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ABSTRACT

Auditory transduction modeling efforts have relied on detailed metrics such

as phase-locking, adaptation time, and spike timings. A technique allowing

summary comparison of auditory models is missing from the current body of

research. We introduce a new technique based on the dynamic time warping

algorithm as a distance metric. This technique is also applied in conjunction

with a simple finite-difference gradient descent technique to generate bet-

ter model parameters. These improved parameters reduce error due to poor

parameter estimation and allow for a clearer evaluation of the underlying

mechanics of a model. We evaluate this technique beginning with a simple

model and ending with a cochlear model that exhibits three major trans-

duction phenomena: frequency selectivity, compression, and a limited set of

inner hair cell dynamics. We apply these techniques to related work and seek

to identify the model that best describes the transduction of both naturally

produced and spectrally reduced synthetic stop consonants. We produce

and compare optimized models that harness the aforementioned major phe-

nomena. Additionally, we find that the comparison technique predicts that

incremental modeling of auditory phenomena will simulate more accurate

neural ensembles. Results from this work show that the tested phenomena

are crucial to cochlear modeling, but that a significant performance gap ex-

ists between the examined models and the natural auditory transduction

process.
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CHAPTER 1

INTRODUCTION

Our understanding of the human auditory transduction process—beginning

with sound pressure waves and ending with auditory perception—remains

limited to this day. Many tools exist that continue to reveal information

about the underlying biophysical processes through psychological and phys-

iological examinations of responses to physical stimuli. Researchers apply

mathematical modeling to the results from these psychoacoustical examina-

tions in the hopes of deriving a better understanding of the auditory periph-

ery, and thus a better understanding of the critical neural signal patterns of

speech perception.

While there have been many contributions in the field of auditory model-

ing, there is a distinct lack of a technique that allows for summary evalua-

tion of a model’s capability to wholly transduce input sound pressure waves

into signals upon the auditory nerve. Such a tool would allow a big-picture

approach to evaluating models of the auditory periphery. In contrast, re-

searchers often assess the ability of an auditory model to capture specific

transduction phenomena. Illustrative examples include matching compres-

sion and resonance behaviors of basilar and Reissner’s membrane motion

[1], [2], verifying the phase-locking, firing rate, spontaneous rate, saturation

rate, and adaptation time constants of hair cells [3]–[5]. While there are

many tests and many modeling pursuits harnessing these tests, such tests

are important to describe these physical processes and provide verification

of a model’s ability to capture detailed transduction behaviors. It is impor-

tant to note that the addition of a global model evaluation does not preclude

the need to perform such assessments. Instead such a technique allows re-

searchers to compare models on a greater level of abstraction and therefore

provides a method to make more definitive statements about the abilities of

their models.

To further motivate this technique, we call attention to the encoding of
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temporal information during the auditory transduction process in the con-

text of the perception of spectrally degraded speech. The ability of cochlear

implant users to reach identification rates rivaling normal listeners is a tes-

tament to this void of knowledge. Listeners with cochlear implants (CI) gen-

erally experience a degraded perception of the detailed spectral information

available to normal listeners. Regardless, CI listeners are able to understand

speech without this additional frequency information. It has been shown that

both CI and normal listeners’ perceptual accuracy of noise-vocoded speech

persists until significant degradation below either three or four bands. Noise-

vocoded speech is similar to the output of a CI in that frequency information

is smeared across a number of bands. This implies that the critical features

of speech rely on a mix of temporal and frequency information encoded upon

the auditory nerve. The application of well-optimized auditory models may

bring about a greater understanding of the processes necessary to encode

the critical temporal and frequency patterns upon the auditory nerve. As

researchers have applied models before, we therefore reinforce the necessity

of modeling the auditory periphery and apply a global evaluation technique

to develop and tune the model.

1.1 Contribution and Scope

The goal of this work is not to seek out the best model in literature using the

comparison algorithm introduced later in this paper. Rather, it is to show

that better model parameters can be found to fit a given set of data and to

allow for an evaluation between the effectiveness of two models. Generally

models are evaluated on an individual basis of the properties or physical

phenomena present in auditory transduction. Evaluating the ability of a

cochlear model to exhibit the compressive behavior seen in the motion of the

basilar membrane and comparing an inner hair cell model’s ability to predict

action potential timings are two examples. As far as the author knows,

there is currently no generalized method that compares simulated auditory

transduction directly to physiological measurements in response to auditory

stimuli.

In the course of this study, the following research goals were pursued:

1. Determine a method to generate a distance measure to allow a com-
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parison of one or more auditory models.

2. Design an algorithm that will find more optimal parameters of an au-

ditory model by using the comparison method determined by the first

goal.

1.2 Organization

In pursuit of these goals, we first examine an understanding of the physio-

logical basis of auditory transduction. Next, the related works provide the

source data and the application context of the techniques introduced here.

Afterward, we examine research on selected auditory models to demonstrate

the distance measure and algorithm designed in this study. We then examine

the dynamic time warping algorithm as the basis for the distance measure

and take a look at the classical gradient descent algorithm to form a basis

of the optimization procedure to find more optimal parameters for auditory

models. Finally, the results of the comparison and optimization procedures

are presented and discussed.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Temporal Patterns from the Structure and

Function of the Auditory Periphery

2.1.1 The Auditory Pathway

Before calling attention to the encoding paradigm of the auditory nerve and

any previous attempts at modeling, an understanding of the structure of the

auditory pathway is necessary. After sound pressure waves enter the ear,

they pass into the cochlea through the oval window from the middle ear and

disturb the basilar membrane. Within the cochlea on the organ of Corti lie

hair cells which act as receptors to transduce information about the mechan-

ical disturbance upon the auditory nerve (8th cranial nerve). The inner hair

cells generate spike trains containing information about the energy and dura-

tion of a sound pressure wave entering the ear. Each auditory nerve fiber can

be characterized by a tuning curve, which shows the threshold of intensity

needed to increase the spike rate beyond its own specific spontaneous spike

rate at various frequencies. These hair cells excite spiral ganglia which form

the auditory nerve. These spike trains travel along individual axons, each of

which is specialized to carry information around a specific frequency called

the characteristic frequency. The information is carried to the cochlear nu-

cleus, to the superior olive, to the inferior colliculus, to the medial geniculate

nucleus, and finally to the auditory cortex [6].

This review of the auditory pathway is limited to the encoding of sound

pressure wave information on the auditory nerve in the form of action poten-

tials. A small body of literature is presented in this chapter with reference

to the specific content and encoding method of temporal information on the

auditory nerve. Four experiments illustrate the encoding of temporal infor-
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mation with respect to speech by examining the response of test subjects

using simple sounds, speech-like sounds, spectrally degraded speech, and

naturally produced stimuli. Information revealed from these experiments

combined with an analysis of auditory nerve ensemble responses may likely

reveal a relationship between acoustical information cues and their the neural

representations.

2.1.2 Response on the Auditory Nerve Fibers to Simple
Stimuli

With regard to constant frequency, there are two basic response patterns to

tonal stimulus [7]. It is known that the auditory nerve fibers will fire action

potentials in a phase-locked manner: a spike occurs with high probability

given a specific phase relationship with the stimulus, (e.g. a spike for nearly

every positive peak). High frequency stimuli of constant volume (usually

more than 1 kHz) have a strong initial response at the onset of the stimulus,

but settle into a steady-state fire rate of consistent probability as the stimu-

lus progresses. Such results can be seen using a peristimulus time histogram

(PSTH): the average spike rate per time bin is calculated to show the sub-

ject’s response to repeated presentations of stimuli. Spontaneous rates and

characteristic frequency are accommodated within the calculation. Using

the time distribution of the spike rates, the temporal relationship between

acoustical stimuli and spike train occurrences can be examined.

Consider also the characteristics of the excitatory postsynaptic potential

(EPSP) on the post-synaptic neurons in the brain stem in the context of an

ensemble of constant frequency components. With regards to relaying the

transient characteristics of stimuli, the duration and beginning of the EPSP

across frequency must be within a small time window in order to integrate

properly and trigger a response. This synchronous requirement means that

short bursts of action potentials on a group of frequencies (for example, as a

response to a band limited burst of noise, similar to a stop consonant) must

be long enough and arrive with little delay between fibers in order to trigger

a response. These EPSPs must also be short enough in duration in order

to not overlap a sequential event. These conditions are sufficient to preserve

time information as it is passed into the higher regions of the central nervous
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system [8].

2.1.3 Response on the Auditory Nerve Fibers to Speech-Like
Sounds

The study of speech-like sounds has yielded an understanding of how tim-

ing and frequency patterns contribute to perception using synthetic sounds.

Delgutte [9] performed a study of the differences in acoustical properties com-

mon to speech-like sounds and their encoding relationship into the excitation

patterns of auditory nerve fibers. The response to single- and two-formant

synthetic stimuli and fricative or noise-like burst signals are examined and

compared. Consistencies between electrical responses of like stimuli and dif-

ferences in response between dissimilar stimuli give rise to a causality re-

lationship between stimuli and response. Delgutte presents a conceptual

framework in which the responses to complex combinations of such acous-

tical properties are comparable to speech which is thus useful in examining

and classifying speech-like sounds.

Two experimental results from Delgutte [9] are especially useful for this

review: the effect of short-term adaptation as applied to changing band en-

ergy within a speech syllable, and how the spectral envelope of steady-state

speech sounds is represented in the distribution of excitation rate on the

observed auditory nerve fibers. Speech contains strong voiced vowels inter-

spersed with weaker, shorter consonants, and lengths of silence. Therefore,

both the analysis of slowly and quickly changing spectral energy and the

analysis of spectral shape as interpreted from the excitation distribution can

be considered basic characteristics.

The encoding of this information on the auditory nerve is apparent in

response to short 180 ms tone bursts. Short-term adaptation appears after an

initial large increase in spike-rate followed by an immediate drop to what will

become the steady-state level (for sudden onset of longer, constant tones).

The decay rate of the initial large increase is an order of magnitude smaller

than a syllable, and could thus be found demarking the start and end of some

syllables (for example, stop consonant phonemes such as /b/,/t/, /d/, and

/p/). A more gradual onset in spectral energy such as /sh/ would have a

smaller initial increase in spike rate as compared to a larger increase seen in
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the quick onset of such a phoneme as /ch/. Thus for the fast onset of stop

consonants, we expect a burst of neural activity across a band of frequencies.

This is followed by a sudden drop when transitioning to the steady-state

adaptation period of the vowel.

Apart from onset response characteristics, the rate of change in spectral

energy has been historically used in identification of stops (/p/, /t/, /k/, /b/,

/d/, /g/), nasals (/m/ and /n/), and certain fricatives [10]–[14]. Applying a

short time acoustical burst at a varying delay after a steady tone will result

in a neuronal response with a varying maximum height. Decreasing the delay

between the two sounds will decrease the height of the neuronal response to

the short time burst. The tone-delay pattern is synonymous to many vowel-

consonant structures, most notably a vowel followed by a stop consonant.

Therefore a burst of noise-like wide-band spectral energy must generate a

high response when increasing the delay beyond adaptation requirements to

approximate silence.

The second experiment of note is the analysis of the distribution of exci-

tation among observed auditory nerve fibers and its correlation to the distri-

bution of spectral energy of the stimulus. Because each receptor is sensitive

to a specific characteristic frequency, the distribution of spike rates can be

considered a representation of the spectral energy of incoming sound [15].

Using band-passed noise, two signals were generated to resemble /sh/ and

/s/ by perceptual experimentation [13]. A hypothesis is presented that the

distribution of average excitation rate over the range of fibers useful for dif-

ferentiating /s/ and /sh/ is the key driver of information in differentiating

the two phonemes. This may be due to the lack of difference between the ex-

citation averages of fibers representing frequencies above 4 kHz. It is stated

that the differences in the 1-4 kHz range are most likely the distinguishing

factor, as supported by [16] where patients with auditory abnormalities with

cutoffs near 0.5 kHz poorly identified both /s/ and /sh/ while patients with

cutoffs near 2 kHz poorly identified only /s/ sounds. Therefore, the encoding

of speech sounds relies on the spectral shape over a limited frequency range.
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2.2 Related Work - Temporal Pattern Similarity of

Naturally Produced and Spectrally Reduced

Speech Responses on the Auditory Nerve

The perception of complex speech, while a part of the daily life of humans, is

still a subject that is not fully understood. With the successful invention and

implantation of cochlear implants, it is now understood that the importance

of spectral information must be in balance with the importance of temporal

information [17]–[19]. At the center of this investigation lies a set of questions

that challenge the understanding of speech perception: How is temporal

information encoded on the auditory nerve? What temporal information is

encoded in the auditory nerve?

