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ABSTRACT

The thesis addresses a problem in networked control systems where quanti-

zation is a communication constraint. Control design together with param-

eter estimation algorithms lead to adaptive control techniques. A first order

system with unknown parameters is estimated via projection algorithm re-

cursively. Furthermore, a one-step-ahead control law is applied to regulate

the output. In the second part of the thesis, the system with quantization is

simplified to a system with white noise disturbance by applying a dithering

method. It is shown that system with quantization error can be controlled

with the same one-step-ahead control law and projection algorithm.
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CHAPTER 1

COMMUNICATION CONSTRAINTS IN
CONTROL SYSTEMS

1.1 Introduction

Networked control systems is an area posing new tasks time by time due

to the conflicting preferences of communication and control aspects. Many

works were done in the field of communication and control. The usual set-

ting would be to set goals for control and restrictions for communication, and

therefore to formulate new strategies which will meet both communication

and control objectives. Control theory requires usual performance qualities

such as perfect tracking, rise time, and stability of states. Meantime, com-

munication restrictions prevent us from achieving control goals since there

are bandwidth limits and quantization effects on the communication chan-

nel. With the availability of different types of quantizers and control system

representations, various methods are given in [1], [2], and [3]. In [1] the au-

thors thoroughly discuss the control system stability under the limited data

rate, and derive universal lower bounds on the state norm. The lower bound

describes the worst case scenario, where it states that the coder-controller

should take actions faster than the system’s output does. In other words, they

formulate the rate of the communication channel that any coder-controller

can be realized, and below this rate there cannot be a coder-controller which

would stabilize the system. The basic approach they took to claim the lower

bound on states was to consider the volumes of uncertainty, not the norm

of vector states. Further, control system design has been proposed relying

on joint coding and certainty equivalence principle. Depending on the types

of quantizers they give, various coder-controllers were analyzed. When the

certainty equivalent principle is used, the control law turns out to be a func-

tion of the state with some gain matrices as a solution of Riccati recursion.

Using the memoryless logarithmic quantizer in [2], the authors show that the
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control law follows the logarithmic law, and it is achieved by minimization of

quadratic Lyapunov function. This result is motivated by “coarsest” quan-

tizer and coarser values the farther the state is from the origin. It also works

for unstable systems, sampling time being dependent on unstable eigenval-

ues. The idea here is that states of the system and respectively the control

actions can be inaccurate when the state is far from the origin. The resolu-

tion should be more accurate when the system starts hitting values close to

the origin. In [3], asymptotic stability is achieved via finite quantizers with

an adjustable width parameter. In other words, by changing the quantization

width according to some law, a linear feedback control gives the asymptotic

stable result. This is sometimes called zooming-in/zooming-out strategy.

The system with the uniform finite quantizer with adjustable width forms

a hybrid system, and the techniques developed work for both continuous-

and discrete-time systems. When a controller takes measurements from an

encoder through a digital channel, the problem is classified as a stabilization

of the system with limited information. The latter problem is investigated

in [4], where the relation between the state transition matrix and an encoder

function is given in a way to achieve asymptotic stability in one sampling

period time. In other words, by fixing the sampling period, positive integer

number N for the encoder or controller, and dimension of the output n, the

author establishes the conditions for asymptotic stability. In [5], problems

on building a stable network control system over a digital communication

channel are investigated. They construct an encoder, decoder and controller

under some communication rate, and the rate which is given is a lower bound

for stability of the linear discrete time system. This rate is lower bounded

by the sum of logarithms of the moduli of the unstable eigenvalues of the

system. Also, the authors give the upper bound on the communication rate

with multiple sensors. In this case, the problem gets even more entangled

because communication channel should be able to allocate all measurements

from the multiple sensors.

1.2 Information-Constrained Control

In this thesis we pose a task of implementing an adaptive control in networked

control systems where loss of information happens due to the quantization
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effects. This is again an information-constrained control problem, but with

unknown parameters of the system model. Hence, tools from control theory,

communication and signal processing will be utilized throughout the paper.

A special branch of control theory, adaptive control, in fact, deals with the

control of systems with unknown parameters. In addition to control theory

mechanisms, many of the algorithms in the adaptive control are special for-

mulations of mathematical optimization problems. In particular, adaptive

control recursively solves the optimization problems. In [6] Tsypkin brings

out excellent formulations of optimization problems as optimization algo-

rithms. In essence, it helps to get a very intuitive understanding and basics

of recursive adaptive control theory techniques. There are various adaptive

control tools other than online recursive algorithms, but in many cases, real-

ization of them in practice becomes challenging. In adaptive control theory,

apart from control tasks, the system parameters have to be investigated as

well. This, in turn, complicates the analysis of the given system. However,

the techniques and analysis tools which will be taken in the paper are rel-

atively easy to implement in practice. In particular, one-step-ahead control

law for control design, and projection algorithm for parameter estimation will

be used [7]. Detailed analysis of the above controller and parameter estima-

tion algorithm for deterministic and stochastic cases are given in this book.

Both of these algorithms are online recursive algorithms. The projection

algorithm comes from the optimization problem with constraints where the

square error between current and previous estimates is minimized. The con-

straint which is imposed is system’s model written in a difference equation.

Chapter 2 covers this parameter estimation algorithm and its convergence

properties. The one-step-ahead control, in turn, is simple to implement yet

gives appealing results. We should remind readers that our control law is de-

signed for discrete-time systems. The notion behind using the one-step-ahead

control is to adjust the controller at each time instant. Chapter 3 covers the

adaptive control mechanisms for deterministic and stochastic systems sepa-

rately. The analysis and proofs from [7] are simplified for a scalar first order

system. Certainty equivalence principle is the core concept in the adaptive

control. Based on the principle, the one-step-ahead control design is adapted

for the deterministic system with some assumptions on the system. It turns

out that this simple controller gives good performance results for our system

under consideration. In a stochastic system, under the same principle the
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same control law with the projection algorithm will give a stable system. As

output becomes unobservable due to noise, Kalman filter will give the best

estimate of the output. The control law for the stochastic system is derived

by minimizing the mean-square error between the output and desired value.

It is different in structure from the one-step-ahead controller but it is simpli-

fied to the latter in the case of first-order single input single output system.

Here we adapt the stochastic control analysis to a system with communi-

cation constraints. In particular, the constraint will be quantization noise.

Hence, now the problem can be considered as an information-constrained

control or control in communications. Since the quantization error (differ-

ence between the output and quantized output value) is dependent on input

values, a dithering method is used [8] to decorrelate the quantization error

from input value. Therefore, quantization noise will be approximated by an

additive white noise disturbance. The dithering method is realized according

to a method given in [9]. The one-step-ahead control law will be the one

to stabilize a given system, and we get the boundedness of the state in a

mean-square sense which depends on the white noise variance. Therefore, we

will be able to achieve the asymptotic stability result for our system.
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CHAPTER 2

PARAMETER ESTIMATION AND
CONVERGENCE

2.1 Problem Formulation and Approach

The objective is to implement adaptive control goals such as output reg-

ulation |y(t)| −→ 0 and input boundedness |u(t)| ≤ L for ∀t by means

of projection algorithm for parameter estimation and certainty equivalence

principle for adaptive control of linear deterministic and stochastic systems.

