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Abstract

In this dissertation we study how the energy levels of the Laplacian depend upon the

shape of the domain, and identify the ground state energy level of the magnetic Laplacian

on the disk. Although we consider these different questions we can find some kind of unity

in the sense that we are looking at the eigenvalues (energy levels) of the operator. In the

first case, with no magnetic field, we can say a lot about how the eigenvalues depend on the

shape of the triangular domain. On the other hand, in the second case, with magnetic field,

it is much harder to prove properties of the energy levels. Even identifying what the ground

state is for the disk is a challenge.

In the first part of the thesis, we prove that among all triangles of given diameter, the

equilateral triangle minimizes the sum of the first n eigenvalues of the Neumann Laplacian,

when n ≥ 3. The result fails for n = 2, because the second eigenvalue is known to be minimal

for the degenerate acute isosceles triangle (rather than for the equilateral), while the first

eigenvalue (n=1) is 0 for every triangle. We show the third eigenvalue is minimal for the

equilateral triangle.

The second part of the thesis is concerned with the properties of Dirichlet eigenvalues for

the magnetic Laplacian on the unit disk. We find an orthonormal basis of eigenfunctions for

the magnetic Laplacian on a disk with Dirichlet boundary condition and explicitly identify

the ground state of the magnetic Laplacian. Then we have the symmetry of eigenfunctions

and eigenvalues with respect to angular momentum and magnetic field strength. Lastly we

prove that positive angular momentum gives lower energy and establish the properties of

magnetic eigenvalues; As angular momentum increases the energy level goes up, the ground

state is radial and positive, and we find asymptotic behavior of the magnetic eigenvalues as

the field strength tends to infinity.
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CHAPTER 1 : Introduction

Eigenvalues of the Laplacian represent interesting physical quantities. For example, eigen-

values of the Laplacian represent frequencies of wave motion, rates of decay in diffusion, and

energy levels in quantum mechanics. These eigenvalues are closely connected with the geom-

etry of the domain on which the operator is acting. For most domains, even simple polygons,

there is no way to compute these eigenvalues precisely. And so, it is quite interesting to give

intuition about how the eigenvalues depend on the shape of domain. We can get intuition

by solving some extremal problems for these eigenvalues.

In the first part of my thesis, in Chapter 2, we will look at the special case of triangular

domains and we will give sharp lower bounds on Neumann eigenvalues. Neumann eigenvalues

correspond physically to insulated boundary conditions of heat flow. That part of the thesis

is joint work with R. S. Laugesen and Z. C. Pan [28]. Dirichlet eigenvalue sums for triangles

were studied by Laugesen and Siudeja [27]. We adapt their Method of the Unknown Trial

Function to the Neumann case. The Neumann case throws up unexpected new phenomena.

The numerical work I did leads to the discovery that the eigenvalues sums are not always

minimal for the equilateral triangle, in the Neumann case. Following are my contributions

to the project. I performed the numerical work for plotting the first five nonzero Neumann

eigenvalues normalized by diameter (µjD
2 for j = 2, . . . , 6) on a family of isosceles triangles.

These eigenvalues were computed by the PDE Toolbox in Matlab and plotted as a function

of the aperture angle α between the two equal sides (see Figure 2.1). Moreover, Pan and

I developed explicit bounds of Weyl type on the eigenvalue counting function (see Lemma

2.4.1 and Lemma 2.4.3), and then applied the bounds to prove the “comparison of eigenvalue

sums” lemma (see Lemma 2.2.3).

Let me explain why we study such domains and boundary conditions. First, why do we

work on triangles? They are a test case for the general domain. The triangular domains are

simple enough that we can transform them geometrically while still controlling (or estimat-

ing) the eigenvalues. This gives us much better information than we have known for general

domains. It also gives us a intuition for general domain. If the minimizer among triangles is

the equilateral triangle, which is the most symmetric triangle, then it suggests that among
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convex domains of given diameter, the disk maybe minimizes the sum of eigenvalues of the

Neumann Laplacian.

Second, why do we consider Neumann boundary conditions? The Dirichlet case has been

done already, and provides some motivation. The Neumann case is more difficult, and the

result is more interesting. The result of this chapter is that almost all (but not all) Neumann

eigenvalue sums on triangles are minimal for equilaterals. The proof is fully rigorous except

when n = 4, 5, 7, 8, 9. For those values of n, the proof relies on numerical estimation of the

eigenvalues µ2, ..., µ9 for one specific isosceles triangle. It is interesting that even though our

proof is not fully rigorous for the small eigenvalues, after 10-th eigenvalues we will get this

lovely result.