The encoding scheme at the level of the auditory nerve is important in

determining the transfer of auditory information to the higher portions of

the auditory pathway and thus to the central nervous system. As the needed

information must be preserved and enhanced at each step by the removal of

extraneous information, it is important that the cochlea efficiently transduces

and transmits information on the auditory nerve in such a way as to preserve

critical time-frequency patterns for speech perception. Therefore distinct

differentiations between speech tokens must exist. Loebach and Wickesberg

perform two experiments illustrating the encoding of temporal information

of speech from [20]–[22] that are directly relevant to this study. Both studies

share the same basis of stimuli: 1- 2- 3- and 4-band noise-vocoded and unpro-

cessed natural speech of the four speech tokens /p/ersons, /t/oday, /b/all,

/d/irty with the highlighted stop consonants as the subject of the study (a

total of four natural and 16 noise-vocoded words).

The first is a behavioral study which generates perceptual accuracy data

from human subjects. Subjects listened to the initial 20 versions of the stimuli

in addition to several more where the first consonant was replaced with other

consonants (e.g. ‘girty’, ‘kersons’). The subject would identify the word (or

nonsense word) from a list of words. The results of the study indicated an

increasing accuracy when the number of bands were increased with the 3rd

or 4th band being the threshold for intelligibility. That is, a great increase in

accuracy occurs when reaching either the third or fourth band. These results

prompted the need for a follow-up study with a physiological experimental
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framework.

The second study examined the relationship between physiological record-

ings from anesthetized chinchillas (their auditory periphery is remarkably

similar to that of humans). The original 20 spectrally degraded and natu-

ral stimuli of the previous study were extended to include sine-wave speech

(SWS). In SWS, the original speech is replaced by a limited number of promi-

nent spectral components for each block of time. The stimuli were played

close to the tympanic membrane to bypass the effects of the outer ear. The

responses of 84 individual afferents were recorded on the auditory nerve and

were information balanced in the range from 250 Hz to 7000 Hz corresponding

the 20 AI bands of hearing.

The patterns between ensembles were examined for pattern similarity us-

ing dynamic time warping (DTW). It was found that the similarity scores

increased as the number of bands were increased, with a large jump in scores

between responses to 2- and 3-band vocoded speech. This supports the no-

tion that both temporal and frequency information are important to human

speech perception. Portions of this study will be covered in greater detail in

the next two subsections.

2.2.1 Stimuli Preparation

The noise-vocoded and sine-wave speech representations challenge the claim

that fine spectral detail is important to speech perception. Sine-wave speech

is a synthetic voice signal formed from three time-varying sinusoids. These

sinusoids match the frequency and amplitude pattern of a voice signal’s peak

resonances. The resulting sound is considered to be somewhat intelligible

and was used to challenge early notions of acoustical cues reliance on detailed

spectra [23]. The vocoded speech was produced from the natural speech of

male speakers using analysis software. These signals contain 1, 2, 3, or 4

bands of white noise that has been modulated using the envelope of the

original signal. As the bands decrease, the amount of time-frequency infor-

mation progressively degrades below the threshold of understanding. These

spectrally degraded signals therefore contain the time-energy dynamics of

the original signal.
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2.2.2 Ensemble Responses of the Auditory Nerve Fibers

Ensemble responses are derived from the individual afferent recordings for

each chinchilla. Spike rates are calculated for each afferent and are compen-

sated for spontaneous rate. These time series are averaged across multiple

presentations of the same stimuli before reweighting to ensure equal repre-

sentation across frequency bands as a limited and somewhat unpredictable

distribution of fibers are often recorded. The distribution of spike rates across

characteristic frequencies are reweighted to ensure that each band contains

5.0 % of the information using the AI-band reweighting method. Finally, the

time series is time-aligned and averaged into half-millisecond bins to form

the PSTH ensemble representation of the auditory nerve fibers responses.

The specific AI-band weighting process is important as we will apply it to

simulated physiological recordings with this study. This is important in both

the related work and the present study to balance the effects of over- and

underrepresentation of auditory nerve fibers. The endpoints of the Nb = 20

AI bands are 250, 375, 505, 645, 795, 955, 1130, 1315, 1515, 1720, 1930,

2140, 2355, 2600, 2900, 3255, 3680, 4200, 4860, 5720, and 7000 Hz. The

information in the number of channels Nc must be equalized using channel

weights W (c) according to the following formulae:

ζ(k) =
Nc∑
c=1

I(c, k); k = 1, 2, . . . , Nb (2.1)

I(c, k) =

1 (fAI (k) ≤ fcf(c) ≤ fAI (k+1))

0 else ≤ 0
(2.2)

W (c) =
Nc

Nb ∗ ζ(k)
when (fAI (k) ≤ fcf(c) ≤ fAI (k+1)) (2.3)

where the value of the kth AI-band is fAI (k) and I is the indicator function.

The ensemble representations of stop consonants most notably held specific

differences in timing between the sudden onset peaks during the /t/, /b/,

/p/ and /d/ sounds. Loebach and Wickesberg [21] therefore reported that

the noise vocoded stimuli and naturally produced speech contained similar

patterns in the ensemble that were also distinct for each consonant. These

patterns are likely derived from the temporal information in the amplitude
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envelope which is preserved in each stimulus with 3- and 4-band represen-

tations being the most similar. The claim of [17] was upheld: there exists

a neural basis of the perception of stop consonants for spectrally reduced

speech. This was shown by observing similarity between the physiological

responses derived from visual assessment, repeated measures of analysis of

variance, and post-hoc tests. These findings may explain the pattern in the

reported perceptual accuracy scores where accuracy increased with the num-

ber of bands. As the 3- and 4-bands represent the threshold in the number of

bands needed for intelligibility by human listeners, it was shown that these

representations held the most similar PSTH representations to the naturally

produced speech stimuli. Unique patterns present in PSTH of the 3-band,

4-band and natural speech signals were noticeably different from the 1-band

and 2-band signals. For the vowels, the responses were markedly similar to

the point of having insignificant difference: no patterns arose between dissim-

ilar vowels. Therefore, the results appear to establish a relationship between

information on temporal patterns and the proper recognition of consonants.

2.2.3 Nonlinear Comparison of Spectrally Degraded and
Sine-Wave Speech Responses to Naturally Produced Responses

Loebach and Wickesberg [22] investigated the encoding of noise vocoded

speech in the auditory nerve of the chinchilla and observed a correlation be-

tween pattern similarity scores between ensemble responses of noise vocoded

speech and naturally produced speech, and the perceptual identification of

the speech sounds to human listeners. Dynamic time warping was used as

a time-series comparison technique to generate similarity scores (a dynamic

programming method utilizing nonlinear matching; Section 2.4.2). This al-

gorithm was applied to produce scores representing the degree of similarity

between nerve ensemble responses of naturally produced and spectrally re-

duced stimuli. As the dissimilarity scores of the DTW decreased, the rate

of correct identification by human listeners increased. It was therefore sug-

gested that there exists a physiological basis that analyzes the relationship

between temporal information encoded in speech-like sounds on the auditory

nerve.

These two experiments and the cited experiments in previous sections are
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important in understanding the response of individual auditory nerve fibers

to more complex stimuli. While it is clear that an analysis of individual af-

ferents is necessary to understanding speech encoding, an analysis of the en-

tire response on the auditory nerve would provide a new analysis dimension.

Nonlinear time pattern analysis methods are therefore needed to examine the

relationship between the global response of a larger number of auditory nerve

fibers. Using the relationship of pattern similarity, we perform the experi-

ment again with simulated data created from auditory models. We generate

synthetic physiological responses from auditory models to verify the ability

the optimization algorithm to generate realistic parameter sets.

2.3 Models of Auditory System Transduction

A large body of research has been performed in an effort to derive math-

ematical models that accurately depict various phenomena in the auditory

system. With the passage of time, these models have become more biolog-

ically inspired and generally more complex. Models have been designed to

simulate the pinna, ear canal, middle ear, the basilar membrane and hair

cells of the cochlea, and the auditory nerve. The stimuli and physiological

measurement data used in this experiment allow for the disregard of the outer

ear because of the construction and location of the earpiece at the ear drum.

Additionally, it is assumed that the middle ear is all-pass and therefore does

not perform its usual function of gain control and the significant filtering

effect of frequency components higher than 1 kHz [24].

Of particular interest in the context of this study are simple models that

have been historically used to describe the transduction mechanics of the in-

ner ear. While there are several notable models [25], [26], and [1], relatively

simple simulations of the major dynamics of the cochlea have been chosen for

application. These dynamics include the frequency selectivity of the auditory

system, the non-linear compression of the basilar membrane, and the encod-

ing of information as spike trains on the auditory nerve [27]. Therefore, this

background will include the models used to accommodate these behaviors

as well as short descriptions of other related and relevant models of future

interest.

12



2.3.1 A Brief History of Auditory Modeling

Progress on auditory filters has generated many mathematical models that

attempt to describe the many physical phenomena of auditory transduc-

tion. These mathematical models have been based on analog delay lines,

digital filter banks and transmission lines, purely analytical filter forms, and

very-large-scale integration (VLSI) driven active analog methods. Greater

understanding of the transduction has led to advances in model formulation

while physiological measurements have been used to calibrate these models.

For relevance, a brief overview of popular digital filter based methods is nec-

essary with those models finding application in this study receiving greater

detail. The history, development, and description of the rounded exponential

“roex” filters are avoided here for their lack of practical implementation [28]

[29].

A simple filter that begins to model the place theory behavior is the simple

resonance filter. This filter has two poles that are complex conjugates of each

other and an optional zero at DC. Terman’s simple resonance [30], referred

to as a “universal resonance curve” [31] takes on the following magnitude

response:

|(H(f))| = 1

1 + (fc−f
α

)2
(2.4)

where α frequency deviation at the half power point and fc is the center

frequency. For example, for an fc of 1
2

and an alpha of 1
4
, half power oc-

curs at 1
4

and 3
4
. This produces a symmetric response about fc and has very

little ability to accommodate physiological data: too much gain around the

peak and too little attenuation above fc [32]. Both the single and double

resonance filters have seen usage in the past as shown in Figure 2.1. At the

other extreme, a cascade of many simple resonances approaches the Gaus-

sian magnitude shape in the limit [33]. However, while having better peak

characteristics, there is too much attenuation outside of the pass band [32].

What remain between the simple resonance and the Gaussian shapes are the

filter cascades and the variations of the gammatone filter.

Filter cascades and gammatone filters (GTF) both have realizable pole-

zero structures that can be used in both digital and analog settings. Filter

cascades reduce the computational cost of an auditory filter bank in compar-
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ison to a bank of single filter channels. These filters maintain a connection

to the traveling wave phenomena of the endolymph filled space inside the

cochlea. These filters find application in VSLI due to their implementation

form as analog structures and the all-pole filter cascade is closely related to

the all-pole GTF [26]. On the other hand, the GTF require additional com-

putation complexity. The original GTF is less physiologically accurate than

two closely related variations–the all-pole gammatone filter and the one-zero

gammatone filter. The all-pole filter has simply had its zeros removed while

the one-zero gammatone filter has an added zero on the real axis to control

the low frequency magnitude response [29], [34]. The all-pole filter will be

discussed further; however, a discussion of importance of the gammatone

filter and its bioinspiration is warranted.

Roy Patterson [35] explored the usage of a GTF bank to simulate the

division of frequency information across channels. A single channel repre-

sents a portion of the basilar membrane that is susceptible to a particular

band of frequencies with a defined characteristic frequency at maximum gain.

Temporal patterns on the envelope of each channel represent the interaction

of the energy surrounding the characteristic frequency. The cochlear model

contains two portions: a spectral analysis and a time-frequency adaptation.

The spectral analysis transcribes the incoming information before the two-

dimensional adaptation module. While the spectral analysis finds use in this

study, the adaption mechanism referenced from Holdsworth [36] and used in

Patterson’s work [35] has been discarded.

