(© 2014 Craig Thomas Buchanan

SIMULATION DEBUGGING AND VISUALIZATION
IN THE MOBIUS MODELING FRAMEWORK

BY

CRAIG THOMAS BUCHANAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor William H. Sanders

ABSTRACT

Large and complex models can be difficult to analyze using static analysis results from current
tools, including the Mobius modeling framework, which provides a powerful, formalism-
independent, discrete-event simulator that outputs static results such as execution traces.
The Mébius Simulation Debugger and Visualization (MSDV) feature adds user interaction
to running simulations to provide a more transparent view into the dynamics of the models
under consideration. This thesis discusses the details of the design and implementation
of this feature in the Mobius modeling environment. Also, a case study is presented to

demonstrate the new capabilities provided by the feature.

11

To my family, for their love and support

1ii

ACKNOWLEDGMENTS

I would like to thank my adviser, William H. Sanders, for his support and guidance. 1
would also like to thank Ken Keefe for his advice of the direction of my work with his
professional insight of the Mdobius tool. This work would not have been possible without
their help. I would like to thank my fellow PERFORM members, especially Carmen Cheh,
Uttam Thakore, David Grochocki, Ahmed Fawaz, Sobir Bazarbayev, Doug Eskins, Gabe
Weaver, Ron Wright, Atul Bohara, and Robin Berthier, for their feedback, encouragement,
and friendship. I would also like thank Jenny Applequist for her editorial assistance and
support of this work, and previous works.

This material is based on research sponsored by the U.S. Department of Homeland Secu-
rity, under agreement number HSHQDC-13-C-B0014. The U.S. government is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding any copyright
notation thereon. This material was also indirectly supported by Sandia National Labora-
tories. Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.1.

iv

TABLE OF CONTENTS

LIST OF TABLES e e vii
LIST OF FIGURES e viii
LIST OF ABBREVIATIONS e X
CHAPTER 1 INTRODUCTION 1
1.1 Mobius Overview e 2
1.2 Mobius Discrete-Event Simulator Overview 3
1.3 Simulation Results in Mobius 5
1.4 Motivation 9
1.5 Goals. e 11
CHAPTER 2 FEATURES 14
2.1 Model State Analysis 14
2.2 Model State Modification 16
2.3 Breakpoints 19
2.4 Simulation Stepping 20
2.5 Model State Visualization 22
CHAPTER 3 IMPLEMENTATION 23
3.1 Back-end Mobius Simulation 24
3.2 Communication Layer o 26
3.3 Front-end Visualization 36
CHAPTER 4 CASE STUDY: ATTACK ON AMI 52
4.1 SAN with AFI Debugger o 54
4.2 SAN with SAN Debugger 57
4.3 Composed Model 58
CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH 64
APPENDIX A IMPLEMENTING NEW VISUALIZATION USER INTERFACES
IN MSDV . . 65
A.1 Setup and Preliminary Assumptions 65
A.2 Defining the Debug and Visualization Interface 65
A.3 Integrating the Debug and Visualization Interface into MSDV 66

REFERENCES

vi

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

LIST OF TABLES

Model State Message Protocol oL 27
Model State Message Exampleo 27
Modify State Variable Message Protocol 27
Modify State Variable Message Example 28
Modify State Variable Message: Running Example 29
Modify Future Event List Message Protocol 29
Modify Future Event List Message Example 30
Simulation Breakpoint Listo 31
Simulation Time Breakpoint 0000 32
Action Breakpoint 32
State Variable Breakpoint oL 33
State Variable Valueo 33
Literal Value 33
Arithmetic Operator 34
Unary Logical Operator 34
Binary Logical Operator 34
Breakpoint Message Example oL 35
Breakpoint Message Running Example 36
Step Message 36
SAN to AFI UML Inheritance 41
ADVISE to AFI UML Inheritance 44
Rep/Join Debug and Visualization Editor to Rep/Join Model Editor UML

Inheritanceo 50

vii

1.1
1.2
1.3
1.4
1.5

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4

LIST OF FIGURES

Mobius Framework Components. 2
Mobius Discrete-Event Simulation Algorithm. D
Simple SAN Model (On/Off). 6
SAN Model (On/Off) Simulation Trace Snippet. 7
SAN Model (On/Off) Simulation Results.. 8
AFT Simple Flow Example. 00 oL 15
Connectivity List Example. 0oL 17
Mobius Layer Interaction. 23
Modify State Variable Example Struct. 28
Breakpoint Message Protocol UML. 31
Breakpoint Message Example Pseudo-message. 35
Breakpoint Message Running Example Pseudo-message. 35
AFT Editor UML. 37
AFT Editor OCL. 37
AFT Debug and Visualization Editor UML. 38
AFT Debug and Visualization Editor OCL. 39
SAN Editor UML. 41
SAN Editor OCL. 41
SAN Debug and Visualization Editor UML. 42
SAN Debug and Visualization Editor OCL. 43
ADVISE Editor UML. 44
ADVISE Editor OCL. 44
ADVISE Debug and Visualization Editor UML. 45
Rep/Join Editor UML. oo 47
AFT Representation of Rep Example. 48
AFI Representation of Join Example. 49
Rep/Join Debug and Visualization Editor UML. 50
Rep/Join Debug and Visualization Editor OCL. 50
SAN: Single Attack on AMI with Dedicated IDS Architecture. 53
SAN Model in AFI Debugging and Visualization Editor. 55
SAN Model in AFI Debugging and Visualization Editor. 55
Case Study Breakpoint Example. 57

4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12

4.13

Possible Paths of the SharedAttack Token.
Initial State of SAN Model Using SAN Debug and Visualization Editor. . . .
Second State of SAN Model Using SAN Debug and Visualization Editor.
Comp: Single Attack on AMI with Dedicated IDS Architecture (Overall
Model).
Comp: Single Attack on AMI with Dedicated IDS Architecture (SansMeter).

Comp: Single Attack on AMI with Dedicated IDS Architecture (SansSensor).

Comp: Single Attack on AMI with Dedicated IDS Architecture (SansSen-
SOTCOVETage). . . o v v v vt
Initial State of Rep/Join Model Using Rep/Join Debug and Visualization
Editor.o
Second State of Rep/Join Model Using Rep/Join Debug and Visualization
Editor.

ix

99
59

60
61
61

ADVISE
AFI
AMI
GDB
GUI
HITOP
HTTP
IDS
MSDV
OCL
SAN
UML

LIST OF ABBREVIATIONS

ADversary Vlew Security Evaluation
Abstract Functional Interface

Advanced metering infrastructure

GNU Project debugger

Graphical user interface
Human-Influenced Task-Oriented Process
Hypertext Transfer Protocol

Intrusion detection system

Mobius Simulation Debugger and Visualization
Object Constraint Language

Stochastic activity network

Unified Modeling Language

CHAPTER 1

INTRODUCTION

Because of its high flexibility and relative simplicity, discrete-event simulation remains a
popular technique for complex analysis in many technical disciplines, as it is used in appli-
cations that range from availability assessments in computer science [1], to environmental
impact assessments [2], to disease propagation assessments [3][4][5]. Despite its powerful
benefits, acquisition of appropriate parameters and design of correct models of systems can
be quite complicated because of the multitude of uncertainties inherent to the complex sys-
tems under study. Currently employed discrete-event simulation tools, such as Mébius [6][7],
Simul8 [8], and Vensim [9], require complete models coupled with complete simulation runs
to return any useful results; tweaking of model and simulation parameters can become time-
consuming and error-prone, as human operators must complete each modeling workflow from
beginning to end. We address that problem by introducing the Mobius Simulation Debugger
and Visualization (MSDV) feature, an extension of the discrete-event simulator available in
the Mébius modeling framework [10][11][12], which adds user interaction and visibility to
running simulations.

The goal of the MSDV feature is to provide the analyst with a highly transparent view of
the running simulation, rather than simply provide results at the end of the simulation. The
transparency of both the visualization and model state modification functionalities can aid
analysts in designing correct, complete models of the complex systems under consideration.
The additional functionality effectively increases the ease, speed, and reliability of the model
validation and verification phases of the overall simulation analysis.

In this chapter, we present an overview of the Mdbius modeling framework, we discuss
the current state of the Mobius discrete-event simulator including its user interface and its
visualization of results, and we more clearly define the motivation and goals of the project.
In the following chapters, we describe the specific functionality provided by the MSDV
feature (Chapter 2), we examine how it is implemented in the M6bius modeling framework
(Chapter 3), we consider a case study of an attack on an advanced metering infrastructure
(AMI) network to reveal the utility of the new features (Chapter 4), and we conclude by
speculating about the future direction of this work (Chapter 5).

Connected
Model

Solved Model
Model Connection

Results

Mobius Composed Sol
Execution Policy Model olver
Solvable Model
Model Composition
Atomic Reward
Model Variables

State

ot Properties
Variable &

Actions

Figure 1.1: Mo6bius Framework Components.

1.1 Mobius Overview

Moébius is an extensible, model-based framework used to model stochastic, discrete-event
systems. Its extensibility is due to its support of multiple domain-specific modeling for-
malisms, all of which are inherited from its rich, base modeling formalism. This base mod-
eling formalism, referred to as the Abstract Functional Interface (AFI) [13][14][15], allows
the development and support of new domain-specific modeling formalisms in the M&bius
modeling framework. The flexibility of being able to define new domain-specific modeling
formalisms in Mobius is one of its most valuable features, since new formalisms can always
be invented to address the continuous stream of new systems that must be investigated.

A fully specified Mobius model, or solvable model, is a set composed of several Mobius
components: atomic model(s), composed model(s) (optional), a reward model, a study, and
a solver, as shown in Figure 1.1 [16].

An atomic model is the most basic model, describing a component of the system under
consideration. An atomic model is defined using a single, specific atomic modeling formalism,
such as a stochastic activity network (SAN) [17][18][19], a fault tree, a buckets-and-balls
model, an ADversary Vlew Security Evaluation (ADVISE) model [20][21], or a Human-
Influenced Task-Oriented Process (HITOP) model [22]. All of those modeling formalisms
are inherited directly from the AFI base classes, allowing Mobius to internally represent

all relevant information in the AFI form. The AFI representation of the models allows

compatibility between the different atomic modeling formalisms, while allowing them to
utilize the same solution technique libraries.

A composed model is a higher-level model that describes how the components of the system
are interrelated. The Rep/Join model, one of the most commonly used composed models,
combines specified state variables of the atomic submodels into single shared state variables,
effectively allowing the atomic submodels to communicate. Composed models allow users to
create large models that are manageable instead of enormous, unwieldy, internally-repetitive
atomic models.

A reward model allows certain attributes of the model to be specified as observable during
the model-solving time [23]. A study defines the values of the global variables' in the model.

A solver specifies the solution technique and parameters to solve the model. The Mdbius
modeling framework supports several solution techniques, including both discrete-event sim-
ulators and numerical solvers that are based on both transient and steady-state algorithms.
The purpose of the solver is to calculate the model attributes defined in the reward model
using the specified solution technique and parameters.

End users specify Mdobius solvable models using the Java-based Mobius GUI. Mébius
then converts those XML specifications into C++ runnable models. The runnable models
are compiled with the Mobius back-end libraries to form complete binary executables to
solve the originally specified solvable models. The binary executables relay status messages
and results to the Java-based Mobius GUI through the Mébius communication layer? to be

displayed in human-readable form.

1.2 Mobius Discrete-Event Simulator Overview

Each solver in the M6bius modeling framework, including the Mébius discrete-event simula-
tor, executes modeling-formalism-independent solution techniques by decoupling the solution
technique used from the specific modeling formalism of the model under consideration. That
powerful feature makes it possible to solve a large subset of modeling formalisms, as well as
to easily combine submodels created in different modeling formalisms within this subset. To

accomplish such independence in the solution technique, the Mobius modeling framework

LA global variable in Mébius is a variable defined outside of a specific model. This functionality allows
a modeler to define a variable across multiple models, and quickly modify it to solve a series of experiments
with different values.

2The Mobius communication layer provides the communication medium between the back-end Mébius
simulation processes and the front-end Mobius user interface. It operates by forwarding TCP/IP messages
between the POSIX sockets of the two end-layers. Its pertinence to the MSDV feature is discussed in Section
3.2.

utilizes the Abstract Functional Interface (AFI), a general modeling formalism that lever-
ages the two overarching modeling characteristics shared by many modeling formalisms: the
model state and the transition system [13].

In the AFI, a state variable is a basic modeling element that represents the state of a
component within the model [16]. For example, when a queue is being modeled, a state
variable can represent the number of items currently in the queue. Then, the full model
state can be represented as the set of all state variables’ values.

Also, in the AFI, an action is a basic modeling element that changes the model state
[16]. Each action is associated with a timing distribution (e.g., exponential or Weibull) that
determines when it will fire, thus changing the model state. Each action is also associated
with a Boolean “enabled” status to determine whether it is currently eligible to fire. That
status is determined by certain specified conditions of the model state. For example, in the
queue model mentioned in the previous paragraph, an action can represent the removal of
an item from the front of the queue. The action could be defined as exponential with a rate
of 1.0, where it is only enabled when there is at least one item in the queue. Therefore, the
full transition system of the model can be represented as the set of all actions in the model.

In addition to representing the model, the Mébius discrete-event simulator also employs
a future event list to determine the specific sequence of events in the given simulation batch
[10]. In the list, each event couples an action with a deterministic simulation time at which
it will fire. The list contains one event item per enabled action. For example, in the same
model, the action is sampled at the initialization of the simulation, which could result in a
value of 0.95 (since the timing distribution is not deterministic). At this time, the action is
inserted into the future events list with the deterministic time of 0.95. Next, at simulation
time ¢ = 0.95, the action is fired and the associated event is removed from the event list.
Assuming the action is still enabled, or there are more people in the queue, the action will be
sampled again, which could result in a value of 1.15. At this time, the action is inserted into
the future events list with a deterministic time of 2.10 (current simulation time + sampled
distribution time). At simulation time ¢ = 2.10, the action is fired and the associated event
is, once again, removed from the future events list.

The general algorithm for the Mobius simulator, as originally presented in [10], is shown in
Figure 1.2 [10]. In this algorithm, E represents the future event list, u represents the model
state in terms of the culmination of the values of all of the state variables in the model,
EN, represents the set of actions that are enabled in the model state p, and e, represents
the event associated with action a. First, the algorithm generates the initial future event
list £ by adding an event for each action that is enabled in the initial model state. Next,

the earliest event in the future event list F is fired. After reaching this new model state p,

E=0
p = INITIAL MARKING

Va € EN,
e, = Generate Event(a, p)
E=FEU{e,}

while(E #0)
e, = Earliest(E)

E=FE— {ea}
p' = FireEvent(a, p)
Ve, € &
if(a g EN,)
E=F- {ea}
Va € EN,y
if(ad E)
e, = GenerateEvent(a, ')
E=FEU{e.}

end

Figure 1.2: Mobius Discrete-Event Simulation Algorithm.

the future event list £ is updated by removing events associated with actions that are not
enabled, and adding events associated with actions that have become enabled. This process
continues until one of two conditions has been met. The first case is when the model reaches
an absorbing state, a state in which the future event list is empty. This case marks the end
of a simulation batch since, in this state, no actions are enabled to change the model to
another state. The second case is when the maximum simulation run time has been reached.
In Mobius, this case typically occurs at the end of the accumulation period for all specified

reward variables, since, traditionally, these are the only observable values in the model.

