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Abstract

In this work, we prove effective decay of certain multiple correlation coefficients

for Weyl chamber actions of semidirect products of semisimple groups with G-

vector spaces. Using these estimates we get decay for corresponding actions in

some semisimple groups of higher rank and homogeneous spaces of semidirect

products of real algebraic groups.
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Chapter 1

Introduction

The present work is concerned with the measurable dynamics of diagonal actions

of connected algebraic groups over local fields of characteristic zero on probabil-

ity spaces. By ‘diagonal’ action, we mean an action of a diagonal subgroup of a

semisimple algebraic group. The groups we will consider will be either semisim-

ple or semi-direct products of a semisimple group and a vector space over the

local field on which the semisimple part acts by a suitable representation.

To a maximal split torus over a local field corresponds some split semisimple

subgroup of the original group whose maximal torus coincides with the given

one. The action will always be restricted to this split part of the original group.

Rationality of finite dimensional representations are inherited by this restriction.

The actions we consider will always be measurable and probability measure-

preserving. Further assumptions will imply ergodicity of the group action and

strong mixing of the diagonal part. This will be our starting point: a key

theorem of Mozes shows that the action is mixing of all orders; thus, multiple

correlations of zero-mean test functions will decay.

Multiple mixing is a statement about divergent trajectories of tuples of group

elements acting on arbitrary (bounded, zero-mean) tuples of functions. In this

work, we will obtain quantitative decay for such correlations with some restric-

tions: the trajectories will be positive diagonal, so we only treat the positive

Cartan part of the group action; the divergence we require of the tuple in higher

rank is stronger than the usual mixing requirement: we require the divergence

to be detectable from a fixed direction in the Weyl chamber, which we can

take that of the highest root of the group; finally, the test functions will only

comprise a dense subspace of all bounded functions in the Hilbert norm. Un-

der additional hypotheses on the action, this subspace will contain all smooth,

K-finite functions.

The central theme in our work is the idea that the geometric properties of

the semisimple part are reflected in the spectral side of the abelian part. The

abelian representation on square-integrable functions on the probability space

provides a spectrum for each function; spectra are affected by the action of the

semisimple part in various ways and they also reflect various operations among

functions; in Figure 1 we see the spectrum of a sum of two functions with spectra

distorted in two orthogonal directions by the action of the diagonal group of 2×2
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real matrices of determinant 1.

The next chapter will provide the necessary background that underlies this

work. The exposition is a collage taken from many sources, chief among which

are [18], the crucial paper of Wang [24], the classical references [4] and [8] and

the book [7].

Figure 1.1: Part of the spectral fingerprint of a function in Pφ for φ with 4-fold
symmetry.
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Chapter 2

Preliminaries and Setup

2.1 Algebraic groups over locally compact

fields

2.1.1 Local fields

Definition 2.1.1. A local field K of characteristic zero is a field containing

Q which is complete with respect to a valuation v. K is archimedean (resp.

non-archimedean) if v has the corresponding property.

Remark 2.1.2. The real field R, the complex field C and all finite extensions

of Qp for prime p exhaust the list of local fields of characteristic zero. Such

fields carry a non-discrete, locally compact topology and can be characterized

as such when char(K) = 0. The topology comes from the metric | · | induced

by the valuation on K, which is the usual absolute value in the archimedean

case or the unique valuation which extends the standard p-adic valuation when

Qp ⊂ K.

The following subsets of K will be used later to define connected components

and positive Weyl chambers in a K-torus:

Definition 2.1.3. Let

K0 = {x ∈ R|x ≥ 0} and K = {x ∈ R|x ≥ 1}

when K is archimedean. When K is non-archimedean, we fix a uniformizer q

(i.e. a generator of the maximal ideal of the ring of integers of K) with |q|−1

the cardinality of the residue field of K. Then correspondingly

K0 = {qn|n ∈ Z} and K = {q−n|n ∈ N}.

2.1.2 Algebraic groups over local fields

Next we define affine algebraic groups over local fields. We will only consider

groups defined over Q in this work.

Definition 2.1.4. An affine algebraic group G over a field k is an affine alge-

braic variety over k with a group structure whose multiplication and inverse laws
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are morphisms ([4]); in this work k will always be Q . Whenever we mention

connectedness, we will always understand the notion as Zariski-connectedness

of the variety unless explicitly mentioned otherwise. Finally, an algebraic group

is called simply connected if for every algebraic group S and every isogeny (sur-

jective group morphism with finite kernel)

S→ G,

the map is an algebraic group isomorphism; in other words, there are no non-

trivial algebraic covers of G. At the other extreme, G is called adjoint if for

every S and every isogeny G→ S, the map is an isomorphism.

Remark 2.1.5. The definition of simple connectedness may seem odd, but it is

the natural notion in the algebraic category: the kernel of a surjective algebraic

group morphism will be an algebraic set; such a set has only finitely many

connected components, so restrict to the connected component of the identity

of S. If this component had infinitely many elements, it would have positive

dimension in S. But then it would be a normal connected subgroup of positive

dimension, and either the dimensions of S and G would be different or we would

get a contradiction by surjectivity. In both cases, infinite kernel leads to higher

dimension and thus does not correspond to a natural notion of cover.

Viewed as a functor

K G−→ G(K) =: G,

the image of G consists of the group of K-rational points of G. The underlying

set of G is the solution set of a finite number of polynomial equations with

coefficients in k, so as a closed subset of some kd it inherits the locally compact

topology by which it becomes a topological group; for the topological structure

of such groups refer to [18, Chapter 3].

Remark 2.1.6. Groups of the form G(K) have properties from two worlds: they

inherit some structural properties from the overlying algebraic group G (almost

all relevant structural properties in the case of K-split groups) and properties

from their topological group structure. The algebraic group G, a Q-group-

functor, and the group of K -rational points, a topological group, are completely

distinct entities and we will take care to distinguish them with the exception

that we will be using the terminology ‘algebraic group’ both for G and the group

of K-rational points G. Having fixed a local field K once and for all, boldface

letters will refer to algebraic groups and the corresponding italics to the group

of its K-rational points.

Definition 2.1.7. The Lie algebra of an algebraic group is defined as an al-

gebraic variety to be the tangent space at the identity of the group. It affords

a (well defined) Lie algebra structure by embedding the group as a closed sub-

group of GL(n) for some n and defining the bracket [X,Y ] = XY − Y X with

the multiplication inherited from GL(n).
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Definition 2.1.8. A finite dimensional representation of an algebraic group

G is a group morphism from G to GL(n). Similarly, a representation of the

Lie algebra is a Lie algebra homomorphism into some gl(n). The finite di-

mensional representation theory of algebraic groups over characteristic zero is

directly linked to the Lie algebra representation theory, see [8]. Representations

defined over a local field K are called K-rational or simply K-representations.

Definition 2.1.9. Let Gm be the multiplicative group, i.e. the algebraic group

whose K-valued points is the group K∗ of invertible elements in the field (or

ring, algebra etc.) K.

An algebraic group G is called diagonalizable if there exists an embedding

G ↪→ GL(m) so that the image is conjugate to a subgroup of the group D

of diagonal matrices. A connected diagonalizable group is called an algebraic

torus. Any algebraic torus is isomorphic as an algebraic group to Gdm for some

d ≥ 1 called the dimension of the torus. If there exists an isomorphism to Gdm
defined over a local field K, the torus is said to be K-split.

Example 2.1.10. Consider the group

T = {

(
u v

w x

)
∈ GL(2) : u = x, v = −w, u2 + v2 = 1}.

The defining equations show that it is a Zariski-connected algebraic set and the

map (
u v

w x

)
→

(
u+ iv 0

0 u− iv

)
is an isomorphism to the multiplicative group Gm. Note that if K is a field that

does not contain a square root of −1, the isomorphism is not defined over K.

For instance, the R-points of T are precisely the compact torus in SL(2,R).

Definition 2.1.11. A character of an algebraic group is an algebraic group

morphism G→ Gm . The commutative group of characters of G is denoted by

X(G). If a character is defined over K, we call it a K-character and denote the

corresponding group by X(G)K. The dual group X∗(G) of cocharacters is the

group of morphisms Gm → G. A cocharacter defined over a local field K will

also be called a one-parameter subgroup of G.

If X(G)K = 0 then the group G is called K-anisotropic. It turns out that

this is equivalent to the statement that G(K) is compact in the K-topology.

Remark 2.1.12. A diagonalizable group is split over K if and only if all its

characters are defined over K. As an example, take K = R and try to find a

character of T not defined over R. It is easy to see that projections of either of

the two entries of the matrix(
u+ iv 0

0 u− iv

)

5



give characters of T which are, of course, not defined over R.

Definition 2.1.13. If D is a torus define subsets D0 and D+ of D by

D0 = {d ∈ D|χ(d) ∈ K0 for each χ ∈ X(D)},

D+ = {d ∈ D|χ(d) ∈ K for each χ ∈ X+}.

We call D+ the positive Weyl chamber in D (relative to the prescribed data).

Next, we denote the centralizer of D in G by Z and transfer the ordering of

X(D) to X(Z) by inclusion. Let

Z+ = {z ∈ Z||χ(z)| ≥ 1 for each χ ∈ X(Z)+}

and

Z0 = {z ∈ Z||χ(z)| = 1 for each χ ∈ X(Z)+}.

Note that these are K-subgroups of the K-group Z.

Definition 2.1.14. An algebraic group G is unipotent if there is an embedding

G ↪→ GL(n) so that the image consists entirely of unipotent matrices. Note that

unipotent groups are nilpotent.

Definition 2.1.15. An algebraic group is called reductive if its unipotent radi-

cal is trivial, i.e. if the maximal connected unipotent normal subgroup is trivial.

It is called semisimple if the radical is trivial, i.e. if the maximal connected solv-

able normal subgroup is trivial. It is called simple if it has no connected normal

subgroups.

2.1.3 Examples

The first examples of algebraic groups are the additive group Ga assigning the

additive group of any field, and the multiplicative subgroup Gm giving the group

of invertible elements of a field. For example, Ga(K) (resp. Gna) can be realized

in GL(Kn) as

k →

(
1 k

0 1

)
, (k1, · · · , kn−1)→


1 0 · · · k1

0 1 · · · k2

0 0 · · ·
...

0 0 · · · 1


n×n

.

The multiplicative group Gm(K) (resp. Gm(Kn)) can be realized in GL(2,K)

(resp. GL(n,K)) as
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k →

(
k 0

0 k−1

)
, (k1, · · · , kn−1)→


k1 0 · · · 0

0 k2 · · · 0

0 0 · · ·
...

0 0 · · · (k1 · · · kn−1)
−1


n×n

.

Examples of reductive groups include Gm, GL(n) = Gm(End(Gna)), O(2n)

and norm tori R
(1)
K/k(Gm). Simple groups include SL(n), PGL(n) and SO(2n).

There is a finite list of connected, simply connected simple algebraic groups that

includes four infinite families and five exceptional groups; the list is encoded in

the combinatorial data given by the Dynkin diagram of the root system of the

group. Algebraic groups covered by each simply connected group are obtained

by isogenies ([18, Chapter 2.1]) in characteristic zero.

The isomorphism problem over a local field involves the notion of a K-form

of each group and the classification of such forms is a much more delicate issue

than the classification over an algebraically closed field. A standard reference

for classification of K-forms is [18, Chapter 2.2].

2.1.4 The Cartan decomposition of semisimple groups

Semisimple and reductive groups have a large number of very useful decom-

positions into simpler components, including the Bruhat decomposition, the

Iwasawa decomposition and the Cartan decomposition over local fields. For the

sequel we will need only the Cartan decomposition which we now define.

Theorem 2.1.16 (Cartan Decomposition). Let G be the group of K-points of

a connected semisimple group. Recall definition 2.1.13. Consider a maximal

K-split torus D of G (defined over K). Then there exists a maximal compact

subgroup K < G and a finite set F ⊂ CG(D) such that the following hold:

1. NG(D) ⊂ KD.

2. We have the decomposition G = K(Z+/Z0)K such that for each g ∈ G,

there exists a unique element z of Z+ modulo Z0 so that g ∈ KzK.

3. The decomposition above can be further elaborated as

G = K(D+F )K

with the property that for each g ∈ G there exist unique d ∈ D+ and f ∈ F
so that g ∈ KdfK.

Remark 2.1.17. The presence of F in the Cartan decomposition above is a

feature of the non-archimedean theory: when K is archimedean, F = 1.
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Example 2.1.18. Let G = SL(n,Qp). Then a maximal compact subgroup is

K = SL(n,Zp) and the Cartan decomposition can be written as G = KD+K

where

D+ = {diag(qm1 , · · · , qmn :
∑

mi = 0,m1 > · · · > mn ≥ 0}.