The spectral analysis is defined as an n-channel transduction based on the

AM-FM approach of cochlear modeling. Quatieri [27] suggests a constant

Q cochlear filter bank which suggests a frequency and amplitude modulated

sine wave representation. The envelope and phase are thought to contain

the necessary and sufficient information for speech perception in the higher

stages of cognition. This suggests that the cochlear filter bank is built around

the perception of the amplitude and frequency of the source signal when or-

thogonally decomposed into a sum of exponentials spaced at logarithmic fre-

quencies. Thus each filter channel response represents the spectro-temporal

receptive field model for a sine wave input as given by Aertsen and Johan-

nesma [37] as the gammatone filter based on the AM-FM concept:

gt(t) = AtN−1e−btcos(2πfct+ φ)(t > 0) (2.5)
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where A is adjusted for the gain to be unity at the fc, b affects the response

duration envelope, N is the filter order, and fc is the characteristic frequency.

The envelope factor AtN−1e−bt can be normalized by A = bN

Γ(N)
to become the

gamma probability distribution where Γ(N) =
∫∞

0
tN−1e−tdt [29]. The com-

ponents of the gammatone, the gamma envelope and sinusoidal signal, are

evident in the time domain representation shown in Figure 2.2. The gamma-

tone filter provides a framework to generate a filter bank of constant Q-factor

[35]. The constant Q property of the filter bank leads to an increase in the

bandwidth of the filter as the impulse response becomes concentrated in a

smaller region (accomplished by reducing b which compresses the envelope

in time). This implies that the time resolution decreases while frequency res-

olution increases. Using logarithmic spacing forces filters with lower center

frequencies to have poor time resolution but excellent frequency resolution.

The spacing for the filter bank uses an equivalent rectangular bandwidth

(ERB) function for tonotopic mapping of the filters based on critical bands.

One such function developed by Glasberg and Moore [38] is similar to Green-

wood’s cochlear frequency position function [39] and follows:

ERB = 24.7(4.37
fcf

1000
+ 1) (2.6)

where fcf is the characteristic frequency. Using this ERB mapping in con-

junction with the GTF implementation by Slaney [40] [41] will produce filters

that are constant Q of 9.26449 except at low frequencies. A fully constant Q

is not desirable because the cochlear filters have approximately equal band-

width below 800 Hz [27].

2.3.2 All Pole Gammatone Filters

As noted before the magnitude response of the basic gammatone filter is not

as accurate as desired. While having good peak response, it has a quasi sym-

metric magnitude response. The all pole gammatone filter has a much more

realistic asymmetric response and has therefore found usage in generating

approximations to the GTF useful for simulating cochlear mechanics [42],

[40]. This filter arises from removing the zeros of the basic GTF. Lyon [29]

argues that the zeros of the basic GTF are “spurious”–limiting the ability of

the GTF to match low frequency response data, impulse response measure-
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ments, and allowing for level-dependent nonlinearities of bandwidth, peak

gain, and delay as part of the model. It has a better Laplace domain descrip-

tion as discovered by Flanagan [43] and rediscovered by Slaney [40] while

also reducing computational complexity. The Laplace domain description is

as follows:

H(s) =
K

[(s− p)(s− p∗)]N
=

K

[(s+ b)2 + ω2
r ]
N

(2.7)

where p = −b+ jωr

where N is the number of pole pairs, p is the complex pole where b is related

to the bandwidth, and K is a constant adjusted for unit gain at DC: for

H(0) = 1. Note that the one-zero gammatone filter simply multiplies the

above H(s) by a differentiator (s − q) where q is any real number. The

response of this filter is shown in Figure 2.1. Although the APGF has a

flat response at DC, its accuracy, low computational cost, and theoretical

simplicity make it a credible choice for a filter bank approximation in a

cochlear model.

2.3.3 Slaney’s All Pole GTF Implementation

Slaney [40] begins by deriving the Laplace transform of the gammatone filter.

This was similarly but not exactly performed by Flanagan [43] to approxi-

mate basilar membrane displacement. Slaney fixes the response duration to

be equal to 2π1.019ERB (fc) and the order N of 4 as suggested by Patterson

[35]. This results in a filter with eight poles and eight zeros. The resulting

filter’s poles are four conjugate pairs that lie at the same location to ensure a

resonance at fc. As a computational reduction at the cost of approximation

error near DC, the zeros are discarded and the eight poles remain. These

four conjugate pairs become cascaded second-order sections in implementa-

tion. This is a very simple and efficient implementation of an auditory filter

while maintaining a good match to physiological data [28].

The MATLAB implementation of Slaney’s approximation of an all-pole

gammatone filter is included in the “MATLAB Toolbox for Auditory Model-

ing Work Version 2” [41]. A filter bank may be generated using this toolbox

MakeERBFilters (fs, Nc, flow), where fs is the sampling rate to frequency
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scale the filter response, Nc denotes the number of channels, and flow is set

to the frequency of the filter with the lowest characteristic frequency in the

filter bank. This implementation uses the ERB spacing function of Equation

2.6 to linearly distribute the ERB characteristic frequencies from flow to fs/2

in a function called ERBSpace(flow, fs/2, Nc).

2.3.4 Usage of Filter Bank as Cochlear Model

From Section 2.1.1 a cochlear model includes the pathway up to the synapse

of the inner hair cells (IHC) at the auditory nerve. The average firing rate

on the group of auditory nerves serving a single IHC corresponds to the

spectral energy for that channel. This behavior is reflected in the “place

theory” of hearing since the frequency energy is divided into channels cor-

responding to physical regions of the basilar membrane and their connected

IHCs. Correspondingly, a bank of gammatone filters distributed by a tono-

topic mapping function will merely provide frequency discrimination where a

small frequency range is represented by a single channel. After this spectral

analysis, we must apply a model of basilar membrane compression and inner

hair cell dynamics. Quatieri [27] suggests applying a time differential of the

output of each filter. Following this differential is a non-linear compressor

and low-pass filter. This can be approximated by half-wave rectification and

low-pass filtering to generate the envelope of the time differential. Applying

this technique to a gammatone filter bank is a simple approximation and is

in fact the first model evaluated in this study. More complex models that

account for additional physical phenomena are presently discussed.

2.3.5 Basilar Membrane Compression

An additional stage as recorded by Quatieri [27] and pursued by much re-

search over the years [2], [1], [44] is a model of basilar membrane compression.

For the purposes of this study, it is sufficient to choose a method that ac-

counts for some of the nonlinear compressibility expressed by the basilar

membrane. Therefore, a simple yet powerful model formulation is sought to

maximize the benefit of applying the proposed model comparison algorithm.

Goldstein [2], Zhang [44], and Meddis [1] each proposed multipath meth-
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ods to accommodate the nonlinear compression in addition to the frequency

selectivity.

Both Goldstein [2] and Zhang [44] developed models with many parame-

ters that are a step in the right direction, but are too complex and do not

allow for the extraction of a simple nonlinear stage to be used for this study.

Goldstein’s work uses a multiple band-pass nonlinear model which contains

two paths, one with a low-pass filter and an expanding memoryless nonlin-

earity and the other having a band-pass filter. These two paths are combined

and followed with a compressive memoryless nonlinearity followed by a band-

pass filter. Zhang’s work uses a signal path and a control path which affects

the signal path by tuning a time-varying filter. The control path contains

a low-pass, resonance and two nonlinearities that work to adjust the time

varying filter in order to adjust compression and suppression of a two-tone

signal. The output of the time varying filter of the signal path is convolved

with a linear filter. Each of the filters is based on the gammatone filter.

Meddis [1] also proposed a dual path model that combines to feed into

the IHC stage much like Goldstein [2]. In this model, stapes motion is fed

to one linear path and another nonlinearly compressive path. The paths

are summed and passed to an IHC cell before applying an auditory nerve

model. Meddis explicitly avoided the use of an expansive nonlinear function

as found in Goldstein’s work [2]. The linear path contains a band-pass tuned

for unit gain at the characteristic frequency and a second order low-pass filter

tuned for 6 dB attenuation at the characteristic frequency. The nonlinear

path contains a band-pass, compression, another band-pass, and a low-pass

in that order. While all the band-pass filters are GTFs, the linear path’s

GTF is different from the two identical GTFs in the nonlinear path. The

characteristic frequency and bandwidths of the nonlinear stage’s GTFs are

higher than the linear stage’s GTF by a small fraction as dictated by fit to

laser velocimetry of chinchilla and guinea pig basilar membrane motion.

The nonlinear addition [1] is designed to have a linear behavior at low

magnitudes of signal input x(t) and a nonlinear behavior at higher signal

levels as shown in Figure 2.3. This model is expressed as follows:

y[n] = sgn (x[n]) min(a|x[n]|, b|x[n]|v) (2.8)

The nonlinearity component is the vth power of the magnitude of x. The
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scaling parameters a and b are adjusted to alter the linear gain, the exponen-

tial gain, and the threshold simultaneously. A graph of the input-output rela-

tion is displayed in Figure 2.3. Meddis [1] notes that the nonlinear path alone

is most representative of the basilar membrane response at mid-magnitudes

while the linear portion becomes most representative at lower and very high

signal magnitudes. For this particular signal model, the response appears

to be compressed from 60-dB SPL to 75-dB SPL with the compression pa-

rameter v fixed at one-quarter. Therefore, a single nonlinear path model

may suffice. Since this model contains only three parameters, appears to

be extractable, and has a form able to account for much of the nonlinear

compression present in the basilar membrane motion, it seems most suitable

for the purposes of this study.

2.3.6 Inner Hair Cell Model

There are several models for the transduction of the mechanical motion of

the basilar membrane to the IHC’s firing rate on the auditory nerve. It is

desirable in this study to apply a simple yet powerful model that is widely

accepted and tested in literature. One such model that appears to meet this

criterion is the 1986 version of the Meddis IHC model [45], [46], [3]. This

model generates a sequence of instantaneous probabilities of a spike event at

the postsynaptic cleft given the time pattern of the basilar membrane motion

as input. It has been shown to model rapid and short term adaptation, phase

locking with a significant degree of accuracy [45], [46].

The basis for this model is inspired by an idealized IHC from physiolog-

ical observation. The rate of transmitter transfer between three resource

containers simulates the abstraction of the cell to release, recycle and gener-

ate neurotransmitter. It is described by the following system of differential

equations:
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dq

dt
= y(M − q(t)) + xw(t)− k(t)q(t) (2.9)

dc

dt
= k(t)q(t)− (l + c)c(t) (2.10)

dw

dt
= rc(t)− xw(t) (2.11)

dk

dt
=

g
s(t)+A

s(t)+A+B
s(t) + A > 0

0 s(t) + A < 0
(2.12)

ĉ(t) = hc(t) (2.13)

where A,B, g is the release fraction and threshold, y is the transmitter gener-

ation scalar, l is the cleft loss scalar, x is the transmitter reprocessing scalar,

r is the cleft recovery scalar, and h is the spike probability scalar.

Transmitter ready to be released into the cleft at time t is represented by

the amount q(t). The rate of this amount is dependent on the release frac-

tion k(t), which is dependent on the release scaling values g, A,B, where A

determines the minimum threshold that the cell responds to basilar motion

s(t). The rate of q(t) is also dependent on the amount of new transmitter

manufactured with the cell according to the difference between the maxi-

mum transmitter amount M (generally set to 1) and the current transmitter

amount q(t) scaled by generation rate y. Lastly, the rate of amount q(t) is

dependent on the transfer amount of reprocessed transmitter xw(t) where x

is the reprocessing rate. The rate of the reprocessing pool w(t) is dependent

on reuptake c(t) scaled by the reuptake rate r and the transferred repro-

cessed amount xw(t). Finally the rate of the amount received by the cleft

is dependent on the amount received from the ready neurotransmitter pool

k(t)q(t), that recycled through rc(t), and the amount permanently removed

by cleft loss lc(t), where l is the loss rate. The quantity c(t) is scaled by the

constant h to produce ĉ which is related to the probability of a spike event.

This system of equations does not appear to have an analytic solution ex-

cept when s(t) corresponds to silence (s(t) < A). An implementation of this

model in MATLAB was performed by Slaney [41], where h is set to 50000

and M is set to 1. This produces a steady-state average rate of 135 spikes

per second for a 1 kHz sine wave at an amplitude of 1000 which corresponds

to 60 dB SPL at the typical high-spontaneous rate parameter values given
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in Meddis [3].

