/Linux is something discovered by word of mouth or first 

encountered in a laboratory.  

During the 1990s, GNU/Linux was regarded as an operating system for programmers by 

programmers. For much of its early history, it suffered from the same lack of effective 

documentation that made the first home computers unusable for most people. Even though the 

Linux Documentation Project began to collect community knowledge as early as 1992 to make 

the operating system more accessible, GNU/Linux experts were known for their intolerance of 

users who lacked technical aptitude. It was not unusual on forums for novices to be told curtly 

“RTFM” in response to questions.10 The early GNU/Linux community also exhibited a startling 

degree of sexism, so much so that concerned members created a list of rules as part of the Linux 

Documentation Project to discourage gender discrimination and sexual harassment.11 

Considering these last reasons especially, it is not surprising that scholars in digital media such 

as David Golumbia (2010) and Wendy Chun (2011) have dismissed the GNU/Linux model as 

insufficiently distinct from mainstream computing, noting that in practice it exhibits many of the 

same critical problems of centralized power and authority. Even GNU/Linux’s self-image of 

resistance is subsumed, Golumbia argues, by the willingness of big tech companies like IBM and 

Oracle to build their products and services on top of the GNU/Linux’s infrastructure, 

transforming the community into a source of free labor for neoliberal enterprise (147). While it is 

true that many contributions to GNU/Linux have come from privately funded developers and 

10 “Read The Fucking Manual” 

11 See: http://www.tldp.org/HOWTO/Encourage-Women-Linux-HOWTO/index.html 
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that its software has been adopted by corporate, university, and government laboratories across 

the world, the operating system and the software ecosystem it supports remains open through the 

availability of source code. This single principle continues to draw a diverse set of perspectives 

into the community and leaves users able to choose distributions that avoid corporate or closed 

source contributions if they desire. Software licenses like the GNU General Public License 

ensure that even if corporate developers contribute code to a project, that code must remain 

freely and openly accessible. 

GNU/Linux and FLOSS has already begun to gain attention within the social sciences as 

scholars there recognize that its openness allows for the study of technological development in 

ways that the closely guarded secrets of commercial design do not. I contend that GNU/Linux 

and FLOSS should be examined more closely by academics in the digital humanities as well, not 

just because their communities and software present an alternative to transparent design but also 

because the GNU/Linux community’s experiments in practices of openness and access can 

provide examples for the exercise of similar ideals within the digital humanities. For example, 

Robert Cummings (2006) rightly observes that the coding submission, review, and commit 

process resembles academic peer review. In addition to his observation, it’s worth noting that 

many of the Copyleft and other Open Access academic publication models were derived from 

the GPL. Furthermore, Adrian Mackenzie in Cutting Code: Software and Sociality (2006) 

describes GNU/Linux as more than just a technology: it is also a “social arrangement for the 

ongoing production of code” (81). Participating in the GNU/Linux community by reading and 

writing code, or even just submitting bug reports and feature requests for those unable to 

program, produces a “feedback loop between technical performance and performativity. . .[that] 

triggers constant modulation both in the object itself and the practices associated with that 
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object” (76). In other words, GNU/Linux and FLOSS encourage a meta-critical engagement with 

computing power that transparent design actively discourages in its obfuscation of algorithmic 

processes.  

This view of software is precisely the sort of strategy advocated by scholars in Software 

Studies and Critical Code Studies like Lev Manovich (2001), Matthew Fuller (2003, 2005), and 

Mark Marino (2006). Yet both of these subfields within digital media studies have thus far been 

confined largely to experimental genres, video games, and electronic literature. Unlike more 

widespread yet mundane software like web browsers, window managers, file browsers, or word 

processors, the genres of software already receiving attention in digital media studies contain an 

explicitly aesthetic dimension that readily allows for an extension of critical strategies applied to 

older media. For example, to account for the interactive nature of digital media, the close reading 

of software often draws upon reflective techniques similar to those found in Reader Response 

criticism. Scholars pay careful attention to the forms rendered on screen, discussing the 

possibilities for interaction visible between user and software and interpreting those possibilities 

through additional critical frameworks.12 This approach to software is exceptionally good at 

exploring how users understand their relationship to software, particularly the ways in which the 

metaphoric representations of algorithms rendered on screen produce engagements among 

computation, cultural politics, historical moments, and social movements. Nonetheless, it is 

important to acknowledge that transparency imposes constraints on our ability to engage 

12 For examples of this approach, see Alexander Galloway’s Gaming: Essays on Algorithmic 

Culture (2006), Noah Wardrip-Fruin’s Expressive Processing (2009), or 10PRINT 

CHR$(205.5+RND(1)): Goto 10 by Nick Montfort, et al (2012). 
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critically with software.  

In her discussion of methodologies in cultural studies of science, Karen Barad proposes 

that acknowledging material constraints on discourse can be productive. These constraints are 

important not because they establish some sort of factual basis for the evaluation of discursive 

statements; rather, this acknowledgement helps us to understand better “the conjoined material-

discursive nature of constraints, conditions, and practices” (152). Material constraints such as 

physical/chemical/biological processes or the availability and capabilities of tools—in this 

context, the perception imposed on users by transparent design—matter because our intra-action 

with them continually places us in a particular relationship to our environment. It is therefore 

important to understand that these constraints are not just a given to avoid “falling into the 

analytical stalemate that simply calls for recognition of our mediated access to the world and 

then rests its case” (152). Instead, we must acknowledge that transparent interfaces, as 

constraints, are themselves part of a technological discourse and are thus also open to 

observation, debate, and change. In order for us to account for the discursive constraints of 

transparency, we must set aside the comfortable similarities to older media evident in these 

explicitly aesthetic genres of software. These similarities must be understood as effects of 

transparency.  

Even as Critical Code Studies calls for this change in perspective, its methods produce a 

perspective constrained to particular historical moments in the cultural history of computing. 

Marino argues in his “Critical Code Studies” manifesto that scholars must recognize “that lines 

of code are not value-neutral and can be analyzed using the theoretical approaches applied to 

other semiotic systems in addition to particular interpretive methods developed particularly for 

the discussions of programs.” While he describes an aesthetic of source code—complete with its 
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own formalisms and stylistic play—he also detaches source code from the circumstances of its 

production and execution. The prevalence of the object-oriented paradigm of programming 

means that today’s software is not only multi-authored, but that meaning lies as much in 

structural relationships between components as in the lines of code defining individual 

components. The close reading of source code is therefore a methodology best applied to 

software with smaller codebases. Modern software applications often have codebases—the entire 

collection of source code documents describing the program that are required by a compiler to 

build that program—that rival small print libraries, with word totals equivalent to a handful, 

dozens, or even hundreds of novels. Beginning the 1970s, computer programmers restructured 

their practices to account for this scale (see Chapter 3), but digital humanists by and large have 

not recognized the epistemological problems that scale poses for software studies. 

As I discussed in the previous chapter, object-oriented programming emerged in the early 

1980s as a solution to the problem of legibility in massive, complex software systems. By 

writing source code according to the object-oriented of principles of modularity, encapsulation, 

and polymorphism, programmers design component systems that shape information by passing 

data between one another. This structural process is similar to the Fuller’s description of the way 

information is generated within media ecologies, where networks of hardware can produce new 

forms of intelligence that can’t be explained by the sum of their parts. A network of 

technological objects “taken up in unexpectedly massive quantity and variety” affords “further 

connection to modalities of life and mediality, which it then also becomes folded into and 

continues to mesh with and compose” (49). In this sense, Critical Code Studies enacts a problem 

opposite to transparent design and one familiar to post-New Criticism schools of literary theory: 

too close of a focus on the source code itself removes software from the broader context of 
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computation. Close reading alone cannot account for the participation of particular lines of code 

in the abstract representations of information that span multiple components in a software 

system. Without recognizing object-oriented programming as a bibliographic strategy, scholars 

cannot fully articulate the relationships that programmers describe in source code between users, 

their machines, and their data. The close reading of source code is therefore best suited to early 

forms of personal computing software. Studying the source code to modern software requires a 

methodology that can account both for its scale and the complex bibliographic relationships 

between source code files resulting from object-oriented principles. 

Fortunately, this problem of archival scale is not unprecedented within the digital 

humanities. While the aims and techniques of the digital humanities are widespread, recent 

applications of “distant reading” or large-scale, text analysis have demonstrated that it is possible 

to identify broad textual patterns across a corpus too large for a single reader to trace. Digital 

humanists devising ways to adapt information retrieval techniques, like topic modeling, to to 

identify and interpret discursive elements in large corpora. Topic modeling is an unsupervised 

machine learning technique that searches for groups of words with a high probability of 

appearing together in the same document.13 One advantage that topic modeling has over simpler 

word or feature counts is that topic modeling can assign different instances of a word to different 

topics, determining whether that word represents one topic or another based upon the patterns of 

other words with which it commonly co-occurs. A typical topic modeling output will return a list 

of words grouped into “topics” and a data vector for each document detailing the number of 

13 The latent Dirichlet allocation algorithm used by most topic modelling frameworks today is 

explained in more detail in the Chapter 5. 
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words in each document that belong to each topic. Matthew Jockers has shown that it’s possible 

to trace how literary themes develop over time with topic modeling output by grouping 

documents by year of publication and graphing changes in topic memberships from year to 

year.14 For researchers to use topic modeling in this way effectively, they must possess some 

prior knowledge of the corpus’ context in order to determine whether the topics represent 

recognizable discursive concepts.15 Recently, engineers have also proposed that topic modeling 

can be used to quickly gain a sense of a large code base’s organization and have begun to 

experiment with topic models as a way to trace patterns in software development (Kuhn 2012). 

Topic modeling, in other words, could derive a brief description of the processes occurring with 

encapsulated modules that could then be analyzed within a post-processing framework that 

models the network of relationships between them. Even though the scale and structure of 

modern source code resist close reading, distant reading allows us to interpret the structures of 

software that transparency hides from us. 

This chapter begins with a historical examination of GNU/Linux and FLOSS as a 

reaction towards transparency. Richard M. Stallman’s description of “free software” argues that 

the public availability of source code will undo the hierarchal relationship between corporate 

developers and users. His writings thus push against transparent design’s implication that the 

complexities of computation must remain inaccessible for personal computer software to be of 

14 See also Andrew Goldstone and Ted Underwood’s historical study of literary scholarship 

which applies topic modeling to issues of the Papers of the Modern Language Association and 

going as far back as the 1940s. 

15 See Chapter 8 in Jocker’s Macroanalysis: Digital Methods and Literary History (2013). 
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benefit to the general public. In this sense, Stallman presents a different understanding of 

usability, one defined by open-ended affordances rather than channeled through constraints. In 

practice, however, Stallman ideas have not been implemented uniformly throughout the 

GNU/Linux and FLOSS communities. Whereas some GNU/Linux distributions foreground 

customization and equate access to modification with freedom, others have made great efforts to 

present themselves in terms similar to commercial operating systems, foregrounding ease of use 

in ways that bring to mind some of Apple’s advertisements. These differences raise concerns 

regarding whether the source code of GNU/Linux actually reflects the free software’s ideals of 

political transparency and user freedom. Following the historical discussion of GNU/Linux, I 

conduct a case study of a graphical user interface library called Xfce, as implemented in the 

Debian distribution of GNU/Linux that examines the structural relationships between package 

dependencies in a user friendly interface. The results of this study reveal that transparent design 

in practice is more nuanced and deliberate than the descriptions of as a blanket strategy of 

simplification as proposed by academic and commercial developers in the 1980s (see Chapters 1 

and 2). This case study, in short, shows just how little we can see and describe when we study 

software solely via its interface.  

I. GNU/Linux and Political Transparency 

If William Gibson’s dystopia is one in which a corporate monopoly on computing power 

leaves a disenfranchised population no options for access other than to scrounge through last 

year’s techno-junk or steal the hottest hardware, Richard M. Stallman’s is one in which corporate 

technocrats freely share their resources, knowing that all access and use will only occur under 

their terms. In 1984, the same year that Gibson’s Neuromancer and Apple’s Macintosh were 

released, Stallman wrote “The GNU Manifesto,” publishing it the following year in Dr. Dobb’s 
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Journal of Software Tools.16 Short for “GNU’s Not Unix,” Stallman described his GNU Project 

as a reaction to AT&T’s decision to restrict access to its Unix operating system through 

copyright. Although AT&T already exerted some control over access to Unix through license 

agreements with universities and corporations, it could not profit from the operating system as a 

result of the settlement terms of a 1956 anti-trust suit; however, in 1983 a second suit resulted in 

the break-up of the Bell System, separating Bell Labs—the home of Unix within AT&T—from 

its parent company. Prior to 1983, Unix’s licenses included full access to the operating system’s 

source code, making it an extremely valuable tool for universities because it allowed students to 

study its internals directly and faculty to modify the source code to suit the needs of their 

computing laboratories. The commercial licenses that followed in the wake of the 1983 

settlement removed this access, accelerating the trend of “closed sourcing” among programmers 

that already had troubled Stallman.17 But with the GNU Project, Stallman described a future in 

which users would “no longer be at the mercy of one programmer or company which owns the 

sources and is in sole position to make changes” (36). Stallman’s writings rarely use the term 

“transparent,” but when they do it is always in reference to political transparency: the idea that 

the inner workings of a system be made as visible and as accessible as possible to those who are 

subject to them. Although Stallman’s early writings do not address transparent design directly, 

16 Unless otherwise noted, all references to Stallman’s writings are from his collection of essays, 

Free Software, Free Society: The Selected Essays of Richard M. Stallman, 1st Ed (2002). 

17 For a more detailed account of the Stallman’s experiences as a programmer at MIT’s AI 

Laboratory during the beginnings of the commercialization of software, see the final chapter of 

Steven Levy’s Hackers: Heroes of the Computer Revolution (1984). 
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the politically transparent mode of design he calls “free software” can be readily interpreted as 

diametrically opposed to transparent design’s strategies of obfuscation. 

The GNU Project itself did not produce a complete operating system. By 1990, the GNU 

Project had assembled many of the core system tools required for an operating system, yet it 

lacked a kernel, a bundle of libraries that carry instructions back and forth between a machine’s 

hardware and software. In 1991, a Finnish graduate student named Linus Torvalds began a 

similar projected, frustrated that the Minix operating system, itself a reverse engineered clone of 

Unix, was available only for educational purposes.18 Torvalds wanted an operating system he 

could tinker with outside of his university’s laboratories, and because the GNU Project had not 

completed its Unix clone, he began to write his own. By the end of the year he had released his 

“Linux” kernel as free software. In 1992, his kernel drew the attention of developers working on 

Stallman’s GNU Project, who began to integrate the Linux kernel into the system tools they 

already had completed.  