Here as before q is a uniformizer and the mi are non-negative integers.

2.1.5 Ergodic theory on semisimple groups

In order to do analysis on groups we will need to understand their measure

theory. The basic measure on any locally compact group is the Haar measure.

Theorem 2.1.19 (Existence of Haar measure). Let G be locally compact. There

exists a unique (up to scaling) regular Borel measure dh on G that is invariant

under left translations: dh(g′g) = dh(g).

Definition 2.1.20. Let G be a locally compact group defined over a complete

field K. The measure whose existence is asserted above is called the left Haar

measure. Similarly we define the right Haar measure. If the left and right Haar

measures of G coincide, the group is called unimodular. In general, if dh(g)

is a left invariant Haar measure, then dh(gg′) = ∆G(g′)dh(g) for the so called

modular function ∆G(g). This function is a character of G which measures the

deviation between left and right Haar measures.

Almost all the groups we will encounter will be unimodular: reductive

groups, compact groups and of course abelian groups are all unimodular. On

the other hand, non-unimodular groups make their appearance naturally as sub-

groups of unimodular groups and play a major role in the representation theory,

structure theory and measurable action theory of semisimple groups.

Example 2.1.21. The most crucial non-trivial modular functions are those at-

tached to certain solvable groups in archimedean fields. The simplest example

involves the ax+ b group consisting of matrices in SL(2,R) of the form(
a b

0 1

)
, a 6= 0, b ∈ R.

Let’s look at a left-invariant Haar measure. The group is homeomorphic to

R∗ ×R and since the Haar measure for the multiplicative group is dx
x and that

for the additive group is dt, we can try decomposing

dh(g) =
da

a
db.
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If we apply g′ =

(
a′ b′

0 1

)
to the right of g =

(
a b

0 1

)
we get

dh(gg′) =
d(aa′)

aa′
d(b′a+ b) =

da

a
db

showing right invariance. But applying g′ to the left we get

dh(g′g) =
d(aa′)

aa′
d(ba′ + b′) =

1

a′
da

a
db

so ∆G(g) = a−1. It is trivial to check that this is a character of the ax + b

group.

Definition 2.1.22. 1. A measurable action σ of the locally compact group

G of a Lebesgue probability space (X,µ) is a weakly measurable map

G × X → X with the property that σ(gg′, x) = σ(g, σ(g′, x))(In fact,

up to a set of measure zero that can be fixed once and for all, we can

assume that X is a standard Borel space and the action is a Borel map;

see [19].). We will usually denote an action by σ(g) · x or when the action

is understood g · x.

2. A measurable action σ is measure preserving if µ(σ(g) · A) = µ(A) for

every measurable A ⊂ X.

3. A measure preserving action σ is ergodic if the only σ -invariant subsets

of X in measure are either zero-measure or conull, i.e. if

µ(A4σg−1 ·A) = µ(A)

then µ(A) = 0 or µ(A) = 1.

4. A measure preserving action σ is weakly mixing if the diagonal action

g 7→ σ(g)× σ(g) on X ×X is ergodic.

5. A sequence gn ∈ G diverges to infinity if for any compact set C we can

find n0 ∈ N such that gn /∈ C for n ≥ n0. A measure preserving action

σ is mixing if for any two measurable sets A,B ⊂ X and any sequence

gn ∈ G with gn →∞, we have

µ(A ∩ g−1
n ·B)→ µ(A)µ(B).

6. A sequence of k-tuples (g1(n), · · · , gk(n)) of elements of G diverges to

infinity if for any compact set C ⊂ G there exists n0 such that if n ≥ n0

and i 6= j, gj(n)/gi(n) /∈ C. A measure preserving action σ is k-mixing for

any sequence of k + 1 sets A0, · · · , Ak ⊂ X and any sequence of k-tuples

(gi(n)) ∈ G which tends to infinity we have

µ(A0 ∩ g1(n)−1 ·A1 ∩ · · · ∩ gk(n)−1 ·Ak)→ µ(A0) · · ·µ(Ak).

9



An action is mixing of all orders if it is k -mixing for every k ≥ 2.

We will need a characterization of the notions above in terms of function

spaces.

Definition 2.1.23. Let σ be a measure preserving action of G on X. The

Koopman representation associated to the action is the unitary representation

Uσ : G→ Aut(L2(X)) given by

(Uσ(g) · f)(x) = f(σ−1(g) · (x)).

We will usually replace the notation above simply by g · f ; the caveat is that it

is the inverse of g acting on the argument of f . We will also refer to g · f as the

action of G on f .

Remark 2.1.24. We used L2 to get a unitary representation on a Hilbert space,

but the definition makes sense for any Banach or even topological vector space.

Unitarity in L2 is equivalent to the measure preserving property.

Proposition 2.1.25. Let σ : G←↩ X be measure preserving.

1. The action is ergodic if and only if 1 is a simple eigenvalue for Uσ on

L2(X), i.e. if Uσ restricted to L2
0(X) has no fixed vectors.

2. The action is k-mixing if and only if for any k+1 functions fi in L∞(X) ⊂
L2(X) and any sequence of tuples (gi(n)) in G diverging to infinity we have∫

X

f0 g1(n) · f1 · · · gk(n)fk dµ→
∏∫

X

fi dµ

which is also equivalent to the statement that if the fi are all in L∞0 (X),

then ∫
X

f0 g1(n) · f1 · · · gk(n)fk dµ→ 0

as n→∞.

2.1.6 A brief excursion into the structure theory of

semisimple groups

In this section we will review very briefly the structure theory of simple groups

over algebraically closed fields in terms of their root systems; the main purpose

is to set notation and fix conventions. The reader is referred to [4] and [8] for

full expositions of the concepts we will introduced below.

Definition 2.1.26. The adjoint representation of an algebraic group G is the

map G→ Aut(Lie(G)) where g 7→ Ad(g) with formula Ad(g)h = ghg−1.

By means of the adjoint representation we can define the root system of a

semisimple group over an algebraically closed field. Note that since D < G is

10



commutative and diagonalizable, matrices in D are simultaneously diagonaliz-

able, so in particular the action of Ad(d) on Lie(G) splits into the kernel of Ad

and one-dimensional eigenspaces whose eigenvalues depend multiplicatively on

the acting element: Lie(G) = u0 ⊕
⊕

a6=0 ua where

ua = {g ∈ Lie(G) : Ad(d)(g) = a(d)g} 6= 0.

Definition 2.1.27. The decomposition above gives distinguished characters

a 6= 1 of D called the roots of the pair (G,D); the set of roots of (G,D) is

called the root system and is denoted R(D,G). The decomposition Lie(G) =

U0 ⊕
⊕

a∈R(G,D) ua is called the root space decomposition.

Definition 2.1.28. A semisimple group is K-split if it has a maximal torus

D which is defined over K and K-isomorphic to Gdm(K). The K-rank of a

semisimple group is the dimension of any maximal K-split torus; thus if a group

is K-split, its K-rank equals its rank.

For K-split semisimple groups, the structure theory over K is identical to

the structure theory over the algebraic closure; we will encounter higher rank

split groups later in the text.

In the sequel we will usually restrict attention to simple groups. The follow-

ing proposition describes how semisimple groups are built out of simple groups.

Theorem 2.1.29 ([18, Proposition 2.4]). Let G be semisimple and Gi the (sim-

ple) minimal connected normal subgroups of G. Their number is finite and G

is an almost direct product of the Gi, in the sense that the multiplication map∏
Gi → G

is an isogeny. The root system of G is a disjoint union of pairwise orthogonal

root systems R(Gi).

Finally, we come to the main classification results for semisimple groups over

algebraically closed fields.

Theorem 2.1.30 ([18, Theorem 2.6]). Let G be semisimple.

1. There exists a simply connected group G̃, an adjoint group Ḡ and isogenies

G̃→ G and G→ Ḡ. The first isogeny is called a universal covering of G.

2. Any simply connected or adjoint group is a direct product of its minimal

connected normal subgroups, and each such subgroup is simply connected

or adjoint respectively.

3. If R = R(G,D) is a root system for G and Π is the set of simple roots,

then G is simply connected if X(D) has a base {λa : a ∈ Π} such that

waλb = λb − δaba where δab is the Kronecker delta function and wa the

element of the Weyl group corresponding to the reflection about a. G is

adjoint if Π spans the entire character group X(T ).
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The kernel of G̃ → G in a universal covering of G does not depend on the

covering.

Definition 2.1.31. The (central) kernel of any universal covering of G is called

the fundamental group of G.

The next theorem finishes the classification; its proof involves the greater

part of the book [8].

Theorem 2.1.32. Let G be a connected semisimple algebraic group. Up to

algebraic group isomorphism, G is determined by its root system and its funda-

mental group.

The theory outlined above works over algebraically closed fields and is called

the absolute case. When we pass to a non-algebraically closed field such as a

local field, most of the results above do not hold. However, given a maximal

K-split torus D in G = G(K) we can still define a root system as above; it still

furnishes an abstract root system in the sense of [9], but the system may not be

reduced. The differences are mainly reflected in the structure of Ua, leading to

many more isomorphism classes and invariants than the absolute case; however,

we will use little of the finer properties of the classification of semisimple groups

over K and refer to [18] for a good survey and the references to the original

papers of Borel and Tits therein.

2.2 K-rational representations of semisimple

groups and semi-direct products

In this section we introduce certain finite dimensional representations of a

semisimple group which will bind together with the group into a semidirect

product; this composite group will be one of the main objects of our study.

When we speak of semisimple groups from now on we will understand to

mean the groups of K-rational points of the algebraic group for a fixed K.

Definition 2.2.1. Fix K. Let G be a semisimple group and V a finite dimen-

sional K -vector space. An algebraic group morphism

ρ : G→ GL(V )

defined over K is called a K-rational representation of G.

Remark 2.2.2. In the case of K = R, all of our results hold in the much greater

generality of continuous representations. We restrict notationally to R-rational

representations, but the reader will notice that rationality can be immediately

replaced by continuity if we make the appropriate modifications (see [24, Section

1]).
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Definition 2.2.3. Let G be semisimple and Gi its simple factors as in Theorem

2.1.29. For each i, Gi = Gi is either K-isotropic or anisotropic. The product

all anisotropic factors of G will be denoted Gc and the isotropic factors Gs.

Definition 2.2.4 ([24]). A K-rational representation ρ is called good if the K
-anisotropic part of the semisimple group G has no non-trivial fixed points in

V . It is called excellent if for each K-isotropic Gi, ρ(Gi) has no non-trivial fixed

points in V .

Example 2.2.5. 1. Let SL(2,K) act on K2 by the standard representation

ρstd. Since ρ is transitive, it is excellent.

2. Let G = SL(2,K)×SL(2,K) act on K2×K2 by ρstd⊕ρstd. Both factors of

G are K -anisotropic and there is no fixed vector in K2×K2 for the entire

action, but each factor fixes an entire K2 summand, so the representation

is good but not excellent.

3. If H < G is closed in G and defined over K, a well known theorem states

that there exists an immersive representation ρ : G → GL(E) and a line

L ⊂ E so that H = {g ∈ G : ρ(g)L = L}; see [4, Chapter II, Theorem

5.1]. In particular, if L = K〈v〉, then ρ(g)v = w(g)v for some w(g) 6= 0.

Being a representation, we have w(g−1) = w(g)−1. Now consider (ρ∗, E∗),

the contragredient representation and let ρ0 = ρ⊗ ρ∗|H . If v∗ ∈ E∗ such

that v∗(v) = 1, then note that

ρ0(g)v ⊗ v∗ = ρ(g)v ⊗ ρ∗(g)v∗ = w(g)w(g)−1v ⊗ v∗ = v ⊗ v∗.

Thus ρ0 is not good even if H is a big simple subgroup of G and ρ is

an excellent representation of G (in fact, if H is simple, it has no non-

trivial characters and thus w(g) = 1, so we do not need to consider the

contragredient).

Next we formally define weights and weight spaces for ρ.

Definition 2.2.6. Let D < G be a maximal K-split torus. The weights of the

representation ρ : G → GL(V ) are the non-zero K-characters χ of D for which

there exits v ∈ V such that ρ(d)v = χ(d)v for d ∈ D. For a given χ ∈ X(D)K,

Vχ = {v ∈ V : ρ(d)v = χ(d)v}.

We will need two structural results concerning ρ and its weights.

Proposition 2.2.7 (Complete reducibility under ρ). The space V splits as a

finite direct sum V =
⊕
Vχ.