It is important to note that this model was extended by Sumner [5]. It has

been evaluated using the dual resonance non-linear filter based basilar mem-

brane model previously described and a model of the auditory nerve which

simulates refractory patterns in a stochastic sense. The model accounts for

more biophysical phenomena. The model simulates the IHC receptor poten-

tial based on basilar membrane motion, the state of ion channel openings as

a conductance, and the state of cell body potential using a passive circuit

model. The transmitter release function k(t) mentioned earlier is replaced

with a third-order model of the probability of release based on conductance

of calcium channels during depolarization, the amount of calcium present at

the synapse based on calcium current, and the concentration of calcium with

regard to a membrane release threshold constant. The value of this release

function drives the three equations q(t), c(t), and w(t) given earlier for the

1986 IHC Meddis model with each transfer of a given amount becoming the

probability of transfer of a given amount. Given these extensions, the num-

ber of parameters increases by four with five parameters derived from the

1986 Meddis IHC model.

The MATLAB implementation of Meddis’s implementation of his hair cell

model using a discrete time approximation is included in the “MATLAB

Toolbox for Auditory Modeling Work Version 2” [41].

2.4 Gradient Descent Optimization and Distance by

Dynamic Time Warping

2.4.1 Optimization by Gradient Descent

It is necessary to include a basis for the optimization algorithm designed to

seek better parameters for an auditory model. In this pursuit, we apply an

approach to the classical problem of optimization in order to discover more

optimal values of the parameters of the auditory models and thus minimize

the model distance. This classical problem [47] is to seek the solution of an

optimization problem of the following form:
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min
x εX

f(x) (2.14)

where the purpose is to find the values of x minimizing the objective function

f , where x is constrained on the set X. A definition of f and its derivatives

provides information on the behavior of the function of f over x such that

the minimum value at f(x∗) can be found at the optimal point x∗. That is,

the ith gradient ∇if(x) becomes zero at x∗:

∇if(x) =
∂f

∂xi
(x = x∗) = 0, i = 1, 2, ..., n (2.15)

For an unconstrained objective function f(x), where X is Rn, it can be

trivial to find a local minimum when the gradient and Hessian are known.

This minimum will occur at a stationary point when the gradient ∇if(x) is

zero and assume the definition of local minimum when the Hessian of f(x)

is positive semi-definite. However, if the function is not differentiable at the

minimum point, an analytic solution cannot be found. In fact, if the function

is not differentiable for any x or is computationally expensive to approximate,

a finite difference approximation is more practical. For this work, the central

finite difference is appropriate and is defined by:

∇if(x) =
∂f

∂xi
≈ f(xi + ∆xi)− f(xi −∆xi)

2∆xi
; i = 1, 2, ..., n (2.16)

where ∆xi is the change in the ith element of x at the point xi. If f is

expensive to calculate, then this function will require 2n computations of f .

The value of ∆xi is a value chosen to ensure that the gradient is valid at x.

If set too low, the values f(xi+ ∆xi) and f(xi−∆xi) may be equal, thereby

forcing the ith partial to be zero in the close proximity of xi. If set too high,

the derivative may not indicate a reasonable direction near xi. Lastly, if the

length 2∆xi spans a minimum of a piecewise function, the direction of the

derivative would be effectively undefined at this point, thus generating an

invalid direction.

The gradient ∇if(x) has an important property useful for optimization: as

the value of xp in f(xp) is moved in the opposite direction of the gradient from

x, the value of f(xp) decreases at the fastest rate near x. When moving away

from x, the direction must be updated from the gradient as this property
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only holds locally around x.

Using this information about the gradient, we can apply Cauchy’s steep-

est descent method to minimize f(x) with a change in formulation of the

gradient. The algorithm functions as follows:

1. Set an initial point x0 and set iteration index k = 0.

2. Compute the gradient in the direction of steepest descent

Gk = −∇f(xk) ≈
f(xi + ∆xi)− f(xi −∆xi)

2∆xi
; i = 1, 2, ..., n (2.17)

3. Determine the optimal step length αk for the direction Gk

xk+1 = xk + αkGk (2.18)

4. Test xk+1 for convergence conditions.

(a) If met, stop and declare xk optimal.

(b) Else, increment k and go to step 2.

The modifications needed to design an algorithm necessary to optimize

model parameters over a distance function will be presented in Section 3.2.2.

2.4.2 Dynamic Time Warping

.

Dynamic time warping (DTW) is a dynamic programming approach in-

troduced by Sakoe and Chiba [48] that has been historically used in speech

recognition but has received less focus over the years as other machine learn-

ing methods have proven greater accuracy with greater computational cost

[49]. DTW compares two finite impulse sequences by applying a cost (or

distance) function to find the minimum cost operation to be taken at each

computational step. This operation finds the optimal realignment of the

data in a non-linear fashion. The algorithm begins with the calculation of

the distance matrix between the target feature and the template feature.

The distance function used to generate this is arbitrary–that is, an nth norm

‖x‖n, cosine distance or other appropriate distance metric definition may be
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used. This distance is calculated between each indexed point of one signal

X(i) of length NX to another signal Y (j) of length NX , where i and j span

the indexed portions of the signal to be examined. For example, populat-

ing the NX by NY matrix D where the function d becomes the Euclidean

distance:

D(i, j) = d(X(i), Y (j)) = (X(i)− Y (j))2 (2.19)

i =0, 1, . . . , NX

j =0, 1, . . . , NY

The following equation is the dynamic programming equation that de-

scribes the objective of DTW:

φ∗ = arg min
φ
dφ(X, Y ) (2.20)

where φ∗ represents the optimal path through the matrix D on i and j for

the time series X and Y . Each path φ has a score that is calculated by:

dφ(X, Y ) =
T∑
k=1

d(φX(k), φY (k))
m(k)

Mφ

(2.21)

where X and Y series represent the pattern to be examined, φX and φY

are data representing the X and Y series after time alignment, m(k) is the

weighting function, and Mφ is the normalization factor [50], [51]. The DTW

algorithm is designed to yield an optimal path solution φ∗ by objective func-

tion dφ. The value dφ(X, Y ) representing the total cost associated with this

best path can be regarded as the amount of dissimilarity between the two

patterns with dφ(X, Y ) = 0 implying equality. This is also referred to as the

warping score.

The algorithm iteratively calculates the cost equation of each possible com-

parison. This generates cumulative distances C for each point in D(i, j),

effectively creating a new matrix C(i, j). The process is recursive in imple-

mentation and in its most basic form is simple and intuitive. The steps are

enumerated below:

1. Initialization - The indices of analysis, i and j, are set to 1.

2. Recursion - The first row and first column are calculated, then the
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other rows and columns are calculated based on previous values from

the following equation:

C(i, j) = D(i, j) + min(C(i− 1, j), C(i− 1, j − 1), C(i, j − 1)) (2.22)

3. Termination - Calculate the similarity cost of the final point (also called

“fit” values or “warping” values).

4. Path Backtracking - Seek the most optimal path by starting at the legal

endpoints and traversing backwards through time.

Essentially, the basic algorithm attempts to perform an insertion, deletion,

or no change of the current point, depending on which action has the low-

est cost value. In order to do this, it must calculate the cumulative cost of

each point on the grid where the matrices D and C are mapped. It is com-

putationally inefficient to calculate the cost of every possible combination

of points. This can be limited by locality constraints to reduce the likeli-

hood that unlikely sample matches will not be calculated. The following are

constraints commonly used [50]:

1. Boundary (endpoint) constraints - In general endpoints of the path

should not be too far from the start and end points of the diagonal

(1, 1) and (NX , NY ). The distance to the endpoint of the diagonal will

therefore be perpendicular to the grid lines.

2. Monotonicity conditions - The path must not travel backwards in time

at any point. The indices of comparison i and j must always increment

or remain the same.

3. Local continuity - The path only steps one at a time. Rabiner and

Juang [50] list several different sets of local path constraints. The most

basic is listed in step 2 of the algorithm above

4. Warping window - This constrains the analysis to paths that do not

stray far from the diagonal path.

5. Slope constraint - A path should not contain large portions of vertical

(y) or horizontal (x) movement. This constrains the slope to be p <

y/x < q where p is more horizontal and q is more vertical where p > q,
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p > 0 and 1 < q. This can also be thought of as limiting a cumulative

slope by limiting the number of times g the algorithm can travel in

increasing i or increasing j directions.

6. Slope weighting - Dynamically restrict the path by forcing certain lo-

cal path movements to cost more, thus decreasing their possibility of

contributing to the optimal path.

Applying these constraints will be especially useful to ensure that a valid

optimal path is produced and can reduce computational complexity. A valid

optimal path is defined here as a path which does not violate the reality of

the data content of series X and Y . An simple example is to imagine the

word “one” uttered slowly and quickly. Setting the window very tightly may

not allow the quickly uttered version to stretch out and match the slowly

uttered version. Another example is to take two identical utterances of a

word and pad silence around one utterance. Setting the endpoint constraints

tightly so that (1, 1) and (NX , NY ) must be included may be less optimal

than allowing the algorithm to truncate the path near the end of the padded

word.

Setting a window limits the analysis of cumulative paths according to a

set of criteria. One such window is the Sakoe-Chiba window [48] which

limits analysis to a number of units T above or below a line segment drawn

between the endpoints. This method reduces computational cost and may

aid the algorithm in finding the valid optimal path. The cost of the Sakoe-

Chiba is O(T max(NX , NY )) and the original is O(NXNY ) operations. This

is especially true if a valid path is defined in the same manner as the Sakoe-

Chiba window: a good match must occupy the vicinity of the center diagonal.

An example of a path that does not intersect the endpoints was generated

with a max slope g of 4, boundary relaxed to a value of 3, and a window size

of 5 and is shown in Figure 2.4.

It is important to note for purposes that will be clear during formulation in

Section 3.1.1, it is necessary to discuss the optimal cost d∗φ(X, Y ) associated

with X and Y as a metric space. Work performed by Vidal and others [52]–
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[54] has shown that the following four metric space properties hold ∀ a, b, c:

d(a, b) ≥ 0 (2.23)

d(a, b) = 0 iff a = b (2.24)

d(a, b) = d(b, a) (2.25)

d(a, b) + d(b, c) ≥ d(a, c) (2.26)

where the last equation only holds under certain conditions and often only

holds loosely. While the first two rules are simple to show for all DTW

algorithms, the third requires that the constraints placed upon the basic

algorithm produce a symmetric matrix D and allow the warping path to

exchange i and j mapping values, effectively reflecting the warping path

along the diagonal of D when X and Y are exchanged as d∗φ(Y,X). The last

rule was determined to loosely hold by adding a factor HL in [53]. This factor

was empirically shown to be positive when comparing identical utterances of

the same word. Therefore it was assumed that the property was shown to be

loosely true for vocabulary set of words used to assess the triangle inequality

property. Given this information, it is clear that the DTW algorithm has an

ability to make meaningful binary comparisons between time patterns.

Applying the correct constraints given the nature of the data increases the

likelihood of valid optimal paths while loosely respecting the properties of a

metric space. This will allow the measurement of a valid distance between

two signals that represents their dissimilarity.
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2.5 Figures
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Figure 2.1: The resonance, double resonance, and all-pole gammatone filter with
N=2 and N=4 are shown. These example filters pass input modes about the
center frequency ωc = 0.5.
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Figure 2.2: The time domain representation of an 8th order gammatone filter’s
impulse response. The decaying nature of the sinusoidal evinces the cosine and
exponential parts of the gammatone’s time domain function. This filter was
chosen to represent a single channel centered at 100 Hz with b = 100.
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Figure 2.3: Input-output for the non-linear exponential compressor used in the
DRNL model with parameters set { a = 0.05, b = 0.06, v = 0.25 }.
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Figure 2.4: The two graphs above were generated using the values of the
cumulative distance matrix of the DTW algorithm. Lighter cells represent lower
cost with the beginning of the signals aligned in the top left. The optimal path is
traced through the lightest portion of the image. The top graph was generated
using a basic DTW algorithm. The bottom graph was generated using a
percent-bounded, Sakoe-Chiba windowed [48] DTW where the path was allowed
to begin away from beginning of the signals. The search space in the bottom
graph is restricted by forcing the areas outside the window to have a prohibitive
cost (represented by the black areas). The percent-bounded and Sakoe-Chiba
constraints may increase performance efficiency and accuracy for certain signal
applications [50].
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CHAPTER 3

COMPARISON AND OPTIMIZATION OF
AUDITORY MODELS

A general formulation of the comparison process will be covered first. This

will be followed by a formulation of the optimization procedure. Next, spe-

cific algorithms used to generate optimized models and comparison scores

will be presented followed by an implementation of these algorithms. This

implementation will use the same data from the research in related work (a

thank you again to Professor Robert Wickesberg for the provided data used

in the implementation).