Today, the GNU/Linux operating system is still very much a combination of the two 

projects, at least at its lowest levels. Stallman’s Free Software Foundation still oversees 

development of the GNU Project’s tools, and Torvalds still maintains the code base for his 

kernel. The prevalence of forking and the ability to patch—or insert modifications as the source 

code is built into executable files—means that Stallman’s and Torvalds’ projects maintain 

canonical versions of their software which may not match their implementation in the various 

GNU/Linux distributions in circulation. Yet this history very much resembles the free software 

18 This account is taken from Torvalds’ memoir, Just For Fun: The Story of An Accidental 

Revolutionary (2001). 
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that Stallman describes in his writings. The ready availability of source code allows others in the 

community to modify both the GNU tools and the Linux kernel to suit the needs of their own 

projects. Stallman and Torvalds do not always agree with one another about the nature of free 

software, nor with other prominent members of the community. Keeping the source code freely 

available, however, allows for a mode of design defined by political transparency: because the 

core components of GNU/Linux are free software, the community ultimately has the final say in 

how they are used. Yet the community is more or less a loose confederation of the like-minded, 

with each project fork determining its own system of governance and decision making.19 

Stallman’s work shares with the radical technologists of the late 1970s and early 1980s 

the belief that personal liberty and empowerment is possible through technology.20 Yet unlike 

many of his contemporaries, Stallman did not go on to found a technology company, and in fact 

his work is characterized by a distrust of privatized development. In his “GNU Manifesto,” he 

argues that allowing for the free circulation of source code “will remove operating system 

software from the realm of competition. You will not be able to get an edge in this area, but 

neither will your competitors be able to get an edge over you. You and they will compete in 

other areas, while benefiting mutually in this one. If your business is selling an operating system, 

you will not like GNU, but that’s tough on you” (37). Monopolistic control over software, he 

19 Many projects include an explicit statement of rights and responsibilities. See, for example, the 

Debian Constitution: https://www.debian.org/devel/constitution 

20 For a more in depth look at the revolutionary tone surrounding personal computing, see Fred 

Turner’s From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network and 

the Rise of Digital Utopianism (2006). 
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notes, establishes a technological “police state” in which corporate developers “force everyone to 

obey them,” building software that permits only their models of use (36). When users are not free 

to determine their own relationship to computers, software becomes purely a way of 

“[e]xtracting money from users of a program” (38). Establishing a single, correct mode of use is 

“a deliberate choice to restrict” agency that results in “the deliberate destruction” of the 

possibilities of creative participation in technology, thereby “reduc[ing] the amount of wealth 

that humanity derives from the program” (38). Because operating systems establish a common 

platform for software across a variety of hardware combinations, they should not be designed in 

ways that constrains the possibilities for techno-cultural production. In other words, allowing a 

single company to control their development, in turn, allows a small group of people to shape all 

software written for it. 

In this regard, Stallman was one of the first to propose that software serves an 

institutional function, constraining computer use within an ideological framework of laws and 

policies described within its source code. Legal scholar Lawrence Lessig cites Stallman’s work 

as an influence on his own activism. Although Lessig is known most for his argument that “code 

is law,” he comments in the introduction to Stallman’s collected writings that he first 

encountered the idea in Stallman’s work. In Code and Other Laws of Cyberspace (2006), Lessig 

explains that like laws, software “determines what people can and cannot do” with their 

computers; source code, he continues, “codifies values, and yet, oddly, most people speak as if 

code were a question of engineering. Or as if code is best left to the market” (77-78). Yet unlike 

the law, software does not prescribe what is allowed or disallowed through threat of punishment; 

instead, software’s influence is more or less Althusserian in that the rituals of use it provides 

users inculcate in them attitudes about technology. Through continued interaction, users learn not 
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only how a system “should” be organized, developing the intuitive understanding that 

transparency’s theorists claim software provides a priori, but also the “correct” attitudes they 

should have about their machines and those who design them. Software is therefore more 

powerful than law in that its influence is constant during the act of use, and transparent design 

encourages users to ignore that influence and to internalize it blindly as a condition of access. 

Although Stallman frames his GNU Project in response to the closure of Unix, it’s important to 

recognize that his announcement occurred during a moment in the cultural history of computing 

when Steve Jobs, as part of the campaign to promote Apple’s Macintosh, was commenting in 

interviews that his company knew more than anyone else what users wanted out their computers, 

that Apple’s view was “the right way of looking at products” (243). Given that Unix was not an 

operating system intended for home use, it’s not surprising that Stallman’s manifesto does not 

mention Apple, Microsoft, or IBM explicitly; yet he is clearly opposed to the relationship 

between programmer and user that results from transparent design. The dystopian imagination 

underlying his description of a politically transparent mode of software challenges Apple’s self-

promotion of the Macintosh—twisting the smiling face on its startup screen into the face of Big 

Brother that its avatar smashes in the 1984 Super Bowl commercial—and Microsoft’s quiet 

monopolization of the operating system market through the widespread adoption of DOS. 

For software to be “free,” Stallman argues, it would have to be recognized as a cultural 

discourse rather than simply as a technology; however, this stance is difficult to realize if only a 

small number of people are allowed to participate in that discourse. Stallman’s 1996 essay, “Free 

Software Definition” clarifies many of the ideas he first proposed in “The GNU Manifesto.” He 

begins by noting that free software should be understood as “a matter of the users’ freedom to 

run, copy, distribute, study, change, and improve the software;” in this respect, it’s best 
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understood to be “‘free’ as in ‘free speech,’ not as in ‘free beer.’” (43). The free distribution of 

software, he continues, is possible only as a consequence of the freedom to study and modify 

source code. In outlining the four basic properties of free software, he also begins to shift away 

from his earlier emphasis on personal liberty and more towards software as a common platform 

for a community: 

• Freedom0: The freedom to run the program, for any purpose.  

• Freedom1: The freedom to study how the program works, and adapt it to your 

needs. (Access to the source code is a precondition for this.)  

• Freedom2: The freedom to redistribute copies so you can help your neighbor.  

• Freedom3: The freedom to improve the program, and release your improvements 

to the public, so that the whole community benefits. (Access to the source code is 

a precondition for this.) (43) 

Furthermore, Stallman argues that the freedom to participate in software as a discourse should 

take precedence over any technical concerns. In “The GNU Project” (1999), an essay reflecting 

on GNU’s role in shaping the Linux operating system, Stallman addresses the concern that 

GNU/Linux will never force companies that follow the Apple model out of the market. He 

argues that even if free software does not have any technical advantages over commercial 

software, it would still have “a social advantage, allowing users to cooperate, and an ethical 

advantage, respecting the user’s freedom” (24). While the writings on the GNU Project may not 

effect the same sense of urgency as novels by science authors like Gibson, Bruce Sterling, and 

Margaret Atwood—all of whom envision a future where all political and social power is based 

upon the control of information flows—Stallman similarly presages many of the technologies 

present in modern software used to extract money from users or monitor their behavior. Today, 
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app stores and digital rights management tools continually examine users’ computers, ensuring 

that everything has been paid for properly and is accessed only by the original purchaser. 

Upgrades, add-ons, and enhancement packages are sold in the form of “unlocks” that enable 

already features already present on users’ machines but locked until a payment is received to 

encourage further transactions with developers beyond the initial purchase. Cloud services offer 

users access to their data from anywhere with an Internet connection, usually at the cost of 

analyzing anything they upload. In a future where transparent design runs rampant, users adopt 

these new technologies swiftly with little consideration of the socio-economic and political 

dimensions of the algorithmic operations obfuscated by user-friendly interfaces. 

In order to understand the significance of Stallman’s claim that software can be 

politically free only if its source code is made freely available, it is important to be familiar with 

the functional relationship between software and source code. Today, commercial software is 

distributed as executable binaries without any reference to the original source code. This process 

is referred to as compilation, and it involves organizing all documents associated with the 

software in a way that reflects the intertextual relationships produced via information flows 

between separately defined components. Once organized, these documents then systematically 

translate them into a low level language of direct hardware instructions, usually some form of 

Assembly. The Assembly code is then translated further into a binary code executable on a 

specific type of hardware platform. In short, compilation produces a set of files that can be 

executed independently of the original source code and from which the original source code 

cannot be recreated. Although commercial developers obtain copyrights to protect access to 

source code, the technical constraints to access posed by compilation make them largely a 

formality. In fact, it is much more common for developers to use broadly written patents on 
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algorithms to prevent competitors from producing similar software. When software is distributed 

without its source code, the possibilities for modification and customization are few. Some 

software is built with an application programming interface (API) that allows users to design 

their own modular extensions or plug-ins to add extra functionality to a program; however, APIs 

often leave core features of the software unchanged. Apart from APIs, the only possibilities for 

modification exist in the form of security exploits that hackers use to inject their own code into 

the already running software, a task that only an exceptionally skilled minority of programmers 

have the ability to undertake. 

Without access to source code, even the most skilled programmers are censored by 

compilation. In effect, free access to source code would make it possible to upend the hierarchal 

relationship of programmer and user. The free software community that Stallman hoped to build 

around his GNU Project is based on his experiences working in the Massachusetts Institute for 

Technology’s Artificial Intelligence Lab. Stallman recounts in a speech, “Free Software: 

Freedom and Cooperation” (2001), that the lab’s computers used an operating system developed 

in-house in the 1960s dubbed the “Incompatible Timesharing System.” While the operating 

system itself was technically influential for its time, the lab’s policy of making all parts of the 

software available for review and modification by the lab’s researchers was what impressed 

Stallman the most. Although this freedom likely arose as a result of the lab’s open-ended 

experimental culture, Stallman notes it also encouraged researchers to improve the lab’s 

computer systems whenever they encountered some aspect of the lab’s software that interfered 

with their work. His first awareness that compilation could serve as a form of censorship came 

when the lab obtained one of the first laser printers from Xerox. Wanting to add a simple alert to 

report when the printer had jammed, he found that the drivers had been included only in pre-
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compiled binary: “Xerox wouldn’t let us have the source code. So, despite our skill as 

programmers–after all, we had written our own timesharing system–we were completely helpless 

to add this feature to the printer software” (160). In terms of the freedom of speech, any value a 

speaker might add to a discourse is moot if he or she is not permitted to speak. For Stallman and 

others at the lab, sharing and altering software functioned as a form of discourse, a politically 

transparent exchange of ideas involving the citation of and disagreement with the work of others 

with the end goal of producing something of valuable for the community. 

Today, the terms “open source” or “open access” are used much more frequently than 

“free software” or “free access” to describe the community that Stallman wanted to build. The 

now complicated FLOSS construction used to refer to the community is an attempt to account 

for its various views—“free” to acknowledge its roots in Stallman’s work, “libre” to emphasize a 

particular interpretation of free (as opposed to “gratis”), and “open source” to acknowledge 

efforts to recast the community as more apolitical and business friendly. Although there was 

considerable interest in Stallman’s GNU Project and its operating system, many were concerned 

that his politics would prevent widespread adoption of GNU/Linux and applications written for 

it. In 1998, Bruce Perens and Eric S. Raymond founded the Open Source Initative (OSI) in 

response to the Netscape Corporation’s decision to make the source code for its popular web 

browser, Navigator, publically available in order to 

harness the creative power of thousands of programmers on the Internet by 

incorporating their best enhancements into future versions of Netscape’s software. 

This strategy is designed to accelerate development and free distribution by 

Netscape of future high-quality versions of Netscape Communicator to business 

customers and individuals, further seeding the market for Netscape’s enterprise 
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solutions and Netcenter business.21  

The OSI’s website states quite explicitly that the organization was founded to temper the politics 

of Stallman’s FSF, noting that the founders “believed that it would be useful to have a single 

label that identified this approach and distinguished it from the philosophically—and 

politically—focused label ‘free software.’”22 The “pragmatic, business-case grounds” that the 

OSI cites in Netscape’s decision are not specifically stated in the company’s press release; 

however, given that their decision was just months before the United States filed its anti-trust suit 

against Microsoft in May 1998, it is apparent that Netscape open-sourced its browser suite as 

part of a last ditch attempt to compete with Microsoft’s monopolistic bundling of Internet 

Explorer and other competing web-technologies into its Windows operating system (see Chapter 

5). Netscape’s decision and OSI’s goals initially seems to realize Golumbia’s fear that FLOSS is 

simply a source of cheap, or even gratis, labor; however, Netscape failed to commercialize the 

work of the community because there was little incentive for users to pay for the “high-quality 

versions” of their browser when the open sourced “Mozilla” fork worked just fine. Development 

of Firefox, the direct code descendant of Netscape, is now overseen by a non-profit foundation 

that is funded through donations and advertisement royalties received via the search engines 

21 The text of this press release taken from the blog of Mitchell Baker, “Chief Lizard Wrangler” 

(Chairperson) of the Mozilla Foundation. The original announcement was taken down after 

American Online purchased and later closed Netscape’s offices. She authored the legal 

framework for the open sourcing of Netscape as Mozilla. 

https://blog.lizardwrangler.com/2008/01/22/january-22-1998-the-beginning-of-mozilla/ 

22 This and other remarks regarding the OSI’s history taken from http://opensource.org/history 
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integrated into the browser’s interface. 

To protect free software, and further distinguish it from similar movements that called for 

the release of source code, Stallman authored the GNU General Public License (GPL). A model 

for later copyleft licenses, the GPL functions by first declaring copyright over a piece of software 

and then selectively abdicating certain authorial protections, allowing for modification and 

redistribution. Under the terms of the GPL, all software using free software components and all 

forks of free software codebases would themselves have to be released under the GPL. 

Additionally, all components supporting a piece of free software would themselves also have to 

be protected under the GPL. These last points are a source of disagreement within the 

community, a place where the GPL and the OSI’s “open” license diverge. In practice, OSI-

approved licenses have not prevented open source software from being incorporated into 

obfuscated software. Beginning with MacOS X in 2000, Apple’s operating systems uses some of 

the software comprising the FreeBSD operating system via the NeXTSTEP fork that Jobs 

worked to commercialize after his dismissal from Apple in 1985. To their credit, Apple has 

released the Unix-like portions of OSX as “Darwin” under an open source license; however, the 

majority of OSX remains closed, including middle layers that automate and control the 

underlying Darwin in service of Apple’s transparent interface. The availability of source code in 

this instance means little as the majority of OSX is obfuscated. More recently, Google’s Android 

mobile operating system incorporates elements of the GNU/Linux operating system. Android’s 

source code has also been publically released, but community built forks remain separate from 

the commercial code-base. Users wanting to try one of the community forks must “jailbreak” 

their devices, voiding their warranties in the process. Given that the transparent design of mobile 

hardware makes these devices both fragile and difficult to repair, community forks are a risky 
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proposition for many users. Regardless of the political sentiment behind a piece of software, it 

can still be obfuscated by release models that privilege small groups of programmers. In practice 

then, the availability of source code alone does not necessarily guarantee a freedom from the 

proprietary models of control that support transparent design. 

The ideological conflict between free and open source reflects a larger debate across the 

GNU/Linux community about a potential incompatibility of political and technical goals. The 

OSI’s move to de-politicize free software represents a belief that because most users are 

accustomed to a certain degree of obfuscation through regular exposure to transparent 

technologies, the significance of Stallman’s political transparency will not reach them. For his 

part, Stallman acknowledges that the most open source licenses were written with the same ideas 

as his own, many in effect tweaks of his GPL. In an essay written following the foundation of 

OSI, “Why ‘Free Software’ is Better than ‘Open Source’” (1998), he comments that the FSF and 

OSI “disagree on the basic principles, but agree more or less on the practical recommendations. 

So we can and do work together on many specific projects” (57). The problem, he continues, is 

that OSI’s licenses permit authors to continue to exert control over their source code after 

releasing it rather than treating it as public good. Whereas Stallman wants users to be able to 

assume the role of programmers, the OSI’s more commercial rhetoric quietly reinforces a 

technocratic power by placing more emphasis on open source as a way of giving technology 

professionals a new strategy to gain the trust of consumers.  