Proposition 2.2.8 ( [24, Lemma 2.5] ). Consider a K-rational representation

ρ of G on V . We have:
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1. If ker(ρ) ∩Gs ⊂ Z(G), then every root in G is a rational combination of

weights of G.

2. The sum of weights of ρ is trivial.

Remark 2.2.9. The condition ker(ρ) ∩Gs ⊂ Z(G) is weaker than the notion of

an excellent representation and coincides with it when ρ is irreducible.

Remark 2.2.10. The significance of (1) in Proposition 2.2.8 is the following:

roots of G reflect intrinsic properties of the group and will be used to understand

actions of G on measure spaces. Weights for ρ on the other hand are specific

to the representation. Item (1) implies that when the representation realizes

a large enough portion of G as a set of automorphisms of V , the roots can be

seen through the weights of V ; therefore, we can use properties of a simpler

object, V to glean information about G. This idea in the context of unitary

group representations was initiated by Mackey who introduced the system of

imprimitivity in [14] and was exploited by many authors including R. Howe, C.

Moore and others in work that we will mention as we use.

We are now in position to introduce the main object of our study.

Definition 2.2.11. Let G be semisimple, ρ a K-rational representation on V .

The semidirect product

G = Gnρ V

of G and V with respect to ρ is the algebraic K-group whose multiplication is

given by

(g, v) ∗ (g′, v′) = (gg′, ρ(g)v′ + v).

Whenever we talk about V as a group, we will mean the additive group of the

vector space.

Note the claim that the abstract K-group defined above is an affine algebraic

group. The claim follows from [4, Corollary I.1.4] and the algebraic structure of

the product of two algebraic varieties. Since V is a connected unipotent group,

we see that G is not reductive; in fact V is the unipotent radical of G.

We close this section with a list of notations involving G, ρ and V . Recall

that since G is semisimple and char(K) = 0, the representation ρ is completely

reducible and thus V breaks into irreducible components

V = ⊕Ni=1Vi.

Definition 2.2.12. 1. || · || denotes a K-invariant norm on V .

2. The restriction of ρ on Vi is denoted by ρi.

3. Φi is the set of weights of ρi with respect to D on Vi.

4. λi (resp. %i) are the highest (resp. lowest) weights of ρi.
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5. For each i and each weight w of ρi, Vw is the corresponding weight subspace

of Vi (there will be no problem distinguishing irreducible components).

6. Φ is the set of roots of G with respect to D.

7. For each ω ∈ Φ, denote by gω the root space corresponding to the root.

8. δB is the modular function of the Borel subgroup B that determines the

ordering on Φ.

9. {ω1, · · · , ωn} ⊂ Φ+ is the set of simple roots in Φ+.

10. qi :=
(

1
3

)#Φi−1
if dimVλi

> 1, otherwise qi :=
(

1
3

)#Φi−2
.

More details about the aspects of root systems and weights we will use can

be found in [24, Section 3] and the references therein.

2.3 Unitary representations of algebraic groups

2.3.1 Ergodicity and fixed vectors

Let (X,µ) be a probability space, H = L2
0(X) the Hilbert space of square

integrable functions on X orthogonal to the constants, 〈 〉 the inner product,

L = L∞0 (X) ⊂ H and σ a measure-preserving action of G on X; we always

use the notation g · x for σ(g)(x). The Koopman representation on H defined

in 2.1.23 is unitary; we call g ·f a translate of f by g, suppressing mention of the

action. The Koopman representation is multiplicative, i.e. it distributes over

pointwise (and a.e. pointwise) products of functions:

g · (fh) = (g · f)(g · h).

Assume that for each irreducible component Vi of V , the representation σ|Vi

has no fixed vectors in H , so that the action of each Vi is ergodic. The basic

qualitative theorem concerning semidirect products is the following, phrased in

the language of unitary representations:

Theorem 2.3.1. Let σ : G→H be a unitary representation with the property

that σ|V has no invariant vectors. Then all the matrix coefficients of σ|G decay

to zero at infinity.

The proof of Theorem 2.3.1 can be found in [26] in the case K = R. The only

properties of K used in the proof is self-duality under the Fourier transform, the

structure of a locally compact field and the existence of an L2-dense space of

functions whose Fourier transform has good properties. All these are satisfied

for an arbitrary local field of characteristic zero and the proof carries over to

that case. Later we will introduce all the necessary tools and deduce Theorem

2.3.1 from stronger quantitative versions.
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We now give a flavor for the kind of arguments we will use later by proving

the theorem in the special case when matrix coefficients of V decay at infinity.

Sketch of proof. Assume 〈f, σ(vn) · h〉 → 0 as vn → ∞. For a contradiction,

consider an invariant function f for σ|G. Form the matrix coefficient

〈f, σ(v) · f〉.

By invariance, we have

〈f, σ(v) · f〉 = 〈σ(g) · f, σ(v) · f〉

and by unitarity

〈f, σ(v) · f〉 = 〈f, σ(ρ(g−1))σ(v) · f〉

which becomes

〈f, σ(g−1, ρ(g−1)v) · f〉.

Again by invariance we can replace the rightmost f by σ(g, 0) · f which cancels

with the previous one to give

〈f, σ(v) · f〉 = 〈f, σ(1, g−1v) · f〉 = 〈f, σ|V (g−1v) · f.〉

By [2, Chapter III, Lemma 1.3], it is sufficient to show that matrix coefficients

in a maximal K-split torus D tend to infinity. Pick a v 6= 0 adequately close

to 0 so that 〈v · f, f〉 ∼ ‖f‖2 6= 0. Write v =
∑
cwvw for some basis consisting

of weight vectors of V for ρ. Applying d−1
n to v for some sequence dm →∞ in

D, we see that the matrix coefficient above splits into a finite number of matrix

coefficients of elements in V diverging to infinity, and thus tends to zero. This

contradicts the fact that the left hand side is nonzero.

2.3.2 K-finite and smooth vectors

The Peter-Weyl theorem for compact groups (see [7, Chapter 1]) allows us to

decompose an arbitrary unitary representation into a sum of irreducibles and

provides a formula for the projection of vectors on each irreducible component.

The following definition introduces a class of vectors for which the action of K

is very tame.

Definition 2.3.2. Let K be a maximal compact subgroup of the semisimple

group G for which the Cartan decomposition holds; such groups will be called

good maximal compact subgroups. Consider a unitary representation σ of G

on H . An element h ∈ H is called K-finite if the vector space 〈σ(K) · h〉 is

finite dimensional. The space of K -finite vectors in a Hilbert space H will be

denoted by HK .
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Remark 2.3.3. K-finite vectors are dense in the Hilbert space H with respect

to the topology given by the Hilbert norm. This follows from the Peter-Weyl

theorem and will be used repeatedly without mention. It must be emphasized

that other norms will be considered and density is not immediate with respect to

broader topologies. In the sequel all of our functions will be inside some L2(X)

and even some L∞(X) realized as a subspace of L2; the topology in both cases

will be that of L2 and all convergence statements will refer to L2 convergence or

Sobolev convergence for some S2,k(G); see 3.7.1 for the definition. In all cases,

the topology will always come from some Hilbert space.

Example 2.3.4. Let G = SL(2,R), K = SO(2,R) and σ a unitary representation

of G. Since K is abelian, σ|K decomposes into one dimensional representations

for K indexed by integers n so that for any vector in the n-th eigenspace the

eigenvalue is eint for the matrix(
cos(t) sin(t)

− sin(t) cos(t)

)
.

Then K-finite vectors are analogs of trigonometric polynomials in the K direc-

tion of G.

Sometimes, K-finite vectors are too restrictive for applications. A different

way of controlling the action of K follows by requiring the vector to be smooth.

Definition 2.3.5. Let G,K, H , σ as above. A vector h ∈H is called smooth

if:

1. K is archimedean and the vector-valued function from G to H that takes

g 7→ σ(g) · h

is smooth, i.e. for all h′ ∈H , 〈σ(g) · h〉 is a smooth function.

2. K is non-archimedean and the vector-valued function on G, g 7→ σ(g) · h
has an open centralizer in G. In other words, σ(g) · h is constant on

the cosets of an open subgroup of G; we also call such functions locally

constant.

Similarly, a vector is in the Schwartz space if:

1. K is archimedean and σ(g) · h is in the usual Schwartz space.

2. K is non-archimedean σ(g)·h is locally constant and compactly supported.

So far we have dealt with Hilbert spaces since this is where unitary represen-

tations live. However, for the purposes of multiple mixing Hilbert spaces are not

adequate (in fact, this deviation from the spectral picture that Hilbert spaces

provide accounts for much of the trouble in dealing with multiple correlations).

We amend this by the following definition:
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Definition 2.3.6. Let G act on a probability space X by measure preserving

transformations. The space of zero mean, bounded functions L∞0 (X) ⊂ L2
0(X)

will be denoted by L ; the subspace of K -finite vectors in L is denoted by LK .

2.3.3 Pointwise decay of matrix coefficients in

semisimple groups

In this section we describe the Howe-Moore theorem concerning decay of matrix

coefficients in semisimple groups as well as a quantitative refinement.

Theorem 2.3.7 (Howe-Moore). Let σ be a unitary representation of a semisim-

ple group G on a Hilbert space H such that no simple factor of G has invariant

vectors in H . Then all matrix coefficients of σ decay to zero.

For the proof, see [2, Chapter III]. The remarkable consequence of this theo-

rem is that an ergodic action of a simple group is automatically strongly mixing.

It is known that strong mixing is a rare property for ergodic systems, so the

theorem places semisimple groups in a very special category among all ergodic

systems.

For applications, the qualitative statement of vanishing of matrix coefficients

is usually not sufficient. The next theorem will give an optimal decay rate for

matrix coefficients in certain cases. To state the theorem, we need the notion

of Harish-Chandra function of G. Several measures of quantitative decay in

semisimple groups involve this function.

Definition 2.3.8. Let G be semisimple group and B the minimal parabolic

subgroup defined over K given by the ordering of roots in the group. Let ∆B

denote the modular function of B. The Harish-Chandra function of G is defined

by

ΞG(g) =

∫
K

∆B(gk)−
1
2 dk.

The Harish-Chandra function satisfies the following properties (see [25]):

Proposition 2.3.9. 1. It is continuous, bi-K-invariant function G→ (0, 1].

2. For any ε > 0 there exist c1, c2 positive such that

c1∆
− 1

2

B (b) ≤ ΞG(b) ≤ c2∆
− 1

2 +ε

B (b).

3. ΞG is in L2+ε(G) for any ε > 0.

Definition 2.3.10. A strongly orthogonal system S of roots of the semisimple

group G is a subset of the roots such that for any φ, ψ ∈ S neither of φ+ψ and

φ− ψ is a root.

Example 2.3.11. In SL(4,R) the roots e1 − e2 and e3 − e4 constitute a strongly

orthogonal system consisting of simple roots, positive for the Borel subgroup of

upper triangular matrices.
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We can now state a quantitative version of the Howe-Moore theorem from

[17]; the statement there is much more general. We omit the case K = C which

is a little more involved.

Theorem 2.3.12 ( [17, Theorem 1.1.] ). Let K be local of characteristic zero,

K 6= C. Let G be a simple group over K of rank greater than or equal to 2

and S a strongly orthogonal system of G. Then for any unitary representation

σ without G-invariant vectors and for any K-finite vectors f, h we have the

pointwise bound

〈σ(g)f, h〉 ≤
(
[K : K ∩ cKc−1]dim〈K · f〉〈K · h〉

) 1
2
∏
a∈S

Ξ(a(d))

where Ξ = ΞPGL(2,K) and g = k1cdk2, d ∈ D+.

2.4 Fourier Transform and duality in additive

groups of locally compact fields

Let G = KD+FK be a semisimple group with a Cartan decomposition with

respect to a good maximal compact subgroup.

Definition 2.4.1. Given a finite dimensional normed vector space (V, || · ||)
over K with a norm invariant under a fixed good maximal compact subgroup of

G, we denote by V̂ the unitary dual, i.e. the topological group of all additive

unitary characters of V . For x = (xi), y = (yi) ∈ V let

(x,y) =
∑

xiyi

be the standard bilinear form on V . Choosing a fixed non trivial unitary char-

acter ζ of K, define the map V → V̂ by

v → ζ((v, ·)) =: ζv.

This correspondence is a topological group isomorphism between V and V̂

through which we will usually identify the two. In this situation, given v, w ∈ V ,

we denote [v, w] = ζv(w).

Under (·, ·) we naturally define the transpose of a linear operator; define

ρ∗ : G→ GL(V ) to be the inverse transpose of ρ,

ρ∗(v) := (ρ−1)T (v).