1.3 Simulation Results in Mobius

As described in Section 1.1, the goal of solvers is to evaluate the model attributes defined
in the associated reward model. The Mobius discrete-event simulator, for example, runs a
specified number of full simulations, each referred to as a batch. After each set of batches,
the back-end C++ simulator executable processes relay status and result information back
to the front-end Java-based GUI. As described in [24], those data are stored in the Re-
sults Database, which allows the user to query model information such as submodel names,
model versions, date, analysis technique, and model parameter values. Those data could

then be used either to create plots of simulation data of interest, or to output data to an

TurnpOff

Turnon Off
Figure 1.3: Simple SAN Model (On/Off).

external trace file to be interpreted by a third-party visualization tool, such as Traviando
[25][26][27][28][29][30].

To examine the workflow of creating and analyzing simulation result data in Mobius,
consider the simple SAN model presented in Figure 1.3. In it, a single token traverses
the model from the On place to the 0ff place and back again through the exponentially
distributed activities Turn0ff and TurnOn, both of which have a rate of 1.0. To get a full
view of the model after the simulation, we define the reward model to contain two variables,
one containing the value of ON and another containing the value of 0ff. We also set each
variable to be evaluated on the simulation time interval ¢ = [0.0,10.0]. Next, we define a
default range study and simulator. On running the simulator with full trace output, we
obtain a text trace and the results of the simulation, which are shown in Figures 1.4 and
1.5, respectively.

The full simulation trace contains all of the model states between firing actions, details
about each firing action, the enabling state of each action before it fires, and the affected
state of each action after it fires (discussed in Section 2.2). From that information, third-
party tools, such as Traviando [25], can effectively generate visualizations of the terminated
simulation batch.

The simulation results page summarizes the results of the entire set of simulation batches
of the model as specified in the associated reward model. In our example, the two variables of
interest are the On and 0ff values during the simulation time interval ¢ = [0.0,10.0]. Those
values can be observed in the “Mean Results” section of the results page (see Figure 1.5).
As expected, we can see that the single token resided in each of the places for approximately
half of the simulation time (On->Mark() =~ 32.5%,0ff->Mark() ~ 67.5%). Note that the
values are more likely to converge to a value closer to the ideal if a larger set of simulation
batches is executed. Also, note that in this example, the confidence interval of both variables
is zero, because only a single simulation batch was executed.

Although we gain valuable insight into models using current simulation result visualization

sk 3k ok K ok ok ok ok K oK ok ok koK oK ok ok oK ok oK ok K K oK ok K K oK ok ok kK K oK K K
TRACE
sk sk ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk ok ok sk ok ok ok sk ok sk K ok ok ok ok ok ok ok ok ok
NEW BATCH
Initial Model State:
Model: (2)SanModel
On =1
0ff = 0
Enabling state before action firing:
On = 1
Firing: 0.0159023 Action: (2)SanModel->TurnOff
After: (2) TurnOff->TurnOff
Affected state after firing:
On = O
0ff = 1
Model State:
Model: (2)SanModel

On = 0
0ff =1
Enabling state before action firing:
0ff =1

Firing: 0.255223 Action: (2)SanModel->TurnOn
After: (2)TurnOn->TurnOn
Affected state after firing:
0ff = 0
On =1
Model State:
Model: (2)SanModel
On =1
0ff =0

Figure 1.4: SAN Model (On/Off) Simulation Trace Snippet.

Simulator Results

Date:

Simulation Type:

Project Name:

Study Mame:

Random Mumber Generator:
Random Mumber Seed:
Maximum Batches:

Minimum Batches:

Data Reporting Freguency:
Display Update Frequency:
BuildType:

Execution Architecture:
Runname::

Qutput File:

Results File:

Jackknife Variance:
Processors Per Experiment:
Maximize Processor Usage:

Mon Mar 1@ 14:83:47 CDT 2014

Simulator Configuration

Terminating
SanTest2
San5tudy

Lagged Fibonacci
31415

1

1

1

1

Mormal

B4-bit

Results
Results_output.txt
Results_results
an

1

false

Processors Selected for Simulation:
craig-buchanans-imac-146. local x86_64

Experiment 1

Start Time:

Finish Time:

Elapsed Running Time:
Total CPU Time:
Batches Completed:
Experiment Name:

Mon Mar 18 14:83:47 CDT 29814
Mon Mar 10 14:03:47 CDT 2014
@.379

3.1000000000000016E-4

1

Experiment 1

Mean Results

MName
On
off

== -
@ @ 3

Mean
3.2477084072E00
6.7522915928E00

e f =

16.8
16.8 +/=

Variance Results

Confidence Interval
A.0000000000ERD
A.0000000000ERD

Interval Results

Distribution Results

Figure 1.5: SAN Model (On/Off) Simulation Results.

tools, their current implementations impose unnecessary analysis restrictions that we could

work to overcome. Those restrictions are discussed next.

1.4 Motivation

Although each set of simulation batch results, as discussed in the previous section, provides
a multitude of analytic data, the acquisition of such data is hindered by the restriction that
the simulation must be terminated. In other words, the user does not have access to any
of the analytical data until the entire simulation batch is complete. For long or complex
simulations, that could not only take a long time, but also result in an output trace so
enormous that it may be virtually useless to the simulation analyst. Also, if there is a bug
in the simulation, the simulation may never terminate, or may terminate before the batch
is done and the results can be reported. Those bug-related issues could obfuscate data that
could lead the analyst to a more precise location of the error in question.

Another limitation imposed by the simulation termination restriction is the inability to
modify the model state during the running simulation. Although such additional simulation
interactivity may not be necessary for complete models, it could greatly increase the speed
and ease of the workflow of tweaking the model parameters to find the appropriate model
for the system under consideration. This additional simulation-interaction functionality is
in contrast with the existing approach of updating the initial model parameters only in the
model-creation stage, and then working all the way through to the final stages of running
complete simulations of the entire model.

The main motivation for this project is to address those simulation restrictions to achieve
a higher overall credibility of models and their respective simulations. To increase overall
credibility, the model and its simulations, in their entirety, must be more easily understood
by both the modeler and third-party viewers. The third-party viewers may include, but are
not limited to, project members such as clients, managers, and students. To achieve the
desired level of credibility, the model must be both validated and verified.

Model validation in the Mobius modeling framework consists of two parts. First, it ensures
that the model specification conforms to the specified modeling formalism. That part can be
automated through formal definition of each modeling formalism implementation in Mébius.
The process is described for several specific modeling formalisms in Section 3.3. Second,
model validation in Mo6bius also ensures that the model correctly represents the system
under consideration. In other words, it ensures that the model satisfies all of the specified

project requirements of the system analysis. This part is more difficult to automate, since

it is project-specific and often somewhat qualitative in nature.

Model verification, in contrast to validation, ensures that the model is correctly executing
as expected. In other words, it ensures that the validated model actually works. It, too, is
difficult to automate, as it, too, is project-specific and often somewhat qualitative in nature.

In order to accomplish both model validation and verification in the Mobius modeling
framework, the modeler and the third-party viewers must be able to easily and fully un-
derstand as much of the model as possible. For maximum model credibility, it is crucial
that this understanding occurs in both the model creation and model analysis stages of the

project.

1.4.1 Model Creation

In order to create a useful model, the modeler must fully understand the details of the
model under construction. Some things that often prevent the modeler from having that un-
derstanding include model complexity, inadequate understanding of a constituent modeling
formalism, and simple human error.

As models grow to encompass more precise representations of systems under consideration,
they quickly become immensely more complex. While that additional complexity is true for
single atomic models, it is even more true for composed models that comprise multiple atomic
and composed models, and potentially incorporate multiple modeling formalisms. That
inevitable increase in overall model complexity makes model creation more cumbersome,
which potentially limits the practically feasible size of some models for less experienced
users.

Also, in addition to the multitude of existing modeling formalisms, new modeling for-
malisms are continually being developed to address new problem cases more effectively.
Given the large and growing set of available modeling formalisms, it is a mistake to assume
that every modeler will be entirely familiar with every one. For example, a modeler may
choose to use the basic set of model elements within the SAN modeling formalism without
complete knowledge of the entire formalism. In that case, a seemingly trivial detail about the
modeling formalism, such as the time at which the input predicate of an activity executes,
may be ignorantly ignored by the modeler. If such behavior results in unexpected behav-
ior in the model, finding the root of the issue may be difficult with the current simulation
functionality in M&bius.

Beyond those specific issues, there is the general problem that the modelers under con-

sideration are human. For that reason, they are likely to make mistakes that could lead to

10

unexpected model behavior. The problem is exacerbated when a project requires collabo-
ration among multiple people or groups of people, as is often the case. With the current
simulation functionality in Mo6bius, it is difficult for another user to quickly understand the

functional details of a complicated model and its simulation.

1.4.2 Model Analysis

To successfully analyze a model, a user must fully understand the relevant functional subset
of the model under consideration. Issues that may prevent the user from achieving that
understanding include model complexity and scalability issues of the visualization. The
issue of model complexity is discussed above (Section 1.4.1) in the context of model creation.
The scalability of simulation visualizations, however, has not yet been thoroughly examined.
Several tools for post-simulation analysis, such as Traviando [25], create visualizations that
show as much information as possible from generated simulation trace results. However, since
those tools are restricted to post-simulation analysis, they cannot access data during the
running simulation. Also, since those tools show a great amount of detail about previously
executed simulations, they typically do not scale well, which causes them to be less useful

on larger and more complex models.

1.5 Goals

The primary goal of this project is to address the previously discussed interaction and vi-
sualization limitations imposed by the current state of the Mobius discrete-event simulator
by introducing the Mébius Simulation Debugging and Visualization (MSDV) feature. This
feature will address the limitations by extending the Mo6bius discrete-event simulator to pro-
vide the additional features discussed in Chapter 2. In addition, MSDV is designed in the
form of adaptable modules to facilitate the development of extensions for specific modeling
formalisms. Another goal of this project is to fully develop extensions for several existing
modeling formalisms, both atomic and composed. Those secondary design and implementa-

tion goals are discussed next.

1.5.1 Adaptable Modules

Modularity is an important requirement of the MSDV feature design, because Mobius is

intended to be highly extensible. Specifically, the MSDV feature must be able to easily

11

extend its current functionality to a multitude of specific modeling formalisms, including
ones that have yet to be developed. The reason is that some parts of the MSDV feature, such
as the visualization aspect, are modeling-formalism-specific. For example, the visualization
of the data for a SAN model simulation should be composed only of SAN modeling elements,
such as places, activities, input gates, output gates, and arcs. Similarly, the visualization
of the data for a Rep/Join model should be composed only of Rep/Join model elements.
Since the visualization of the different modeling formalisms must be composed of modeling-
formalism-specific elements, these portions of the feature must be developed independently
from one another. The goal of the modular design in the MSDV feature development is to
minimize the extent of independently developed portions of the feature while maximizing
the reusable code that is modeling-formalism-independent.

To reach the goal of maximum adaptability, the MSDV feature will contain a base module
that leverages the AFI [13]. The AFI is a generic atomic modeling formalism from which
all other modeling formalisms in Mobius, both atomic and composed, are derived. When a
solver in the Mobius modeling framework, including the Mébius discrete-event simulator, is
being run, the specified model is compiled as an AFI model regardless of its original modeling
formalism. Since all models in the Mobius modeling framework are thereby guaranteed to
be representable in the low-level AFI modeling formalism, the base AFI module in the
MSDV feature effectively covers every modeling formalism, both present and future. From
that starting point, it is relatively simple for a developer to build modeling-formalism-specific
visualization extensions for the MSDV feature, and the developer can focus on the modeling-
formalism-specific details of the extension, as the lower-level functionality of the feature is

effectively encapsulated.

1.5.2 Atomic Model Implementation

After creating the AFI base module of the MSDV feature, the next goal is to develop
modeling-formalism-specific modules for each atomic modeling formalism that is currently
implemented in Mobius. The goal for each of these specific modeling formalisms is to rep-
resent the data to the end user using only the modeling elements available in that specific
formalism. For example, if the user is running a simulation on a model specified using the
SAN modeling formalism, then the resulting visualization will be represented with SAN-
specific modeling elements, such as places, activities, input gates, output gates, and arcs.
The two specific atomic modeling formalisms that will be examined in this thesis are stochas-
tic activity networks (SAN) and ADversary Vlew Security Evaluation (ADVISE) models.

12

The details of each end-user visualization are discussed in Section 3.3.2.

1.5.3 Composed Model Implementation

In addition to implementation of several atomic modeling formalisms, another goal of the
project described in this thesis is to implement a visualization extension for the commonly
used Rep/Join composed modeling formalism. This state-sharing composed modeling for-
malism is inherently more complex than atomic modeling formalisms, since it is composed of
multiple atomic modeling formalisms. Because of its increased complexity, its visualization,
too, must be more complex. A major goal is to retain scalability as effectively as possible,
since the number of states can quickly multiply with a few Replication elements. The details

of the specific implementation are discussed in Section 3.3.3.

13

CHAPTER 2

FEATURES

In order to achieve the desired transparency and usability, we first had to consider the
additional interface features needed for the discrete-event simulator. We needed a way to
access the model state during the simulation, a way to modify the model state during the
simulation, a way to pause the progress of the running simulation, and a way for users to
interact with the simulation. For the first requirement, we implemented the functionality of
model state analysis. For the second, we implemented a reliable way to effectively modify
the model state. For the third, we implemented a way to apply explicitly defined breakpoints
to the running simulation and a way to implicitly step through the simulation. Finally, for
the last requirement, we implemented a graphical user interface (GUI) for the model that
provides access to all those new features. The new features are discussed throughout this
chapter.

Also, to explore each of those features in a more tangible manner, we will examine them
in terms of a running simulation batch associated with the simple AFI model presented in
Figure 2.1. The model is composed of three state variables (SV1, SV2, SV3) and three actions
(A1, A2, A3). The initial state sy of the model is as follows:

SVi->Mark ()
SV2->Mark ()
SV3->Mark ()

A1->Distribution(Deterministic, 1.00)
A2->Distribution(Deterministic, 0.50)
A3->Distribution(Deterministic, 1.75)

2.1 Model State Analysis

In the Mobius modeling framework, the model state is composed of both the culmination of

the values of the state variables [16] and the contents of the future event list [10]. The con-

14

SV2

—o——9

1
i

A3

Figure 2.1: AFI Simple Flow Example.

tents of the state variables are stored in a contiguous memory block, and the contents of the
future event list can be accessed in a straightforward manner. The values must be serialized
into a message and sent to the Mobius visualization front-end over the communication layer,
as discussed in Section 3.2.

Returning to the running AFI example model presented at the beginning of this chapter,

we can represent the original model state sy as the following:

SVi->Mark ()
SV2->Mark ()
SV3->Mark()

FEL = { {A1, 1.00}, {A3, 1.75} }

where the Mark () method represents the value of the state variable, and FEL represents the
future event list in the form {Ey,..., E,}, where E represents an event in the form {A, T},
where A represents the action associated with the event, and T represents the simulation
time ¢ at which the event is to fire.

Continuing the simulation to simulation time t = 1.25, after action Al has fired, we can

examine the resulting model state:

SVi->Mark() = 1
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A2, 1.50}, {A3, 1.75}, {A1, 2.00} }

All of the data will be represented in the MSDV module for AFI models. For modeling
formalisms that have been explicitly defined in the MSDV feature, the data will be converted

15

into modeling elements belonging to that specific modeling formalism in the form of a vi-
sualization interface. For modeling formalisms that have not been explicitly defined in the
MSDV feature, the data will by default be represented with modeling elements belonging to

the AFI visualization interface. The specific functionality is discussed in Section 2.5.