While it might be hard to imagine how this conflict looks within the context of a single 

application, the availability of GNU/Linux’s source code provides us with a unique opportunity 

to see how the political relationships take shape in practice. Torvalds states in his memoir that 

although he shares with Stallman the view that the commercial control of software is a form of 
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“despotism” that can only be avoided if software is open sourced and freely modifiable, he states 

that Stallman too often sees “everything in black and white” and is unwilling to compromise 

(215-218; 195). In contrast to Stallman, Torvalds’ idea of freedom is more general, not 

something produced through legal protections, and the advantage lies in increasing the 

possibilities for innovation rather than in transforming software’s politics. For Torvalds, the 

benefits of freely accessible source code are primarily managerial: “By not controlling the 

technology, you are not limiting its uses. You make it available and people make local 

decisions—to use it as a launching pad for their own products and services. And while most of 

those decisions don't make sense in the larger scale of things, they actually work really well” on 

a local level (229). Because the GNU/Linux operating system is designed using object-oriented 

principles, each component within it represents a programming team’s distinct interpretations of 

free and open source software. The relationships they form with other teams is therefore visible 

in a network of informational relationships between the operating system’s components.23  

II. Examining GNU/Linux: A Case Study 

The GNU/Linux operating system is a complex eco-system, with popular distributions 

exerting influence locally over their users and platform libraries quietly shaping the projects built 

from them through the intertextual networks of dependencies that branch off from them. 

According to Distrowatch.com, a website dedicated to tracking the development of GNU/Linux 

distributions, there are currently 291 active distributions.24 This number doesn’t include those 

23 See for example: http://techcrunch.com/2012/04/19/an-interview-with-millenium-technology-

prize-finalist-linus-torvalds/ 

24 Statistic retrieved 8 Mar 2014. 
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that ceased development, those that aren’t yet publically available, nor the various “spins” 

released by major distributions that include different default system configurations. Each of these 

distributions share a common ancestry that can be traced through a history of forks, and all of 

them incorporate the base GNU compiler libraries, GNU userland tools, and Linux kernel.25 In 

practice, however, not all of them acknowledge free software: some only in notifying users of the 

terms of the GPL when required; others clearly labeling which portions of the system are free 

software, which use alternative open source licenses, and which incorporate proprietary libraries; 

several install only free software by default but explicitly present users with the option to install 

non-free packages; and a few install or make available no non-GPL components by default. Even 

though every distribution of GNU/Linux benefits from the labor of Stallman and his GNU 

Project, more recent distributions also reflect the influence of commercial design’s obfuscation 

in the interest of usability.  

Stallman’s FSF maintains a list guidelines for groups looking to create distributions that 

only use free software, as well as a review of what the most popular distributions should change 

in order to comply with these guidelines.26 The FSF’s review represents one effort to evaluate 

the political transparency of distributions by examining the mixture of free and non-free 

software; however, there has been no such effort to evaluate the prevalence of transparent design 

practices in GNU/Linux. Although the claim that this year will be “the year of the Linux 

desktop” when GNU/Linux finally surpasses Windows and OSX’s marketshare is a common 

25 For a high resolution diagram tracing the ancestries of distributions: http://futurist.se/gldt/ 

26 For the guidelines, see: http://www.gnu.org/distros/free-system-distribution-guidelines.html 

For the FSF’s review of distributions, see: http://www.gnu.org/distros/common-distros.html 
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joke among the tech journalists, there has nonetheless been considerable effort by companies like 

Canonical, who privately funds the development of the Ubuntu distribution, to make the 

operating system more widely appealing and user-friendly. For many outside of community, 

Ubuntu has become the face of GNU/Linux through its embrace of the familiar rhetoric and 

programming strategies of transparent design.  

It’s important to note though that in addition to making personal computers “easy to use,” 

transparency also permits practices like datamining and copyright monitoring to occur unseen. 

Unless developers choose to share their source code or even just their pre-design white papers, 

they are usually only discovered by hackers.27 There is no obligation for hackers to reveal their 

discoveries to others, and they often keep discoveries to themselves in order to exploit less 

technically aware users.28 Recently, Canonical’s development team embedded datamining 

27 For example, see the anonymous “Firewall Your iPhone” in the July 2012 issue of 2600, in 

which a hacker discovers that his iPhone is continually sending small pieces information to 

Apple’s servers even when he had his Internet connection disabled via the options available to 

him through the iOS interface. 

28 Kyle McDonald’s digital media project “People Staring At Computers” is an example of one 

of the more benign exploitations of Apple’s transparency. While McDonald was required to 

remove the project from public circulation, Wired’s coverage of the events explains the project in 

detail. Luis Mijangos similarly exploited transparency to prey upon women through their laptop 

cameras. See: http://www.wired.com/threatlevel/2012/07/people-staring-at-computers/all/ and 

http://arstechnica.com/tech-policy/2011/09/how-an-omniscient-internet-sextortionist-ruined-

lives/ 
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software into their Ubuntu distribution. Rather than manually searching through lists of programs 

or directories of files, many users now locate programs and data through local search utilities 

built into an operating system’s GUI. Beginning with Ubuntu 12.10, commands issued to the 

local search utility were also routed to Canonical’s servers and then through to Amazon’s 

product database.29 In addition to receiving results from their hard-drives, users were also 

presented with some of the results from an Amazon query, forwarded to them by Canonical. The 

incident drew a variety of reactions, from hardline free software supporters saying that the 

spyware should be removed entirely to more tempered open source voices arguing that the 

spyware would be fine if users were asked explicitly while installing Ubuntu if they were willing 

to have their searches shared. Others defend Canonical’s practice, noting that routing the 

searches through Canonical’s servers effectively made them anonymous, as the searches could 

not then be linked by Amazon to particular users. The feature, they conclude, is necessary to help 

further fund the operating system’s development since Amazon likely pays generously for the 

anonymized search data. In a broader context, GNU/Linux’s first incident of spyware suggests 

that even though the operating system emerges out of a movement opposed to transparent design, 

there is nothing inherent in its design that prevents its community of developers from employing 

strategies of obfuscation or functional misrepresentation. 

Within the context of this study, the incident suggests that GNU/Linux is a valuable case 

study for tracing the way that modern, user friendly operating systems are structured to support 

transparent design. While it is possible that Canonical incorporated transparent design practices 

into Ubuntu independently of the rest of the GNU/Linux ecosystem, Ubuntu does share a large 

29 See http://www.omgubuntu.co.uk/2012/10/does-ubuntus-amazon-lens-break-eu-law 
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portion of it’s codebase with its most immediate ancestor, the Debian distribution: a popular 

choice among university laboratories due to its stability and meticulous documentation. The 

ability to access the source code for GNU/Linux affords an opportunity to examine the structure 

of operating systems, something not possible with commercial systems. If the “freeness” of 

software were measured on a continuum, Debian would rest in the very middle. By default, 

Debian installs only free software but prompts users during installation if they want to allow 

closed libraries. Because Debian can be configured readily into either a strict free or a more 

permissive, non-free/commercial form, it can allow us to see how an operating system’s 

components can be exploited in the service of transparent design’s obfuscation and test to what 

extent free software’s politically transparent ideals are reflected within the software itself. 

 Previous chapters have thus far discussed transparent design in abstract, theoretical, and 

historic terms. When considering how its principles take shape in an example of operating 

system software, transparent design should be understood as a structural relationship between 

higher-level applications and the lower-level libraries that support them. Figures 4.1 and 4.2 

illustrate the layered model of system design and how transparency affects users’ perception of 

those layers. Within digital media theory, N. K. Hayles’ “flickering signifier” is perhaps the most 

well-known representation of the layered model. In How We Became Posthuman (1999), Hayles 

describes a “flexible chain of signifiers. . .[i]ntervening between what I see and what the 

computer reads” composed of “the machine code that correlates the alphanumeric symbols with 

binary digits, the compiler language that correlates these systems without high-level instructions 

determining how these symbols are to be manipulated, the processing program that mediated 

between these instructions and the commands I give the computer, and so forth” (31). Hayles’ 

description generally matches those found in engineering manuals. For example, in Andrew 
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Tanenbaum explains in Structured Computer Organization (5th Ed, 2006) that layer models 

function by conveying instructions to and from a computer’s hardware. For this process to work, 

the layers “must not be ‘too’ different” as each translates or interprets those adjacent to it; 

although generally speaking, lower layers are more direct descriptions of hardware operations, 

and the most abstract higher layers must roughly correlate to the functions of lower layers for the 

system to operate correctly (2-3). While Tanenbaum is correct in noting that functionally the 

layers must work in sync for users to operate it, Hayles’ description hints at the way transparency 

affects layered systems. She notes that the “longer the chain of codes, the more radical the 

transformations that can be effected” (31). In other words, only the most adjacent layers must 

correlate with one another, even then only minimally. Transparency thus represents a radical 

transformation between layers, where the interface reinterpreting the users’ commands in terms 

that will be understood and defined differently by the layers below it. 

Transparent design’s obfuscation complicates functional accounts of layered software 

architecture because they often assume a series of faithful translations. In The Language of New 

Media (2001), for example, Lev Manovich uses the term “transcoding” to describe the rendering 

of signifiers, whether they are textual, visual, auditory, or some combination of all three. 

According to Manovich, all digital objects have two sets of signifiers: a “cultural layer” which 

represents hypermediated forms of older media and a corresponding “computer layer” which 

manages cultural representations using its own set of machine signifiers on which it enacts a 

transformational logic to produce the cultural layer (45-48). Like Hayles, Manovich invokes the 

layered model to argue that new cultural forms are made possible by representation of older 

media in the computational layer. Yet Manovich implies that there is a direct correspondence 

between the forms visible on screen and the data forms managed by computation that users can 
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recognize in order to take advantage of algorithmic processes enveloping new media forms—in 

his case, digital images and video—simply by comparing them to the limitations of older forms. 

As Figure 4.2 shows, this correspondence is not guaranteed when using a transparent interface. 

Manovich’s model is valuable in drawing our attention to the way humans and computers 

understand something like a digital image different, the former as a visual artefact and the latter 

as a grid of pixel definitions, but it collapses the complex network of intertextual dependencies 

underlying the interface into a single, simplified layer. Transparency in this sense simultaneously 

a representational disruption and a functional continuity between the cultural layer and the 

complex networks of the computation beneath it. Interrogating layered architectures therefore 

requires tools that can derive the conceptual content of software—both the functions performed 

and the language used to represent them—and that can use those concepts to map the structural 

relationships among and between an operating system’s layers. 

III. Description of Dataset and Methods 

GNU/Linux is valuable as a case study for operating system structures because many 

distributions, including Debian, provide tools or databases that meticulously document software 

dependencies for every component that users can install. Building a dependency tree of a GUI 

software will thus trace the network of components that must be in place during runtime for users 

to interact with the interface. For this study, I chose Xfce, a light-weight GUI based on the 

GTK+ graphic toolkit available through Debian’s repositories in either binary or source code 

form. Unlike the two most popular GUIs in Debian, KDE and GNOME, the entirely of Xfce is 

available as source code and largely comprised of a single programming language.30 Examining 

30 KDE includes some optional non-free libraries and GNOME is written in at least four different 
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the relationship between the layers of Xfce’s dependency tree should therefore allow us not only 

to expose the complex structures of modern application software that are not accessible on 

commercial systems but also reveal in the transformations between its lower libraries and its 

more abstract, interface layer the structural features that transparent design exploits. 

 My workflow required two data-gathering stages to map the Xfce dependency tree and 

then acquire and organize the source code to match its structure. Following the initial data 

gathering stages, I planned and implemented two analytical stages to topic model the source code 

model and then analyze that model against the dependency tree. In the first data gathering stage, 

I wrote Python scripts to mine Debian’s software repository index for components definitions—

called “packages” in Debian—and then to trace dependencies beginning with the package 

designated in documentation as Xfce’s installation package: “xfce4.” Debian’s definitions make 

a distinction between required and recommended dependencies (or optional features), but the 

scripts used for this project did not acknowledge that distinction. My scripts then wrote the 

dependency tree in the Pajek network format with dependencies marked as arcs (directed links). 

Next, I used Pajek’s acyclic hierarchy algorithm to eliminate loops within the tree in the event of 

packages which were mistakenly listed as dependent upon each other. Finally, I used Pajek’s 

depth calculation algorithm to partition the network into layers. In order to calculate “depth,” 

Pajek traverses a directed, acyclic hierarchy in order to determine the maximum number of links 

between the top level node and all other members of the network. The resulting layered network 

is visible as Figure 4.3. 

programming language. Xfce is a mixture of C and C++, which are similar enough in syntax to 

be analyzed using the same toolset. 
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 For the second data gathering stage, I used Python scripts to read the tree produced 

during the previous stage and download the source code for each component. These Python 

scripts make use of Debian’s command line software repository interface, “aptitude,” to 

automatically download and extract each collection to a temporary directory and apply Debian’s 

official patches. Once acquired, the Python scripts located all files present in the extracted 

directory that contained C or C++ code and transferred them to working directory for pre-

processing. During pre-processing, all C and C++ code files were stripped of non-alphabetical 

characters. Following the recommendations of Adrian Kuhn, et al. (2006), my scripts then 

tokenized all commands and variable names by splitting them according to conventional naming 

practices, specifically the use of underscores and camel-case to form compound terms. Language 

primitives, operators and standard commands were treated as stopwords at this phase of pre-

processing and filtered as the separate source code files for each package were merged into a 

single document. To account for context specific stopwords in Xfce’s codebase, I again followed 

the recommendations of Kuhn, et al. and used a Python script to stem all tokens, count the 

number of documents each token appeared in, and filtered all documents for tokens that appeared 

above a certain threshold. After several analytical trials, I set the threshold at 60%. This 

threshold was also able to remove the GPL, LGPL, and other licenses disclaimers that do not 

describe the conceptual content of files but are present at the beginning of most GNU/Linux 

source code files. This threshold also eliminated commands common to most GNU/Linux 

applications but which are not part of the C and C++ languages themselves. The resulting dataset 

represents the conceptual content of each package in Xfce’s Debian dependency tree. Table 4.1 

shows information about the dataset produced by the second data gathering stage. 

 For the first analytical stage, I wrote a Java interface for the Dragon Natural Language 
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toolkit that topic models the Xfce dataset. My topic models were generated using 1,000 iterations 

of Dragon’s Gibbs latent Dirichlet allocation (LDA) algorithm. My initial trials used 500 topics, 

following the example of studies by Tse-Hun Chen, et al. (2012) and Stacey K. Lukins, et al. 

(2010). While I determined that running LDA with a higher number of topics than documents 

works well at producing topics that accurately describe the conceptual content of each software 

package, it proved ineffective in showing how packages share concepts. Coarser analytic trials 

that generated fewer topics than total documents began to show clustering where packages 

known in advance to be fulfill similar roles had large percentages of their tokens placed within 

the same topics. Trials producing 50 and 100 topics worked well in this respect, but trials under 

50 did not make sufficient distinction between those packages known in advance to fulfill 

different roles. The results discussed below were produced from models of 50 topics. 

 Finally, for the second analytical stage, I used Python scripts to measure relationships 

between packages by comparing the vectorspace topic models produced by my Java 

implementation of the Dragon Natural Language toolkit produced during the previous stage. In 

these vectorspace models, each document is assigned a row and each column in that row 

represents the number of tokens in that document assigned to each topic. Vectorspace document 

comparisons based on token frequency commonly use cosine similarity or the Pearson 

correlation coefficient, both symmetrical functions. These two functions measure various 

patterns of relationships between packages throughout the dependency tree; however, I found 

that the results from Pearson are slightly more conservative.31 To examine similarity between 

31 Globally, both metrics had very similar results. The standard deviation for cosine similarity 

when the topic vectors of all packages were compared to all others in the tree was 0.1680. For 
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layers, I used Python scripts to sum the topic vectors for each package located at a given depth 

on the tree produced during the first stage of data gathering. I then calculated similarities 

between each layer and between the interface layer and all other layers. Additionally, I calculated 

similarities between all packages in the dependency tree in order to produce a second network 

diagram with edges (undirected links) representing each Pearson result above 0.3. This network 

diagram preserved the layers of the dependency tree in order to visualize potential conceptual 

relationships between packages not represented in Debian’s package definitions. Although I 

chose this threshold somewhat arbitrarily, 0.3 is generally considered to be the lowest end of a 

“moderate” correlation between two documents. I also used this set of network-wide similarity 

measures to construct a new network based on the strongest similarities between components. 