We just discussed the project of a lower bound. Chapter 3 is motivated by a classical

upper bound. In 1950, G. Pólya and G. Szegö proved an upper bound on the first eigenvalue:

If f(z) is a conformal map of the unit disk D onto a bounded, simply connected plane domain

Ω, normalized by requiring, |f ′(0)| = 1, then λ1(Ω) ≤ λ1(D). Note that the extremal domain

is the one that is the most symmetric: the disk. (We consider the equilateral triangle in

Chapter 2 and disk in Chapter 3 because of the symmetry idea.) As a first step towards

finding a generalization of Pólya and Szegö’s result for the Laplacian with the magnetic field,

we need to understand the energy levels and mode shapes of the disk. Since no detailed

analysis seem to be available in the literature, that is the contribution of the Chapter 3. We

find the orthonormal basis (ONB) of eigenfunctions for the magnetic Laplacian on disk with

Dirichlet boundary condition. We also develop the symmetry properties of eigenfunctions

and eigenvalues with respect to angular momentum and magnetic field strength. The most

significant contribution is to explicitly identify the ground state. We show that the ground

state is radially symmetric, which is not the case for the Neumann (natural) boundary

condition in general. The Neumann Laplacian ground state is constant and so is radially

symmetric, but for large magnetic fields the Neumann ground state has angular dependence.

In Chapter 4 we develop formulas for parametric derivatives of the Kummer function.

The formula implies a result needed by Laugesen and Siudeja [29] in their work on magnetic

eigenvalues for perturbations of the disk..

Finally, in the last part of my thesis in Chapter 5 we will introduce open problems.
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CHAPTER 2 : Neumann Eigenvalue
Sums on Triangles are (mostly)
Minimal for Equilaterals

2.1 Results

Eigenfunctions of the Neumann Laplacian satisfy −∆u = µu with natural boundary condi-

tion ∂u
∂n

= 0, and the eigenvalues µj satisfy

0 = µ1 < µ2 ≤ µ3 ≤ · · · → ∞.

We prove a geometrically sharp lower bound on sums of Neumann eigenvalues on triangular

domains, under normalization of the diameter D.

Theorem 2.1.1. Among all triangular domains of given diameter, the equilateral triangle

minimizes the sum of the first n eigenvalues of the Neumann Laplacian, when n ≥ 3.

That is, if T is a triangular domain, E is equilateral, and n ≥ 3, then

(µ2 + · · ·+ µn)D2
∣∣
T
≥ (µ2 + · · ·+ µn)D2

∣∣
E

with equality if and only if T is equilateral.

Multiplying the eigenvalues by D2 makes the quantity scale invariant. Note the eigenval-

ues of the equilateral triangle are known explicitly (see Section 2.6), so that the lower bound

in the theorem is computable.

We prove the theorem in Sections 2.2–2.4. The proof is rigorous except when n =

4, 5, 7, 8, 9. For those values of n, the proof relies on numerical estimation of the eigenvalues

µ2, . . . , µ9 for one specific isosceles triangle. See Proposition 2.2.4 and Table 2.1, below.

Theorem 2.1.1 is geometrically sharp, meaning there exists an extremal domain for each

n. It is the first sharp lower bound on Neumann eigenvalue sums. (Upper bounds are due to

Laugesen and Siudeja [26], under a moment of inertia normalization.) The theorem differs
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from the Weyl-type bounds of Kröger [23], which are asymptotically sharp as n → ∞, for

each domain.

Two reasons for studying such sums are that the sum represents the energy needed to

fill the lowest n quantum states under the Pauli exclusion principle, and that the eigenvalue

sum provides a “summability” approach to studying the high eigenvalues (µn for large n),

which are difficult to study directly.

We concentrate on triangular domains because they are the simplest domains whose

eigenvalues cannot be computed explicitly. The “hot spots” conjecture of Jeffrey Rauch [21]

about the maximum of the Neumann eigenfunction u2 remains unsolved on acute triangles,

in spite of Bañuelos and Burdzy’s proof for obtuse triangles by coupled Brownian motion [7],

[38]. The triangular spectral gap conjecture of Antunes and Freitas [4], which claims that the

difference of the first two Dirichlet eigenvalues is minimal for the equilateral, also remains

unsolved in spite of considerable effort [30]. (The gap minimizer among convex domains is

a degenerate rectangle [3], but that result sheds no light on the conjecture for triangles.)

Clearly much remains to be discovered about triangles!

Theorem 2.1.1 fails for the second eigenvalue, n = 2, because µ2D
2 is minimized not

by the equilateral but by the degenerate acute isosceles triangle, as Laugesen and Siudeja

showed when finding the optimal Poincaré inequality on triangles [25].