2.2 Model State Modification

In addition to displaying the model state at a given moment in the simulation, the MSDV
feature also provides a means to modify the model state at that given moment. That
functionality allows the user to more thoroughly examine a simulation from that specific
time, which could be useful if the modeler is debugging a model or would like to examine
what other possible behaviors the simulation could exhibit without having to change the
actual model. For example, the user could modify the model state to force rare events to
occur to check difficult model behavior, such as event interleaving.

As discussed in Section 2.1, the model state of an AFI model is represented through the
values of the state variables and the contents of the event list. Thus, the model state can be
fully modified if those two aspects can be modified. Therefore, the MSDV feature offers the
capability of modifying the values of the state variables and the contents of the event list.

Model state modification is more complicated than model state analysis in the Mobius
modeling framework. Its added complexity is a result of the dependencies between the
elements of the model state. For example, modifying the value of a single state variable
could result in a change to the enabling status of an action, thus affecting the contents
of the future event list. To address such dependencies, we use the built-in dependency
mechanisms of the Mébius modeling framework.

Those dependency mechanisms, as presented in [10], operate by associating state variables
with actions by declaring the state variables to be either enabling or affecting with respect
to the actions. If a state variable is marked as enabling to an action, then modifying that
state variable would require that action to reevaluate its enabled status. If an action is
marked as affecting a state variable, then when that action fires, the state variable value
may be altered by the firing event.

For example, consider the simple AFI model, derived from [10], that is pictured in Figure
2.2. The model shows the enabled and affected relationships between the state variables
and actions. As can be seen, an enabling relationship exists between state variable P2 and
action A2, since the enabled status of A2 depends on the value of P2. Also, an affected

relationship exists between the action A2 and the two state variables P2 and P3, since the

16

Simple AFI Model

Al

Action-to-State-Variable Connectivity

P1 from the model
< A3 P4 Al A2 A3
U enabling | affected enabling | affected enabling | affected
P2 /i\Q P3 P1 P2 P2 P1 P1
P3 P3 P3
@ bl
Derived State-Variable-to-Action Connectivity
P1 P2 P3 P4
enabling | affected enabling | affected enabling | affected enabling | affected
A3 Al A2 A2 A3 A2 A3
A3 A3

Figure 2.2: Connectivity List Example.

firing of A2 could result in changes in the values of both state variables. Use of those rela-
tionships simplifies the modification of the model state, since only affected state variables
must be reevaluated.

Since the model state modifications available through MSDV only include modification of
state variables and the firing times of the events in the future events list, the only model
state relationships we need to examine are the enabling relationships. The reason is that
our model state modifications cannot directly alter actions.

If we continue the AFI simulation example from Section 2.1, the model state at simulation

time t = 1.25 can be represented as follows:

SVi->Mark() = 1
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A2, 1.50}, {A3, 1.75}, {A1, 2.00} }

Altering the model state by removing one token from SV1 and adding one token to SV2

changes the model state to the following:

SVi->Mark ()
SV2->Mark ()
SV3->Mark ()

FEL = { {A2, 1.50} }

As seen in the modified model state, altering the values of the state variables can also

affect the contents of the future event list. The reason is that removal of the final token from

17

SV1 disables the actions A1 and A3, and hence removes them from the future event list. Only
action A2 remains in the event list, since it is still enabled with at least one token in SV2.
Continuing the simulation from simulation time ¢t = 1.25 to t = 1.75 results in the following

model state:

SVi->Mark() = 0
SV2->Mark() =
SV3->Mark() = 1

FEL = { {A2, 2.00} }

Between the previous two model states, action A2 fires, moving a token from SV2 to SV3.
Action A2 is still enabled, since at least one token remains in SV2.

In addition to modifying the values of state variables, the MSDV feature also allows users
to directly modify the firing times of the events in the future event list to any times in
the simulation time interval ¢ > currentSimulationTime. That modification can be done
regardless of the timing distribution of the action associated with the specific event, since
in Mobius the timing of each event becomes deterministic when it is added to the future
event list. For example, to modify the original model state at simulation time ¢ = 1.25, the
user can modify the firing time of the event associated with Al from 7' = 2.00 to T' = 1.35
to ensure that it fires before the other two actions. After that change has been made, the

current model state at simulation time ¢t = 1.25 becomes:

SVi->Mark() = 1
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A1, 1.35}, {A2, 1.50}, {A3, 1.75} }
Running the simulation for 0.15 time units to t = 1.40 results in the following model state:

SVi->Mark ()
SV2->Mark ()
SV3->Mark()

FEL = { {A2, 1.50}, {A3, 1.75} }

18

2.3 Breakpoints

To access or modify the model state, the user must have a way to pause a running simulation.
One way to pause it is through user-defined simulation breakpoints, which allow the user to
explicitly define conditions under which the running set of simulation batches should pause.
There are three types of breakpoints: simulation time breakpoints, action breakpoints, and
state variable breakpoints. Each type returns a Boolean value, allowing the user to easily
create combinations of the three types using the Boolean logical operators AND, OR, and NOT.

Note that simulation breakpoints are not limited to a single simulation batch. For example,
consider an action A4 that is so rare that it fires only once, in the 9215th batch of the
simulation. Setting an action breakpoint (discussed in Section 2.3.2) on this action A4 would

pause the simulation on the 9215th batch after continuing through the previous batches.

2.3.1 Simulation Time Breakpoints

A simulation time breakpoint allows the user to pause the simulation at a certain simulation
time t. For example, if the user sets the simulation to run until simulation time ¢t = 1.25,
as in the examples in Sections 2.1 and 2.2, the simulation would pause at simulation time
t = 1.25, allowing the user to access and modify the resulting model state at this simulation
time. Note that the simulation time ¢ does not have to coincide with any events in the future
event list. However, if it does, the simulation will pause immediately following all of the
events at that given simulation time ¢. In other words, this simulation example will pause

at simulation time ¢ = 1.25 + lim dt.
6t—0

2.3.2 Action Breakpoint

An action breakpoint allows the user to pause the simulation at a certain action event of
a specific action. Currently, available action events include OnFired, OnStatusToEnabled,
and OnStatusToDisabled. Respectively, the breakpoints are triggers at the simulation times
immediately following firing of actions, switching of an action from disabled status to en-
abled status, and switching of an action from enabled status to disabled status. The action
breakpoint can be used if the user wants to run a simulation until a certain event has fired,
which can be useful during examination of actions that rarely fire.

In the running example, a user could define a breakpoint when the action A2 becomes
enabled. If the simulation is started from its initial state sy, the simulation would run until

simulation time ¢ = 1.00, at which point a token would have moved from state variable SV1

19

to state variable SV2, enabling action A2. In that paused state, the user would have access

to the previously discussed model state analysis and model state modification functionality.

2.3.3 State Variable Breakpoint

A state variable breakpoint allows a user to pause the simulation when certain conditions
concerning state variable values have been met. Specifically, arithmetic combinations of state
variable values and literal values are compared using standard comparison operators: {<, >,
=}. For example, if a user wants to pause a simulation when a certain state variable value is
greater than another state variable value by 7.5 or more, the user can specify the breakpoint
svl > sv2 + 7.5. This functionality is useful during the examination of the quantitative
relationships between state variables.

More specifically, the comparison operations only use state variable primitive values, rather
than simply the values of the state variables. The reason is that in the Mobius modeling
framework, state variable values can be represented as complex, user-defined data structures
composed of nested structs and arrays. Since these data structures can be complicated and
hard to compare intuitively, our implementation restricts the comparisons to the primitive
data types of which these data structures are composed. The details of accessing state vari-
able primitive values, including the meaning of state variable indices in the MSDV feature,
are discussed in Section 3.2.2.

In the running example, a user may want to analyze the overall flow of the system by
pausing the simulation when the final state variable SV3 has a larger value than the initial
state variable SV1. In that case, the user would specify the breakpoint sv[2][0] > sv[0][0],
assuming that the unique state variable index value of 0 represents SV1 and 2 represents
SV3. As seen in Section 2.4, with no model state modification, that breakpoint will occur at
simulation time ¢t = 1.75 when SV1->Mark() = 0 and SV3->Mark() = 2.

2.4 Simulation Stepping

In addition to breakpoints, the MSDV feature provides simulation stepping as another means
of pausing a running simulation. Whereas breakpoints are explicitly defined by users, sim-
ulation stepping is an implicitly defined operation that runs the simulation until the next
action fires. Since the model state of a discrete-event simulation does not change until an
action is fired, simulation stepping gives users a way to easily examine all of the successive

model states of a running simulation in chronological order. The examination can occur

20

from any given paused state, including the initial model state, a state reached through the
use of breakpoints, or a state reached through previous stepping. This functionality is useful
for examining the fine-grained details of the operation of a running simulation from a given
simulation time t.

Since the running example is very small, we could easily step through the entire simulation.
One step from the initial state sy would result in the following state at simulation time
t=1.0:

SVi->Mark() = 1
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A2, 1.50}, {A3, 1.75}, {A1, 2.50} }

That would be the state immediately following the firing of the action associated with the
first event in the future event list, A1l. Stepping again results in the next simulation state at

simulation time ¢ = 1.50 immediately after A2 fires:

SV1i->Mark ()
SV2->Mark ()
SV3->Mark ()

I
o

FEL = { {A3, 1.75}, {A1, 2.50} }

The next simulation step results in the final model state at simulation time ¢ = 1.75

immediately after A3 fires:

SVi->Mark ()
SV2->Mark ()
SV3->Mark ()

FEL = { }

That is the final model state of the simulation, since the future event list is empty. Since
no more actions will fire, the model state will not change from this final state. At this point,

the simulation has terminated.

21

2.5 Model State Visualization

To use the previously discussed features, the user requires a powerful and intuitive interface
to control and view the running simulation. After considering potential designs for this
interface, we decided that the most useful interface would be one already familiar to the
user. Thus, we implemented the user interface to mimic the specific modeling formalism
with which the user had specified the model. For example, if the initial model is defined
as a stochastic activity network (SAN) model [17], then the user interface should display a
SAN-like presentation of the model. Specifically, the user interface will display the model
state as a combination of SAN elements similar to the SAN elements of the original model.
Thus, the visualization interface becomes an effortless way to bring the user’s model to life,
rather than a complicated and unfamiliar tool that the user must painstakingly learn.
Although that design decision simplifies the use of the tool, it would be impractical to
create a different user interface for every different modeling formalism, not only because of
the large number of existing formalisms, but also because of the constant introduction of new
modeling formalisms. To address the issue, we leveraged the underlying Abstract Functional
Interface (AFI) of the Mo6bius modeling framework [13]. The model-level Mébius AFI is a
modeling formalism that is the basis of all other modeling formalisms in Mébius. Since all of
the specific modeling formalisms are forms of their parent AFI modeling formalism, each can
be represented as an AFI model. Therefore, we started by implementing the user interface in
AFI. We then continued to develop user interfaces for specific modeling formalisms. The idea
is that if the user interface for a specific modeling formalism has not yet been implemented
(e.g., a newly developed modeling formalism is being used), then the MSDV tool will default
to the AFI visualization and user interface. Although the general AFI visualization and user
interface will not be as familiar to a user as a modeling-formalism-specific version would be,
it still provides the same power as formalism-specific visualizations and editing interfaces in
MSDV. The details of the visualization interfaces for the supported modeling formalisms are

given in Section 3.3.

22

CHAPTER 3

IMPLEMENTATION

The implementation of the MSDV feature in the Mobius modeling framework relies on its
integration into the currently existing discrete-event simulator, which is composed of three

different layers [10], pictured in Figure 3.1. They are:

Back-end Mobius Simulation Processes
Implemented in C++, this layer executes the actual simulation, and thus leverages the

power and speed available from running natively on the host machine.

Communication Layer
This layer provides the medium for the communication between the back-end M6bius

simulation processes and the front-end visualization interface.

Front-end Visualization Interface
Implemented in Java, this layer allows users to control and receive feedback from the

back-end Mo6bius simulation processes.

The implementation of the MSDV feature with respect to those three simulator layers is

described in this chapter.

Back-end Mobius|] Communication Front-end
Simulation Layer Visualization
Processes (C++) (TCP/IP) Interface (Java)

Figure 3.1: Mobius Layer Interaction.

23

3.1 Back-end Mobius Simulation

The back-end Mobius simulation processes are responsible for executing the actual simula-
tion of the model. This layer must be modified to allow model state analysis, model state
modification, and simulation pausing through the use of breakpoints and stepping function-

ality.

3.1.1 Model State Analysis

Although model analysis in Mobius typically relies on definitions of the reward variables in
the reward model component of the Moébius model, the MSDV feature aims to analyze the
model as a whole. Therefore, the instantaneous values of the state variables are also acces-
sible. In the Mobius discrete-event simulator, those values are stored as a simple contiguous
allocation of memory with a certain size. Since that storage method is the most space-
efficient way to represent the entire dataset, the raw memory is sent directly to the Mobius
communication layer to be forwarded to the front-end visualization interface. The front-end,
which has a mirrored version of the data structure representing the back-end model object,
is responsible for parsing the raw data.

In addition to values of the state variables of the AFI implementation of the model, the
current model state also comprises the current future events list. Therefore, the list must
also be forwarded to the front-end visualization layer. The back-end layer sends the future
event list to the communication layer in the form of pairs that include the associated action
index and the deterministic simulation time at which it will fire. The communication layer
then forwards that information to the front-end visualization interface to be parsed. The
details of model state analysis in the communication layer and the front-end visualization

interface are discussed in Sections 3.2.1 and 3.3, respectively.

3.1.2 Model State Modification

Because of the dependencies between elements of the model state, model state modification,
as discussed in Section 2.2, is not as trivial as model state analysis. To simplify its imple-
mentation, the user is restricted to modifying only one state variable primitive value, or only
one firing time of an event in the future event list, at once. That restriction does not mean
that the user could not modify multiple model state elements at one paused point in the

simulation. It simply means that the entire model state must adjust to a single modification

24

before the user can specify another change. The restriction simplifies model state modifica-
tion, as only the enabling relationships of the model must be considered. The reason is that
the affecting relationships occur only when an action is directly modified, a feature that is
not available through MSDV.

To modify the model state, the MSDV back-end receives a model state modification mes-
sage from the front-end visualization interface, as described in Section 3.1.2. The message
specifies a state variable primitive and its new value. The MSDV back-end updates the
specified state variable with the new value, and reevaluates the status of each of the actions
with which the state variable shares an enabling relationship. Consequently, if the status of
an action switches from enabled to disabled, then the associated event in the future event
list is removed from the list. Similarly, if the status of an action switches from disabled to
enabled, then the timing distribution of the action is sampled, and it is added to the future
event list. If the status of the action does not change, then it does not modify its associated
event, or lack thereof, in the future event list.

In addition to directly modifying state variables, the MSDV feature also allows users to
directly modify the firing times of the events in the future event list in the simulation time
interval ¢ > currentSimulationTime. Since those event times are independent of the rest
of the model state, no further consideration must be paid by the MSDV back-end.

Note that when an action’s associated event is added to the future event list, its timing
distribution is sampled. Consequently, if the modification of a state variable results in the
removal of the action’s event from the future event list, then even if the state variable is
modified back to its original value, the overall model state is unlikely to return to the same
state. Since the timing of events is based on the statistically random distribution of the
actions, the event will be added back to the future event list with a different associated
time. However, since the firing time for events in the event list may also be changed through
MSDV, the old firing time can be restored if desired.

Although model state modification is a helpful feature in analysis of running simulations, it
is important to note that any modifications to a running simulation could result in statistical
differences to runs without modification. Thus, simulation batches that utilize model state
modification should not be considered the final results of a system model analysis. Rather,
these simulation batches should be used to help the analyst determine more appropriate
parameters and model designs for a complete model that better describes the complex system

under consideration.