Finally, in order to examine the presence of specific roles within all three networks, I manually 

reviewed the key terms assigned to each of the 50 topics and coded each to one of six categories. 

These six categories include: user applications, GUI and graphics libraries, multimedia encoding 

and decoding, data-processing applications and libraries, hardware and file system management, 

and command line utilities. Examples of topic codings can be found on Table 4.2. After coding 

each topic had been assigned a code, I then used a Python script to incorporate the codes as node 

colors into the graphs I previously generated. 

IV. Results and Observations 

 My results first show that topic modeling is capable of accurately identifying correlations 

between packages known to be strongly related. Table 4.3 shows a sample of Pearson results 

Pearson in the same set of comparisons, the standard deviation was 0.1621. For comparisons 

only to a package’s immediate dependencies, the standard deviations were 0.3652 and 0.3586.  
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between example packages from different roles in the xfce4 ecosystem and their direct 

dependencies according to Debian’s package definitions. Generally, Pearson correlations 

between 0.5 and 1.0 or -0.5 and -1.0 are considered “strong.” Although not all dependencies 

showed strong correlations, dependencies known to be strongly incorporated into the 

construction of higher level packages produced results as high as 0.999. For example, all of the 

packages responsible for rendering the Xfce environment shared strong correlations with 

libgtk2.0-0, the GTK+ graphics library, a toolkit with instructions for drawing interface objects 

like windows, toolbars, dialog boxes, etc. Dependencies that perform similar functions also 

showed strong correlations. For example, the Hardware Abstraction Library (hal) package is 

responsible for detecting and maintaining a list of active hardware; the packages responsible for 

universal serial bus (libusb) performs a similar function by assisting in communications between 

USB devices the kernel stack. The libusb package is listed as one of hal’s dependencies and 

produced a correlation of 0.997. Dependencies produced by the same project team, such as those 

written by the Xfce team or the GTK+ team, also showed strong correlations. If topic modeling 

can highlight known or expected relationships defined by the dependency tree, it’s also possible 

that it can reveal other patterns between packages and layers. 

 Mapping the coded topic partitions onto those packages that contained source code, 

Figure 4.4, shows that the various roles identified by topics are fairly evenly distributed 

throughout the tree.32 This even distribution of package types visible in the rest of Figure 4.4 

32 The original layers of the Figure 3 have been preserved, but horizontal positions have been 

optimized to show clustering. Because Layer 1 contains no source code, Figure 4’s topmost layer 

corresponds to Layer 2 in Figure 3.  
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could be an effect of the coarseness of the topics produced when only 50 are generated. 

Noticeably absent in Figure 4.4 when compared to Figure 4.3, however, is the top-level package 

recommended in Debian’s documentation for Xfce installation that served as the point of origin 

for dependency tree generation. According to Debian’s documentation, “xfce4” is a “virtual” 

package because its definition includes no files, just links to the other Xfce packages that appear 

on Layer 2. Furthermore, packages on Layer 2 are all coded as either “User Applications” or 

“GUI and Graphics Libraries,” meaning that their top topic keywords all described abstract user 

interface objects—like buttons, windows, or menus—or more primitive drawing objects—like 

shapes, lines, colors, or shaders. Users’ experience of the GUI is in this sense also virtual, as the 

Xfce GUI does not exist as a singular piece of software but rather as a collection of software 

objects that work together to draw a unified environment on screen. The mixture of system 

management packages with graphics libraries and GUI toolsets suggests that there is no clean 

separation between the computational and cultural layers. Nonetheless, the only layer free of 

system management or data encoding packages is the highest one containing source code, Layer 

2. Even though graphics libraries and other tools used to render the interface can extend several 

layers deep, the packages that are coded as representing lower level functions like System 

Management or Data Processing—with topics describing hardware, file systems, or data types—

are not directly accessible from Xfce’s virtual interface. Access to them is always mediated by 

the rendering packages on Layer 2. In short, Figure 4.4 represents a structural organization that 

makes transparency’s strategies of obfuscation and functional misrepresentation possible.  

 Analyzing the relationships between layers shows that the transformations between layers 
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are not uniform. Figure 4.5 shows Pearson results for comparisons between adjacent layers.33 

Summing the topic vectors to compare layers reveals a sharp drop in correlation below Layer 5, 

the lower layer to contain a package strongly represented by a topic representing abstract user-

interface concepts. Although it is possible that this trend reflects the changing size of each layer, 

the largest difference in layer size—between Layers 3 and 4—occurs at one of the smaller drops 

in correlation. Within a layered system, some difference between layers would be expected as 

packages fulfill different roles or distinct aspects of the same role; however, according to 

Tanenbaum’s definition of layered architecture, some degree of similarity must exist between 

layers for data to be passed between and transformed by them. The sharp drop between Layers 5 

and 6 is thus suggestive of transparency’s potential to radically transform data, passing it along 

in a form that remains function but re-representing it conceptually. Figure 4.6 repeats the layer 

comparisons by comparing all layers to Layer 2, the packages that comprise Xfce’s virtual 

interface. Pearson results from comparing each layer to the interface again show a significant 

drop, again between Layers 4 and 6. The sharp increase in correlation at Layer 7 is due to the 

presence of libgtk2.0-0, a graphics library that most packages in Layers 2 and 3 are dependent 

on; however, even if libgtk2.0-0 is removed as an outlier, the Pearson results still shows a rise in 

correlation between the interface and Layer 7. Figures 4.5 and 4.6 thus suggest that the neat 

separation Manovich and even Tanenbaum see between layers of software does not exist. Rather, 

software’s architecture is more complicated; software’s network of dependencies entangle its 

33 Comparisons began to produce outliers below Layer 12. These irregularities are likely the 

result of the small number of packages below Layer 12. All comparisons discussed below are 

within the range of Layers 2 – 12.  
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layers. Transparency, as a consequence, may not simply be the filtering of everything below the 

interface from the user’s awareness. Instead, programmers can apply its strategies of obfuscation 

and functional misrepresentation to target only specific pieces of software’s internal structure. 

 To further test the possibility that transparent design could work as a targeted strategy 

rather than a blanket principle, I made global comparisons between packages throughout the 

entire corpus. One limitation of examining an operating system through a dependency tree is that 

it is difficult to identify concurrent package use. Xfce’s virtual interface, for example, is the 

product of the packages on Layer 2 working in tandem. Even though the dependency tree does 

not define any direct relationship between those packages, they nonetheless function together 

and users would not experience the familiarity of a desktop GUI if they loaded only one or two 

of them. In turn, many of these packages are drawing on the same set of dependencies to carry 

out commands issued to them by users. These packages are used concurrently but are related 

only indirectly through shared dependencies or as dependencies of the same higher level 

packages. Based on the strength of correlations visible in direct dependencies for packages 

known to have similar roles, topic vectors that produce strong Pearson correlations for packages 

that perform related functions even if they had no predefined relationship in their definitions. 

Figure 4.7 shows the network map from Figure 3 rendered with edges for Pearson results above 

0.3, generally considered the lower end of the “moderate” correlation range.34 This map only 

shows new relationships produced via Pearson; relationships present in the original dependency 

34 The original layers of Figure 3 have been preserved in Figure 8, but horizontal positions have 

been optimized to show clustering. Because Layer 1 contains no source code, Figure 8’s topmost 

layer corresponds to Layer 2 in Figure 3. 
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tree and not rendered. In total, 439 new edges were produced. Although topic modeling alone 

cannot tell us the nature of these new relationships, it is important to note that most of the new 

edges in Figure 4.7 occur in clusters. There is also a noticeable range of concurrency that is 

supportive of transparent design’s strategies of concealment. Figure 4.8 shows the number of 

new relationships produced by layer. For each layer, the majority of new relationships formed 

are between packages on adjacent layers. Both Figures 4.7 and 4.8 both show that packages from 

the interface represented concepts from layers as low as 12, although considerably fewer after 

Layer 7. Figure 4.8 in particular shows that each layer has a representational range outside of 

which they share few topics in common with other packages. Programmers engaging in 

transparent design would thus seek to minimize those representation ranges. 

 Finally, Figure 4.9 abandons the dependency tree entirely in order to identify potential 

gatekeepers within Xfce. Figure 4.9 is a network map generated according to the strongest 

Pearson correlation between packages shows clustering of packages around similar topics. 

Creating links only through the highest Pearson result will not show the full range of direct 

relationships between packages; however, this network map produces a sense of how 

information might travel throughout the operating system. It’s important to note that all of the 

packages that are positioned as gatekeepers—those that appear at intersections between branches 

of the map—are all located on Layer 5. Packages with topic vectors coded as user applications or 

GUI libraries, as well as those for internal/automated system management, are typically at the 

edge of the map. Abstract elements of the user interface and directly supporting libraries, in other 

words, are separated from system management packages. This separation on the network graph 

along with the positioning of Layer 5 packages as gatekeepers, further suggests that transparency 

is a targeted strategy. Figure 4.9 reflects the same separation between layers visible in Figure 5’s 
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graph of similarities. The most radical of transformation within the Xfce occur across Layer 5. 

Figure 4.9 therefore suggests that while a dependency tree is useful for documenting functional 

links between packages, it is may be easier for researchers to understand transparency by not 

limiting comparisons to dependency relationships. 

 When considered within the context of GNU/Linux’s history, these results suggest that 

transparent design and political transparency may not mutually exclusive. The presence of 

structure features that reveal the potential for transparency’s strategies of obfuscation in Debian’s 

dependency tree for Xfce certainly reflects the recent emphasis on usability within the 

GNU/Linux community. Nonetheless, the value that the GNU/Linux community places on 

forking and system customization means that Xfce, like other GUIs for the operating system, can 

be disabled or replaced. FLOSS, in other words, leverages modularity to permit users to move in 

and out of transparent environments, controlling the amount of system information they want to 

see but never denying them access to it outright. GNU/Linux’s powerful command line interface 

is still present beneath it. In Figure 4.4, for example, those packages primarily represented by 

topics coded as command line utilities can be found near the bottom of the dependency tree. 

Using hotkeys to switch between virtual terminals, users quite literally are free to switch between 

the CLI and the GUI at anytime using hotkeys, avoiding any obfuscation or functional 

misrepresentation produced by the latter. Even if many computational processes are not 

represented within Xfce or other GNU/Linux GUIs, those processes may very well be accessible 

and directly configurable through text files. One major limitation of the tree produced by 

Debian’s package definitions is that it assumes a basic system environment exists around. 

Libraries for wireless network access, which could themselves include interventions that 

unknowingly work against the users’ wishes, are thus not considered here. 
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 The limitations of a distant reading methodology leave open one important question: 

whether the appearance of transparent design in GNU/Linux’s package network is the result of 

an intentional obfuscation or the cumulative effects of object-oriented programming’s emphasis 

on modular encapsulation at a system-wide level. Given that Xfce is, by Stallman’s definition, 

free software, it is somewhat surprising that it has features that reflect and would further support 

strategies of transparent design. Even though GNU/Linux is authored through a model of 

political transparency, it may very well be the case that the structural features expected of an 

obfuscated transparency are the due to the object-oriented paradigm. As the previous Chapter 

argues, transparent design and object-oriented programming both address problems of 

complexity by attempting to hide or otherwise filter it from our perspective. Nonetheless, the 

above case study suggests that transparency is more a targeted strategy than a blanket policy of 

computational suppression. Programmers who build transparent software, in other words, choose 

to exploit features of object-oriented programming to hide portions of the systems from users. 

The degree to which programmers hide or show computation to users is arbitrary, and digital 

media historians must interrogate the assumptions and intentions behind their decisions. 

GNU/Linux community maintains its operating system’s reputation for customization and 

modification by acknowledging the way the object-oriented paradigm could potentially constrain 

the rights of its users just as Stallman acknowledged the political consequences of compilation. 

For digital humanists and historians of technology, the lesson here is not that computation 

inherently places limitations on its users but that it is vitally important for us to become more 

aware and self-reflective about the software we build, choose to use, and share our scholarship 

through. By uncritically accepting hardware and software platforms in our work, or choosing 

them primarily on technical grounds, we also accept any cultural assumptions their designers 
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make about the role computing should play in our society and what they understand to be the 

“proper” relationship between users, technology, and data. 

 Recently, the digital humanities has drawn considerable criticism for not engaging 

strongly with critical theory, at least by the standards of the home disciplines of its 

practitioners.35 Digital humanists would do well here to draw on the methods and theories found 

in new media studies. Software is already in desperate need for strong, historically grounded 

scholarship given the frantic pace of its development. In some respects, it is true that digital 

humanists engage in the same problematic ahistoricism found in the sciences and engineering. In 

other words, while there is a rich body of technical knowledge accompanied with the skill to 

apply it to projects of impressive scale emerging from the digital humanities, there is not yet a 

strong framework for evaluating the cultural work of the tools and techniques of scholars in this 

field. Although this chapter does not presume to provide that framework, lessons from 

GNU/Linux’s history nonetheless reveal some necessary first steps. A critical engagement with 

the theoretical assumptions tacitly present in software libraries is possible if and only if the 

source code for those libraries is accessible, in the very least for study as “open source” but 

ideally for modification as “free software.” As with the rise of Stallman’s critics in the 

GNU/Linux community, a push towards free software within the humanities will likely be met 

with arguments that digital tools need to be in some degree transparent in the sense that they 

35 See, for example, the essays that were part of the “Darkside of the Digital Humanities” panel 

at MLA 2013, as well as the conversations surrounding it on Twitter using the hashtag #s307. 

The essays begin here: http://www.c21uwm.com/2013/01/09/the-dark-side-of-the-digital-

humanities-part-1/ 
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should be readily usable without special training to prevent their insights from being 

monopolized by a small number of scholars—both to ensure that the digital humanities 

establishes a permanent place for itself and to prevent an influx of the same funding-based power 

dynamics that controls scientific and engineering research. These concerns are valid; however, 

the establishment of certain off the shelf, easy to use tools as standards should be understood as 

equivalent to declaring that one single school of critical theory is valid above all others. 

GNU/Linux and the FLOSS movements serve as reminders that arguments for technical 

superiority always come with often unacknowledged cultural consequences, and the digital 

humanities cannot afford to let them go unaddressed if it is to have a lasting impact on 

humanistic inquiry. 

 To this end, new media studies and the digital humanities should be understood as part of 

the same field rather than separate, albeit related, critical undertakings. As a disciplinary 

category, the digital humanities is already quickly becoming a big tent: grounded in its origins in 

the digitization projects of humanities computing and incorporating statistical analysis, 

pedagogical tools, and social networking discourses. The recent review of digital scholarship 

from Peter Lunenfeld, et al., Digital_Humanities (2012), is one of the first to also include new 

media studies under the label, rightly acknowledging that the term “digital humanities” also 

implies the cultural study of born digital texts. A stronger relationship between both of these 

fields of study will only help both. Consider, for example, Mark Sample’s recent essay for 

Matthew K. Gold’s Debates in the Digital Humanities (2012). In it, Sample argues that the 

digital humanities have “failed” because their methods are barred by copyright from examining 

the cultural periods from which their tools emerged. Yet as this project has shown, the analytical 

techniques used within the digital humanities can and should be applied to born digital texts. 
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Although such endeavors lamentably will leave Sample’s desire to study Don Delillo with digital 

tools unfulfilled, the dialog they will produce between new media scholars and designers of 

distant reading software will serve as a strong foundation of a body of critical theory capable of 

highlighting cultural implications of technical decisions within digital methodologies. 
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Chapter 5 – A Material History of Mozilla 

 

“In 2012 it made less and less sense to talk about ‘the Internet,’ ‘the PC business,’ ‘telephones,’ 

‘Silicon Valley,’ or ‘the media,’ and much more sense to just study Google, Apple, Facebook, 

Amazon and Microsoft. These big five American vertically organized silos are re-making the 

world in their image.” 