For the third eigenvalue we do prove minimality of the equilateral, in Section 2.5:

Corollary 2.1.2. Among all triangles of given diameter, µ3 is minimal for the equilateral

triangle. That is, µ3D
2 ≥ 16π2/9 for all triangular domains, with equality if and only if the

triangle is equilateral.

The fourth eigenvalue is not minimal for the equilateral, as shown by the numerical work

in Figure 2.1. The minimum appears to occur at the intersection of two eigenvalue branches.

Now let us consider other shapes. Among rectangles of a given diameter, the square does

not always minimize the sum of the first n Neumann eigenvalues. For example, by plotting

the first 12 eigenvalues as a function of side-ratio, one finds that the square fails to minimize

(µ2 + · · ·+ µn)D2 when n = 5, 6, 7, 10, 11, 12.

Ellipses behave more agreeably, for each individual eigenvalue, as we prove in Section 2.5:

Proposition 2.1.3. Among ellipses of given diameter, the disk minimizes each eigenvalue

of the Neumann Laplacian. That is, for each j ≥ 2, the quantity µjD
2 is strictly minimal

when the ellipse is a disk .

What about general convex domains? Our result for triangles in Theorem 2.1.1, together

with Proposition 2.1.3 for ellipses, suggests that:
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Figure 2.1: Numerical plot of the first five nonzero Neumann eigenvalues normalized by
diameter (µjD

2 for j = 2, . . . , 6) of an isosceles triangle, computed by the PDE Toolbox in
Matlab and plotted as a function of the aperture angle α between the two equal sides. The
minimum value of µ4D

2 is approximately 51.66, occurring at α ' 0.5433 (to 4 significant
figures). The value at the equilateral triangle (α = π/3) is larger: µ4D

2 = 3 ·16π2/9 ' 52.64.

Conjecture 2.1.4. Among convex domains of given diameter, the disk minimizes the sum

of the first n ≥ 3 eigenvalues of the Neumann Laplacian. That is, (µ2 + · · · + µn)D2 is

minimal when the domain is a disk, for each n ≥ 3.

The conjecture fails for n = 2, because Payne and Weinberger proved µ2D
2 is minimal

for the degenerate rectangle (and not the disk) among all convex domains [34]. In other

words, they proved that the optimal Poincaré inequality for convex domains is saturated by

the degenerate rectangle.

2.1.1 Dirichlet and Robin boundary conditions

Minimality of Dirichlet eigenvalue sums for the equilateral, among all triangles of given

diameter, was proved recently by Laugesen and Siudeja [27], for each n ≥ 1. We will

adapt their Method of the Unknown Trial Function to the Neumann case. The adaptation

breaks down for triangles that are “close to equilateral” when n = 4, 5, 7, 8, 9, as we see

in the next section. To overcome that obstacle we introduce a new triangle with which to

compare, in Proposition 2.2.4. The eigenvalues of this triangle are not known explicitly,

which necessitates a numerical evaluation for those exceptional n-values.

Similar results should presumably hold under Robin boundary conditions, although no

such results have been proved. The Method of the Unknown Trial Function seems not to work

5



there, because the boundary integral in the Robin Rayleigh quotient transforms differently

from the integrals over the domain, under linear maps.

For more information on isoperimetric-type eigenvalue inequalities in mathematical physics

(the general topic of this part of the thesis), see the survey by Ashbaugh [5], and the mono-

graphs of Bandle [6], Henrot [18], Kawohl [21], Kesavan [22] and Pólya–Szegő [36].

We thank Bart lomiej Siudeja for suggesting that we investigate Neumann eigenvalues.

2.2 Method of the Unknown Trial Function: the

proof of Theorem 2.1.1

Definition 2.2.1. The aperture of an isosceles triangle is the angle between its two equal

sides. Call a triangle subequilateral if it is isosceles with aperture less than π/3, and su-

perequilateral if it is isosceles with aperture greater than π/3.

The theorem will be proved in three steps.

Step 1 — Reduction to subequilateral triangles. Suppose the given triangle is not equilat-

eral. We may suppose it is subequilateral, as follows. Stretch the triangle in the direction

perpendicular to its longest side, until one of the other two sides has the same length as the

longest one. This subequilateral triangle has the same diameter as the original triangle, and

has strictly smaller eigenvalue sums by Lemma 2.5.1 later in the paper. (When applying the

equality statement of that lemma, notice that a second-or-higher Neumann eigenfunction

of a triangle cannot depend only on x, because the boundary condition would force such a

function to be constant.)

Thus it suffices to prove the theorem for subequilateral triangles.

