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ABSTRACT 

 In nature, microorganisms are constantly exposed to micromolar levels of 

hydrogen peroxide (H2O2) from sources such as host defenses or byproducts of chemical 

processes.  This constant threat raises two major questions: what biomolecules are 

damaged by H2O2, and how do cells defend themselves against it?  Using Escherichia 

coli strains that are devoid of peroxide scavengers (Hpx
-
), I was able to study the effects 

of protracted, low-grade H2O2 stress.   

 In this study, a novel class of H2O2-sensitive enzymes is described.  I discovered 

that Hpx
-
 cells were unable to metabolize gluconate via the pentose phosphate pathway.  

By assaying activity of various enzymes in the pathway, one protein, ribulose 5-

phosphate 3-epimerase (Rpe), which requires a solvent-exposed divalent metal for 

activity, was found to be sensitive to H2O2 both in vivo and in vitro.  Although Zn, Mn, 

Fe, and Co were found to activate Rpe to varying degrees, only Rpe loaded with Fe was 

sensitive to H2O2, which suggests that Fe is the metal that activates Rpe under normal 

conditions.  In addition, Mn supplements were found to protect Rpe from damage by 

H2O2 in vivo, probably by replacing Fe in the active site. 

 Growth studies also revealed that Hpx
-
 cells are auxotrophic for aromatic amino 

acids.  Less than 0.3 µM H2O2 is necessary to cause this phenotype, making it the most 

sensitive pathway known.  This auxotrophy can be suppressed by adding shikimic acid, 

an intermediate in the common pathway for aromatic amino acid synthesis (the shikimic 

acid pathway), as well as Mn
2+

.   I have found that the first enzyme in the shikimic acid 

pathway (DAHP synthase), which has been shown to have the ability to use Fe
2+

 as a 

cofactor, loses activity in Hpx
-
 cells grown in the presence of oxygen.  This failure is due 

to accumulation of damage to DAHP synthase by a Fenton reaction between H2O2 and 

the active-site Fe atom.  This damage results in pathway failure and an inability to 

synthesize aromatic compounds.  The cell attempts to compensate by inducing DAHP 

synthase transcription, but this is not enough.  Mn
2+

 can replace the Fe in the protein, 

allowing growth, but still cannot fully activate DAHP synthase to wild-type levels. 
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 Thus, Fenton chemistry remains the sole mode of H2O2 toxicity currently known, 

but the scope of targets of the Fenton reaction is increasing, as many proteins, such as 

Rpe and DAHP synthase, may use Fe as a mononuclear metal cofactor.  Certain aspects 

of protection against damage by H2O2 are becoming clearer.  While the OxyR response 

increases production of H2O2 scavenging enzymes, it also plays a role in metal 

homeostasis through regulation of MntH and Dps.  These proteins work to increase Mn 

concentrations, while sequestering Fe in the stressed cell, respectively.  This process 

allows Mn to metallate and thereby protect enzymes which would otherwise be 

vulnerable to damage by H2O2.  Therefore, adjusting metal availability is an important 

defense mechanism against H2O2, given that enzymes that use divalent metals are 

significant targets.  Each mononuclear Fe-containing enzyme studied thus far could be 

protected from oxidation by addition of Mn
2+

, which may help to explain why cells 

induce Mn import during H2O2 stress.    
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CHAPTER 1: INTRODUCTION 

 A BRIEF EVOLUTIONARY HISTORY OF LIFE 1.1

 In the beginning 1.1.1

 When life first appeared on Earth some 3.8 billion years ago, the environment was 

very different than exists today.  With an atmosphere devoid of molecular oxygen, early 

organisms would have encountered copious amounts of ferrous iron and plenty of sulfur 

[3, 5, 83].  Other bio-relevant metals such as cobalt, manganese, nickel, and molybdenum 

were most likely available, though at several orders of magnitude lower in concentration 

than iron.  Two other biologically relevant metals, copper and zinc, were extremely 

scarce during the early evolution of life, as they probably existed as precipitates with 

organic and inorganic sulfides [3, 196].  These differences in relative availability of 

metals and profusion of sulfur led early metabolic pathways to be built using these 

elements, both due to both their abundance and the wide array of chemical reactions that 

iron and sulfur are able to facilitate [186, 187].  In fact, organisms today show evidence 

of these early preferences, such that prokaryotes require more iron, manganese, and 

cobalt and much less zinc relative to eukaryotes, which evolved much later and under 

very different conditions [49]. 

 The rise of oxygen 1.1.2

 Life would continue to evolve under these anoxic, iron-rich conditions for the 

next billion years.  Over this time period basic metabolic processes were fine-tuned using 

iron as an important cofactor, both as a stand-alone facilitator of difficult reactions, as 

well as a partner of sulfur in iron-sulfur cluster proteins [83].  Thus, iron became deeply 

entrenched in metabolism from the very beginning [164].  Should the earth have 

remained anoxic, these metabolic processes would have continued to be adequate to 
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sustain life.  However, the evolution of photosystem II would prove to challenge this 

lifestyle. 

 The first oxygen-producing photosystems appeared between 2.4 to 2.7 billion 

years ago [102, 110].  While it would take almost a billion years for oxygen to begin to 

accumulate in the atmosphere, it most likely began oxidizing ferrous iron as it was 

produced.  This titration limited atmospheric oxygen level for some time, but made 

reduced iron species harder for organisms to acquire from the environment.  Because iron 

had already established a firm foothold on various metabolic processes [164], it was 

much easier for early life to evolve new ways to obtain iron, such as siderophores and 

other iron import systems, rather than to rebuild metabolism from the bottom up.  This 

did not mean, however, that early organisms could not use oxygen as a tool in their 

metabolic repertoire.   

 In fact, there is some evidence that early life was able to begin taking advantage 

of oxygen before the appearance of photosystem II, over 2.9 billion years ago.  LUCA, or 

the Last Universal Common Ancestor of Eukaryotes, Archaea, and Bacteria, is thought to 

have already evolved a cytochrome oxidase [28].  This early cytochrome oxidase likely 

evolved from NO reductase, which was part of the denitrification pathway.  Other 

evidence of early aerobic metabolic processes includes the predicted presence of oxygen-

dependent pyridoxal synthetic enzymes predating the appearance of photosystem II [99]. 

 These processes required molecular oxygen in order to function, so why would 

they have appeared before photosystem II?  Oxygen could have been generated by the 

organisms themselves by enzymes such as methane monooxygenase found in the strict 

anaerobe Methylomirabilis oxyfera [51].  It is also possible that some oxygen was 

generated by the UV irradiation of glacial ice, causing local accumulation of hydrogen 

peroxide (H2O2) in meltwaters, which was then converted into molecular oxygen and 

water [100].  The presence of a mangano-catalase roughly 3 billion years ago both 

suggests the presence of H2O2 and provides a mechanism for production of molecular 

oxygen without photosystem II [99].  Some even suggest that catalase enzyme was the 

precursor to manganese center of the photosynthetic oxygen-evolving complex [18].  
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However, there is still debate as to whether these processes really occurred before 

photosystem II, as increasing evidence suggests replacement of alternative anaerobic 

reactions with more kinetically favorable aerobic enzymes over evolutionary history 

[148]. 

 Problems associated with oxygen 1.1.3

 The Great Oxygenation Event yielded a boon in aerobic metabolic processes.  It 

has been suggested that the presence of molecular oxygen in the atmosphere enabled 

more than 1000 new and unique metabolic reactions [149].  These oxygen-dependent 

enzymes were preferred over their anaerobic counterparts due to their thermodynamic 

efficiency and irreversibility.  New metabolites, including steroids, were also made 

possible by the accumulation of oxygen [93].  These aerobic metabolites tend to be less 

polar, making it easier for them to cross membranes.  However, most good things come 

with a price.  While oxygen yielded a plethora of new routes to create an array of 

metabolites, it brought with it new challenges that life would have to overcome in order 

to benefit from this new tool. 

1.1.3.1 Changes in metal availability 

 One major challenge to early life upon accumulation of molecular oxygen was a 

change in the availability of biologically relevant metals.  The geologic record suggests a 

two-step change in metal availability [152].  The first major change, which occurred 

between 2.4 and 1.8 billion years ago, resulted in significant drops in soluble levels of 

iron and cobalt, with a slight drop in soluble manganese levels [196].  These drops were 

accompanied by a significant increase in the availability of molybdenum [157].  These 

were only the first set of changes that life would face with respect to metal availability. 

 The second major change in soluble metal concentrations occurred about 800 

million years ago.  This change saw levels of iron, manganese, and cobalt fall further, 

while levels of molybdenum and nickel rose significantly [157, 196].  While there was no 

appreciable change in levels of copper or zinc during the first major event, this round was 

very different.  The organic sulfides that had kept these metals as precipitates became 
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oxidized by the rise in molecular oxygen levels.  This released huge amounts of copper 

and zinc causing the soluble levels of these two metals to skyrocket.   

 Despite this sudden availability of copper and zinc, life had already established its 

metabolic processes with metals such as iron, manganese, and cobalt.  Early organisms 

had a choice to make: completely overhaul metabolism, or develop new ways to acquire 

the metals they had long been accustomed to.  Because changing the entire suite of 

metabolic processes would entail tweaking many different enzymes which carried out a 

number of different types of reaction, it was much easier to solve the problem by 

evolving ways of obtaining metals that had become scarce.  These acquisition systems, if 

effective, would allow all metabolic processes requiring a particular metal to function 

without the need to redesign each enzyme individually. 

1.1.3.2 Generation of reactive oxygen species 

 Coping with a decrease in the availability of necessary metals was not the only 

challenge brought on by the accumulation of molecular oxygen.  While molecular oxygen 

itself is a rather weak oxidant, partially reduced oxygen species are much better electron 

acceptors (Reaction 1.1).  These reactive oxygen species (ROS), which include hydrogen 

peroxide (H2O2), superoxide (O2·
-
), and the hydroxyl radical (HO·), have reduction 

potentials well suited to oxidize various biomolecules, thereby damaging an array of 

cellular targets [135]. 

 

O2                  O2·
-
                  H2O2                  HO·                  H2O    (Reaction 1.1) 

 

 It was not immediately obvious, however, that these reactive oxygen species were 

toxic.  In fact, it was not until the discovery of dedicated scavenging systems that the 

effects of these oxidants were appreciated.  The first of these enzymes to be discovered 

was by Oscar Loew in 1900.  Loew observed a protein in a range of higher organisms 

that catalyzed the conversion of two molecules of H2O2 to molecular oxygen and water, 

e
-
 e

-
, 2H

+
 e

-
, H

+
 e

-
, H

+
 

-0.16 +0.94 +0.38 +2.33 
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which he named “catalase” [118].  While Loew recognized that metabolic processes must 

generate H2O2 and that this might toxify the cell, he failed to develop any molecular 

mechanisms for these processes.   

 It was then nearly 70 years before superoxide dismutases (SODs) were discovered 

in the lab of Irwin Fridovich in 1969 [122].  As their name implies, SODs dismute two 

O2·
-
 molecules into molecular oxygen and H2O2.  Others took steps to explore the effects 

of O2·
-
 on cells which lacked these scavengers, finding a number of processes that were 

injured by this reactive oxygen species [26, 31, 181].   

 Since then, a wide range of catalases, SODs, superoxide reductases, as well as 

peroxidases have been described in all domains of life, even obligate anaerobes [91, 118, 

119, 129, 145].  Without these defenses, organisms would be unable to cope with the 

resulting onslaught of oxidation they would otherwise experience.  The requirement for 

these scavenging enzymes during growth in oxygen has led to an entire field devoted to 

the elucidation of the effects of their respective substrates.  The field of oxidative stress 

encompasses all aspects of reactive oxygen species, from how they are made, to what 

they damage, and how cells cope with their effects.  Each of these areas will be discussed 

in turn as the major questions of the field of oxidative stress are explored. 

 MAJOR QUESTIONS IN THE FIELD OF OXIDATIVE STRESS 1.2

 Much work has been done in the field of oxidative stress to understand the various 

reactive oxygen species and how they affect cells.  There are four major questions that 

embody past, present, and future directions in oxidative stress research.  While each of 

these areas will be described in greater detail later in this chapter, an overview of each 

will be given here as an introduction. 

 The first major question in oxidative stress is where do reactive oxygen species 

come from?  This question can be explored from two distinct angles – sources external to 

the cell, and sources within the cell.  For O2·
-
, the source is important, as its charged 
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nature makes it difficult for this oxidant to cross membranes [193].  Therefore, the 

location of its generation will likely be the location of any targets.  However, H2O2 can 

easily cross biological membranes, so the targets of H2O2 will be less dependent on the 

source of this oxidant [159]. 

 This leads to the second major question in oxidative stress – what are the targets 

of reactive oxygen species?  In the case of superoxide, solvent-exposed Fe-S clusters are 

major targets in a number of organisms [17, 65, 111, 116, 183, 188].  While other 

phenotypes, such as auxotrophies for sulfur-containing, and aromatic amino acids have 

been described [26], there is a lack of strong evidence in the literature with regard to the 

cause of either.  Suppression of these auxotrophies by mutations in dapD or fur imply a 

role for iron, but the specific targets are yet to be identified [120].  In the case of H2O2, 

the Fenton reaction, which will be discussed later, is the common theme.  Oxidation of 

sulfhydryls and lipid peroxidation have also been suggested as mechanisms of H2O2 

damage, but these avenues are not likely factors in Escherichia coli [194].  Details of 

specific phenotypes will be described later. 

 The third major question in the field of oxidative stress is how do organisms cope 

with reactive oxygen species?  This question follows directly from the first two, as an 

understanding the sources and targets of reactive oxygen species is integral to 

comprehending the strategies employed to overcome them.  These strategies include 

responding to the reactive oxygen species themselves, reacting to and repairing damage, 

and changing metabolism to circumvent the damage altogether. 

 Finally, another point of consideration in oxidative stress, but by no means the 

least important, is what are the evolutionary and ecological impacts of reactive oxygen 

species?  From ongoing evolutionary battles, to occupation of particular ecological 

niches, to the very existence of obligate anaerobes, the roles of reactive oxygen species 

remain important factors. 
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 WHERE DO REACTIVE OXYGEN SPECIES COME FROM? 1.3

 External sources of ROS 1.3.1

 As was discussed in the previous section, there are two categories of major 

sources of reactive oxygen species.  The first category to be discussed includes those 

sources external to the cell.  In each of these cases, the reactive oxygen species is acting 

on internal targets, but the primary source of the oxidant is extracellular. 

 One such source of reactive oxygen species is the immune response.  In plants, 

NADPH oxidases at wound sites produce vast amounts of O2·
-
 and H2O2 in order to 

defend them against invading microorganisms [11, 124].  NADPH oxidases are also 

present in mammalian macrophages and neutrophils, where these systems operate in 

concert with generation of reactive nitrogen species, release of antimicrobial peptides, 

and sequestration of metals to kill invading microbes [63, 147].  It has been established 

that organisms unable to defend themselves against O2·
- 
generated by the immune 

response are attenuated [108, 109], although the role of H2O2 in the oxidative burst 

remains unsolved [10, 173]. 

 Some organisms, either because they are unable to mount an immune response, or 

as a secondary means of protection, employ redox-cycling warfare as a strategy to 

compete with and defend against microorganisms in their vicinity.  Plumbago, a 

flowering shrub, generates the redox-cycling drug plumbagin, which is an organic 

compound that generates reactive oxygen species by stealing electrons from metal centers 

and flavins once the drug has been taken up by other organisms [73, 180].  Juglone, a 

compound very similar in structure and function to plumbagin, is used by black walnut 

trees to defend against microorganisms, as well as insects and other plants [88].  Bacteria 

such as Streptomyces and Pseudomonas species, as well as Pantoea agglomerans, use 

phenazine compounds such as pyocyanin to defend against microbial competitors [179].  

All of these drugs work because they easily enter the cytoplasm and readily accept 

electrons from various sources as promiscuity makes defending against them more 

difficult. 
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 Some organisms resort to producing H2O2 directly.  One such organism, the 

bombadier beetle, has a specialized gland which produces H2O2 [40].  In this chamber, 

H2O2 is quickly combined with catalases, peroxidases, and hydroquinones to produce a 

hot spray as a defense mechanism against larger predators.  Other organisms, such as 

lactic acid bacteria, are more subdued in their approach.  These bacteria use pyruvate-, 

lactate-, and NADH oxidases that produce as much as millimolar amounts of H2O2, 

which is released into their surroundings as a means to compete with other organisms in 

their environment [66, 162, 170]. 

 Not all sources of reactive oxygen species are biological.  Indeed, chemically-

generated species can be formed by a variety of reactions.  For example, illumination of 

riboflavin or other chromophores is a common source of reactive oxygen species in lab 

medium [24].  Ascorbate is also commonly added to medium to generate reactive oxygen 

species.  In the environment, catechols from rotting plants can generate reactive oxygen 

species, as can reduced sulfur species released from anaerobic sediments which can, in a 

metal-dependent manner, produce reactive oxygen species when they rise to the 

oxygenated layer.  

 Internal sources of ROS 1.3.2

 While there are a number of external sources of reactive oxygen species that 

organisms must contend with, it turns out that, in the absence of defense systems, cells 

produce enough oxidants to damage themselves without help from their environment.  

Indeed, when scavenging systems are removed from cells, a number of growth 

phenotypes have been observed.  These will be discussed later [26, 89, 140, 184].  

However, these reactive oxygen species are accidental byproducts of aerobic metabolism, 

not desired end products or useful intermediates.   

 It was initially suspected that H2O2 and O2·
-
 were merely inadvertent products 

stemming from partial reduction of oxygen by cytochrome oxidase in the respiratory 

chain.  However, this idea did not hold up to experimental scrutiny [127].  Another idea 

was that flavoproteins or quinones in the respiratory chain were the primary contributors 
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to intracellular generation of reactive oxygen species.  This theory was plausible, as in 

vitro experiments had demonstrated the ability inverted membrane vesicles from bacteria 

and mitochondria generated H2O2 and O2·
-
 during in vitro respiration [30, 85, 125].  

Indeed, other experiments showed reactive oxygen species generation in vitro by two 

respiratory chain enzymes, NADH dehydrogenase II and succinate dehydrogenase [126].  

However, these ideas were also shown to be incorrect, as E. coli NADH dehydrogenase 

mutants did not decrease the rate of production of H2O2 or O2·
-
, and cells overproducing 

this protein had only a slight increase in production of reactive oxygen species [160]. 

 While the thought that the respiratory chain was the primary source of H2O2 

proved to be false, the idea that flavoproteins were responsible was not.  While the few 

flavoproteins found in processes outside the respiratory chain and most flavoenzymes do 

not contribute to H2O2 formation in a significant way, one such protein proved to be a 

major player under certain growth conditions.  NadB, which is a flavin-dependent 

dehydrogenase, was found to be responsible for nearly 30% of the total H2O2 produced 

endogenously during aerobic growth [104].  NadB typically uses fumarate as an 

anaerobic electron acceptor during biosynthesis of nicotinamide.  However, when cells 

are growing aerobically, oxygen can serve as an alternative electron acceptor, resulting in 

H2O2 production.  This process seems to be tolerated by cells because the flux through 

this particular pathway is usually very low.  Additionally, NadB is rather unique, as most 

other flavoproteins with significant flux, such as sulfite reductase, glutamate 

dehydrogenase, and alkylhydroperoxide reductase, do not employ flavins as the terminal 

redox moiety.  This arrangement allows them to pass electrons to other carriers, such as 

disulfides or heme, rather than to oxygen.  This setup drastically decreases the lifetime of 

the electrons on flavins, thereby preventing the adventitious reaction with oxygen that 

would otherwise lead to H2O2 production.  Fumarate reductase, another flavoprotein 

similar to NadB, can also generate fair amounts of H2O2 [104].  This is another unique 

case, however, as fumarate reductase is only expressed under anaerobic conditions, so 

generation of H2O2 by this enzyme would be limited to a window of time immediately 

following a shift from anaerobic to aerobic growth conditions. 
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 Another source of H2O2 that has been discovered is autoxidation of menaquinone 

[103].  This process can account for up to an additional 10% of the total intracellular 

production of H2O2.  However, the sources of more than half of the total H2O2 generated 

during aerobic growth are yet to be determined.  While it is possible that a single 

predominant source will someday be found, it is far more likely that many processes 

contribute small amounts of H2O2 toward the total, making those individual processes 

harder to locate. 

 WHAT ARE THE TARGETS OF ROS? 1.4

 Targets of O2·
-
 1.4.1

 As a radical species, it might seem that O2·
-
 might readily oxidize a host of 

biological targets.  However, due to electrostatic repulsion, electron-rich targets inhibit 

abstraction of electrons by the anionic O2·
-
 [16, 52, 82, 155].  It was reported in 1976 that 

E. coli experienced a number of growth defects when exposed to hyperbaric oxygen [20].  

These phenotypes, specifically deficiencies for aromatic, branched-chain, and sulfur-

containing amino acids, were explored further and found to be the result of O2·
-
 stress by 

using superoxide dismutase (SOD) mutants [26].  This finding shows that despite the 

limits on its interactions with certain biomolecules, O2·
-
 is still able to cause damage to 

cells.  Each of the three auxotrophies will be discussed in turn. 

 First, the branched-chain amino acid auxotrophy was found to result from damage 

to a particular class of iron-sulfur (Fe-S) cluster enzymes, known as dehydratases [54, 

111].  These dehydratases are characterized by a solvent-exposed [4Fe-FS] cluster in 

which one iron atom is not fully coordinated but is left with one coordination site 

available to bind to and activate substrate.  While the dehydratase responsible for the 

branched-chain amino acid auxotrophy was found to be dihydroxyacid dehydratase 

(DHAD), another enzyme in the same pathway, isopropylmalate isomerase (IPMI) is also 

a dehydratase sensitive to O2·
-
 oxidation.  In fact, there are at least six additional proteins 
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fitting this description, including aconitase A and B, fumarase A and B, 6-

phosphogluconate dehydratase (Edd), and serine dehydratase [55, 59, 60, 78, 116].  In 

each of these cases, the exposed cluster reacts with O2·
-
, which univalently oxidizes the 

cluster, causing the iron atom to fall out and the cluster to be degraded (Reactions 1.2 and 

1.3). This occurs with second-order rate constants of between 10
6
 and 10

7 
M

-1
 s

-1
 [54]. 

 

[4Fe-4S]
2+

 + O2·
-
 + 2H

+
            [4Fe-4S]

3+
 + H2O2    (Reaction 1.2) 

 [4Fe-4S]
3+

            [3Fe-4S]
1+

 + Fe
2+

     (Reaction 1.3) 

 

 The second phenotype, an auxotrophy for cysteine and methionine, is yet to be 

explained.  It has been observed that unidentified sulfur compounds are exported from the 

cell, but it is unclear how this explains the deficiency [13].  Due to damage to Fe-S 

clusters, the demand for cysteine, which is used to build the clusters, may be higher, but 

this hypothesis has not been tested directly.  The ability of a dapD mutations (which 

causes cells to accumulate dipicolinic acid, a metal chelator), as well as deletion of fur 

(ferric uptake repressor), to relieve this phenotype does propose a role for iron, but no 

concrete answer has been determined [120]. 

 The third phenotype, which can also be relieved by mutations in dapD and fur, is 

the aromatic amino acid auxotrophy [120].  This phenotype has been suggested to result 

from damage to the glycolate intermediate formed during the transketolase reaction [12].  

The resulting oxidation product would cause the enzyme to become stalled in an inactive 

state until the glycolate adduct was lost.  It is unclear if, or how quickly, this resolving 

reaction would occur.  One important note is that this theory was tested using hyperbaric 

oxygen in wild-type strains rather than by using SOD mutants.  It is not clear that this is 

the actual cause for the aromatic amino acid auxotrophy caused by O2·
-
 in vivo.  Further 

work is necessary to fully explain this phenotype as well. 
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 Targets of H2O2 1.4.2

1.4.2.1 The Fenton reaction 

 Unlike the charged O2·
-
 radical, H2O2 can easily penetrate cellular membranes 

[159].  In principle, H2O2 could act as both a univalent and divalent oxidant; however, the 

high energy of activation associated with breaking the dioxygen bond makes H2O2 unable 

to react with most biomolecules.  Despite this, a bolus of H2O2 added to a wild-type E. 

coli culture will immediately stop growth, and protracted, low-level exposure leads to a 

loss in viability.  This damage is not due to direct interaction of H2O2 with biomolecules 

but is mediated by the Fenton reaction (Reaction 1.4).   

 

Fe
2+

 + H2O2            [FeO
2+

] + OH
-
 + H

+
            Fe

3+
 + OH

-
 + HO· (Reaction 1.4) 

 

 The Fenton reaction is the basis for all known modes of H2O2 toxicity in E. coli.  

As shown in reaction 1.4, this reaction is dependent on the presence of reduced iron.  The 

initial reaction between the H2O2 and reduced iron produces a ferryl radical intermediate, 

[FeO
2+

].  The lifetime of this intermediate is unknown, but it is possible that this species 

may dissociate away from the site of its formation decomposing to produce the highly-

reactive hydroxyl radical (HO·).  A powerful oxidant, HO· can react at diffusion-limited 

rates with virtually any biomolecule.   