—Bruce Sterling, from “State of the World 2013” 

 

 Pop-ups that gently remind users that updates are available from the appstore or that state 

more assertively that users should restart a program so that the latest version can be installed 

automatically are fast becoming common sights on personal computers. Today, developers can 

leverage an always online model of computer and device use to push updates to users’ machines 

as soon as often as they wish. Some software, like the Mozilla Firefox browser, even have 

“rolling release,” every-six-weeks development models that regularly push updates on a set 

schedule. Software, in other words, is subject to constant change, and outside of following 

changelogs—usually obtainable from a developer’s website if users care to look—it is difficult 

to trace just how a piece of software changes unless there are alterations made to its user 

interface. Importantly, a way to map these inscriptive practices would allow us to look anew at 

theories of software’s materiality by offering a chance to examine how the singular 

“applications” we interact with are formed through the iterative development of an assemblage 

of human written source code texts. While in the first three chapters of this project I examined 

the cultural history of personal computing software using paratextual sources—that is, texts 

written about software—in this chapter I propose that we can study the evolution of software 
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without relying solely on paratextual sources. In fact, as I argue, it’s often the case that these 

paratexts do not fully represent software’s changes. Although developers do document their 

activities using project management and versioning software, both must-haves for coordinating 

the labor of large teams, they do so primarily to keep track of task completion and to identify the 

moment a bug enters the codebase. Whereas I demonstrated in the previous chapter that topic 

modeling can help us map and interpret the object-oriented structures hidden by transparency, in 

this chapter I demonstrate that topic modeling can assist in tracing the evolution of software by 

showing us how topics that correspond to particular components grow or shrink over time. 

 Studying the history of software through its source code requires a reassessment of the 

medium’s materiality. Although there is some consensus that software is an assemblage, there 

has been little consideration of software’s iterative development model in digital media theory. 

Works by Robert Markley (1996), N. K. Hayles (1999; 2005), Jerome McGann (2001) and 

Matthew Kirschenbaum (2008), among others, have argued that far from the immaterial play of 

information in cyberpunk fiction, digital objects have form and structure, granting them material 

(or at least material-like) qualities. Recently, there has been some effort to move beyond 

theorizing about software’s materiality and examine more closely how software is stored and 

rendered by computer systems.1 At the same time, there are few accounts of the production of 

particular pieces of software or narratives of software’s development over time aside from 

1 For example, see Kirschenbaum’s forensic examination of a disk image of a game called 

Mystery House (1980) in Mechanisms: New Media and the Forensic Imagination (2008 or, Noah 

Wardrip-Fruin’s discussion of the structure of various narrative engines in Expressive 

Processing: Digital Fictions, Computer Games, and Software Studies (2009). 
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insider narratives that give triumphant accounts of Silicon Valley’s creative geniuses.2 Unlike 

literary works or other cultural objects that are in some sense “complete” when released to the 

public, there are many examples of software that never really reach a state of completion. 

Software packages, including operating systems, web browsers, word processors, and graphic 

design suites, are updated continually for various purposes. A new version may be released, 

packaged, or sold as a distinct, finished product even though it is built upon the same continually 

evolving codebase shared by previous versions. 

Digital media theory has yet to account for iterative development models. Instead, studies 

of digital culture often implicitly assumes that software, or other electronic texts, have fixed, 

authoritative versions. Digital media scholars can frame important theoretical questions without 

the need to examine software’s production when working with a single version of software from 

an aesthetically driven genres of software—such as video games or electronic literature. 

However, this focus on single versions of software leaves us unable to articulate how the 

constant parade of updates, patches, and security fixes allows developers to exert a long lasting 

influence on user behavior. As Chapter 2 argues, transparent design continually shifts our 

attention to the present and a continual re-imagining of a future waiting just ahead, discouraging 

2 There are only two studies comparable to this chapter currently in print. The earliest is 

Kirschenbaum’s account of the various “editions” of Michael Joyce’s electronic novel, 

afternoon, in his 2002 essay “Editing the Interface: Textual Studies and First Generation 

Electronic Objects.” The other is Ian Bogost and Nick Montfort’s Racing the Beam (2009), 

which traces the history of the Atari 2600’s production through a review of documentation, 

popular periodicals, reverse engineered system specifications, and interviews. 
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us from considering the cultural history of new technologies. Without the ability to recover this 

history, we will never be able to understand the full extent of the control that developers have 

over their software even after it has been installed on users’ personal machines. 

This study contributes to expanding our understanding of software’s materiality by 

proposing that the epistemological problems posed by software’s iterative development models 

can be accounted for through a distant reading of its source code as a versioned corpus. The free 

and open source software (FLOSS) community’s tendency to archive the entire development 

history of packages makes it possible to examine software’s history directly, but poses new 

methodological challenges. As Chapter 3 argues, modern application software written in the 

object-oriented paradigm resists close reading. Not only does object-oriented programming 

support software on a scale beyond human comprehension, but it manages that complexity by 

encouraging readers and writers of source code to adapt functional, yet incomplete perspectives 

on large bodies of source code. Object-oriented programming, in short, produces a complex, 

intertextual body of source code: a massive archive even for a single version of software. 

Complex bibliographic problems are not new to the humanities, nor to digital media studies. 

Kirschenbaum’s 2002 essay, “Editing the Interface: Textual Studies and First Generation 

Electronic Objects,” argues that digital objects have a “material complexity” that requires 

“critical approaches capable of accounting for such phenomena as multiple versions and releases, 

data standards, platforms, and file formats, all of which contribute to the textual composition of 

electronic objects. The intellectual precedents for such an approach are clearly to be found in 

textual criticism and bibliography” (43). Yet the sort of manual editing that Kirschenbaum 

demonstrates with electronic literature would be difficult to perform on large bodies of source 

code, even for a small handful of versions. As I argue in this chapter, this problem of scale can 

 



207 
 

be addressed using a workflow that incorporates latent Dirichlet allocation topic modelling tools 

and accounts for the amount of source code repetition across versions of software resulting from 

iterative inscription. 

Following a discussion of the viability of topic models for software history, I then move 

into this chapter’s case study. For this chapter, I’ve chosen to examine the Mozilla Firefox 

browser because it is one of the few pieces of software to have existed, in some form, as both 

open and closed source. The source code to Mozilla Firefox can be traced with few interruptions 

back to 1998: the year that Netscape publically released the source code to its browser before 

being bought out by America Online, signaling the end of the “browser wars.” Mozilla Firefox, 

in some form, participated in the early visions of information culture and bears within its 

versioned history contributions and responses to the commercialization of the Internet. After first 

providing a context for the case study by tracing the history of Netscape as closed source, I then 

turn my attention to Mozilla Firefox’s source code. My case study covers examines 60 versions 

of Mozilla Firefox’s source code which together cover a 15 year span (1998-2013), hereafter 

referred to as the “Mozilla Corpus.”3 Table 5.1 is an index of the corpus, providing basic 

3 A note on version selection: The corpus includes all released versions of Mozilla 

Communicator and Mozilla Application Suite up to the 1.0 release of Suite. From this point 

forward, very small updates to each version were not included. Although bug fixes and security 

patches do reflect a continually changing body of code, it’s assumed that these small updates 

would be still be part of the codebase at the next major release. Without this exception, the 

number of versions in the Mozilla Corpus would have at least doubled. Additionally, because 

Mozilla Suite and Firefox overlapped in development, Firefox does not enter the corpus until its 
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information about each version as well as the label number used in all Figures to follow. In 

addition to its implications for the study of transparency, software history, and textmining in the 

digital humanities, this chapter’s case study of Mozilla Firefox also suggests that the two 

languages that comprise most websites—Hypertext Markup Language and JavaScript—are 

changing to match the closed source and object-oriented models of development found in 

consumer software. My topic models show that Mozilla Corpus has undergone an extensive 

structural transformation over the course of 15 years that essentially recast the role of HTML and 

JavaScript from document rendering languages into application interface languages. In this 

respect, the Mozilla Corpus serves as an excellent example of the conceptual disconnect between 

a transparent interface and an application’s core libraries.  

I. Methods: On the Viability of Topic Modeling for Software History 

Theoretic models of software that incorporate some notion of bibliography impoliticly 

frame the person computer itself as a media ecology and examine the movement of signifiers 

through it. For example, Hayles responds to Kirschenbaum’s call to “take electronic texts 

seriously as texts” in My Mother Was a Computer by revisiting her concept of the “flickering 

signifier.” Hayles defines “digital text” by describing the way the signifiers in machine code are 

produced across software’s vertical layers are made visible on computer screens as natural 

first 1.0 release. Because the earliest versions of Firefox, originally dubbed “Phoenix,” were not 

publically released, its individual timeline would be incomplete. Second, development on 

Mozilla Suite was halted shortly before the release of Firefox 1.0. Fortunately, as discussed 

below, the two applications shared many core libraries, so the transition was not as abrupt as that 

between Communicator and Suite. 
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language signifiers through a series of algorithmic transformations (97-104). Her notion of a 

complex bibliographic history is the trail of interpretations or translations that occur within 

machinic memory between the signifiers visible on screen and the binary code stored in a 

computer’s file system. In other words, each subsequent representation of the natural language 

text, from the bare metal representation on magnetic discs to the graphemes on screen is part of 

that bibliography.4 Hayles is not alone in this formulation, nor is it necessarily limited to digital 

media theory. Lawrence Lessig, a long-time legal activist for copyright reform, has argued that 

copyright law cannot apply to digital texts because every act of access produces a bibliographic 

trail of copies. In fact, some of the latest legal arguments in favor of opening copyrighted works 

to the digital humanities invoke a similar model and propose that permitting access just before 

the bibliographic trail reaches a human readable copy would allow for a form of “non-

consumptive” or “non-expressive” access.5 But software, understood as packages of algorithmic 

instructions, has a complex bibliographic history apart from what appears on screen. If we 

consider that software is “written” as a set of instructions in a programming language and treat 

this “source code” as a text, then software’s iterative development and versioned releases result 

in bibliographic histories that very quickly begin to rival the detailed histories produced by 

critical editors working in textual theory. Table 5.1 shows the number of tokens, or words, in 

each version after commonly repeated types were removed. Even when reduced in this manner, 

4 Kirschenbaum himself takes up the challenge of examining this chain of signifiers in his 

forensic study of a disk for the game “Mystery House” in Mechanisms (2008). 

5 See Matthew Sag’s “Orphan Works as Grist for the Data Mill” forthcoming from the Berkeley 

Technology Law Journal. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2038889 
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the smallest versions would still span the length of multiple novels. Comparing even a few by 

hand would in itself be a large project. 

Editors working in literary history are no stranger to weighing the cultural influence of 

particular versions of texts or investigating the intentions behind changes across them; however, 

even if the changes between editions of a literary text are well documented in annotated, critical 

editions, the problem of negotiating between competing versions of an object of study 

complicates matters. In the case of software versions, each is in some sense equally legitimate at 

its moment of release, representing the intentions or vision of its development team at a given 

point in time. As Jerome McGann notes in A Critique of Modern Textual Criticism (1983), there 

are a number of problems with establishing textual authority based on the reconstruction, or even 

explicitly discovery, of an author’s intentions. McGann calls on editors to (re)construct scholarly 

editions through a strong reflection on how the goals of their edition fit within a work’s historical 

context, and his comments regarding the historically constructed nature of literary works are 

relevant to software as well. Traditionally, a romantic view of the author as the singular source of 

literary production led editors to search for and remove “structural contaminants on an original 

and autonomous authority” that resulted from the material transmission of a work (103). 

Reconstructing an author’s intended copy-text is difficult, a problem that becomes more 

complicated when there are multiple editors and publishers involved in transmission. McGann 

thus argues that we must acknowledge that literary authority is dispersed as a condition of 

production because all works are necessarily “social projects which seek to adapt and modify 

themselves circumstantially” (102). In other words, a text’s authority rests neither solely in its 

author, nor in the editor who receives it, but also in its transmission through time. McGann 

discovered later in his career that digital tools, in his case hypertext, can bring older texts into a 
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new medium, allowing editors to document for their readers the historically constructed nature of 

literary works in ways not possible in printed critical editions; however, McGann’s problem of 

versioning involved a small number of texts with explicitly aesthetic dimension. His use of 

hypertext to produce interactive, critical editions, such as the Rossetti Archive, that allow 

scholars to study the historical transmission of texts only supports close reading. 

In the case of software’s textual history, the problem of competing, yet authentic versions 

posed by iterative development models is compounded both by archival scale and the complexity 

of software’s structure. As I argued in Chapter 3, software studies by and large does not directly 

address the way that object-oriented principles shape software into an abstract network of 

encapsulated components. Nonetheless, there is some degree of consensus within digital media 

theory that software’s materiality is an emergent property resulting from the interaction of its 

various components. Hayles, for example, explains in My Mother Was a Computer that users 

perceive software on-screen as a singular digital object even though it is produced from “data 

files, programs that call and process the files, hardware functionalities that interpret or compile 

the programs, and so on. It takes all of these together to produce the electronic text. Omit any 

one of them, and the text literally cannot be produced” (101). Friedrich Kittler (1999), Lev 

Manovich (2001), Wendy Chun (2005, 2011), and Matthew Fuller (2005) have offered similar 

descriptions of software’s structure. It is true that software is functionally an assemblage, 

drawing its various components together and transcoding them into cultural forms recognizable 

to users. Yet, as Fuller notes, breaking down assemblages into components parts can quickly 

produce a sprawling network of components that is difficult, if not impossible, to pin down: 

Multiplicity is induced by two processes: the instantiation of particular 

compositional elements and the establishment of transversal relations between 
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them. The media ecology is synthesized by the broke-up combination of parts. 

Each compositional fragment, each item on the list—while being under the effect 

of certain grammatical schema nameable as an object or a whole thing. . .—opens 

into other permutational fields. Each part, then, forms an axis to which this 

shifting patchwork can be connected (16). 

Even single applications are structured as assemblages, especially if they are written in an object-

oriented language. Although there is a limit to their decomposition, the number of objects and 

classes, each developed by different teams of programmers, that comprise a complex piece of 

software, like a web browser, makes it difficult for a single person to track the evolution of each 

through time. As the previous chapter demonstrates, software’s sprawling assemblages can be 

mapped and interrogated using topic modeling. Topic modeling source code can synthesize 

functional descriptions of software components, providing a conceptual map for interpretation. 

Yet the GNU/Linux case study involved a synchronic corpus of varied applications and libraries 

that represented a snapshot of operating system architecture. Because each software package was 

within the context of the corpus a unique document, the GNU/Linux case study shared many 

resemblances to the corpora used for literary topic modeling. In order to account for the amount 

of source code carried over between versions in an iterative development model, the Mozilla 

Corpus must be done in a way that recognizes the effect that repetition has on topic modeling’s 

probabilistic algorithm. 