Step 2 — Method of the Unknown Trial Function. Write

Mn = µ2 + · · ·+ µn

for the sum of the first n eigenvalues (where we may omit µ1 from the sum because it equals

0). Define

T (a, b) = triangle having vertices at (−1, 0), (1, 0) and (a, b),

where a ∈ R and b > 0. The triangle T (a, b) is isosceles if a = 0, and subequilateral if

in addition b >
√

3. We will prove the theorem for the subequilateral triangle T (0, b) with

b >
√

3.

6



(0, b)

E

(−1, 0)

F−

(1, 0)

F+

Figure 2.2: Linear maps to the subequilateral triangle T (0, b), from the equilateral triangle
E and right triangles F+, F−.

Further define three special triangles

E = T (0,
√

3) = equilateral triangle,

F+ = T (+1, 2
√

3) = 30-60-90 right triangle,

F− = T (−1, 2
√

3) = 30-60-90 right triangle.

The spectra of these triangles are explicitly computable, as we shall need in Step 3 below.

Notice F+ and F− have the same spectra, by symmetry.

Our method involves transplanting the “unknown’ eigenfunctions of the triangle T (0, b)

to obtain trial functions for the (known) eigenvalues of the special triangles E,F+, F−; see

Figure 2.2. By this technique we will prove:

Proposition 2.2.2. For each n ≥ 2:

(a) if b >
√

3 then

MnD
2
∣∣
T (0,b)

> min{MnD
2
∣∣
E
,

6

11
MnD

2
∣∣
F±
};

(b) if b ≥ 2.14, then a better lower bound holds, namely

MnD
2
∣∣
T (0,b)

> min{MnD
2
∣∣
E
,
5

8
MnD

2
∣∣
F±
}.

The proof is in Section 2.3.

Step 3 — Compare eigenvalues of right and equilateral triangles.

Lemma 2.2.3.
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(a) 6
11
MnD

2
∣∣
F±
≥MnD

2
∣∣
E

for n = 3, 6 and each n ≥ 10.

(b) 5
8
MnD

2
∣∣
F±
≥MnD

2
∣∣
E

for n = 4, 5, 7, 8, 9.

The lemma is proved in Section 2.4. The lemma is certainly plausible, because the Weyl

asymptotic (µj ∼ 4πj/A as j → ∞) implies that MnD
2 is about twice as large for the

half-equilateral F± as for the full equilateral E, when n is large.

Proposition 2.2.2 combined with Lemma 2.2.3 proves most of Theorem 2.1.1, by show-

ing MnD
2
∣∣
T (0,b)

> MnD
2
∣∣
E

for most of the needed n-values and subequilateral triangles.

The remaining cases, where n = 4, 5, 7, 8, 9 and
√

3 < b < 2.14, are treated in the next

proposition.

Proposition 2.2.4. The statement

MnD
2
∣∣
T (0,b)

> MnD
2
∣∣
E
, b ∈ (

√
3, 2.14),

is true when

n = 4 if M4D
2
∣∣
G
> 90.73,

n = 5 if M5D
2
∣∣
G
> 163.31,

n = 7 if M7D
2
∣∣
G
> 362.90,

n = 8 if M8D
2
∣∣
G
> 489.91,

n = 9 if M9D
2
∣∣
G
> 653.22.

Here G denotes the isosceles triangle T (0, 2.14).

The proposition is proved in Section 2.3.

To verify the hypothesis of the proposition for each value of n, see Table 2.1.

n MnD
2
∣∣
G

4 94.59
5 176.73
6 259.48
7 379.58
8 530.54
9 712.65

Table 2.1: Numerical values of the diameter-normalized eigenvalue sum MnD
2 = (µ2 + · · ·+

µn)D2 for the isosceles triangle G = T (0, 2.14), computed using the PDE Toolbox in Matlab.
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2.3 Linear transformation of unknown eigenfunctions:

proof of Propositions 2.2.2 and 2.2.4

Write µj(a, b) for the Neumann eigenvalues of the triangle T (a, b), and let the uj be corre-

sponding orthonormal eigenfunctions. Write

Mn(a, b) = µ2(a, b) + · · ·+ µn(a, b)

for the eigenvalue sum.

We need a lemma estimating the change in an eigenvalue sum when the triangle undergoes

linear transformation.

Lemma 2.3.1 (Linear transformation and eigenvalue sums). Let a, c ∈ R and b, d > 0. Take

C > 0 and n ≥ 2. Then the inequality

Mn(a, b) > CMn(c, d)

holds if
1

d2

[(
(a− c)2 + d2

)
(1− γn) + 2b(a− c)δn + b2γn

]
<

1

C
,

where

γn =

∑n
j=1

∫
T (a,b)

u2
j,y dA∑n

j=1

∫
T (a,b)

|∇uj|2 dA
and δn =

∑n
j=1

∫
T (a,b)

uj,xuj,y dA∑n
j=1

∫
T (a,b)

|∇uj|2 dA
.