3.1 Nonlinear Comparison of Models

3.1.1 Formulation

We set out to derive a pseudo distance metric capable of interpretation as a

distance between two models. To motivate this, consider an unknown model

Mλ having a functional mapping of input time series xi εR and output time

series yi εRn for the unknown parameter set λ′.

y = Mλ′(x) (3.1)

We also define a known model having input data x and output data ŷ for

a known parameter set λ:

ŷ = M̂λ(x) (3.2)

Next we define a pseudo distance metric D(M̂λ,Mλ′) which relies on an-

other pseudo distance metric definition d(y, ŷ). We now consider a family of

time series of both xi and thus yi indexed by i implying multiple input and

corresponding output time series where i = 0, 1, . . . Ni:
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D(M̂,M) =
∑
i

d(yi, ŷi) (3.3)

It is important to establish a formalized rule to assess the relationship

between M̂λ and Mλ′ by a measure D(M̂,M). To establish this as a pseudo

metric structure, both of these functions D and d must have the following

properties ∀ a, b ε R:

f(a, b) ≥ 0 (3.4)

f(a, b) = 0 iff a = b (3.5)

f(a, b) = f(b, a) (3.6)

For the measure D to have a metric space structure it would also have to

satisfy f(a, b)+f(b, c) ≥ f(a, c) ∀ a, b, c. We relax this formulation and allow

the triangle inequality to be violated to allow for a greater range of functions

to take the place of d including non-linear forms of time series comparisons.

Using this definition for the Model Distance D(M̂,M) we can now approach

a specific choice for the function d.

3.1.2 Model Comparison Algorithm Using Dynamic Time
Warping

We first begin with the comparison algorithm based on the formulation of

Section 3.1.1. Note that while a more general algorithm having xi[n] and

yi[n] in vectorized form is certainly possible, we define xi[n] and yi[n] to be

elements of R to correspond to the implementation developed in Chapter

4. Note that an output definition of yi[n] as a vector may correspond to a

comparison of a multichannel model output. An excellent example of this

would be a comparison of a cochlear model’s hair cell outputs with individual

auditory nerve fiber measurements grouped by characteristic frequency.

1. Input:

Test Data Sample: An auditory stimulus as sampled time series xi[n],

where n = 0, 1, . . . Nxi.

Template Data Sample: The response to the auditory stimulus as sam-

pled time series yi[n] where n = 0, 1, . . . Nyi, where i = 0, 1, . . . Ni
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2. Preprocessing Input Data:

The data must be prepared by a function mapping P : R → R for

input into the model. This may include filtering to relevant frequencies

of interest, resampling to ensure valid comparisons across values of i

for xi and yi, and keeping a contiguous portion of xi and yi that is of

interest. Additionally, the amplitude levels of xi must be adapted for

application by the model M̂ if it is not a linear system. This is true

if amplitude nonlinearities are present in M̂ . These preparations will

be model specific and must be carefully prepared by the applicator to

ensure that the model functions as intended.

x̃ = P (x) (3.7)

3. Model Application:

A definition of the model must be developed and applied to the pre-

pared input signal. That is, for each input data x̃i and each model k

an output ŷi is generated:

ŷi = M̂k(x̃i) (3.8)

4. Post-processing:

This stage may be omitted, but perhaps some analysis of y is of interest.

For example, limiting examination to a certain range of time patterns in

y or performing a short-time frequency analysis on y may be of interest.

This process p′ = Q(p) is applied to both time sequences y and ŷ:

ŷ′ = Q(ŷi) (3.9)

y′ = Q(yi) (3.10)

5. Comparison:

After iterating over the previous steps for each input test sample i, we

now generate a Model Distance of M and M̂ by comparing each y′ and
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ŷ. We calculate D for this purpose:

D(M̂,M) =

Ni∑
i=0

d(y′i, ŷ
′
i) (3.11)

where the Model Distance value provided by D(M̂kλ,M) satisfies the

need for a comparison metric. The function d(y′i, ŷ
′
i) is defined here

as the basic DTW algorithm discussed in Section 2.4.2 with optional

constraints applied dependent on the properties of the input time series

x and y.

3.2 Model Optimization by Nonlinear Comparison

3.2.1 Optimization Formulation

Recall from Section 2.4.1 that the form of an optimization problem for the

objective function f(x) is:

min
x εX

f(x) (3.12)

We configure Equation (3.12) for this problem, where D is treated as a

distance metric. In addition, we now differentiate between a model of the

same formulation but a different set of parameters as M̂kλ where k represents

a particular formulation and λ represents a particular set of parameters.

Therefore the following minimization over the space of models M becomes

restricted:

min
M̂k εM

D(M̂k,M)

becomes

min
λ
D(M̂kλ,M) (3.13)

We redefine D using the distance metric calculation process for a natural

model. Combining Step 1 through Step 5 from the model comparison algo-
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rithm in Section 3.1.2, D(M̂,M) now takes the form

D(M̂kλ,M) =

Ni∑
i=0

d(y′i, ŷ
′
i) (3.14)

D(M̂kλ,M) =

Ni∑
i=0

d(Q(M̂kλ(x̃i)), Q(ŷ′i))

D(M̂kλ,M) =

Ni∑
i=0

d(Q(M̂kλ(P (xi))), Q(ŷ′i))

We can now optimize D(M̂kλ,M) over λ to find the optimal parameter set

λ∗ by providing definitions for model Mk, the preprocessing function P , and

the post-processing function Q.

3.2.2 Optimization of a Model By Finite Difference Gradient
Descent

Now that a comparison algorithm has been developed for a distance between

two arbitrary models D(M̂,M), an optimization algorithm using D as the

objective function may be developed. We seek an application of the classi-

cal gradient descent problem previously discussed in Section 2.4.1. We set

the Model Distance value provided by D(M̂kλ,M) as the objective function

needed to perform a gradient descent. However, a known form of the deriva-

tive of the function d(x, y) does not exist when d(x, y) is the DTW algorithm

and x and y are the input time series. A solution previously discussed is to

generate an approximation to the partial derivative by a central difference

function:

∇iD ≈ Gk =
D(M̂k,(λi+∆λi),M)−D(M̂k,(λi−∆λi),M)

2∆λi
(3.15)

where Gk is the approximation to the partial derivative. Using this informa-

tion about the gradient, we can apply Cauchy’s steepest descent method to

minimize D with some modifications. The algorithm functions as follows:

1. Set the initial point λ0 and set iteration index k = 0.

2. Compute the point D(M̂k,λk ,M).
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3. Compute the finite difference approximation to the gradient in the di-

rection of steepest descent with perturbation ∆λi = λiε.

∇iD ≈ Gk (3.16)

4. Determine the optimal step length αk for the direction Gk.

(a) First set αk,0 as an initial estimate.

(b) Compute step to λk+1.

λk+1 = λk + αk,jGk (3.17)

(c) If λk+1 is outside of constraints (e.g. λk+1 > 0), increment j, then

set αk,j = αk,0/(j + 1), and return to Step 4(b).

(d) Test the descent condition D(M̂k,λk+1
,M) < D(M̂k,λk ,M)

i. If the descent condition is satisfied, we have decreased the

objective function as desired. We then declare αk,j optimal

and go to Step 5.

ii. Otherwise increment j and set αk,j = αk,0/(j).

iii. If j > jmax declare xk optimal and exit, else return to Step

4(b).

5. Test xk+1 for convergence conditions:

||Gk||2 < C∇ (3.18)

||λk+1 − λk||2 < C∆λ (3.19)

k > kmax (3.20)

(a) If these conditions are met, declare xk optimal and exit.

(b) Otherwise increment k and go to Step 2.

As noted before, the values of ε (and thus ∆λi) and αk must be chosen

judiciously to avoid instability, ensure a higher likelihood of valid gradient es-

timates, and enforce a good rate of convergence. The convergence conditions

C∇ and C∆λ control the magnitude of perturbation in λ and the magnitude

of the estimated gradient. In addition, kmax sets a limit on the number of
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iterations of the program, while jmax sets a limit on the number of tests of

αk,j. A limit on the number of tests of αk,j encourages convergence in a case

where the current point is near a minimum or in a deficient case where the

gradient is pointing in a direction of ascent rather than descent.
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CHAPTER 4

MODEL COMPARISON AND
OPTIMIZATION ON THE RELATED

WORK

The comparison and optimization methods of Section 3.1 can be applied to

transduction processes containing time nonlinearities. However, there exist

many choices of different representations of a model’s input and output data.

These representations are important to enforce an interpretation of the in-

put and output data to correlate to current understanding of the temporal

encoding process as first discussed in Section 2.2. In this context, the input

must be the time waveforms of the auditory input and the output response

of a single cochlea at the boundary to its auditory nerve bundle. We there-

fore choose time-indexed energy as our input and output data. Choosing

the input in such a manner correlates to the amplitude of a pressure wave

at the input of the auditory periphery. Choosing the output as time-energy

will reveal the importance of certain modeling dynamics in the context of

time-energy patterns.

Given these selections, the physiological cochlear response may be mean-

ingfully compared with the simulated response of a model to determine the

ability of the model to fit physiological phenomena. To explore this compar-

ison technique, we will provide a basis from which to examine the effects of

compounding subsequent classical models covering a range of well studied au-

ditory phenomena. During this process, certain models will also benefit from

parameter optimization. This is necessary to combat doubts about whether

the model is hampered by poor choice of parameters. In other words, we

attempt to find the best parameters in order to reduce model dissimilarity

due to poor choice of parameters. The only dissimilarity left must therefore

be a result of the model: the concepts it represents and its specific imple-

mentation.
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4.1 Non-linear Model Comparison by Dynamic Time

Warping

We first describe an implementation for applying the formulation for a com-

parison method. Note that this will be performed for a single ith test sample.

The steps to build this model include:

1. Input:

Auditory (Stimulus) data: An auditory stimulus as sampled time series

xi[n] where n = 0, 1, . . . , Nx. The auditory stimulus data of the words

“ball,” “dirty”, “today” and “persons” originally used in the related

work (Section 2.2) are applied here. There are a total of Ni = 24 stimuli

with the four words having 1-,2-,3-, and 4-band versions, a naturally

produced version, and finally a sine-wave speech (SWS) version.

Physiological (Response) data: The response to the auditory stimulus

as sampled time series yi[n] where n = 0, 1, . . . Ny. This is taken as the

ensemble of the auditory nerve response briefly described in Section

2.2.2 with more detail recorded in [20]. There are 24 responses for

their respective stimuli.

2. Preprocessing:

The two input time series must be prepared prior to model processing

to ensure that the comparison is meaningful in terms of sampling rate,

time alignment, and amplitude matching. First, the two inputs must

be resampled to 14 kHz (determined by the 7 kHz upper band limit of

the AI bands). Next, enough data must be included to allow the DTW

algorithm to sync the beginnings and ends of the desired content in xi

and yi. The start of the stimulus and the start of the response were

likely not synchronized during recording. A margin of 17 milliseconds

is added to the start and 8.5 milliseconds to the end of the auditory

samples. These values were determined by examining the difference in

waveform. It is important to note that the DTW algorithm previously

discussed is designed to handle this added length without affecting the

distance scores. The index xi[0] is set to 1 or a value generated from a

binary detection algorithm designed to find the first value. Note that

the analysis length is 120 ms to encapsulate the initial stop consonant.
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The binary detection algorithm is a sequential test of xi[n] and ends

when the threshold condition in Equation (4.3) is met. We first begin

by generating a max normalized sample energy series x̂i[n] and the

range of energy d:

(a) Initialize and set k = 1.

x̂i[n] =

(
xi[n]

maxn(xi[n])

)2

(4.1)

d = max
n

(x̂i[n])−min
n

(x̂i[n]) (4.2)

(b) Make a binary decision δ:

δ =

1 x̂i[k]−minn(x̂i[n]) ≥ d
α

0 otherwise
(4.3)

(c) If δ = 1, continue to Step 4, else increment k and return to Step

2.