This provides an identification of the dual action of G on V ∗ with the action ρ∗

on V , given the topological isomorphism above. Furthermore, if ρ is irreducible

and excellent on V , so is ρ∗; finally, ‖ · ‖ is ρ∗(K) -invariant as well. See Section

6.1 of [24] for these facts.
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Definition 2.4.2. For f ∈ L1(V ) and χ ∈ V̂ , define the Fourier transform

f̂(χ) =

∫
V

χ(v)f(v) dm(v) (2.4.1)

where dm(v) is a Haar measure on V .

Using the topological identification of V and V̂ , we can view the Fourier

transform as a function on V by the formula

f̂(w) =

∫
V

ζ−w(v)f(v) dm(v) =

∫
V

[−w, v]f(v) dm(v) (2.4.2)

in the bracket notation of the pairing.

We will use repeatedly the following theorems (Plancherel, inversion and

duality):

Theorem 2.4.1. There is a normalization of the dual Haar measure dm(χ) on

V̂ so that:

1. The Fourier transform extends to an isometry L2(V )→ L2(V̂ ).

2. If both f and f̂ are integrable, then for almost every v ∈ V

f(v) =

∫
V̂

χ(v)f̂(χ) dm(χ). (2.4.3)

3. Every v ∈ V defines a unitary character of V̂ through the pairing (v, χ)→
χ(v) which furnishes a canonical topological isomorphism between V and̂̂
V .

The Schwartz-Bruhat space S(V ) is just the usual Schwartz space when K is

archimedean; in the non-archimedean case, it consists of compactly supported,

locally constant functions on V . The main properties of S(V ) are that its

functions are dense in L2(V ) and the Fourier transform furnishes a topological

isomorphism S(V ) ' S(V̂ ). For more details about the Fourier analysis facts

we will use [23].
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Chapter 3

Tools and main results

3.1 Spectral fingerprints

Given a Schwartz function φ on V̂ and f ∈ LK define

Pφ(f) :=

∫
V

φ̂(x) (x · f) dm(x). (3.1.1)

Here we use the formulation of [12], Chapter 11 for Banach-space valued (Bochner)

integrals. Because of the rapid decay of the Fourier transform φ̂, Pφ(f) retains

differentiability properties of f and the inequality

||Pφ(f)||p ≤ ||φ̂||L1(V )||f ||p , 1 ≤ p ≤ ∞ (3.1.2)

shows that it is bounded on all the Lp spaces.

Proposition 3.1.1. The operator Pφ satisfies the following properties:

• Pφ is self-adjoint (with respect to the inner product of H ) for real φ; more

generally,

P ∗φ = Pφ.

• Operator multiplication transforms to pointwise multiplication of func-

tions:

Pφψ = Pφ ◦ Pψ (3.1.3)

This property plus linearity in the subscript shows that P is a homomor-

phism from the pointwise algebra of Schwartz functions to self adjoint

operators on H .

• For g ∈ G,

σ(g)Pφσ(g−1) = Pφ(ρ(g−1)·). (3.1.4)

When φ is K -invariant, this equation implies that Pφ commutes with the

K-action and thus K-finite vectors are L2-dense in the range of Pφ.

Proof. For the case K = R, all statements above are proven in [7, Chapter I and

Chapter V]. No properties germane to R are used and the proof carries over to

all local fields of characteristic zero.
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We will identify φ ∈ S(V̂ ) with φ(ζ·) ∈ S(V ). With that identification, the

action of G in (3.1.4) corresponds to the contragredient representation ρ∗ on

S(V ), i.e. when we think of φ as a function on V , we have

σ(g)Pφσ(g−1) = Pφ(ρ∗(g−1)·). (3.1.5)

Convergence and limits involving P are obtained using positivity: for φ ≥ 0,

Pφ is a positive semidefinite operator. To see this, simply use (3.1.3) and self-

adjointness:

〈Pφ(f), f〉 = 〈P√φ(P√φ(f)), f〉 = 〈P√φ(f), P√φ(f)〉 ≥ 0.

This way we see that Pφ ≥ Pψ and thus ||Pφ||2 ≥ ||Pψ||2 when φ ≥ ψ. Thus,

if φj increase or decrease monotonically to a bounded function on V , the Pφj

converge strongly to a bounded, self-adjoint operator on H .

Definition 3.1.2. Let S be an admissible set and φn a sequence of Schwartz

functions that decrease monotonically to S. Then

PS(f) = lim
n→∞

Pφn
(f).

The PS as defined above is a self-adjoint projection operator on H . Al-

though we will mostly deal directly with the Pφ, since we cannot guarantee

control on the L∞ norm for the limits in general, we will use PS as a tool to

simplify calculations and their use is always permissible when we do not require

PS(f) to have any boundedness conditions other than being in L2.

3.2 Spectrally restricted functions

Definition 3.2.1. Let S be a subset of V with the property that its charac-

teristic function χS can be pointwise approximated by a sequence of decreasing

compactly supported Schwartz functions; we call such sets admissible; all sets

we will deal with will be admissible.

In particular, we will be interested in the annuli

Ann(s) := {x ∈ V |s−1 < ‖x‖ < s}.

Recall that the norm on V is assumed K-invariant. The characteristic function

of each annulus χAnn(s) can be approximated pointwise from above by a sequence

of smooth functions with the properties

22



φks ≡ 1 on Ann(s)

supp(φks) ⊂ Ann

(
s+

1

k

)
(3.2.1)

φks ≤ φls for l ≤ k

From this definition, the sequence Ps,k := Pφk
s

consists of positive, decreas-

ing, self-adjoint (see [7] for the easy computation) bounded operators on L2(X)

and thus has a strong limit for fixed s as k tends to infinity which by (3.1.3) is

idempotent, since φks → χAnn(s). Note that the image under Ps = limPs,k of

L∞0 (X) is L2
0-dense in L∞0 since the Ps form a system of projections that tends

to the identity operator in L2
0(X) as s goes to infinity.

It will be convenient to fix a class of functions satisfying (3.2.1) once and for

all. We do this as follows:

In the non-archimedean case, the characteristic function of the annulus is

itself a smooth (even Schwartz) function. In this case we will simply take φks =

χAnn(s).

In the archimedean case, we will use functions φks constructed as follows:

define

I(r) = e
r2−1

r2 (3.2.2)

for 0 ≤ r ≤ 1 and extend it to R by 0 for r < 0 and 1 for r > 1. This function is

in C∞(R). Construct φks using a homothetic copy of I(r) rescaled to realize the

transition from 0 to 1 (radially) at the annulus described above. What we gain

is the guarantee that at the transitional annulus (the ‘corona’), the function φks

satisfies ∣∣(1−∆)aφks(v)
∣∣ ≤ sla (3.2.3)

for any a ∈ N and some l ≥ 2 depending on the real dimension of V . Here ∆

is the usual Laplacian on V seen as a real vector space.

Recall the definition of PS for an admissible set S. The properties of Pφ

listed in 3.2.1 imply the following important facts:

• If supp(φ) ⊂ S, then

PS(Pφ) = Pφ (3.2.4)

• If S is invariant under rotations, then for any g ∈ K,

σ(g)PSσ(g−1) = PS (3.2.5)

• By the previous property, when S or φ areK-invariant, PS or Pφ commutes

with the action of K and thus K-finite vectors are dense in the range of

PS or Pφ.

Definition 3.2.2. The following terminology will be convenient: if PS(f) = f
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for some set S, we say that the spectral support of f lies in S; when S is replaced

in the subscript by a Schwartz function, by spectral support we will refer to the

support of the function.

Intuitively, PS restricts the spectrum of f to lie in S, so a function which is

unaffected by this application is justified in being called spectrally supported in

S. Note that PS(L2) is a closed vector subspace of L2 for each S since PS is a

projection operator.

With this notion in hand, we can define explicitly the dense subspace of LK

where we will bound the coefficients effectively.

Definition 3.2.3. Let

Ds =
⋃
k>s2

Pφk
s
(LK)

and

D =
⋃
s>0

Ds

and call it the space of spectrally bounded functions in LK .

It is easy to see that this space is L2-dense in LK . The specific choice k > s2

is not important: we just need some leeway for approximations and we do not

want k to be too small as to cause problems with stretching annuli.

The next lemma describes how pointwise multiplication of functions behaves

with respect to the operators Pφ. Recall the identification of V̂ with V and

the two dual Haar measures by the isomorphism in 2.4.1 (compatibility in the

computations below is guaranteed by (2.4.3)). Recall the notation [u, z] = ζu(z)

for u, z ∈ V (keep in mind the standard case [u, z] = ei〈u,z〉).

Lemma 3.2.1. Let φ, ψ ∈ S(V ) and f, g ∈ L2(X) be such that the pointwise

(a.e.) product Pφ(f)Pψ(g) is in L2(X). Suppose ω ∈ S(V ) is identically equal

to one on supp(φ) + supp(ψ); then Pω(Pφ(f)Pψ(g)) = Pφ(f)Pψ(g).

Proof. Compute:

Pω(Pφ(f)Pψ(g))

=

∫
ω̂(z)

∫
φ̂(x)ρ(z + x)f dm(x)

∫
ψ̂(y)ρ(z + y)g dm(y) dm(z)

=

∫
ω̂(z)

∫
φ̂(x− z)ρ(x)f dm(x)

∫
ψ̂(y − z)ρ(y)g dm(y) dm(z)

=

∫∫
ρ(x)f ρ(y)g

∫
ω̂(z)φ̂(x− z)ψ̂(y − z) dm(z) dm(x) dm(y).

Now expand the inner integral using the definition of the Fourier transform,
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valid for L1 functions:∫
ω̂(z)φ̂(x− z)ψ̂(y − z) dm(z)

=

∫∫∫∫
ω(u3)[−z, u3]φ(u1)[−(x− z), u1]

·ψ(u2)[−(y − z), u2] dm(u2) dm(u1) dm(u3) dm(z)

=

∫∫
φ(u1)[−x, u1]ψ(u2)[−y, u2]

·
(∫∫

ω(u3)[−z, u3] [z, u1] [z, u2] dm(u3) dm(z)

)
dm(u1) dm(u2)

=

∫∫
φ(u1)[−x, u1]ψ(u2)[−y, u2]

·
(∫

[z, u1 + u2]

∫
ω(u3)[−z, u3] dm(u3) dm(z)

)
dm(u1) dm(u2).

The integral in the parentheses is simply∫
[z, u1 + u2]ω̂(z) dm(z) = ω(u1 + u2) = 1

by Fourier inversion and the fact that u1 ∈ supp(φ), u2 ∈ supp(ψ). Untangling

the remaining integrals we get the required result.

Corollary 3.2.2. Let supp(φ) ⊂ S and supp(ψ) ⊂ T for admissible sets S and

T . Then

PS+T (PφPψ) = PφPψ. (3.2.6)

The relations (3.2.6) and (3.2.4) form the core of the main computation.

3.3 Bounds for the L2-norm in sectors

Figure 3.1: The spectral fingerprint of a function PS(f) for a sector in R2.

In the sequel, we will examine how restricting a unit (in the L2-norm) K

25



-finite vector f to the image of an approximate projection Pφ for suitable φ

affects its norm. This was accomplished in greater generality in [24] from which

we will draw notation and results, noting the places in that paper where they are

treated. The idea of estimating matrix coefficients (non-uniformly) by looking

at the effect the representation has on their spectral support and then estimating

norms of functions with restricted spectral support is a major theme in chapter

5 of [7] where the idea is applied to G = SL(2,R) and V = R2. The maximal

compact subgroup in that setting is K = SO(2,R) , a connected torus. In our

setting, the non-commutativity of K increases the complexity of this method

considerably. However, the detailed analysis in [24] allows one to carry it out

effectively.

In order to state the second main lemma and principal ingredient for bound-

ing norms of projected vectors, we need some additional concepts from [24].

Recall the list of notations in definition 2.2.12 and assume that ρ = ρ1 is irre-

ducible with highest and lowest weights λ and % respectively. For ψ ∈ Φ1, let

πψ(v) be the projection of v on the weight space Vψ.

Define the ’cones’

Cone1(c, s) = {v ∈ V : ||πλ(v)|| ≤ c and ||v|| ≥ s},

Cone2(c, s) = {v ∈ V : ||π%(v)|| ≤ c and ||v|| ≥ s}.

See [24, Proposition 6.1] for the fundamental properties of these sets. We will

not use Proposition 6.1 itself here, but we will follow verbatim the computations

in Proposition 7.1 which uses Proposition 6.1 in a crucial way.