The lemma is due to Laugesen and Siudeja [27, Lemma 4.1] for Dirichlet boundary

conditions and the Neumann proof is exactly the same, except that we omit the case n = 1,

in order not to divide by zero in the denominators of γ1 and δ1 above.

2.3.1 Proof of Proposition 2.2.2 (a)

Part (a) of Proposition 2.2.2 was proved for Dirichlet boundary conditions by Laugesen and

Siudeja [27, Proposition 3.1]. The Neumann argument is identical, but we include it here

for the sake of completeness.

The equilateral triangle E = T (0,
√

3) has diameter 2, and the subequilateral triangle

T (0, b) has diameter
√

1 + b2. Observe that the desired inequality

MnD
2
∣∣
T (0,b)

= Mn(0, b)(1 + b2) > Mn(0,
√

3)22 = MnD
2
∣∣
E

9



holds by Lemma 2.3.1 with a = c = 0, d =
√

3 and C = 4/(1 + b2), if

(1− γn) +
1

3
b2γn <

1 + b2

4
.

This last inequality is equivalent to γn < 3/4. Thus if γn < 3/4 then the Proposition is

proved.

Suppose γn ≥ 3/4, and remember γn ≤ 1 by definition. Recall the right triangles

F± = T (±1, 2
√

3), which have diameter 4. Observe that

MnD
2
∣∣
T (0,b)

= Mn(0, b)(1 + b2) >
6

11
Mn(±1, 2

√
3)42 =

6

11
MnD

2
∣∣
F±

(2.3.1)

holds by Lemma 2.3.1 with a = 0, c = ±1, d = 2
√

3 and C = 6
11

42

1+b2
, if

1

12

[
13(1− γn)∓ 2bδn + b2γn

]
<

11

6

1 + b2

42
.

The eigenvalues of F+ and F− are the same, and so we need only establish this last inequality

for “+” or for “−”. It holds for at least one of these sign choices if

1

12

[
13(1− γn) + b2γn

]
<

11

6

1 + b2

42
,

which is equivalent to

b2 +
50

11− 8γn
> 13.

This inequality is true because b >
√

3 and γn ≥ 3/4. (Equality holds when b =
√

3 and

γn = 3/4.) Hence (2.3.1) holds, which completes the proof.

2.3.2 Proof of Proposition 2.2.2 (b)

Now we prove part (b) of Proposition 2.2.2, by adapting Laugesen and Siudeja’s proof of the

Dirichlet case. Assume b >
√

3. The equilateral triangle E = T (0,
√

3) has diameter 2, and

the subequilateral triangle T (0, b) has diameter
√

1 + b2. The inequality

MnD
2
∣∣
T (0,b)

= Mn(0, b)(1 + b2) > Mn(0,
√

3)22 = MnD
2
∣∣
E

will hold by Lemma 2.3.1 with a = c = 0, d =
√

3 and C = 22/(1 + b2) if

(1− γn) +
1

3
b2γn <

1 + b2

22
.

10



This last inequality is equivalent to γn < 3/4. Thus if γn < 3/4 then part (b) of the

Proposition is proved. Assume γn ≥ 3/4 from now on.

The triangle F± = T (±1, 2
√

3) has diameter 4. The inequality

MnD
2
∣∣
T (0,b)

= Mn(0, b)(1 + b2) >
5

8
Mn(±1, 2

√
3)42 =

5

8
MnD

2
∣∣
F±

will hold by Lemma 2.3.1 with a = 0, c = ±1, d = 2
√

3 and C = 5
8

42

1+b2
if

1

12
[13(1− γn)∓ 2bδn + b2γn] <

8

5

1 + b2

42
.

We only need this inequality to hold for one of the choice of “+” or “−”, because F+ and

F− have the same eigenvalues. Thus it suffices to show

1

12
[13(1− γn) + b2γn] <

8

5

1 + b2

42
,

which is equivalent to

b2 > 13− 19

6− 5γn
.

The maximum of the right hand side over all possible values of γn ∈ [3
4
, 1] is approximately

(2.134)2. Thus part (b) certainly holds under the assumption b ≥ 2.14.

2.3.3 Proof of Proposition 2.2.4

In the previous proof we compared the eigenvalue sums of the subequilateral triangle T (0, b)

with those of the right triangles F±, by means of the Method of the Unknown Trial Function.