25

3.1.3 Breakpoints and Simulation Stepping

As described in Sections 2.3 and 2.4, the simulation-pausing capabilities are provided through
breakpoints and simulation stepping. The back-end MSDV contributes to that capability
by determining the point at which to stop, and by waiting for further instructions from
the front-end visualization interface. The evaluation of both explicit and implicit (step-
ping) breakpoints occurs in the back-end, rather than the front-end, to eliminate the need
to forward the entire model state to the front-end after the firing of each event. Thus,
the simulation can proceed at near-optimal solution speed until a breakpoint is hit. Both

breakpoint and simulation-stepping messages are discussed in Section 3.2.

3.2 Communication Layer

The communication layer of the Mobius simulator is responsible for providing the medium
between the back-end Mobius simulation processes and the front-end visualization interface.
This layer operates by forwarding TCP/IP messages between the POSIX sockets of each of
those end layers. Each of those messages is represented as a raw byte string, and is parsed
by the receiving end layer. The several message types available in the MSDV feature are

discussed throughout this section.

3.2.1 Model State Message

The model state message contains a serialized representation of the entire current model state
to be forwarded from the back-end Mébius simulation processes to the front-end visualization
interface. This message contains the number of state variables in the model, the offset of
each state variable in the state variable data, the contents of the state variable data, the
number of events in the future event list, the unique index of the action associated with each
event in the future event list, and the simulation time ¢ at which the given event will fire,
as seen in Table 3.1.

Continuing with the running example presented in Chapter 2, consider the initial model

state:

SVi->Mark ()
SV2->Mark ()
SV3->Mark ()

26

Table 3.1: Model State Message Protocol

Message Message Type | Num SVs | Offset 2 | ... | Offset n SV Data
Type char int int e int char]
Size(bytes) 1 4 4 e 4 sizeof (SVData)
Message Num Actions | E[l].actn | E[1].time | ... | E[n].actn E[n].time
Type int int double | ... int double
Size (bytes) 4 4 8 . 4 8

Table 3.2: Model State Message Example

] Message \ Byte String
3 SVs 0x00 0x00 0x00 0x03
SV off[1] | 0x00 0x00 0x00 0x02
SV off[2] | 0x00 0x00 0x00 0x02
SV data | 0x00 0x02 0x00 0x00 0x00 0x00
2 Events | 0x00 0x00 0x00 0x02
E[0] 0x00 0x00 0x00 0x00
t=1.00 Ox3f Oxf0 0x00 O0x00 0x00 0x00 0x00 0x00
E[1] 0x00 0x00 0x00 0x02 |
t=1.75 0x3f Oxfc 0x00 0x00 0x00 0x00 0x00 0x00

FEL = { {A1, 1.00}, {A3, 1.75} }

This model state is represented in the model state message in Table 3.2.

3.2.2 Modify State Variable Message

The modify state variable message allows the user to modify specified state variable primi-
tive values. This message, which is forwarded from the front-end visualization interface to
the back-end simulation processes, contains the unique index of the state variable under con-
sideration, the memory offset of the primitive value in the contiguous memory representing
the entire state variable value, the type of the primitive value to be modified, and the new
desired value of the state variable primitive value, as seen in Table 3.3.

This message works by first accessing the memory location of the state variable with

Table 3.3: Modify State Variable Message Protocol

Message Msg Type | SV Index | Value Offset | Value Type New Value
Type char int int char typeof (newValue)
Size (bytes) 1 4 4 1 sizeof (newValue)

27

struct myStruct {
int myIntil;
short myShortl;
};

Figure 3.2: Modify State Variable Example Struct.

Table 3.4: Modify State Variable Message Example

’ Message \ Byte String ‘
sv[1][4]1=5 | 0x03 | 0x00 0x00 0x00 0x01 | 0x00 0x00 0x00 0x04 | 0x01
0x00 0x05 |

sv[11[0]=7 | 0x03 | 0x00 0x00 0x00 0x01 | 0x00 0x00 0x00 0x00 | 0x02
0x00 0x00 0x00 0x07 |

the unique state variable index. Next, using the provided offset, the message accesses the
exact memory location of the primitive variable to be modified. For a state variable that is
composed of a single primitive variable, this offset will be 0. However, for more complicated
state variables, such as a custom struct or array, the offset will be based on the number and
type of variables that are stored ahead of this variable in the state variable data structure.
For example, if a state variable contained the type myStruct, as in Figure 3.2, and the
message was to modify myShort1, then the offset would be sizeof (int)= 4.

The message also contains the type of the new value, which is used to perform the necessary
conversion of the new value from the network byte order to the host byte order. The
conversion is only necessary on little endian machines, since network byte order is equivalent
to big endian order, which is the reverse of little endian order.

Another possible implementation of the modify state variable message involves sending the
entire value of the complex state variable type, rather than relying on offsets and primitive
data types. That method would be much simpler for big endian machines, but would be
more difficult to implement for little endian machines because of the way those machines
store variables in the back-end simulation memory. In order to guarantee that data are
decoded correctly by the back-end, regardless of architecture, the former, primitive data-
based implementation is used.

As an example, consider again the user-defined struct myStruct presented in Figure 3.2.
Assuming that the value of state variable sv[1] is of the type myStruct, the messages in
Table 3.4 instruct the back-end to modify myShort1 to 5, and myInt1 to 7.

Also, consider the model state of the running example presented in Chapter 2 at simulation
time t = 1.25:

SVi->Mark() = 1

28

Table 3.5: Modify State Variable Message: Running Example

’ Message \ Byte String ‘

sv[01[0]=0 | 0x03 | 0x00 0x00 0x00 0x00 | 0x00 0x00 0x00 0x00 | 0x01
0x00 0x00 |

sv[11[0]=2 | 0x03 [0x00 0x00 0x00 0x01 [0x00 0x00 0x00 0x00 | 0x01
0x00 OXOQ‘

Table 3.6: Modify Future Event List Message Protocol

Message Message Type | Event Index | New Time
Type char int double
Size (bytes) 1 4 8
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A2, 1.50}, {A3, 1.75}, {A1, 2.00} }

To remove a token from the state variable SV1 and add one to state variable SV2, as in
Section 2.2, the front-end visualization interface would send the message from Table 3.5 to
the back-end simulation processes. The back-end would parse that message, resulting in the

following model state:

SVi->Mark ()
SV2->Mark ()
SV3->Mark ()

FEL = { {A2, 1.50} }

3.2.3 Modify Future Event List Message

The modify future event list message allows the user to modify the firing time of an event in
the future event list to a simulation time in the interval ¢t > currentSimulationTime. This
message contains the index of the event in the future event list, and the new desired time at
which the event will fire, as seen in Table 3.6.

Consider the model state of the running example presented in Chapter 2 at simulation
time t = 1.25:

29

Table 3.7: Modify Future Event List Message Example

’ Message \ Byte String ‘
E[2] | 0x00 0x00 0x00 O0x02 |
t=1.35 | Ox3f Oxf5 0x99 0x99 0x99 0x99 0x99 0x9a

SVi->Mark() =1
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A2, 1.50}, {A3, 1.75}, {A1, 2.00} }

To modify the firing time of action Al from ¢t = 2.00 to ¢t = 1.35 at this simulation time,
as was discussed in Section 2.2, the front-end visualization interface would send the message
from Table 3.7 to the back-end simulation processes. The back-end would parse the message

and update the future event list, resulting in the following model state:

SVi->Mark() =1
SV2->Mark() =
SV3->Mark() = 0

FEL = { {A1, 1.35}, {A2, 1.50}, {A3, 1.75} %}

3.2.4 Breakpoint Message

The breakpoint message allows the user to forward breakpoint information from the front-
end user interface to the back-end simulation process during a paused simulation. That
information allows the simulation to pause upon reaching a certain specified state, as de-
scribed in Section 2.3. The organization of that information is shown graphically as a Unified
Modeling Language (UML) model in Figure 3.3.

The breakpoint message is composed of a number of breakpoints [0... x|, each of which
reduces to a Boolean value. Each of those values is further reduced with the logical OR oper-
ator to determine the Boolean value of the overall breakpoint list. If that list value evaluates
to true, then the breakpoint is hit, and the simulation pauses at that simulation time ¢.
Otherwise, if the value evaluates to false, the simulation continues to run, reevaluating
the breakpoint both immediately following the firing of an action (resulting in model state

changes), and before the firing of an action (to evaluate the simulation time between this

30

<<enumeration>> <<enumeration>> <<enumeration>> <<enumeration>> <<enumeration>> H BreakpointElement
2 BLOType £ ULOType E COType # AOType # ActionEventType
= AND = NOT = LESSTHAN = ADD = OnFired @ serialize() : EString
= OR = GREATERTHAN = SUBTRACT = OnStatusToEnabled
= EQUALTO = MULTIPLY = OnStatusToDisabled 1
= DIVIDE 1
- MoD xiredsioh left
1
right
1
breakpoint

<<enumeration>>
“#* BreakpointClassType

= SimulationBreakpoint
= BreakpointElement

= LogicalOperator
UnaryLogicalOperator
BinaryLogicalOperator
ConditionalBreakpoint
SimTimeBreakpoint
ActionBreakpoint
StateVariableBreakpoint
SVBElement
ArithmeticOperator
LiteralValue

= StateVariableValue

E SimulationBreakpoint

E ConditionalBreakpoin

= enabled : EBoolean

@ serialize() : EString

@ serialize() : EString

0.%
breakpoints

[SimulationBreakpointLis!

E LogicalOperator

@ serialize() : EString

| simTimeBreakpoint

H ActionBreakpoint

E UnaryLogicalOperator

= onTime : EDouble

= actionindex : Elnt

= operation : ULOType

E BinaryLogicalOperator|

= operation : BLOType

@ serialize() : EString @ serialize() : EString = actionEvent : ActionEventType & serialize() : EString @ serialize() : EString
& serialize() : EString
right 1 E SvBElement 1 right
& serialize() : EString
left 1 1 left

H ArithmeticOperator H Literalvalue

= value : EDouble

H statevariablevalue
= SVindex : Elnt

E StateVariableBreakpoint

= operator : AOType = operator : COType

@ serialize() : EString @ serialize() : EString @ serialize() : EString @ serialize() : EString

Figure 3.3: Breakpoint Message Protocol UML.

time and the time that the last action fired). The former case potentially results in differ-
ent action breakpoints and state variable breakpoints, since these breakpoints depend on
the model state. The latter case potentially results in varying simulation time breakpoints,
since these breakpoints depend on the current simulation time ¢.

The simulation breakpoint list is the highest level of the breakpoint message protocol.
It contains the number of breakpoints, the size of each breakpoint, and the breakpoint
information for each breakpoint, as seen in Table 3.8. This information is used to separate
the breakpoints in the back-end simulation process, to parse each breakpoint independently.

The next level of the breakpoint message protocol is the breakpoint level, which is either a

Table 3.8: Simulation Breakpoint List

Message Msg Type | Num BPs | Offset 2 Offset n
Type char int int . int
Size (bytes) 1 4 4 . 4

Simulation Breakpoints
N/A

sizeof (breakpoints)

31

Table 3.9: Simulation Time Breakpoint

Message Class Type | Break Time
Type char double
Size (bytes) 1 8

Table 3.10: Action Breakpoint

Message Class Type | Action Event Type | Action Index
Type char char int
Size (bytes) 1 1 4

conditional breakpoint or a logical operator that compares multiple conditional breakpoints.
Effectively, this level could be a simulation time breakpoint, an action breakpoint, a state
variable breakpoint, a unary logical operator, or a binary logical operator.

A simulation time breakpoint determines whether the specified simulation time is greater
than or equal to the current simulation time. More specifically, that breakpoint’s message
would specify that the simulation pause once the specified simulation time has been reached.
For example, if the message specifies a breakpoint at simulation time ¢t = 5.5, the breakpoint
would return true whenever the breakpoint is evaluated at simulation time £ > 5.5. The
message simply contains the simulation break time as a double type, as in Table 3.9.

An action breakpoint determines whether a specified action event has just occurred. Such
action events include firing of the specified action (OnFired), switching of the specified
action’s status from disabled to enabled (OnStatusToEnabled), and switching of the specified
action’s status from enabled to disabled (OnStatusToDisabled). An action breakpoint’s
message contains the unique action index of the specified action and the action event type,
as in Table 3.10.

A state variable breakpoint returns the Boolean value of the comparison operation between
the specified left and right state variable operands. The operands, which are cast as double
values before comparison, are composed of primitive type values in state variable value data
structures, literal numerical values, and arithmetic operations between the previous two
operands. The highest level of a state variable breakpoint message contains the comparison
operator, the left and right operands, and the size of the left operand as an offset for the
beginning of the right operand in the serialized message, as in Table 3.11.

A state variable value is represented as the primitive type of the specified value in the
state variable data structure, the unique state variable index, and the offset of the primitive
specified value of the state variable, as in Table 3.12. In a state variable represented as a

single type, the offset is 0.

32

Table 3.11: State Variable Breakpoint

Message Class Type | Operation | Right Offset Left Right
Type char char int N/A N/A
Size (bytes) 1 1 4 sizeof (left) | sizeof (right)

Table 3.12: State Variable Value

Message Class Type | SV Type | State Variable Index | Offset
Type char char int int
Size (bytes) 1 1 4 4

A literal value is simply represented as a double, as in Table 3.13.

An arithmetic operator allows the message to specify arithmetic operations between prim-
itive state variable values and literal values. For example, one might want a breakpoint when
a certain state variable value svi->Mark () is double the value of another state variable value
sv2->Mark (). The arithmetic operator allows the message to multiply svi->Mark() by 2
before being evaluated by the comparison operator of the state variable breakpoint level.
The operations addition (+), subtraction (—), multiplication (%), and division (/) are all
performed as double operations. The mod operation (%) is performed as an int operation,
and the result is cast into a double value. The arithmetic operator message fragment con-
tains the specified arithmetic operation, the left and right operands, and the size of the left
operand as an offset for the beginning of the right operand in the serialized message, as in
Table 3.14.

A unary operator allows a contained breakpoint message to be evaluated as an expression
of the specified operator. Although the only unary operator implemented in this protocol is
the NOT operator, the operator is still explicitly specified to make it easy to add additional
unary operators to future implementations. The unary operator message fragment contains
the unary operation and the breakpoint expression to be evaluated, as in Table 3.15.

A binary operator allows the message to logically combine the results of two breakpoint
expressions, including both the AND operation and the OR operation. The binary operator
message fragment contains the binary operation, the left and right breakpoint expressions,

and the size of the left breakpoint as the offset of the beginning of the right breakpoint

Table 3.13: Literal Value

Message Class Type | Value
Type char double
Size (bytes) 1 8

33

Table 3.14: Arithmetic Operator

Message Class Type | Operation | Right Offset Left Right
Type char char int N/A N/A
Size (bytes) 1 1 4 sizeof (left) | sizeof (right)

Table 3.15: Unary Logical Operator

Message Class Type | Operation Expression
Type char char N/A
Size (bytes) 1 1 sizeof (expression)

expression in the serialized message, as in Table 3.16.

As an example, consider the breakpoint represented in Figure 3.4. In this example, the
simulation is to pause when the simulation time reaches ¢ = 4.25, the condition that the
value of sv[2][5] < 7 + sv[1][4]! after the simulation time reaches t = 3.1 is false, or
action[1] fires. The corresponding breakpoint message is listed in Table 3.17.

Consider, again, the running example presented in Chapter 2. Specifying the three break-
points presented in Sections 2.3.1—2.3.3, we arrive at the breakpoint in Figure 3.5. This
breakpoint would result in the message presented in Table 3.18. Applying the breakpoint at
the beginning of the simulation would pause the batch at simulation time ¢t = 1.00, at which

time action A2 would become enabled, the first of the three conditions to evaluate to true.