Today, most topic models are produced using some implementation of the latent Dirichlet 

allocation (LDA) algorithm first proposed by David Blei, Andrew Ng, and Michael Jordan 
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(2003).6 As Blei, Ng, and Jordan note, the advantage that topic modelling provides over other 

methods of document comparison, such as the commonly used tf-idf scheme, is that it can reveal 

patterns of intra- and inter-document statistical structure. Unlike tf-idf, a weighted word counting 

algorithm, topic modeling allows for equivocal meanings, treating each instance of a word as 

distinct yet potentially related to other instances. LDA assumes that all documents in a collection 

are comprised of words (or some other form of token) representing a finite group of topics. The 

algorithm treats documents as if they are constructed as a mixture of topics. These “topics” are 

defined as statistically distinct distributions of words, meaning that they randomly populate with 

words according to certain probabilities with no regard for sequence. The advantage of LDA 

over other topic modeling algorithms, like the probabilistic latent semantic indexing (pLSI) 

algorithm described by Thomas Hoffmann (1999), is that it is not supervised, meaning it does 

not require a set of training documents that represent desired patterns. Instead, LDA assumes that 

topics are present in every collection, and operates with the understanding that with enough 

examples of each topic throughout the corpus, testing and adjusting probabilities of distribution 

patterns will eventually isolate each topic’s pattern.  

LDA begins by first randomly assigning topics to each token in the corpus. It then checks 

both the number of words assigned to each topic in a document as well as the proportion of 

topics assigned to each instance of a particular word across all documents. Using this 

information, it then calculates both the probability that each instance of a particular word will be 

assigned to each topic and the probability that each topic will be a part a document’s topic 

6 Unless otherwise noted, this following description of LDA is summarized from Blei, Ng, and 

Jordan’s article. 
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mixture. LDA then revises the topic assignment of each word in the entire corpus using these 

newly calculated probabilities and begins the process again. Whereas pLSI’s training documents 

suggest a correct distribution of topics across documents, LDA assumes that distributions are 

weighted according to a “hidden” variable. The goal of LDA is not to assign words to topics so 

that topics in the documents under analysis will have a similar distribution to those in a training 

set but to revise distributions over and over again in an effort to discover the hidden weights of 

each topic. Although this hidden weight may not explicitly exist, LDA assumes that in linguistic 

practice people implicitly weigh certain words as more important than others when discussing a 

given subject. Given enough iterations, LDA’s topic mixtures and assignments will eventually 

stabilize around these imagined weights. 

LDA will always produce statistically distinct topics; however, using unsupervised 

algorithms to filter meaningful patterns out of linguistic data poses epistemological problems. As 

Alain Liu (2013) notes in a consideration of unsupervised machine learning algorithms that it is 

“not clear epistemologically, cognitively, or socially how human begins can take a signal 

discovered by machine and develop an interpretation leading to a humanly understandable 

concept” (414). According to Liu, there are a great number of assumptions behind the idea that 

an algorithm like LDA “works” which aren’t necessarily acknowledged by researchers in the 

digital humanities. Like LDA itself, anyone who applies the algorithm also assumes that there 

are pre-existing “topics” within a corpus. For such a signal to emerge from the statistical noise of 

a large corpus, Liu continues, that signal must contain “a coeval conceptual origin that is 

knowable in principle because, at a minimum, the human interpreter has known its form or 

position (the slot or approximate locus in the semantic system where its meaning, or at least its 

membership in the system, is expected to come clear)” (414). In this respect, Liu is less critical 
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of the idea that these algorithms are useful for humanistic inquiry than with the idea that these 

algorithms, in being “unsupervised” in the sense that they can provide an objective perspective 

or one that is otherwise capable of discovering an essential truth in human language that humans 

themselves cannot see. In this respect, Liu’s concerns resemble the same ones that Brian Rotman 

saw for mathematicians during the early days of computing, namely the question of whether a 

machine can understand mathematics better than its human creators. 

For Liu, the epistemological problem posed by unsupervised algorithms must be 

addressed by acknowledging the limitations of mechanic perspectives and finding ways to 

account for them that draw on humanistic frameworks of knowledge. As an example, Liu 

recounts Ryan Heuser and Long Le-Khac’s decision to incorporate information from the 

Historical Thesaurus of the Oxford English Dictionary in order to improve their semantic 

clustering algorithm. According to Liu, Heuser and Le-Khac’s project keeps interpretation at the 

forefront of their computational efforts through a series of adjustments to their algorithms made 

to reflect their understanding of their corpus’ historical context. Although addressing Liu’s 

concerns for literary studies are beyond the scope of this essay, I agree that any use of 

algorithmic tools by humanists should be prefaced with responses to the questions that Liu 

raises. In practice, the potential for topic models to represent concepts in a corpus is largely 

dependent both on how researchers prepare their corpora and how they integrate the LDA 

algorithm into their workflow 

First and foremost, using LDA to study a bibliographic history of a text—be in the source 

code to a piece of software or multiple editions of a play—requires a workflow that accounts for 

the textual duplication produced via iterative inscription. In the digital humanities, topic 

modeling is often used to synthesize historical trends in large corpora. As Matthew Jockers 
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demonstrates in Macroanalysis: Digital Methods and Literary History (2013), once topic models 

are produced, the topic memberships of documents can be grouped by publication date. 

Memberships can then be plotted chronologically, allowing the topic models to show the 

prevalence of particular concepts within the corpus over time and interpreted using contextual 

knowledge or closer investigation of individual texts. A key difference between the sort of 

literary corpora that Jockers uses and a versioned corpora of source code is that the former have 

very little, if any, duplicate texts. Because LDA functions by examining the distribution of topics 

assignments within and across documents, duplicate texts can skew the LDA’s probabilities by 

giving more weight to the topic mixtures within the duplicates. With a large enough corpus, a 

small percentage of duplicates might have little noticeable effect; however, in a versioned 

corpus, large passages of text are carried forward from version to version, meaning that the 

topics generated by LDA would reflect primarily the mixtures of words found in the most static 

portions of text, making it an ineffective tool for studying patterns of textual change. 

Topic modeling a corpus with this much duplication thus requires a workflow that 

prevents duplication from entering into LDA’s calculations but which also acknowledges those 

components of the software that carry over between versions. Stephen W. Thomas, et al. (2011) 

argue that LDA’s tendency to weigh its models towards duplicated passages can be avoided if 

only the changed passages between each version are prepared for topic modeling. Although there 

is a considerable body of work from engineers applying distant reading techniques to source 

code, only Thomas’ article accounts for the software’s iterative inscription. Thomas proposes 

that the duplication in software’s complex bibliographic history can be accounted for in topic 

modeling by wrapping the LDA algorithm in a pre- and post-processing scheme that tracks 

changes between versions. Following Thomas’ recommendations, I wrote a Python interface for 
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the Unix “diff” utility. When diff is run on two directories—with one designed as original and 

the other as copy—it compares each file with matching names in both directories, representing 

each pair in terms of the portions added and removed between versions. Following Thomas’ 

description of the workflow, my Python interface parses the output of the diff query and creates a 

pair of δ-add and a δ-remove documents for each file containing C or C++ code. Because LDA is 

not affected by the sequence of words in a document, it does not matter whether changes to 

different parts of a file are positioned closely together in the δ-documents. In the event of whole 

files added or removed between versions, the entire files are treated as δ-documents. Once this 

step has been performed for every file, the δ-documents are then pre-processed as normal.7 

Following LDA, I had to cumulatively sum the resulting topic models in order to 

assemble representations of the changes to each version. The results of the LDA were a series of 

δ-add and δ-remove document, up to several hundred for each version of Mozilla Firefox. To 

calculate the topic membership change for each version, I summed all of the δ-add and δ-remove 

documents for each version, resulting in 120 vectors. Finally, I prepared representations of each 

version of the Mozilla Firefox codebase by cumulatively summing the δ-add and δ-remove (i.e., 

Version 4 is the sum of the δ-vectors for Versions 1-4). Thomas concedes that the diff model can 

on occasion be overly sensitive to changes in the corpus due to LDA’s probabilistic methods. I 

noticed that when the net change between versions was negative, that some topics often Topics 

produced using the diff-model initially proved unstable when the majority of a version’s files 

7 See Chapter 4 for a complete description of my source code pre-processing procedures. The 

only difference in pre-processing is that this case study uses an 80% common token threshold to 

filter context specific stopwords. 
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were treated as δ-remove documents, generally at the points when the Netscape codebase was 

abandoned during the transition to Mozilla Suite and when development switched from Mozilla 

Suite to Mozilla Firefox.8 To account for these non-iterative transitions, the cumulative summing 

of the virtual vectors was restarted, with topic memberships reset to 0 and all files in the first 

version after the restart modelled in full as δ-add documents. 

As with many topic modeling projects, I had to determine an appropriate number of 

topics for LDA to generate through a process of trial and error. In the remainder of this section, I 

share a few observations about how topic models of different sizes affects its representation of 

source code. Although LDA does not require any sort of training data to produce a topic model, 

it does require that the number of topics be set in advance. Unfortunately, there is no systematic 

method for determining a good size for a topic model. As Jockers explains: 

There is neither consensus nor conventional wisdom regarding a perfect number 

of topics to extract, but it can be said that the “sweet spot” is largely dependent 

upon and determined by the scope of the corpus, the diversity of the corpus, and 

the level of granularity one is seeking in terms of topic interpretability and 

coherence. . . .[T]he “interpretability and coherence” of a topic mean specifically 

the ease with which a human being can look at and identify (that is, “name” or 

“characterize”) a topic from the word list that the model produces. Setting the 

8 Even though it’s clear from documentation that Mozilla Suite and Mozilla Firefox share core 

libraries, diff expects new versions of files to be organized in the same way as previous files. 

Changes in organization caused all Mozilla Suite files to be treated as δ-removes, producing 

erratic vectors at the point of transition. 
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number of topics too high may result in topics lacking enough contextual markers 

to provide a clear sense of how the topic is being expressed in the text; setting the 

number too low may result in topics of such a general nature that they tend to 

occur throughout the entire corpus. 

In the case of a source code corpus, the size of a topic model generally determines the level of 

abstraction the resulting topics will represent. In the previous chapter, I found that using a 

number of topics roughly equivalent to the number of documents in a corpus comprised of 

different software packages produces topics that correspond to the particular function of each 

package. Shrinking the number of topics forced the LDA algorithm to produce topics that 

represented more abstract, general functions: a “graphics library” topic rather than a 

“subcomponent of a graphics suite dedicated to three-dimensional shading” topic. This size 

allowed for an easy classification of each package, enriching the dependency tree to show how 

functions are distributed throughout the network of libraries and applications necessary to 

display a desktop environment in Linux. 

A similar pattern of abstraction occurs when a corpus constructed from multiple versions 

of a single application is topic modeled. Rather than producing topics that match entire libraries, 

a large model can produce topics that match particular implementations of classes and primitive 

objects whereas a smaller model produces topics that reflect the abstract classes that serve as the 

basis for particular implementations. In an object-oriented language like C++ or Java, 

implementations produced through polymorphism are already structurally related through the 

abstract class they inherit properties from. A small model size will produce an abstract 

perspective, collapsing related implementations into a single topic. Figure 5.1 shows three topic 
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vector graphs taken from three different topic model sizes of the Mozilla corpus.9 These graphs 

represent portions of the XPConnect library, which serves as an internal interface between 

Mozilla’s JavaScript engine—the component that executes JavaScript commands—and Cross 

Platform Component Object Model (XPCOM), which serves an abstract interface to system-

specific processes like memory management, file system, internal messaging libraries, etc. The 

drop in each graph at label 29 reflects a decision to revise an older implementation of an 

XPConnect that required two intermediary interpreting libraries, called “wrappers,” before 

JavaScript commands could reach the necessary modules within XPCOM.10 This revision made 

9 A note on how to read all topic graphs in this chapter: The red line represents each topic as the 

total number of tokens assigned to that topic, and the blue line represents each topic as a 

membership value, or the percentage of all tokens in the corpus assigned to that topic. The first 

vertical solid line at label 7 indicates the first version of Mozilla Suite, and the second vertical 

solid line at label 37 includes the first version of Mozilla Firefox. The first dotted vertical line at 

label 29 is Mozilla Suite 1.0, and the second dotted vertical line at label 44 marks Mozilla’s shift 

to an accelerated “every six weeks” rolling release model for Firefox. Full color galleries can be 

found at http://mblack.us/chap5 

10 Unfortunately, this decision was not documented in the “What’s New” change log that 

accompanied each public announcement of a new version. This account was pieced together 

from a review of white papers accessed through the Internet Archive’s cached history of the 

Mozilla Foundation’s website and bug report logs that data back to the open source release of 

Netscape Communicator. Nonetheless, it serves as a good example of the potential for topic 

modeling to highlight development decisions that were not well documented by developers. 
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the transfer of data from Mozilla’s JavaScript components to XPConnect more direct, 

significantly reducing the amount of source code devoted to these operations. That the sudden 

drop occurs at the release of Mozilla Suite 1.0 (label 29) is purely coincidental. Graphs with 

smaller numbers of topics also show an increase in token assignments after the transition into the 

Firefox era. The difference between the smaller and the larger models is due to the level of 

abstraction produced by the number of topics. In smaller models, LDA is forced to represent 

XPConnect in a fewer number of topics, making no distinction between the removed wrappers, 

the wrappers remaining after the change, and later ones added as part of Mozilla’s expanding 

cross-platform strategy for Firefox. A larger number of topics, in other words, makes individual 

components more visible; however, it makes it more difficult to make connections between 

related or early and later versions of components. For the results discussed below, I decided to 

use a model size of 60 topics because it allowed for sufficient distinction between component 

types without too much overlap between the key terms generated for each topic. 

II. Results: Exploring the Materiality of the Mozilla Corpus 

The Mozilla Corpus serves as an excellent example of how much code duplication is 

present in a versioned history of software. Table 5.1 shows the net change in token count 

between each version, and Figure 5.1 shows the percentage of change between versions for 

Mozilla Suite and Mozilla Firefox. Across sixty versions, there is only one point at which the 

code base was entirely set aside and development rebooted. Prior to Netscape’s release of the 

source code for their Communicator Suite in 1998, the company was developing two parallel 

See: http://web.archive.org/web/20021002150509/http://www.mozilla.org/scriptable/js-

components-status.html and https://bugzilla.mozilla.org/show_bug.cgi?id=71483 
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versions of their browser. Both were eventually abandoned, but parts of version 5.0 were 

released as open source. Version 5.0, written in C++, was a continuation of the code base that the 

Netscape team had been working on since the browser’s beginnings as a re-imagining of NCSA 

Mosaic, the first graphical web browser, developed in part by Netscape’s co-founder Marc 

Andreessen.11 The second browser, version 6.0, was to be a complete port of Navigator to the 

Java programming language, dubbed “Jazilla” by the press. Andreessen intended for Jazilla to be 

the future of the company, using the cross-platform compatibility afforded by Java’s virtual 

machine structure to deliver fully on Netscape’s promise of producing a universal browser that 

behaved and rendered the Internet identically on any machine. In the end, however, Jazilla was 

abandoned as Netscape struggled to compete against Microsoft. Version 5.0 thus represented an 

attempt to keep up with Microsoft in the race to build new browser features that would hold 

users’ attention until the release of Netscape’s next generation Java browser.12  

Although Netscape’s decision to release the source code to Communicator was framed by 

as a grand gesture of support for the growing open source software community, accounts of the 

company’s situation in the marketplace suggest that the release of Communicator as open source 

was more or less a last ditch effort to see development of Netscape’s technology continue as the 

11 Despite some similarities, NCSA Mosaic and Netscape Navigator do not share any direct 

ancestry. The Mosaic license was eventually acquired by Microsoft, who used Spyglass’ 

implementation of the browser as the foundation for Internet Explorer.  

12 See pages 188-198 of Michael A. Cusumano and David B. Yoffie’s Competing on Internet 

Time: Lessons from Netscape and Its Battle with Microsoft (1999) for interviews with former 

employees about the plans and decisions behind these two versions. 
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company faced a buyout by America Online.13 Before open-sourcing Version 5.0, however, 

Netscape had to remove large portions of code that it had licensed from its partners. Thus, the 

first open source ancestor to Mozilla Firefox was released in a hobbled, yet still functional, form. 