Observe that the norm ‖ · ‖∞ on V defined by

‖v‖∞ = max
φ∈Φ1

‖πφ(v)‖

is equivalent to the given norm since dim(V ) < ∞, so in particular ‖v‖∞ ≤
C‖v‖; we will use this observation below.

Lemma 3.3.1. Let f be K-finite with ||f ||2 = 1, dim〈K · f〉 = df , ai ∈ D+

for i = 1, · · · , k ordered in increasing πλ(ai) with sufficiently large minimum

depending only on the action, Ann(s) the annulus defined in Section 2.4 and

Fs ∈ S(V ) with compact support inside the set

X1(a, s) = Ann(s) ∩

(∑
i

ρ∗(ai)
(
Ann(s−1, s)

))
.

Then for some positive C independent of a, s and f we have the bounds

||PFs
(f)||2 ≤ Csqd

1
2

f |
∑
i

%(ai)−1|−
q
2 . (3.3.1)
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Similarly, if the support of Fs is in the set

X2(a, s) = Ann(s) ∩

(∑
i

ρ∗(
ai

ak
)
(
Ann(s−1, s)

))
,

then as above

||PFs
(f)||2 ≤ Csqd

1
2

f |
∑
i

λ(
ak

ai
)|−

q
2 . (3.3.2)

Proof. The proof is essentially contained in the proof of Proposition 7.1 of [24].

We indicate how to extract the relevant parts for our lemma and explain the

correspondences. All references to numbered sections will belong to [24]. We

will only examine the fist situation, since the second one is identical.

In the course of proving that proposition, the author in [24] examines (pages

31-38) a Schwartz function1 Fs and the projection of a unit vector with respect

to that function, bounding the Hilbert space norm of

Π̂(F
1
2
s )η

in the notation of that paper, where

Fs = (aω)−1(hs · gs)
1
2 ;

in our notation η is f and Π̂(F
1
2
s ) is P

F
1
2
s

, ω = 1 because we are only considering

the positive Weyl chamber and the precise definition of Fs in [24] is irrelevant;

in order to carry out the computations, we only need Fs to be Schwartz and its

support contained in one of the two cones defined above, for specific 0 < c� 1

and s > 0. There, it is claimed that how small c needs to be depends on s;

however, the only dependence of c on s that is necessary there is that cs−1 < C

with C depending only on the action. Since our c here is going to be of the form

c = sA where A does not involve s, we see that in order to ensure cs−1 < C

all we need is to bound A by a constant depending only on the action; this

translates to the norm bounds on the ai in the statement. See p.27 of [24] for

the specific requirements on c.

By the discussion above, the reductions from page 31 to page 34 in [24] carry

over to our Fs, resulting in the situation where we want to bound

‖P̃Fs
f̃‖2

where P̃ is the approximate projection operator for the regular representation

of K n V on H and f̃ is a K-invariant unit norm vector. At that point we

use the containment of the supports. In our case, observe that our X1(a, s) is

1The reason we use Fs for the function rather than the usual Greek letters is to facilitate
the comparison with the computation in [24].
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contained in the set

E1 = {v ∈ Ann(s) : s−1 ≤ ‖
k∑
i=1

ρ∗(ai)v‖ ≤ s}

which becomes, after writing v in terms of the weights, applying ρ∗ to each

coordinate in Vψ and switching summations

E1 = {v ∈ Ann(s) : s−1 ≤ ‖
∑
ψ∈Φ1

(

k∑
i=1

ψ(ai)−1)πψ(v)‖ ≤ s}.

Note the inverses because we decomposed the vector v with respect to the

weights Φ1 of ρ; then the weights of ρ∗ act by inverses on each weight space πψ.

Using the equivalence of norms ‖·‖ and ‖·‖∞ we see that this set is contained

in

S1 = {v ∈ Ann(s) : ‖π%(v)‖ ≤ Cs|
k∑
i=1

%(ai)−1|−1}.

Since ai ∈ D+, for large min1≤i≤k |ai| (in any norm on G) the coefficient on

the right hand side of the definition on S1 is going to be small. In particular,

S1 will be contained in the cone

Cone1(Cs|
k∑
i=1

%(ai)−1|−1, s−1).

Having this containment, the argument from pages 34-37 goes through without

change leading to the desired conclusion analogous to (7.22), (7.23) there.

Since admissible sets can be approximated from above by Schwartz functions

and the operators P· are monotone, we get the corollary

Corollary 3.3.2. With notation as in Lemma 3.3.1 and S an admissible set

contained in one of the Xi(a, s), we have the corresponding bound from that

lemma for ‖PS(f)‖2.

Remark: In the case of G = SL(2,R), K is commutative and a much easier

proof of the Lemma 3.3.1 follows from [7, Chapter V, Theorem 3.3.1].

3.4 Decay of multiple correlations

Consider k ≥ 2 distinct elements ai ∈ D+, i = 1 · · · k as above and k + 1

functions fi ∈ D, i = 0 · · · k. Order the ai in increasing highest weight valuations

and define a0 = I. We want to bound the correlation integral∫
X

f0(x) a1 · f1(x) · · · ak · fk(x) dµ(x). (3.4.1)
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Since Ps,k(f) → f for any f ∈ L and we only have finitely many fi, we can

assume that all fi are in the image of Ps,l for some s, l (and thus certainly in

the image of Ps′ where s′ = s+ 2
l ).

Definition 3.4.1. Assume that the elements ai are such that a0 = I and if

0 < i < j then

1 ≤
∣∣λ (ai)∣∣ ≤ ∣∣λ(aj)

∣∣ .
Define the sums

L(a) =

k−1∑
i=0

λ

(
ak

ai

)
and

R(a) =

k∑
i=1

%(ai)−1. (3.4.2)

At least one of these two sums will be large as the ai go out in the positive Weyl

chamber; in order to treat the bound uniformly, define

R(a) = min(1, |L(a)|) ·min(1, |R(a)|).

For notational convenience, abbreviate Ann(s) by (s) and denote its image

under ρ∗(ai) simply by ai(s). We will also denote the action of ρ∗(ai) on the

φks defined above by ai(s, k).

Theorem 3.4.1. Let ai, fi, s be as above. Let

di = dim〈K · fi〉.

There exists a positive constant C ′ independent of the fi such that if

max( min
i=0,··· ,k−1

|λ(
ak

ai
)|, min

i=1,··· ,k
|%(ai)−1|) > C ′, (3.4.3)

we have the bound∫
X

f0(x) a1 · f1(x) · · · ak · fk(x) dµ(x)

≤ s2qd
1
2
0 ‖f0‖2d

1
2

k ‖fk‖2

(
k−1∏
i=1

‖fi‖∞

)
R(a)−

q
2 . (3.4.4)

The proof is based on an examination of the effect on the spectrum of Pφ(f)

of Cartan elements, of taking pointwise products, and finally of correlating

with other Pφ′(f). In Figure 3.4 we see a spectral picture of an approximate

annulus φ applied to the spectrum of a sample f ; as Cartan elements act on

this spectrum it is distorted as in Figure 3.4. Observe the gradual degeneration

of the spectrum into a long, thin strip with a central ball removed.
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Figure 3.2: The spectral fingerprint of a function Pφ(f).

Proof. The correlation can be written as∫
X

Ps,l(f0) a1 · Ps,l(f1) · · ·ak · Ps,l(fk) (3.4.5)

which by (3.1.4) becomes∫
X

Ps,l(f0)Pa1(s,l)(a
1 · f1) · · · Pak(s,l)(a

k · fk). (3.4.6)

We now use Lemma 3.2.1 repeatedly to conclude that

Pa1(s,l)(a
1 · f1) · · ·Pak(s,l)(a

k · fk) ∈ PΣ(L )

where Σ is the iterated sum set
∑k
i=1 ai(s′); thus in particular if

z := Pa1(s,l)(a
1 · f1) · · ·Pak(s,l)(a

k · fk)

then PΣ(z) = z. Thus the integral in (3.4.6) becomes∫
X

Ps,l(f0)PΣ(z) (3.4.7)

Now PΣ is an orthogonal projection so we can transfer PΣ from z to Ps(f0),

getting

PΣ(Ps,l(f0)) = PχΣφl
s
(f0).

Here we are abusing notation a little bit, since the last expression need not be a

bounded function; we will take this shortcut to mean that we have an arbitrary

Schwartz function φ dominating the function χΣ and we are applying Pφ to
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Figure 3.3: Evolution of the fingerprint of multiple autocorrelations
f(x)f(a1 · x)f(a2 · x) of the previous function as the Cartan elements diverge
from each other.

both terms of the ‘inner product’; the rightmost term is unaffected, while the

leftmost has spectral support approximately equal to that of χΣφ
l
s since φ is

arbitrary and the support of χΣφ
l
s is easily seen to be an admissible set (also

see Corollary 3.3.2). Thus the integral becomes∫
X

PχΣφl
s
(f0)z dµ =

∫
X

PχΣφl
s
(f0)Pa1(s,l)(a

1 · f1) · · ·Pak(s,l)(a
k · fk) dµ

=

∫
X

PχΣφl
s
(f0)a1 · Ps,l(f1) · · ·ak · Ps,l(fk) dµ

Write U0 := χΣφ
l
s and apply (ak)−1 to all terms of the integral, giving

∫
X

(ak)−1 · PU0
(f0)Ps,l(fk)

k−1∏
i=1

(ak)−1 · ai · Ps,l(fi) dµ (3.4.8)

By unitarity, the value of the integral is not affected. So, now we can repeat

the reasoning above, summing the indices for all factors except for Ps,l(fk), and

conclude that this integral is equal to

∫
X

(ak)−1 · PU0(f0)Ps,l(fk)

k−1∏
i=1

(ak)−1 · ai · Ps,l(fi) dµ

=

∫
X

Ps,l(fk)PΣk
(zk) (3.4.9)

=

∫
X

PχΣk
φl
s
(fk)zk dµ

=

∫
X

PU0
(f0)ak · PUk

(fk)

k−1∏
i=1

ai · Ps,l(fi) dµ (3.4.10)
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where

Σk =

k−1∑
j=0

(ak)−1 · aj(s′),

zk =

k−1∏
i=0

(ak)−1 · ai · Ps,l(fi)

and Uk = χΣk
φls.

Denote by U0 and Uk respectively also the supports of the corresponding

functions (which, note, are bounded above by 1 and thus by the characteristic

functions of the supports). We can now immediately apply Lemma 3.3.1 with

U0 and Uk in the place of the two situations for Fs considered there, bounding

‖PU0
(f0)‖2 and ‖ak · PUk

(fk)‖2 = ‖PUk
(fk)‖2.

In order to finish the proof, we simply bound (3.4.10) by the L∞ norms

of the functions fi for i 6= 0, k and then use Cauchy’s inequality on the two

remaining terms to finish the proof.

3.5 Examples

In this section we see what the bounds obtained above mean for two particular

cases of semidirect products. The choice of these examples is not arbitrary:

these groups will occur as subgroups (locally) of split simple groups of higher

rank.

First consider the case of G = SL(2,K)nK2 where the action is the standard

matrix action on 2-vectors. The action is irreducible and there are only two

weights; the roots of SL(2,K) are

diag(a, a−1)→ a±2

and the weights of the standard representation on K2 are

diag(a, a−1)→ a±1

with the obvious weight spaces V1 = {(v1, 0) ∈ K2} and V2 = {(0, v2) ∈ K2}.
Take the weight

diag(a, a−1)→ a

to be positive, so this is the highest weight. The highest weight space is one

dimensional, so the exponent q defined in the list 2.2.12 is in our case 1. Write

ai =

(
ai 0

0 a−1
i

)

for k + 1 elements of the positive Weyl chamber with 1 = a0 < a1 < · · · < ak
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and if i > j, aiaj > C0 for some C0 depending on the action of G on X. Applying

the preceding discussion to the hypotheses of Theorem 3.4.1, we get

Corollary 3.5.1. In the setting of Theorem 3.4.1 and G = SL(2,K)nK2 with

the standard action and ‖fi‖∞ normalized to 1, we get the bound∫
X

f0(x) a1 · f1(x) · · · ak · fk(x) dµ(x)

≤ Cs2d
1
2
0 d

1
2

k

∣∣∣∣∣
k−1∑
i=0

ak
ai

∣∣∣∣∣
− 1

2
∣∣∣∣∣
k∑
i=1

ai

∣∣∣∣∣
− 1

2

.

Note how in the case k = 1 we recover the bound from Chapter 5 of [7].