Those comparisons proved insufficient when b < 2.14 = b∗. So in this current proof we

compare with the “endpoint” triangle T (0, b∗). Unfortunately, the eigenvalues of this triangle

are not explicitly computable, which explains why certain explicit estimates appear in the

hypotheses of this Proposition.

We want to prove MnD
2
∣∣
T (0,b)

> MnD
2
∣∣
E

, for
√

3 < b < b∗ and n = 4, 5, 7, 8, 9. The

proof of Proposition 2.2.2 above proves this inequality when γn <
3
4
. So we assume γn ≥ 3

4
.

Let K = 0.967. We will first prove

MnD
2
∣∣
T (0,b)

= Mn(0, b)(b2 + 1) > KMn(0, b∗)(b
2
∗ + 1) = KMnD

2
∣∣
T (0,b∗)

. (2.3.2)

11



This inequality holds by Lemma 2.3.1 with a = c = 0, d = b∗ and C = K b2∗+1
b2+1

if

1− γn +
b2

b2
∗
γn <

1

K

b2 + 1

b2
∗ + 1

. (2.3.3)

We must show that this inequality holds for all γn ∈ [3
4
, 1] and all b ∈ (

√
3, b∗). Fixing

b temporarily, we see that the left side of inequality (2.3.3) is maximized when γn = 3
4
.

Substituting γn = 3
4

and then rearranging, we see it suffices to prove

K <
4b2
∗

3(b2
∗ + 1)

b2 + 1

b2 + b2
∗/3

for all b ∈ (
√

3, b∗). The right side of this new inequality is an increasing function of b, since

b2
∗/3 > 1. Thus it suffices to check the inequality at b =

√
3; one finds the right side equals

approximately 0.9671, which exceeds our chosen value of K = 0.967 on the left side. Hence

(2.3.2) is proved.

To complete the proof that MnD
2
∣∣
T (0,b)

> MnD
2
∣∣
E

, from (2.3.2), it would suffice to know

MnD
2
∣∣
T (0,b∗)

>
1

K
MnD

2
∣∣
E
.

The right hand side can be evaluated explicitly (using the eigenvalues of the equilateral

triangle E as calculated in the Section 2.6). For n = 4, 5, 7, 8, 9 it equals 90.73, 163.31,

362.90, 489.91, 653.22, respectively. (We have rounded each number up in the second decimal

place.) These calculations justify the appearance of the five numbers in the hypotheses of

the proposition.

2.4 Comparison of eigenvalue sums: proof of

Lemma 2.2.3

Consider the eigenvalue counting function N(µ) = #{j ≥ 0 : µj(E1) < µ}, where E1 is

an equilateral triangle with sidelength 1. We develop explicit bounds of Weyl type on this

counting function, and then apply the bounds to prove Lemma 2.2.3.

Lemma 2.4.1 (Neumann counting function N(µ)). The counting function satisfies

√
3

16π
µ+

(6−
√

3)

4π

√
µ+

3

2
> N(µ) >

√
3

16π
µ+

√
3

4π

√
µ− 3

2
, for all µ > 48π2.

12



Hence for all j ≥ 26,

16π√
3

(j − 3

2
)− 8(2

√
3− 1)

√
4π√

3
(j − 3

2
) + 13− 4

√
3 + 8(13− 4

√
3)

≤ µj(E1) (2.4.1)

≤ 16π√
3

(j +
1

2
)− 8

√
4π√

3
(j +

1

2
) + 1 + 8.

Proof of Lemma 2.4.1. The spectrum of the equilateral triangle E1 under the Neumann

Laplacian is well known (see Section 2.6):

σm,n =
16π2

9
(m2 +mn+ n2), m, n ≥ 0.

Hence the Neumann counting function equals

N(µ) = #
{

(m,n) : m,n ≥ 0, (m2 +mn+ n2) < R2
}
,

where R = 3
√
µ/4π. The difference between this formula and the counting function ND(·)

for the Dirichlet eigenvalues is that in the Dirichlet case, m and n must be positive. Therefore

by counting pairs (m,n) that have either m = 0 or n = 0, we can relate the two counting

functions as follows:

ND(µ) + 2R + 1 > N(µ) > ND(µ) + 2(R− 1) + 1, (2.4.2)

where the “+1” counts the pair (0, 0) (see Figures 2.3 and 2.4).

We will use some known estimates on the Dirichlet counting function ND.