Following the buyout by America Online, Netscape abandoned the old source code and decided 

to rebuild its Communicator Suite from the ground up, and on December 11, 1998, the earliest 

version of what would come to be known as the Mozilla Application Suite (or “Mozilla Suite” 

for short) was posted to the Mozilla Foundation’s ftp server. 

Although technically speaking, development was also ceased on Mozilla Suite in 2004 in 

favor of a more stream-lined application that would be released simply as a browser and not as a 

collection of Internet tools, Mozilla Firefox was based on the same core components as Mozilla 

Suite.14 In a web browser like Mozilla Firefox, the component that renders information written in 

HTML/CSS or other “web languages” is known as a “layout engine.”15 Netscape had begun 

working on Mozilla’s layout engine, Gecko, prior to 1998 and had intended it to succeed the 

13 In addition to Cusumano and Yoffie’s book, see also Thomas Hugh’s essay “Protocols for 

Profit: Web and E-mail Technologies as Product and Infrastructure” in The Internet and 

American Business, eds. William Aspray and Paul E. Ceruzzi (2008). 

14 For more on Firefox as a “streamlined” revision of Mozilla Suite, see: 

http://web.archive.org/web/20110623034401/http://weblogs.mozillazine.org/ben/archives/00969

8.html 

15 For more on layout engines or Gecko in particular, see Mozilla’s Gecko FAQ at: 

https://developer.mozilla.org/en-US/docs/Gecko/FAQ?redirectlocale=en-

US&redirectslug=Gecko_FAQ 
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engine they had been modifying and adding to since their first release of Navigator; however, in 

1998, Gecko was released as an open source library along with what remained of Communicator 

and not incorporated into any browser until development began on Mozilla Suite. Although it is 

true that some components of Mozilla Suite were abandoned during the transition to Mozilla 

Firefox, Gecko and its supporting modules were carried over. A true break from Mozilla Suite 

does not appear to occur until label 40, Version 3.0 of Mozilla Firefox. As the graphs in Figure 

5.2 show, the total change to the C++ codebase are 85% of the size of the previous version, with 

a net reduction in size of 21.5%. There are also noticeable changes in the trends of individual 

topics that occur at this point. As Figure 5.3 shows, non-browsing components like e-mail that 

were a part of the bundled applications model used by Communicator and Mozilla Suite are not 

actually removed from the C++ codebase until version 40.16 Despite claims that Firefox was to 

be a clean break from Mozilla Suite, the two are more directly related for a brief period 

following Firefox’s version 1.0 release than Netscape Communicator and Mozilla Suite. In short, 

the repetition in the Mozilla Corpus is extensive, reflecting its production through a model of 

iterative inscription, and making it unsuitable for the same topic modeling workflows in use by 

digital humanists.  

16 This break coincides with an announcement by Mitchell Baker, chairperson of the Mozilla 

Foundation’s board, claiming that increased resources would be devoted on Thunderbird, an e-

mail application built on Gecko. The removal of e-mail code from the Mozilla Corpus at this 

point suggests that the move was as much about streamlining Firefox as it was about improving 

Thunderbird. These algorithms were likely rewritten in JavaScript rather than added into 

Thunderbird’s C++ codebase. See below for more on the structural changes in Firefox/Gecko. 
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 One major trend that stands out among the Mozilla corpus’ topic vectors is a pair of sharp 

declines in topics at either end of the versioned timeline related to rendering the browser’s 

GUI—menus, windows, tabs, icons, button. Figure 5.4 shows three topics exhibiting this trend. 

Even discounting this trend, the huge spike in topic 56 during the Communicator era stands out 

compared to the others in the model. The vast majority of topic vectors show an upward trend 

moving forward in time, plateauing either in the Mozilla Suite era or near the beginning of the 

Firefox era, if not continuing to rise into the present. Topic 56, on the other hand, shows not only 

a spike off the scale of the graph in terms of both token counts and version membership, but also 

exhibits a downward trend throughout the version timeline. According to the LDA results, topic 

56 is defined by distribution of the terms (in order of probability): item, window, menu, view, 

drag, rect, command, button, wnd, cmd, select, bar, dlg, edit, widget, frame, icon, messag, 

control, hwnd, drop, dialog, handl, and win. Although some of these terms are shared with other 

topics, the overall function they appear to represent is the rendering of interface objects. Given 

the comparatively limited graphics capabilities of personal computers at the earliest parts of the 

timeline, it is curious that so much of the code-base would be dedicated to graphics libraries 

during the earliest periods of the Mozilla corpus. As Figure 5.6 shows, there are a number of 

topics related to graphics that reflect the assumption that rendering capabilities would rise 

alongside increases in consumer computing power. 

 Histories of the browser wars highlight Netscape’s corporate strategy of interposing the 

browser as a new platform for business that would run on all major operating systems and host 

its own set of applications built using web languages. Their goal, in other words, was to make 

users dependent on Netscape Communicator for their daily tasks, regardless of the operating 

system they used. During the conflict between Apple and IBM discussed in Chapter 2, Microsoft 
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quietly carried out a similar strategy with hardware vendors, licensing and spreading its own 

implementation of the Disk Operating System to everyone producing clones of IBM’s PC. 

Although there were only three major competing operating system platforms in 1994 when 

Netscape released version 1.0 of its Navigator browser, the company promised users that web 

pages would look the same across all of them.17 Representing it’s browser as universal was not 

so much a move to attract users—according to Cusumano and Yoffe, Netscape was already used 

on 90% of Internet connected personal computers by 1996—as it was a way to sell its own web 

server and developer tools. Andreessen typically used his “TechVision” blog to promote new and 

upcoming tools for the company’s corporate customers: 

Netscape ONE is doing for application development what HTML did for information 

sharing. Why do I say that? HTML changed the way people could share information by 

leveraging the ubiquity and platform-independence of the Internet. Netscape ONE 

changes the way developers can create applications by allowing fully functional 

applications to be built in the same Internet framework. This framework provides the 

ability to write software once for multiple platforms, reach more people than ever before, 

distribute and deploy it for trivial costs, and enjoy the security of universally supported 

open standards. Like HTML, Netscape ONE works for the entire Internet. Also like 

HTML, it doesn't assume that you and everyone you want to communicate with use a 

17 This idea has since become a key part of Internet technology. For more on how an experience 

of “seamlessness” shapes information technology, see Alexander Galloway’s Protocol: How 

Control Exists After Decentralization (2004). 
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particular operating system. It isn't Netscape's platform, it's the Internet's platform.18 

Although these comments serve more as advertising than as useful information about the 

company’s plans, it’s worth nothing that Andreessen frequently associates advancements in 

Netscape’s products to changes in the Internet itself. In fact, Andreessen tried to cultivate the 

idea that Netscape would leverage its dominance of browser software to introduce sweeping 

changes to personal computing as Internet access became more widely available. Bob Metcalfe 

reported in 1995 that Netscape’s goal was to build more and more features into its browser until 

it could function like an operating system, hosting all of users’ computational tasks and thereby 

turning Microsoft’s Windows and Apple’s MacOS into “a mundane collection of not entirely 

debugged device drivers” (111). While toolkits like ONE or the Netscape OS left little 

impression on history, they hint at the future direction of Netscape’s, and later Mozilla’s, 

browser technology. 

 Netscape’s push to position its browser suite as a universal interface helps to 

contextualize the trends visible in Figure 5.3 in two ways. First, the large spike during the 

Communicator period likely reflects the complexities of generating complete user-interfaces with 

similar look-and-feel across three different operating systems. Figure 5.6 shows unscaled 

versions of both the token count and the percentage of code-base occupied by topic 56 over time. 

Promising a universal browser, in other words, meant in practice that 30% of the code-base was 

dedicated to accounting for the peculiarities of the platforms Netscape was executed on top of. 

18 See: 

http://web.archive.org/web/19970227011735/http://www15.netscape.com/comprod/columns/tech

vision/one.html 
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At its peak, those components represented by topic 56 accounted for 267,799 tokens with the 

next highest peak in a different topic vector being 151,653. This second peak is also during the 

Communicator era in a topic representing e-mail management. The third highest (and first 

outside of Communicator) is 128,982 during the Firefox era in topic 40, included in Figure 5.5, 

which represents HTML5 graphics elements. Topic 56’s peak is especially important to note 

given that occurs in the era with the smallest size C++ codebase, peaking at 1/2 the size of the 

entirety of the Mozilla Suite codebase and 1/5 the size of Firefox’s (see Table 5.1). Although 

Netscape’s design plans during the closed source period were never made public, it is a safe 

assumption that this peak represents cross platform components written in Java that could not be 

released as open source because Sun Microsystems would not allow Netscape to release its 

browser with built-in support for Java.19  

 Nonetheless, the fact that the trends in topics 22, 27, and 56 begin to resemble one 

another despite the wild rise and fall of 56 in early versions suggests that Mozilla carried on 

Netscape’s plan to become a universal interface. According to the published proposal notes from 

a meeting with Netscape’s management under America Online, developers began working on the 

Cross Platform Toolkit, later renamed the Cross Platform Front End (XPFE), that would 

“leverage Gecko to maximize performance [and] minimize [the] effort and overhead” required to 

19 According to an interview with Aleks Toctic, one of Netscape’s developers, conducted by 

Cusumano and Yoffe, there were internal versions that tried to use Java to implement cross-

platform, uniform user interface components, but these were abandoned sometime in 1998, the 

same year as the open source release (178). As a result, all user interface components had to be 

re-written in C++. 
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manage the user-interface.20 In other words, developers wanted to design the Mozilla Suite’s 

user interface components using the same layout engine that rendered web content. Archived 

documentation for XPFE shows that the framework acts as an intermediary between user 

interface elements rendered on screen and the system-specific libraries present within an 

operating system.21 Rather than explicitly encoding every element of the interface in C++, XPFE 

renders the interface by interpreting instructions written in XML, HTML/CSS, and Javascript. In 

addition to reducing significantly the amount of source code needed to manage the user interface, 

it would also make it more flexible: user interfaces could be “replaced” by downloading new 

instruction files or added to with downloadable components. This observation is supported by the 

recovery of topic 56 after its sharp drops end in 1999 (at label 15), suggesting that the 

components it represents still managed the relationships between elements of the user interface 

but no longer defined the behavior of those elements. While most of topic 22’s terms are all 

explicitly related to web page components, the term “chrome” appears to stand out; historically, 

however, “chrome” is the term Mozilla has used internally to refer to the user-interface rendered 

from XUL and JavaScript documents, marking the topic as part of XPFE. Topic 27 therefore 

likely represents those components resting between XPFE and the operating system specific 

libraries like window managers or the event listeners that track mouse and keyboard input. Topic 

27, for instance, shares many key terms with topic 16, such as “key” and “mouse” (see Figure 

5.8). One important difference between the two is that topic 27 includes “gtk,” which stands for 

the GNOME Toolkit, a graphics library commonly used within GNU/Linux, whereas topic 16 

20 Full notes can be found here: http://www-archive.mozilla.org/xpfe/ExecReview.html 

21 http://www-archive.mozilla.org/xpfe/orig/xpfe.html 

 

                                                 



230 
 

includes “hwnd,” an ID number used in Windows to track individual instances of window 

objects. Yet these vectors differ in the rise and fall at the end of the vectors for topics 16 and 27, 

respectively. Presumably this discrepancy represents the different amounts of code necessary to 

manage relationships between the browser and graphics libraries in Windows or GNU/Linux, 

respectively. 

 Mozilla’s decision to remove explicit definitions of interface elements in C++ and instead 

interpret them from XML, HTML, and JavaScript files represents the beginning of a profound 

change to the browser’s materiality. As Figure 5.8 shows, XPFE eventually resulted in a sharp, 

but temporary, increase in the amount of XML bundled in with Mozilla Suite’s C++ code base; 

however, there is also a steady increase in the amount of JavaScript code included beginning at 

the same time as XPFE’s introduction in 1999 (label 15).22 At label 41, version 3.5 of Mozilla 

Firefox, it rises very sharply, eventually peaking at 87% of the size of the C++ codebase. 

Following the sharp rise, it is accurate correct to say that Mozilla Firefox is written in JavaScript, 

with its Gecko layout engine making up the majority of the remaining C++ code. The only 

software built from C++ and distributed as “Mozilla Firefox” is the Gecko engine. The Mozilla 

Firefox that users experience exists as an effect of Gecko’s attendant XPFE components and the 

way they define Gecko’s interactions with the underlying operating system. XPFE’s JavaScript 

files are included as part of every Mozilla Firefox installation in a compressed file, but are 

22 This data was obtained from the pre-diff version of the Mozilla Corpus, which includes all 

files distributed by Netscape/Mozilla. Because topic modeling was only performed on the C++ 

files, officially the primary language of all three applications, the Javascript files were not part of 

the topic model. 
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otherwise unencrypted, allowing them to be extracted with a simple zip-compression utility and 

viewed by anyone. Presumably, anyone could directly modify or insert new features into the 

browser by editing the XML and JavaScript read by Gecko (see Figure 5.9). Both Mozilla Suite 

and Firefox, in this respect, are configurations of Gecko.  

On a purely technical level, the Mozilla corpus demonstrates that a software’s materiality 

is not stable; yet within the larger context of this study, the change introduced by XPFE 

highlights the disconnect between the interface and the computational present in personal 

computing software. Not only does the very structural definition of a piece of software subject to 

change over the course of its iterative development, but it can change in ways that leaves the 

interface largely intact. As Chapter 1 explores, one of the arguments for transparency proposed 

by computer scientists was the idea that a “soft” interface is only arbitrary linked to the 

algorithms it represents. Unlike “hard” interfaces, such as a steering wheel or a lever, there is a 

more direct link between the action of the user—his or her motion—and the mechanism it 

manipulates. Software, on the other hand, does not have this constraint and can be designed to 

resemble anything, producing a conceptual model that allows users to operate a computer system 

but which does not necessarily fully or accurately represent the computational operations taking 

place beneath it. In the case of the Mozilla Corpus, internal changes were only infrequently 

accompanied by external changes, allowing the conceptual model of a “web browser” to remain 

relatively intact.   

III. Conclusion 

 Keeping up with the cultural work of a rapidly evolving software ecology is difficult, but 

this study shows that text analysis techniques, like topic modeling, can help us to pin down and 

trace events that may not be well documented in sources more familiar to archival 
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methodologies. Algorithmic tools are not perfect; however, acknowledging their epistemological 

limitations provides a space for researchers to shape their application in ways that respect the 

goals and concerns of humanistic inquiry. Topic modeling the entire version corpus without 

concern for duplication would have produced topic vectors but with trends that would have been 

more blunted. Given Thomas’ findings regarding the accuracy of a diff-wrapped LDA, compared 

to standard pre-preprocessing, it is possible that several of the trends or surprising moments 

discussed above may not have been visible. Facing this constraint of LDA opened a space for 

reflection on digital media scholarship which in turn led to methodological solutions that 

accounted for the unique material qualities of software’s production. The resulting data also 

serves as an argument for the need for more historical studies of software’s development, 

whether through this methodology or others. Comparative media analysis served as an excellent 

technique for applying critical theories developed for literary study to television, film, and digital 

media. Here, too, lessons from print culture and the computational study of print corpora helped 

to articulate the problem of a sprawling assemblage into a bibliographic problem. As the digital 

humanities moves forward, dialogue between those working on computational methodologies in 

literary analysis and software studies could lead to a sharing of techniques, revealing new ways 

of approaching critical problems in the two fields. 