1.4.2.2 DNA damage 

 One of the most consequential phenotypes observed as a result of H2O2 stress is 

DNA damage.  H2O2 cannot itself react with DNA; however the negative charge of the 

sugar-phosphate backbone attracts cations, such as iron, to its surface.  Iron may also 

interact with bases via π orbitals.  Here, H2O2 participates in the Fenton reaction on the 

face of DNA, producing HO· [75].  The HO· then immediately oxidizes the DNA, 

resulting in formation of DNA radicals which are subsequently resolved into a variety of 

different types of lesions [47, 81].  These lesions accumulate and eventually leave the cell 
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unable to replicate, resulting in a filamentation phenotype [140].  If the cells are unable to 

carry out recombinational repair, these lesions ultimately lead to cell death [27, 41, 86]. 

 One question regarding the extremity of this phenotype was the reaction rate 

associated with the Fenton reaction.  The published rate constant for ferrous iron with 

H2O2 was 76 M
-1 

s
-1

 [189].  This rate is much too slow to explain the damage incurred by 

cells, as the half-time of the reaction using the physiologically relevant steady-state 

concentration value for H2O2, around 20 nM, is about five days.  However, this 

calculation was made at pH 3 using hexaqueous iron.  When the rate was measured at a 

physiological pH with iron liganded to DNA or ATP, the rate constant increased to 2000 

– 6000 M
-1

 s
-1

 [140].  This rate is sufficient to explain the high levels of DNA damage 

that result from H2O2 stress. 

 Evidence that DNA damage by H2O2 results from the Fenton reaction in vivo is 

provided by the finding that cell-permeable chelators, such as desferrioxamine, are able 

to rescue cells.  This phenotype can also be rescued by overexpression of Dps, which is a 

ferritin-like iron sequestration protein induced during H2O2 stress.  Alternatively, when 

either fur or dps is deleted, resulting higher intracellular levels of iron causes an increase 

in DNA damage [140].  In addition, cells lacking the YaaA protein, which is involved in 

controlling iron levels, also show DNA-damage phenotypes; although the actual 

mechanism by which this protein acts is unknown [117].  Together, these findings make a 

strong case that iron is integral to the toxicity of H2O2 with respect to DNA. 

1.4.2.3 Protein and membrane damage 

 Iron serves an integral role in DNA damage by H2O2, but is the same true for 

proteins and membranes?  With this in mind, one obvious target of H2O2 to consider is 

Fe-S cluster proteins, specifically those dehydratases with solvent-exposed clusters.  

Here, the Fenton reaction would occur between H2O2 and the tri-coordinate iron atom of 

the exposed cluster.  When this class of enzymes was examined, they were indeed found 

to be sensitive to H2O2, with inactivation rate constants in the range of 10
3
 – 10

4
 M

-1
 s

-1
 

[89].  Some phenotypes related to damage to these dehydratases include an inability to 

grow on TCA cycle intermediates, likely due to damage to clusters in aconitase and 
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fumarase, and if additional H2O2 is added, an auxotrophy for leucine, caused by damage 

to two proteins in the biosynthetic pathway, dihydroxyacid dehydratase (DHAD) and 

isopropylmalate isomerase (IPMI) [89].   

 The need for higher H2O2 concentrations to obtain a visible phenotype likely 

derives from the ability of substrate to protect the enzyme.  As damage occurs and 

activity of the enzyme decreases, substrate accumulates.  Eventually, substrate will be 

able to compete with H2O2 for the active site, allowing the protein to turn over [89].  This 

cannot be achieved without the additional ability of the cell to repair damaged clusters.  If 

cluster damage were irreversible, new protein would have to be synthesized de novo.  

This task would become difficult in the case of the leucine auxotrophy, as there would be 

no leucine available to synthesize new protein.  In addition, de novo cluster assembly 

comes under fire, as the Isc (Iron sulfur cluster) assembly system is also sensitive to H2O2 

[90]. 

 Aside from Fe-S proteins, another iron protein examined was Fur, the ferric 

uptake repressor.  The Fur regulon was found to be derepressed during H2O2 stress, 

implying that the reduced iron needed to activate Fur was not available [184].  It is 

unclear whether iron bound to Fur is oxidized, or if the phenotype is due to simply to 

lower concentrations of available reduced iron.  No matter what the actual mechanism 

might be, derepression of the Fur regulon has dire implications for the cell.  Some 

proteins under the control of Fur include iron transporters, which become induced during 

H2O2 stress.  This leads to an increase in intracellular levels of iron, which as was 

mentioned before, contribute to higher levels of DNA damage.  Thus, it is important for 

the cell to try to limit this response, which is why Dps in induced to sequester iron, and 

Fur itself is induced in order to shut down the regulon. 

 Another proposed protein target is oxidation of sulfhydryls.  While it is possible 

for sulfhydryls to be oxidized by H2O2, the plausibility of this actually occurring in vivo 

is very low, as there are only a few examples of proteins with highly reactive thiols.  The 

rate constant for H2O2 oxidation of a free thiolate anion does not exceed 20 M
-1

 s
-1

 [194] 

and similar values for the oxidation of active-site cysteine residues have also been 
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reported [36, 42, 69, 165].  Thus even at 1 µM intracellular H2O2, the half-time of the 

reaction would be nearly 10 hours – far too long to cause problems for the cell [82].  It is 

possible that oxidation of sulfhydryls might become important if the sulfur atom is 

involved in coordination of an iron atom.  In this case, formation of the ferryl radical 

intermediate of the Fenton reaction might be able to oxidize the sulfhydryl, thereby 

quenching the radical, preventing HO· formation, and producing a sulfenic acid.  Sulfenic 

acid species are easily reduced by the cell, so these lesions would not cause irreversible 

damage to the protein. 

 The final consideration for protein damage with respect to H2O2 stress is protein 

carbonylation.  It is known that hydroxyl radicals can lead to carbonylation, which is 

elevated during exposure to redox-cycling compounds and H2O2 [48].  In addition, a 

much higher incidence of protein carbonylation is observed in E. coli mutants that cannot 

scavenge H2O2 [4].  In fact, when this is coupled with a mutation in Dps, resulting in 

higher levels of iron along with elevated levels of H2O2, carbonylation levels are 

extremely high.  These facts imply that the Fenton reaction is also involved in generation 

of protein carbonyls, but the mechanisms remain unknown. 

 Another injury commonly proposed to result from H2O2 stress is lipid 

peroxidation [9, 64, 163].  While this mechanism of damage does seem to happen in 

higher organisms and some bacteria, the process appears to require polyunsaturated fatty 

acids.  Since E. coli and most other bacterial lipids contain only saturated and 

monounsaturated fatty acids in their membranes [136], this form of damage does not 

seem to be relevant [15].  One notable exception is Borrelia burgdorferi, which is an 

intracellular pathogen that acquires fatty acids from its host, including polyunsaturated 

fatty acids.  Indeed, B. burgdorferi did exhibit vulnerability to lipid peroxidation while E. 

coli did not [21].  Thus, while an important consideration in other systems, lipid 

peroxidation will not be addressed further with respect to E. coli. 

1.4.2.4 The aromatic amino acid auxotrophy 

 The phenotypes discussed thus far occur in E. coli mutants in ahpCF, katE, and 

katG, which are devoid of H2O2-scavenging activity, and given the name Hpx
-
, or 
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hydroperoxidase-deficient [158].  However, each of these phenotypes requires either rich 

medium, additional mutations, or exogenous H2O2, in order to be clearly visible [89, 90, 

117, 140, 184].  However, there is one phenotype that is present in minimal glucose 

medium without addition of H2O2 or the need for additional mutations.  This phenotype, 

an auxotrophy for the three aromatic amino acids (phenylalanine, tryptophan, and 

tyrosine), also occurs during O2·
-
 stress [26, 89].  In the case of O2·

-
 stress, damage to 

transketolase, as was described earlier, is prescribed to be the cause [12].  While the 

chemistry required for O2·
-
 to oxidize the transketolase reaction intermediate is plausible, 

there is no involvement of iron in this mechanism, which is implied by the ability of a 

ΔdapD mutation to suppress the auxotrophy.  All known mechanisms of H2O2 toxicity 

are mediated by the Fenton reaction and implicitly require iron, so it is unclear how 

transketolase would also be damaged by H2O2 and responsible for the phenotype 

observed.  While it is possible to contrive a series of reactions for oxidation of the 

transketolase intermediate by H2O2, the likelihood that both oxidants are acting on the 

same protein by the same mechanism seems low because of difference in the mechanisms 

of oxidation.  The mechanism of damage by O2·
-
 would require univalent oxidation of the 

intermediate, while the mechanism of H2O2 damage would involve a divalent oxidation.  

Elucidation of the cause of this auxotrophy is one of the goals of this work and will be 

discussed later. 

 IRON IN PROTEINS 1.5

 While numerous potential problems associated with the use of iron in aerobic 

environments have been discussed in previous sections, iron remains an important and 

integral part of aerobic life.  In order to understand why life has continued to use this 

potentially vulnerable metal, it is also important to appreciate its uses in biological 

systems and prevalence in various processes.  Exploration of these and other 

considerations regarding the maintenance of iron in aerobic metabolism will help to 

achieve this understanding.  
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 Roles of iron 1.5.1

 Iron is integrated into various aspects of metabolism, both aerobic and anaerobic.  

It exists in various forms and carries out a variety of functions.  The role of iron with 

respect to metabolism, including structural elements it may be part of, fall into two major 

classes: redox reactions and non-redox applications. The specific role iron plays may 

differ within each category, but the type of reaction carried out is the distinguishing 

feature of each of these classes. 

1.5.1.1 Redox reactions 

 One major role for iron in biological systems is to serve as a redox moiety.  Many 

Fe-S cluster proteins serve this role.  As the name implies, Fe-S cluster proteins have an 

absolute requirement for iron.  No other metal is known to be able to substitute in a 

cluster.  Typically, these clusters are buried within the polypeptide.  The reduction 

potential of Fe-S clusters can range from -0.6 V to +0.45 V [25], making them suitable 

for a range of electron-transfer reactions, from ferredoxins to nitrogenases and 

hydrogenases [112]. 

 Not all redox enzymes employ Fe-S clusters, but some use iron itself to carry out 

an array of functions.  These proteins include heme-containing proteins like cytochrome 

oxidases or catalases, mononuclear enzymes like iron-dependent superoxide dismutases, 

binuclear ribonucleotide reductases, and 2-oxoglutarate-dependent oxidases.  The ability 

of iron to convert between oxidation states allows these enzymes to carry out their 

respective redox reactions [35, 172, 182].  While other metals can also switch redox 

states, the redox potential is different for different metals.  In fact the redox potential of a 

particular metal can be influenced by its ligands.  While the particular function of each of 

these enzymes is different, they all have one thing in common – each has been tuned to a 

precise redox potential that requires a particular metal.  Therefore, any changes in metal 

composition in these proteins could potentially disrupt their redox state and prevent them 

from carrying out the functions for which they were built [19, 121, 176].   
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1.5.1.2 Non-redox uses 

 The second role of iron in biological systems is in non-redox applications.  These 

proteins themselves fall into two main categories.  The first category includes proteins 

that require a metal for structure or proper positioning of cofactors.  These proteins may 

exercise some degree of selectivity, but in most cases, these proteins can employ various 

metals with little to no change in activity.  For example, methionine aminopeptidase [29], 

transketolase [171], and isocitrate dehydrogenase [132] have been shown to be active 

with a range of metals, such as cobalt, iron, manganese, nickel, and zinc. 

 Alternatively, many proteins require a metal for binding and activation of a 

substrate.  This is analogous to the role played by the Fe-S cluster in dehydratases but can 

also be achieved using mononuclear metal centers.  In this case, size, coordination state, 

and geometry play a crucial role in the ability of the metal to carry out the function.  

While some proteins may be able to use a number of metals, the activity of the protein is 

often changed as a result of metal substitution, as was the case with ribulose 5-phosphate 

epimerase (Rpe) [1].  Therefore, if the protein has evolved to use iron, substitution with 

other metals may lead to decreased activity, if not inactivation of the protein. 

 Prevalence of iron in metabolism 1.5.2

 While the importance of iron as a cofactor for various biological processes has 

been illustrated, the number of known Fe-S cluster, heme-containing, and redox enzymes 

is limited.  Therefore, at face value, it may not seem as though iron is very prevalent in 

metabolism.  However, mononuclear metallo-proteins may represent a grossly 

overlooked category of iron proteins, as was discussed with respect to non-redox uses of 

iron.  While searching enzyme databases may only reveal a handful of proteins in E. coli 

that have been annotated as using iron as a cofactor, many studies may have missed the 

pervasiveness of this metal simply due to experimental design. 

 There are many proteins in E. coli annotated as using a number of metals for 

various applications, but one common theme is that when the proteins were studied, the 

experiments were carried out under aerobic conditions.  While researchers may have tried 
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to add iron in its reduced form to activate their protein of choice, it is extremely difficult 

to ensure the iron remains reduced.  Therefore, while studies attempted to metallate 

divalent cation-requiring proteins with reduced iron, they were likely using iron in the 

oxidized form, leading researcher to conclude that iron could not be used as a cofactor by 

these enzymes [1].  If these experiments had been done under anaerobic conditions, 

where iron is easily maintained in the reduced form, it is unclear how many of these 

proteins may have been able to use iron.  Thus, iron may actually be able to serve as a 

cofactor to a much wider range of proteins than has been realized. 

 Susceptibility of iron proteins to ROS 1.5.3

 While iron carries with it a number of benefits, including its ability to provide 

cofactors with a wide range of reduction potentials and its ability to change between 

multiple coordination geometries, it also poses potential problems for aerobic life.  While 

Fe-S proteins are extremely useful metabolic tools, they make cells vulnerable to 

oxidative stress – an unavoidable occurrence in aerobic habitats.   

 Aside from Fe-S cluster proteins, any protein that uses iron as a cofactor or 

substrate, such as Fur, is also susceptible to interference from reactive oxygen species.  It 

has been hypothesized that Fur might not only sense iron levels, but also serve as a sensor 

for manganese as well [143].  This idea suggests that Fur might serve as a divalent metal 

sensor, rather than one specific to iron.  This also presents an interesting quandary: if 

manganese will substitute for iron here, why has life not evolved an iron-independent 

metabolism? 

 Why is iron maintained in metabolic processes? 1.5.4

 The question of why life has not evolved iron-dependent metabolism is not a 

simple one to answer.  First, as described above, there are a number of reactions that 

require Fe-S clusters, which have an absolute requirement for iron.  Thus, if Fe-S clusters 

are required for some enzymes, iron cannot be completely replaced without evolving 

enzymes that can carry out the same reaction without the need for the cluster.  
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Interestingly, there is an example of this in E. coli.  Fumarase, an enzyme in the TCA 

cycle, has three separate isozymes.  The two main isoforms use Fe-S clusters, one under 

aerobic conditions and the other when cells are growing anaerobically.  However, the 

third fumarase isoform does not require a cluster and is induced during oxidative stress to 

compensate for inactivation of the sensitive protein [144].  Even if this is not possible for 

all processes that require Fe-S clusters, the number of these proteins is limited and would 

only account for a small group of proteins that would be susceptible to damage.  Why, 

then, does life not evolve iron-independence in other processes? 

 The answer to this question is multi-faceted.    First, reactions catalyzed by iron 

are not so easily achieved by other metals.  Despite some proteins having the ability to be 

promiscuous in their metal preferences [29, 132, 171], other proteins are fine-tuned to the 

redox potential of a particular metal [19, 121, 176].  This is also true for enzymes that 

require their metal cofactor to switch between different coordination geometries.  While 

this is possible for metals other than iron, (for example, iron and manganese are both 

especially facile at ligand exchange) one must remember the conditions under which life 

evolved.  When life first evolved, the environment was rich in reduced iron [3], and 

metabolism was built around this metal [164].  Processes and pathways were constructed 

relying on these rather unique properties of iron that could not be achieved, at least not 

with the same kinetics, by using another metal.  Over time, iron became so deeply 

entrenched in metabolism that was much easier for life to evolve defense mechanisms to 

address issues arising as a result of the use of iron in aerobic environments rather than 

completely redesign metabolic processes that had existed for over a billion years.  

Despite this fact, some organisms have developed iron-independent metabolism.  Borellia 

burgdorferi seems be free of any iron-containing enzymes [146] and Lactobacillus 

acidophilus, a lactic acid bacterium, completely lacks Fe-S dehydratases [34].  

Meanwhile, Streptococcus pneumoniae, another lactic acid bacterium, has evolved not to 

use iron under conditions during which it is making H2O2 [170].  It is important to note 

that this iron independence comes with a cost, as these organisms do not achieve the 

same metabolism in an iron-free way; lacking the TCA cycle, the ability to respire, and 

the ability to synthesize branched-chain amino acids. 
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 HOW DO ORGANISMS COPE WITH ROS? 1.6

 In order for organisms to survive the constant threat posed by reactive oxygen 

species in aerobic habitats, life had to evolve defenses against the agents and the damage 

they cause.  If this did not occur, cells were either forced to develop new enzymes that 

were resistant to oxidants but could achieve the same end as their sensitive counterparts, 

or they lost the pathways altogether.  The following section relates some of the strategies 

E. coli and other organisms employ to survive in aerobic environments. 

 Responses to ROS 1.6.1

 One way cells can tolerate the generation of reactive oxygen species is to induce a 

suite of enzymes to cope with the related stress.  There are three major responses 

employed by model bacterial systems: the SoxRS response, the OxyR regulon, and the 

PerR system. 

1.6.1.1 The SoxRS response 

 The SoxRS system was discovered concurrently by the Demple and Weiss labs to 

be responsible for the induction of manganese-superoxide dismutase (Mn-SOD) in 

response to redox-cycling compounds [68, 144, 177].  Induction of Mn-SOD had been 

observed by Hassan and Fridovich over a decade earlier [72].  The two-component 

system uses the sensor (SoxR), which has an oxidizable [2Fe-2S] cluster, to induce 

transcription of soxS [46, 61, 76]. The SoxS protein, in turn, activates transcription of a 

number of genes encoding proteins involved in detoxification (Mn-SOD), Fe-S cluster 

repair (YggX), flavodoxins, drug efflux and modification (AcrAB, MarAB, YgfZ, NfsA, 

and NfnB), iron homeostasis (Fur), DNA repair (endonuclease IV), some oxidant-

resistant isozymes of fumarase (FumC) and aconitase (AcnA) [144].  This response 

regulon was thought to be specific to O2·
-
, given the fact that Mn-SOD is a member of the 

regulon.  However, inclusion of Mn-SOD in the regulon is true in enterics, but not in 

many other bacteria [43, 101, 138].  Therefore, some doubt was cast on the specificity of 

the SoxRS regulon for O2·
-
.   
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 Indeed, it was shown that the response to O2·
-
 in particular by the SoxRS system 

was not nearly as great as its response to redox-cycling compounds themselves [65, 115].  

Nevertheless, these compounds do cause the production of intracellular reactive oxygen 

species, including O2·
-
, making the SoxRS response important under these stress 

conditions; however it is becoming increasingly apparent that this system is not specific 

to O2·
-
, but to the redox-cycling compounds themselves [43, 70, 106, 166]. 

1.6.1.2 The OxyR regulon 

 During H2O2 stress, E. coli and many other bacterial species employ the OxyR 

response to cope the problems that arise.  OxyR itself is a transcriptional regulator that 

has two sulfhydryls in its active site, one of which is tuned to be easily oxidized by H2O2.  

In fact, the OxyR response can be activated by as little as 100 nM H2O2 and at a rate of 

approximately 10
7
 M

-1
 s

-1
.  Upon oxidation and formation of a stabilizing disulfide, OxyR 

activates transcription of genes involved in various processes [33, 113, 198].  H2O2-

scavenging enzymes, such as catalase and peroxidase, are induced to remove the stress 

and keep H2O2 concentrations below damaging levels.  Iron acquisition and metabolism 

proteins, such as YaaA, Dps, and Fur, are induced as well [199].  YaaA is involved in 

iron metabolism via a yet-to-be determined mechanism [117]; Dps, an iron storage 

protein, is induced to sequester iron [197]; while Fur is likely induced in order to increase 

repression of iron import [140].  Together, these scavenging and iron regulatory systems 

work in concert to limit the damaging effects of the Fenton reaction. 

  Iron is not the only metal with regulatory ties to H2O2 stress.  Manganese uptake 

(MntH) proteins are also induced in an effort to protect the cell, the hypotheses and 

models of which will be discussed later in detail [98].  Other proteins induced include 

HemH (ferrochelatase), which is presumed to be necessary to help the cell meet the 

increased demand for heme resulting from induction of catalase.  Thiol homeostasis 

proteins (glutaredoxins and thioredoxins) and Fe-S cluster synthesis and repair systems 

(Suf) are also induced to help the cell cope with H2O2 stress [199]. 
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1.6.1.3 The PerR system 

 The PerR system, found in Bacillus and other bacteria, is analogous to the OxyR 

response in E. coli, but only with respect to its function as a response regulator during 

H2O2 stress [23].  PerR itself is a homolog not of OxyR but of the Fur protein.  Like Fur, 

PerR acts as a repressor under normal conditions and is capable of binding either iron or 

manganese.  During H2O2 stress, PerR is only responsive when in the iron-bound form, 

which is able to facilitate oxidation of a histidine residue in the active site.  This histidine 

then incorporates an oxygen atom, thereby displacing the iron, which leads to 

dissociation of the PerR-DNA complex [114].  Members of the regulon are then able to 

be transcribed, including perR itself as a feedback mechanism. 

 Members of the Bacillus PerR regulon resemble those under OxyR control in E. 

coli [74].  These include peroxidase and catalase to scavenge H2O2, as well as a number 

of genes necessary for heme synthesis.  Fur and a Dps homolog, MrgA, are also 

expressed, which work together with the scavenging enzymes to limit Fenton chemistry.  

Another regulatory protein, Spx, is under PerR control [74].  Spx itself regulates genes 

that appear to be important during thiol-specific oxidative stress, such as thioredoxins 

[50, 134, 150, 200].  One unique aspect of the PerR regulon is that it also induces zinc 

uptake, which does not occur in the E. coli response to H2O2 [58].  It has been suggested 

that Bacillus might use high concentrations of zinc to protect sulfhydryls when high 

concentrations of H2O2 are present. 

 DNA repair systems 1.6.2

 Separate from the oxidative stress regulons, organisms also have inducible DNA 

repair systems.  As mentioned previously, DNA damage can have more impact than some 

phenotypes associated with reactive oxygen species.  While stress responses that 

eliminate oxidants and limit iron will prevent further rounds of Fenton damage from 

occurring, DNA lesions occurring before these responses can be implemented will persist 

if not specifically addressed.   
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 To counteract the damage to DNA, two different repair strategies are employed.  

The first, base excision repair, uses formamidopyrimidine DNA glycosylase (MutM and 

Fpg) in concert with endonucleases IV and VIII to initiate the removal of oxidized DNA 

bases [92, 153, 174].  This system recognizes not specific lesions but general distortions 

to the DNA helix.  Thus, some lesions may go unrecognized and persist through DNA 

replication, resulting in strand breaks.  When this happens, the cell employs the second 

repair system as a back-up – recombinational repair.  The importance of these systems is 

made obvious when mutations in both systems are constructed, as these strains are only 

fully viable under anaerobic conditions [86, 131]. 

 Alternative metabolism 1.6.3

 While induction of defense systems to protect against and address damage that 

results from oxidative stress is a useful and successful strategy, cells sometimes express 

resistant isozymes to carry out processes that are otherwise sensitive to reactive oxygen 

species.  Eamples of these proteins include aconitase and fumarase in the TCA cycle and 

the Suf pathway for iron sulfur cluster biosynthesis.  In the case of fumarase and 

aconitase, the normal aerobic isozymes of these proteins use Fe-S clusters, which are 

sensitive to reactive oxygen species.  However, under stress conditions, cells employ 

non-sensitive counterparts [37, 116, 183].  It is unclear how the Suf systems protects the 

clusters it builds from reactive oxygen species, but it is induced during oxidative stress 

due to failure of the Isc iron sulfur cluster assembly system, which is sensitive to 

oxidation [62, 90, 133, 137, 175, 195].  Some organisms take this one step further.  

Rather than make proteins that are sensitive to oxidation or replace these with resistant 

isozymes, some bacteria cope with the prevalence of oxidative stress with the complete 

absence of sensitive processes [56, 146].  For some organisms, such as the lactic acid 

bacteria mentioned previously, absence of these processes means they are auxotrophic for 

metabolites like branched-chain amino acids and TCA cycle intermediates whose 

biosynthetic pathways employ Fe-S cluster proteins. 

 A third strategy that is employed to counteract the deleterious effects of reactive 

oxygen species is to shift from an iron-mediated metabolism to one that relies more 
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heavily on manganese [6, 7].  There are several strategies that the cell enlists to limit the 

amount of intracellular free iron during oxidative stress, but the cell cannot survive 

without an alternative.  As a result, E. coli and other bacteria pair iron limitation with 

manganese import [96, 141].  While this strategy does not protect cells from DNA 

damage by reactive oxygen species, it is effective in protecting protein targets [4].  The 

end result is a shift in the relative concentrations of manganese and iron, which may 

influence the metallation state, and by extension, the vulnerability of metallo-proteins to 

oxidation.    This can be observed in the extreme, as some organisms have evolved 

manganese dependent metabolic processes and achieved iron independence [34, 56, 146, 

170].    

 Aside from direct replacement of iron in proteins, there have been several other 

hypotheses proposed with respect to how manganese might protect the cell from reactive 

oxygen species [2, 8, 32, 39, 79, 80, 87, 97, 151, 154, 161, 178].  Some believed that 

manganese import protected the cell by activating the manganese-containing superoxide 

dismutase, but this was proven to be incorrect [4].  Another popular idea was that 

manganese was being imported to scavenge reactive oxygen species directly, as was 

observed in vitro [14, 67, 80].  While this may be possible with O2·
-
, the relative amount 

of O2·
-
-scavenging activity is more than an order of magnitude lower than the SOD 

activity in unstressed cells, making this scheme implausible as a means of protection.  