Lemma 2.4.2 (Dirichlet counting function ND [27, Lemma 5.1]). The counting function

satisfies

√
3

16π
µ−
√

3

4π

√
µ+

1

2
> ND(µ) >

√
3

16π
µ− (6−

√
3)

4π

√
µ− 1

2
, ∀µ > 48π2.
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Hence for all j ≥ 17,

16π√
3

(
j − 1

2

)
+ 8

√
4π√

3

(
j − 1

2

)
+ 1 + 8

≤ µj(E1)

<
16π√

3

(
j +

1

2

)
+

4√
3

(6−
√

3)

√
16π√

3

(
j +

1

2

)
+ 4(13− 4

√
3) + 8(13− 4

√
3)

< (29.03)j + 9.9
√

29.03j + 39 + 64.

0 R

R

x2 + xy + y2 = R2

Figure 2.3: The upper bound (2.4.2) on the Neumann counting function N(µ) equals the
number of lattice points inside the ellipse, ND(µ), plus the number of lattice points along
the axes, which is at most 2R + 1.

0 R

R

R− 1

R− 1

x2 + xy + y2 = R2

Figure 2.4: The lower bound (2.4.2) on the Neumann counting function N(µ) equals the
number of lattice points inside the ellipse, ND(µ), plus the number of lattice points along
the axes, which is at least 2(R− 1) + 1.
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Now let us prove the estimates on the Neumann counting function in Lemma 2.4.1. By

applying the upper estimate in Lemma 2.4.1 with µ = 48π2 + 1, we find N(48π2 + 1) < 26.

We conclude that µj ≥ 48π2 + 1 whenever j ≥ 26.

Now we deduce the eigenvalue bounds in (2.4.1). We will use a formula for inverting the

counting function bounds; see Section 2.7. We know that the upper bound on the counting

function is

N(µ) <

√
3

16π
µ+

(6−
√

3)

4π

√
µ+

3

2
.

By the inversion formula in Section 2.7, we get

µj ≥
16π√

3
(j − 3

2
)− 8(2

√
3− 1)

√
4π√

3
(j − 3

2
) + 13− 4

√
3 + 8(13− 4

√
3), for all j ≥ 26.

Similarly, the lower bound on the counting function is

N(µ) >

√
3

16π
µ+

√
3

4π

√
µ− 3

2
.

By the inversion formula in Section 2.7, we get

µj ≤
16π√

3
(j +

1

2
)− 8

√
4π√

3
(j +

1

2
) + 1 + 8, for all j ≥ 26.

Let µsj(E1) be the jth symmetric eigenvalue of the equilateral triangle E1 (see Section

2.6), and write N s(µ) for the symmetric counting function.

Lemma 2.4.3. The symmetric counting function satisfies

N s(µ) <

√
3

32π
µ+

3

4π

√
µ+

5

4
, for all µ > 48π2.

Hence for all j ≥ 15,

µsj(E1) ≥ 32π√
3

(j − 5

4
)− 32

√
2
√

3π(j − 5

4
) + 9 + 96.

Proof of Lemma 2.4.3. The symmetric eigenvalues of the equilateral triangle E1 are

σm,n =
16π2

9
(m2 +mn+ n2), m ≥ n ≥ 0,

15



so that

N s(µ) = #
{

(m,n) : m ≥ n ≥ 0, (m2 +mn+ n2) < R2
}
,

where R = 3
√
µ/4π. Hence by symmetry,

2N s(µ) ≤ N(µ) +R/
√

3 + 1, (2.4.3)

where the term “+R/
√

3 + 1” estimates the number of pairs (m,n) with m = n. Now the

upper bound on N s(µ) in the lemma follows from the upper bound on N(µ) in Lemma 2.4.1.

0 R

(
R√
3
, R√

3

)

x2 + xy + y2 = R2

Figure 2.5: The upper bound in (2.4.3) on twice the Neumann symmetric counting function,
2N s(µ), equals the number of lattice points inside the ellipse, N(µ), plus the number of pairs
(m,n) with m = n, which is at most R/

√
3 + 1.

Next, by applying the upper estimate in this lemma with µ = 48π2+1, we find N s(48π2+

1) < 15, so that µsj ≥ 48π2 + 1 whenever j ≥ 15.

Start from the upper bound on N s(µ).

N s(µ) <

√
3

32π
µ+

3

4π

√
µ+

5

4
, for all µ > 48π2.

By the inverting formula in Section 2.7, we get

µsj ≥
32π√

3
(j − 5

4
)− 32

√
2
√

3(j − 5

4
) + 9 + 96, for all j ≥ 15.