For the second example, consider the action of SL(2,K) on its Lie algebra

over K, denoted simply by g and being equivalent to S2(K2), the second sym-

metric power of K2 (in the case char(K) = 0 that we are considering). The

weights and weight spaces in this case coincide with the roots and the high-

est weight space (pick diag(a, a−1) → a2 as positive) is again one dimensional.

Therefore, by the same procedure as above, we have:

Corollary 3.5.2. In the setting of Theorem 3.4.1 and G = SL(2,K) n g with

the adjoint action on the Lie algebra and ‖fi‖∞ normalized to 1, we get the

bound ∫
X

f0(x) a1 · f1(x) · · · ak · fk(x) dµ(x)

≤ Cs2d
1
2
0 d

1
2

k

∣∣∣∣∣
k−1∑
i=0

(
ak
ai

)2
∣∣∣∣∣
− 1

2
∣∣∣∣∣
k∑
i=1

(ai)
2

∣∣∣∣∣
− 1

2

.

3.6 Spectral norms and extensions of decay

Observe that whenever we have an estimate of the form

‖Ps,s2(f)− f‖2 ≤ C‖f‖′s−A (3.6.1)

for all s > 0, C and A independent of f and ‖ · ‖′ an appropriate norm, we can

use a 2ε argument plus the uniform Hölder inequality to eliminate s:

|
∫
X

f0 · · ·ak · fk dµ| ≤
k∑
i=0

∏
j 6=i

‖fj‖∞,s‖Ps,s2(fi)− fi‖2

+ |
∫
X

Ps,s2(f0) · · ·ak · ai · Ps,s2(fk) dµ|

≤ C

 k∑
i=0

‖fi‖′
∏
j 6=i

‖fj‖∞,s

 s−A + C ′s2qd
1
2
0 d

1
2

kR(a)
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where ‖f‖∞,s = max(‖f‖∞, ‖Ps,s2(f)‖∞). Choosing s = R(a)ε and optimizing

for ε to get the best overall exponent, we can get a bound for all K-finite vectors

with finite ‖ · ‖′-norm which is uniform if it happens that ‖Ps,s2(f)‖∞ ≤ sM

for some M ≥ 1 and all f ∈ LK . Here we chose l = s2 in the approximate

projection Ps,l for convenience; all we need is l to grow as a power of s, and

since our main bound in Theorem 3.4.1 did not depend on l, we are free to make

this choice.

In order to axiomatize this estimate, we introduce, for each A > 0, the norms

‖f‖∞,s = max(‖f‖∞, ‖Ps,s2(f)‖∞)

‖f‖−,A = sup
0<s<∞

s−A‖Pψ0,s(f)‖2,

‖f‖+,A = sup
0<s<∞

sA‖Pψ∞,s
(f)‖2,

‖f‖±,A = ‖f‖−,A + ‖f‖+,A, (3.6.2)

where

1− φt
2

t = ψ0,t−1 + ψ∞,t,

the first function supported in a small B(0, t−1) and the other one in the com-

plement of a large ball B(0, t); the choice of exponents here indicate that for

‖ · ‖−,A it is small s that matter, while for ‖ · ‖+,A it is large s. We will study

the two norms separately below, so there will be no danger of confusing the role

of s.

Define L A
K to be the subspace of LK where both norms ‖f‖±,A are finite.

Note that for each A > 0,

Ps,s2(LK) ⊂ L A
K

for all s > 0 and thus L A
K is L2-dense in LK (since Ps,s2(f)→ f in L2).

The spaces L A
K form the broadest category of spaces where our method

extends to give effective bounds. This should be understood in the sense that

if we use as inputs only Theorem 3.4.1 and the basic structure of the projection

operators P , we definitely need an estimate like (3.6.1) to remove the dependence

on s. Let f = (f0, · · · , fk) and denote the aggregate of the norms appearing

above by

N±,A,s(f) = max

 k∑
i=0

‖fi‖±,A
∏
j 6=i

‖fj‖∞,s, d
1
2
0 d

1
2

k ‖f0‖2‖fk‖2
k−1∏
i=1

‖fi‖∞,s

 .

(3.6.3)

In this class of functions, our main result takes the form

Theorem 3.6.1. Let fi ∈ L A
K , ai and di as in Theorem 3.4.1. Under the
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assumption (3.4.3), we have the bound∫
X

f0(x) a1 · f1(x) · · · ak · fk(x) dµ(x)

≤ N±,A,s(f)

(∣∣∣∣∣
k−1∑
0=1

λ(
ak

ai
)

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

%(ai)−1

∣∣∣∣∣
)− Aq

2(A+2q)

. (3.6.4)

Remark 3.6.1. At this point, the structure of the space L A
K is not apparent.

However, it needs to be emphasized that the finiteness of ‖‖±,A for all Sobolev

functions in the archimedean case is strongly linked with mixing properties of

the action of V on X, which is not typical of homogeneous actions of semidirect

products. Mixing actions of V usually occur when G acts in a mixing manner

as a subgroup of a higher rank group in one of the homogeneous spaces of the

latter. In the case of homogeneous actions of semidirect products, the results

of Chapter 4.1 complement the ones presented above.

3.7 Spectral norms in mixing actions of V

The purpose of this section is to show that for certain actions of G, L A
K con-

tains all smooth, K-finite vectors and the spectral norms defined above can be

replaced by norms involving derivatives of smooth vectors.

3.7.1 The archimedean case

Definition 3.7.1. The Sobolev norm of order k in an algebraic (or Lie) group

G is

Sk(f) = sup
D∈U(g)

deg(D)≤k

‖D(f)‖2. (3.7.1)

The Sobolev space S2,k(G) is the Hilbert space of Ck functions whose derivatives

are all square integrable with norm given by (3.7.1).

We make the following assumptions on the action:

• K is archimedean; in fact, take it to be R without loss of generality; we

will only rely on the additive and smooth structures of V below.

• The smooth matrix coefficients satisfy an estimate of the form

|〈v · f, h〉| ≤ CkSk(f)Sk(h)
1

(1 + ‖v‖)ε
(3.7.2)

for some ε > 0 and here we indicate the order of the Sobolev norm and the

dependence of Ck on that order. The crucial part is the fact that these

matrix coefficients, restricted to the action of V , are in Lp(V ) for some p.

Note that ε, and therefore p do not depend on the functions.
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Note that we did not specify the group G on which we take the Sobolev

norms. This is because we usually apply these results when G sits inside

a larger group G and we take Sobolev norms with respect to that group.

All we really require of the expressions Sk apart from the norm axioms is

that for any element D in the enveloping algebra of G of degree d and any

smooth f to satisfy

Sk(Df) ≤ Sd+k(f).

Below we assume that the K-invariant norm on V is the Euclidean norm

for simplicity. The comparability of norms in V makes it easy to modify

the statement for any other norm.

We have the following comparison result:

Proposition 3.7.2. For any smooth, compactly supported f with zero mean

there exists an A = A(p) so that

‖f‖±,A ≤ C(p, k)Sk(f) (3.7.3)

for sufficiently large k.

Proof. First we treat ‖ · ‖−,A. Assume s < 1. By monotonicity,

‖Pψ0,s
f‖ ≤ ‖PC(s)f‖

where C(s) is the cube of side 2s centered at the origin of V . Furthermore, the

characteristic function of the cube satisfies

‖χ̂C(s)‖p ≤ Cdps
d
p′ (3.7.4)

for any p > 1 where d = dimR(V ) and p′ is the conjugate exponent; explicitly,

Cp =

(∫ ∞
−∞

∣∣∣∣ sin tt
∣∣∣∣p dt)

1
p

.

Now, as PC(s) is an orthogonal projection, we have

‖PC(s)f‖2 = 〈PC(s)f, PC(s)f〉

= 〈PC(s)f, f〉

=

∫
V

χ̂C(s)(v)〈v · f, f〉dµ(v),

where the last expression makes sense because the integrand is in L1(V ) and

equals 〈PC(s)f, f〉 by an approximation argument: the equality holds for the

approximate projections decreasing to PC(s), so the dominated convergence the-

orem gives the equality at the limit in view of (3.7.4) and (3.7.2).
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Define κ(v) = 〈v · f, f〉. Using Hölder’s inequality and (3.7.2), we get

‖PC(s)f‖2 ≤ ‖χ̂C(s)‖p′‖κ‖p
≤ C ′pCkC

d
p′s

d
pSk(f)2 (3.7.5)

where the various constants depend only on p and d. We see, therefore, that if

A < d
2p , the ‖ · ‖−,A norm is finite and satisfies the claimed bound (of course,

we only treated s < 1 since the range s > 1 is immediate for ‖ · ‖−,A, being

bounded by ‖f‖2, which can be absorbed in the Sobolev norm by increasing C

by an absolute factor).

Next we treat ‖ · ‖+,A and assume s > 1. Let ψM = ψM,s be a smooth

approximation from below to ψ∞,s: it equals ψ∞,s in a very large ball B(0,M ′)

and then drops slowly (and smoothly) to zero outside B(0,M) for M �M ′ � s.

We will take care so that our bounds do not depend on M,M ′ in order to take

the limit and recover ψ∞,s. From the general construction of φks we conclude

that

|(1−∆)aψM,s| ≤ χB(0,M ′)\B(0,s) + slaχR(s) (3.7.6)

for any a ∈ N and some l ≥ 2 depending on d. The set R(s) is the inner ‘corona’

of the approximation, i.e. the thin annulus Ann(s− 1
s2 , s).

We have

‖Pψ∞,sf‖2 = lim
M→∞

‖PψM,s
f‖2

= lim
M→∞

∫
V

ψ̂M (v)κ(v)dµ(v)

with κ as before. Using the identity

ψ̂M (v) =
F((1−∆)aψM )

(1 + ‖v‖2)a
(3.7.7)

where F is the Fourier transform, we create a gain to transfer to the κ term and

form a function in L1 ∩ L2. Define

λ(v) :=
κ(v)

(1 + ‖v‖2)a

for a fixed a large enough to put λ in L1 ∩ L2 (recall that κ(v) is smooth and
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bounded). We get∫
V

ψ̂M (v)κ(v) dµ(v) =

∫
V

F((1−∆)aψM )λ(v) dµ(v)

=

∫
V

((1−∆)aψM )F(λ)(v) dµ(v)

=

∫
V

((1−∆)aψM )
F((−∆)β(λ))(v)

‖v‖2β
dµ(v)

Now choose β = γ + δ large enough so that

s2la

‖v‖2δ
= os(1)

on the corona (e.g. take δ > 2la) and also renders

χB(0,M)\B(0,s)

‖v‖2δ
(3.7.8)

integrable as M →∞ (e.g. take δ > d). The remaining part γ will be our gain.

Note that

∆β〈v · f, f〉 = 〈v · (dσ((−∆)β) · f), f〉 (3.7.9)

since the Laplace operator commutes with translations. But dσ(∆β)·f is again a

smooth compactly supported function, so the assumption on matrix coefficients

persists (with k crudely replaced by k + β): the matrix coefficient above is in

Lp(V ) so by the way a was chosen we deduce that F((−∆)β(λ)) is in L1 ∩ L2.

Using the uniform Hölder inequality twice, the inequality

‖F((−∆)β(λ))‖∞ ≤ ‖(−∆)β(λ)‖1

and taking (3.7.9) into consideration, we finally get

‖PψM,s
f‖2 ≤ CdCk+βs

−γSk+β(f). (3.7.10)

Since β only depended on d and p, the constants satisfy the requirement set in

(3.7.3). Furthermore, there is no dependence on M , so taking limits we obtain

the bound for ‖Pψ∞,s
f‖ bounding the norm ‖ · ‖+,A for A < γ.

3.7.2 The non-archimedean case

The discussion here parallels the above but the details are easier to work out:

smooth functions are locally constant and Fourier transforms of balls are easy

to compute. We make some simplifying assumptions: K = Qp and G is such

that the supremum norm on V = Qdp is K-invariant.
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Definition 3.7.3. Let ‖ · ‖ be the K-invariant norm on V . We denote by

Φk = χB(0,pk)

the ball of radius pk and Haar volume plk, where the Haar measure on V is

normalized to be self-dual with respect to the Fourier transform. We define the

operator τx on functions on V to be translation by x: τx(f) = f(x+ )̇.

Recall the duality statements from Section 2.4. The fact that makes analysis

of smooth vectors in non-archimedean fields easy is the following (see [23] for

the proof):

Lemma 3.7.1. We have the identity

τ̂xΦk = plkχxΦ−k.

Combined with the fact that smooth vectors are linear combinations of char-

acteristic functions of translated balls, this lemma allows the computation of all

Fourier transforms of smooth vectors.