With respect to H2O2, it was shown in E. coli that manganese does not influence 

scavenging of H2O2 whatsoever [4].  Therefore, there must be a different mechanism by 

which manganese is acting.  The Daly lab has proposed a model for H2O2 protection that 

uses small-molecule chelates of manganese to scavenge H2O2 in D. radiodurans [38].  

While it is possible that this organism employs a strategy that is not present in E. coli, 

more evidence is needed to substantiate this model. 

 Despite the finding that these particular models are incorrect or do not occur in E. 

coli, it remains true that manganese does protect cells from oxidative stress.  Therefore, it 

is important to determine the possible mechanisms by which this occurs.  One focus of 

this study is to determine the avenue by which manganese protects cells from H2O2. 
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 WHAT ARE THE ECOLOGICAL IMPACTS OF ROS? 1.7

 Ultimately, the study of oxidative stress, from how oxidants are made, to what 

biomolecules they damage and how cells defend against them leads to an investigation 

into how these factors come together in an ecological sense.  The ability to use or to 

survive reactive oxygen species is an important aspect of the field of oxidative stress and 

offers a number of interesting topics to consider, including evolutionary battles between 

damage and defense, habitation of niche environments, and the existence of obligate 

anaerobes.  These wider views of the impact of oxidative stress will help to provide a 

deeper understanding of the fundamental principles involved in the shaping of defenses 

and metabolic pathways to withstand the ever-present threat posed by reactive oxygen 

species. 

 Ongoing evolutionary battles 1.7.1

 Ever since the world became aerobic, there has been an evolutionary battle to 

survive reactive oxygen species.  As cells began to cope with the existence of these 

oxidants, other organisms developed ways to harness their power.  While higher 

organisms developed immune responses with an oxidative burst, pathogenic organisms 

evolved ways to suppress them or to survive in spite of them.  For example, Salmonella is 

able to inhibit NADPH oxidase in macrophages to minimize the oxidative burst [185].  

Borrellia burgdorferi, the causative agent of Lyme disease, has taken a different strategy 

to evade the damage caused by reactive oxygen species.  This bacterium has evolved a 

completely iron-independent, manganese-dependent metabolism which allows it to 

survive the immune response in its hosts [56, 146].   

 A close study of concurrent evolution of pathogens and hosts provides a number 

of examples of one organism gaining the upper hand while the other evolves a way to 

counteract it, be it by evolving new offensive weapons, such as release of oxidants or 

limitation of metal in the host, to new defense mechanisms and metal acquisition systems 

in the pathogen [95, 156, 168, 191].  An understanding of the responses of both 

organisms with respect to components of oxidative stress may provide new insights into 
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particular targets of oxidation, as well as the importance of particular pieces of both host 

and pathogen defenses.  

 Survival in the host is not the only evolutionary battle between organisms with 

reactive oxygen species taking center stage.  Production and excretion of redox-cycling 

drugs is an important environmental source of reactive oxygen species.  Pyocyanin, a 

phenazine produced by Pseudomonas [179], plumbagin made by the Plumbago plant 

[180], and juglone from the black walnut tree [88] are prime examples of nature’s taking 

advantage of redox-cycling compounds to poison competitors.  While the organisms that 

produce these compounds are unaffected by them – or, in the case of phenazines, actually 

benefit directly [44, 190] – other organisms that come into contact with the compounds 

take them up, where they react with various components in the cell, such as flavins and 

components of the respiratory chain, stealing electrons and producing reactive oxygen 

species [73].  These reactive oxygen species made from the redox-cycling drugs prevent 

other organisms from inhabiting the same area as the producer and serve as a natural 

form of biochemical warfare.  However, some organisms have responded by evolving 

specific responses to these redox-cycling drugs.  These responses include defenses 

against oxidative stress, as well as drug modification and efflux systems that render the 

compounds ineffective [68, 70, 105, 167, 169].  This is just one more example of 

evolution to survive oxidative stress in response to organisms that use it as a weapon. 

 While this evolutionary battle with oxidative stress is more recognizable when 

comparing hosts and pathogens, it is also important to consider how those organisms that 

produce the reactive oxygen species or redox-cycling drugs avoid poisoning themselves.  

For example, how do macrophages keep reactive oxygen species from damaging other 

host cells?  In this case, invading microorganisms are engulfed into a specific 

compartment within the macrophage, the phagosome, where reactive oxygen species are 

generated.  The macrophage isolates the stress within itself, thus preventing other cells 

from experiencing the negative effects of these oxidants.  Another, more striking example 

of this conundrum is the survival of lactic acid bacteria that produce H2O2 [66, 162, 170].  

These bacteria can produce millimolar levels of H2O2 under some conditions but are still 

able to survive.  While excretion of H2O2 provides a competitive advantage to these 
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organisms, they must, at the same time, protect their own proteins and DNA from 

damage.   

 It seems that lactic acid bacteria have adopted a two-pronged approach to 

surviving these high levels of H2O2.  First, lactic acid bacteria have cleared their 

proteome of some of the iron-dependent processes that make other cells vulnerable to 

H2O2 [34, 170].  This does create a need for lactic acid bacteria to acquire some 

metabolites from their environment, but it also limits the number of processes that are 

sensitive to oxidation.  However, this alone would not be enough, as any amount of iron 

in the cell at these concentrations of H2O2 would certainly lead to DNA damage, if not 

damage to some proteins as well.  Therefore, the second approach taken by lactic acid 

bacteria has been to evolve a mangano-centric metabolism by importing millimolar levels 

of manganese, allowing them to become nearly independent of iron [7].  This allows 

these bacteria to survive the high levels of H2O2 they can produce while killing their 

competition. 

 Habitation of niche environments 1.7.2

 Another important aspect of the ecological importance of oxidative stress has 

little to do with surviving the onslaught of reactive oxygen species imposed by other 

organisms, but everything to do with surviving production of oxidants endogenously.  

While strict anaerobes cannot survive even small amounts of oxygen and strict aerobes 

cannot survive without it, organisms that have evolved the ability to survive in either 

environment, or at least to tolerate low levels of oxygen, gain a competitive advantage by 

expanding the scope of potential habitats.  This is what allows some organisms to inhabit 

the niche environments at the interface of aerobic and anaerobic environments.  An 

example of such an environment is the sediment in most bodies of water or deep in the 

water column of exceptionally stagnant water bodies [22].  Here, organisms are forced to 

cope with small amounts of oxygen and therefore the potential for exposure to reactive 

oxygen species.  Organisms that inhabit this interface have the unique ability to benefit 

from the availability of oxygen for aerobic reactions while also having access to 

metabolites that are only produced in anaerobic environments.  Sulfide-oxidizing bacteria 
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provide an excellent example of this behavior [53, 94].  Sulfide is oxidized to sulfur in 

the anoxic layer, since sulfur can be stored in large quantities in the cell.  The bacteria 

then migrate to the aerobic layer where they can use oxygen to further oxidize the sulfur 

to sulfate.  Sulfate-reducing bacteria, which were long thought to be strict anaerobes, 

have also been observed to take advantage of life at the interface of the oxic/anoxic layers 

[45, 57, 107, 128, 192].  These organisms have evolved to take full advantage of life at 

the interface. 

 Why are there obligate anaerobes? 1.7.3

 Throughout evolutionary history, life has sought to combat the deleterious effects 

of reactive oxygen species associated with an aerobic lifestyle in order to take full 

advantage of the benefits oxygen can provide.  However, there are many examples of 

organisms that have not made this evolutionary shift.  Thus, the puzzle remains as to why 

still obligate anaerobes remain when there are so many examples of defense and survival 

mechanisms that can confer resistance to reactive oxygen species. 

 One early hypothesis as to why obligate anaerobes remain prevalent was that they 

simply lacked scavenging systems and were unable to defend themselves against reactive 

oxygen species [123].  This turns out to be completely false.  In fact, obligate anaerobes 

have been demonstrated to use a variety of combinations of scavenging systems including 

catalases, peroxidases, superoxide dismutases, and superoxide reductases [91, 119, 129, 

130, 145].  Another idea was that despite the presence of scavenging systems, anaerobes 

did not have the ability to induce them.  This also turns out to be false, as there are 

numerous instances of PerR and OxyR homologs in obligate anaerobes, as well as 

mutations in PerR that confer some degree of aerotolerance [77, 84, 142].  Therefore, 

there must be some other reason that obligate anaerobes are unable to tolerate aerobic 

environments. 

 Another possible explanation for the persistence of obligate anaerobes is that the 

problem is not reactive oxygen species themselves, but oxygen itself.  Indeed, a number 

of anaerobic reactions involve low potential or free-radical enzymes that are easily 
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oxidized by molecular oxygen [71, 139].  These processes are therefore non-functional in 

aerobic habitats and cannot be rescued by any amount of scavenging enzymes.   

 With these findings taken together, the implication is that abrupt and complete 

oxygenation may immediately incapacitate obligate anaerobes, preventing them from 

mounting any kind of response to reactive oxygen species.  However, when they are 

gradually exposed to low levels of oxygen, they may be capable enough of carrying out 

metabolism to engage their defense mechanisms and persist through the stress.  Thus, 

even strict anaerobes may not be completely intolerant of oxygen but have also evolved 

to tolerate it in moderation. 

 SCOPE OF THIS THESIS 1.8

 Damage to mononuclear iron enzymes by H2O2 1.8.1

 When Hpx
-
 (catalase and peroxidase deficient) cells are stressed with H2O2 in 

minimal glucose medium, only one phenotype is apparent: an auxotrophy for aromatic 

amino acids.  In this study I set out to determine the target of H2O2 responsible for this 

phenotype.  In this work I also identified an additional phenotype of H2O2 stress in the 

Hpx
-
 strain – sensitivity of the pentose phosphate pathway. 

1.8.1.1 Ribulose 5-phosphate epimerase 

 The discovery of a sensitive target in the pentose phosphate pathway led to the 

discovery that ribulose 5-phosphate epimerase (Rpe) was sensitive to H2O2.  This finding 

revealed a unique class of H2O2 target as the only proteins previously known to be 

damaged directly by H2O2 were Fe-S cluster dehydratases.  The novelty of this discovery 

was compounded by the fact that Rpe was not thought to be activated by iron [1].  This 

work showed that Rpe uses iron as its physiological cofactor and that mononuclear iron 

proteins are a novel class of H2O2 sensitive protein. 
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1.8.1.2 DAHP synthase and the aromatic amino acid auxotrophy 

 With the finding that mononuclear iron proteins were sensitive to H2O2, I was 

able to identify DAHP synthase, another mononuclear iron protein and the first enzyme 

in the aromatic amino acid biosynthetic pathway, as the cause of the aromatic amino acid 

auxotrophy.  Work published on the same auxotrophy in SOD mutants identified 

transketolase as the target of O2·
-
 [12], but I showed that transketolase is not sensitive to 

H2O2.  I also showed that Hpx
-
 cells attempt to compensate for a lack of DAHP synthase 

activity by inducing expression of the aroF gene, which encodes the tyrosine-responsive 

isozyme of DAHP synthase, but this does not sufficiently increase activity to allow 

growth. 

 Protection of mononuclear iron enzymes by manganese 1.8.2

 Manganese has been known to have protective effects during H2O2 stress.  The 

second goal of this study was to determine whether manganese could protect 

mononuclear iron proteins from H2O2.  In this work, I showed that manganese can protect 

two mononuclear iron proteins, Rpe and DAHP synthase, during H2O2 stress.  I also 

showed that manganese was able to activate these proteins and provide resistance to H2O2 

in vitro.  
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CHAPTER 2:  THE IRON ENZYME RIBULOSE-5-PHOSPHATE 3-

EPIMERASE IN ESCHERICHIA COLI IS RAPIDLY DAMAGED BY 

HYDROGEN PEROXIDE BUT CAN BE PROTECTED BY 

MANGANESE
*
 

 INTRODUCTION 2.1

 Catalases and peroxidases were among the first enzymes discovered, and their 

ubiquity among the biota prompted biologists to speculate that hydrogen peroxide (H2O2) 

must be a common by-product of the aerobic metabolism, and that if not scavenged it 

must critically harm cells [26].  Since then workers have recognized that H2O2 is also 

generated by extracellular processes, including photochemical processes in natural waters 

and the autoxidation of sulfur and metal species at interfaces between anoxic and oxic 

sediments.  Perhaps more critically, H2O2 is generated by the antimicrobial responses of 

both plant and mammalian higher organisms as a strategy to stave off infection [12, 28].  

The local H2O2 concentrations rise to micromolar levels, which is sufficient to suppress 

microbial growth.  

 Virtually all microbes engage specialized stress responses to fend off exogenous 

H2O2.  Among the bacteria, the OxyR and PerR systems are widespread [4, 24].  OxyR, 

which has been closely studied in enterics, is a transcription factor that is activated when 

H2O2 oxidizes a key cysteine residue; the subsequent formation of a disulfide bond locks 

the protein into an active form that stimulates the transcription of ca. two dozen genes [5, 

43].  Mutants that lack OxyR grow poorly or not at all in environments that contain H2O2. 

 Still, fundamental aspects of H2O2 stress remain poorly understood.  Perhaps most 

importantly, the primary intracellular targets of H2O2 have not been fully identified.  A 

                                                 

*
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rapidly damaged by hydrogen peroxide but can be protected by manganese PNAS 2011 108 (13) 5402-

5407; published ahead of print March 14, 2011, doi:10.1073/pnas.1100410108 
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technical difficulty has hindered work on this problem:  When laboratory cultures are 

stressed with micromolar H2O2, growth briefly stops, but the H2O2 is quickly scavenged 

and growth resumes.  Under these circumstances it has been difficult to identify the 

specific cellular processes and biomolecules that are affected.  One way around this 

problem has been the use of strains that lack scavenging enzymes [34].  E. coli 

catalase/peroxidase mutants (katG katE ahpCF, denoted Hpx
-
) grow at wild-type rates in 

anaerobic cultures.  When inoculated into aerobic media, H2O2 accumulates to ca. 1 

micromolar, which equilibrates between the cytoplasm and the extracellular environment.  

This concentration exceeds the threshold that activates OxyR, and indeed Hpx
-
 ΔoxyR 

mutants die quickly in aerobic media [30].  Thus the Hpx
-
 strains offer the opportunity to 

identify the primary biomolecules that H2O2 damages, as well as the key defensive 

strategies that OxyR triggers. 

 Thus far it has become clear that H2O2 damages DNA through standard Fenton 

chemistry.  The iron that is involved belongs to the cellular pool of unincorporated iron, 

some of which presumably associates with nucleic acids [31].  A ferryl radical (FeO
2+

) is 

the immediate product, but ultimately a hydroxyl radical is released that can directly 

attack both the sugar and base moieties of DNA [17].  Intracellular H2O2 also disables a 

family of dehydratases that contain [4Fe-4S] clusters; the chemistry is similar, in that 

H2O2 directly oxidizes a catalytic iron atom that is exposed to solvent [18].  The oxidized 

cluster is unstable, the key iron atom dissociates, and enzyme activity is lost.  These 

enzymes were first shown to be oxidative targets in studies of superoxide [9-11, 23, 25].   

Exacerbating this situation, H2O2 also inhibits the cellular iron-sulfur-cluster assembly 

machinery, likely by oxidizing nascent clusters as they are assembled on the IscU 

scaffold protein [19].  Finally, H2O2 has been shown to disrupt the Fur iron-sensing 

system [40].  In this case the proximate cause has not been demonstrated, but it seems 

likely that H2O2 oxidizes the Fe
2+

 iron atom that normally binds to the Fur transcription 

factor.  

 The OxyR regulon stimulates the synthesis of several proteins whose roles are 

well-suited to addressing these effects.  The HPI catalase and AhpCF peroxidase are 

induced to drive back down the intracellular H2O2 level [43].  The Dps iron-storage 
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protein sequesters unincorporated iron and thereby diminishes the amount of DNA 

damage [13, 15, 30, 41].  An alternative iron-sulfur assembly machine, the Suf system, is 

resistant to H2O2 and is induced to compensate for the failure of the Isc system [19].  The 

Fur regulator is induced to higher levels as a hedge against its lower efficiency [40, 42]. 

 Recently it was discovered that the induction of a manganese import system was 

also critical, as Hpx
-
 ΔmntH mutants stop growing when they are aerated [2].  E. coli 

normally does not import significant amount of manganese.  I speculated that E. coli 

might employ ferrous iron as a cofactor in non-redox enzymes, which would place such 

enzymes at risk during periods of H2O2 stress.  Induction of the MntH transporter might 

enable manganese to replace iron in these enzymes; since manganese does not react with 

H2O2, the enzymes might be protected.   

 In the present study I sought to identify cellular processes that are inhibited by 

micromolar H2O2.  I identified the pentose-phosphate pathway as one such target and 

determined that the bottleneck arises because of damage to a mononuclear enzyme that 

contains ferrous iron.  When manganese is provided to these cells, the enzyme is 

protected and the pathway function is restored.  

 RESULTS 2.2

 Ribulose-5-phosphate 3-epimerase is vulnerable to hydrogen peroxide 2.2.1

damage in vivo 

 Strains of E. coli that cannot scavenge H2O2 gradually accumulate ca. 1 

micromolar H2O2 [34].  This level moderately exceeds the dose that activates that OxyR 

response, and so it is likely that these strains confront protracted H2O2 stress of a 

magnitude similar to that found in some natural habitats.  Growth studies of this strain 

have shown that most catabolic and biosynthetic pathways continue to function, which 

conforms with the observation that this level of H2O2 is innocuous to the vast majority of 

enzymes.  However, in the process of testing the H2O2 sensitivity of central metabolic 
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pathways, I noted that an Hpx
-
 ∆edd mutant is unable to grow in aerobic gluconate 

medium (Figure 2.1A).  This strain is designed to require flux through the pentose-

phosphate pathway (Figure 2.2).  The cells began to lag when the H2O2 concentration had 

reached approximately 0.8 µM (Figure 2.3), indicating that very low levels of H2O2 can 

inactivate this pathway. 

 The fact that Hpx
-
 edd

+
 cells can grow on gluconate via the alternative Entner-

Doudoroff pathway implied that the block must occur downstream of gluconate import.  

The five pentose-phosphate-pathway enzymes were assayed in extracts that had been 

prepared from aerobic cultures of wild-type and Hpx
-
 strains.  No differences were found 

in the levels of 6-phosphogluconate dehydrogenase (Gnd), ribose-5-phosphate isomerase 

(Rpi), transketolase (Tkt), and transaldolase (Tal) (Figure 2.1B).  However, ribulose 5-

phosphate 3-epimerase (Rpe) showed low activity.  In order to determine whether H2O2 

can inactivate Rpe directly, Hpx
-
 cells were grown anaerobically, cell extracts were 

prepared, and the extracts were then briefly challenged with H2O2 in vitro.  Rpe rapidly 

lost activity (Figure 2.1C).  Even at 0
o
 C, 5 µM H2O2 inactivated most of the enzyme 

within 1 minute (Figure 2.1D); the measured rate constant for inactivation (4000 M
-1

 s
-1

) 

approximated those of H2O2-sensitive Fe/S dehydratases [18]. 

 Rpe can be metallated by various divalent metals which result in variable 2.2.2

properties 

 In order to study Rpe in vitro, Rpe from E. coli was purified using a His tag, 

which was removed after purification.  Rpe is known to require a divalent metal for 

activity, but the identity of the metal used in vivo remained uncertain [1].  A previous 

study of Rpe from S. pyogenes reported that it co-purified with substantial Zn
2+

, leading 

the authors to speculate that this is its physiological metal.  Akana et al. reported that 

Mn
2+

 and Co
2+

 would also activate Rpe in vitro, but that Mg
2+

 and Fe
2+

 would not.  

However, these experiments were conducted under aerobic conditions, and the Fe
2+

 likely 

oxidized to Fe
3+

.  I used chelators to remove any associated metals from the purified Rpe 

from E. coli, and I then tested various metals for their ability to activate the enzyme in 

vitro under anaerobic conditions.  Of the nine metals used, Ca
2+

, Cd
2+

, Cu
2+

, Mg
2+

, and 
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Ni
2+

 did not activate Rpe above background levels.  However, Co
2+

, Fe
2+

, Mn
2+

, and Zn
2+

 

were able to activate Rpe in vitro. 

 The kinetic constants of the four metalloforms of Rpe were determined (Table 

2.1).  Strikingly, the Zn
2+

 metalloform had a much lower kcat and higher KM than the other 

metalloforms; thus the catalytic efficiency (kcat/ KM) of the Zn
2+

 metalloform was much 

worse than those of the Mn
2+

, Fe
2+

, and Co
2+

 forms, which were roughly comparable.   

 The dissociation rates for each of the activating metals were also measured (Table 

2.1).  Despite providing the most catalytically efficient metalloform, Mn
2+

 rapidly 

dissociated from Rpe, while the Fe
2+

 metalloform was moderately more stable.  

Interestingly, Zn
2+

 bound tightly to the enzyme.   

 Of these four metals, only Fe
2+

 and Zn
2+

 are found in E. coli in substantial 

concentrations under normal growth conditions.  E. coli lacks a Co
2+

 importer, and Mn
2+

 

is not actively imported during routine growth [2].  It seemed likely that Fe
2+

 is the metal 

that provides activity to Rpe under normal physiological conditions. 

 Fenton chemistry is responsible for the inactivation of Rpe 2.2.3

 The proposed mechanism of Rpe implies that the metal will be exposed to solutes, 

including H2O2 (Figure 2.4); therefore, I tested whether Fenton chemistry was responsible 

for loss of Rpe activity.  The sensitivity to H2O2 of each of the metalloforms of Rpe was 

tested.  When purified Rpe was loaded with Mn
2+

, Co
2+

, or Zn
2+

, there was no loss in 

activity when challenged with H2O2 (Figure 2.5).  However, when Rpe was metallated 

with Fe
2+

, the activity was quickly lost.  Since the enzyme that is found in cell extracts is 

acutely sensitive to H2O2, I concluded that Fe
2+

 is indeed the native cofactor that provides 

activity in lab cultures. 

 Reactions between H2O2 and Fe
2+

 initially generate ferryl radicals, which have a 

substantial lifetime before decomposing into Fe
3+

 and a hydroxyl radical [16, 33].  

Hydroxyl radicals react at near-diffusion-limited rates with most biomolecules, including 

proteins, raising the prospect that H2O2 exposure might lead to covalent Rpe damage.  I 
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found, however, that when iron-loaded Rpe was inactivated with H2O2, about 80% of the 

initial Rpe activity could be recovered by adding Fe
2+

 back to the enzyme (Figure 2.6A).  

Reductants alone were insufficient, confirming that the oxidized iron atom had 

dissociated from the enzyme. Similar results were obtained by the addition of Co
2+

 or 

Mn
2+

.  Full activity was never recovered.  Thus I concluded that at most only a very 

minor fraction of the protein was critically and irreversibly damaged; instead, most of the 

activity loss was due to the dissociation of iron. 

 In vivo experiments showed a similar outcome.   When Hpx
-
 ∆edd cells were 

exposed to a bolus of H2O2, activity quickly declined.  After the H2O2 was removed from 

the culture, activity rebounded to about 70% of the original activity, even though new 

protein synthesis was blocked (Figure 2.6B).  The recovery of activity inside the cell 

reached the same level as when activating metals were added back to the lysate of the 

H2O2-treated cells.     

 Repeated rounds of inactivation are required to permanently damage Rpe 2.2.4

 The data suggested that when iron-loaded Rpe is oxidized by H2O2 the catalytic 

iron cofactor is oxidized and lost; however, despite the presumptive formation of a 

hydroxyl radical, only a small fraction of those events caused irreversible protein 

damage.  Inactivation was predominantly due to metal loss.  In vivo, however, continual 

enzyme re-metallation should occur.  When Rpe activity was tracked during extended 

Hpx
-
 growth in aerobic medium, activity quickly fell.  At early time points most of the 

enzyme was in a non-metallated but reactivatable form, as activity could be recovered by 

metal addition in vitro.  However, the amount of recoverable activity progressively 

declined, suggesting that Rpe gradually accrued irreversible damage from multiple 

rounds of Fenton reactions (Figure 2.6C). 

 In order to replicate cycles of damage and re-metallation in vitro, purified Rpe 

was exposed to iron, ascorbate, and oxygen in vitro.  The oxidation of Fe
2+

 by oxygen 

ensured the constant presence of a low level of H2O2 [29], while the reduction of iron by 

ascorbate regenerated Fe
2+

.  At time points the iron and H2O2 were removed by DTPA 
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and catalase, and the amount of functional Rpe polypeptide was determined by the 

addition of Co
2+

 prior to assay.  When ascorbate was omitted, activity diminished only at 

first, and it thereafter remained constant at about 65% of the starting activity, consistent 

with a single cycle of enzyme damage.  However, when ascorbate was added to enable 

the cyclical activation and oxidation of the enzyme, activity dropped steadily, down to 

15% after one hour and about 3% after 2 hours (Figure 2.6D).  Taken together, these 

results indicate that a single bolus of Fenton chemistry irreversibly damages only a 

fraction of the Rpe molecules.  Complete inactivation of the population results from 

repeated cycles of the reaction.  