(d) Shift data of x to the left so that x̃[0] = x[k] and end.

Here a value of α set to 250 produced sufficient choices of the start

position for the given data set. Lastly, any necessary gain adjustments

must be made to x̃ to ensure that models having specific input am-

plitude requirements are respected. In Model D explained later, the

audio data must be adjusted so that the x̃[n] = 1 corresponds to 30

dB SPL due to amplitude non-linearities [45]. Because each stimulus

was adjusted to be 70 dB SPL during the experiment, we know that

the current maximum of each sound sample corresponds to 70 dB. Max

normalizing so that 70 db SPL corresponds to x̃[n] = 1 and then at-

tenuating by 40 db SPL generates the desired effect. Combining these

operations yields the function x̃ = P (x).

3. Model Application:

Apply an auditory model while paying close attention to the content

that must be provided as input and the content generated as output.

In this case, each model accepts an auditory input stimulus as the

signal x̃[n] and generates a simulated physiological response. Please
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note that the index of the stimulus i has been omitted for clarity. This

Model Application and subsequent post-processing is applied for each i.

The model output M̂k[n] with a letter subscript indicates the output for

that model is to be interpreted as a simulated auditory nerve ensemble.

The subscript of M̂k[n] is a replaced by a letter where k = A,B,C,D,E

represents a model identified below:

Model A – Baseline – No auditory transduction model is applied

in this starting case. The amplitude envelope of the signal contains

information about the time-energy of the signal and will be extracted in

the post-processing stage where full-wave rectification will be followed

by a low-pass filter.

M̂A[n] = x̃[n] (4.4)

Model B – Gammatone Filter Bank – One of the primary func-

tions of the cochlea is to tonotopically separate information for further

processing along the auditory pathway. Therefore, it is necessary to

add a frequency selectivity stage. An historical Patterson-Holdsworth

[35] bank-of-filters approach using Gammatone filters is applied here

to decompose the energy information across channels according to an

AM-FM approach. The usage of half-wave rectification and low-pass

filtering is to approximate hair-cell transduction in the classical man-

ner much like [55], [56]. First we define the impulse of the gammatone

filter bank hGTF (c) using 8th order all-pole gammatone filters:

HGTF (c)(s) =
K

[(s− p)(s− p∗)]N0
(4.5)

The MATLAB function MakeERBFilters generates a linear distribu-

tion of the filters in the ERB space using ERBSpace(flow, fs/2, Nc).

Each returned filter is indexed by c in the impulse response hGTF (c)[n]

generated from an impulse invariance approximation to the gammatone

filter. The method signature is MakeERBFilters (fs, Nc, flow), where

fs is set to 14 kHz corresponding to the maximum AI-band limit, Nc

is set to 2161 channels, flow is set to the lower bound of the AI-gram

250 Hz. The value Nc was calculated by finding the number of filters
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inside the AI-band range of 250 Hz to 7 kHz. This was found by gen-

erating the array of characteristic frequencies in the range of flow =

20 Hz and fs/2 = 20 kHz corresponding to the approximate range of

human hearing and then counting the number of filters falling within

the AI-band.

hGTF [n, c] =
∑
m

x̃[m] ∗ hGTF (c)[n−m] (4.6)

hrect[n, c] = hGTF [n, c] ∗R(hGTF [n, c]) (4.7)

where R(d) =

1 d > 0

0 d ≤ 0

HLP (z) =
1/20

1− 0.95z−1
(4.8)

hB[n, c] =
∑
m

hrect[m, c] ∗ hLP [n−m] (4.9)

In Equation (4.7), a gammatone filter with center frequency fcf corre-

sponding with ERB frequency from Equation (2.6) is generated using

Slaney’s implementation described in Section 2.3.3. The half-wave rec-

tification is provided by R(d) and low-pass filtering from convolving the

impulse response hLP with the rectified output hrect. To generate the

simulated ensemble response, we average across the channels using the

AI-gram band weighting technique described earlier in Section 2.2.2:

M̂B[n] =
Nc∑
c=1

hB[n, c] ∗W (c) (4.10)

Model C – Gammatone Filter Bank + Compression – As the

cochlea exhibits nonlinear level compression, the model of Equation

(2.8) is applied here after the GTF application and before the half-
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wave rectification. For verbosity:

ĥGTF [n, c] = sgn (hGTF [n, c]) min(a|hGTF [n, c]|, b|hGTF [n, c]|v)

(4.11)

ĥrect[n, c] = ĥGTF [n, c] ∗R(ĥGTF [n, c]) (4.12)

hC [n, c] =
∑
m

ĥrect[m, c] ∗ hLP [n−m] (4.13)

M̂C [n] =
Nc∑
c=1

hC [n, c] ∗W (c) (4.14)

Model D – Gammatone Filter Bank + Compression + Meddis

Hair Cell – The basilar membrane movement must be transduced

from mechanical energy into spike rates. Meddis’s model described in

Section 2.3.6 has been chosen for this purpose. To do this, we must set

the input to s[n, c] = hC [n, c] in Equation (2.12) and use the optimized

values of a∗, b∗, and v∗ to force the hair cell model to compensate for

residual error from the previous model.

Please note that the left-hand sides of Equations (2.10)–(2.13) are dis-

cretized and indexed for the cth channel according to implementation

included in the “MATLAB Toolbox for Auditory Modeling Work Ver-

sion 2” [41]. The resulting spike probability is normalized by subtract-

ing the spontaneous rate estimated from the first Nsr samples:

hD[n, c] = ĉ[n, c]−
NSR∑
k=1

ĉ[k, c] (4.15)

M̂D[n] =
Nc∑
c=1

hD[n, c] ∗W (c) (4.16)

4. Post-processing:

Generate a time-energy interpretation of the model output M̂k,i[n] and

the stimulus response yi[n]. Particularly, we generate an envelope of

the signal by half-wave rectification, followed by a 2nd order low-pass

Butterworth filter and finally energy normalization. This process p′ =

Q(p) can be written in two steps as applied to the two time series.
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First, we note that the model output M̂D[n] is now indexed on the

stimulus response i and renamed to ŷk,i[n] to match the formulation:

ŷk,i[n] = M̂k,i[n] (4.17)

ĝk,i[n] = henv(n) ∗ |ŷk,i[n]| (4.18)

gi[n] = henv(n) ∗ |yi[n]| (4.19)

The Butterworth filter has impulse response henv with a possible cutoff

value fenv between 400 Hz and 1 kHz. This corresponds to the range

of 1 ms to 2.5 ms and is derived as follows:

Lower bound on fenv — To set the lower bound on the cutoff value

we apply the Nyquist criterion to satisfy speech stationarity conditions

recorded in [50]. The first limit of 5.0 ms is the smallest period of

statistical stationarity of a speech signal. Therefore we must examine

neural patterns at or greater than 5.0 ms in duration. Patterns of

shorter duration than this value may or may not contribute information

needed by the auditory system to encode acoustical cues within the

data. Therefore, we must not attenuate sinusoidal modes with periods

greater than 5.0/2 = 2.5 ms. To further clarify, all energy patterns

with modes slower than 400 Hz must be examined.

Upper bound on fenv — For the upper bound on the cutoff value of

the low-pass filter, we look to the source data to understand the possible

extent of sinusoidal modes present in the neural response. Because the

ensemble has been formed from several spike trains analyzed by a time

histogram of non-overlapping bins of a width of 0.5 ms, this implies

that patterns faster than 1 ms will have no ground truth – i.e. there

will be no physiological information to compare to for modes above 1

kHz.

These bounds imply that the limit on the energy modes must lie be-

tween the range 400 Hz to 1 kHz. A value of 1 kHz was chosen to

attempt to utilize all of the data. However, after a repeat of the analy-

sis at 600 Hz, it appears that this range may be particularly insensitive

for the output of the comparison technique for this application context.
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Finally we generate the two energy normalized time series ŷ′[n] and

y′[n] where N̂m is the length of ŷ′[n] and Nm is the length of y′[n]:

ŷ′[n] = Q(ŷi) =
1

N̂m

∑
n

ĝi (4.20)

y′[n] = Q(yi) =
1

Nm

∑
n

gi (4.21)

The two time series ŷ′[n] and y′[n] are the results of the data modeling

and preparation needed for usage in the comparison and optimization

method.

5. Comparison:

The function d(y′i, ŷ
′
i) is defined here as the basic DTW algorithm dis-

cussed in Section 2.4.2 with several constraints applied. First, mono-

tonicity and local continuity are enforced.

(a) Boundary (endpoint) constraints – The start of the path is al-

lowed to bypass the first 25% of the length of either input signal.

Similarly, the end of the path is allowed to bypass the final % of

the length of either input signal.

(b) Warping Window – The Sakoe-Chiba window is applied here with

a width (the distance to the diagonal) set to be the number of

samples corresponding to T = (0.017 ms + 0.010 ms)fs = 378

samples where fs was previously set to 14 kHz. The 17 ms corre-

sponds to a maximum deviation in matching the half of the front

and all of the end of the signal from the threshold test mentioned

previously in Step 1. The 10 ms corresponds to the analysis win-

dow previously used in the related work [20] described in Section

2.2.3.

(c) Slope constraint – The slope constraint is applied by limiting the

number of times g the algorithm can travel in increasing i or in-

creasing j directions to 50.
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4.2 Auditory Model Optimization by Finite Gradient

Descent Algorithm

A working process to generate values for d(y′i, ŷ
′
i) is now defined. The al-

gorithm designed in Section 3.2.2 is used to generate a solution to the op-

timization problem in Section 3.2.1. The input values for x are limited to

the four naturally produced tokens. This has two beneficial effects. First, it

reduces the amount of data that must be processed. Second, examining the

individual values of d for the n-band and SWS speech tokens may confirm

the ability of the optimizer to seek more realistic parameters for the model

instead of simply overfitting the data. We now apply the process to calculate

distance values from the DTW algorithm to the finite difference gradient de-

scent. Convergence criteria used in the application of the optimization are

shown in Table 4.1. These values were derived from repeated attempts to

find convergent values within a limited amount of computational time.

Table 4.1: Convergence Parameter Values by Model

Model C Model D
jmax 200 200
kmax 50 50
C∇ 5× 10−3 2× 10−4

C∆λ 5× 10−3 2× 10−4

εk ∀ i 1.05 1.05
αk,0 ∀ k 0.05 0.05

Using the finite-difference gradient descent algorithm poses a slight draw-

back: it is difficult to yield the global minimum and it often finds approxima-

tions to local minima. Therefore to increase the likelihood of produce a value

close to the global minimum we sample the space of each of the parameter

sets. Models C and D are the only two models with parameter manifolds

that are likely to yield significant gains in optimization over values reported

in literature. For each of these sets, a number of evaluations of the objective

function were considered to assess the viability of initial point vector λ0.

Table 4.2 shows the initial parameters for Model C where values of a, b, and

v are used to generate permutations of the vector λ0. The values a = 3000,

b = 0.06, v = 1/4, and v = 1/6 were taken from [1]. Other exponential values
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were attempted but did not yield any unique local minima.

Table 4.2: Initial Optimization Parameters λ0 for Model C

The non-linear compressor of Equation (4.12) during optimization. Each value listed is
used to generate an initial vector λ0 by permutation. This results in 30 initial parameter

vectors under test.

Linear gain a 4000 3000 1000 10 1
Non-linear gain b 0.2 0.06 0.01
Exponential Factor v 1/4 1/6

Table 4.3 shows the five initial optimization parameter vectors λ0 used for

Model D as numbered sets. Only the initial value B = 300 was kept from

literature [3]. All other values from literature produced simulated results

that bore little resemblance to the physiological data. Table 4.4 contains the

constant values that are not optimized in this experimental setup. The values

of r and x have been taken from literature while l is twice that recorded by

Meddis [3]. The values a∗, b∗, and v∗ of the optimized nonlinear compressor

are substituted into Equation (4.12).

Table 4.3: Initial Optimization Parameters λ0 for Model D

These values are applied to the Meddis Hair Cell model of Equations (2.10)–(2.13)
during optimization. Each of the five column vectors is a single set used as the initial

vector λ0. Only the value B = 300 was kept from literature [3].