A single-input single-output first-order system will be taken. Throughout

the development we will see attractive features of adaptive control princi-

ples. Further, we use these combined algorithms in a system with a universal

quantizer.

The process of quantization happens whenever conversion of analog signal

to discrete signal takes place. The problem we encounter during quantization

is that, when the analog signal is converted to a digital signal we end up with

a distorted signal. The more the signal is distorted, the more we get false in-

formation. The quantization noise, the difference between the original signal

and the quantized signal, is correlated with the original signal. In practice,

so-called dithering methods are used to decorrelate the original signal from

noise [8]. After applying this method, we can consider the system with quan-

tization as a stochastic system with an additive white noise disturbance. This

is simply a stochastic linear system, which we will be analyzing in the second

part of the paper. Therefore, the system’s behavior will depend on the range

of the added white noise, and by applying the appropriate control law, we can

control the effect of quantization noise on a given system. The goal is that

we would like to achieve the asymptotic results for the stochastic case with

the same control design structure that is built for a deterministic system. As

we will see later, it is realizable when a certain dithering method is applied

to the system. The advantage is that with the same control law we control
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the system’s output within acceptable range of values for the stochastic case

with quantization noise. The figures 2.1-2.3 given below show this approach

systematically. As can be seen from figure 2.2, the dithering method plays

the role of transforming the system with a uniform quantizer to a system in

figure 2.3 with added noise disturbance. In the latter case, we already have

tools to do stability analysis given in [7].

Figure 2.1: First-order feedback control system with uniform quantization
of the output

Figure 2.2: The system with dithering
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Figure 2.3: An equivalent representation of the system as a linear stochastic
system

2.2 Projection Algorithm

For simplicity, let us take the first-order linear time-invariant deterministic

system. There are many methods for realizing an adaptive control, and we

will use the one-step-ahead control law. Together with the control law, pa-

rameter estimation is applied to a given system. A projection algorithm is

used to estimate the system parameters. Here we give the detailed explana-

tion of the algorithm with the control law. In essence, this method is called

certainty equivalence principle, and it is given in [7]. We have a system with

unknown parameters. We pretend to know the parameters of the closed-loop

system, and we apply the one-step-ahead control law based on these param-

eters to drive the system’s output to zero. In other words, the system’s state

in case of successfully reaching the right controller parameters will converge

to zero. Also, additional objectives such as boundedness of input signal may

be introduced. However, because we have replaced the parameters by some

estimate, and derived the control law according to them, the output value

will not reach zero. Here comes the need for the projection algorithm for

parameter estimation. The parameter estimation algorithm is implemented

using the current system measurements. There are some clarifications we

should mention: the projection algorithm does not necessarily guarantee

convergence of the estimated parameters to true parameters. It just drives

prediction error and hence the output to zero. In fact, since our goal is

output regulation, we do not worry about parameter estimate convergence.

The dynamic system is given by the equation:
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y(t+ 1) = −a0y(t) + b0u(t) (2.1)

or we can represent it as

y(t+ 1) = φ(t)T θ0

where φ(t)T = [−y(t), u(t)] is our measurement vector and θT0 = [a0 b0] are

unknown plant parameters. From the viewpoint of the controller at time t,

the system dynamics is of the form

y(t+ 1) = −ay(t) + bu(t) (2.2)

where θ̂(t) = [a(t), b(t)]T are estimate parameters. We are given the general

projection algorithm of the form:

θ̂(t+ 1) = θ̂(t)−M(t)∇θē(t+ 1, θ̂)

where

M(t) = 1
φ(t)Tφ(t)

- algorithm gain, φ(t)- regressor vector (measurement

function);

ē(t+ 1) =
1

2

[
y(t+ 1)− φ(t)T θ̂(t)

]2
is the squared prediction error

In our case, the error is given by

ē(t+ 1, θ) =
1

2
[y(t+ 1)− (−ay(t) + bu(t)]2 =

1

2
[y(t+ 1) + ay(t)− bu(t)]2 ,

so the gradient is given by

∂

∂a
(ē(t+ 1, θ)) = [y(t+ 1) + ay(t)− bu(t)] y(t)

∂

∂b
(ē(t+ 1, θ)) = − [y(t+ 1) + ay(t)− bu(t)]u(t)

∇θē(t+ 1, θ) = −
[
y(t+ 1)− φ(t)T θ̂

]
φ(t).
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The resulting update is

θ̂(t+ 1) = θ̂(t) +
φ(t)

‖φ(t)‖2
[y(t+ 1)− φ(t)T θ̂(t)] (2.3)

The above algorithm is motivated by an optimization problem, where the

parameter error criterion J is minimized:

J =
1

2
‖ θ̂(t+ 1)− θ̂(t) ‖2

Lemma 1 [7, p.51]. Given θ̂(t) and y(t+ 1), we need to determine θ̂(t+ 1)

so that

J =
1

2
‖θ̂(t+ 1)− θ̂(t)‖2

is minimized subject to

y(t+ 1) = φ(t)T θ̂(t+ 1), (2.4)

where θ̂(t) is fixed.

Proof : Introducing a Lagrange multiplier for the constraint (2.4), we have

Jc =
1

2
‖ θ̂(t+ 1)− θ̂(t) ‖2 +λ[y(t+ 1)− φ(t)T θ̂(t+ 1)]

Hence the necessary condition for a minimum are

∂Jc

∂θ̂(t+ 1)
= 0

∂Jc
∂λ

= 0

The equations become

θ̂(t+ 1)− θ̂(t)− λφ(t) = 0

y(t+ 1)− φ(t)T θ̂(t+ 1) = 0

Substituting θ(t+ 1) from the first equation into the second equation gives

y(t+ 1)− φ(t)T [θ̂(t) + λφ(t)] = 0
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or

λ =
y(t+ 1)− φ(t)T θ̂(t)

φ(t)Tφ(t)

Substituting this λ into θ̂(t+ 1)− θ̂(t)− λφ(t) = 0, we get the projection

algorithm (2.3).

�

At each iteration, we assume that, by applying the calculated control effort

to the system with estimated parameters, the state of the system will become

zero. The assumption comes from the certainty equivalence principle, and

the state goes to zero if the estimate is correct. Thus, the gradient term in

the update equation (2.2) will be simply the output measurement y(t) of true

system: φ(t)T θ̂(t) = 0 and

∇θē = φ(t)y(t+ 1)

Hence, our final projection algorithm takes the form

θ̂(t+ 1) = θ̂(t) +
1

‖φ(t)‖2
φ(t)y(t+ 1)

To avoid division by zero, a modified projection algorithm is used:

θ̂(t+ 1) = θ̂(t) +
qφ(t)

c+ φ(t)Tφ(t)
[y(t+ 1)− φ(t)T θ̂(t)] (2.5)

with θ̂(0) given and c > 0; 0 < q < 2.