3.2.5 Step Message

The step message allows a user to continue a simulation until immediately after the next event
in the future event list fires. This simple message type, which is forwarded from the front-end
visualization interface to the back-end Mobius simulation processes, contains no additional
parameters, as seen in Table 3.19. Although this message could be represented explicitly as a

breakpoint message combining all action fire events with the OR logical operator, this implicit

Table 3.16: Binary Logical Operator

Message Class Type | Operation | Right Offset Left Right
Type char char int N/A N/A
Size (bytes) 1 1 4 sizeof (left) | sizeof (right)

1 As described in Section 3.2.2, the first index of the state variable corresponds to the unique index of the
state variable in the model, and the second index corresponds to the state variable primitive offset within
the state variable data structure.

34

(SimTimeBreakpoint 4.25)
(UnaryOperator NOT

)

(BinaryOperator AND
(SimTimeBreakpoint 3.1)
(StateVariableBreakpoint <

(StateVariableValue short 2 5)

(ArithmeticOperator +

)
)
)

(LiteralValue 7)

(StateVariableValue double 1 4)

(ActionBreakpoint OnFired 1)

Figure 3.4: Breakpoint Message Example Pseudo-message.

Table 3.17: Breakpoint Message Example

’ Message | Byte String
3 BPs 0x00 0x00 0x00 0x03
off [1] 0x00 0x00 0x00 0x09
off [2] 0x00 0x00 O0x00 Ox3a
ST 4.25 0x06 | 0x40 Ox11 0x00 0x00 0x00 0x00 0x00 0x00 \
NOT 0x03 | 0x00
AND 0x04 | 0x00 | 0x00 0x00 0x00 0x09
ST 3.1 0x06 | 0x40 0x08 Oxcc Oxcec Oxce Oxce Oxce Oxed \
< 0x08 | 0x00 | 0x00 0x00 0x00 Ox0a
sv[2] [6] | 0xOc | 0x01 | 0x00 0x00 0x00 0x02 | 0x00 0x00 0x00 0x05
+ Ox0a | 0x00 | 0x00 0x00 0x00 0x09
7 0xOb | 0x40 Oxlc 0x00 0x00 0x00 0x00 0x00 0x00 \
sv[1] [4] | 0xOc | 0x03 | 0x00 0x00 0x00 0x01 | 0x00 0x00 0x00 0x04
al[3].fire | 0x07 | 0x00 | 0x00 0x00 0x00 0x02

(SimTimeBreakpoint 1.25)

(ActionBreakpoint OnStatusToEnabled 1)

(StateVariableBreakpoint >
(StateVariableValue short 2 0)
(StateVariableValue short 0 0)

)

Figure 3.5: Breakpoint Message Running Example Pseudo-message.

35

Table 3.18: Breakpoint Message Running Example

’ Message | Byte String
3 BPs 0x00 0x00 0x00 0x03
off [1] 0x00 0x00 0x00 0x09
off [2] 0x00 0x00 0x00 0x06

ST 1.25 0x06 | Ox3f Oxf4 0x00 O0x00 O0x00 0x00 0x00 0x00
a[1] .enabled | 0x07 | 0x01 | 0x00 0x00 0x00 0x01
> 0x08 | 0x01 | 0x00 0x00 0x00 0x0a

sv[2] [0] 0x0c | 0x01 | 0x00 0x00 0x00 0x02 | 0x00 0x00 0x00 0x00
sv[0] [0] 0x0c | 0x01 | 0x00 0x00 0x00 0x00 | 0x00 0x00 0x00 0x00

Table 3.19: Step Message

Message Class Type
Type char
Size(bytes) 1

message type is simpler to use and requires less communication overhead to accomplish this

frequently useful operation.

3.3 Front-end Visualization

The front-end visualization and user interface level is where the user interacts with the
Mobius framework. That level allows users to define models, run analyses on the models,
and view the results of the analyses. As far as the MSDV feature is concerned, that level
is where the user can view the running simulation model states at specified simulation time
points, and alter the given model states at these simulation time points. In designing that
level of the MSDV feature, the goals of modularity and full implementation for specific
modeling formalisms, as discussed in Section 1.5, had to be considered. Therefore, the
Abstract Functional Interface (AFI) implementation will first be discussed, in Section 3.3.1,
as a means of achieving a modular design. Next, implementations of specific modeling
formalisms will be discussed, starting with atomic modeling formalisms in Section 3.3.2, and
continuing to composed modeling formalisms in Section 3.3.3. A general description of how
to implement a new visualization and user interface for additional modeling formalisms is

given in Appendix A.

36

[AfiModelElement

= name : EString

Zﬁ 1 1
source target

[AfiCustomMarkType [statevariable H Arc [Action [l ActionDistribution
= modelld : EString = mark : EString
= typeld : EString

1

distribution
1 arcs

customMarkType

[CustomstateVvariablé [DefaultStatevariable [InstantaneousAction [l TimedAction
= activationPredicate : EString
I reactivationPredicate : EString
0..* 0..*)
customStateVariables defaultStateVariables i . 0.*
instantaneousActions . _

timedActions
@ [AfiModel @
>

Figure 3.6: AFI Editor UML.

context Arc inv:source.oclIsTypeOf (StateVariable) <>
target.oclIsTypeOf (StateVariable)

context Arc inv:source.oclIsTypeOf (Action) <>
target.oclIsTypeOf (Action)

context DefaultStateVariable inv:CanParseAsShort (mark)

context CustomStateVariable inv:
CanParseAs<customMarkType.toType () >(mark)

Figure 3.7: AFI Editor OCL.

3.3.1 Abstract Functional Interface

The Abstract Functional Interface (AFI) provides the basis for all other atomic and composed
models in the Mobius framework. More specifically, all atomic and composed models are
inherited from the parent AFI model class. Although AFI models could theoretically be
directly created, current releases of Mobius do not support this functionality, since the AFI
is intended simply to be a means of representing higher-level modeling formalisms in a generic
and uniform way in the back-end analysis processes. However, in discussing the visualization
and user interface of the AFI in the MSDV feature, it is helpful to precisely describe what
the AFT editor would be if it were implemented in Mobius. That being said, the AFI editor
in the Mobius framework would be defined as shown in the UML diagram and the OCL
description in Figures 3.6 and 3.7, respectively.

This hypothetical editor would allow users to define five types of objects: default state

variables, custom state variables, timed actions, instantaneous actions, and directed arcs.

37

E ArcDebugger

0..*

arcs

E CustomStateVariableDebugge

E DefaultStateVariableDebugge

E InstantaneousActionDebugge

E TimedActionDebugger

= avgMark : EString
= minMark : EString
= maxMark : EString

= avgMark : EDouble
= minMark : EShort
= maxMark : EShort

= isEnabled : EBoolean
= timeToFire : EDouble
= isNextToFire : EBoolean

= isEnabled : EBoolean
= timeToFire : EDouble
= isNextToFire : EBoolean

= waslastToFire : EBoolean
= numTimesFired : Elnt

= waslastToFire : EBoolean

= numTimesFired : Eint

0..* 0.%
defaultStateVariables

customStateVariables
0..x 0.*

instantaneousActions timedActions

| AFIModelDebugger
= simTime : EDouble

Figure 3.8: AFI Debug and Visualization Editor UML.

The four types of objects that are inherited from the AFIModelElement could be placed
independently, and the directed arcs would form connections between StateVariable type
objects and Action type objects, in either direction. Although the directed arc objects are
not directly represented in an AFI model, they provide the user with an intuitive way to
apply enabling and affecting relationships between the state variables and actions in the
model. Those relationships are discussed in Section 2.2.

Inherited directly from the classes of the AFI editor, the AFI debug and visualization
editor of the MSDV feature expands the functionality and visibility of the editor from the
initial static AFI model to the running simulation of the model. That additional functionality
is apparent in the inherited UML model displayed in Figure 3.8. In that diagram, each of
the five types of objects inherits from the respective class without the Debugger suffix in
Figure 3.6. Note that the AFIModelDebugger class is not a child of the AFIModel class. The
OCL description of the AFI debug and visualization editor is listed in Figure 3.9.

In the UML and OCL definitions of Figures 3.8 and 3.9, the state variable debugger classes
have been expanded to include minMark, maxMark, and avgMark fields. Each of those fields
stores the minimum value that the mark becomes, the maximum value that the mark be-
comes, and the average value of the mark, respectively, over the simulation time interval
t = [0, AFIModelDebugger->simTime|. Since the DefaultStateVariable class simply con-
tains a short value, the minMark and maxMark fields can also be represented as short values.
The avgMark field, on the other hand, must be represented as a real number, since the result
of the average calculation is not constrained to a whole number. Thus, the avgMark field
is represented as a double value. Similarly, for the CustomStateVariableDebugger class,

the minMark and maxMark fields can be stored as the same type as the mark of the parent

38

context CustomStateVariableDebugger inv:
CanParseAs<customMarkType.toType () >(minMark)
context CustomStateVariableDebugger inv:
CanParseAs<customMarkType.toType () >(maxMark)
context CustomStateVariableDebugger inv:
CanParseAs<customMarkType.toDoubleType () >(avgMark)
context AFIModelDebugger inv: Set{
instantaneousActions->forAll (isNextToFire),
timedActions->forAll (isNextToFire)
}->size() <=1
context AFIModelDebugger inv: Set{
instantaneousActions->forAll (wasLastToFire),
timedActions ->forAll (wasLastToFire)
}->size() <=1

Figure 3.9: AFI Debug and Visualization Editor OCL.

CustomStateVariable class. The avgMark field, on the other hand, is stored as similar type
of the CustomStateVariable class in which all of the primitive fields are represented as
double types.

One note on the scalability of the additional state variable debugger data structures: they
more than quadruple the original storage size of the model state. The reasoning is that in
the context of both DefaultStateVariableDebugger and CustomStateVariableDebugger,
sizeof (mark) = sizeof (minMark) = sizeof (maxMark) < sizeof (avgMark), each of
those variables is stored independently of the others. Although that could pose a problem
for models with exceptionally large model states, it typically is not an issue with simulation
analysis, since each state variable must be explicitly defined during model creation. That
differs in the approaches of other analysis techniques, such as transient solvers, but those
other techniques fall outside the scope of the MSDV feature.

Also, in the UML and OCL definitions of the AFI debug and visualization editor, the action
debugger classes have been expanded to include isEnabled, timeToFire, isNextToFire,
wasLastToFire, and numTimesFired fields. The isEnabled field contains a Boolean value
that indicates whether the action is enabled or disabled. The timeToFire field is a double
value that stores the simulation time ¢ at which the enabled action will fire next, as retrieved
from the future event list data. If the action is disabled, and hence not in the future event list,
the timeToFire takes the invalid simulation time value of t = —1.0. The isNextToFire and
wasLastToFire fields contain Boolean values that indicate whether the action is referenced
by the first event in the future event list and whether the action is the last one to have fired,
respectively. As the OCL definition in Figure 3.9 shows, the total number of actions in the
AFIModelDebugger with those values marked as true can only be 0 or 1. In most cases, only

one activity at a time will have either of these values marked as true, as there is only one

39

first item in the future event list, and only one action that has just fired, as multiple actions
are not represented as simultaneous in the Mobius simulation framework. However, if the
future event list is empty, such as at the end of a simulation, then none of the actions will be
marked as isNextToFire. Also, at the beginning of the simulation, before any actions have
fired, the wasLastToFire field will be false for all actions. The numTimesFired field simply
stores, as an int value, the number of times the action has fired during the simulation time

interval ¢t = [0, AFIModelDebugger->simTime].

3.3.2 Atomic Models

As discussed in Section 1.5.2, one of the goals of the project presented in this thesis is to
implement a visualization interface for several specific atomic modeling formalisms. Each of
the modeling-formalism-specific visualization interfaces inherits the functionality of the AFI
visualization interface, discussed in Section 3.3.1, in addition to the functionality specific
to the given formalism. The implementations of stochastic activity networks (SAN) and

ADversary Vlew Security Evaluation (ADVISE) models are discussed next.

Stochastic Activity Networks

The SAN visualization interface extends the functionality of the AFT visualization inter-
face to represent data in the form of SAN elements, of which the original model under
consideration is composed. Specifically, the SAN visualization interface is composed of
Place, ExtendedPlace, TimedActivity, InstantaneousActivity, Arc, InputGate, and
OutputGate elements, the first five of which are directly inherited from the AFI
DefaultStateVariable, CustomStateVariable, TimedAction, InstantaneousAction,
and Arc elements, respectively. Although the last two SAN elements, InputGate and
OutputGate, affect the model during simulation, they themselves are static elements that
do not change during the simulation. Therefore, they can be displayed to the user as static
elements, allowing the SAN visualization interface to rely on the AFI parent methods to
perform the majority of the necessary functionality.

It is helpful first to define the SAN model editor. The UML and OCL definitions of
this editor are shown in Figures 3.10 and 3.11, respectively. The inheritance relationships
between the SAN Editor and the AFI Editor are shown in Table 3.20.

In the UML and OCL definition of the SAN editor, the user is restricted to adding
only the following elements to a model: Place, ExtendedPlace, InstantaneousActivity,

TimedActivity, InputGate, OutputGate, SanArc, and ActivityCase. The first six of those

40

| ExtendedPlace

H ActivityCase

O case : EString

[InputGate

[outputGate

= inputPredicate : EString

= outputFunction : EString

o O inputFunction : EString
extendedPlaces L - 0
cases cases 0..* outputGates
inputGates
E Place E InstantaneousActivity«— E TimedActivity E SanArc
0..* 0..* 0..% o
places instantaneousActivities timedActivities
arcs
E sanModel g
Figure 3.10: SAN Editor UML.
context SanArc inv: if (source.type == Place)
{(target.type == InputGate) || (target.type == Action)}
context SanArc inv: if (source.type == ExtendedPlace)
{(target.type == InputGate)}
context SanArc inv: source.type <> Action
context SanArc inv: if (source.type == ActivityCase)
{(target.type == OutputGate) || (target.type == Place)}
context SanArc inv: if (source.type == InputGate)
{(target.type == Action)}
context SanArc inv: if (source.type == OutputGate)

{(target.type

StateVariable)}

Figure 3.11: SAN Editor OCL.

Table 3.20: SAN to

AFI UML Inheritance

|

Child Class

\ Parent Class

Place DefaultStateVariable

ExtendedPlace CustomStateVariable

InstantaneousActivity | InstantaneousAction

TimedActivity TimedAction
ActivityCase AfiModelElement
SanArc Arc

InputGate AfiModelElement
OutputGate AfiModelElement

41

E ArcDebugger

0..*
arcs
E ExtendedPlaceDebugge E PlaceDebugger E InstantaneousActivityDebugge E TimedActivityDebugger
= avgMark : EString = avgMark : EDouble = isEnabled : EBoolean = isEnabled : EBoolean
= minMark : EString = minMark : EShort = timeToFire : EDouble = timeToFire : EDouble
= maxMark : EString = maxMark : EShort = isNextToFire : EBoolean = isNextToFire : EBoolean
= waslastToFire : EBoolean = waslastToFire : EBoolean
0..% 0..* = numTimesFired : EInt = numTimesFired : EInt
extendedPlaces places
0..* 0..*
instantaneousActivities timedActivities
o E SanModelDebugge -

Figure 3.12: SAN Debug and Visualization Editor UML.

elements can be directly added to the SAN model. The SanArc element, like the Arc element
in the AFI editor, is a directed arc that can only be used to connect model elements, and is
limited to the restrictions imposed by the OCL definition in Figure 3.11. ActivityCase ele-
ments can only be directly added to either an InstantaneousActivity or a TimedActivity.