 Manganese protects Rpe from damage by hydrogen peroxide 2.2.5

 The induction of a manganese importer, MntH, has been shown to be a critical 

aspect of the response of E. coli to H2O2 [2, 20].  It was proposed recently that the role of 

Mn in the protection against H2O2 stress might be to replace Fe
2+

 in the mononuclear 

metal sites of enzymes, thereby diminishing the frequency of Fenton chemistry in those 

sites.  However, no specific examples of this hypothesis had been presented.  To test this 

idea with respect to Rpe, Hpx
-
 ∆edd cells were grown aerobically on gluconate with or 

without Mn supplementation.  As shown in Figure 2.7A, Mn addition fully suppressed 

the aerobic growth phenotype in Hpx
-
 ∆edd cells.  To verify that the protective effect was 

due to protection of Rpe, its activity was measured in samples harvested from cultures 

grown both with and without Mn supplements.  Figure 2.7B shows that the supplements 

boosted Rpe activity by several-fold at the ten-hour time point, when unsupplemented 

cells began to lag.   Because the dissociation rate of Mn in vitro is so fast, these assays 

almost certainly underrepresented the activity of Rpe containing Mn.   Therefore, I 

sought to quantify the amount of functional Rpe polypeptide by providing Co
2+

 to the 

extracts.  The samples from Mn-supplemented cultures showed nearly 100% activity, 

compared to less than 25% activity from untreated cultures (Figure 2.7B).  These data 

support the idea that Mn protects Rpe from H2O2 by replacing Fe
2+

 in the active site 

during H2O2 stress. 
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 Iron must be accessible to solvent in order for enzymes to be vulnerable to 2.2.6

hydrogen peroxide 

 The full range of enzymes that use Fe
2+

 as a cofactor in vivo—and therefore that 

might be vulnerable to H2O2—is unknown.  Presumably many enzymes that require 

divalent metal cofactors might be able to use Fe
2+

.   However, Fenton chemistry requires 

the direct binding of iron to H2O2, and so I suspected that only those enzymes that might 

have under-coordinated iron in their active sites are potentially vulnerable.  To test this 

idea, transketolase was examined.  Transketolase requires a divalent metal to form a 

bridge between the polypeptide and a thiamine pyrophosphate (TPP) cofactor, but the 

metal does not participate in the reaction chemistry.  The metal itself is buried beneath 

the bound cofactor and is not exposed to solvent [Isupov et. al, PDB code 1QGD].  I 

determined that Fe
2+

 was able to activate transketolase as efficiently as did Mg
2+

.  

However, in contrast to Rpe, the addition of H2O2 did not affect the activity of the 

Fe
2+

/TPP-loaded enzyme (Figure 2.8).  These results demonstrate that enzymes that use 

Fe
2+

 as a metal cofactor are sensitive to H2O2 only if the metal site is exposed to solvent; 

if the Fe
2+

 is fully coordinated, Fenton chemistry is blocked and the enzyme is not 

vulnerable to H2O2.  This feature presumably will circumvent damage to many enzymes, 

like transketolase, that might occasionally or frequently bind Fe
2+

 as a divalent cofactor. 

 DISCUSSION 2.3

 In addition to their facility at redox reactions, transition metals excel at surface 

chemistry, in which they directly coordinate substrates and thereby activate them for a 

wide variety of reaction types.  Rpe is an example of the latter:  its mononuclear metal 

atom binds the carbonyl and carboxylate moieties of ribulose-5-phosphate, facilitating 

epimerization by stabilizing the deprotonated anionic intermediate.   In addition, over the 

course of the reaction the metal alternatively coordinates and releases the aspartyl 

residues that act as proton acceptors and donors to the substrate.  Although a non-

transition metal such as magnesium can suffice in enzymes where its sole role is to 
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neutralize charge, transition metals are often requisite when the metal environment must 

change during the reaction cycle, as they can tolerate changes in their coordination sphere 

with minimal activation energy. 

 This study indicates that iron is the transition metal that activates Rpe.  This 

makes both ecological and evolutionary sense, as iron is typically abundant in anaerobic 

habitats—including both the mammalian gut in which E. coli dwells and the anaerobic 

world in which Rpe originally evolved.  Indeed, the service of ferrous iron in non-redox 

enzymes is probably systematically under-recognized, because iron is quickly oxidized 

and released when these enzymes are studied in aerobic buffers.  Thus, whereas in vitro 

experiments suggest that manganese can activate scores of enzymes in E. coli 

[http://www.Ecocyc.org/], in reality manganese is scarcely imported under routine 

growth conditions [2].  More likely, iron is the cognate metal of many of these enzymes.   

 Fe enzymes are targets of oxidants 2.3.1

 Catalase and peroxidase activities are sufficient to cope with the H2O2 that is 

formed as a by-product of aerobic metabolism, but the diffusion of H2O2 into the cell 

from environmental sources can nevertheless drive its steady-state levels above the 

threshold of toxicity [35].  Rpe, and probably mononuclear iron enzymes in general, now 

join iron-sulfur dehydratases as primary classes of enzymes that this H2O2 damages.  In 

both cases H2O2 directly oxidizes a solvent-exposed iron atom that normally serves to 

bind substrate; the oxidized iron atom then dissociates from the enzyme.  Interestingly, 

the hydroxyl-like oxidants that are formed need not fatally damage the active sites of 

either type of enzyme—the enzymes can be repeatedly reactivated, both in vivo and in 

vitro.  When H2O2 oxidizes iron-sulfur clusters, hydroxyl radical release is averted when 

the nascent ferryl radical abstracts a second electron from the cluster [18].  I speculate 

that Rpe might similarly be spared covalent damage because the ferryl radical usually 

dissociates from the active site and does not release a hydroxyl radical until it enters the 

bulk solution.  Upon reflection, it is probably an essential feature of iron-containing 

enzymes that they are not irreversibly damaged upon each encounter with H2O2.  Even in 

innocuous habitats wild-type E. coli contains about 20 nM steady-state H2O2 from 
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endogenous sources [35]; because the inactivation rates of these enzymes are likely 10
4
-

10
5
 M

-1
 s

-1
 at physiological temperatures (Figure 2.1D) [12], they are likely to be 

oxidized by H2O2 on the order of every 10 min.  This situation would be intolerable were 

the polypeptide irreparably damaged each time. 

 The role of alternative metals in Fe enzymes 2.3.2

 The reliance of metabolism upon iron-cofactored enzymes presents problems 

during periods of either iron starvation or oxidative stress.  One apparent solution is to 

replace iron with manganese.  When the problem is iron scarcity, the deactivation of the 

Fur repressor stimulates synthesis of MntH, the manganese importer [20].  Presumably 

the resultant manganese influx allows mononuclear enzymes such as Rpe to continue to 

work.  Because manganese does not share the reduction potential of iron, the solution is 

slightly more complicated for redox enzymes:  key iron-dependent enzymes, such as 

superoxide dismutase and ribonucleotide reductase, are replaced by distinct isozymes that 

bind and poise manganese at an appropriate potential [6, 27]. 

 The induction of the manganese transporter is not sufficient to protect these 

enzymes from H2O2, however, if the H2O2-stressed cell still contains ample iron that 

might yet out-compete manganese for enzyme binding.  Thus the induction of MntH by 

OxyR is supplemented by its induction of the Fur repressor [42], which inhibits 

expression of iron importers, and of Dps, which sequesters intracellular iron in a ferritin-

like storage protein [13, 15, 30, 41].  In collaboration these systems ensure that the 

iron/manganese ratio tips towards the latter.   

 I was unable to directly demonstrate that the Rpe proteins recovered from H2O2-

stressed cells contain manganese; by the point of assay, manganese was not bound.  This 

is the expected outcome of the rapid dissociation of this weakly bound metal during 

extract preparation.   However, it is clear that manganese import blocked enzyme damage 

and sustained activity.  An alternative model for the anti-oxidant effects of manganese [7, 

8, 22, 37-39] has been that it acts as a chemical scavenger of reactive oxygen species, 

including H2O2 [14, 21, 22, 32, 37].  That model seems not to apply to E. coli, as direct 
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measurements showed that manganese import did not affect H2O2 levels [2].  Further, I 

found that excess cobalt, which can also activate Rpe but does not chemically degrade 

H2O2, was able to substitute for manganese in preserving the function of the pentose-

phosphate pathway during H2O2 stress (Figure 2.9).  It seems possible that this 

manganese protection scheme operates constitutively in those lactic acid bacteria that 

produce H2O2 in high quantities, as these bacteria characteristically require millimolar 

levels of intracellular manganese for good growth [3].  Work in the Daly lab has 

suggested that additional mechanisms of manganese-based protection might also occur in 

these organisms [39].  It will be interesting to see whether these organisms have evolved 

enzymes that are better at binding manganese than is E. coli Rpe, or if the requirement for 

such high intracellular manganese is a reflection of weak binding in these cells as well. 

 It has long been of interest to identify the mechanisms that ensure that enzymes 

bind their cognate metals.  The example of E. coli experiencing H2O2 stress, during 

which cellular Mn
2+

 rises from 15 to 180 µM [2], indicates that metallation is 

substantially controlled by the relative concentrations of the competing metals.  But this 

example also points out that this level of control is not enough, since zinc, which binds 

more tightly to the Rpe active site than does either manganese or iron, is abundant inside 

the cell.  Indeed, when manganese-loaded Rpe was co-incubated with zinc in vitro, 

activity steadily declined as the association/dissociation equilibrium of manganese was 

interrupted by the permanent binding of zinc (Figure 2.10).  The quick solvation of 

manganese and iron from mononuclear enzymes may be the counterpoint to their facility 

at the exchange reactions which allow them to be good surface catalysts.  Inside the cell 

competition from zinc is presumably suppressed by other intracellular ligands, such as 

the glutathione pool, that substantially sequester it.  Whether the cell also employs 

systems that either actively load iron/manganese into mononuclear enzymes like Rpe, or 

that facilitate the dissociation of inappropriately bound metals, remains to be determined.  
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 EXPERIMENTAL PROCEDURES 2.4

 Reagents 2.4.1

 Amino acids, antibiotics, ascorbic acid, catalase (from bovine liver), cobalt (II) 

chloride hexahydrate, diethylenetriaminepentaacetic acid (DTPA), 

ethylenediaminetetraacetic acid(EDTA), D-erythrose 4-phosphate sodium salt, ferrous 

ammonium sulfate hexahydrate, fructose 6-phosphate dipotassium salt, a-

glycerophosphate-triosephosphate isomerase from rabbit muscle, imidazole, manganese 

(II) chloride tetrahydrate, β-nicotinamide adenine dinucleotide reduced disodium salt 

(NADH), β-nicotinamide adenine dinucleotide phosphate sodium salt (NADP), 6-

phosphogluconic acid tri(cyclohexylammonium) salt, D-ribose 5-phosphate disodium 

salt, D-ribulose 5-phosphate disodium salt, transketolase (from yeast), D-xylulose 5-

phosphate sodium salt, zinc chloride, and 30% H2O2 were from Sigma.  Glycylglycine 

was from Acros Organics, and Tris-HCl was from Fisher. 

 Bacterial growth 2.4.2

 Luria-Bertani (LB) medium contained 10 g tryptone, 10 g NaCl, and 5 g yeast 

extract per liter.  Minimal medium was composed of minimal A salts supplemented with 

0.5 µg/mL thiamin and 0.5 mM of the following amino acids: histidine, phenylalanine, 

tryptophan, and tyrosine.  Carbon sources glucose or gluconate were added at 0.2%, 

where indicated. 

 Anoxic growth was carried out in a Coy anaerobic chamber which contained an 

atmosphere consisting of 85% nitrogen, 10% hydrogen, and 5% carbon dioxide.  Cultures 

were maintained at 37°C.  Aerobic cultures were grown by shaking cultures vigorously at 

37°C.    
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 Growth curves 2.4.3

 Cells were first grown overnight to stationary phase in anaerobic minimal glucose 

medium.  Cultures were then inoculated to ~ 0.01 OD and grown anaerobically to 0.2 

OD.  Cells were then washed twice with minimal A salts, and used to inoculate fresh 

aerobic minimal gluconate medium to 0.005 OD.  Where indicated, 50 µM MnCl2 was 

added both to anaerobic precultures and to aerobic growth medium. 

 Enzyme assays 2.4.4

2.4.4.1 In vivo exposure 

 Cultures of JI418 and JI422 cells used for in vivo exposure assays were grown 

anaerobically in minimal glucose medium at least four generations to an OD of 0.4. A 25 

mL aliquot was removed to determine initial activity, while 50 mL of the remaining 

culture was washed twice in 25 mL minimal A salts.  The washed cells were used to 

inoculate 100 mL minimal A gluconate medium to 0.05 OD.  Cultures were grown 

shaking at 37°C to an OD of 0.1.  Next, 50 mL cultures were moved into the anaerobic 

chamber and washed twice in ice-cold 25 mL 50 mM glycylglycine buffer, pH 8.5, and 

resuspended in 1 mL (2 mL for anaerobic sample) 50 mM glycylglycine buffer, pH 8.5 

containing 1 mM DTPA.  Samples were then sonicated for 2 minutes (3 seconds on/3 

seconds off) and lysates were cleared by centrifugation at 14000 x g for 3 minutes.  

Samples were then assayed immediately as described below. 

2.4.4.2 In vitro exposure  

 Cultures of LC106 cells used for in vitro H2O2 exposure assays were grown 

anaerobically in minimal glucose medium at least four generations to an OD of 0.4.  All 

extract preparation was done in an anaerobic chamber.  The 25 mL cultures were washed 

twice in ice-cold 25 mL 50 mM glycylglycine buffer, pH 8.5, and resuspended in 1 mL 

50 mM glycylglycine buffer, pH 8.5 containing 1 mM DTPA.  Samples were then 

sonicated for 2 minutes (3 seconds on/3 seconds off) and lysates were cleared by 

centrifugation at 14000 x g for 3 minutes.  Samples were then assayed immediately as 
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described below.  For H2O2 treatment, an aliquot was diluted 1:10 in buffer containing 10 

µM H2O2 and incubated for 2 minutes.  This mixture was then diluted in half with buffer 

containing a 1:10000 dilution of catalase.  Samples were then assayed as described 

below.  

2.4.4.3 6-phosphogluconate dehydrogenase 

 6-phosphogluconate dehydrogenase was assayed by adding extract at a final 

dilution factor of 1:50 to a reaction mixture containing 20 mM Tris-HCl buffer, pH 7.8, 

6.9 mM MgCl2, 4.2 mM 6-phosphogluconate, and 0.2 mM NADP in a final reaction 

volume of 500 µL in a sealed, anaerobic cuvette.  Absorbance was measured at 340 nm. 

2.4.4.4 Transaldolase 

 Transaldolase was assayed by adding extract at a final dilution factor of 1:50 to a 

reaction mixture containing 50 mM glycylglycine buffer, pH 8.5, 5 mM DTPA, 1 unit of 

α-glycerophosphate dehydrogenase and 10 units of triosephosphate isomerase, (obtained 

as a pre-mixed suspension) 2.8 mM fructose 6-phosphate, 0.2 mM erythrose 4-phosphate, 

and 0.2 mM NADH in a final reaction volume of 500 µL in a sealed, anaerobic cuvette.  

Absorbance was measured at 340 nm. 

2.4.4.5 Transketolase 

 Assay for transketolase was assayed by adding extract at a final dilution factor of 

1:50 to a reaction mixture containing 50 mM glycylglycine buffer, pH 8.5, 5 mM DTPA, 

1 unit of a-glycerophosphate dehydrogenase and 10 units of triosephosphate isomerase, 

(obtained as a pre-mixed suspension) 1 mM xylulose 5-phosphate, 1 mM ribose 5-

phosphate, and 0.2 mM NADH in a final reaction volume of 500 µL in a sealed, 

anaerobic cuvette.  Absorbance was measured at 340 nm. 

2.4.4.6 Ribose 5-phosphate isomerase 

 Assay for ribose 5-phosphate isomerase was identical to the assay for 

transketolase, except that 1 mM ribulose 5-phosphate was added instead of ribose 5-
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phosphate.  The mixture also contained 1 unit of transketolase from a stock of 5 units/mL 

that was pre-treated with 0.2 mM MgCl2 and 2 mM thiamin pyrophosphate. 

2.4.4.7 Ribulose 5-phosphate epimerase 

 Assay for ribulose 5-phosphate epimerase was identical to the assay for 

transketolse, except that 1 mM ribulose 5-phosphate was added instead of xylulose 5-

phosphate.  The mixture also contained 1 unit of transketolase from a stock of 5 units/mL 

that was pre-treated with 0.2 mM MgCl2 and 2 mM thiamin pyrophosphate. 

 Purification of Rpe 2.4.5

 Rpe was purified by cloning of the E. coli Rpe gene into the pET21b vector using 

the forward primer 5’-

GCAATGCATATGAAACAGTATTTGATTGCCCCCTCAATTCTGTCG-3’, which 

included an NdeI restriction site, and the reverse primer 5’-

GCAATGCTCGAGTTATTCATGACTTACCTTTGCCAGTTCACTGCG-3’, which 

included an XhoI restriction site.  After ligation, plasmids were transformed into BL21 

and selected on LB plates containing 50 µg/mL ampicillin.  One transformant found to 

have the correct Rpe sequence was chosen for Rpe purification.  E. coli strain BL21 

containing plasmid pRpe-His10 was grown in LB glucose medium containing 50 µg/mL 

ampicillin to stationary phase, diluted into fresh LB glucose containing 50 µg/mL 

ampicillin to 0.006 OD, and grown at 37°C to 0.2 OD.  This preculture was then used to 

inoculate 1 L fresh LB glucose containing 50 µg/mL ampicillin to 0.005 OD and cells 

were grown at 37°C to 0.6 OD.  IPTG was then added to a final concentration of 0.4 mM, 

the culture was shifted to 15°C, and incubated for 18 hours.   

 Purification was performed as described by Akana et al. with some modifications.  

Buffers used were: binding buffer (20 mM Tris-HCl, pH 7.9, 0.5 M NaCl, and 5 mM 

imidazole), elution buffer (20 mM Tris-HCl, pH 7.9, 0.5 M NaCl, and 1 M imidazole), 

wash buffer (20 mM Tris-HCl, pH 7.9, 0.5 M NaCl, and 60 mM imidazole), and strip 

buffer (20 mM Tris-HCl, pH 7.9, 0.5 M NaCl, and 100 mM EDTA).  Cells were 

centrifuged and washed with 30 mL binding buffer, resuspended in 20 mL binding 
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buffer, and sonicated.  Cell extracts were cleared by centrifugation for 15 minutes at 4000 

x g at 4°C.  Two His Gravitrap columns (GE Healthcare) were equilibrated at 4°C using 

10 mL binding buffer.  Each column was loaded with 10 mL cleared extract, washed with 

a 10 mL mixture of 15% elution buffer and 85% wash buffer.  A second wash using 3 mL 

of a 50% wash buffer and 50% strip buffer mixture was run before elution was conducted 

by adding 3 mL elution buffer to each column.  Eluates were pooled and dialyzed in 3.5 

L 50 mM Tris-HCl, pH 8.0 containing 100 mM NaCl and 5 mM CaCl2 at 4°C for 6 

hours.  Buffer was changed and dialysis was run an additional 6 hours. 

 To remove the 10-His tag, dialysate was cleaved using a Factor Xa 

Cleavage/Capture Kit (Novagen).  The cleavage mixture contained 800 µL 10X 

Cleavage/Capture buffer, 100 µL Factor Xa (2U/µL), 6 mL dialysate, and 1.1 mL dH2O.  

This mixture was incubated at room temperature for 36 hours, then moved to ice.  Factor 

Xa was then removed according to kit instructions.  Flowthrough from multiple columns 

were pooled together.  Next, to remove uncleaved Rpe-His10, a His Gravitrap column 

was equilibrated with 10 mL 50mM Tris-HCl, pH 8.0 containing 500 mM NaCl at 4°C.  

Flowthrough from Factor Xa removal was then loaded onto the column and washed with 

6 mL 50mM Tris-HCl, pH 8.0 containing 500 mM NaCl.  Rpe was mostly retained on the 

column, so 6 mL binding buffer was used to wash the column, followed by elution of 

cleaved Rpe using 6 mL of a mixture containing 50% strip buffer and 50% wash buffer.  

The resulting purified Rpe had a protein concentration of 1.52 mg/mL. 

 Determination of KM and kcat 2.4.6

 Purified Rpe was diluted 1:1000 into 50 mM glycylglycine buffer, pH 8.5, for Co, 

Fe, and Mn, or 1:100 for Zn in the anaerobic chamber.  Rpe was further diluted 100-fold 

into 50 mM glycylglycine buffer (pH 8.5), with a final concentration of 500 µM metal 

and incubated for 10 minutes at 23°C.  Rpe was then assayed as above using various 

RuMP concentrations.  KM and kcat values were determined by using a double reciprocal 

plot. 
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 Metal dissociation rates 2.4.7

 In the anaerobic chamber, purified Rpe was diluted 1:100 into 50 mM 

glycylglycine buffer, pH 8.5 containing 500 µM of each metal for 5 minutes before being 

diluted 10-fold into 50 mM glycylglycine buffer, pH 8.5 containing 1 mM DTPA and 

incubated at 0°C or 23°C.  Aliquots were taken at regular intervals and Rpe activity was 

measured as described above. 

 H2O2 challenge in vitro 2.4.8

 Pure Rpe was diluted 1:10000 (1:1000 for Zn) into 50 mM glycylglycine buffer, 

pH 8.5 containing 100 µM of each metal for 5 minutes anaerobically before being diluted 

10-fold into the Rpe assay mixture. The reaction was run for 6 minutes to determine 

initial activity before being treated with 5 µL 50 mM H2O2 (final concentration of 500 

µM).  Rates were compared before and after H2O2 treatment. 

 H2O2 challenge in vivo 2.4.9

 Cultures of LC106 cells used for in vitro H2O2 exposure assays were grown 

anaerobically in minimal glucose medium at least four generations to an OD of 0.4. 

Chloramphenicol was added to a final concentration of 150 µg/mL and cultures were 

incubated at 37°C for an additional 5 minutes. A 25 mL aliquot was removed to 

determine initial activity, while 75 mL of the remaining culture was treated with 100 µM 

H2O2 and shifter to aerobic conditions where the culture was shaken at 37°C for 10 

minutes.  Catalase was then added and cultures were shifted back to the anaerobic 

chamber.  All extract preparation was done in an anaerobic chamber as described earlier. 

 Ascorbate cycling in vitro 2.4.10

 Pure Rpe was diluted 1:50000 into 50 mM glycylglycine buffer, pH 8.5, 

containing 20 µM DTPA. CoCl2 was added last to a final concentration of 50 µM, 

samples were incubated for 10 minutes anaerobically, then assayed for Rpe activity to 
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determine maximum activity level.  For cycling samples, 10 µL pure Rpe was added to 

305 µL 50 mM glycylglycine buffer, pH 8.5, and 10 µL of 1 mM DTPA in each of 3 

tubes.  Next, 25 µL of 1 mM CoCl2 was added to tube 3 and incubated for 10 minutes.  

Buffer was added to bring the volume of each of the three tubes to 425 µL.  To tube 1, 50 

µL more buffer was added, while 50 µL 100 mM ascorbate was added to tubes 2 and 3.  

Finally, 25 µL of 1 mM Fe was added to each of the three tubes.  (Final concentrations 

are: 1:50000 dilution of Rpe, 20 µM DTPA, 50 µM Fe or Co, and 10 mM ascorbate.) 

Samples were then moved to aerobic conditions and incubated at room temperature.  

Aliquots of 100 µL were removed periodically and diluted into a final volume of 200 µL 

containing, in order of addition, 100 µM DTPA, 1:10000 dilution of catalase, and 200 

µM CoCl2.  Samples were moved back into the anaerobic chamber and assayed for Rpe 

activity after 10 minutes. 

 Transketolase challenges 2.4.11

 Pure transketolase (Sigma) was metallated by adding 200 µM Fe or MgCl2 to a 50 

ug/mL transketolase solution in 50 mM glycylglycine buffer, pH 8.5.  After 2 minutes, 

TPP was added to a concentration of 2 mM either 2 minutes before or after addition of 

either H2O2 or DTPA (final concentration of 500 µM).  Samples were then incubated for 

an additional 2 minutes before being assayed as described above.  

 Mn protection assays 2.4.12

 JI422 cells were grown anaerobically at least four generations to 0.3 OD in 

minimal glucose medium with or without 50 µM MnCl2.  A 25 mL aliquot was removed 

to measure initial Rpe activity, while remaining 75 mL cultures were washed twice with 

minimal A salts.  Washed cells were then used to inoculate 250 mL aerobic cultures in 

minimal gluconate medium with or without 50 µM MnCl2 to 0.04 OD.  Cultures were 

grown shaking at 37°C and 50 mL aliquots were removed every 2.5 hours.  Extracts were 

prepared anaerobically as described above.  For reactivation, 100 µL of a 1:10 extract 

dilution was added to 100 µL buffer containing 500 µM CoCl2 to reactivate apo-Rpe.  

After 10 minutes, Rpe activity was measured as described previously. 
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 H2O2 accumulation  2.4.13

 Cells were first grown overnight to stationary phase in anaerobic minimal glucose 

medium.  Cultures were then inoculated to ~ 0.01 OD and grown anaerobically to 0.2 

OD.  Cells were then washed twice with minimal A salts, and used to inoculate fresh 

aerobic minimal gluconate medium to 0.005 OD.  Aliquots were removed periodically 

and filter sterilized before being frozen on dry ice.  After all samples were collected, 

H2O2 concentrations were measured by the Amplex Red/horseradish peroxidase method.  