Some properties of the projection algorithm are summarized in the follow-

ing:

Lemma 2 [7, p.52-53]. For the algorithm given above and subject to (2.1),

it follows that

(i) ‖ θ̂(t)− θ0 ‖≤‖ θ̂(t− 1)− θ0 ‖≤‖ θ̂(0)− θ0 ‖; t > 1 (2.6)

(ii) lim
N→∞

N∑
t=1

e(t)2

c+ φ(t− 1)Tφ(t− 1)
<∞ (2.7)

and this implies

a) lim
t→∞

e(t)

[c+ φ(t− 1)Tφ(t− 1)]1/2
= 0 (2.8)
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b) lim
N→∞

N∑
t=1

φ(t− 1)Tφ(t− 1)e(t)2

[c+ φ(t− 1)Tφ(t− 1)]2
<∞ (2.9)

c) lim
N→∞

N∑
t=1

‖ θ̂(t)− θ̂(t− 1) ‖2<∞ (2.10)

d) lim
N→∞

N∑
t=k

‖ θ̂(t)− θ̂(t− k) ‖2<∞ (2.11)

e) lim
t→∞
‖ ˆθ(t)− θ̂(t− k) ‖= 0 (2.12)

Intuitively, Lemma 2 shows the boundedness of the parameter error and

the output error.

The proof is given in Appendix A.
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CHAPTER 3

ADAPTIVE CONTROL TECHNIQUES

3.1 Adaptive Control of Linear Deterministic Systems

Here, we will develop one scheme of adaptive control: one-step-ahead adap-

tive control. Consequently, we will analyze stability of the system. First, we

have to design the adaptive control system. As it is given in [7], the adaptive

control design approach is called certainty equivalence adaptive control. The

meaning of this approach is to combine the parameter estimation algorithm

with a certain control law, matched to the estimated parameters. A block

scheme of the adaptive control system consists of the system, parameter es-

timator, and a control law. There are two classes of algorithms: 1) indirect

and 2) direct. These are the ways of implementing the adaptive control. In

the direct algorithm the system parameters are given according to the con-

trol law parameters. In other words, the system parameters are estimated

online, and they are directly used in the control law. That means the adap-

tive control law is very simple yet it will give desired results. In contrast,

in the indirect approach the system parameters are estimated online, and

the estimated parameters are used for design calculations. We will be using

the direct approach, particularly the one-step-ahead controller design. This

adaptive controller is classified as a self-tuning regulator, which has proven

to be the optimal controller [7]. Initially, the one-step-ahead controller was

introduced for non-adaptive control systems. The control action needs to be

calculated at every time instant to bring the future output value to a desired

one. From this context, it can be seen that the control law is online and

it is very simple. If we have a system model, by writing it as a difference

equation, the control law will become clear. In the adaptive case, the same

one-step-ahead control law is rewritten in terms of the estimated parameters.

The results are shown in the next section.
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Before applying adaptive control techniques to the LTI system, we need to

give the Key Technical Lemma which is the basis for all adaptive control

algorithms:

Lemma 3 [7, p.181]. Suppose the following conditions are satisfied for some

given sequences {s(t)}, {σ(t)}, {b1(t)}, and {b2(t)}:
(1)

lim
t→∞

s(t)2

b1(t) + b2(t)σ(t)Tσ(t)
= 0 (3.1)

where {b1(t)}, {b2(t)} and {s(t)} are real scalar sequences and {σ(t)} is a

real (p× 1) vector sequence.

(2) Uniform boundedness condition

0 < b1 < K <∞, 0 < b2 < K <∞ (3.2)

for all t ≥ 1.

(3) Linear boundedness condition

‖ σ(t) ‖ < C1 + C2 max | s(τ) | (3.3)

where 0 < C1 <∞ and 0 < C2 <∞. Then it follows that

(i) limt→∞ s(t) = 0

(ii) {‖ σ(t) ‖} is bounded.

Proof. If {s(t)} is a bounded sequence, then by (3.3) {σ(t)} is a bounded

sequence. Then by (3.2) and (3.1) it follows that limt→∞ s(t) = 0

Suppose {s(t)} is unbounded. Then there exists a subsequence tn such

that

lim
tn→∞

| s(tn) |=∞

and

| s(t) |≤| s(tn) |

for t ≤ tn. The inequality further can be extended to∣∣∣∣ s(tn)

[b1(tn) + b2(tn)σ(tn)Tσ(tn)]1/2

∣∣∣∣ ≥ | s(t) |
[K +K ‖ σ(tn) ‖2]1/2

using (3.2), and the right-hand side is further lower-bounded by
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≥ | s(t) |
K1/2 +K1/2 ‖ σ(tn ‖

≥ | s(t) |
K1/2 +K1/2[C1 + C2 | s(tn) |]

using (3.3).

Therefore, ∣∣∣∣ s(tn)

[b1(tn) + b2(tn)σ(tn)Tσ(tn)]1/2

∣∣∣∣ ≥ 1

K1/2C2

> 0

but this contradicts (3.1) and the assumption that {s(t)} is unbounded is

not true and the result follows.

The Key Technical Lemma shows that, under some assumptions, the error

between the output and predicted output goes to zero. φ(t) (input and

output values) stay bounded. For our case, s(t) corresponds to e(t), σ(t) to

φ(t), and b1 = 1, b2 = 1. The lemma will be used in the prove of Global

Convergence Theorem which will be stated later. It is an important tool in

the adaptive control theory, and helps to conclude asymptotic results for a

control system.

3.1.1 One-Step-Ahead Control (The SISO Case)

In order to perform an adaptive control of a SISO system, we will combine a

parameter estimation algorithm and direct adaptive control. In other words,

the control law parameters are directly estimated from system observation,

assuming a dynamical model of the form

y(t+ 1) = −ay(t) + bu(t)

The desired output sequence is denoted by y∗(t). The objective is to design

an adaptive control law to achieve closed-loop stability and asymptotically

achieve zero tracking error:

lim
t→∞

[y(t)− y∗(t)] = 0

The true model of the system in regression form is y(t + 1) = φ(t)T θ0,

where φ(t)T = [−y(t), u(t)] and θT0 = [a0, b0] is the vector of true system
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coefficients.

The tracking error is e(t+ 1) := y(t+ 1)− y∗(t+ 1) = φ(t)T θ0− y∗(t+ 1).

If we could choose u(t) to satisfy

φ(t)T θ0 = y∗(t+ 1), (3.4)

that would mean the tracking error is zero, but as true parameters θ0 are

unknown we replace (3.4) by the parameters estimated using the projection

algorithm on the basis of online system measurements. The certainty equiv-

alence principle discussed above enters the picture here. We will use the

estimated parameters as if they were the true parameters: accordingly, the

control u(t) at time t will be chosen so that φ(t)T ˆθ(t) = y∗(t+ 1), where ˆθ(t)

is the estimate of θ0 at time instant t. Hence, the control law u(t) that would

bring the systems’ output to the desired value is given by

φ(t)T ˆθ(t) = y∗(t+ 1) (3.5)

−y(t)× â+ u(t)× b̂ = y∗(t+ 1)⇒ u(t) =
y∗(t+ 1) + y(t)× â

b̂
, (3.6)

assuming b̂ 6= 0.