Just as the classes of the AFI debug and visualization editor inherit directly from those of
the AFT editor, the modeling element classes of the SAN debug and visualization editor also
inherit directly from those of the SAN editor, excluding the SanModelDebugger class. The
UML and OCL definitions of the SAN debug and visualization editor are shown in Figures
3.12 and 3.13, respectively.

The additional fields of the SAN debug and visualization editor show that its function-
ality is similar to that of the AFI debug and visualization editor. Specifically, each Place
element, both normal and extended, also contains the additional minMark, maxMark, and
avgMark fields, and each Activity element, whether timed or instantaneous, also contains
the isEnabled, timeToFire, isNextToFire, wasLastToFire, and numTimesFired fields.
Each of those fields behaves like the corresponding field in the AFT version of the editor.

One key difference between the SAN debug and visualization editor and the AFI debug
and visualization editor is that in addition to representing the model state data as text, the
SAN visualization interface also includes the option to display each SAN model element as
a visual representation of its current contents. For example, the intensity of the color of
a Place visual element is associated with the number of tokens currently contained by the

associated Place element, increasing as it gains more tokens. Also, each Activity visual

42

context ExtendedPlaceDebugger inv:
CanParseAs<customMarkType.toType () >(minMark)
context ExtendedPlaceDebugger inv:
CanParseAs<customMarkType.toType () >(maxMark)
context ExtendedPlaceDebugger inv:
CanParseAs<customMarkType.toDoubleType () >(avgMark)
context SanModelDebugger inv: Set{
instantaneousActivities->forAll (isNextToFire),
timedActivities->forAll (isNextToFire)
}->size() <=1
context SanModelDebugger inv: Set{
instantaneousActivities->forAll (wasLastToFire),
timedActivities->forAll(wasLastToFire)
}->size() <=1

Figure 3.13: SAN Debug and Visualization Editor OCL.

element is highlighted with a different color to indicate if it was the last Activity to fire (red)
or will be the next Activity to fire (green). That additional visualization functionality helps
simulation analysts quickly understand the current state of the model under investigation.

Those features are examined in action in the case study presented in Section 4.2.

ADVISE

As with the SAN visualization interface, the ADVISE visualization interface also extends
the functionality of the AFI visualization interface. The ADVISE visualization interface
represents the current model state of the simulation batch through the ADVISE model
elements: Goal, Knowledge, Skill, Access, AttackStep, Adversary, AdversaryArc, and
AEGArc. In this representation, although the model state is not directly affected by the
AEGNode objects, they are displayed to provide a more comprehensive view of the model
state to the user.

As with the other visualization interface discussions, we first discuss the ADVISE model
editor. The UML and OCL definitions of this editor are shown in Figures 3.14 and 3.15,
respectively. The inheritance relationships between the ADVISE Editor and the AFI Editor
are shown in Table 3.21.

In this definition, the user can add Goal, Knowledge, Skill, Access, AttackStep, and
Adversary elements directly to the model, while AdversaryArc and AEGArc elements are
added as links between the appropriate node elements. More specifically, AdversaryArc
elements are directed arcs added either between an AEGNode element and an AttackStep el-
ement, or between an AttackStepOutcome element and an AEGNode element. AdversaryArc

elements are added between an Adversary element and an AEGNode element or an

43

E| AEGNode

4

H Goal E Knowledge H skill H Access
0..* 0..*
0..* 0..*
knowledges skills
goals accesses
<[] AdviseMode| l@— 0. E AdversaryArc
> =
adversaryArcs
H AttackStep c 0% 1
o attackCost : EString attackSteps adversary
=1 preconditions : EString -
0. E Adversary

adversaries

FutureDiscountFactorCost : EDouble

= outcomeProbability : EString

. -) FutureDiscountFactorDetection : EDouble
= detectionProbability : EString

E AEGArc

= active : EBoolean
1.* = attackPreferenceWeightCost : EDouble
outcomes 0..*% = attackPreferenceWeightDetection : EDouble
E A SO T AEGArcs = attackPreferenceWeightPayoff : EDouble
=]
=]
O

FutureDiscountFactorPayoff : EDouble

Figure 3.14: ADVISE Editor UML.

context AEGArc inv: source.type <> AttackStep
context AEGArc inv: target.type <> AttackStepOutcome

Figure 3.15: ADVISE Editor OCL.

Table 3.21: ADVISE to AFI UML Inheritance

‘ Child Class ‘ Parent Class ‘
AEGNode AfiModelElement
AttackStep TimedAction
AttackStepOutcome | AfiModelElement
AEGArc Arc
AdversaryArc DefaultStateVariable
Adversary AfiModelElement

44

E GoalDebugger E KnowledgeDebugger E SkillDebugger E AccessDebugger

0..* 0..* 0..* 0..*
goals knowledges skills accesses
. g E AdviseModeIDebuggerOJ 0% E AdversaryArcDebugger

= avgMark : EDouble

adversaryArcs = minMark : EDouble
E AttackStepDebugger . O maxMark : EDouble

0..*
= isEnabled : EBoolean attackSteps AEGArCS
= timeToFire : EDouble
= isNextToFire : EBoolean E AEGArcDebuggef 0. E AdversaryDebugget
= waslastToFire : EBoolean adversaries
= numTimesFired : EInt

Figure 3.16: ADVISE Debug and Visualization Editor UML.

AttackStep element. The AdversaryArc element, as seen from Table 3.21, inherits the
DefaultStateVariable functionality from the AFT editor, and, hence, collectively stores
the current model state of the ADVISE model. Similarly, the AttackStep element inherits
the TimedAction functionality from the AFI editor, and, thus, represents the model state
transitions throughout each simulation batch.

As with the relationship between the previously mentioned editors and their respective
debug and visualization editors, the modeling element classes of the ADVISE debug and
visualization editor also inherit directly from those of the ADVISE editor, excluding the
AdviseModelDebugger class. The UML definition of the ADVISE debug and visualization
editor is shown in Figure 3.16.

Noting from the additional fields of the model elements of the ADVISE debug and visual-
ization editor, the ADVISE debug and visualization editor shares similar functionality with
both the AFI and SAN debug and visualization editor. Specifically, each AdversaryArc
element also contains the additional minMark, maxMark, and avgMark fields, and each
AttackStep element also contains the isEnabled, timeToFire, isNextToFire,
wasLastToFire, and numTimesFired fields. FEach of these fields behaves similarly to those
of the AFI and SAN versions of the editor.

One key difference between the ADVISE debug and visualization editor and the AFI debug

45

and visualization editor is that, in addition to representing the model state, the ADVISE
visualization interface also shows attack paths of the different adversaries when they are
highlighted by the user.

3.3.3 Composed Models

As discussed in Section 1.5.3, and echoing the atomic modeling formalism goals discussed in
the previous section, one of the goals of this project is to implement a visualization interface
for a specific composed modeling formalism. The composed modeling formalism on which

we focus on in this section is the commonly used Rep/Join modeling formalism.

Rep/Join Model

The Rep/Join state-sharing composed modeling formalism, formerly known as the com-
posed SAN-based reward model (SBRM) [31][32][33], was initially created as a convenient,
and more efficient, way to combine SAN submodels into larger system models. However,
the submodel specification shifted from SAN submodels to more generic AFI submodels af-
ter the AFI was implemented in the Mobius modeling framework. That shift in submodel
specification broadened the restriction that only SAN models could be combined, and made
it possible to combine any combination of modeling formalisms that inherit from the AFI.
With that added flexibility, Rep/Join composed models now provide an effective way to
combine any combination of modeling formalisms supported by the Mébius modeling frame-
work, including both atomic and composed modeling formalisms. A UML definition for the
Rep/Join composed modeling formalism editor is shown in Figure 3.17.

Note that in the definition given in Figure 3.17, the modeling element classes of the
Rep/Join editor, unlike those of atomic modeling editors, are not inherited from the AFI
editor element classes. Instead, each Submodel element in the Rep/Join editor references
another model, either atomic or composed. If each Submodel element of a composed model is
considered a child node of the parent composed model, the leaves of the tree are guaranteed to
be atomic models. Since the modeling element classes of all atomic models are inherited from
the AFI modeling element classes, and since the composed model is essentially a composition
of these atomic models, the composed model, therefore, is indirectly inherited from the AFI
model. Consequently, any composed model can also be represented as an AFT model.

The Rep/Join composed modeling formalism is composed of three modeling elements:
Submodel, Rep, and Join. The Submodel element represents another user-defined model

element of the system represented by the overarching composed model. For example, if the

46

1

[sharedstatevariabl

= index : EInt

0..*

sharedStateVariables

sharedStateVariable

H RepJoinElement

= name : EString

@ getSVs(EInt) : EEList

H SharedModel

= index : EInt

0..*
sharedModels

1 1.*
child children 0
| sharedstateVariableGroup
0..*
sharedStateVariableGroups
H Rep H submodel H Join
= numReps : EInt = atomicModel : EInt

0..* 0..* 0..*

reps submodels joins
L@ [RepjoinModel - @———

Figure 3.17: Rep/Join Editor UML.

47

All A2.1 SV3shared

SV1.1 ﬂ S;Q\l ﬂ = ﬂ
w U U

2
it
w

A22 {
SV22 C) A322
A12 U

SV1.2

| —

A31

Figure 3.18: AFI Representation of Rep Example.

user is modeling the reliability of a simple computer architecture, the Submodel elements
may include the atomic models representing a hard drive, a CPU, a system bus, and a NIC.
In that case, the composed model represents the entire computer system, composed of those
atomic Submodel elements. Submodel elements can be specified in any modeling formalism
supported by the Mobius modeling framework, whether it is an atomic modeling formalism
or a composed modeling formalism.

The Rep element allows the model to specify a specific number of instances of a child
RepJoinElement, and the state variables of the child RepJoinElement to share among all
of the instances. For example, consider a Rep element with three instances of a child of the
SAN model presented in Chapter 2, all sharing the state variable SV3. In that newly created
model, state variable SV3 across all three instances of the atomic model effectively becomes
a single state variable SV3shared. An equivalent model created using only the AFI would
look like the model defined in Figure 3.18. From the figure, it should be apparent why it
quickly becomes cumbersome to specify numerous repetitions of submodels through atomic

modeling formalisms alone.

48

TurnOn On

SV1 SV2

Sv2

L
1
l

A2 SVshared
1o
— 9

Al
]
U

TurnOff

A3

Figure 3.19: AFI Representation of Join Example.

The Join element allows the user to specify a group of RepJoinElements and the state
variables to share among them. For example, consider a Join element between the SAN
model presented in Section 1.3 and the SAN model presented in Chapter 2, sharing the
state variable 0ff from the former model and the state variable SV3 from the latter. In the
newly created model, those two state variables effectively become the single state variable
SVshared. The token originating in the state variable SV1 of the latter model gets added to
the loop between the 0ff and On state variables in the former model. Creating an equivalent
model using only the AFI would look like the model shown in Figure 3.19.

Since composed models can be represented as AFI models, the default AFI debug and
visualization editor would still be compatible with them. However, since the state variables
and actions do not need to be explicitly defined by the user, the size of the models can grow
quickly with the Rep element. That rapid growth of the AFT version of the model quickly
translates into a cumbersome and less useful visualization of the model state. Therefore, the
Rep/Join debug and visualization editor maintains the original structure of the Rep/Join
model, composed of the Submodel, Rep, and Join modeling elements. UML and OCL defi-
nitions for the Rep/Join debug and visualization editor are shown in Figures 3.20 and 3.21,
respectively. The inheritance relationships between the Rep/Join debug and visualization
editor and the Rep/Join model editor are shown in Table 3.22.

In the Rep/Join debug and visualization editor, the Submodel visual element gains the
following fields: wasLastToFire, wasLastToFireIndex, wasLastToFireActionName,
isNextToFire, isNextToFireIndex, and isNextToFireActionName. The wasLastToFire
field, which is of the Boolean type, represents whether or not the last action that fired

occurred within this submodel, or within a set of submodels if this submodel is a child

49

E SubmodelDebugger E SharedStateVariableDebugger

waslastToFire : EBoolean mark : EString

waslastToFirelndex : EInt avgMark : EString

minMark : EString

=

=
waslLastToFireActionName : EString |
=

isNextToFire : EBoolean maxMark : EString

isNextToFirelndex : Elnt & getCustomMarkType() : AfiCustomMarkType
isNextToFireActionName : EString

ODoooDoao

0..*

sharedStateVariables

sharedStateVariables

0. E RepDebugger E JoinDebugger
submodels
0 0..*
reps joins

E RepJoinModelDebugger

Figure 3.20: Rep/Join Debug and Visualization Editor UML.

context SharedStateVariableDebugger inv:
CanParseAs<getCustomMarkType () .toType () >(mark)
context SharedStateVariableDebugger inv:
CanParseAs<getCustomMarkType () .toType () >(minMark)
context SharedStateVariableDebugger inv:
CanParseAs<getCustomMarkType () .toType () >(maxMark)
context SharedStateVariableDebugger inv:
CanParseAs<getCustomMarkType () .toDoubleType () >(avgMark)
context RepJoinModelDebugger inv: Set{
submodels ->forAll (isNextToFire)
}->size() <= 1
context SanModelDebugger inv: Set{
submodels->forAll (wasLastToFire)
}->size () <=1

Figure 3.21: Rep/Join Debug and Visualization Editor OCL.

Table 3.22: Rep/Join Debug and Visualization Editor to Rep/Join Model Editor UML
Inheritance

’ Child Class \ Parent Class ‘
SubmodelDebugger Submodel
RepDebugger Rep
JoinDebugger Join

50

of a Rep element. The wasLastToFireIndex field, which is of the type int, represents
the index of the specific submodel in which the last fired action occurred, assuming that
wasLastToFire=true and the submodel is a child of a Rep element. If
wasLastToFire=false, then the wasLastToFire field takes the invalid value of —1. If this
submodel is not a child of a Rep element, then the wasLastToFire field contains either a 0 or
a —1, depending on the wasLastToFire field. The wasLastToFireActionName field, which is
of the String type, stores the name of the last fired action as long as wasLastToFire=true.
If wasLastToFire=false, then the wasLastToFire field assumes the value of an empty
string. The isNextToFire group of fields is similar to the wasLastToFire group of fields,
but it pertains to the next action to fire, rather than the last action that has fired.

Also, both the Rep and Join visual elements gain the mark field, which is a mutable field
that represents the values of the shared state variables of its child modeling elements. For
example, if a given Rep element R1 shares a state variable SV1 within its child instances, this
state variable SV1 would be an available mutable property of R1. The mark field works the
same way for Join elements.

Note that in this implementation of the Rep/Join debug and visualization editor, the
added scalability and comprehensibility are traded off against simulation batch mutability.
By that, we mean that the user gains a more comprehensive view of the running simulation
batch at the expense of needing to edit all of the model state. Specifically, using the Rep/Join
and visualization specific editor, the user is able to modify shared state variables only within
the Rep and Join elements. Unshared state variables within specific Submodel elements, as
well as the future event list in its entirety, are unmutable from this representation. In order
to gain greater editorial power, the user could choose to use the AFI debug and visualization
editor at the expense of scalability and comprehensibility of large models. That limitation
of the current implementation of the editor will be addressed in future work, as discussed in
Chapter 5.

o1

CHAPTER 4

CASE STUDY: ATTACK ON AMI

To examine the utility of the new features added to the Mobius discrete-event simulator by
the MSDV feature, we will examine a case study that pertains to the real-world scenario of
deploying an intrusion detection system (IDS) in an advanced metering infrastructure (AMI)
network. An AMI is an infrastructure that enables electricity companies to communicate
with their respective electricity meters at remote customer locations. The messages sent
through the infrastructure include data such as customer electricity usage information that
has been detected by the meter, updated pricing information from the electric company,
and alerts about outages in the infrastructure. The goal of an AMI, then, is to simplify
and automate the control and visibility of the entire power infrastructure that is under
consideration [34].