Fluorescence was measured using a Shimadzu RF Mini-150 fluorometer. 

 Inactivation rate determination 2.4.14

 Cultures of LC106 cells used for in vitro H2O2 exposure assays were grown 

anaerobically in minimal glucose medium at least four generations to an OD of 0.4.  All 

extract preparation was done in an anaerobic chamber.  The 25 mL cultures were washed 

twice in ice-cold 25 mL 50 mM glycylglycine buffer, pH 8.5, and resuspended in 1 mL 

50 mM glycylglycine buffer, pH 8.5 containing 1 mM DTPA.  Samples were then 

sonicated for 2 minutes (3 seconds on/3 seconds off) and lysates were cleared by 

centrifugation at 14000 x g for 3 minutes.  Samples were then diluted 1:10 in buffer 

containing 1, 5, or 10 µM H2O2 and incubated on ice.  Aliquots of 90 µL were taken at 

regular intervals and added to 10 µL of a 1:100 dilution of catalase.  Rpe activity was 

then assayed as described previously.  

 Substrate protection assay 2.4.15

 Purified Rpe was diluted 1:10000 into 50 mM glycylglycine buffer, pH 8.5 

containing 100 µM Fe.  After 5 minutes, metallated Rpe was then assayed after 1:10 

dilution into assay mixture containing either 1 mM or 2 mM ribulose After 5 minutes, 

metallated Rpe was then assayed after 1:10 dilution into assay mixture containing either 1 

mM or 2 mM ribulose.  The reaction was run for 3 minutes to determine initial activity 

before being treated with 5 µL 50 mM H2O2 (final concentration of 500 µM).  Rates were 

compared before and after H2O2 treatment.  
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 TABLES 2.5

 

 

Table 2.1:  Properties of various Rpe metalloforms.  kcat and KM values were determined as described in 

Materials and Methods.  Error represents standard deviation from the mean of three independent 

measurements. Kcat/KM values were derived using the average values for kcat and KM.  Dissociation rates 

were determined by measuring Rpe activity of aliquots taken over time from a mixture containing 

metallated Rpe diluted into an excess of DTPA and incubated at the temperature specified.  Measurements 

represent the averages of three independent experiments.  ND is not determined. 
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Strain Genotype Reference 

MG1655 F
-
 wild type E. coli Genetic Stock 

Center 

LC106 ΔahpF::kan Δ(katG::Tn10)1 Δ(katE12::Tn10) [36] 

JI418 Δ(edd-zwf)22~zeb-1::Tn10 Laboratory Stock 

JI422 Δ(edd-zwf)22~zeb-1::Tn10 ΔahpF::kan 

Δ(katG::Tn10)1 Δ(katE12::Tn10) 

Laboratory Stock 

BL21 (DE3) F
-
 ompT hsdSB(rB

-
 mB

-
) gal dcm (DE3) Novagen 

   

Plasmids Relevant characteristics Reference 

pET16b overexpression vector Novagen 

pRpe-His10 pET16b::rpe This study 

 

Table 2.2:  Strain list.  These strains and plasmids were used in the Rpe study. 
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 FIGURES 2.6

 

Figure 2.1:  Hpx
−
 Δedd cells cannot grow on gluconate because of damage to Rpe.  (A) After anaerobic 

preculture, cells were diluted into aerobic minimal gluconate medium at time 0. Data presented are 

representative of multiple experiments.  (B) Activities measured in extracts prepared from Hpx
−
 Δedd cells 

grown aerobically.  Values were normalized to those of anaerobic cells.  Gnd, 6-phosphogluconate 

dehydrogenase; Rpi, ribose-5-phosphate isomerase; Tal, transaldolase; Tkt, transketolase.  (C) Activities 

measured before (gray bars) and after (black bars) 10 μM H2O2 was added to cell extracts prepared from 

anaerobically grown Hpx
−
 cells.  Error bars represent SD from the mean of three independent experiments.  

(D) Time course of the inactivation at 0 °C of Rpe in cell extracts treated with the indicated concentrations 

of H2O2. Extracts were prepared from anaerobically grown Hpx
−
 cells.  
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Figure 2.2:  The pentose–phosphate pathway.  Relevant intermediates are listed, with key enzymes 

denoted in brackets.  Arrows indicate direction of each reaction. 
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Figure 2.3:  H2O2 accumulation during aerobic growth of the Hpx
-
 strain.  After anaerobic preculture, 

cells were diluted into aerobic minimal gluconate medium at time 0. Growth was monitored (circles), and 

aliquots were removed for determination of H2O2 concentration (squares). H2O2 equilibrates across the cell 

membranes so that extracellular and intracellular concentrations are essentially equivalent. Data presented 

are representative of multiple experiments. 
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Figure 2.4:  Rpe active site structure and mechanism.  Rpe interconverts ribulose-5-phosphate and 

xylulose-5-phosphate by abstracting a proton from one face of the C-3 carbon and then adding a proton to 

the opposite face.  The metal coordinates substrate and stabilizes the intermediate oxyanion [25]. 
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Figure 2.5:  Sensitivity of Rpe metalloforms to H2O2 in vitro. Pure Rpe was metallated with the 

indicated metals. Activity then was measured before (gray bars) and after (black bars) treatment with 500 

μM H2O2 for 2 min. Error bars represent SD from the mean of three independent measurements. 



73 

 

Figure 2.6:  Reversibility of Rpe inactivation.  (A) A single cycle of in vitro damage is mostly reversible. 

Pure Rpe was metallated with 100 μM Fe
2+

 before being treated with 200 μM H2O2 for 5 min. Catalase and 

DTPA were added to remove Fe and H2O2, and Rpe was assayed. Damaged enzyme then was reactivated 

by anaerobic incubation with 100 μM Fe
2+

 and 500 μM ascorbate. (B) Brief damage in vivo is mostly 

reversible. Hpx
−
 cultures were grown in anaerobic medium, and chloramphenicol then was added to block 

further protein synthesis. Cells then were aerated and exposed to H2O2 (100 μM) for 10 min. Cultures were 

returned to the anaerobic chamber, treated with catalase, and assayed before (+H2O2) or after (+Fe
2+

) in 

vitro reactivation. In vivo reactivation was measured by incubating cells for an additional 20 min after the 

termination of H2O2 stress. (C) Protracted stress irreversibly damages Rpe in vivo. Anaerobic cells were 

diluted into aerobic minimal gluconate medium at time 0. At indicated time points Rpe activity was 

measured before and after in vitro reactivation with Co
2+

. (D) Repetitive Fenton chemistry irreversibly 

damages Rpe in vitro. Pure Rpe was metallated with Fe
2+

 or Co
2+

. After 10 min, samples were diluted into 

aerobic buffer containing Fe
2+

 and ascorbate to trigger cycles of H2O2 damage and remetallation by Fe
2+

. At 

indicated time points, aliquots were removed, damage was terminated by the addition of catalase and 

DTPA, and Co
2+

 was added to activate the remaining functional apoenzyme. Error bars represent the SD 

from the mean of three experiments. The enzyme is not inactivated if the active site is occupied by Co.  
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Figure 2.7:  Mn supplements protect Rpe against irreversible damage in vivo.  (A) After anaerobic 

preculture, cells were diluted at time 0 into aerobic minimal gluconate medium with or without 50 μM 

MnCl2. Data are representative of multiple growth experiments. (B) Cells were handled as in A except that 

aerobic inoculum was to 0.05 OD. At various times, aliquots were taken, and Rpe activity was measured 

before and after reactivation with Co. Time 0 is an anaerobic time point. Error bars represent the SD from 

the mean of three independent experiments. 
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Figure 2.8:  Transketolase and necessity of solvent exposure for metal sensitivity to chelation and to 

H2O2.  Metals were added to pure transketolase (Sigma) before the addition of TPP and 500 μM H2O2. 

After mixing, samples were incubated for 5 min and then assayed. 
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Figure 2.9:  Co supplements allow Hpx
-
 edd cells to grow on gluconate.  After anaerobic preculture, 

cells were diluted into aerobic minimal gluconate medium with or without various concentrations of CoCl2 

at time zero.  Concentrations of CoCl2 used were: 0 μM (circles) and 50 μM (squares).  
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Figure 2.10:  Zn
2+

 outcompetes Mn
2+

 for the Rpe active site. The activity of pure Rpe premetallated with 

Mn was monitored with (squares) or without (circles) the subsequent addition of Zn. Two hundred μM 

Mn
2+

 and 200 μM Zn
2+

 were present during the incubation period. Mn equilibrates between the active site 

and the bulk solution; when present, Zn deactivates the enzyme by binding irreversibly to the active site of 

the transient apoenzyme. 
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CHAPTER 3:  H2O2 IMPOSES AN AROMATIC AMINO ACID 

AUXOTROPHY ON ESCHERICHIA COLI BY DAMAGING DAHP 

SYNTHASE  

 INTRODUCTION 3.1

 In 1900, when Loew first discovered catalase, an enzyme that could scavenge 

H2O2, the field of oxidative stress was born [43].  Although researchers recognized that 

there must be a reason why cells would want to rid themselves of this oxidant, years went 

by before real insights into its toxicity were realized.  It would take more than 70 years 

for another reactive oxygen species scavenger, superoxide dismutase (SOD),  to be 

discovered [46].  When McCord took an inventory of what organisms possessed these 

two scavenging systems, he found that in his sample set only aerobes possessed catalases 

and SODs [47].  This led some workers to conclude that the reason for the existence of 

obligate anaerobes was their lack of enzymes capable of detoxification of reactive oxygen 

species.  At the time, this conclusion seemed valid, and this idea subsequently found its 

way into a number of textbooks.  However, with the coming of the genomic age and 

further studies on enzymes capable of scavenging H2O2 and O2·
-
, it has become apparent 

that anaerobes in fact do possess a number of scavenging enzymes, including peroxidases 

and superoxide reductases [37, 44, 51].  Thus, it remains a mystery as to why anaerobes 

cannot tolerate oxygenated environments, although it may be that oxygen itself poses the 

real threat. 

 The ubiquitous existence of scavenging systems for reactive oxygen species 

(ROS) implies a universal requirement to eliminate these toxic compounds.  Indeed, there 

are a number of sources from which an organism may be exposed to these compounds.  

For example, the immune responses of plants and animals, including the oxidative burst 

of macrophages and neutrophils, bombard invading microorganisms with a bolus of 

reactive oxygen species, including H2O2 and O2·
-
 [8, 21, 48, 55].  Some bacteria (such as 

lactic acid bacteria) are even capable of producing these oxidants to poison their 
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competitors [23, 60, 62].  Other organisms, including plants and some bacteria, secrete 

redox-cycling drugs like juglone and phenazines that, when taken up by organisms in the 

same environment, produce O2·
-
 and H2O2 which are toxic to the competitors [34, 66].  

Competing organisms are not the only sources of reactive oxygen species.  The 

environment itself can be a source of H2O2, generated from the oxidation of organic 

molecules.  Perhaps the most pertinent source of reactive oxygen species is the organism 

itself.  O2·
- 
can be generated within the cell as an inadvertent byproduct of aerobic 

metabolism when molecular oxygen picks up an electron from flavins [33, 49].  

Subsequent dismutation forms H2O2 [10, 49].  In E. coli, H2O2 generated by this 

mechanism can accumulate to ca. 1 µM when H2O2 scavenging systems have been 

deleted [57]. 

 Because there are so many avenues by which cells can come into contact with 

reactive oxygen species, it is necessary for organisms to have a way to respond to these 

toxins.  In the case of H2O2, this response is mediated by OxyR.  OxyR is a 

transcriptional regulator with an active-site cysteine residue that is poised to react with 

H2O2 [12, 41].  When this occurs, OxyR undergoes a conformational change that allows 

it to activate a number of genes, including ones encoding scavenging systems, Fe-S 

cluster assembly and repair systems, and manganese import, to name a few [69].  There is 

a similar response to redox-cycling drugs which produce O2·
-
, via the SoxRS system [22, 

42].  SoxRS was once thought to respond to O2·
-
 directly, but recent work has shown that 

this response may not be so specific to O2·
-
, but more likely a response to the redox 

cycling drugs [26, 39].  SoxRS is a two- component system where the sensor, SoxR, 

contains an oxidizable Fe-S cluster.  When the cluster is oxidized, SoxRS activates 

transcription of members if the regulon [53].  These member proteins include Mn-SOD 

and a number of drug efflux and detoxification systems.  These responses help cells to 

tolerate these unavoidable reactive oxygen species. 

 In order to better understand why scavenging systems play such a crucial role in 

the ability of organisms to survive reactive oxygen species, it is important to understand 

what the targets of these oxidants are.  To do this, studies have taken advantage of 

mutants that either lack cytosolic SODs (SOD mutants) or lack both catalases and 
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peroxidase (Hpx
-
) and are unable to scavenge these reactive oxygen species.  Hpx

-
 cells, 

as mentioned previously, accumulate up to 1 µM H2O2, which is enough to poison 

themselves [58].  Several phenotypes result from H2O2 exposure.  First is DNA damage, 

which is probably the most consequential of all the phenotypes.  This occurs when the 

Fenton reaction takes place on the face of DNA, resulting in hydroxyl radical formation 

and oxidation of the DNA itself.  If unchecked, the accumulation of DNA lesions can 

lead to loss in cell viability [52].  A second class of H2O2 target includes solvent-exposed 

Fe-S cluster dehydratases.  These proteins have a [4Fe-4S] cluster where the fourth Fe 

atom is not fully coordinated but is free to bind and activate substrate.  Damage to these 

proteins, though they require addition of H2O2 beyond 1 µM to become apparent, causes 

growth phenotypes such as a leucine auxotrophy, failure of the Isc Fe-S cluster assembly 

system, and an inability to grow on TCA cycle intermediates [35, 36].  In each case, the 

Fenton reaction occurs at the site of the under-coordinated Fe atom in the Fe-S clusters of 

the dehydratases.  Finally, the newest targets of H2O2 to be discovered are mononuclear 

Fe proteins.  Examples of these proteins include ribulose-5-phosphate 3-epimerase (Rpe), 

peptide deformylase (Pdf), cytosine deaminase (Cda), and threonine dehydrogenase 

(Tdh) [3].  Each of these proteins uses a solvent-exposed Fe atom to bind and activate 

substrate in a way analogous to the Fe-S cluster in dehydratases.  This solvent exposure 

also makes them vulnerable to oxidation by H2O2.  Again, the damage is due to Fenton 

chemistry at the active-site Fe atom. 

 SOD mutants have similar phenotypes due to damage to a number of the same 

proteins.  While O2·
- 
does not directly damage DNA, SOD mutants do experience a 

higher incidence of DNA damage than wild-type cells.  This higher incidence of DNA 

damage is likely facilitated by increased levels of Fe, which has been released from 

damaged Fe-S proteins, available to participate in the Fenton reaction on the face of the 

DNA [30].  SOD mutants are also branched-chain amino acid auxotrophs, which is due to 

damage to the Fe-S clusters of the same dehydratases responsible for failure of the 

pathway in Hpx
-
 cells [18, 40].  Mononuclear Fe enzymes are not immune to damage by 

superoxide either.  However, while Fenton chemistry in Hpx
-
 cells leads to irreversible 

enzyme damage, the failure of these proteins to function properly in SOD mutants 
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appears to be caused by mismetallation with Zn.  This was observed with Rpe and Tdh 

[27]. 

 While scavenging reactive oxygen species will remove the stress, it seems that the 

stress can be tolerated by import of Mn [1, 11, 31, 38, 59, 65].  In fact, almost all 

phenotypes, in both Hpx
-
 and SOD mutants, can be relieved by addition of Mn to the 

growth medium (Anjem & Imlay, unpublished data).  While damage to DNA cannot be 

prevented by Mn, damage to Rpe, Pdf, Cda, and Tdh can be avoided if these proteins are 

metallated with Mn [3].  When Mn is in the active site, most of these proteins retain a 

large percentage of their Fe-loaded activity.  While Fe is readily oxidized by either O2·
- 
or 

H2O2, Mn is not.  This allows the enzyme and by extension, the pathway, to function 

during oxidative stress, albeit at a slightly lesser rate.  Mn has also been observed to 

prevent H2O2, and to a lesser extent O2·
- 
from causing high levels of Fe-S cluster damage, 

although the mechanism by which Fe-S clusters are protected by Mn remains unclear 

(Anjem & Imlay, unpublished data). 

 One additional phenotype that has been described in both SOD and Hpx
-
 mutants 

is an auxotrophy for aromatic amino acids [9, 35].  While this phenotype has been known 

for years, there have been no compelling explanations for the cause of this auxotrophy.  

Although one study has suggested that the phenotype in SOD mutants is due to damage 

to the reaction intermediate of transketolase, these results may not be the real explanation 

[9].  Until a few years ago, there were no obvious candidates other than transketolase.  

However, recent studies identifying mononuclear Fe proteins as novel targets of these 

reactive oxygen species shed new light on this problem.  In this study, I report that DAHP 

synthase, the first enzyme in the aromatic amino acid biosynthetic pathway (shikimic 

acid pathway), is a mononuclear Fe enzyme that is damaged by H2O2 and O2·
-
 and is the 

target responsible for the aromatic amino acid auxotrophy.  Furthermore, Mn can protect 

DAHP synthase from both oxidants by replacing Fe in the active site of the protein.   
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 RESULTS 3.2

 DAHP synthase is damaged by H2O2 in vivo 3.2.1

 More than a decade ago, it was determined that E. coli strains that cannot 

scavenge H2O2 gradually accumulate about 1 µM H2O2 [58].  This Hpx
-
 strain has been 

shown to have a number of growth deficiencies, but the cause of the most sensitive 

phenotype, an auxotrophy for the aromatic amino acids (Figure 3.1), has remained 

elusive.  In fact, less than 0.3 µM H2O2 is necessary to elicit this growth defect (Figure 

3.2), which requires that all three aromatic amino acids (phenylalanine, tryptophan, and 

tyrosine) be added to the medium in order to fully restore growth to wild-type levels.  

This requirement implied failure of the common pathway for aromatic biosynthesis, 

rather than damage to the branch pathways for the individual amino acids.   

 The common aromatic biosynthetic pathway, the shikimic acid pathway, begins 

with phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) as substrates and 

progresses through a series of seven reactions, leading to the production of chorismate 

(Figure 3.3).  Chorismate is the end product that branches not only to the individual 

biosynthetic pathways for the three aromatic amino acids but also to those for folate, 

ubiquinone, menaquinone, and siderophores.  In order to narrow down where the point of 

damage to the pathway was occurring, I added the central intermediate, shikimate, to 

growth medium to determine whether the block was upstream or downstream of 

shikimate.  When shikimate was added, Hpx
-
 cells were able to grow as quickly as when 

all three aromatic amino acids were provided (Figure 3.4).  This indicated that the block 

in the pathway was upstream of shikimate.  Recently I identified a new class of proteins 

that are targets of H2O2 – mononuclear iron enzymes.  These proteins use a single 

solvent-exposed iron atom to bind and activate substrate.  The first enzyme of the 

common biosynthetic pathway, 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) 

synthase, is one such protein.  This activity is supplied by 3 isozymes, and each is 

believed to be cofactored by iron in in vivo based on atomic absorption spectra of 

purified DAHP synthases [45].  
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 When I exposed extracts to H2O2 in vitro, I found that the protein was acutely 

sensitive to H2O2.  The DAHP synthase activity fell below 10% of that of the untreated 

activity (Figure 3.5).  Control experiments were performed to determine which of the 

three isozymes of DAHP synthase were contributing to the activity, as well as the 

sensitivity of each to H2O2.  This was done by feedback inhibition of two of the three 

isozymes of DAHP synthase by addition of combinations of two aromatic amino acids.  

In vitro measurements indicated that all three isozymes were sensitive to H2O2 treatment 

(data not shown) and that the phenylalanine-responsive isozyme, AroG, accounted for 

most of the activity, as has been described previously [15, 64].  This demonstrated the 

ability of H2O2 to directly damage DAHP synthase, but does this actually occur in the cell 

during H2O2 stress?  To investigate this I measured the activity of DAHP synthase from 

aerobic cultures of Hpx
-
 cells over time.  While wild-type cells maintained a constant 

level of activity, Hpx
-
 cells experienced a progressive decrease in DAHP synthase 

activity, to a final level of only 20 to 25% of the wild-type activity (Figure 3.6).  This 

result confirmed that DAHP synthase is sensitive to H2O2 in vivo. 

 DAHP synthase is a mononuclear iron enzyme that is sensitive to Fenton 3.2.2

chemistry 

 Other mononuclear iron proteins have been shown to be activated by a number of 

different metals.  To determine what metals are able to activate DAHP synthase, as well 

as which metals might sensitize it to damage by H2O2, DAHP synthase was purified 

using a His tag, which was cleaved off after purification.  Because the AroG isozyme of 

DAHP synthase comprises the largest percentage of total activity under normal growth 

conditions [15] [64], I chose to use this isozyme in our in vitro studies.   Published assays 

have shown that cobalt is able to activate DAHP synthase [63].  However, E. coli does 

not import cobalt; therefore it is unlikely that cobalt is physiologically relevant with 

respect to in vivo metallation of DAHP synthase.  Three physiologically relevant metals, 

iron, manganese, and zinc, were added to apo-DAHP synthase and assayed for their 

ability to activate the protein.  Each of the three metals tested was able to activate DAHP 

synthase, to varying degrees.  Iron yielded protein with the highest activity, whereas 
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manganese was able to activate DAHP synthase to about 70% of the iron-activated 

sample (Figure 3.7).  Zinc appeared to be a less suitable metal for activation.  While 

DAHP synthase did become activated after zinc addition, the maximum level of activity 

was only 20% of the levels obtained using iron (Figure 3.7).  These three metalloforms 

were also assayed for their sensitivity to H2O2.  When pure protein was challenged with 

100 µM H2O2, only the iron-metallated isoform was sensitive to H2O2, losing almost 90% 

of its activity (Figure 3.7).  This result suggests that iron metallates DAHP synthase in 

vivo. 

 While the use of pure DAHP synthase to determine the kinetics of inactivation as 

well as the mechanism of damage would have been the most desirable method, the pure 

protein was not stable enough to facilitate such experiments.  Therefore, cell extracts 

from anaerobically-grown Hpx
-
 cells were used to determine the rate of inactivation of 

DAHP synthase by H2O2.  The apparent inactivation rate constant was found to be about 

500 – 1000 M
-1

 s
-1

 at 0°C, which is roughly 5-fold lower than the inactivation rate 

constants (4000 – 5000 M
-1

 s
-1

 at 0°C) determined for other mononuclear iron proteins, 

such as Rpe. 

 Damage to DAHP synthase in vivo is different than damage in vitro 3.2.3

 In order to determine the mechanism by which H2O2 damages DAHP synthase, 

enzyme that was damaged in vivo was reactivated in vitro by addition of iron and the 

reducing agent tris(2-carboxyethyl)phosphine (TCEP).  TCEP was included because one 

of the ligands responsible for coordination of the metal ion in the active site is a cysteine 

residue (Figure 3.8).  It seemed plausible that if the Fenton reaction were occurring while 

iron was bound to the cysteine, oxidation of the sulfhydryl might occur, requiring 

reduction of the resultant sulfenic acid before reactivation could occur.  When DAHP 

synthase activity was diminished through the aeration of Hpx
-
 cells, the activity could be 

recovered completely by the addition of iron in vitro without the need for reductant 

(Figure 3.8).  It has been reported that mononuclear Fe proteins accumulate Zn in their 

active sites during O2·
-
 stress [27].  In order to confirm determine whether this was also 

occurring during H2O2 stress, penicillamine, a metal chelator with preference for zinc, 
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was also added to remove any metals that may have remained in the active site.  When 

this treatment was followed by activation with iron or zinc, lower activity was recovered 

(Figure 3.8).  While it is unclear why full reactivation was not achieved after this 

treatment, it is clear that DAHP synthase is not poisoned due to mismetallation by zinc 

during the H2O2 stress. 

 In contrast, when DAHP synthase was inactivated in vitro using 100 µM H2O2 in 

the presence of chelator to prevent remetallation, only 13% of the activity could be 

recovered with iron addition (Figure 3.9).  When TCEP was included, up to 24% of the 

activity was recovered, implying that the cysteine residue was partially oxidized in vitro 

during the H2O2 challenge.  In order to determine whether the cysteine residue itself was 

sensitive to oxidation, apo-DAHP synthase was prepared by treating Hpx
-
 cell extracts 

with chelator for 30 minutes.  After the apo-protein had been generated, the extracts were 

treated with different amounts of H2O2 to determine the inactivation rate constant for the 

cysteine residue.  The apparent rate constant measured for the cysteine residue itself was 

only ca. 5 M
-1

 s
-1

, which approximates the values obtained for other thiols [13, 16, 25, 61, 

68].  Thus, it appears that there may be some protective component in the cell, such as 

reducing systems or manganese, which are either too dilute or otherwise inactivated in 

the extract, thereby preventing protection of the thiol. 