Next, we will show that this algorithm has nice convergence properties, and

since we are carrying out the procedure for an LTI system, this algorithm

is globally convergent. Before moving any further, we need to make the

following assumptions:

(i) All modes of inverse of the model (z-transform) lie inside the closed

unit disk.

(ii) All controllable modes of the inverse of the model lie strictly inside

the unit disk.

(iii) Any modes of the inverse of the model on the unit circle have a Jordan

block size of 1.

(i)−(iii) are necessary to achieve perfect tracking and closed-loop stability

for the one-step-ahead controller.

Global convergence result. Theorem 1 [7]:

Subject to assumptions given above, the one-step-ahead adaptive control

algorithm (3.6) applied to the system y(t + 1) = −ay(t) + bu(t) has the

following properties:
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1. y(t), u(t) are bounded sequences (3.7)

2. lim
t→∞

[y(t)− y∗(t)] = 0 (3.8)

3. lim
t→∞

∑
[y(t)− y∗(t)]2 <∞ (3.9)

Proof : Property 1. From Lemma 2 (2.8), (2.12):

lim
t→∞

e(t+ 1)

[c+ φ(t)Tφ(t)]1/2
= 0 (3.10)

where

e(t+ 1) = y(t+ 1)− φ(t)T ˆθ(t) (3.11)

lim
t→∞
‖ θ̂(t+ 1)− θ̂(t) ‖= 0 (3.12)

Now, if we define the tracking error ε(t) as

ε(t) = y(t+ 1)− y∗(t+ 1) (3.13)

then from (2.2) and (3.4)

ε(t+ 1) = y(t+ 1) = φ(t)T θ0 − φ(t)T ˆθ(t) = −φ(t)θ̃(t) (3.14)

where

θ̃(t+ 1) = θ̂(t+ 1)− θ0 (3.15)

If we take the limit as t→∞, the right-hand side becomes zero from (3.10)

and (3.12). Therefore,

lim
t→∞

ε(t)2

c+ φ(t)Tφ(t)
= 0

Property 2: Here we present the use of the Key Technical Lemma. Let us

define s(t) = ε(t), σ(t) = φ(t − d), b1(t) = c, b2(t) = 1, where d is a delay

parameter.

u(k − d) ≤ m3 +m4 max | y(τ) |
‖ φ(t− d) ‖≤ pm3 + [max(1,m4)] max | y(τ) |, where p is the dimension of

φ. It can be seen that φ(t− d) corresponds to the condition (3.3) in the Key

Technical Lemma. But | ε(t) |≥| y(t) | − | y∗(t) |≥| y(t) | −m1; m1 <∞
Thus,

‖ φ(t−d) ‖≤ pm3 + [max(1,m4)] max(| ε(τ) +m1) = C1 +C2 max | ε(τ) |,
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where 0 ≤ C1 < ∞, 0 < C2 < ∞ and linear boundedness condition holds.

Now equations (3.7) and (3.8) follow immediately from Lemma 3. Last, from

Lemma 2, part (ii),

lim
t→∞

∑ e(t)2

c+ φ(t− d)Tφ(t− d)
<∞

lim
t→∞

∑
‖ θ̂(t)− θ̂(t− k) ‖2<∞

Thus, using the first equation above, the Cauchy-Schwarz inequality, and

the boundedness of φ(t), we conclude (3.9).

�

Finally, the results from the Theorem 1 are given below:

1) Closed-loop stability is achieved.

2) The output tracking error asymptotically goes to zero (tracking goal is

achieved).

3) The convergence rate is better than 1/t.

We have implemented the algorithm described earlier in this section on a

linear system with parameters [a(t), b(t)]. The evolution of the state, output

prediction error, and the control signal is shown in Figure 3.1.

Figure 3.1: Evolution of output state, error, and input values

As we can see, the algorithm does indeed achieve the desired goal of output

regulation, while keeping the control signal uniformly bounded. The Matlab
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code is given in Appendix B.

3.2 Adaptive Control of Stochastic Systems

3.2.1 Stochastic Model and Kalman Filter

This section is devoted to a stochastic version of the model (2.1). Stochas-

tic nature is modeled by noise, specifically with white noise sequences. A

stochastic linear system in state-space form is given by [7]:

x(t+ 1) = Ax(t) +Bu(t) + ϑ1(t)

y(t) = Cx(t) + ϑ2(t),

where x(t0) has mean x̄0 and covariance Σ0, and the additive stochastic

disturbances ϑ1(t) and ϑ2(t) have zero mean and

E

[
ϑ1(t)

ϑ2(t)

][
ϑ1(t)

ϑ2(t)

]T
=

[
Q S

ST R

]
δ(t− τ) (3.16)

When ϑ2(t) = 0, then R = 0 and S = 0.

Since random noise is added to the system, the true state values are unob-

servable. Then the Kalman filter gives the best linear estimate of the state.

The Kalman filter which recursively calculates the state estimates is given

below [7]:

x̂(t+ 1) = Ax̂(t) +K(t)[y(t)− Cx̂(t)] +Bu(t)

x̂(t0) = x̄0

K(t) = [AΣ(t)CT + S][CΣ(t)CT +R]−1

where K(t) is the filter gain.

Σ(t) is the state error covariance, and it satisfies the following Riccati

difference equation:

Σ(t+ 1) = AΣ(t)AT +Q−K(t)[CΣ(t)CT +R]K(t)T
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with the initial condition Σ(t0) = Σ0

If to define ω(t) = y(t)− Cx̂(t), the Kalman filter can be modified to this

form:

x̂(t+ 1) = Ax̂(t) +K(t)ω(t) +Bu(t) (3.17)

y(t) = ω(t) + Cx̂(t)

Equation (3.17) is the model of the system interconnected with Kalman

filter in state-space form. One comment on further derivation of algorithms

for stochastic case is that, when we describe our first order system using an

ARMA model, the model is already in the form of Kalman filter (3.17).