Set Number 1 2 3 4 5
Input Factor A 25 25 25 20 20
Input Factor B 150 150 240 300 300
Release g 10000 10000 4000 4000 4000
Generation y 101 75.75 75.75 75.75 40.4

Table 4.4: Constant Parameters for Model D

The values l, r, and x are applied to the Meddis Hair Cell model of Equations
(2.10)–(2.13) and are constant during optimization. The values a∗, b∗, and v∗ are taken
from the results of optimizing Model C and are applied to the non-linear compressor of

Equation (4.12).

Loss l 5000 Linear gain a∗ 10.047
Recovery r 6580 Non-linear gain b∗ 0.013307
Reprocessing x 66.31 Exponential Factor v∗ 0.2136

Model E – Repeated parameter set optimization of Model D

– Further optimizing Model D by a repeated parameter subset optimiza-
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tion produced a new Model E. We reapply the optimization technique to

the compressor parameters using the previously optimized compressor values

λ∗C = [a∗, b∗, v∗] from Model C as the initial point λ
(0)
1 including some per-

turbations around λ
(0)
1 . We also use the previously optimized hair cell model

values λ∗D = [A∗, B∗, g∗, y∗] but keep them as constants and do not optimize

them. Once we obtain new parameters for the compressor denoted by λ
(1)
1 ,

we turn to generating new values for the hair cell model. The new compressor

values λ
(1)
1 are held constant and new hair cell parameters λ

(1)
2 are generated

from optimization. Consider these two new operations to be referred to as

round 1 of a repeated parameter set optimization of Model D. We denote

the series of optimal parameters λ
(p)
D and λ

(p)
C for each optimization step p.

Optimization of Model D can be continued in this manner until convergence

is reached in the parameters. The following steps of this algorithm were

applied with λ(0) = λ∗C ∪ λ∗D and a maximum iteration of k = 2 :

1. Choose a model to optimize M̂kλ.

2. Begin with initial parameters λ(0) and set round iterator p = 1. Divide

the set into N subsets:

λ(0) = λ
(0)
1 ∪ λ

(0)
2 ∪ · · · ∪ λ

(0)
j ∪ · · · ∪ λ

(0)
N (4.22)

3. Set parameter set iterator j = 1.

4. Optimize on set j. Obtain the optimal score D(M̂
kλ

(p)∗
j
,M) and values

λ
(p)∗
j .

5. Increment j. If j ≥ N and continue, else return to Step 4.

6. Check convergence conditions:

∣∣∣∣λ(p) − λ(p−1)
∣∣∣∣

2
< C∆λ (4.23)

p > pmax (4.24)

(a) If convergence conditions are met, stop optimization and declare

λ(p) optimal.

(b) Otherwise, increment p and return to Step 3.
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We conclude this section with a brief explanation of the values chosen for

convergence conditions. Using the DTW algorithm as a comparison metric

increases the computational complexity and thus the overall run-time of the

optimization. The model optimization in Section 3.2.2 requires kmax iter-

ations at worst case with Ni ∗ (2g + 1 + jmax) possible evaluations of the

comparison algorithm d(y, ŷ) for each iteration, where g is the number of

partials in the gradient. For example, if each evaluation of d(y, ŷ) takes an

average of 7 seconds for the convergence parameters, using the worst case

scenario:

O(optimization) = O(kNi(2g + 1 + j)T max(N,M))

yields a worst case time of 3.4 days of execution time using four parallel

threads on Ni for a single set of parameters, where T is the width of the

Sakoe-Chiba window, N is the length of y and M is the length of ŷ. The

approximate time required to complete optimization of Model C was about

2.5 hours and Model D consumed about 9 hours total for all initialization

points. This was performed using eight parallel threads on a single machine.

Therefore the number of rounds pmax of Equation (4.24) were limited to

values realistic for the completion of this research.

4.3 Application of the Results of the Optimized

Auditory Models to Related Work

The problem of the related work can be addressed by applying the optimized

models to the stimuli and running an experiment analogous to the work

discussed in Section 2.2. In summary, we must examine the pattern similarity

between the physiological neural response to the natural speech and each

simulated neural response pattern produced by the model for the n-band and

SWS speech representations. We treat the physiological response data (SWS,

natural, and n-band neural response patterns) as if it were the output from

an unknown physiological model. This data is resampled to the same time

space as the audio data and run through the same post-processing function

Q specified in Section 3.1.2. This data is then applied in the comparison

stage with the same DTW parameters specified as before except that the
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time sequences under comparison match those described in 2.2: dissimilarity

scores are generated between each SWS and n-band speech response and the

response to the naturally produced speech for each word.

Originally this technique was used to understand the contribution of spec-

tral and timing information to the perception of speech. The dissimilarity

scores were used to compare responses of increasingly spectrally degraded

speech tokens to the responses to naturally produced speech. These same

comparisons will be used to generate the amount of dissimilarity due to spec-

tral reduction when replacing the physiological recordings of the responses to

spectrally reduced speech tokens with simulated responses of the same rep-

resentation. This information can be used to understand the applicability

of the model to the question alluded to in the related work: What common

physiological encoding mechanisms are responsible for transducing naturally

produced speech and spectrally reduced synthetic speech?

To pursue this, we limit this examination to models D and E as they repre-

sent a limited model of most of the auditory periphery. We apply the process

described in the previous paragraph, but replace the physiological responses

to the n-band and SWS tokens with simulated responses. In particular,

this is the simulated data ŷ from previously generated optimal parameter

sets. These responses are compared against the physiological response to the

naturally produced speech tokens. The resulting dissimilarity information

will represent the dissimilarity from the model and from the spectral reduc-

tion. From this information, the amount and source of dissimilarity can be

evaluated to decide if these models are useful to answer the aforementioned

research question.
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CHAPTER 5

RESULTS AND DISCUSSION

We produce values of the optimized model distances D(M̂kλ∗ ,M) for k =

{A,B,C,D,E} and examine the difference in the values λ(1) and λ(2) pro-

duced by the repeated parameter optimization. From these results, a com-

parison is drawn between the values of the distance function D regarding

the ability of the model to fit the data. Such a statement of comparison

would only be valid under the conditions and assumptions of the model, of

the preprocessing function P , the post-processing function Q, and of the vo-

cabulary of the stimuli input data. We first provide results and discussion

of the models that were not optimized. These models were only compared

to the natural model. Next we discuss the results of the model optimization

including the results of the repeated optimization routine.

5.1 Results of Auditory Models Without Optimization

The modeling distance is presented in the context of each model in the set k =

{A,B} including example plots of the non-linear time matching process of

the dynamic time warping (DTW) algorithm. These models are particulary

given to illustrating the model distance as they do not contain optimized

parameters.

Model A — Recall that Model A represents time energy patterns having

sinusoidal modes greater than one millisecond in duration. Consider Model

A to be a baseline statistic for the model distance D to the unknown physio-

logical model M . This will allow for a meaningful comparison as we consider

the reduction of the model distance D(M̂Aλ,M) to imply improvement over

previous models with Model A as the baseline. Figure 5.1 shows the individ-

ual distance values from the comparison d(y′i, ŷ
′
i) for each word on the vertical

axis by each stimulus version on the horizontal axis. Figure 5.10 shows an
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example comparison between the physiological response and the simulated

response to naturally produced speech for the consonant /p/. As shown in

the figure, the model typically underestimates the initial sharp rise in excita-

tion rate during the consonant and overestimates the sustained firing levels

during the vowel.

Notice that the values of d are closely grouped for the 1-band responses

for each word. This is likely due to the 1-band’s complete degradation of

the frequency information leaving only the time information. This is similar

to the form of data represented by Model A, which is simply a short time

energy interpretation of the input data.

Model B — Model B adds frequency selectivity to Model A using a

constant-Q filter bank of gammatone filters. The distance values are shown

in Figure 5.2 where the individual distance values for each word are on the

vertical axis while each stimulus version is shown on the horizontal axis. This

addition causes a large decrease in the distance of the model D(M̂Aλ,M)

and a consistent drop across words and across speech input formats for each

d(y′i, ŷ
′
i). The values for the 1-band are spread across a larger range of dis-

tance values than the 1-band dissimilarity values of Model A. This may be

due to voicing since /p/ and /t/ are closely grouped and less affected than

voiced consonants /b/ and /d/. Another notable change is the drop in dis-

tance values of the sounds /b/ and /t/ for the SWS representations. This

marks the beginning of a trend where the distance values of SWS inputs de-

crease more quickly than the others as the model becomes more complex. An

example of the comparison to produce an individual distance score is shown

in Figure 5.11 for the consonant /p/. As shown in the figure, this model also

typically underestimates the initial rise in excitation rate and overestimates

the sustained firing levels during the vowel. In addition, the model applies

excessive smoothing.

5.2 Results of Auditory Models Requiring

Optimization

The next set of models build on the previous models as before but also

have an added optimization step as previously described in Section 4.2. We

present the results post-optimization and notice further benefit from both
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the added modeling units and from the optimization of these units. During

optimization, the algorithm converged with little to no instability for the

specified parameters with most instances converging in 120 iterations or less.

Model C — Model C describes the compressive response of the basilar

membrane without applying a neural rate model for the hair cell in addi-

tion to the previous frequency selectivity of Model B. The overall distance

of the model has dropped by nearly one third from the distance of Model B.

From Figure 5.3 we can see that many of the distance values d(y′i, ŷ
′
i) have

dropped from the distance values of Model C and that the spread of values

has tightened within many of the input representations. However, values

for the 1-band /p/, 1- and 2-band /b/, and SWS /t/ stop consonants have

increased. No relationship appears to explain these increases; however, the

slight increases may simply be due to a small degree of overfitting when con-

sidering the performance of the rest of the vocabulary across representations.

Despite the slight increase for the /t/ SWS input, the model appears to bet-

ter predict SWS neural patterns. The n-band and natural representations

are similar to each other in performance. An example of the comparison to

produce an individual distance score for the optimal parameter set is shown

in Figure 5.12. In the figure, this model more closely estimates the initial

rise, but overestimates the average firing rate for much of the waveform. Dur-

ing the beginning of the vowel around sample 1200 ms, the excitation rate

underestimates the change in the firing rate response over the average.

Model D — The addition of the Meddis hair cell in Model D completes

the breadth of physical phenomena to be described over the set of models.

The overall model distance D(M̂Dλ∗ ,M) has dropped by about sixty per-

cent over the previous Model C. The results of the evaluation of the distance

function d(y′i, ŷ
′
i) over the optimized parameter set λ∗ of Model D are shown

in Figure 5.4. Notice that every distance value has decreased across input

representations and across words. The SWS values are consistently less than

the n-band and natural representations which are relatively similar to each

other in performance. This appears to indicate that the model may better

simulate SWS responses. Figure 5.13 displays an example of the comparison

to produce an individual distance score using the optimal parameter set. In

the figure, this model more closely estimates the initial rise and the subse-

quent fall, but again overestimates the average firing rate for much of the

waveform. The model is not sensitive enough to short time changes in the
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input and still lacks some of the finer detail.

Model E — Repeated optimization produced the parameter subsets λ∗C
and λ∗D used to generate distances for Model E shown in Figure 5.5. The

distance of Model E has decreased by about one third of the distance of

Model D. Individual distance values of the comparison function have largely

decreased with only slight increases for SWS representations of the /b/ and

/t/ consonant-vowel pairs. On average, Model E is able to best predict the

neural patterns of the SWS representations while the n-band representations

remain relatively similar to each other in performance. A noticeable change

is the gain of model prediction for the natural representations which is likely

due to optimization process targeting the natural representations inside the

cost function. Figure 5.14 is an example of the comparison to produce an

individual distance score using repeated optimization. In the figure, this

model improves on the previous model by better estimating the short time

average firing rate for much of the waveform. The model is still not sensitive

enough to short time changes in the input and still lacks some of the finer

detail present in the physiological recording.

5.3 Discussion of Model Performance Comparison

Considering Figure 5.1 through Figure 5.5, the inclusion of more auditory

transduction phenomena in the model decreases the overall model distance

D(M̂kλ,M). A consistent decrease in the overall distance is observed as

subsequent stages are added as shown in Figure 5.6. This important trend

validates the model comparison technique as we expected: models with more

phenomena generate simulated patterns that more closely match the pat-

terns present in the physiological data. More information on the behavior

and performance characteristics can be obtained from an interpretation of

the distances for the n-bands, natural, and SWS representations across stop

consonants and models.