 Manganese is able to protect DAHP synthase by replacing iron in the active 3.2.4

site 

 The ability of manganese to protect cells from oxidants has been well established, 

including with respect to protection of mononuclear iron enzymes from H2O2.  For 

example, Rpe activity was protected by addition of manganese, as was described earlier, 

and the activities of other mononuclear iron proteins have been protected by manganese 

addition as well [3].  Therefore, I tested whether manganese supplements would allow 

Hpx
-
 mutants to grow aerobically without aromatic amino acids.  As seen in Figure 3.10, 

addition of 50 µM manganese was able to completely suppress the growth phenotype.  In 

fact, as little as 0.5 µM manganese was able to restore growth to the Hpx
-
 strain (Figure 

3.11).  Evidence that this suppression is the result of protection of DAHP synthase by 
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metallation by manganese was obtained by assaying DAHP synthase activity taken from 

manganese-fed Hpx
-
 cells.  The DAHP synthase activity in these cells was between 60 

and 70% that of wild-type cells (Figure 3.6), which matched almost perfectly with the 

amount of activity obtained when pure DAHP synthase was metallated with manganese 

versus iron (Figure 3.7).  In addition, when the manganese importer, MntH, was deleted 

from the Hpx
-
 strain, DAHP synthase activity was even lower than in the Hpx

-
 strain 

itself, falling to less than 5% of the wild-type activity, near the limit of detection (Figure 

3.6).  Thus, it appears that manganese can protect DAHP synthase from damage by H2O2. 

 Other evidence the supports the idea that manganese protection of DAHP 

synthase is by protecting the active site of the protein is provided by additional media 

supplementation experiments.  Manganese itself was not the only metal supplement that 

was able to protect DAHP synthase.  When cobalt was added to growth medium, there 

was some relief of the aromatic amino acid auxotrophy as seen by an improvement in 

growth (Figure 3.12).  While cobalt is toxic itself at higher concentrations, there was 

improvement in growth rate at concentrations up to 50 μM cobalt.  Cobalt can activate 

DAHP synthase, but it does not scavenge H2O2, thus protection by cobalt must be by 

replacement of iron in the active site of DAHP synthase.  Furthermore, addition of an 

iron chelator, deferoxamine, also restores growth to aerobically-grown Hpx
-
 cells (Figure 

3.13).  Because iron chelation starves the cell for iron, enzymes must be metallated by 

alternative metals, such as manganese.  These other metals will not be sensitive to 

oxidation by H2O2 and will thereby protect DAHP synthase from damage.  Taken 

together, these data support the idea that the mechanism of manganese protection of 

DAHP synthase from H2O2 is by replacing iron in the enzyme active site. 

 E. coli attempts to compensate for diminished DAHP synthase activity by 3.2.5

increasing expression  

 It seemed likely that E. coli would make an attempt to compensate for decreased 

output of the aromatic amino acid biosynthetic pathway by inducing transcription of 

genes in the pathway.  DAHP synthases are the first proteins in the biosynthetic pathway, 

and expression of the proteins is known to be controlled by TrpR or TyrR, transcriptional 
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regulators in response to levels of tryptophan and tyrosine, respectively.  I hypothesized 

that expression of one or more isozymes of DAHP synthase would be induced during 

H2O2 stress.  To determine whether the levels of DAHP synthase expression were being 

affected under these conditions, I constructed single-copy transcriptional fusions of the 

aroG or aroF promoters to the lacZ gene and inserted these into the λ attachment site of 

the E. coli chromosome.  While the transcription of aroG was not affected by H2O2 

stress, likely due to a lesser degree of regulation by TyrR, transcription of the aroF gene, 

which encodes the tyrosine-responsive isozyme of DAHP synthase, increased by 7.5-fold 

over wild-type levels (Figure 3.14).  The aroF gene is regulated by TyrR, a tyrosine-

sensitive repressor, so the levels of transcription were measured in a ΔtyrR mutant as 

well.  In the tyrR null strain, aroF expression increased about 28-fold (Figure 3.14).  

Thus, induction in response to H2O2 is not complete, but it is apparent that expression 

increases as a way to compensate for diminished activity of the pathway.  I also 

investigated whether the addition of manganese would return expression of aroF to wild-

type levels, since the growth phenotype is suppressed by manganese supplements.  While 

the expression did diminish some (from 7.5 to 5-fold above wild-type), there must still be 

enough injury to warrant an increase in expression to maintain adequate flux through the 

aromatic biosynthetic pathway (Figure 3.14). 

 DISCUSSION 3.3

 Early life forms arose and developed in an anoxic, Fe-rich environment [2, 5, 32].  

These early predecessors of modern-day organisms built their metabolism around what 

was readily available to them.  This led enzymes catalyzing reactions that could be more 

easily achieved by incorporating Fe, either as a redox moiety, or as a way to facilitate 

substrate binding and activation, to be built with Fe as an integral cofactor.  While Fe is 

very good at surface chemistry and would have achieved these goals for early life in the 

absence of oxygen, photosystem II brought with it a need for organisms to adapt.  The Fe 

that made the lives of early organisms possible was now a source of vulnerability.  In 
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some enzymes the necessity of solvent exposure of Fe for interaction with substrate also 

meant exposure to oxidants. 

 As more enzymes are studied, I find more frequently that Fe remains an integral 

part of aerobic life.  Despite the vulnerability to reactive oxygen species posed by this 

metal, life finds a way to make it work.  DAHP synthase represents the fifth mononuclear 

protein I have studied that uses Fe under normal physiological conditions despite being 

sensitive to oxidation by both H2O2 and O2·
-
 (Figures 3.5 & 3.6) [3, 27].  It is not difficult 

to comprehend why these enzymes would remain despite their inactivation by reactive 

oxygen species.  The metabolic processes employed by early organisms evolved over 

billions of years, and while the rise of atmospheric oxygen levels occurred gradually over 

time, it was much easier for organisms to develop new strategies to counteract the effects 

of these new reactive oxygen species than to completely rewrite the book on central 

metabolism. 

 H2O2 and O2·
-
 damage mononuclear iron proteins 3.3.1

 To combat the onslaught of reactive oxygen species, organisms evolved 

scavenging systems to help cope with their effects.  As a result, normal physiological 

levels of reactive oxygen species are kept at bay by the activities of SODs, catalases, and 

peroxidases.  However, under conditions of ROS stress, when organisms come into 

contact with high levels of O2·
-
, H2O2, or redox-cycling compounds in the environment, 

these scavenging systems may not be enough.  Increases in the steady-state levels of O2·
-
 

and H2O2 can still damage cells.  Together with Rpe, Pdf, Cda, and Tdh, DAHP synthase 

represents another example of the vulnerability of mononuclear Fe proteins to reactive 

oxygen species.  These mononuclear Fe proteins join Fe-S cluster proteins as the primary 

protein targets of both O2·
- 
and H2O2.  While O2·

- 
and H2O2 appear to target the same 

classes of proteins, the mechanisms by which the damage occurs does not seem to be 

identical.   

 To date, all solvent-exposed Fe proteins studies have been damaged by H2O2 via 

the Fenton reaction.  This leads to production of the ferryl radical intermediate, and 
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subsequently, the highly reactive hydroxyl radical.  If multiple damage cycles occur, the 

hydroxyl radical can eventually irreversibly inactivate these proteins by oxidizing the 

polypeptide.  In the case of DAHP synthase, it is possible that oxidation of the cysteine 

residue that coordinates the metal atom prevents repeated oxidation cycles from 

occurring.  There is evidence that this may occur, as DAHP synthase damaged in vitro at 

lower concentrations of H2O2 can be partially reactivated by Fe with the use of a 

reductant.  However, pure DAHP synthase loses the ability to be reactivated at high 

levels of H2O2 exposure, even with the use of reductants, implying that the cysteine 

residue can be oxidized beyond the sulfenic acid form.  While this strategy leaves the 

protein in a temporarily inactive state at low levels of H2O2, when the stress is removed, 

the cell may be able to reduce the sulfenic acid back to the sulfhydryl and allow the 

protein to regain function.   

 On the other hand, O2·
- 
does not merely inactivate DAHP synthase by oxidation of 

the Fe atom, but further complicates the problem by allowing mismetallation by zinc (Gu 

and Imlay, unpublished data).  This appears to be the mechanism by which O2·
- 

inactivates other mononuclear Fe proteins as well [27].  While this mechanism of damage 

is well supported and it is conceivable that another metal would be able to bind the metal 

site in these proteins, it remains unclear why this does not happen during H2O2 stress.  In 

the case of DAHP synthase, oxidation of the cysteine residue may prevent other metals 

from making their way into the active site.  However, not all mononuclear Fe proteins 

employ a cysteine residue to bind metal.  Are these proteins also mismetallated?  Further 

investigation is necessary to determine what the metallation status of other mononuclear 

Fe proteins is during H2O2 stress, but it is clear that this phenomenon does not occur in 

DAHP synthase. 

 The role of manganese in protection against oxidative stress 3.3.2

 One mechanism by which cells attempt to protect themselves from reactive 

oxygen species is to induce scavenging systems to remove them.  Another strategy is to 

limit Fe availability.  Since Fe is responsible for DNA damage observed during both O2·
- 

and H2O2 stress, this strategy makes sense.  However, how are proteins that require Fe 
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going to function if this metal is sequestered?  Most extant enzymes will have no problem 

under these circumstances, but enzymes that lose Fe will be affected.  Relief of some 

SOD mutant phenotypes has been observed when Mn was added to the growth medium.  

While Mn cannot protect against DNA damage and has only a limited effect on SOD 

mutant phenotypes associated with Fe-S cluster damage, it clearly protects mononuclear 

Fe proteins from being mismetallated (Gu & Imlay, unpublished data).  Despite this 

protective effect of Mn on SOD mutants, Mn import is not induced in response to O2·
-
.  

However, MntH, the sole Mn transporter in E. coli, is a member of the OxyR regulon 

which is induced during H2O2 stress [69].  Under H2O2 stress conditions, Mn can protect 

against both Fe-S cluster phenotypes (Anjem and Imlay, unpublished data) as well as 

damage to mononuclear Fe proteins [3].  Some believed that Mn could scavenge reactive 

oxygen species itself, but this was shown not to be true in E. coli [4].  While it is unclear 

how Mn might protect Fe-S clusters, I suspect that it may be mediated by Fe sparing.  

However, the effect is direct in the case of mononuclear Fe proteins, as these enzymes 

can use Mn in place of Fe during stress conditions (Figure 3.6) [3].   

 So why do these proteins not use Mn all the time?  Mn is able to activate many 

mononuclear Fe proteins, but provide less activity than does Fe.  Additionally, these 

proteins seem to have a slightly higher affinity for Fe, probably because iron is generally 

better at binding ligands, according to the Irving-Williams series.  The key in determining 

whether Mn or Fe will be used in these proteins seems to be based on their relative 

abundance and availability.  Under normal circumstances, E. coli does not import Mn, so 

levels remain low, and proteins are metallated with Fe.  However, under H2O2 stress 

conditions, Fe is oxidized and sequestered, while Mn is imported via MntH [24].  This 

causes levels of available Fe to fall, while the relative concentration of Mn increases, 

allowing Mn to serve as the activating metal in the absence of Fe.  This may be why 

mismetallation by Zn is not a problem during H2O2 stress, but is during O2·
- 
stress, since 

Mn is not imported under those conditions. 

 Some organisms have found ways around the problems posed by using Fe.  One 

example, B. burgdorferi, which is the causative agent for Lyme Disease, does not require 

Fe at all [19, 54].  Lactic acid bacteria import extremely high amounts of Mn, allowing 
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them to produce H2O2 and withstand concentrations that rise to millimolar levels [6, 7].  

Lactic acid bacteria can also employ isozymes of proteins that do not require Fe, or 

dispense with pathways requiring such enzymes altogether.  The cost, in some cases, is 

that these organisms become auxotrophic for certain metabolites, but if their habitat 

provides these needs, those pathways become dispensable.  One interesting question is 

whether eukaryotes have evolved in a similar fashion to low-Fe organisms with respect to 

metal specificity or use of alternative, metal-free isozymes.  These questions – how do 

low-Fe organisms carry out reactions that are vulnerable to reactive oxygen species in E. 

coli, and have eukaryotes evolved to no longer require Fe for these processes – are foci of 

current work in this field.  Answering these questions may help us to understand how 

these organisms can withstand oxidative stress so much more effectively than E. coli. 

 EXPERIMENTAL PROCEDURES 3.4

 Reagents 3.4.1

 Amino acids, antibiotics, catalase (from bovine liver), 

diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), D-

erythrose 4-phosphate sodium salt, phospho(enol)pyruvic acid tri(cyclohexylammonium) 

salt, ferrous ammonium sulfate hexahydrate, imidazole, manganese (II) chloride 

tetrahydrate, zinc chloride, trichloroacetic acid, sodium (meta) periodate, sodium arsenite, 

thiobarbituric acid, cyclohexanone, and 30% H2O2 were from Sigma.  Tris-HCl was from 

Fisher. 

 Bacterial growth 3.4.2

 Luria-Bertani (LB) medium contained 10 g tryptone, 10 g NaCl, and 5 g yeast 

extract per liter.  Minimal medium was composed of minimal A salts [50] supplemented 

with 0.2% glucose, 0.5 µg/mL thiamin and 0.5 mM histidine.  Other amino acids were 

added at 0.5 mM where indicated.  
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 Anoxic growth was carried out in a Coy anaerobic chamber which contained an 

atmosphere consisting of 85% nitrogen, 10% hydrogen, and 5% carbon dioxide.  Cultures 

were maintained at 37°C.  Aerobic cultures were grown by shaking cultures vigorously at 

37°C.   

 Strains and strain construction 3.4.3

 A comprehensive strain list provided as table 3.5.1.  Constructions in the Hpx
-
 

background were carried out in an anaerobic chamber to ensure that no suppressor 

mutations were selected.  Null mutations were constructed using the λ Red recombinase 

method [14].  All mutations were moved into the desired strain backgrounds by P1 

transduction [50] and confirmed by PCR.  Antibiotic cassettes were removed by 

transformation of pCP20 followed by removal of the plasmid [14]. 

 Single-copy lacZ fusions to the aroG promoter were made by integration of the 

construct into the l attachment site.  The native aroG gene was maintained on the 

chromosome [28, 29].  The promoter region was amplified using the primers: 5’-

GCATCGCTGCAGTTCTTTCTCCTTTTTCAAAG-3’ and 5’-

GCATCGGAATTCCATGATGGCGATCCTGTTTA- 3’ with PstI and EcoRI restriction 

sites, respectively.  The modified CRIM plasmid, pSJ501, which contains a 

chloramphenicol resistance cassette, was used to allow anaerobic selections.  The aroG 

promoter region was inserted into pSJ501 and confirmed by sequencing.  The construct 

was then integrated into the chromosome and transduced into the desired recipient 

strains. 

 Growth curves 3.4.4

 Cells were first grown overnight to stationary phase in anaerobic minimal glucose 

medium.  Cultures were then inoculated to ~ 0.01 OD and grown anaerobically to 0.2 

OD.  Cells were then used to inoculate fresh aerobic minimal medium to 0.005 OD.  

Where indicated, the specified concentrations of MnCl2, CoCl, or deferroxamine were 

added to aerobic growth medium. 
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 DAHP synthase assays 3.4.5

3.4.5.1 In vivo H2O2 exposure 

 Cells for assays were grown in minimal medium without aromatic amino acids to 

ensure expression of DAHP synthase.  Samples were collected by centrifugation of 50 

mL culture for 10 min at 6,000 x g at 4°C.  Supernatants were discarded and pellets were 

resuspended in 25 mL cold 0.1 M KPi, pH 6.4.  Samples were spun again for 10 min at 

6,000 x g at 4°C.  Supernatants were again discarded and pellets were moved into an 

anaerobic chamber and resuspend in 1 mL cold anaerobic 0.1 M KPi, pH 6.4 + 9 mM 

PEP + 100 µM DTPA.  Samples were then lysed by sonication for 1 minute using 3 

second pulses.  Extracts were then spun for 1 min at 20,000 x g at 4°C.  Supernatants 

were then assayed immediately. 

  The assay used to determine DAHP synthase activity generates a cleavage 

product of DAHP by treatment with periodate which can be visualized by formation of a 

chromophore upon addition of thiobarbituric acid.  The method described below is a 

variation of that described by Weissbach and Hurwitz [67] and modified by Doy and 

Brown [17]. 

 Part I:  Tubes were prepared anaerobically, containing 0.1 M KPi, pH 6.4, 0.75 

mM PEP and 0.6 mM E4P, unless otherwise indicated, and incubated at 37°C for 10 

minutes (Total volume is 500 µL – extract volume).  Treated extracts (100 µL extract + 

volume from additions, see below) were added to start the reaction.  Reactions were 

incubated at 37°C for 1 min, then an aliquot of 150 µL was taken from the reaction and 

pipetted directly into a 1.5 mL tube containing 50 µL ice-cold 10% TCA.  Samples were 

kept on ice while remaining samples were harvested until the final sample had been on 

ice for 5 minutes.  Samples were then spun 10 min at 20,000 x g at 4°C to remove debris 

and removed from the anaerobic chamber. 

 Part II:  125 µL of each sample in TCA was pipetted into a glass test tube 

containing 125 µL 25 mM periodate in 0.075 M H2SO4, and the mixture was then 

incubated at 37°C for 30 min.  Next, 250 µL 2% arsenite in 0.5 M HCl was added to each 
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sample.  Samples were then shaken well for a few seconds by hand until the yellow color 

disappeared.  Next, 1 mL 0.6% thiobarbituric acid in 0.5 M Na2SO4 was added to each 

sample and mixed well by shaking by hand for a few seconds.  Samples were then closed 

by capping the tubes and heated vigorously (slowly boiling in a 110°C heating block) for 

15 min, then placed in a water bath at room temperature for 5 minutes.  1 mL 

cyclohexanone was added to a 15 mL glass centrifuge tube for each sample before 1 mL 

of each reaction mixture was added to the centrifuge tubes.  Samples were mixed well by 

shaking gently back and forth for a few seconds, then spun at 1000 x g at room 

temperature to separate layers.  Absorbance of 500 µL of the top organic layer was 

measured at 549 nm using a Perkin-Elmer Lambda 25 spectrophotometer. 

3.4.5.2 In vitro H2O2 exposure 

 Cultures were grown anaerobically overnight in minimal A glucose medium + 

thiamin, subcultured anaerobically for Hpx
- 
cells or aerobically for Kat

-
 cells [56] in the 

same medium, and grown to 0.2 OD.  Cells were harvested as above, and extracts were 

prepared anaerobically in 9 mM PEP + 1 mM DTPA as above.  Samples were challenged 

anaerobically +/- 100 µM H2O2 for 5 minutes before being added to the reaction mixture, 

as was done for in vivo exposure.  The remainder of the assay was identical to in vivo 

exposure determinations of DAHP synthase activity. 

3.4.5.3 In vitro reactivation of DAHP synthase  

 Reactivation of DAHP synthase damaged in vivo or in vitro was carried out 

identically to the description above, except that 100 µL extract was treated with 11 µL of 

1 mM H2O2 for 5 minutes or 11 µL 50 mM (NH4)2Fe(SO4)2 +/- 1.1 µL 50 mM TCEP for 

15 minutes.  In addition, for protein damaged in vivo, 20 µL of 30 mM Penicillamine for 

20 minutes.  Penicillamine-treated samples were then treated with either 13.4 µL 50 mM 

(NH4)2Fe(SO4)2 or ZnCl2. 

3.4.5.4 Inactivation rate determination 

 Rates of inactivation of DAHP synthase were measured as for in vitro 

measurements, using Hpx
-
 cells, except that inactivation was carried out using 5, 20, or 
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100 µM H2O2 for 2 min before 10 µL of a 1:1000 dilution of catalase was added and 

activity was determined.  These measurements were done in triplicate at 4, 10, and 20ºC. 

 Purification of DAHP synthase 3.4.6

 DAHP synthase was purified by cloning of the E. coli aroG gene into the T7- 

containing pET42a vector using the forward primer 5’-

CGACCTACCATGGGCAGCATCGAAGGTCGTATGAATTATCAGAACGACGATT

TACGCATC-3’, which included an NcoI restriction site, and the reverse primer 5’-

GCTGGATGGATCCTTACCCGCGACGCGCTTTTACTGCATTC -3’, which included 

a BamHI restriction site.  After ligation, plasmids were transformed into DH5α and 

selected on LB plates containing 50 µg/mL ampicillin.  One transformant found to have 

the correct aroG sequence was chosen for DAHP synthase purification.  This plasmid 

was purified and transformed into E. coli strain BL21.  This strain, containing plasmid 

pAroG-His was grown in LB glucose medium containing 50 µg/mL ampicillin to 

stationary phase, diluted into fresh LB glucose containing 50 µg/mL ampicillin to 0.006 

OD, and grown at 37°C to 0.2 OD.  This preculture was then used to inoculate 1 L fresh 

LB glucose containing 50 µg/mL ampicillin to 0.005 OD and cells were grown at 37°C to 

0.6 OD.  IPTG was then added to a final concentration of 0.4 mM, the culture was shifted 

to 15°C, and incubated for 18 hours.   

 Purification was performed as follows.  Buffers used were: sample buffer (50 mM 

KPi, pH 7.4, 0.5 M NaCl, 200 µM PEP, and 20 mM imidazole), elution buffer (50 mM 

KPi, pH 7.4, 0.5 M NaCl, 200 µM PEP, and 0.5 M imidazole), cleavage buffer (50 mM 

Tris-HCl, pH 8.0, 0.1 M NaCl, 200 µM PEP, and 5 mM CaCl2), and storage buffer (50 

mM KPi, pH 6.4, 200 µM PEP, and 2 mM EDTA).  Cells were centrifuged and washed 

with 30 mL ice-cold sample buffer, resuspended in 20 mL ice-cold binding buffer, and 

sonicated.  Cell extracts were cleared by centrifugation for 15 minutes at 4000 x g at 4°C.  

Two His Gravitrap pre-packed columns (GE Healthcare) were equilibrated aerobically at 

4°C using 10 mL binding buffer.  Each column was loaded with 5 mL cleared extract and 

washed with 10 mL sample buffer.   Elution was conducted by adding 3 mL elution 

buffer to each column.  This step was repeated to ensure all protein had been eluted from 
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the column.  Eluates were pooled and 3 mL was dialyzed against 3 L cleavage buffer at 

4°C for 8 hours. 

 To remove the 10-His tag, dialysate was cleaved using a Factor Xa 

Cleavage/Capture Kit (Novagen).  The cleavage mixture contained 10 µL Factor Xa 

(2U/µL) and 990 µL dialysate per mL.  This mixture was incubated at 4°C for 72 hours.  

Factor Xa was then removed according to kit instructions.  Flowthrough from multiple 

columns were pooled together.  Next, to remove uncleaved AroG-His10, a His Gravitrap 

column was equilibrated with 10 mL sample buffer at 4°C.  Flowthrough from Factor Xa 

removal was then loaded onto the column and washed with 5 mL sample buffer.  The 

resulting purified DAHP synthase was dialyzed against a 1000-fold excess of storage 

buffer for 8 hours at 4°C and stored on ice.  Pure DAHP synthase obtained was 0.48 

mg/mL and at least 90% pure as determined by SDS-PAGE. 

 Continuous assay of purified DAHP synthase 3.4.7

 Purified DAHP synthase was assayed as previously described [20].  Pure DAHP 

synthase was diluted 4-fold and treated with 50 µM TCEP and 500 µM excess over 

chelator of each metal in 0.1 M KPi (pH 6.4) anaerobically for 10 minutes at ambient 

temperature.  This mixture was then diluted 1:20 into a 0.5 mL reaction mixture 

containing saturating amounts of PEP and erythrose 4-phosphate, with or without 100 

µM H2O2.  This sample was assayed by measuring disappearance of the PEP signal at 

232 nm over a period of at least 30 minutes.  Specific activity obtained from Fe-

metallated DAHP synthase was approximately 2.4 ΔA/min/mg protein. 

 H2O2 accumulation  3.4.8

 Cells were first grown overnight to stationary phase in anaerobic minimal glucose 

medium.  Cultures were then inoculated to ~ 0.01 OD and grown anaerobically to 0.2 

OD.  Cells were then used to inoculate fresh aerobic minimal glucose medium to 0.005 

OD.  Aliquots were removed periodically and filter sterilized before being frozen on dry 

ice.  After all samples were collected, H2O2 concentrations were measured by the Amplex 
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Red/horseradish peroxidase method.  Fluorescence was measured using a Shimadzu RF 

Mini-150 fluorometer. 
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 TABLES 3.5

 

Table 3.1:  Strain list.  These strains and plasmids were used in the DAHP synthase study. 

  

Strain Genotype Source

MG1655 F
-
 wild-type E. coli  Stock Center

LC106 ΔahpF ::kan  Δ(katG17 ::Tn10 )1  Δ(katE12 ::Tn10 )1 [56]

JI367 Δ(katG17 ::Tn10 )1  Δ(katE12 ::Tn10 )1 [54]

AA30 LC106 ΔmntH2 ::cat [4]

BW25113 lacI  rrnB  ΔlacZ  hsdK  ΔaraBAD  ΔrhaBAD [14]

JS279 BW25113 ΔtyrR1 ::cat This study

JS282 MG1655 ΔtyrR1 ::cat This study

SJ130 ΔlacZ1 with pINT
TS Lab stock

JS285 SJ130 att λ ::[pSJ501::aroF' -lacZ
+

] This study

JS289 MG1655 Δ(tyrR1 ::cat )1 This study

JS291 MG1655 att λ ::[pSJ501::aroF' -lacZ
+

] This study

JS295 JS289 att λ ::[pSJ501::aroF' -lacZ
+

] This study

JS299 LC106 att λ ::[pSJ501::aroF' -lacZ
+

] This study

BL21 (DE3) F
-
 ompT gal dcm lon hsdS B (rB

-
 mB

-
) λ(DE3) Novagen

Plasmid Genotype Source

pINT
TS temperature-sensitive plasmid carrying λ integrase [28]

pSJ501 pAH125 derivative with cat  flanked by frt  sites Lab stock

pET42a Expression vector with T7 promoter and N-terminal 8-His tag Novagen

pAroG-His pET42a with aroG  inserted into the NcoI and BamHI sites This study
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 FIGURES 3.6

. 