Some comments should be made about the stability of Kalman filter. Be-

fore doing this, assume that S = 0. Then the Kalman filter can be written

as

x̂(t+ 1) = Ax̂(t) +K(t)[y(t)− Cx̂(t)] +Bu(t)

x̂(t0) = x̄0

or, equivalently,

x̂(t+ 1) = Ā(t)x̂(t) +K(t)y(t) +Bu(t)

where Ā(t) and K(t) are the filter transition and filter gain matrices given

by

Ā(t) = A−K(t)C

K(t) = AΣ(t)CT (CΣ(t)CT +R)−1

Σ(t+ 1) = AΣ(t)AT − AΣ(t)CT (CΣ(t)CT +R)−1CΣ(t)AT +Q (3.18)

As t→∞, the error covariance Σ(t) and the Kalman gain K(t) converge to

steady-state values. If Σ(t) converges, the limiting solution Σ will satisfy the

algebraic Riccati equation (ARE), obtained from (3.18) by putting Σ(t+1) =

Σ(t) = Σ:

Σ− AΣAT + AΣCT (CΣCT +R)−1CΣAT −Q = 0 (3.19)

For simplicity, we take error variance R = 0 and Q = 1. In particular, for

our first-order scalar case,
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x(t+ 1) = −ax(t) + bu(t) + ϑ1(t)

y(t) = x(t)

where A = a, B = b, and C = 1; a, b ∈ R
After solving the equation (3.19) for the scalar case, we obtain the value

for Kalman filter gain:

Σ− a2Σ +
Σ2a2

Σ
− 1 = 0

Σ = 1

and

K = AΣCT (CΣCT +R)−1 = −a

Now let us relate the state-space and an ARMA model. The general ex-

pression for an ARMA model is

A(q−1)y(t) = B(q−1)u(t) + C(t, q−1)ω(t); (3.20)

where ω(t) is a white noise sequence and C(q−1) is a filter of the form

C(q−1) = 1 + c1q
−1 + ...+ cnq

−n

A(q−1) = 1 + aq−1 (for our particular first order system)

B(q−1) = bq−1

We should keep in mind that it is assumed all roots of the polynomial

C(q−1) are inside of the unit circle. For the further analysis the equation is

simplified to

y(t+ 1) = −ay(t) + bu(t) + ω(t+ 1) + (k + a)ω(t) (3.21)

Also, from the derived result above: k = −a; cn’s in (3.20) correspond to

k+a. Hence, the polynomial C(q−1) = 1. The other terms in the polynomial

C(q−1) vanish as c1 = k1 + a1 = 0, and the system order is 1.

y(t+ 1) = −ay(t) + bu(t) + ω(t+ 1)

The equation is the final result for the stochastic model with Kalman filter.
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3.2.2 Parameter Estimation

Parameter estimation for stochastic dynamic system has slight modifications.

In particular, the parameter vector θ̂(t) will include parameters of C(q−1),

which is θ̂(t) = [â(t) b̂(t) ĉ(t)]T . We will use the algorithm based on pseudo-

linear regressions:

θ̂(t) = θ̂(t− 1) + P (t− 1)φ(t− 1)[y(t)− ŷ(t)]

P (t− 1) = P (t− 2)− P (t− 2)φ(t− 1)ψ(t− 1)TP (t− 2)

1 + φ(t− 1)TP (t− 2)φ(t− 1)

ŷ(t) = φ(t− 1)T θ̂(t− 1)

φ(t− 1)T = [y(t− 1), u(t− 1),−ŷ(t− 1)]

where P (0) = I, and for the first-order system SISO P (0) = 1.

In general, the algorithm given above is used for systems with noise. P (t)

is a positive-definite matrix. The algorithm is derived based on the best

fit criteria or “quality” of the approximation of system output to the true

system output. The iteration process follows the gradient descent method.

The φ(t) vector contains the observed output measurements, input values,

and predicted output values. P (t) can be viewed as some gain matrix that

will change the steepness of the parameter estimate. The derivation of the

algorithm is given in [7]. However, for the first-order stable system with

noise for regulation problem (in particular, for desired zero output case), this

algorithm reduces to the simple projection algorithm as we will see later.

3.2.3 Control of Stochastic Systems

Now we consider a first-order stochastic linear system of the form

y(t+ 1) = −ay(t) + bu(t) + ω(t+ 1). (3.22)

The noise sequence, ω(t), will be taken to satisfy our usual assumptions:

E[ω(t)] = 0

E[ω2(t)] = σ2 = 1
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The controller that we will develop is called the minimum variance con-

troller. It is the counterpart of the one-step-ahead controller discussed in

previous sections. The idea in the deterministic case was to determine the

input u(t) to bring the future output y(t+1) value to a desired value y∗(t+1).

In the stochastic case, the output cannot be predicted exactly. However, we

can make it close to the desired output value in mean-square sense by mini-

mizing cost function

J(t+ 1) = E[y(t+ 1)− y∗(t+ 1)]2 (3.23)

At each time t the minimization above is subject to the constraint that (3.22)

be satisfied:

ŷ(t+ 1) = −ay(t) + bu(t) + ω(t+ 1) (3.24)

Theorem 2 [7]. Consider the control law

β0u(t) = q[β0−β(q−1)]u(t− 1) + y∗(t+ 1) + [C(q−1)− 1]ŷ(t+ 1)−α(q−1)y(t)

(3.25)

(a) The effect of the control law (3.25) is to give

ŷ(t+ 1) = y∗(t+ 1) (3.26)

(b) If (3.25) holds for all t, the control law can be written

β(q−1)u(t) + α(q−1)y(t) = C(q−1)y∗(t+ 1) (3.27)

Hence, to convert (3.25) for our case,

bu(t) = −(c− a)y(t)− cz−1ŷ(t+ 1) + y∗(t+ 1) (3.28)

The proof will be given for a general case. Hence, equations given so far

will be rewritten for the general case.

Single-input single-output case will be considered. The ARMA model for

our given system is

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ω(t) (3.29)
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where u(t) and y(t) denote the input and output, respectively, and ω(t) is a

“white noise” sequence satisfying

E[ω(t)] = 0 (3.30)

E[ω(t)2] = σ2 (3.31)

We have a cost function:

J(t+ d) = E[[y(t+ d)− y∗(t+ d)]2]

We want to get u(t) as a function of past inputs and outputs to minimize

the above function. Conditional mean gives the minimum variance estimator.

Therefore, we can write the above expression using the smoothing property.

The optimal cost is given by

J∗(t+ d) = E

[
min
u(t)

E[[y(t+ d)− y∗(t+ d)]2|Ft]
]

(3.32)

where u(t) is constrained to be Ft measurable. Ft the σ-algebra generated

by past input and output values up to time t.

The minimization above is subject to constraint that (3.29) be satisfied.