We need another simple but important observation: smooth vectors in the

non-archimedean case are automatically K-finite. This is because smooth vec-

tors have an open compact stabilizer. Since the stabilizer of a smooth vector

f is compact and contains the identity, it intersects K; since it is open, their

intersection is again an open compact subgroup of G . But since it is open, it

has finite index in K and therefore K transforms the smooth vector f only by

the finite number of cosets of the stabilizer in K.

Now as in the archimedean case we assume that smooth matrix coefficients

are in some Lp(V ) with p independent of the functions. We have the following

estimate:

Proposition 3.7.4. Let f ∈ LK be smooth with respect to the V action, with

matrix coefficients satisfying an estimate of the form

〈v · f, g〉 ≤ (dfdg)
1
2 ‖f‖2‖g‖2A(v)

with A(v) q-integrable for some q ≥ 2. Write s = pk. Then we have

‖P(s)f − f‖2 ≤ (df )
1
2 ‖f‖2p−

lk
q

when s is large enough so that f is constant on cosets of Φ−k.

Proof. Write

Ps(f) =

∫
X

F(Φk − Φ−k−1) v · f dµ

which becomes after the lemma above

Ps(f) =

∫
X

plkΦ−kv · f dµ−
∫
X

p−lkΦk+1v · f dµ.
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Owing to the local constancy of v ·f , after s = pk, the first term above becomes

equal to 0 · f = f and subtracting it we get

Ps(f)− f = p−lk
∫
X

Φk+1v · f dµ. (3.7.11)

Now we form the inner product of the two sides with an arbitrary smooth, zero

mean g (recall that such g are dense in L2
0(X)) and use Hölder’s inequality as

in the archimedean case to finish the proof.

Remark 3.7.5. Using the same procedure as above and the inequality of Bochner

integrals

‖
∫
X

F (v) dµ(v)‖B ≤
∫
X

‖F (v)‖B dµ(v),

we can also get the bound

‖Ps(f)‖∞ ≤ 2‖f‖∞

thereby completing the description of the norms from (3.6.2) in the non-archimedean

case.
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Chapter 4

Homogeneous Spaces and
higher rank actions

In this chapter we apply the non-uniform results obtained previously to homo-

geneous spaces of semi-direct products and of actions of higher rank groups.

4.1 Homogeneous spaces of semidirect

products in R

Here we obtain exponential decay for all sufficiently smooth vectors in the case of

an action on a homogeneous space of a semidirect product over an archimedean

field (which we may take to be R, since we will only use the additive structure of

V ). Note that if an algebraic group G over a non-archimedean field K contains

a lattice (discrete, cofinite subgroup), then it is necessarily reductive. In par-

ticular, there are no finite volume homogeneous spaces of semidirect products

over non-archimedean fields. Thus, we necessarily restrict to the archimedean

case, where we first aim to understand how lattices are situated in semidirect

products over R and then proceed to use the structure (especially the Fourier

analysis on the compact fiber of the homogeneous space) to improve on our

main result.

4.1.1 Lattices in real semidirect products

Let G be the group of real points of a semisimple algebraic group G, V a real

vector space identified with Rn by a choice of basis fixed once and for all, and

a faithful representation ρ : G → SL(V ) by means of which we will identify

the group in this note with a subgroup of the general linear group of V . The

semidirect product

G = Gn V

is a real Lie group and carries a natural Haar measure which is the product of

the Haar measures of the factors with a fixed normalization. Fix a lattice Λ in

G. We aim to understand its structure in terms of lattices in each of the factors

and ρ. Let

G(Z) = G ∩ SL(n,Z),
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a lattice in G by reduction theory. Denote L = Λ ∩ ({1}n V ) and

Γ = p1(Λ)

where p1 is the projection onto the left (semisimple) factor, a surjective group

homomorphism and continuous map.

Theorem 4.1.1. With the notation above, we have the following: L is a com-

plete lattice gZn in V for some g ∈ GL(V ), Γ is an arithmetic lattice in G

which, after conjugating the group G by g and identifying L = Zn, becomes a

finite index subgroup of G(Z). We have an exact sequence

0 −→ L
ι−→ Λ

p1−→ Γ −→ 0. (4.1.1)

More specifically, there is a 1-cocycle λ : Γ→ Rn/Zn so that

Λ =
⊔
γ∈Γ

γ n (λ(γ) + Zn) . (4.1.2)

In general, there is a bijective correspondence between lattices with prescribed

(L,Γ) data, where L is a complete lattice in Rn and

Γ < G ∩ StabGL(V )(L),

and the group of 1-cocycles C1(Γ, V/L). These lattices are all isomorphic to

Γ n L but no lattice corresponding to a non-trivial λ splits as

(Λ ∩ (Gn 0)) n (Λ ∩ (1 n V )).

Proof. First of all, L is a discrete additive subgroup of V . If it were not a

complete lattice, there would exist a free direction v ∈ V so that vZ ↪→ V/L

is injective. Then for any sufficiently small neighborhood U of (1, 0) ∈ G the

translates (1, v)Z + U will be disjoint in G/Λ, and since they all have the same

volume this contradicts the finiteness of the volume of the quotient.

From now on, conjugate G by an appropriate element to transform L into

Zn. Take (γ, λ) ∈ Λ and (1, λ′) ∈ 1 n L . Conjugating the second element by

the first we get

(γ, λ)(1, λ′)(γ, λ)−1 = (1, γλ′).

Since 1 n L = Λ ∩ (1 n V ), γλ′ ∈ L and since λ′ was arbitrary, this implies

that γ ∈ G ∩ SL(n,Z) so Γ = p1(Λ) < G(Z). Suppose Γ has infinite index in

G(Z). The projection p1 makes G/Λ a fiber bundle over G/Γ with compact fiber

isomorphic to Rn/Zn and the Haar measure on the total space is the projection

of the product measure on the quotient by the discrete subgroup Λ, showing

that all fibers have the same measure (recall G ⊂ SL(V )). But if the index of

Γ in G(Z) is infinite, the base of the bundle has infinite measure and since all
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fibers have the same measure, the total space has infinite measure, contradicting

the cofiniteness of Λ.

The two paragraphs above imply the assertions about L and Γ and exhibit

the exact sequence claimed in the theorem statement. Next take an arbitrary

(γ, λ) ∈ Λ and apply it to 1nZn, getting (γ, λ+Zn) ⊂ Λ. So for any (γ, λ) ∈ Λ,

the entire coset (γ, λ+Zn) is contained in Λ. Discreteness implies that for each

level γ, there are only finitely many distinct cosets modulo Zn, but we can do

better than that as follows: let a = (γ, λ), b = (γ, λ′) in Λ, and form the element

aba−2 ∈ Λ. Explicitly,

aba−2 = (1, γ(λ′ − λ)) ∈ Λ

so as before γ(λ′ − λ) ∈ Zn and since γ is invertible, λ′ − λ ∈ Zn, showing that

the two arbitrary elements at level γ lie in the same coset of Zn.

This allows us to define a mapping γ 7→ λ(γ) for a unique λ(γ) ∈ Rn/Zn.

Now note:

(γ, λ(γ) + Zn)(γ′, λ(γ′) + Zn) = (γγ′, γλ(γ′) + λ(γ) + Zn)

and by uniqueness of the assignment mod Zn, it follows that

γλ(γ′) + λ(γ) = λ(γγ′).

This shows that γ 7→ λ(γ) defines a cocycle with values in Rn/Zn.

Different cocycles will give different values on at least some level, which

distinguishes individual lattices. Furthermore, every cocycle furnishes a lattice

by the assignment (4.1.2). Each such group is a lattice because it is discrete

(reduce to an accumulation point on a level and obtain a contradiction) and

cofinite (by the same fiber bundle argument as above). Now we show that

Λ ' Γ n L. Define the natural map

I : Γ n L→ Λ (γ, v) 7→ (γ, λ(γ) + v);

it is invertible, one to one and onto and writing down the homomorphism prop-

erty one sees it is equivalent to the cocycle property for λ. Therefore every Λ is

isomorphic to Γ n L by transitivity.

Remark 4.1.2. Note that conjugacy of two lattices with fixed (Γ, L) is equivalent

to the respective cocycles being cohomologous by an easy computation. There-

fore, H1(Γ;V/L) enumerates conjugacy classes of lattices with the prescribed

factors.
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4.1.2 Decay of multiple correlations for fiberwise zero

mean functions

Now that we understand the structure of lattices in real (and complex) semidi-

rect products, we are in position to bound multiple correlations in their homo-

geneous spaces.

If G has a homogeneous action on a finite measure homogeneous space X =

G/Λ, then necessarily Λ ∩ V will be a complete lattice L in V by the previous

result. This means that the Hilbert space valued functions σ(id n v)f : V →
L2(X) are L -periodic (in particular, matrix coefficients will never decay, as this

action is a translation on a torus and cannot be mixing). We also think of f as

f(g, v) by a homeomorphism locally to cosets of G × V as a topological space.

This motivates the following considerations:

Let H = L2
0(X) where the subscript now denotes fiberwise zero-mean func-

tions, i.e. functions for which ∫
V/L

f(g, v)dv = 0

for any g in the base. Let D be the differential operator

D =
∂

∂v1
· · · ∂

∂vd

in the universal enveloping algebra of V . Denote by σV : V →H the restriction

σV := σ|idnV ; for l = 1, 2, · · · consider the normed space Πl
K of all bounded,

smooth K-finite vectors f in H such that ‖Dl(f)‖L2(X) <∞.

Proposition 4.1.1. For f ∈ Πl
K , dimR(V ) = d and l ≥ 3 we have the estimate

‖P(s)(f)− f‖2 ≤ C
√
d

1

sl−2
‖Dl(f)‖L2(X). (4.1.3)

Proof. Without loss of generality assume L = Zd; a different lattice changes the

estimate by a multiplicative constant at worst. We make repeated use of the

fiber bundle structure of the space X with V/L as the fiber and for simplicity

assume that the cocycle associated to Λ is trivial (or a coboundary, in which

case Λ is conjugate to a product lattice).

Now consider the norm of Pφ(f) where φ a Schwartz function supported

outside (s); recall that f ∈ L2
0(X). As the support of φ expands in a pointwise

increasing manner at infinity, but still outside (s), P(s)(f) tends in L2 to the

required difference.

Write f̃(v) = σV (v)(f). By the Fourier expansion in the v -variable we get

the expansion

f̃ =
∑
k∈L

̂̃
f(k) exp(i〈k, v〉)
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and by orthogonality and the fiber bundle structure

‖f‖L2(X) =
∑
k∈L

‖̂̃f(k)‖L2(G/Γ).

Taking L2(G/Γ) norms in the identity

̂̃
f(k) =

1

|k1 · · · kd|l

∫
V/L

Dl(f̃(v)) exp(i〈k, v〉),

we get the estimate

‖̂̃f(k)‖2 ≤
1

|k1 · · · kd|k
‖Dl(f)‖L2(X). (4.1.4)

Note that the f̃ disappeared since we the iterated integral results in an

integral over the entire bundle to recover f . Here the operator Dl is seen as

an element of the universal enveloping algebra of the fiber embedded in the

corresponding algebra of X.

Applying the Fourier expansion of f̃ into the Pφ(f) and interchanging sum-

mation and integral, we get

Pφ(f) =
∑
k∈Zd

̂̃
f(k)

∫
V

φ̂(v) exp(i〈v, k〉) dµ(v)

which by Fourier inversion (with the toral Fourier transform properly normal-

ized) becomes

Pφ(f) =
∑
k∈Zd

̂̃
f(k)φ(k).

Recall that φ is supported outside the annulus (s). Now we take the L2 norm

and use the triangle inequality; combined with the Fourier coefficient estimate

above, we get

‖Pφ(f)‖2 ≤
∑

|mini(ki)|> s√
d

‖f̂(k)‖2 ≤
C
√
d

sl−2
‖Dl(f)‖L2(X)

where C comes from the summable remainder after we split off l−2 copies of the
1

|k1···kd|l factor. The small disk around zero that remains does not contain any

lattice points other than zero for large s (this restriction on s comes only from

the lattice), so the only Fourier coefficient captured by φ is the zeroth which is

zero since f ∈ L2
0(X). Note that this bound does not depend on any property

of φ other than the support, so by taking limits the same bound holds for the

required difference, which finishes the proof of the proposition.