Figure 3.1:  Growth of Hpx
-
 cells in minimal A glucose medium.  Cultures were grown anaerobically 

overnight in minimal A glucose medium + thiamin and subcultured anaerobically in the same medium.  

Cells were diluted into aerobic medium containing or lacking aromatic amino acids at time zero, and 

growth was monitored aerobically. 
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Figure 3.2:  Accumulation of H2O2 during aerobic growth by Hpx
-
 cells in minimal A glucose 

medium.  Cultures were grown anaerobically overnight in minimal A glucose medium + thiamin  and 

subcultured anaerobically in the same medium.  Cells were diluted into aerobic medium containing or 

lacking aromatic amino acids at time zero, and growth was monitored aerobically.  At times shown, 

aliquots were removed and the H2O2 concentration of the growth medium was determined by the Amplex 

Red method.  Error bars represent standard deviation from the mean of three independent replicate cultures. 
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Figure 3.3:  Enzymes and intermediates of the shikimate pathway.  Solid arrows represent reactions, 

dashed arrows represent multiple reactions, chemical intermediates are named, and enzymes are denoted in 

brackets next to the reaction they catalyze. Abbreviations are: phosphoenol pyruvate (PEP), erythrose 4-

phosphate (E4P), 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), dehydroquinate (DHQ), 

dehydroshikimate (DHS), 5-Enolpyruvoylshikimate-3-phosphate (5-EPS-3-P), tryptophan (Trp), tyrosine 

(Tyr), and phenylalanine (Phe). 
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Figure 3.4:  Shikimate addition and aerobic growth of Hpx
-
 cells.  Cultures were grown anaerobically 

overnight in Minimal A Glucose Medium + thiamin and subcultured anaerobically in the same medium.  

Cells were diluted in the same aerobic medium +/- 50 µM shikimate at time zero, and growth was 

monitored aerobically. 
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Figure 3.5:  DAHP synthase enzyme activity is sensitive to H2O2 in vitro.  Cultures were grown 

anaerobically overnight in minimal A glucose medium + thiamin, subcultured (A) anaerobically (Hpx
-
cells) 

or (B) aerobically (Kat
-
 cells) in the same medium, and grown to 0.2 OD.  Cells were harvested, and 

extracts were prepared anaerobically in 9 mM PEP + 1 mM DTPA. Samples were challenged anaerobically 

+/- 100 µM H2O2 for 5 minutes (dark bars are without H2O2; light bars contain H2O2).  Reactions were run 

for 1 min, then stopped by addition of TCA.  Determinations of DAHP produced were carried out 

aerobically.  Error bars represent standard deviation from the mean of three independent cultures. 
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Figure 3.6:  DAHP synthase enzyme activity is lost in Hpx
-
 cells.  Cultures were grown anaerobically 

overnight in minimal A glucose medium + thiamin, subcultured anaerobically in the same medium and 

grown to 0.2 OD.  An anaerobic sample was harvested, and cells were inoculated to 0.05 OD into aerobic 

medium +/- 1 µM MnCl2, where indicated.  Cells were harvested at times noted and extracts were prepared 

anaerobically in 0.1 M KPi buffer (pH 6.4) containing 9 mM PEP + 1 mM DTPA. Reactions were run for 1 

min then stopped by addition of TCA.  Error bars represent standard deviation from the mean of three 

independent cultures. 
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Figure 3.7:  Enzyme activity of pure DAHP synthase with various metals.  Pure apo-DAHP synthase 

was treated with 50 µM TCEP and a 500 µM excess of each metal anaerobically for 10 minutes.  The 

enzyme was then diluted 1:20 into a reaction mixture containing saturating amounts of PEP and erythrose 

4-phosphate, with or without 100 µM H2O2.  Activities are given relative to Fe-loaded DAHP synthase 

without H2O2 challenge.  Error bars represent standard deviation from the mean of three independent 

samples.   
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Figure 3.8:  DAHP synthase enzyme activity is reactivatable in Hpx
-
 cells.  Cultures were grown 

anaerobically overnight in minimal A glucose medium + thiamin, subcultured anaerobically in the same 

medium, and grown to 0.2 OD.  An anaerobic sample was harvested, and cells were inoculated to 0.05 OD 

into aerobic medium.  Cells were harvested at 0.15 OD and extracts were prepared anaerobically in 9 mM 

PEP + 1 mM DTPA. Samples were treated with 100 µM H2O2 for 5 min, 500 µM Fe, Zn, or Fe/TCEP for 

15 min, or 5 mM penicillamine (Pen) for 20 min followed by Zn, Fe, or Fe/TCEP treatments as noted 

above.  Reactions were run for 1 min, then stopped by addition of TCA.  Error bars represent standard 

deviation from the mean of three independent cultures. 

  

0%

20%

40%

60%

80%

100%

120%

140%

P
er

ce
n

t 
A

ct
iv

it
y

 R
el

a
ti

v
e 

to
 F

e
-l

o
a

d
ed

 WT

Hpx-

-O
2
 +O

2
 + H

2
O

2
 + Fe + Fe/TCEP + Pen + Pen 

 + Fe 

+ Pen 

 + Fe/TCEP 

+ Pen 

+ Zn 

Hpx
-
 

WT 



 

111 

 

Figure 3.9:  DAHP synthase enzyme activity is only partially reactivatable after in vitro damage.  

Cultures were grown anaerobically overnight in minimal A glucose medium + thiamin, subcultured 

anaerobically in the same medium, and grown to 0.2 OD. Cells were harvested and extracts were prepared 

anaerobically in 9 mM PEP + 1 mM DTPA. Where indicated, samples were treated with H2O2 (100 µM for 

5 min), 500 µM Fe or Fe/TCEP for 15 min.  Reactions were run for 1 min and then stopped by addition of 

TCA.  Error bars represent standard deviation from the mean of three independent cultures. 
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Figure 3.10:  Manganese addition and aerobic growth of Hpx
-

 cells.  Cultures were grown anaerobically 

overnight in Minimal A Glucose Medium + thiamin and subcultured anaerobically in the same medium.  

Cells were diluted in the same aerobic medium +/- 50 µM Mn at time zero, and growth was monitored 

aerobically. 
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Figure 3.11:  Manganese addition and aerobic growth of Hpx
-
 cells.  Cultures were grown anaerobically 

overnight in Minimal A Glucose Medium + thiamin and subcultured anaerobically in the same medium.  

Cells were diluted in the same aerobic medium with (A) or without (B) aromatic amino acids +/- Mn as 

indicated at time zero, and growth was monitored aerobically. 
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Figure 3.12:  Cobalt addition and aerobic growth of Hpx
-
 cells.  Cultures were grown anaerobically 

overnight in Minimal A Glucose Medium + thiamin and subcultured anaerobically in the same medium.  

Cells were diluted in the same aerobic medium +/- Co or 50 mM shikimate (shik) as indicated at time zero, 

and growth was monitored aerobically.  Points represent the OD measured after 10 hours of aeration. 
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Figure 3.13:  Deferroxamine addition and aerobic growth of Hpx
-

 cells.  Cultures were grown 

anaerobically overnight in Minimal A Glucose Medium + thiamin and subcultured anaerobically in the 

same medium.  Cells were diluted in the same aerobic medium +/- 1 mM deferoxamine (DFO) at time zero, 

and growth was monitored aerobically. 
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Figure 3.14:  DAHP synthase transcription increases in response to H2O2 stress. Cultures were grown 

anaerobically overnight in minimal A glucose medium + thiamin, subcultured anaerobically in the same 

medium, and grown to 0.15 OD.  Cells were then inoculated into fresh aerobic medium +/- 50 mM 

aromatic amino acids (Aros) or +/- 50 mM Mn, where indicated, and grown aerobically for 4 hours.  Cell 

extracts were prepared, and β-galactosidase activity from a ParoF’-lacZ transcriptional fusion integrated 

into the λ attachment site was determined [50].  Error bars represent standard deviation from the mean of 

three independent cultures. 

  

7.5 

0.4 

5.0 

0.4 

27.5 28.0 

1.0 0.5 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

F
o

ld
 I

n
d

u
ct

io
n

 c
o

m
p

a
re

d
 t

o
 w

il
d

-t
y

p
e 

Hpx
-

 Hpx
-

  

+ Aros 
Hpx

-

  

+ Mn 

Hpx
-

  

+ Mn 

+ Aros 

Δtyr

R 

ΔtyrR  

+ Aros 

WT WT 

+ Aros 



 

117 

 REFERENCES 3.7

1. Al-Maghrebi, M., I. Fridovich, and L. Benov. 2002. Manganese 

supplementation relieves the phenotypic deficits seen in superoxide-dismutase-

null Escherichia coli. Arch Biochem Biophys 402:104-9. 

2. Anbar, A.D. 2008. Oceans. Elements and evolution. Science 322:1481-3. 

3. Anjem, A. and J.A. Imlay. 2012. Mononuclear iron enzymes are primary targets 

of hydrogen peroxide stress. J Biol Chem 287:15544-56. 

4. Anjem, A., S. Varghese, and J.A. Imlay. 2009. Manganese import is a key 

element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol 

Microbiol 72:844-58. 

5. Archer, C. and D. Vance. 2006. Coupled Fe and S isotope evidence for Archean 

microbial Fe(III) and sulfate reduction. Geology 34:153-156. 

6. Archibald, F. 1983. Lactobacillus plantarum, an Organism Not Requiring Iron. 

Fems Microbiology Letters 19:29-32. 

7. Archibald, F. 1986. Manganese: its acquisition by and function in the lactic acid 

bacteria. Crit Rev Microbiol 13:63-109. 

8. Bedard, K., B. Lardy, and K.H. Krause. 2007. NOX family NADPH oxidases: 

not just in mammals. Biochimie 89:1107-12. 

9. Benov, L. and I. Fridovich. 1999. Why superoxide imposes an aromatic amino 

acid auxotrophy on Escherichia coli. The transketolase connection. J Biol Chem 

274:4202-6. 

10. Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in 

mammalian organs. Physiol Rev 59:527-605. 

11. Chang, E.C. and D.J. Kosman. 1989. Intracellular Mn (II)-associated 

superoxide scavenging activity protects Cu,Zn superoxide dismutase-deficient 

Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264:12172-8. 

12. Choi, H., et al. 2001. Structural basis of the redox switch in the OxyR 

transcription factor. Cell 105:103-13. 

13. Crow, J.P., J.S. Beckman, and J.M. McCord. 1995. Sensitivity of the essential 

zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and 

peroxynitrite. Biochemistry 34:3544-52. 



 

118 

14. Datsenko, K.A. and B.L. Wanner. 2000. One-step inactivation of chromosomal 

genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 

97:6640-5. 

15. DeLeo, A.B., J. Dayan, and D.B. Sprinson. 1973. Purification and kinetics of 

tyrosine-sensitive 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase 

from Salmonella. J Biol Chem 248:2344-53. 

16. Denu, J.M. and K.G. Tanner. 1998. Specific and reversible inactivation of 

protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid 

intermediate and implications for redox regulation. Biochemistry 37:5633-42. 

17. Doy, C.H. and K.D. Brown. 1965. Control of aromatic biosynthesis: the 

multiplicity of 7-phospho-2-oxo-3-deoxy-D-arabino-heptonate D-erythrose-4-

phosphate-lyase (pyruvate-phosphorylating) in Escherichia coli W. Biochim 

Biophys Acta 104:377-89. 

18. Flint, D.H., et al. 1993. The inactivation of dihydroxy-acid dehydratase in 

Escherichia coli treated with hyperbaric oxygen occurs because of the destruction 

of its Fe-S cluster, but the enzyme remains in the cell in a form that can be 

reactivated. J Biol Chem 268:25547-52. 

19. Fraser, C.M., et al. 1997. Genomic sequence of a Lyme disease spirochaete, 

Borrelia burgdorferi. Nature 390:580-6. 

20. Furdui, C., et al. 2004. Insights into the mechanism of 3-deoxy-D-arabino-

heptulosonate 7-phosphate synthase (Phe) from Escherichia coli using a transient 

kinetic analysis. J Biol Chem 279:45618-25. 

21. Glass, G.A., et al. 1986. The respiratory burst oxidase of human neutrophils. 

Further studies of the purified enzyme. J Biol Chem 261:13247-51. 

22. Gort, A.S. and J.A. Imlay. 1998. Balance between endogenous superoxide stress 

and antioxidant defenses. J Bacteriol 180:1402-10. 

23. Gotz, F., B. Sedewitz, and E.F. Elstner. 1980. Oxygen utilization by 

Lactobacillus plantarum. I. Oxygen consuming reactions. Arch Microbiol 

125:209-14. 

24. Grass, G., et al. 2005. The metal permease ZupT from Escherichia coli is a 

transporter with a broad substrate spectrum. J Bacteriol 187:1604-11. 

25. Griffiths, S.W., J. King, and C.L. Cooney. 2002. The reactivity and oxidation 

pathway of cysteine 232 in recombinant human alpha 1-antitrypsin. J Biol Chem 

277:25486-92. 



 

119 

26. Gu, M. and J.A. Imlay. 2011. The SoxRS response of Escherichia coli is 

directly activated by redox-cycling drugs rather than by superoxide. Mol 

Microbiol 79:1136-50. 

27. Gu, M. and J.A. Imlay. 2013. Superoxide poisons mononuclear iron enzymes by 

causing mismetallation. Mol Microbiol 89:123-34. 

28. Haldimann, A. and B.L. Wanner. 2001. Conditional-replication, integration, 

excision, and retrieval plasmid-host systems for gene structure-function studies of 

bacteria. J Bacteriol 183:6384-93. 

29. Hasan, N., M. Koob, and W. Szybalski. 1994. Escherichia coli genome 

targeting, I. Cre-lox-mediated in vitro generation of ori- plasmids and their in vivo 

chromosomal integration and retrieval. Gene 150:51-6. 

30. Henle, E.S., et al. 1999. Sequence-specific DNA cleavage by Fe
2+

-mediated 

fenton reactions has possible biological implications. J Biol Chem 274:962-71. 

31. Horsburgh, M.J., et al. 2002. MntR modulates expression of the PerR regulon 

and superoxide resistance in Staphylococcus aureus through control of manganese 

uptake. Mol Microbiol 44:1269-86. 

32. Imlay, J.A. 2006. Iron-sulphur clusters and the problem with oxygen. Mol 

Microbiol 59:1073-82. 

33. Imlay, J.A. and I. Fridovich. 1991. Superoxide production by respiring 

membranes of Escherichia coli. Free Radic Res Commun 12-13 Pt 1:59-66. 

34. Inbaraj, J.J. and C.F. Chignell. 2004. Cytotoxic action of juglone and 

plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 

17:55-62. 

35. Jang, S. and J.A. Imlay. 2007. Micromolar intracellular hydrogen peroxide 

disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929-37. 

36. Jang, S. and J.A. Imlay. 2010. Hydrogen peroxide inactivates the Escherichia 

coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to 

compensate. Mol Microbiol 78:1448-67. 

37. Jenney, F.E., Jr., et al. 1999. Anaerobic microbes: oxygen detoxification without 

superoxide dismutase. Science 286:306-9. 

38. Kehres, D.G., et al. 2002. Regulation of Salmonella enterica serovar 

Typhimurium mntH transcription by H2O2, Fe(2+), and Mn(2+). J Bacteriol 

184:3151-8. 



 

120 

39. Krapp, A.R., M.V. Humbert, and N. Carrillo. 2011. The soxRS response of 

Escherichia coli can be induced in the absence of oxidative stress and oxygen by 

modulation of NADPH content. Microbiology 157:957-65. 

40. Kuo, C.F., T. Mashino, and I. Fridovich. 1987. , -Dihydroxyisovalerate 

dehydratase. A superoxide-sensitive enzyme. J Biol Chem 262:4724-7. 

41. Lee, C., et al. 2004. Redox regulation of OxyR requires specific disulfide bond 

formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11:1179-

85. 

42. Liochev, S.I., et al. 1999. Induction of the soxRS regulon of Escherichia coli by 

superoxide. J Biol Chem 274:9479-81. 

43. Loew, O. 1900. A New Enzyme of General Occurrence in Organismis. Science 

11:701-2. 

44. Lombard, M., et al. 2000. Superoxide reductase as a unique defense system 

against superoxide stress in the microaerophile Treponema pallidum. J Biol Chem 

275:27021-6. 

45. McCandliss, R.J. and K.M. Herrmann. 1978. Iron, an essential element for 

biosynthesis of aromatic compounds. Proc Natl Acad Sci U S A 75:4810-3. 

46. McCord, J.M. and I. Fridovich. 1969. Superoxide Dismutase an Enzymic 

Function for Erythrocuprein (Hemocuprein). J Biol Chem 244:6049-6055. 

47. McCord, J.M., B.B. Keele, Jr., and I. Fridovich. 1971. An enzyme-based 

theory of obligate anaerobiosis: the physiological function of superoxide 

dismutase. Proc Natl Acad Sci U S A 68:1024-7. 

48. Mehdy, M.C. 1994. Active Oxygen Species in Plant Defense against Pathogens. 

Plant Physiol 105:467-472. 

49. Messner, K.R. and J.A. Imlay. 1999. The identification of primary sites of 

superoxide and hydrogen peroxide formation in the aerobic respiratory chain and 

sulfite reductase complex of Escherichia coli. J Biol Chem 274:10119-28. 

50. Miller, J.H. 1972. Experiments in molecular geneticsCold Spring Harbor, N.Y.: 

Cold Spring Harbor Laboratory. xvi, 466 p. 

51. Mishra, S. and J. Imlay. 2012. Why do bacteria use so many enzymes to 

scavenge hydrogen peroxide? Arch Biochem Biophys 525:145-60. 

52. Park, S. and J.A. Imlay. 2003. High levels of intracellular cysteine promote 

oxidative DNA damage by driving the fenton reaction. J Bacteriol 185:1942-50. 



 

121 

53. Pomposiello, P.J., M.H. Bennik, and B. Demple. 2001. Genome-wide 

transcriptional profiling of the Escherichia coli responses to superoxide stress and 

sodium salicylate. J Bacteriol 183:3890-902. 

54. Posey, J.E. and F.C. Gherardini. 2000. Lack of a role for iron in the Lyme 

disease pathogen. Science 288:1651-3. 

55. Radtke, A.L. and M.X. O'Riordan. 2006. Intracellular innate resistance to 

bacterial pathogens. Cell Microbiol 8:1720-9. 

56. Seaver, L.C. and J.A. Imlay. 2001. Alkyl hydroperoxide reductase is the 

primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J 

Bacteriol 183:7173-81. 

57. Seaver, L.C. and J.A. Imlay. 2001. Hydrogen peroxide fluxes and 

compartmentalization inside growing Escherichia coli. J Bacteriol 183:7182-9. 

58. Seaver, L.C. and J.A. Imlay. 2004. Are respiratory enzymes the primary sources 

of intracellular hydrogen peroxide? J Biol Chem 279:48742-50. 

59. Seib, K.L., et al. 2004. Defenses against oxidative stress in Neisseria 

gonorrhoeae and Neisseria meningitidis: distinctive systems for different 

lifestyles. J Infect Dis 190:136-47. 

60. Seki, M., et al. 2004. Hydrogen peroxide production in Streptococcus pyogenes: 

involvement of lactate oxidase and coupling with aerobic utilization of lactate. J 

Bacteriol 186:2046-51. 

61. Shen, H., et al. 1993. Identification of cysteine residues involved in disulfide 

formation in the inactivation of glutathione transferase P-form by hydrogen 

peroxide. Arch Biochem Biophys 300:137-41. 

62. Spellerberg, B., et al. 1996. Pyruvate oxidase, as a determinant of virulence in 

Streptococcus pneumoniae. Mol Microbiol 19:803-13. 

63. Staub, M. and G. Denes. 1969. Purification and properties of the 3-deoxy-D-

arabino-heptulosonate-7-phosphate synthase (phenylalanine sensitive) of 

Escherichia coli K12. I. Purification of enzyme and some of its catalytic 

properties. Biochim Biophys Acta 178:588-98. 

64. Tribe, D.E., H. Camakaris, and J. Pittard. 1976. Constitutive and repressivle 

enzymes of the common pathway of aromatic biosynthesis in Escherichia coli K-

12: regulation of enzyme synthesis at different growth rates. J Bacteriol 

127:1085-97. 

65. Tseng, H.J., et al. 2002. Virulence of Streptococcus pneumoniae: PsaA mutants 

are hypersensitive to oxidative stress. Infect Immun 70:1635-9. 



 

122 

66. Turner, J.M. and A.J. Messenger. 1986. Occurrence, biochemistry and 

physiology of phenazine pigment production. Adv Microb Physiol 27:211-75. 

67. Weissbach, A. and J. Hurwitz. 1959. The formation of 2-keto-3-deoxyheptonic 

acid in extracts of Escherichia coli B. I. Identification. J Biol Chem 234:705-9. 

68. Winterbourn, C.C. and D. Metodiewa. 1999. Reactivity of biologically 

important thiol compounds with superoxide and hydrogen peroxide. Free Radic 

Biol Med 27:322-8. 

69. Zheng, M., et al. 2001. DNA microarray-mediated transcriptional profiling of the 

Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562-70. 

 

 



 

123 

CHAPTER 4:  CONCLUSIONS 

 SUMMARY OF CURRENT WORK 4.1

 Mononuclear iron enzymes are primary targets of H2O2 4.1.1

 Under normal growth conditions, Escherichia coli produces low amounts of H2O2 

as an inadvertent byproduct of aerobic metabolism.  When its H2O2 scavengers, catalase 

and peroxidase, are deleted from the cell, the resultant Hpx
-
 strain exhibits a number of 

phenotypes.  The first phenotype discovered, damage to DNA, was found to be due to 

hydroxyl radical oxidation of the DNA backbone as a result of Fenton chemistry 

occurring on the DNA [18].  Other phenotypes, including an inability to grow on TCA 

cycle intermediates, failure of the Isc system, and a leucine auxotrophy, were all due to 

Fenton chemistry leading to oxidation of solvent-exposed [4Fe-4S] cluster dehydratases 

[14, 15].  In this study, two other phenotypes were explored.   

 The first phenotype I examined was a block in the pentose phosphate pathway.  I 

found that when Hpx
-
 E. coli cells were forced to metabolize gluconate through the 

pentose phosphate pathway, they were unable to grow more than one or two doublings in 

air.  I measured the activity of each of these five enzymes downstream of gluconate in the 

pentose phosphate pathway and found that only one, Rpe, lost activity upon H2O2 

exposure.  This result was interesting for a number of reasons.  First, no one had ever 

observed damage to proteins other than [4Fe-4S] cluster dehydratases by H2O2, making 

Rpe a completely novel protein target.  Second, Rpe was not known to use iron as a 

cofactor [1].  This result meant either that Rpe must actually use iron, although other 

researchers found it was unable to be activated by iron, or that damage to Rpe was not 

Fenton-based.  All other known forms of H2O2 damage are mediated by the Fenton 

reaction [2, 14, 15, 17, 18, 21], so the idea that Rpe was somehow an exception did not 

seem likely.  When Rpe was purified and tested anaerobically, I found that not only was 

iron able to activate it, but that iron activation yielded the highest amount of activity of 
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any metal.  In addition, iron was the only metal that conferred H2O2 sensitivity, which 

meant that iron was the physiological metal for Rpe.  Thus, damage to Rpe mirrors that of 

the [4Fe-4S] cluster dehydratases, as both use the metal to bind and activate substrate.  It 

is not a surprise, then, that these proteins have similar inactivation rates, about 4 – 5 x 10
3
 

M
-1

 s
-1

.  Once again, Fenton chemistry is the reason for damage by H2O2. 

 There is another important aspect of this finding to note beyond the sensitivity of 

Rpe to H2O2.  By performing the metallation reaction in the anaerobic chamber, I was 

able to maintain iron in the ferrous form, while researchers working with the protein 

under aerobic conditions were unable to keep the iron reduced.  It is conceivable that this 

experimental artifact could have misled a number of researchers performing metallation 

studies on mononuclear metalloproteins.  Adil Anjem tested three other such proteins and 

found that all were activated by iron and sensitive to H2O2, in vitro and in vivo, showing 

that these proteins also used iron as their physiological cofactor [2].  Thus, the 

mononuclear iron protein class may continue to grow as more work is done to determine 

the metals used by various proteins. 