The optimal d-step-ahead prediction of y(t) for the system (3.29) satisfies

C(q−1)y0(t+ d|t) = α(q−1)y(t) + β(q−1)u(t) (3.33)

where

y0(t+ d|t) = E[y(t+ d)] = y(t+ d)− F (q−1)ω(t+ d) (3.34)

α(q−1) = G(q−1) (3.35)

β(q−1) = F (q−1)B
′
(q−1) (3.36)

and G(q−1) and F (q−1) are the unique polynomials satisfying

C(q−1) = F (q−1)A(q−1) + q−dG(q−1) (3.37)

F (q−1) = f0 + f1q
−1 + ...+ fd−1q

−(d−1); f0 = 1 (3.38)
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G(q−1) = g0 + g1q
−1 + ...+ gn−1q

−(n−1) (3.39)

Proof [7, p.412]. Substituting (3.34) into (3.32) gives

J∗(t+ d) = E

[
min
u(t)

E[[y(t+ d)− y0(t+ d|t) + y0(t+ d|t)− y∗(t+ d)]2|Ft]
]

(3.40)

J∗(t+ d) = E[min
u(t)

E[[y(t+ d)− y0(t+ d|t)]2 + 2[y(t+ d)− y0(t+ d|t)]

[y0(t+ d|t)− y∗(t+ d)] + [y0(t+ d|t)− y∗(t+ d)]2|Ft]]

= E

[
min
u(t)

d−1∑
j=0

f 2σ2 + [y0(t+ d|t)− y∗(t+ d)]2

]

using (3.30), (3.31), and (3.32). Substituting for y0(t+ d) from (3.33) gives

(3.41)

J∗(t+ d) = E

[
d−1∑
j=0

f 2σ2 + min
u(t)

[(1− C(q−1))y0(t+ d|t)

+ β(q−1)u(t) + α(q−1)y(t)− y∗(t+ d)]2

]

The input u(t) minimizing (3.41) can be seen to be given by

β(q−1)u(t) = y∗(t+ d) + [C(q−1)− 1]y0(t+ d|t)− α(q−1)y(t)

This establishes Theorem 2.

Remarks. The above proof was derived for general case. We need to

simplify it for the first-order system. Again, we have a model given by (3.24)

and noise assumptions.

J∗(t+ 1) = E

[
min
u(t)

E[[y(t+ 1)− ŷ(t+ 1) + ŷ(t+ 1)− y∗(t+ 1)]2|Ft]
]

J∗(t+ 1) = E[min
u(t)

E[[y(t+ 1)− ŷ(t+ 1)]2 + 2[y(t+ 1)− ŷ(t+ 1)]

[ŷ(t+ 1)− y∗(t+ 1)] + [ŷ(t+ 1)− y∗(t+ 1)]2|Ft]]

= E

[
min
u(t)

d−1∑
j=0

σ2 + [ŷ(t+ 1)− y∗(t+ 1)]2

]
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J∗(t+ 1) = E
[
σ2 + min[cz−1ŷ(t+ 1) + bu(t) + (c− a)y(t)− y∗(t+ 1)]

]
Now it is clear to see the control law minimizing the given cost function

bu(t) = −cz−1ŷ(t+ 1)− (c− a)y(t) + y∗(t+ 1)

3.2.4 Adaptive Control of Stochastic Systems. Concept of
Certainty Equivalence Control. Adaptive Minimum
Variance Control

When it comes to stochastic systems, the control has a dual role. It takes into

account both parameter uncertainty and noise effects. The concept of dual

control consists of learning and regulation of the input. In other words, the

input is given in a way in order to learn the unknown system dynamics and

to follow the output, which is regulation. As theory shows, the concept of

dual control is difficult in realization. Therefore, by ignoring the uncertainty

in parameter perturbations we will use certainty equivalence control law that

was applied in deterministic case. For this type of control law, we will use the

pseudo-linear regression algorithm and one-step ahead control law. Together

they have a name of self-tuning regulator or adaptive minimum variance

controller.

We have a system model of the form

A(q−1)y(t) = q−1B
′
(q−1)u(t) + C(q−1)ω(t)

or, in our case,

y(t+ 1) = −ay(t) + bu(t) + ω(t+ 1)

An adaptive minimum variance control law is obtained by setting the pre-

dicted future output, ŷ(t+ 1), of the system to a desired value, y∗(t+ 1), to

generate the control u(t) at time t:

Adaptive Minimum Variance Controller with Least Square Pa-

rameter Estimation:
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θ̂(t+ 1) = θ̂(t) + qP (t)φ(t)e(t+ 1)

e(t+ 1) = y(t+ 1)− ŷ(t+ 1)

P (t) = P (t− 1)− P (t− 1)φ(t− 1)φ(t− 1)TP (t− 1)

1 + φ(t)TP (t− 1)φ(t)

ŷ(t+ 1) = φ(t)T θ̂(t)

φ(t)T = [y(t), u(t),−ŷ(t)]

θ̂(t) = [ĉ(t)− â(t), b̂(t), ĉ(t)]

Again, the idea of one-step-ahead control (or minimum variance control) is

applied where predicted output is equal to the desired output value. Finally

the input is generated from the following feedback control law.

φ(t)θ̂(t) = y∗(t+ 1) (3.42)

From ŷ(t+ 1) = y∗(t+ 1) we get

u(t) =
−(ĉ− â)y(t)− ĉz−1y∗(t+ 1) + y∗(t+ 1)

b̂
=

(1− ĉz−1)y∗(t+ 1)− (ĉ− â)y(t)

b̂
(3.43)

The assumptions for convergence of the above algorithm:

1. An upper bound is known for the orders of the polynomials in the

system description.

2. [1/C(z−1)− 1/2] is positive real.

3. B(z−1) is asymptotically stable.

So far, the algorithms given above for stochastic case were generalized

versions. In our case, we used the zero output as the desired output value in

deterministic case, and we again want the desired output to be zero in the

stochastic case. The interesting point here is that the parameters in C(q−1)

may be removed from the problem and ordinary projection algorithm can be

used [7]. That means, that if y∗(t+ 1) = 0, then (3.43) gives

φ(t)T θ̂(t+ 1) = 0 (3.44)

Then, the desired zero output value, y∗(t+ 1) = 0 and C(q−1) = 1 (c = 0):
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u(t) = − ây(t)

b̂
(3.45)

Equation (3.46) gives the control law to apply to the first order system

with white noise sequences. Also, we can eliminate ĉ value from θ̂(t) and

ŷ(t) from φ(t).

3.3 Analysis of Quantization Effects on the

First-Order System

It is shown [8] that the quantization error on a system can be replaced by

an additive noise disturbance ω(t). One way to realize this assumption is

dithering [9]. The dithering method is realized in the following steps for

our first-order SISO system. Initially, we have a first-order system with

intentionally added white noise sequences, then the corrupted with noise

signal is passed through an quantizer. After that, the same white noise

sequences are subtracted from the quantized signal, and further followed by

Kalman filter and a controller. In other words, the process of adding white

noise sequences before quantization and subtracting them after quantized

signal is known as dithering. When the process of dithering is implemented

in the system, one can separate quantization noise from system’s output and

write the resulting model just as the model is given below, where ω(t) is the

dithered quantization noise.

y(t+ 1) = −ay(t) + bu(t) + ω(t+ 1)

A particular way of implementing dither is given in [9], where properties

of the dither signal z(t) are given as following:

1) For any t, the dither signal z(t) is supported on the range (−
√

3σ2,
√

3σ2).

This means, E[z(t)] = 0 and V ar[z(t)] = σ2.

Randomized quantization (Dithering).

An input vector Y = y1, y2, ..., yi, ..., yn and a one-dimensional uniform

quantizer with code points C1 = [0,±2
√

3σ2,±i2
√

3σ2, ...], i = 0, 1, 2, 3, ....