Clearly, as seen from its introduction alone, an AMI is a powerful infrastructure that
increases the ease of operating a large power network. Simultaneously, an AMI also lowers the
long-term cost of its maintenance through its increased visibility of the entire infrastructure
from a remote location. Despite the advantages of using AMI, however, the additional
functionality (in contrast to the functionality of a traditional power infrastructure) opens
up the possibility for new failure scenarios of the system. Malicious entities could take
advantage of the newly available failure scenarios of the infrastructure and compromise the
availability and confidentiality of the critical power systems under consideration. To reap
the benefits of the powerful functionality of an AMI while minimizing the failure scenario
surface available to malicious attackers, we consider the deployment of an intrusion detection
system (IDS) in the AMI network.

The first consideration of the deployment of an IDS in an AMI regards the specific IDS
architecture to be employed. The architecture deployment options include the centralized
infrastructure, the embedded infrastructure, the dedicated infrastructure, and the hybrid
infrastructure. The centralized infrastructure consists of a single IDS sensor deployed at the
electric company. The embedded infrastructure consists of embedding an IDS sensor in each
deployed smart meter. A dedicated infrastructure consists of the deployment of multiple

dedicated IDS sensors geographically within the AMI network. The hybrid infrastructure is

52

NoCoverage

SharedAttack OG1 ectedAttack

Coverage

Broken®ensors

<
Bl

Failure WorkingSensors 1G2 DetectAttack 0G3 DetectedAttack

Figure 4.1: SAN: Single Attack on AMI with Dedicated IDS Architecture.

any combination of the three previously mentioned infrastructures. Weighing cost, benefits,
and previous considerations from [35], we chose to examine the deployment of a dedicated
IDS architecture.

Although dedicated IDS sensors can provide a powerful layer of protection for an AMI
network, that type of sensor still inherently possesses some limiting restrictions. One of the
restrictions of a dedicated IDS sensor is that the sensor must be physically located within
the range of an attack in order for that sensor to detect that attack. If the attack occurs
outside of the range of the sensor, then the sensor has a zero percent chance of detecting that
attack. Another restriction, inherent to IDS in general, is that the attack must somehow
be detectable by the IDS. If the attack is novel enough, there is no way for the IDS to
distinguish the attack from typical network traffic. A third, but obvious, limitation is that
the sensor can only detect an attack while it is operational. If it is currently unavailable
(nonoperational), then it is unable to detect any attack.

Although much consideration has gone into designing an IDS for an AMI network [36][37]
[38], we simplify the representation of the IDS to the three restrictions discussed in the
previous paragraph. The resulting SAN representation of an attack on the system is pictured
in Figure 4.1. In that representation, each IDS sensor in the system is represented as a
token residing in either the WorkingSensors or BrokenSensors places. The position of the
token indicates whether the given sensor is currently operational or unavailable. The tokens
alternate between the two states through the Failure and Repair activities, each of which
has an exponential rate. The ratio between the rates of the two activities represents the
availability of each of the sensors.

The SharedAttack place is initialized with a single token that represents an attack on the

53

AMI network. That token causes a race condition between the NoCoverage and Coverage
activities. The outcome of the race condition represents whether the attack occurred outside
or inside the area covered by the IDS network. If the NoCoverage activity fires before the
Coverage activity, then the attack token moves directly to the UndetectedAttack place,
indicating that the attack was not detected by the IDS network. If the Coverage activity
fires before the NoCoverage activity, then the attack token moves to the Attack place to
be evaluated by the IDS network. If the attack type is not recognizable to the IDS net-
work, then the attack token moves directly through the UncoveredAttack instantaneous
activity to the UndetectedAttack place. Otherwise, a race condition occurs between the
MissAttack and DetectAttack activities, each of which have an exponential distribution
with a rate that relies on the number of tokens currently in the WorkingSensors place. If the
MissAttack activity occurs first (signifying that the IDS sensors that cover the attack loca-
tion are currently unavailable), the attack token moves to the UndetectedAttack place. If
the DetectAttack activity occurs first, then the attack token moves to the DetectedAttack
place, indicating that the attack was detected by at least one of the operational IDS sensors.

Throughout this chapter, we examine the utility of the MSDV feature in terms of the
previously presented model. We begin by analyzing the model with the default AFI debug
and visualization editor in Section 4.1. Next, we analyze the model using the SAN-specific
debug and visualization editor in Section 4.2. Finally, we use the original model to create
a more complex Rep/Join composed model of a more specific system, and we analyze the

resulting model with the Rep/Join debug and visualization editor in Section 4.3.

4.1 SAN with AFI Debugger

Although the model under consideration is specified in the SAN modeling formalism (so
the MSDV feature would default to the implemented SAN-specific debug and visualization
editor), we first examine the model with the AFI debug and visualization editor for demon-
stration purposes. The AFI debug and visualization editor, used for any Mobius formalism
that does not yet have a specific MSDV implementation, still provides a powerful interface
with which to effectively analyze simulation batches for most models. The initial represen-
tation of the AFI version of the model is pictured in Figures 4.2 and 4.3. Note that this
representation is composed only of AFI modeling elements: state variables, actions, and
directed arcs.

First, let us analyze the initial model state of this representation. Focusing on any mod-

eling element (by clicking on it) opens that modeling element’s current properties in the

o4

= — |
[d] AMI_Arttack.afi_debugger_diagram &2 = 0= Properties 28 o= a3
{||| 4+ DefaultStateVariableDebugger
Core l Property Value
— Avg Mark 031 1.0
Appesrance Mark =1
Max Mark 1
Min Mark 1
Name I=SharedAttack

Figure 4.2: SAN Model in AFI Debugging and Visualization Editor.

- — | -+l
[d] AMI_Atrack.afi_debugger_diagram 53 = O | &= properties 2 = E| 5%
||| ¢ TimedActionDebugger
|
Core Property Value
e Activation Predi... [=
GPNEAGATCE Is Enabled i true
Is Mext To Fire g false
MNarne = NoCoverage

Num Times Fired
Reactivation Pre...
Time To Fire

Was Last To Fire

10

=
I310.891211
g false

Figure 4.3: SAN Model in AFI Debugging and Visualization Editor.

55

“Properties” view. The properties are the same as those in the debug and visualization
definitions presented throughout section 3.3. Focusing on the SharedAttack state variable,
the editor shows that mark = 1, minMark = 1, maxMark = 1, and avgMark = 1.0. Since
no changes have occurred in the simulation yet, these four values are equal to each other
for every state variable in the model. Next, focusing on any action element reveals the
action element’s current properties, most of which are derived from the future event list:
isEnabled, timeToFire, isNextToFire, wasLastToFire, and numTimesFired. Since the
simulation batch is currently in the initial model state, and no actions have fired yet, the
wasLastToFire property should be false for every action in the model. Also, note that all
of the disabled actions, such as UncoveredAttack, MissAttack, and DetectAttack, show
that timeToFire = —1.0. The invalid simulation time ¢t = —1.0 is simply a placeholder
for a simulation time that does not exist. The timeToFire value does not exist for any of
the disabled actions since none of those action are currently represented by an event in the
future event list.

Next, let us examine the usefulness of modifying the model state to explore rare events of
the simulation. First, consider the scenario in which the dedicated IDS sensors are sparsely
distributed in a relatively large AMI network. In this scenario, the likelihood that a single
attack is covered by at least one IDS sensor is relatively low. In our model, this means that
the NoCoverage action has a much higher rate than the Coverage action. In other words,
the token in the SharedAttack state variable is much more likely to transfer directly to
the UndetectedAttack state variable, causing the token to skip over the rest of the model
entirely. Assuming we do not want to alter the rates of the NoCoverage and Coverage actions
(since they could represent accurate parameters of the actual system), but we still want to
examine the rest of the model simulation functionality for when these rare event do occur,
we could simply modify the model state. To move the token from the SharedAttack state
variable to the Attack state variable, we have two viable options. The first option is to simply
remove the token from the SharedAttack state variable (SharedAttack->Mark()=0), and
add a token to the Attack state variable (Attack->Mark()=1). That modification would
cause the simulation to skip the race condition between the NoCoverage and Coverage
actions, entirely. Another option is to alter the outcome of the race between the NoCoverage
and Coverage actions by modifying the future event list of the running simulation. That
modification is accomplished by editing the timeToFire value of the Coverage action to
a simulation time that is earlier than the timeToFire value of the NoCoverage action.
That modification will ensure that the token will move through the Coverage action to the
Attack state variable, rather than through the NoCoverage action immediately to the final

UndetectedAttack state variable.

56

(BinaryOperator AND
(ActionBreakpoint OnFired 5) ;MissAdttack->index=5
(SimTimeBreakpoint 3.0)

)

Figure 4.4: Case Study Breakpoint Example.

Next, let us look at a use of breakpoints to run the simulation to a model state that
conforms to some explicitly defined conditions. Consider the case in which a detectable
attack, with an execution time of at least 3.0 simulation time units, goes undetected since
all of the sensors covering the given attack location are currently unavailable. We can more
specifically describe the case as the breakpoint in Figure 4.4. Applying the breakpoint to
the running set of simulation batches allows us to pause a simulation batch on a model state
conforming to the exact conditions specified in the breakpoint. From that particular model
state, the analyst is free to explore the details of the model, such as the overall ratio of
available sensors to unavailable sensors.

Another useful additional feature is the ability to step through the simulation, firing one
action at a time. That feature is designed, in a sense, to bring the static model to life by
showing each model state as the simulation batch progresses. In the case of the relatively
small AMI model, a user could easily step through an entire simulation batch. Besides the
oscillation of the set of tokens looping between the BrokenSensors and WorkingSensors
state variables, the only token for the user to follow is the one initially residing in the
SharedAttack state variable. That token has only three possible paths and two possible
destinations, as pictured in Figure 4.5. Following the token allows the analyst to examine
each model state of the simulation batch at each point along its current path. Consider,
now, the case in which the modeler is searching for a set of model parameters, such as the
ratio of the MissAttack rate to the DetectAttack rate, to create an interesting set of system
results. Simulation stepping, together with model state modification, provides the user with

the ability to easily, and quickly, tweak these parameters to find the desired values.

4.2 SAN with SAN Debugger

Extending the inherited functionality of the AFT debug and visualization editor, the SAN
debug and visualization editor also provides a powerful graphical visualization of the model
state. As discussed in the SAN subsection of Section 3.3.2, these visualizations include as-

sociating the intensity of the color of a Place visual element with the number of tokens

o7

SharedAttack

Attack

N
/

Undetected Attack DetectedAttack

Figure 4.5: Possible Paths of the Shared Attack Token.

currently in that Place, and highlighting Activity visual elements with different colors in-
dicating the value of its wasLastToFire and isNextToFire fields. These simple additions to
the debug and visualization editor allow the user to quickly comprehend the most important
aspects of the current model state without having to access the specific properties of each
model element, as is the case with the AFI debug and visualization editor.

Continuing with the AMI case study, the initial model state is pictured in Figure 4.6.
From the visualization alone, it is obvious that the SharedAttack token is currently in the
SharedAttack place, while the other places along the flow—Attack, UndetectedAttack, and
DetectedAttack—are empty. It is also fairly intuitive to determine the ratio between the
number of available and unavailable sensors from the color intensities of the WorkingSensors
and BrokenSensors place elements. Also, it is easy to note that the next activity to fire is
Coverage, since it is highlighted in green. Stepping one activity forward in the simulation
batch results in the model state pictured in Figure 4.7. In addition to all of the information
from the previous state, the user can also visually determine the last activity that fired

(Coverage), since it is highlighted in red.

4.3 Composed Model

To demonstrate the functionality of the Rep/Join debug and visualization editor, the model
of the AMI case study is expanded to the more specific representation presented in Figures
4.8-4.11. In this new representation, each AMI meter is represented as being covered by

0, 1, or 2 IDS sensors, to distinguish between the different levels of security between AMI

58

= - | ¥, v
[@] AMI_Attack.san_debug_diagram &3 = B || &= properties 2 =B =
d||| 4 PlaceDebugger
|

~——— Property Value
Co
rei Avg Mark 1
Appearance Mark =1

Max Mark [|

Min Mark [}

Mame

I=SharedAttack

Figure 4.6: Initial State of SAN Model Using SAN Debug and Visualization Editor.

=
AMI_Attack.san_debug_diagram &3

El Properties £3

(=

= 0

d||| 4 PlaceDebugger

|
~— Property Value
L Avg Mark 10
Appearance Marlk =1
Max Mark g1
Min Mark 50
Name I= Arrack

Figure 4.7: Second State of SAN Model Using SAN Debug and Visualization Editor.

59

Submodel

SansMeter0
Rep Submodel
Rep2 SansSensor0

Submodel
SansSensorCoverage0

Submodel

SansMeter1

Join Rep Join Submodel
JoinSystem Rep1 Join2 SansSensor1

Submodel
SansSensorCoverage1

Submodel
SansMeter2

Rep Join Submodel
Rep3 Join4 SansSensor2

Submodel
SansSensorCoverage?2

Figure 4.8: Comp: Single Attack on AMI with Dedicated IDS Architecture (Overall
Model).

meters that have differing amounts of coverage. For example, consider the case where an
IDS sensor has an availability of 50%. If an AMI meter is covered by 0 sensors, it is covered
0% of the time. If it is covered by 1 sensor, it is covered roughly 50% of the time. If it is
covered by 2 sensors, it is covered roughly 75% of the time. This added distinction from the
previous, and simpler, case study model allows us to also consider IDS sensor deployment
within varying densities of AMI meter locations. The important thing to notice here, for
our discussion, is that the Rep/Join model, in Figure 4.8, is composed of the atomic SAN
models, in Figures 4.9-4.11.

As with all modeling formalisms in the Mébius modeling framework, a simulation batch
of this model can be represented by the AFI debug and visualization editor. However, as
noted in Section 1.5.3, one of the goals of the composed model implementation is to retain
as much scalability as possible. As the AFI version of this model would result in upwards of
60 state variables and 45 actions (much more with Rep instances > 1), a specific Rep/Join

debug and visualization editor must be employed.

60

» | e

ID OG_ID geyp !G_ID SharediD

061 UpdateSensorinfo IG1 SharedWorking

> @

WorkingSersor 1G DetectAttack OG_DetectAttack DetectedAttack

MissAttack OG_MissAttac

>

Atthick IG_AutoMissAttack aytoMissAttack OC_AutoMissAttack UndetectedAttack

AttackThis SharedAttack

Figure 4.9: Comp: Single Attack on AMI with Dedicated IDS Architecture (SansMeter).

IG[ID SharedID
GetiD OG_ID

1 UpdateSgnsorinfo

Change U[mte

Broken Change1 Eail ‘

Repair Change2 Worki

SharedWorking
Figure 4.10: Comp: Single Attack on AMI with Dedicated IDS Architecture (SansSensor).

61

o—|—o

Start |51 SensorCoverage

Figure 4.11: Comp: Single Attack on AMI with Dedicated IDS Architecture
(SansSensorCoverage).

by
q
I
o

— = ST
il] AMI_Attack.rj_debugger_diagram 53 = g El properties &8 + B 5

4|[| 4 SubmodelDebugger

Proj
core per‘t\f_ Value
Atomic Model 12
Appearance Is Mext To Fire htrue

Is Next To Fire A... [SIAL

Is Next To Fire | =N

Name I=SansSensorCoverage0
Was Last To Fire Dkfalse

Was Last To Fire... =

Was Last To Fire... [4-1

Figure 4.12: Initial State of Rep/Join Model Using Rep/Join Debug and Visualization
Editor.