Combining this proposition with the remarks at the beginning of the section,

we get
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Corollary 4.1.2. For fi ∈ Πl
K , ‖ai‖ > C ′ with C ′ independent of fi, we have

the bound ∫
X

f0(x) a1 · f1(x) · · · ak · fk(x) dµ(x)

≤ C
k∏
i=0

S(f)d
1
2
0 d

1
2

k

∣∣∣∣∣
k−1∑
i=1

λ(
ak

ai
)

∣∣∣∣∣
−ε(l) ∣∣∣∣∣

k∑
i=1

%(ai)−1

∣∣∣∣∣
−ε(l)

(4.1.5)

where the expressions S(f) are Sobolev norms of an appropriate order depending

only on l.

4.2 Higher rank split simple groups

4.2.1 Semidirect products inside simple groups and one

parameter groups

In this section we describe how to use the results obtained so far to get effective

multiple mixing of correlations of one parameter subgroups (corresponding to

coroots of the group) in simple split groups of higher rank.

We do this by locating semidirect products enveloping the one-parameter

subgroup in question to which we can apply the main results. We keep notation

from previous sections when referring to the functions fi in the definition of the

multiple correlation, the Cartan elements ai etc. In this section we will make

heavy use of results from [17].

Our setting involves a simple algebraic group split overK of rank greater than

or equal to 2, a maximal K-split torus D, root system Φ = Φ(G,D) and ordering

Φ+. Consider a mixing action σ of G on a standard probability space (X,µ). We

want to apply the results above to bound multiple correlation coefficients for a

given one-parameter group σ(a(t)) on X. In order to achieve this, following the

proof of Proposition (1.6.2) in [15] we do the following: given the root ω ∈ Φ+

corresponding to a, we choose another positive root ω′ that is not orthogonal

to ω. Then from the Dynkin diagram this pair of roots corresponds to either an

A2 system, G2 system or C2 system, so we get a surjective morphism

SL(3)→ 〈U±ω, U±ω′〉 =: Gω,ω′ ,

Sp(4)→ 〈U±ω, U±ω′〉 =: Gω,ω′

or

G2 → 〈U±ω, U±ω′〉 =: Gω,ω′

with finite central kernel. Furthermore, if ω corresponds to the root ω̄ in Gω,ω′

then its kernel in D∩Gω,ω′ corresponds to the kernel in the diagonal A ⊂ SL(3)

(resp. A ⊂ Sp(4), G2 ) of ω̄. The unipotent groups U±ω along with D ∩ Gω
generate a copy of SL(2) which is situated inside the rank 2 group Gω,ω′ in

46



one of four ways described by [17, Lemma 3.6]. From that lemma, we see that

whenever ω is not conjugate to a long simple root in Sp(2n) or a short simple

root in G2, the group 〈U±ω〉 comes with a linear action on a unipotent abelian

group forming a semidirect product of one of the types treated at the end of

Section 3.5, plus the symplectic action in the case of G2, which we omit for

brevity; note that the G2 system does not appear in any higher rank system so

the parameters for that semidirect product are only relevant if our group G is

locally isomorphic to G2.

Thus we get an isogeny from SL(2,K) n V to its image in Gω,ω′ with the

positive diagonal in SL(2) going to the one parameter semigroup a in the positive

Weyl chamber of G. We will denote the copy of SL(2,K) n V corresponding to

the root ω by SL(2,K)ωnVω, and from now on any quantity defined in previous

sections for semi-direct products subscripted with ω will refer to its definition

over SL(2,K)ω n Vω.

Now suppose an a(t) acts on a K-finite function f . Through the isogeny we

get a corresponding action on f of SL(2)ω n Vω which we denote again simply

by a(t) · f , and f retains K-finiteness for the action of the maximal compact

subgroup of the SL(2)ω part. Thus f affords an action of SL(2)ω n Vω with

no invariant vectors for Vω on L2
0(X) (mixing descends to subgroups and an

isogeny has finite kernel, so we get no invariant vectors for the Vω factor).

Using the reduction above a correlation∫
X

f0((a(t0))−1 · x)f1((a(t1))−1 · x) · · · fk((a(tk))−1 · x)dµ(x) (4.2.1)

of K-finite vectors fi can be viewed as a correlation for the action of SL(2)ωnVω.

Let Dω be the space of functions in the image of the projections Pφ correspond-

ing to Vω. One sees that this space is L2-dense by commutativity with the

maximal compact subgroup. Applying Theorem 3.4.1, we get

Theorem 4.2.1. Let G be the group of K-rational points of a K -split simple

group of K-rank at least 2. Consider a measure-preserving, mixing action action

Gy X

on a probability space X; let a : K0 → D0 be a one-parameter subgroup of a

maximal split torus D corresponding to a non-multipliable root φ of G that is

not conjugate to a short simple root in the group G2 or a long simple root in

Sp(2n).

Given a (k+ 1)-tuple (f) = (f0, · · · , fk) in in Ds and t0, · · · , tk ∈ K ordered
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in increasing valuations we have∣∣∣∣∫
X

f0((a(t0))−1 · x)f1((a(t1))−1 · x) · · · fk((a((tk))−1 · x)dµ(x)

∣∣∣∣
≤ Cs2qd

1
2
0 ‖f0‖2d

1
2

k ‖fk‖2

(
k−1∏
i=1

‖fi‖∞

)[(
k∑
i=1

ti
t0

)(
k−1∑
i=0

tk
ti

)]−e

Remark 4.2.1. We can obtain similar results for any semisimple G without

compact factors and one parameter subgroups corresponding to non-multipliable

roots; note that one-parameter subgroups not corresponding to coroots can also

be treated by this method provided they are sufficiently close to some root. .

A version of the theorem above had been obtained previously by T-H. Hui

for real semisimple groups G and homogeneous X = G/Γ. In that context there

was no restriction on the nature of the one parameter subgroup and the space of

functions contained all smooth functions on X and many more; see [22, Chapter

4].

4.2.2 Beyond one parameter subgroups

The previous result requires the acting elements to be confined on a coroot and

in general we cannot do better. In this section we indicate an extension and

illustrate some of the difficulties in applying it. We finish with an example

showing how to handle the extension in special cases.

From the proof of [17, Lemma 5.2], we can decompose D0 in the archimedean

case as

D0 = ker(ω)D0
ω (4.2.2)

and in the non-archimedean case

2D0 ⊂ ker(ω)D0
ω (4.2.3)

where 2D0 = {d2|d ∈ D+} and in both cases D+
ω corresponds to the positive

diagonal of SL(2). We will see how to go from 2D0 to the full D0 below.

The image of the SL(2) in Gω,ω′ commutes with ker(ω) (this follows from

the observation that their Lie algebras commute). Therefore, any maximal

compact subgroup Kω of that image commutes with ker(ω) . This fact plus

the K-finiteness of the fi imply the Kω -finiteness of the translates of the fi by

elements in ker(ω); note that these translates are no longer necessarily K-finite

when K is archimedean. We need the Kω -finiteness in order for Theorem 3.4.1

to be applicable to the action of SL(2,K)ω n Vω.

Now suppose A ∈ D+ act on a K-finite function f ; we can write A = SaC

where aC ∈ 2D+ (S = 1 if K is archimedean), a being (the image in D+ of) an

element of the diagonal group of SL(2), C centralized by the maximal compact

of that SL(2). Then A · f = a · f̃ where f̃ is Kω-finite by the remarks above;
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in the non-archimedean case, S is not necessarily in ker(ω) but in this case

translates of K-finite vectors are still K-finite: see [17, Lemma 5.6]. Thus the

translate f̃ affords an action of SL(2)ω nVω with no invariant vectors for Vω on

L2
0(X).

Doing this for all terms in a correlation Ai · fi we get K-finite vectors f for

an action of SL(2,K)ω n Vω. Then, given a correlation∫
X

f0((A0)−1 · x)f1((A1)−1 · x) · · · fk((Ak)−1 · x)dµ(x) (4.2.4)

of K-finite vectors fi, we obtain a correlation∫
X

f̃0((a0)−1 · x)f̃1((a1)−1 · x) · · · f̃k((ak)−1 · x)dµ(x) (4.2.5)

for the Cartan action of SL(2,K)ω n Vω . In order to apply the results ob-

tained so far to this context we assume the hypotheses of Theorem 3.4.1. From

the reductions above, we need to understand how the hypotheses on the func-

tions fi are affected when we pass to the f̃i. The following lemma is immediate

from the discussion above and [17, Lemma 5.6].

Lemma 4.2.2. The f̃i are Kω-finite functions with

dim(Kω · f̃i) ≤
(

max
t∈D0/2D0

[Kω : tKωt
−1 ∩Kω]

)
dim(Kω · fi)

.

Theorem 4.2.3. Let G, X as in Theorem 4.2.1. Let A be a (k + 1)-tuple of

Cartan elements in a maximal split torus D and Φ its root system; let Φ+
− be the

subset of positive roots a not locally conjugate to a long simple root in Sp(2m)

or a short root in G2.

There exists an L2-dense normed space of functions D(G) = ∪Ds(G) so that

for every (k + 1)-tuple (fi) in Ds(G) we have∣∣∣∣∫
X

f0((A0)−1 · x)f1((A1)−1 · x) · · · fk((Ak)−1 · x)dµ(x)

∣∣∣∣
≤ Cs2e min

φ∈Φ−1

d 1
2
im
‖f̃im‖2d

1
2
iM
‖f̃iM ‖2

∏
i6=im, iM

‖f̃i‖∞


·

∑
i 6=im

φ

(
Ai

Aim

)∑
i6=iM

φ

(
AiM

Ai

)−e

where AiM and Aim are the elements where each root φ takes its largest and

respectively smallest value. Here e only depends on the action.

Remark 4.2.2. Unlike the previous decay estimates we obtained, this theorem

does not guarantee a non-trivial bound. If the C are large, the norms of the f̃i

cannot be controlled and may beat the bound. In general we can only guarantee
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non-triviality when the Ci are bounded, i.e. if essentially the A diverges in the

direction of a. However, in special cases (including, for instance, homogeneous

actions of SL(n),SO(n) etc.) the contribution from C is of smaller order of

magnitude than the main term and we still get an exponential decay with weaker

exponent.

Other results of this nature were recently obtained by Bjorklund, Einsiedler

and Gorodnik [3] independently of this work. Their work treats semisimple

groups over local fields as well as the adeles and obtains decay estimates for the

entire G action under the assumption that a spectral gap exists for the action.

Furthermore, the space of functions for which they obtain their results includes

all Sobolev vectors and is uniform depending only on the acting elements and

Sobolev norms of the test functions.

4.2.3 From SL(n,K) to SL(2,K) nK2

We illustrate the procedure above in the context of SL(n). The first step in

the derivation of our bound is to drop from SL(n,K) to the semi-direct product

SL(2,K) nK2. In this section, denote by K(n) the maximal compact of SL(n).

First of all, SL(2,K) n K2 embeds in SL(n,K) in the following ways (all

elements not depicted are zero, 1 on the diagonal).

SL(2,K) nK2 3

 a b x

c d y

0 0 1



j, l−→

SLjl

1j 1l

. . .
...

...

j1 a · · · b x

...
. . .

...
...

l1 c · · · d y

...
... 1

. . .


In our bound, we have diagonal elements acting. We can extract a single element
in the diagonal group of SL(2) as follows:

A =



. . .

aj

. . .

al

. . .


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=

a

1

b

. . .

b−1

1



C

a1

c

. . .

c

an


where b and c are defined in the archimedean case by c =

√
ajal and b =

aj
c

;

in the non-archimedean case, we have the same definition if the difference of

exponents of q is even, otherwise we will compensate by adding and subtracting

a

diag(· · · , q 1
2 , · · · , q− 1

2 , · · · )

to bring the matrix entries back in K; since this defect is on a finite set D0/2D0,

the decay is not affected by this tweak.

Note that C commutes with the specific copy of K(2) inside SLjl so if f is

a K(n)-finite function, the new function f̃ = C · f is K(2)-finite for the action

of that SLjl copy.

Therefore, in order to derive estimates on the initial correlation integral, we

are led to consider (X,µ) with a mixing action of G := SL(2,K)nK2 and bound

integrals of the form∫
X

f0(x) a1 · f̃1(x) · · · ak · f̃k(x) dµ(x) (4.2.6)

where

ai =

(
ai 0

0 a−1
i

)

and the f̃i are bounded, zero mean functions satisfying K-finiteness properties

inherited from the original fi.

Note that in this case, when the A are in the positive Weyl chamber of

SL(n,K), the elements c defined above are of smaller magnitude than the ele-

ments a (uniformly, as long as we stay a uniform distance away from the walls of

the Weyl chamber). Now we can apply Theorem 4.2.3 to the correlation and get

the corresponding bound, which in the case of 2 -correlations and K = R corre-

sponds up to a constant depending on (f) to the bound for matrix coefficients

in [7, Chapter 5].
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