Let z be a random variable that is distributed uniformly in the interval

[−
√

3σ2,
√

3σ2] and is statistically independent of Y . Let Z = z1, z2, z3, ..., zn,

where for every i = 1, 2, ..., n, zi = z. Consider now the one-dimensional
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randomized quantization process where the vector Y +Z is quantized and z

is subtracted from quantized value at each step. Here we can use n = 1. It

is shown that for any Y

1

n
E ‖ Q1(Y + Z)− Z − Y ‖2= σ2

1

n
E ‖ Q1(Y + Z)− Z − Y ‖= 0

or, for y at time t we have

E ‖ Q1(Y + Z)− Z − Y ‖2= σ2

E [Q1(Y + Z)− Z − Y ] = 0

where E denotes expectation over Z. Thus, the quantization mean-square

distortion of a randomized input vector Y is equal to σ2 for any value of Y .

The proof is given in the Appendix C.

2) The dither signal z(t) is a uniform random variable.

3) The dither signal is not correlated with the signal sequence u(t).

The relation between quantization width ∆ and variance of z(t) is ∆ =

2
√

3σ2.

Now we want to apply some control law to lead the system’s output to

zero. If we apply the control law which is u(t) = −a
b
y(t), the state will

not converge to zero. It will take some value in the range (−
√

3σ2,
√

3σ2).

When we apply the control law, the minimum mean-square error between

the output and desired value will be equal to the variance term. Then we

minimize the mean-square error of both sides with respect to time from t = 1

to t = n:

y(t+ 1) = −ay(t) + bu(t) + ω(t+ 1)

After the control applied,

y(t+ 1) = ω(t+ 1)

Next convergence analysis is done for the control algorithm in stochastic

setting. This convergence analysis is summarized in Stochastic Key Technical
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Lemma.

Conditions:

lim
N→∞

N∑
t=1

[e(t)− ω(t)]2

r(t− 1)
<∞ (3.46)

1)E[ω(t)|Ft−1] = 0 a.s. (3.47)

2)E[ω(t)2|Ft−1] = 0 a.s. (3.48)

3) lim
N→∞

sup
1

N

N∑
t=1

ω(t)2 <∞ a.s. (3.49)

4)e(t) = y(t)− ŷ(t) (3.50)

5) r(t− 1) is a nondecreasing nonnegative sequence such that r(t − 1) is

Ft−1 measurable.

Lemma 4 (The Stochastic Key Technical Lemma) [7]:

If condition (3.47) together with properties 1 − 5 hold, and if there exist

constants K1, K2, and N such that

1

N
r(N − 1) ≤ K1 +

K2

N

N∑
t=1

[e(t)− ω(t)]2 (3.51)

then

1)

lim
N→∞

1

N

N∑
t=1

[e(t)− ω(t)]2 = 0 a.s. (3.52)

2)

lim
N→∞

sup
1

N
r(N − 1) <∞ a.s. (3.53)

3)

lim
N→∞

1

N

N∑
t=1

E[[y(t)− ŷ(t)]2|Ft−1] = σ2 a.s. (3.54)

So we see that output mean-square error will be in the range of quantization

width, and the output is mean-square bounded:
1
N

∑N
t=1 y(t)2 <∞
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Part 3 of the Stochastic Key Technical Lemma is very crucial point, where

it establishes that, subject to the noise, system, and signal assumptions,

adaptive one-step-ahead control prediction, ŷ(t) converges to the true output

in the following sense:

lim
N→∞

1

N

N∑
t=1

E[(y(t)− ŷ(t))2|Ft−1] = σ2 (3.55)

where ŷ(t) = 0 and it simplifies to

lim
N→∞

1

N

N∑
t=1

E[(y(t))2|Ft−1] = σ2 (3.56)

Equation (3.56) defines the best fit of the parameter approximation mea-

sure. In other words, this is the best we can do with the given control law

to track the system’s true output.

The proof is given in Appendix D.

From Figure 3.2 we see that output does not asymptotically go to zero,

and it is a consequence of quantization errors. However, they stay bounded

by some value. Finally, we see the state error (output) is decreasing from

each iteration. The state converges to zero.

Figure 3.2: Evolution of output state, error, and input values
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3.4 Conclusion

We studied the problem of stabilizing the first-order single-input single-

output system with unknown parameters and the communication constraint.

By applying a certain dithering method on a system with quantization, we

substituted the quantization error with white noise disturbances. Then, ap-

plying the one-step-ahead control law in a recursive manner, we were able

to achieve the asymptotic results. The method that was used to decorrelate

the quantization error from the input value to the quantizer was to add uni-

form random variables before quantization, and subtract the same random

variables after quantization.
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APPENDIX A

PROJECTION ALGORITHM

A.1 Lemma 2

The following notations are introduced:

θ̃(t+ 1) = θ̂(t)− θ0 (A.1)

e(t+ 1) = y(t+ 1)− φ(t)T θ̂(t) = −φ(t)T θ̃(t) (A.2)

Proof [7]. (i) Subtracting θ0 from both sides of (2.5) and using (2.1) and

(A.2), we obtain

θ̃(t+ 1) = θ̃(t)− qφ(t)

c+ φ(t)Tφ(t)
θ̃(t)

Hence, using (A.2),

‖ θ̃(t+ 1) ‖2 − ‖ θ̃(t) ‖2= q[−2 +
qφ(t)Tφ(t)

c+ φ(t)Tφ(t)
]

e(t+ 1)2

c+ φ(t)Tφ(t)
(A.3)

Now since 0 < q < 2,c > 0, we have

q[−2 +
qφ(t)Tφ(t)

c+ φ(t)Tφ(t)
] < 0 (A.4)

and then(2.6) follows from (A.3).

(ii) We observe that ‖ θ̃(t+1) ‖2 is a bounded nonincreasing function, and

by summing (A.3), we have

‖ θ̃(t+ 1) ‖2=‖ θ̃(0) ‖2 +
t∑

j−1

q[−2 +
qφ(j)Tφ(j)

c+ φ(j)Tφ(j)
]

e(j + 1)2

c+ φ(j)Tφ(j)
(A.5)
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Since ‖ θ̃(t+ 1) ‖2 is nonnegative, and since (A.4) holds, we can conclude

(2.7).

(a) Equation (2.8) follows immediately from (2.7).

(b) Noting that

e(t+ 1)2

c+ φ(t)Tφ(t)
=

[c+ φ(t)Tφ(t)]e(t+ 1)2

[c+ φ(t)Tφ(t)]2

establishes (2.9) using (2.7).

(c) Equation (2.9) immediately implies (2.10) by noting the form of the

algorithm (2.5).