First, let us explore the initial model state using the Rep/Join debug and visualization
editor. In this editor, we have a clear view of the overall model state, as shown in Figure
4.12. Specifically, we can view and modify the shared state variables of the Rep and Join
elements of the model, and we can easily identify the next action to fire. Taking one step
into the simulation, we can also easily determine the last action that has fired, as shown in
Figure 4.13. In addition to stepping through the simulation, we can also specify breakpoints
in this editor using conditions from specific Submodel elements. Using this editor, we can

effectively analyze large Rep/Join composed models.

62

Y rE e ~
AMI_Attack.rj_debugger_diagram £2 = 0|z Properties 59 =B =
4||| ¢ SubmodelDebugger
|
Core Property Value
— Atomic Model 3
Appeance Is Next To Fire e true
Is Next To Fire A... I=]AL
Is Next Te Fire I... 40
Name = SansSensorCoveragel

Was Last To Fire Lgfalse
Was Last To Fire... [=
Was Last To Fire .. [Li-1

Figure 4.13: Second State of Rep/Join Model Using Rep/Join Debug and Visualization
Editor.

63

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we first discussed the benefits of applying debugging and visualization capa-
bilities to running discrete-event simulations, instead of simply applying them to the original
model or to the final results of the discrete-event simulation. Next, we defined the features
that would help us accomplish our debugging and visualization goals most effectively. We
then described how we implemented each of the discussed features and goals in the Mobius
discrete-event simulator. We then examined the utility of our work in light of a real-world
analysis problem: distribution considerations of an IDS in an AMI.

Although this work provides the foundation of a powerful tool for the debugging and
visualization of running discrete-event simulations, some ideas either required unavailable
resources or fell out of the scope of this specific project. Two of those ideas include integration
with the GNU Project debugger (GDB) for complex models, and a more interactive debug
and visualization editor for composed models.

Some models contain complex user-defined code, such as in input gate predicates in SAN
models. Currently, there is no way for end users to debug those code fragments with a
debugging tool. As the current implementation of the MSDV tool presented in this paper
only addresses the model state, individual and direct analysis of such code fragments is still
not possible. One solution would be to integrate the MSDV tool with GDB to allow users
to debug the code through the Mobius modeling tool.

Another possible improvement would address the visibility versus mutability issue present
in the current implementation of the debug and visualization editor for composed models.
In the current implementation, the user cannot access or modify the future event list or the
unshared state variables of specific submodels. One possible solution would be to implement
a drill-down functionality through which the user can inspect specific submodels through
the visualization implementation specific to the modeling formalism of that submodel. That
solution would offer the user more control over the granularity of the visualization and,

hence, more control over the specifics of the simulation batch.

64

APPENDIX A

IMPLEMENTING NEW VISUALIZATION USER
INTERFACES IN MSDV

This appendix contains a concise guide on how to implement new visualization user interfaces
in the Mébius Simulation Debugger and Visualization (MSDV) feature. For the full, up-to-
date guide on this topic, visit the Mobius Wiki [39].

A.1 Setup and Preliminary Assumptions

Throughout this guide, the term developer will refer to the one(s) who is (are) developing the
new debug and visualization interface for MSDV. The term user will refer to the end user
who uses the final features available in the Mobius tool, including the additional features
provided by the aforementioned developer.

This guide assumes the developer has a successfully running version of the Mobius source
code. The steps to accomplish that preliminary task can also be found on the M6bius Wiki
[39].

Also, this guide assumes the developer has an adequate background in the following tech-
nologies: Eclipse RCP development [40], Eclipse Modeling Framework (EMF) development
[41], and Eclipse Graphical Modeling Framework (GMF') development [42]. These technolo-

gies can be explored through the respective documentation of each technology.

A.2 Defining the Debug and Visualization Interface

After completing the preliminary setup of the Mobius project, the first step of the developer
is to define the properties of the new debug and visualization interface. More specifically,
the developer must define which properties are to be accessible to the user. These developer-
defined properties may include simple statistics, such as the minMark and maxMark properties
discussed in Section 3.3.1, or any other statistics that the developer may believe to be helpful
to the user. To define these properties, the developer must create a new “Empty EMF

Project” in the Mobius Eclipse workspace. In the newly created project, the developer must

65

create a new “Ecore Model” and name it with the standard workspace naming conventions®.

In the model, the developer must select the “Load Resource...” option from the main
element dropdown list, and select the model editor *.ecore file of the modeling formalism to
extend. Next, the developer must create a *ModelDebugger object as the root of the newly
created interface model. Then, each displayable element in the new debug and visualization
interface must have an associated model *Debugger object that inherits from its respective
model object in its modeling formalism model editing model. Next, the developer must
create EReferences from the *ModelDebugger root object to each of the other *Debugger
objects in the model, all of which as containment references with the range of [0, *]. From
here, the developer can now add the additional debug and visualization properties to each
of the *Debugger objects.

To examine the previous steps with a concrete example, we describe the steps as they
relate to the creation of the SAN debug and visualization editor, originally presented in
Section 3.3.2. In this example, each of the SAN elements of the SAN model editor (Figure
3.10) are inherited by the elements of the SAN debug and visualization editor (Figure 3.12).
Each of the SAN debug and visualization editor elements now have access to both its parent
properties, such as mark for the Place element, and its additional debug and visualization
properties, such as minMark for the Place element. All of these properties are now accessible
to the debug and visualization editor to be either displayed directly to the user, or to be
used to generate an appropriate visualization of the current state of the model during the
simulation.

After creating the Ecore model of the debug and visualization editor, the developer must
define the default visual presentation of each of the elements in the model using the associated

GMF files. This step should be familiar to developers with adequate GMF experience.

A.3 Integrating the Debug and Visualization Interface into MSDV

Much of the integration of the newly created debug and visualization interface happens
automatically since MSDV already checks for the debug and visualization interface for the
specific modeling formalism. Now that the interface has been created, MSDV no longer
defaults to the AFT implementation of the debug and visualization interface when attempting

to access a model defined with the specific modeling formalism.

LAt the time of this writing, the standard naming convention for the Ecore model file is the same as the
name of the model of its respective modeling formalism editor concatenated with the “_debug” suffix. See
other projects in the workspace to conform to the current naming convention of the workspace.

66

To complete the integration, however, the developer must define each of the debug and
visualization properties of the debug and visualization Ecore model through Java code. For
example, the user must implement the meaning of minMark through its Java function imple-
mentation. This functionality is added to the UpdateInterface function, the function that
is most notably called from the Mobius StreamReader class when the back-end Mobius sim-
ulation processes forward messages to the front-end Java interface. The UpdateInterface
function allows the developer to update the values of the properties in the debug and visu-
alization editor, and, also, to update the visual presentation of the model elements in the

debug and visualization editor.

67

1]

REFERENCES

T. Jazouli, P. Sandborn, and A. Kashani-Pour, “A Direct Method for Determining
Design and Support Parameters to Meet an Availability Requirement,” International
Journal of Performability Engineering, vol. 10, no. 2, pp. 211-225, Mar. 2014.

J. Andersson, “Environmental Impact Assessment using Production Flow Simulation,”
Chalmers University of Technology, Department of Product and Production Develop-
ment, Gothenburg, Sweden, Tech. Rep. 85, 2014.

J. Viana, S. C. Brailsford, V. Harindra, and P. R. Harper, “Combining Discrete-event
Simulation and System Dynamics in a Healthcare Setting: A Composite Model for
Chlamydia Infection,” European Journal of Operational Research, Mar. 2014.

D. Goldsman, R. E. Nance, and J. R. Wilson, “A Brief History of Simulation Revisited,”
in Proceedings of the 2010 Winter Simulation Conference, ed., B. Johansson, S. Jain, J.
Montoya-Torres, J. Hugan, and E. Ycesan, Piscataway, New Jersey, 2010, pp. 567-574.

J. J. Swain, “To Boldly Go...Discrete Event Simulation Software Tools,” OR/MS Today,
vol. 35, no. 5, pp. 50-61, Oct. 20009.

G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H. Sanders,
and P. Webster, “The Mobius Modeling Tool,” in Proceedings of the 9th International
Workshop on Petri Nets and Performance Models, Aachen, Germany, Sep. 11-14, 2001,
pp- 241-250.

A. J. Stillman, “Model Composition within the Mébius Modeling Framework,” M.S.
Thesis, University of Illinois at Urbana-Champaign, Urbana, 1L, 1999.

“Simul8 Website,” 2014. [Online]. Available: http://www.simul8.com/
“Vensim Website,” 2014. [Online]. Available: http://vensim.com

A. L. Williamson, “Discrete Event Simulation in the Mébius Modeling Framework,”
M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1998.

A. Kuratti, “Improved Techniques for Parallel Discrete Event Simulation,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1997.

J. Peccoud, T. Courtney, and W. H. Sanders, “Mobius: An Integrated Discrete-Event
Modeling Environment,” Bioinformatics, vol. 23, no. 24, pp. 3412-3414, 2007.

68

[13]

[14]

[15]

[20]

[21]

[25]

S. Derisavi, “The Mobius State-Level Abstract Functional Interface,” M.S. Thesis, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL, 2003.

J. M. Doyle, “Abstract Model Specification using the Mébius Modeling Tool,” M.S.
Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.

S. Derisavi, P. Kemper, W. H. Sanders, and T. Courtney, “The Mobius State-level
Abstract Functional Interface,” Performance Evaluation, vol. 54, no. 2, pp. 105-128,
Oct. 2003.

D. D. Deavours, “Formal Specification of the Mobius Modeling Framework,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2001.

W. H. Sanders and J. F. Meyer, “Stochastic Activity Networks: Formal Definitions and
Concepts,” in Lectures on Formal Methods and Performance Analysis, First EEF/Euro

Summer School on Trends in Computer Science, Berg en Dal, The Netherlands, July
3-17, 2000, pp. 315-343.

L. M. Malhis, “Development and Application of an Efficient Method for the Solution of
Stochastic Activity Networks with Deterministic Activities,” Ph.D. dissertation, Uni-
versity of Arizona, Tuscon, AZ, 1996.

W. H. Sanders, “Construction and Solution of Performability Models Based on Stochas-
tic Activity Networks,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI,
1988.

E. A. Lemay, “Adversary-Driven State-Based System Security Evaluation,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, Urbana, 1L, 2011.

M. D. Ford, “A Generalized Adversary Decision Algorithm and Analytic Solution Meth-
ods for ADVISE Models,” M.S. Thesis, University of Illinois at Urbana-Champaign,
Urbana, 1L, 2012.

D. C. Eskins, “Modeling Human Decision Points in Complex Systems,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, Urbana, IL, 2012.

W. D. Obal, “Importance Sampling Simulation of SAN-Based Reward Models,” M.S.
Thesis, University of Arizona, Tucson, AZ, 1993.

T. Courtney, S. Gaonkar, M. Griffith, V. Lam, M. McQuinn, E. Rozier, and W. H.
Sanders, “Data Analysis and Visualization within the Moébius Modeling Environment,”

in Proceedings of the 3rd International Conference on the Quantitative Evaluation of
SysTems (QEST), Riverside, California, Sep. 11-14, 2006, pp. 137-138.

R. Lamprecht and P. Kemper, “Mo6bius Trace Analysis with Traviando,” in Proceedings
of the 6th International Conference on the Quantitative Evaluation of SysTems (QEST
2008), St. Malo, France, Sep. 2008, pp. 41-42.

69

[26]

[27]

[28]

[31]

[35]

[36]

P. Kemper and C. Tepper, “Automated trace analysis of discrete event systems models,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 195-208, 2009.

S. Gaonkar, K. Keefe, R. Lamprecht, E. Rozier, P. Kemper, and W. H. Sanders, “Per-
formance and Dependability Modeling with Mobius,” ACM Performance Fvaluation
Review, vol. 36, no. 4, Mar. 2009.

S. K. Klock and P. Kemper, “An Automated Technique to Support the Verification and
Validation of Simulation Models,” in Proceedings of Dependable Systems and Networks
(DSN 2010), Chicago, Illinois, June 2010.

P. Kemper and C. Tepper, “Traviando - A Trace Analyzer to Debug Simulation Models,”
in Proceedings of the 19th Symposium on Simulation Technique (ASIM 2006), Hannover,
Germany, Sep. 12-14, 2006.

P. Kemper and C. Tepper, “Traviando - Debugging Simulation Traces with Message
Sequence Charts,” in Proceedings of the 3rd International Conference on the Quantita-
tive Evaluation of SysTems (QEST 2006), Riverside, California, Sep. 11-14, 2006, pp.
135-136.

W. H. Sanders and L. M. Malhis, “Dependability Evaluation Using Composed SAN-
Based Reward Models,” Journal of Parallel and Distributed Computing, Special Issue
on Petri Net Models of Parallel and Distributed Computers, vol. 15, no. 3, pp. 238-254,
July 1992.

W. H. Sanders and J. F. Meyer, “Reduced Base Model Construction Methods for
Stochastic Activity Networks,” in Proceedings of the Third International Workshop on
Petri Nets and Performance Models, Kyoto, Japan, Dec. 11-13, 1989, pp. 74-84.

W. H. Sanders and R. S. Freire, “Efficient Simulation of Heirarchical Stochastic Activity
Network Models,” Discrete Event Dynamic Systems: Theory and Applications, vol. 3,
no. 2/3, pp. 271-300, July 1993.

D. Grochocki, J. H. Huh, R. Berthier, R. Bobba, W. H. Sanders, A. A. Cardenas,
and J. G. Jetcheva, “AMI Threats, Intrusion Detection Requirements and Deployment
Recommendations,” in Proceedings of the 3rd IEEE International Conference on Smart
Grid Communications (SmartGridComm), Tainan City, Taiwan, Nov. 5-8, 2012, pp.

395-400.

D. R. Grochocki, “Deployment Considerations for Intrusion Detection Systems in
Advanced Metering Infrastructure,” M.S. Thesis, University of Illinois at Urbana-
Champaign, Urbana, IL, 2013.

R. Berthier, W. H. Sanders, and H. Khurana, “Intrusion Detection for Advanced Me-
tering Infrastructures: Requirements and Architectural Directions,” in Proceedings of

the 1st IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm), Gaithersburg, Maryland, Oct. 4-6, 2010, pp. 350-355.

70

[37] R. Berthier and W. H. Sanders, “Specification-based Intrusion Detection for Advanced
Metering Infrastructures,” in Proceedings of the 17th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2011), Pasadena, California, Dec. 12-14,
2011, pp. 184-193.

[38] R. Berthier, J. G. Jetcheva, D. Mashima, J. H. Huh, D. Grochocki, R. Bobba, A. A.
Céardenas, and W. H. Sanders, “Reconciling Security Protection and Monitoring Re-
quirements in Advanced Metering Infrastructures,” in Proceedings of the IEEE Inter-

national Conference on Smart Grid Communications (SmartGridComm), Vancouver,
Canada, Oct. 21-24, 2013.

[39] “Mobius Wiki,” 2014. [Online|. Available: https://www.perform.illinois.edu/wiki

[40] “Eclipse Rich Client Platform,” 2014. [Online]. Available: http://wiki.eclipse.org/
Rich_Client_Platform

[41] “Eclipse Modeling Framework Project,” 2014. [Online]. Available: https://
www.eclipse.org/modeling /emf/

[42] “Graphical Modeling Framework,” 2014. [Online]. Available: http://wiki.eclipse.org/
Graphical_ Modeling_Framework

71