 The second phenotype I explored was the aromatic amino acid auxotrophy.  When 

work first began on this phenotype, it was not known that mononuclear iron proteins 

were targets of H2O2.  Since the aromatic amino acid biosynthetic pathway contained no 

Fe-S cluster proteins, no protein seemed more likely to be damaged than any other.  In 

fact, there was reason to believe that transketolase was the cause, as this would also 

explain the problem with the pentose phosphate pathway.  However, when the sensitivity 

of Rpe was found, two problems were solved.  First, the two phenotypes were separated 

from one another, meaning that another target existed.  Second, identification of the 

mononuclear iron proteins as a class of H2O2 targets shed new light on potential targets in 

the shikimic acid pathway for aromatic biosynthesis.  I identified the first enzyme in the 

pathway, DAHP synthase, as a mononuclear iron protein and found that it, like the others 

in this class, was sensitive to H2O2. 
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 Mechanism of protection of mononuclear iron proteins by manganese 4.1.2

 Manganese has long been known to have protective effects during oxidative 

stress.  Manganese was initially believed to protect cells by scavenging reactive oxygen 

species; however, this mechanism of protection was shown to be incorrect in E. coli, as 

scavenging rates did not change when manganese was added to cells [3].  In this study, I 

sought to show that manganese protection, at least in part, is due to metallation of 

mononuclear iron proteins.   While metallation by iron causes these proteins to be 

sensitive to H2O2, metallation by manganese provides a moderate amount of activity that 

is not sensitive to oxidation by H2O2.  I showed that manganese is able to protect two 

mononuclear iron enzymes, Rpe and DAHP synthase, from oxidation by H2O2 in vivo 

and in vitro.  As mentioned previously, I believe that mononuclear iron proteins are much 

more common than is currently known, so the protective effect of manganese on this 

class of proteins is an important factor in combatting the negative effects of reactive 

oxygen species.  E. coli recognizes the importance of manganese during oxidative stress, 

as evidenced by the upregulation of the manganese transporter, MntH, by OxyR.  

Without MntH, Hpx
-
 cells are unable to grow, even with amino acid supplements, 

highlighting the importance of manganese during H2O2 stress.   

 POSSIBLE FUTURE DIRECTIONS 4.2

 Why does E. coli require iron in a pathway needed to acquire it? 4.2.1

 One additional problem that damage to DAHP synthase causes for E. coli is 

limitation of its ability to import iron.  In fact, there are at least two other proteins in the 

pathway that might also use iron but are not annotated as such.  While this might not be 

such a problem during oxidative stress, as iron limitation is one of the desired outcomes 

of induction of the stress responses, it is more difficult to comprehend why E. coli would 

require iron for a pathway that produces the precursor for synthesis of enterochelin, a 

siderophore used to acquire iron from the environment.  Preliminary results of 
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enterochelin synthesis during H2O2 stress indicate that damage to DAHP synthase results 

in an inability to make siderophores (Figure 4.1).  It is inconceivable that iron levels 

should fall so low that there is no DAHP synthase activity, but there are seven different 

metabolites from five distinct pathways that require chorismate, the end product of the 

shikimic acid pathway for their synthesis [10].  Perhaps the answer as to how E. coli 

manages this problem comes from an investigation of the KM for chorismate of the 

branch pathways.  The pathway with the lowest KM, somewhat surprisingly, is for 

tryptophan synthesis [7].  The pathways for folate and ubiquinone biosynthesis have the 

next lowest KM values for chorismate [20, 22].  It is easy to see why these pathways 

might be given preference over other metabolites, as they are key to keeping energy 

levels high enough to keep metabolism running.  Next in the chorismate hierarchy is 

synthesis of enterochelin.  This pathway has a KM for chorismate of 14 µM [16], more 

than three times lower than the next processes, which are the pathways for phenylalanine 

[9] and tyrosine [13] biosynthesis and at 195 µM, the pathway for menaquinone 

biosynthesis [8].  This analysis of apparent KM values indicates the importance of the 

ability of the cell to synthesize these iron importers, greater even than synthesis of two 

amino acids.  Further exploration of the pathway and its activity during iron starvation 

may provide insight into how E. coli prioritizes iron, as well as flux through this pathway. 

 Are mononuclear iron proteins mismetallated during H2O2 stress, and if not, 4.2.2

how does the cell prevent it? 

 While I showed that DAHP synthase does not become mismetallated by zinc 

during oxidative stress, other mononuclear iron proteins have not been so rigorously 

tested for this phenotype.  In fact, there is evidence that SOD mutants lose activity of 

mononuclear iron proteins first by oxidation of the iron atom, but that activity remains 

low because the iron is replaced by zinc [12].  It is possible that during H2O2 stress, 

manganese import by induction of MntH shifts the metal balance in the cell to favor 

metallation by manganese over iron or zinc, but in SOD mutants, there is no induction of 

manganese import.  Therefore, during O2·
-
 stress, no metals are available to compete with 



 

127 

zinc for the active sites of mononuclear iron proteins, resulting in accumulation of 

inactive zinc-metallated protein. 

 Are there other mononuclear iron proteins that are sensitive to H2O2? 4.2.3

 As work continues to identify additional phenotypes of H2O2 stress, more 

mononuclear iron proteins may be identified that cause them.  Ongoing work in the lab is 

using RNA-Seq to identify genes that are upregulated in response to oxidative stress.  

While some genes – notably, the members of the OxyR regulon – are expected to appear, 

other genes whose products are sensitive to H2O2 may also be induced.  DAHP synthase 

is an example of this, as E. coli attempts to produce more protein in response to the 

decreased activity of the pathway.  Additionally, proteins that use metal cofactors for 

non-redox reactions may be additional targets.  While some of the novelty has been lost, 

it remains important to identify additional targets of H2O2 in order to fully appreciate the 

scope of the effects reactive oxygen species have on cells. 

 Are mononuclear iron proteins sensitive to H2O2 in organisms that either do 4.2.4

not use iron or produce H2O2? 

 Some bacteria, such as Borrelia Burgdorferi and Lactococcus plantarum, are 

considered to be low-iron or even iron-free organisms that import little to no iron [4, 5, 

11, 19].  These organisms, presumably as a way to compensate for a lack of iron, import 

high levels of manganese.  It is possible that these, and organisms like them, have 

evolved to use manganese in the place of iron in mononuclear metalloproteins.  Use of 

manganese in these proteins may be one explanation for the ability of lactic acid bacteria 

to survive under conditions where they are producing up to millimolar levels of H2O2. 

 One way to examine this possibility is to examine Lactococcus counterparts of the 

proteins found to be mononuclear iron enzymes in E. coli.  If these proteins are found to 

be sensitive to H2O2 as well, it will be interesting to determine what metal is being used 

in these proteins, since the organism is not known to import iron.  Alternatively, if the 

proteins are resistant and found to bind manganese, it would be beneficial to determine if 
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there are differences that might allow the protein to differentiate between iron and 

manganese.  This could be tested both by expressing the Lactococcus proteins in E. coli 

to see if they become sensitive, and conversely by expressing the E. coli proteins in 

Lactococcus to see if they are now resistant to H2O2. 

 Have eukaryotes evolved to use alternative metals in mononuclear 4.2.5

metalloproteins to protect against oxidative stress? 

 It is possible that eukaryotes also suffer from the same damage to mononuclear 

iron enzymes experienced by E. coli cells as a result of oxidative stress.  It would be 

interesting to determine whether damage to any of these proteins in humans is 

responsible for any known diseases.  It is also likely, however, that eukaryotic organisms 

have taken evolutionary steps to rid themselves of this vulnerability.  Preliminary results 

using Baker’s yeast suggest that this may be the case, as Rpe assayed from aerobically 

grown Saccharomyces cerevisiae showed no inactivation by 1 mM H2O2 and is described 

fully in Appendix B.  This result suggests either that yeast have evolved to use a metal 

other than iron in the active site of Rpe, or that yeast Rpe somehow shields its metal from 

H2O2.  Further work must be carried out to determine the mechanism of resistance of 

yeast Rpe to H2O2; such work might include experiments such as expression of yeast Rpe 

in E. coli and vice versa.  Other mononuclear iron proteins should also be examined to 

determine whether this resistance in yeast is specific to Rpe or extends to mononuclear 

iron proteins in general. 
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 FIGURES 4.3

Figure 4.1:  Enterochelin synthesis of Hpx
-
 cells.  Cultures were grown anaerobically overnight in 

Minimal A Glucose Medium + thiamin and subcultured anaerobically in the same medium.  Cells were 

diluted in the same aerobic medium +/- aromatic or 19 amino acids as indicated at time zero and cells were 

grown overnight. Cells were then spun out and the supernate was used to assay for catechol by the method 

of Arnow [6].  (BDL = below detectable limit.) 
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APPENDIX A:  DETERMINATION OF FREE IRON LEVELS IN 

RESPONSE TO RYHB IN ESCHERICHIA COLI 

 INTRODUCTION A.1

 RyhB is a non-coding small RNA in Escherichia coli that was discovered by 

Massé and Gottesman in 2002 [2].  RyhB is repressed by metallated Fur protein, but 

when ferrous iron levels are low and the Fur regulon is derepressed, RyhB is expressed.  

A global transcription microarray analysis using a plasmid expressing RyhB showed  it 

was able to directly repress at least 18 transcripts, including many genes that require iron 

for activity [3].  It has been suggested that the purpose of RyhB is to spare iron from 

dispensable iron proteins in order to allow metallation of indispensable proteins that 

require it [1].  Because previous work was performed in complex medium, which has a 

high level of iron, it was difficult to see distinct phenotypes of RyhB deletion.  This study 

provides evidence that RyhB spares iron in media where iron levels are very low. 

 RESULTS A.2

 RyhB mutants display a growth phenotype as they reach stationary phase A.2.1

 While rich media, such as LB, are replete with iron, minimal media contain low 

levels of iron unless it is supplemented.  Therefore, when looking for growth phenotypes 

related to iron homeostasis, minimal defined media allow for the elucidation of growth 

phenotypes that would not be apparent in rich medium.  For this reason, strains obtained 

from the Eric Masse lab – EM1055 (wild-type), EM1238 (ΔryhB), EM1256 (Δfur), and 

EM1257 (ΔryhB, Δfur) – were grown in M63 glucose medium.  While there was no 

marked difference in the growth of these strains during logarithmic growth, as the cells 

approached stationary phase, strains containing the ΔryhB allele were unable to reach as 
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high an optical density as strains that were wild-type for RyhB (Figure A.1A).  However, 

when 1 µM FeSO4 was added to the growth medium, this growth phenotype was 

abolished (Figure A.1B).  Thus, RyhB either is required to provide iron for some process 

that becomes important during stationary phase, or is needed to allow proper distribution 

of iron when it becomes scarce. 

 RyhB mutants do not accumulate high levels of intracellular free iron A.2.2

 In order to examine whether RyhB was able to affect intracellular levels of iron in 

minimal medium, electron paramagnetic resonance (EPR) spectroscopy was performed.  

EPR provides a quantitative measure of chelatable iron levels inside the cell, which, by 

extension, is a measure of the free and available iron pools in the cell.  If RyhB were 

sparing iron for indispensable processes that require it, then a RhyB mutant should have 

lower levels of free iron than a wild-type cell under conditions where iron is scarce.  Bars 

1 and 3 of Figure A.2 show that this is indeed true.  Even when iron is added to the 

medium, the RyhB mutant strain does not accumulate high levels of free iron (Figure 

A.2, bar 4).  This is not the case for the fur mutant, which accumulates 4.5-fold more iron 

than the wild-type strain when no iron was added (Figure A.2, bar 5) or more than 16-

fold more when iron was added to the growth medium (Figure A.2, bar 6).  This is not 

surprising, as deletion of fur will lead to constitutive expression of iron import systems, 

as well as iron-sparing by RyhB.  Interestingly, when the ryhB and fur deletions were 

combined, the increase of intracellular free iron seen in the fur mutant was completely 

abolished (Figure A.2, bars 7 and 8).  This suggests that iron sparing by RyhB is what 

allows the fur mutants to accumulate so much free iron. 

 DISCUSSION A.3

 Determination of the role of RyhB in iron homeostasis is integral to acquiring a 

full understanding of how iron pools are regulated during changing environmental 

conditions.  RyhB has been shown to be involved in iron sparing [1] in rich medium.  
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This report both verifies that this is true of minimal medium, but also demonstrates a 

growth phenotype as cells approach stationary phase.  It is important to note that this 

medium was not treated to remove trace amounts of iron that might contaminate the 

various components of the medium.  Therefore, if iron levels in the medium were more 

limited, the growth lag observed as cells reach stationary phase may occur earlier as iron 

pools are exhausted.   

 Taken together, the growth phenotype and the free iron levels seem to agree with 

the idea that RyhB spares the cell iron, which is detected as free iron.  Failure to spare the 

iron (under iron-limited conditions) causes the cells to stop growing, however the specific 

defect that was responsible for the growth defect was not identified.  Thus, RhyB is an 

integral member of the Fur regulon whose importance to the cell during conditions that 

limit the availability of iron warrants further study. 

 EXPERIMENTAL PROCEDURES A.4

 Reagents A.4.1

 Diethylenetriaminepentaacetic acid (DTPA), desferrioxamine mesylate, and FeCl3 

hexahydrate were from Sigma, while FeSO4 was from Bioshop.  All other chemicals used 

were from Fisher. 

 Bacterial growth A.4.2

 Cells were grown overnight in M63 medium containing 0.2% glucose in the 

absence or in the presence of 1 µM FeSO4.  Overnight cultures were then used to 

inoculate 15 mL same medium to 0.14 OD and growth was monitored at 37°C. 
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 EPR analysis A.4.3

A.4.3.1 Growth 

 Cells were grown overnight at 37°C in M63 glucose medium, diluted 1:10 into 

250 mL freshly prepared M63 glucose +/- 1 µM FeSO4, and then grown at 37°C in 1L 

baffled flasks with vigorous shaking to a cell density of approximately 0.9 OD at 600 

nm.  Cells were then harvested and prepared for EPR analysis. 

A.4.3.2 Sample preparation 

 Cultures were placed on ice for 10 minutes, and then spun for 10 minutes at 6,000 

rpm at 4°C in 250 mL bottles using the Beckman JA-14 rotor.  Pellets were resuspended 

in 8 mL M63 glucose + 1 mL 0.1 M DTPA (pH 7.0) that had been pre-warmed to 37°C. 

Next, 1 mL 0.2 M DFO (pH 8.0) was added and the culture was shaken for 15 minutes at 

37°C. 

 Samples were then put on ice for 15 minutes before being spun for 5 minutes at 

8,000 rpm at 4°C.  Supernatants were discarded and pellets were washed twice with 5 mL 

ice-cold 20 mM Tris-HCl (pH 7.5), spinning for 5 minutes at 8,000 rpm at 4°C after each 

wash.  Finally, pellets were resuspended in 300 µL ice-cold 20 mM Tris-HCl (pH 7.4) 

containing 30% glycerol.  About 200 µL of each of the final suspensions was added to 

separate EPR tubes, shaken to the bottom of the tube, and frozen immediately on dry ice. 

 Optical densities of the samples were measured for use in determination of 

intracellular volumes.  To do this, 10 µL of each sample was diluted into 990 µL 20 mM 

Tris-HCl (pH 7.4) containing 30% glycerol and mixed well.  Each of these was then 

diluted 1:10 into the same buffer and the OD was measured.  Three individual OD 

replicates were measured for each sample. 

A.4.3.3 Preparation of Fe standards 

 A fresh stock of 10 mM FeCl3·6H2O was prepared by adding 0.27g FeCl3·6H2O to 

10 mL of 20 mM Tris-Cl (pH 7.4) + 10% glycerol.  Dilutions were then prepared in the 

same buffer to theoretical concentrations from 0 to 100 µM Fe.  Concentrations of the 
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standards were then determined by measuring the A420 with the extinction coefficient of 

2865 M
-1

cm
-1

.  About 200 µL of each standard was added to separate EPR tubes for 

generation of a standard curve. 

A.4.3.4 EPR spectrometer parameters 

 Field controller:         

  Field set: 01573 (g = 4.3)       

  Scan source: Ext        

  Scan range (field sweep): 4 x 100 

 Function selector: 

  High frequency        

  Cavity Modulation:   I: High  II: Low    

  Gain: 3.2 x 103  Norm       

  Power: 10 mW        

  Norm: 180         

  Modulation:  1.25 x 10       

  Function: 100 kHz        

  Time Constant: 0.032        

  Field Sweep: Off 

 Computer:          

  Scans:  7 scans; 30 sec/scan; 3 sec between scans  
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 FIGURES A.5

 

Figure A.1:  Growth of ryhB mutants is impaired near stationary phase in minimal medium.  Cells 

were grown overnight in M63 medium containing 0.2% glucose in the absence (A) or in the presence (B) of 

1 µM FeSO4.  Overnight cultures were then used to inoculate 15 mL same medium to 0.14 OD and growth 

was monitored at 37°C.  Strains used were EM1055 (WT), EM1238 (ΔryhB), EM1256(Δfur), and 

EM1257(ΔryhB, Δfur). 
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Figure A.2: Concentration of intracellular free iron.  Cells were grown in the absence or presence of 1 

μM of FeSO4 until an OD600 of 0.9, at which point they were assayed for free intracellular Fe by EPR.  

Strains used were EM1055 (WT), EM1238 (ΔryhB), EM1256(Δfur), and EM1257(ΔryhB, Δfur).  This 

figure has been published in collaboration with Dr. Eric Massé [4]. 
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APPENDIX B:  ARE MONONUCLEAR IRON PROTEINS FROM 

OTHER ORGANISMS SENSITIVE TO H2O2? 

 INTRODUCTION B.1

 There are a number of lactic acid bacteria that can continue to grow despite their 

production of high levels of H2O2 [1, 3, 4].  It is of interest, both evolutionarily and 

physiologically, to learn how these organisms can maintain the activity of enzymes, such 

as the mononuclear iron proteins, in the presence of oxidants that would be damaging to 

the homologous proteins in E. coli.  Another evolutionary question regarding 

mononuclear iron proteins is whether eukaryotes have maintained these proteins as Fe-

containing enzymes, or if these organisms have evolved to use different metals.  These 

questions were the focus of studies described in this appendix. 

 RESULTS B.2

 Are mononuclear iron proteins from the lactic acid bacterium Lactococcus B.2.1

lactis sensitive to H2O2 in vitro? 

 In an effort to determine the sensitivity of mononuclear iron proteins from 

bacteria that produce H2O2 during growth, I tried to determine growth conditions that 

would allow Lactococcus lactis to produce H2O2 while still synthesizing proteins of 

interest, such as Rpe and DAHP synthase.  In order for DAHP synthase to be expressed, 

the aromatic amino acids should be absent from the medium.  I therefore attempted to 

grow L. lactis on a minimal medium that has been described by others as a means to 

study this organism’s physiology [2].  Despite making the medium as described, the L. 

lactis strain did not well grow on a plate, even after three days at 30°C.  When these cells 

were inoculated into minimal liquid medium, no growth was ever observed.  Thus, work 
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must still be done to determine the composition of a minimal medium that will support 

the growth of L. lactis. 

 Is Rpe from yeast sensitive to H2O2 in vitro? B.2.2

 To test the sensitivity to H2O2 of a eukaryotic homolog of a mononuclear iron 

protein, Baker’s yeast was used as a model.  Wild-type yeast cells were grown 

aerobically at 30°C on yeast nitrogen base (YNB), a minimal medium for growing yeast, 

supplemented with 2% glucose.  Cells were harvested aerobically by centrifugation and 

the pellets were transferred to the anaerobic chamber for extract preparation and assay.  

Extracts were prepared by bead-beating the resuspended pellets and cleared by 

centrifugation immediately before being assayed for Rpe activity.  When these extracts 

were treated with 1 mM H2O2 for 2 min, Rpe activity was no different than without H2O2 

treatment (Figure B.1), both having a specific activity of about 0.45 U/mg protein (by 

comparison, E.coli has a specific activity of 4.5 U/mg protein).  Addition of a chelator 

during H2O2 treatment had no effect on the activity of yeast Rpe.  Thus, it appears that 

the yeast homolog of Rpe is resistant to H2O2 in vitro.  The mechanism of this resistance 

will require further investigation. 

 DISCUSSION B.3

 While there is little to discuss regarding the lactic acid bacteria, it remains an 

interesting area of research that should be pursued.  However, the preliminary finding 

that Rpe from Baker’s yeast is resistant to H2O2 implies that yeast either use an 

alternative metal in this protein, or that the metal is somehow shielded from H2O2.  

Because the role of the metal in Rpe should be the same in yeast as it is in E. coli, solvent 

exposure of the metal atom should be required in order for it to bind to and activate the 

substrate.  Therefore, it seems unlikely that yeast employs some shielding mechanism, 

but this idea remains a formal possibility.  More work is necessary to determine the 

mechanism by which yeast Rpe remains active in the presence of H2O2. 
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 EXPERIMENTAL PROCEDURES B.4

 Reagents B.4.1

  Amino acids, catalase (from bovine liver), diethylenetriaminepentaacetic 

acid (DTPA), α-glycerophosphate-triosephosphate isomerase from rabbit muscle, MOPS 

and associated medium components, β-nicotinamide adenine dinucleotide reduced 

disodium salt (NADH), D-ribose 5-phosphate disodium salt, D-ribulose 5-phosphate 

disodium salt, transketolase (from yeast), and 30% H2O2 were from Sigma.  

Glycylglycine was from Acros Organics.   Yeast Nitrogen Base, dextrose, and Tris-HCl 

were from Fisher. 

 Growth medium B.4.2

 Luria-Bertani (LB) medium contained 10 g tryptone, 10 g NaCl, and 5 g yeast 

extract per liter.  Minimal SA medium was a MOPS medium prepared according to [2] 

supplemented with 0.2% glucose, 0.5 µg/mL thiamin and 0.5 mM histidine.  Other amino 

acids were added at 0.5 mM where indicated. 

 Strains and growth B.4.3

 Lactococcus lactis strain IL1403 was a gift from Dr. John Cronan.  L. lactis was 

streaked on LB glucose solid medium and incubated overnight at 30°C.  Single colonies 

were picked from the LB plate and onto Minimal SA plates, which were then placed at 

30°C. 

 The Baker’s yeast, Saccharomyces cerevisiae, wild-type strain X-2180-1a was a 

gift from Dr. Peter Orlean.  The yeast was streaked onto solid Difco YNB medium 

containing 2% glucose.  For Rpe activity determination, an overnight culture of X-2180-

1a was inoculated using a single colony into 5 mL liquid YNB + 2% glucose at 30°C.  

The overnight was then diluted into 15 mL of the same medium to 0.005 OD and grown 
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to 0.1 OD at 30°C.  This pre-culture was then diluted to 0.0015 OD in 50 mL YNB + 

0.2% glucose and grown at 30°C to 0.4 OD. 

 Preparation of yeast cell extracts B.4.4

 When yeast cells reached 0.4 OD as described above, the culture was chilled on 

ice for 20 minutes and then spun for 8 minutes at 4,000 rpm at 4°C.  After removing the 

supernatant, the cell pellet was resuspended in 50 mL ice-cold 50 mM glycylglycine (pH 

8.5) and spun again for 8 minutes at 4°C.  The supernatant was discarded and the pellet 

was moved into an anaerobic chamber.  The pellet was then resuspended in 2 mL 

anaerobic glycylglycine and spun 3 minutes at 14,000 x g at 4°C.  The supernatant was 

again discarded, and the pellet was resuspended in 2 mL glycylglycine containing 1 mM 

DTPA and the suspension was transferred to a glass tube.  Next, 0.5 mm glass beads 

(acid-washed, rinsed, and thoroughly dried before use) were added to about 1 cm below 

the level of the liquid and the sample was vortexed for 30 seconds, then placed on ice for 

30 seconds.  The vortexing and icing combinations was repeated four additional times.  

The liquid was then poured off, leaving the beads behind, and spun for 3 minutes at 

14,000 x g at 4°C.  The supernatant was then assayed for Rpe activity immediately. 

 Rpe assay B.4.5

 Rpe was assayed by diluting the yeast extract 1:10 in 50 mM glycylglycine, then 

dilution again to a final dilution factor of 1:200 to a reaction mixture containing 50 mM 

glycylglycine buffer, pH 8.5, 5 mM DTPA, 1 unit of α-glycerophosphate dehydrogenase 

and 10 units of triosephosphate isomerase (obtained as a pre-mixed suspension), 1 mM 

ribulose 5-phosphate, 1 mM ribose 5-phosphate, and 0.2 mM NADH in a final reaction 

volume of 500 µL in a sealed, anaerobic cuvette.  The mixture also contained 1 unit of 

transketolase from a stock of 5 units/mL that was pre-treated with 0.2 mM MgCl2 and 2 

mM thiamin pyrophosphate.  Absorbance was measured at 340 nm. 
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 Treatment of yeast Rpe with H2O2 B.4.6

 Undiluted extracts prepared above were diluted 1:5 in buffer containing 1 mM 

H2O2 and incubated at room temperature for 2 minutes. (100 µL extract into 350 µL 50 

mM glycylglycine containing 50 µL 10 mM H2O2).  Aliquots of 90 µL were taken at 

regular intervals and added to 10 µL of a 1:100 dilution of catalase.  Rpe activity was 

then assayed as described previously.  
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 FIGURES B.5

 
 

Figure B.1:  Rpe from yeast is resistant to H2O2.  Cultures were grown overnight at 30°C in YNB 

medium with 2% glucose.  Overnight cultures were used to inoculate 15 mL culture in the same medium to 

0.01 OD and grown at 30°C to about 0.1 OD.  These cultures were then used to inoculate 50 mL of the 

same medium to 0.0015 OD and cells were grown at 30°C to about 0.4 OD.  Cells were then harvested by 

centrifugation of remaining culture for 8 min at 6,000 x g at 4°C.  Pellets were washed with 50 mL ice-cold 

50 mM glycylglycine and spun again for 8 min.  Pellets were then moved to the anaerobic chamber and 

assayed for Rpe activity before and after treatment with 1 mM H2O2.  1 mM DTPA was added during H2O2 

treatment to block remetallation.  Error bars represent standard deviation from the mean of three 

independent measurements.  Specific activity of untreated sample was 0.448 U/mg protein. 
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