On an individual basis, many of the individual DTW distances consistently

decreased with some exceptions previously noted. It is also noted that a

greater decrease in the SWS signals is observed as more phenomena are

modeled. Additionally, the natural speech, 2-, 3-, and 4-bands of spectrally

reduced speech appear to perform similarly for Models B through E with the
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exception of the natural speech’s break from consistency for Model E. This

break may be due to overfitting by the repeated minimization process. Most

notably, parameter sets for Models C, D, and E better represent the SWS

representations for /b/ and /t/ between. Furthermore, the SWS decreases

are consistent across stop consonants for each model.

We draw a crucial conclusion on the validity of the comparison and op-

timization results from these observations. In fact, model performance for

SWS exceeds other representations because of the nature of the models. The

theoretical framework for these models only accounts for transduction mod-

eling on isolated channels. This purely tonotopic approach does not model

any interactions across channels, such as masking where a channel would

be affected by activity on physically adjacent channels of the basilar mem-

brane. Since SWS is produced using frequencies that are most often widely

distributed, frequency interaction does not play a large role in natural trans-

duction. The artificial transduction model therefore more closely resembles

the natural model. This is true even for model E, where repeated optimiza-

tion over the natural speech most benefitted the SWS and natural speech,

yet SWS artificial neural signals still more closely resemble the natural neural

signals.

5.4 General Applicability of Model Performance

Comparison

The applicability of this technique to a set of models must be carefully con-

sidered. It is notably difficult for a researcher to draw wide sweeping conclu-

sions regarding the descriptive ability of a model. In order to substantiate

a claim, evidence must be provided that satisfies a large set of criteria. For

example, consider a model A and a model B and perform some compara-

tive test described by D(M̂kλ,M) where the model’s input and output have

been processed as explained in Section 3.1.2. Assumptions on the model

and pre- and post-processing functions serve to limit the analysis in both

complexity and descriptive ability. For our example, such functions would

necessitate any claims to be qualified by statements of limitations induced

by modeling process. In addition the specific implementation of the com-

parison algorithm controls the degree and type of comparison applied to the
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post-processed model data. Parameters on the algorithm can also control

which portions of the output signals are compared and define the limits of

what is considered the best comparison (for DTW, this would be a least cost

cumulative distance). Therefore, we observe that any statements comparing

the descriptive ability of one or more models must be qualified under two

main sets of criteria: the modeling process, and the comparison process.

For this experiment, the modeling process limits the results to explain time-

energy patterns represented by the neural signals resulting from the physio-

logical phenomena of the auditory transduction process for stop-consonant-

vowel pairs. The limitations induced by the pre- and post-processing func-

tions are globally applied in the analysis while the model limitations are

specific to each model, but are cumulative in that each subsequent model

complexifies the previous model in some fashion. To that effect, we enumer-

ate the limitations:

Vocabulary: The content of the inputs represent time-amplitude waveforms

of English stop consonants. Each input signal has been adjusted to 70

dB SPL input level. Thus, any statements are only valid for stop

consonant-vowel pairs of English language for the same loudness level.

Therefore, the ability of the model to describe neural patterns across

loudness levels remains untested.

Pre-processing: No limitations arose during preprocessing by the input

mapping function P . However, the sound intensity levels of the inputs

were adjusted to ensure that the input amplitude mapped to the values

expected by the models. These models required a certain level-mapping

(refer to Section 4.1, Preprocessing) to ensure that synthetic neural

signals of 70 dB SPL were generated. This avoids any difference in level-

dependent effects imposed by the natural model since the physiological

recordings occurred at 70 dB SPL.

Modeling: We consider the limitations on the interpretation of the mod-

els’ ability to describe the transduction phenomena as a single set.

Within the set, each model describes a certain amount of transduc-

tion phenomena and therefore limits interpretation to the presence or

absence of specific phenomenal descriptors or the ability of those spe-

cific phenomenal descriptors (i.e. describing compression in addition to
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frequency selectivity) to accurately match the physiological response.

More specifically, Models A, B and C lack a portion of the major phe-

nomena present within the auditory periphery previously identified as

crucial to auditory modeling in Section 2.3. While Models D and thus

E do account for a more complete system, models of the basilar mem-

brane and hair cell transduction have certainly been improved since

their introduction in the literature as briefly discussed in Section 2.3.

The comparisons on the set of models examined in this work are known

to have limits in their ability to accurately represent their individual

phenomena. Furthermore, there are additional phenomena that could

be modeled: the frequency response of the filter bank could be ad-

justed according to loudness, another stage describing the adaptation

of the auditory nerve fiber could be added, or masking effects between

portions of the basilar membrane could be applied.

Post-processing: The output mapping function Q defines the interpreta-

tion of the distance scores generated by the DTW output d(y, ŷ) gen-

erated by the distance scores from the functions d and D. The post-

processing method employed generates a short time energy interpreta-

tion of the model output and the stimulus response. This restricts any

inference on a model’s descriptive ability to time energy patterns in the

neural signals. Specifically, this limits the analysis to a 1 ms resolution

which is sufficient for speech [50] but perhaps not for other auditory

signals shorter periods of time stationarity.

5.5 Evaluation of the Applicability of the Generated

Models to the Related Work

We applied the optimized models to the context of the original experiment

using the process described in Section 4.3. In particular, we question whether

the generated models would reveal the identity of the physiological encod-

ing mechanisms responsible for transducing naturally produced speech and

spectrally reduced synthetic speech. Returning to the context of the experi-

ments discussed in Section 2.2.3, a model with the least amount of distance

is needed to discover what phenomena are important for the transduction of
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stop consonants. In general, choosing the model with the least distance will

more accurately generate simulated neural ensembles and reduce confounding

as a result of model choice in any simulation.

Recall that the experimental framework compares each n-band vocoded

neural ensemble and the SWS neural ensemble with the neural ensemble re-

sponse to the natural speech. In the first application of the framework, only

physiological data is involved and the results are shown in Figure 5.7. Ex-

amples of the comparisons producing the scores of Figure 5.7 for the stop

consonant token /p/ are shown in Figures 5.15–5.19. Note that the wave-

forms have not been upsampled as is defined in the comparison framework in

the preprocessing (Section 4.1). Instead, the scores have been normalized by

sample length to produce comparable results. In the second application of

the framework, the n-band and SWS physiological responses were replaced by

simulated responses and the results of Models D and E are shown in Figure

5.8 and Figure 5.9 respectively. Examples of the comparisons producing the

scores of Figure 5.9 for the stop consonant token /p/ are shown in Figures

5.20–5.24.

In these results, the distances of both models exceed the distances of the

natural model. Since the distances from Models D and E represent dissimi-

larity from both spectral degradation and from the model’s error in predic-

tion, the difference in distance values between the simulation models and the

distances of the natural model are expected. Any leftover error is a result of

any inability of the simulated models to properly predict the n-band and SWS

responses. There is a distinct lack of modeling for phenomena such as mask-

ing, auditory nerve synapsing as modeled in Sumner’s work on the DRNL

model [5], and the poor modeling of initial bursts [9]. Therefore, the follow-

ing must be true: while Models D and E account for some of the seminal

phenomena in literature, they do not predict neural responses of spectrally

degraded and SWS representations of stop consonants with enough accuracy

to be useful to ascribe any particular part of the model to the encoding of

stop consonants.

Again, these models do not account for all of the phenomena identified in

the literature (a select few are covered in Section 2.3.6). However, the results

showed that Models D and E better predicted the neuronal responses than

the other models. Moreover, the optimization technique has proved to be

useful in generating a model that could begin to showcase the phenomena
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important to understanding the encoding of spectrally degraded speech as

compared to naturally produced speech. In light of the aforementioned con-

cerns, the model set is unlikely to reveal any information on the encoding

of temporal and frequency information beyond that which is already known:

these major phenomena are the crucial base of our understanding of the au-

ditory periphery and yet they do not capture the complete behavior of trans-

duction. Future efforts should include additional phenomena in a manner

that elucidates the encoding scheme by incrementally modeling transduction

phenomena. Through examining the differences between increments, it may

become clear which mathematical descriptions most reflect the underlying

physiological mechanisms.
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Figure 5.1: Individual distances for Model A’s simulated ensemble compared to
physiological recordings of each stimulus version for the first 120 ms of each word.
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Figure 5.2: Individual distances for Model B’s simulated ensemble compared to
physiological recordings of each stimulus version for the first 120 ms of each word.
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Figure 5.3: Individual distances for Model C’s simulated ensemble compared to
physiological recordings of each stimulus version for the first 120 ms of each word.
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Figure 5.4: Individual distances for Model D’s simulated ensemble compared to
physiological recordings of each stimulus version for the first 120 ms of each word.
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Figure 5.5: Individual distances for Model E’s simulated ensemble compared to
physiological recordings of each stimulus version for the first 120 ms of each word.
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Figure 5.6: Log distance scores of each model in the set k = {A,B,C,D,E}.
Note that as additional phenomena are included, the model distance continues to
decrease, signifiying a more accurate prediction of the neural ensembles.
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Figure 5.7: Individual log distance scores for SWS and each n-band input
representation for the hidden physiological model. The distance scores were
generated by applying the DTW algorithm to compare the physiological response
of the naturally produced speech tokens to the physiological responses to the
n-band spectrally reduced and SWS processed speech tokens.
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Figure 5.8: Individual log distance scores for SWS and each n-band input
representation for Model D. The distance scores were generated by applying the DTW
algorithm to compare the physiological response of the naturally produced speech tokens
to the simulated responses to the n-band spectrally reduced and SWS processed speech
tokens.

68



1 2 3 4 SWS
2

3

4

5

6

7

8

n−Bands, SWS

Lo
g 

D
is

ta
nc

e

Log Distances for Simulated Ensemble Comparison of Model E

 

 

Ball
Dirty
Persons
Today

Figure 5.9: Individual log distance scores for SWS and each n-band input
representation for Model E. The distance scores were generated by applying the DTW
algorithm to compare the physiological response of the naturally produced speech tokens
to the simulated responses to the n-band spectrally reduced and SWS processed speech
tokens.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, we introduced a method to numerically compare one auditory

transduction model to another model based on dynamic time warping. This

allowed for a comparison of one auditory model to another for speech input

when the output contains time nonlinearities. Additionally, this comparison

technique was harnessed in the objective function of a gradient descent based

optimization technique in order to find more optimal parameter sets. These

optimal parameter sets reduced modeling error due to poor parameter choice

and thus increased confidence in the contribution of the ability of the model

to describe a set of phenomena. To verify the applicability of the technique,

we showed that when the amount of auditory transduction phenomena in-

creased, the overall model distance decreased as the models more closely

predicted the physiological neural ensembles. Models with more phenomena

generated neural ensembles that more closely resembled patterns present in

the physiological data.

These techniques were illustrated in the pursuit of a model that would re-

veal the encoding mechanisms involved in the auditory transduction process.

These efforts specifically focused on previous research to understand the con-

tribution of temporal and spectral information using progressively spectrally

degraded stimuli and their physiological neural responses. While these mod-

els did account for major phenomena in the auditory system, they lacked

the ability to compensate for cross channel interactions, over-approximated

their target phenomena, and lacked a model unit for auditory nerve synapse

as evinced by the dissimilarity measures. The results are clear evidence of

the gap in understanding of the transduction process from a modeling stand-

point.

There are improvements that could increase the effectiveness of the com-

parison and optimization techniques. Instead of using a single neural en-

semble time sequence spanning the entire AI bands, one ensemble should
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be created for each band of interest. These multiple bands would split the

analysis across frequency as well as time. Having one ensemble span each

noise vocoding band would generate more accurate results as the vocoding

process groups timing information by band. To implement such ensembles,

the channels created by the model would be grouped into bands of frequen-

cies. For natural speech, the twenty AI-gram frequency bands may prove the

most beneficial. Thus the technique would also be altered to account for an

N-channel cost matrix in the DTW algorithm.

In light of these conclusions, a new tool now exists to reveal information

about the auditory transduction process and through its underlying biophys-

ical processes. Applying this technique to other models would allow for a

greater understanding of the landscape of current and past modeling efforts.

Researchers would be able to more clearly realize which models better pre-

dict encoding and which portions of the model best account for their target

phenomena.
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