 Mozilla Firefox’s incorporation of HTML, JavaScript, and XML into its codebase shows 

just how much change is possible to go unnoticed beneath transparent software interfaces. The 

Internet is no longer just something used to “surf,” download media, or play games; it is fast 

becoming a required aspect of personal computing, and software is being reshaped to incorporate 

not just its network protocols but also its content model. Closed source software developers are 

also been pushing to integrate web technologies into their product. Microsoft, for example, offers 
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an “Office 365” program that presents it applications as subscription services, rather than objects 

for which users purchase licenses. Even the latest Office includes built-in cloud storage, inviting 

users to store all their data on Microsoft’s servers. Developments like these are moving personal 

computers away from the idea of appliances that reside in our homes and more towards 

something resembling a semi-permanent conduit between our lives and the economic interests 

that can almost instantaneously—our Internet infrastructure perhaps isn’t quite that fast yet—

control our relationship to them with the press of a button. Web languages are, in turn, being 

reshaped to resemble more robust application development languages, allowing for a style of 

programming that mixes languages to effect something like the structural organization of C++ 

and Java but without the need for developers to worry about system management problems like 

exception handling, build dependencies, or compiler errors. As we enter the era of cloud 

computing, Internet technologies are expected to replace personal computers, returning hardware 

to something resembling the mainframe-centric architecture that prevailed prior to the 1980s.  

 Within the broader context of this project, this chapter shows the extent to which 

transparent software can undergo significant shifts in structure that are not visible through a 

perspective shaped by user interfaces. Unless we take steps to draw back the veil of commercial 

models of user-friendliness soon, it may be too late for anyone other than developers to have 

much of a say in what sort of automatic systems are built into the next generation of personal 

computer technology. Even if copyright and other intellectual property protections prevent major 

commercial software from being open to the historical analysis performed here, there is still 

good reason to believe that studying related free and open source technologies can help us to 

understand better the software ecologies they share with closed software. It’s important that the 

cultural dimension of these technologies be addressed openly and frankly, the same way that new 
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features or the latest technical specifications are now. Histories of software must do more than 

recount the technical achievements or corporate strategies of developers. As this chapter has 

shown, it is possible to leverage computational power as a meta-critical tool. The problems of 

scope and scale posed by software history can be accounted for using digital tools in 

methodologies informed by critical and interpretive theory.  
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Appendix A – Tables and Figures for Chapter 4 
 
Table 4.1: Information regarding the xfce4 dependency corpus 
Dependency tree for Xfce, a lightweight GTK+ desktop environment 
Gathered: Dec. 2012 from Debian’s http.us mirror 
Version: 4.6.2, with Debian 6.0 patches 
Languages: C/C++ 
Packages: 223 (174 containing code in target languages) 
Files containing code: 16,017 
Lines of code: 255,571 
Total tokens: 16,538,166 
Less stopwords: 6,460,629 

 
Table 4.2: Sample topics from each of the 6 codings 

User applications GUI and graphics libraries Multimedia libraries 
Topic 0 Topic 17 Topic 1 Topic 7 Topic 4 Topic 10 
Gtk thunar dpi xfce mixer psf 
Ical icon req icon snd channel 
button view xkb menu pcm pcm 
clock model xcm panel track frame 
appt gtk color plugin seq seek 
alarm dialog font dialog alsa marker 
widget rename rep widget port bufferlen 
Box volum cony channel card sampl 
 

Data Encoding System Management Command line utilities 
Topic 3 Topic 22 Topic 9 Topic 14 Topic 31  
xml node pci udev ncur  
parser gam conn queue parm  
tok idx auth enum menu  
glade reg xcb monitor screen  
enc dfa cap subsystem export  
entity tree repli lang trace  
pool acl protocol serial color  
decl subscript host scsi attr  
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Table 4.3: Sample Pearson results for direct dependencies. First row contains the higher level 
package and dependencies appear on subsequent rows. The number at the beginning of the 
package name indicates the layer assigned by Pajek’s depth calculation. 
2-xfwm4 3-hal 
4-libwnck22 0.9973 4-libblkid1 0.0214 
4-libxfcegui4-4 0.8405 4-pciutils 0.0134 
5-libglade2-0 0.1557 4-udev 0.0488 
5-libstartup-notification0 0.8790 4-usbutils 0.9966 
5-libxfconf-0-2 0.0201 5-libusb-0.1-4 0.9977 
7-libdbus-glib-1-2 0.0343 6-libhal-storage1 0.9994 
7-libgtk2.0-0 0.2180 7-libdbus-glib-1-2 0.0171 
7-libxfce4util4 0.0328 7-libhal1 0.9353 
8-libpango1.0-0 0.0270 8-dbus 0.0120 
8-libxcomposite1 0.0255 9-libglib2.0-0 0.0200 
8-libxdamage1 0.0130 9-mount 0.0213 
8-libxrandr2 0.0303 10-libdbus-1-3 0.0123 
9-libglib2.0-0 0.0290 12-libexpat1 0.0209 
9-libxext6 0.0239   
10-libxrender1 0.0341   
11-libx11-6 0.0235   
 
Table 4.4: Sample Pearson results for intra-layer neighbors. The first row is the package to 
which packages on all subsequent rows were compared. The number at the beginning of the 
package name indicates the layer assigned by Pajek’s depth calculation. 
2-xfdesktop4 7-dbus-x11  
2-gtk2-engines-xfce 0.4120 7-libdbus-glib-1-2 0.9172 
2-orage 0.0274 7-libgmp3c2 0.0271 
2-thunar-volman 0.4377 7-libgtk2.0-0 0.0434 
2-xfce4-appfinder 0.9657 7-libhal1 0.3149 
2-xfce4-mixer 0.7119 7-libudev0 0.0310 
2-xfce4-session 0.6102 7-libvorbis0a 0.0262 
2-xfce4-utils 0.8335 7-libxfce4util4 0.0084 
2-xfwm4 0.1291 7-libxmu6 0.0302 
  7-libxpm4 0.0295 
  7-util-linux 0.0586 
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Figure 4.1: An example layer model, taken from the MeeGo mobile GNU/Linux distribution 
developer documentation.  
See: https://meego.com/developers/meego-architecture/meego-architecture-layer-view 

  
Figure 4.2: A layer diagram illustrating the user’s relationship to the interface and the rest of the 
system according to transparency. This diagram fits well with Manovich’s culture/computation 
model.  
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Figure 4.3: Dependency tree for the xfce4 package in Debian 6.0. This tree was calculated using 
Pajek’s acyclic hierarchy depth partition algorithm. Layers represent maximum distance from the 
xfce4 package (placing all packages on the layer directly below the lowest package that depends 
upon them). Partition colors only represent layer groupings. 
[Full resolution available at: http://mblack.us/chap4/] 

 
 
Figure 4.4: Trimmed Tree for xfce4 package in Debian 6.0. This tree uses the same layering 
data from Figure 3, but all packages not containing C/C++ code are removed. Packages are 
coded according to role represented by topic with the highest number of tokens and x-axis 
position is optimized to show clustering. [Full resolution available at: http://mblack.us/chap4/] 
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Figure 4.5: Layer to layer comparisons. The first graph shows the Pearson results when each 
layer is compared to the one immediately above it.  

 
The second graph shows the same results superimposed on top of package counts for each layer. 
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Figure 4.6: Interface to layer comparisons. The summed vector for all packages on layer 2 was 
compared to the summed vectors for all other layers. The first graph shows Pearson results for all 
packages on layers 2-12. The strong spike at layer 7 is produced by the libgtk2, a graphic library 
that every GUI application depends upon.  

 
The second graph shows Pearson results when libgtk2 is removed from the layer 7 vector. 
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Figure 4.7: Similarity Tree produced using global Pearson results. Each edge in the network 
represents a result of 0.3 or higher. Only new relationships are rendered; direct dependencies are 
not rendered regardless of Pearson result. Packages coded according to role represented by topic 
with the highest number of tokens. 
[Full resolution available at http://mblack.us/chap4/] 

 
 
Figure 4.8: Layer to layer package relationship counts for the Similarity Tree. 
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Figure 4.9: Map produced via top Pearson pairings. Full resolution available at 
http://mblack.us/chap4/ 
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Appendix B – Tables and Figures for Chapter 5 
 

Table 5.1: General information about the Mozilla Corpus 

Version 
Label 

Version 
Number 

Release 
Date 

Size (Full) Net Change 
(Full) 

Net Change 
(C++) 

# of 
Tokens 

Mozilla Communicator 
00 None 03/31/98 40203077 N/A N/A 233285 
01 None 04/08/98 59131622 18928545 9694228 692924 
02 None 04/29/98 65089258 5957636 548493 714233 
03 None 06/03/98 70166069 5076811 1223271 753252 
04 None 07/28/98 84099725 13933656 8086869 1132744 
05 None 09/04/98 90469752 6370027 330190 1144931 
06 None 10/08/98 83588207 -6881545 -1708705 1048406 

Mozilla Application Suite 
07 (M1?) 12/11/98 44647824 N/A N/A 674816 
08 (M2?) 01/28/99 55504133 10856309 4673001 865565 
09 M3 03/19/99 65940062 10435929 4740616 959360 
10 M4 04/15/99 70438485 4498423 2334716 1031601 
11 M5 05/05/99 73321774 2883289 1766415 1113046 
12 M6 05/29/99 85172946 11851172 2240285 1190649 
13 M7 06/22/99 86226782 1053836 1453313 1269994 
14 M8 07/16/99 90528214 4301432 2082572 1347142 
15 M9 08/26/99 94343632 3815418 1752674 1342563 
16 M10 10/08/99 99242381 4898749 413658 1393442 
17 M11 11/16/99 105517092 6274711 1403584 1477091 
18 M12 12/21/99 110274354 4757262 1731966 1464024 
19 M13 01/26/00 108091563 -2182791 -216838 1540253 
20 M14 03/01/00 112325279 4233716 1751420 1630439 
21 M15 04/18/00 117337663 5012384 1845194 1783563 
22 M16 06/13/00 123233166 5895503 3866597 1839983 
23 M17 08/20/00 141779386 18546220 1289320 1882548 
24 M18 10/12/00 145153396 3374010 903169 1896079 
25 0.6 12/06/00 135022311 -10131085 271163 1917088 
26 0.7 01/09/01 152227947 17205636 507036 1936538 
27 0.8 02/14/01 152513233 285286 293603 2090149 
28 0.9 05/07/01 170953881 18440648 3763559 2274789 
29 1.0 06/05/02 224325235 53371354 6189989 2332033 
30 1.1 08/26/02 228137982 3812747 1363139 2402289 
31 1.2 11/26/02 228896289 758307 1737235 2433636 
32 1.3 03/13/03 229003326 107037 725868 2436192 
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Table 5.1 (cont.) 
 

33 1.4 06/30/03 230873828 1870502 157801 2427898 
34 1.5 10/15/03 184967631 -45906197 -68683 2447614 
35 1.6 01/15/04 188991165 4023534 290254 2503244 
36 1.7 06/17/04 206097164 17105999 1299795 2545786 

Mozilla Firefox 
37 1.0 11/09/04 197018982 N/A N/A 2809989 
38 1.5 11/30/05 208257684 11238702 5285960 2155079 
39 2.0 10/24/06 218235493 9977809 2380870 2237129 
40 3.0 06/17/08 227187445 8951952 -15144818 2241148 
41 3.5 06/30/09 278296889 51109444 2564959 2531559 
42 3.6 01/21/10 280683836 2386947 690404 2504039 
43 4.0 03/22/11 346351093 65667257 5805397 2483528 
44 5.0* 06/21/11 352386092 6034999 -729812 2469320 
45 6.0 08/16/11 347554884 -4831208 -516552 2456907 
46 7.0 09/27/11 349362417 1807533 -769400 2511091 
47 8.0 11/08/11 354846376 5483959 -253822 2686495 
48 9.0 12/20/11 364515482 9669106 1535342 2694930 
49 10.0 01/31/12 372937453 8421971 4338895 2714671 
50 11.0 03/13/12 385911428 12973975 -55856 2740373 
51 12.0 04/24/12 388876784 2965356 472535 2790036 
52 13.0 06/05/12 393197798 4321014 576292 2864587 
53 14.0.1 07/17/12 407165259 13967461 1061975 2891327 
54 15.0 08/24/12 395983732 -11181527 -2924526 2976568 
55 16.0 10/09/12 429430729 33446997 552219 3167788 
56 17.0 11/20/12 435263141 5832412 1455213 3182711 
57 18.0 01/08/13 465517793 30254652 4674165 3216161 
58 19.0 02/19/13 471549259 6031466 292543 233285 
59 20.0 04/02/13 476262707 4713448 774360 692924 

* Mozilla begins its rolling release, “every six weeks,” model.  
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Figure 5.1: A comparison of the XPConnect topic. XPConnect serves as the internal 
interface between the Mozilla’s Javascript interpreter and its Cross Platform Component 
Object Model (XPCOM), which serves an abstract system management module 
(interfacing with memory management, file system, and internal messaging libraries). 

  
Model size: 50 topics Model size: 60 topics 

  
Model size: 80 topics Model size: 100 topics 
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Figure 5.2: Graphs for Mozilla Suite and Mozilla Firefox of the total change in code base 
over time, calculated as the sum of the tokens changed (ABS(δ-remove) + δ-add) relative to 
the total number of tokens in the previous version.  

 
The average change between versions during the Mozilla Suite era is 23.86%. 

 
The average change between versions during the Mozilla Firefox era is 20.41%. 
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Figure 5.3: Topic vectors related to e-mail show a sharp decline at label 40. This decline 
coincides both with a significant change in the size of the C++ code base and with an 
announcement by Mitchell Baker, head chairperson for the Mozilla Foundation, that new 
resources would be devoted to Thunderbird, Firefox’s companion e-mail client. Because 
both use the Gecko layout engine, these graphs suggest that the change in direction was as 
much about streamlining Firefox as it was about further support for Thunderbird. In other 
words, these graphs show the removal of application-specific code from Gecko. This change 
is discussed in detail later in this chapter. 
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Figure 5.4: Three topics representing GUI rendering that exhibit a downward trend. While 
topics 22 and 27 only show this trend after the release of Firefox, topic 56 highlights 
Netscape’s use of different user-interface implementations for each of its supported 
platforms. 
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Figure 5.5: Examples of graphics components with steady or sharp upward trends.  
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Figure 5.6: Unscaled versions of topic 56’s vector that show its peak both as token count 
(left) and as percentage of C++ codebase (right).  

  
Unscaled Token Count Unscaled Membership Percentage 

 
Figure 5.7: Topics representing the lower layers of XPFE that interact with OS-specific 
graphics libraries. The discrepancy in trend during the Firefox era likely represents the 
different amounts of code necessary to manage windows on the two platforms. 

  
Topic 16’s terms: window, plugin, wnd, 
win, rect, widget, instanc, mou, param, key, 
messag, msg, point, dispatch, proc, handl, 
timer, hwnd, cursor, height, child, scroll, 
bound, statu, screen  

Topic 27’s terms: widget, window, gtk, 
moz, emb, button, browser, menu, mou, 
focu, label, kei, dialog, signal, statu, 
callback, drag. cursor, shell, ctx, debug, 
app, titl, dlg, mask 
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Figure 5.8: Size of the code-base of each of the major languages used in the Mozilla Corpus. 
XML includes all known variants used by Netscape/Mozilla (XML, XUL, RDF) 
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Figure 5.9: Some the Firefox browser components extracted from omni.ja. In addition to 
the basic browser window, these scripts also control common browsing utilities tabbed 
browsing, downloads, RSS feeds, bookmarks, browser-wide preferences menus, history, 
and syncing profiles across machines. 
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