(d) It is clear that

‖ θ̂(t+1)− θ̂(t−k−1) ‖2=‖ θ̂(t+1)− θ̂(t)+ θ̂(t)− θ̂(t−1)+ ...θ̂(t−k−1) ‖2

Then using the Cauchy-Schwarz inequality

‖ θ̂(t+1)−θ̂(t−k−1) ‖2≤ k(‖ θ̂(t+1)−θ̂(t) ‖2 +...+ ‖ θ̂(t−k)−θ̂(t−k−1) ‖2

Then the result follows immediately from (2.10) since k is finite.

(e) Equation (2.12) here follows from (2.11).
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APPENDIX B

IMPLEMENTATION PROCEDURES

B.1 Deterministic System

The procedure of recursive parameter estimation flows this way: every time

we have the values of θ̂(t) and y(t) (θ̂(0) and y(0) are given in the beginning),

and let us say θ̂(0)T = (â(0), b̂(0)) = (0.7, 7) and y(0) = 40. Also, we need to

specify true parameters θT0 = (a0, b0) = (0.5, 0.5) so as to be able to calculate

the output measurement (in reality we don’t calculate this value, we take

y(t) it from sensor’s display). Parameter estimation begins at t+ 1.

Algorithm:

y (1)=40; % y ( 1 ) can be any a r b i t r a r y number ;

a hat (1 )=0 .7 ; %can be any a r b i t r a r y number l e s s than 1

b hat (1)=7; %can be any a r b i t r a r y number

theta =[ a hat b hat ] ’ ;

a =0.5 ; b=0.5; % true parametres o f the system

f o r t =1:50

u( t )=( theta (1)/ theta (2 ) )∗ y ( t ) % c a l c u l a t e c o n t r o l e f f o r t

y ( t +1)= y ( t )∗ a+u( t )∗b % output measurement

e ( t +1)=(1/2)∗y ( t +1)ˆ2;

y sq r ( t)=y ( t +1)ˆ2; % square o f output

theta=theta+(y ( t +1)/(y ( t )ˆ2+u( t ) ˆ 2 ) ) ∗ [ y ( t ) u( t ) ] ’ ;

w1( t , : )= theta ( 1 , : )

w2( t , : )= theta ( 2 , : )

end

subplot ( 3 , 1 , 1 ) ;
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p lo t (y , ’ LineWidth ’ , 2 )

t i t l e ( ’ output ’ )

subplot ( 3 , 1 , 2 )

p l o t ( e , ’ LineWidth ’ , 2 )

t i t l e ( ’ e r ro r ’ )

subplot ( 3 , 1 , 3 ) ;

p l o t (u , ’ LineWidth ’ , 2 )

t i t l e ( ’ c o n t r o l va lue )

B.2 Stochastic System

Since we put our desired output value to zero, last terms from regression

vector and parameter vector will be removed. Final control looks like

u(t) = − ây(t)

b̂
(B.1)

Algorithm:

y (1)=8; %can be any a r b i t r a r y number

y hat =8;

a hat (1 )=0 .6 ; %can be any a r b i t r a r y number l e s s than 1

b hat (1)=4; %can be any a r b i t r a r y number

theta =[ a hat b hat ] ’ ;

a =0.5 ; b=2;

f o r t =1:100

u( t )=( theta (1)/ theta (2 ) )∗ y hat ( t ) ;

%no i s e with var i ance 1 and mean 0

z=rand (1 , l ength ( t ) ) 0 . 5 ;

y ( t +1)= y ( t )∗ a+u( t )∗b ;

%no i s e added to the output

w( t)=y ( t+1)+z ;

%d i t h e r i n g

y hat ( t+1)=( f l o o r (w( t )/(2∗ s q r t ( 3 ) ) ) ) ∗ ( ( 2 ∗ s q r t ( 3 ) ) ) z ;

e ( t +1)=(1/2)∗ y hat ( t +1)ˆ2;
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y sq r ( t)=y ( t +1)ˆ2;

theta=theta+(y hat ( t +1)/(1+( y hat ( t )ˆ2

+u( t ) ˆ 2 ) ) ) ∗ [ y hat ( t ) u( t ) ] ’ ;

w1( t , : )= theta ( 1 , : ) ;

w2( t , : )= theta ( 2 , : ) ;

end

subplot ( 3 , 1 , 1 ) ;

p l o t ( y hat , ’ LineWidth ’ , 2 )

t i t l e ( ’ output ’ )

subplot ( 3 , 1 , 2 ) ;

p l o t ( e , ’ LineWidth ’ , 2 )

t i t l e ( ’ e r ro r ’ )

subplot ( 3 , 1 , 3 ) ;

p l o t (u , ’ LineWidth ’ , 2 )

t i t l e ( ’ input ’ )
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APPENDIX C

DITHERING

Proof [9]:

Let Q(Y = Z) = q1, q2, ..., qn, where qi = qi(yi + zi) ∈ C1. Then

E(qi − yi − zi) =
1

2
√

3ε

∫ xmax

xmin

(q(x)− x)dx,

x = yi + zi, xmin = yi −
√

3ε, xmax = yi +
√

3ε,

=
1

2
√

3ε

∫ q(xmin)+
√
3ε

xmin

(q(xmin)− x)dx+

∫ q(xmin)+
√
3ε

xmin

(q(xmin) + 2
√

3ε− x)dx

=
1

2
√

3ε

∫ q(xmin)+
√
3ε

q(xmin)−
√
3ε

(q(xmin)− x)dx = 0

In a similar way

E(qi − yi − zi)2 =
1

2
√

3ε

∫ q(xmin)+
√
3ε

q(xmin)−
√
3ε

(q(xmin)− x)2dx = ε
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APPENDIX D

KEY STOCHASTIC LEMMA

(1) If r(t− 1) < K3 <∞, then (3.47) implies

lim
N→∞

1

K3

N∑
t−1

[e(t)− v(t)]2 <∞ a.s. (D.1)

and (3.53) follows trivially.

Alternatively, if r(t − 1) is unbounded, then since the sum in (3.47) is

nondecreasing, we can apply Kronecker’s lemma to conclude that

lim
N→∞

N

r(N − 1)

1

N

N∑
t=1

[e(t)− ω(t)]2 = 0 a.s. (D.2)

Substituting (3.52) into (D.2) gives

lim
N→∞

1
N

[e(t)− ω(t)]2

K1 + K2

N

∑N
t=1[e(t)− ω(t)]2

= 0 a.s. (D.3)

Equation (3.53) follows immediately.

(2) Equation (3.54) follows from (3.52) and (3.53).

(3) Note that

E[[y(t)− ŷ(t)]2|Ft−1] = E[[y(t)− ŷ(t)− ω(t) + ω(t)]2|Ft−1] = (D.4)

E[[y(t)− ŷ(t)− ω(t)]2 + 2[y(t)− ŷ(t)− ω(t)]ω(t) + ω(t)2|Ft−1]

Since y(t)− ω(t) and ŷ(t) are Ft−1 measurable and using (3.58), we have

E[[y(t)− ŷ(t)]2|Ft−1] = [e(t)− ω(t)]2 + E[ω(t)2|Ft−1] (D.5)

Equation (3.55) now follows from (3.49) ,(3.53) and (D.5).
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