Thus the counting function estimate in the Lemma 2.4.3 can be inverted to yield the stated

bounds on µsj , for each j ≥ 15.
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2.4.1 Proof of Lemma 2.2.3

The right triangle F+ = T (1, 2
√

3) is half of an equilateral triangle. Thus the Neumann

eigenvalues of F+ are the symmetric eigenvalues of the equilateral triangle (the eigenvalues

whose eigenfunctions are symmetric across the bisecting line). Therefore, after rescaling F±

to be half of E1, we see it suffices to show

M s
j (E1)

Mj(E1)
≥

11/6, for j = 3, 6 and j ≥ 10,

8/5, for j = 4, 5, 7, 8, 9,

where E1 is an equilateral triangle with diameter 1. For j ≤ 192 this desired inequality

follows by direct calculation of the eigenvalue sums (Lemma 2.6.1 in Section 2.6).

Next, from the upper bound in Lemma 2.4.1 and the lower bound in Lemma 2.4.3, and

an elementary estimate, we find

µsj
µj

>

32π√
3

(j − 5
4
)− 32

√
2
√

3π(j − 5
4
) + 9 + 96

16π√
3

(j + 1
2
)− 8

√
4π√

3
(j + 1

2
) + 1 + 8

>
11

6

for all j ≥ 193. Notice that the ratio of leading eigenvalues is 32/16 > 11/16. Hence the

inequality M s
j /Mj ≥ 11/6 extends from j = 192 to all j ≥ 193.

2.5 Proof of Corollary 2.1.2 and Proposition 2.1.3

Our results rely on a special kind of domain monotonicity that holds for Neumann eigenvalues

even though general domain monotonicity fails in the Neumann situation.

Lemma 2.5.1 (Stretching). Let Ω be a Lipschitz domain in the plane. For t > 1, let

Ωt = {(x, ty) : (x, y) ∈ Ω} be the domain obtained by stretching Ω by the factor t in the y

direction. Then

µj(Ωt) ≤ µj(Ω), j ≥ 2.

If equality holds for some j ≥ 2, then there exists a corresponding eigenfunction on Ω that

depends only on x.

Proof of Lemma 2.5.1. The eigenvalue problem −(vxx + vyy) = µv on Ωt has Rayleigh quo-

tient

R[v] =

∫
Ωt

(v2
x + v2

y) dxdy∫
Ωt
v2 dxdy

.
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We pull back to Ω by writing u(x, y) = v(x, ty), so that R[v] equals

Rt[u] =

∫
Ω

(u2
x + t−2u2

y) dxdy∫
Ω
u2 dxdy

.

This quotient is smaller for t > 1 than for t = 1, and so µj(Ωt) ≤ µj(Ω) by the variational

characterization of eigenvalues [6, p. 97].

We prove the equality statement for j = 2, and leave the higher values of j to the reader.

Suppose µ2(Ωt) = µ2(Ω). Let u be a second Neumann eigenfunction on Ω. Then u has mean

value 0 on Ω, so that v has mean value 0 on Ωt. Hence v is a valid trial function for µ2(Ω2),

and so

µ2(Ωt) ≤ R[v] = Rt[u] ≤ R[u] = µ2(Ω).

Because equality holds in the second inequality, we conclude that uy ≡ 0. That is, u depends

only on x.

2.5.1 Proof of Corollary 2.1.2

Consider a non-equilateral triangle T . We may assume T is subequilateral, for if not then

it can be stretched in the direction perpendicular to its longest side, until one of the other

two sides has the same length as the longest one; this subequilateral triangle has smaller µ3

than the original one, by Lemma 2.5.1, and has the same diameter.

Among subequilateral triangles, µ2D
2 is maximal for the equilateral by a result of Lauge-

sen and Siudeja [25, Section 6]:

µ2D
2
∣∣
T
< µ2D

2
∣∣
E
.

Furthermore, (µ2 + µ3)D2 is minimal for the equilateral by Theorem 2.1.1:

(µ2 + µ3)D2
∣∣
T
> (µ2 + µ3)D2

∣∣
E
.

Subtracting these two inequalities shows for subequilateral triangles that

µ3D
2
∣∣
T
> µ3D

2
∣∣
E
.

2.5.2 Proof of Proposition 2.1.3

Each ellipse can be stretched to a circle of the same diameter. The Neumann eigenvalues

strictly decrease under such stretching (for j ≥ 2), by Lemma 2.5.1.
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2.6 Equilateral triangles, rectangles and their

eigenvalues

The frequencies of the equilateral triangle were derived roughly 150 years ago by Lamé [24,

pp. 131–135]. For our Neumann situation, one can adapt the treatment of the Dirichlet case

given by Mathews and Walker’s text [31, pp. 237–239], or in the paper by Pinsky [35]; or

else see the exposition of the Neumann case by McCartin [32].

The equilateral triangle E1 with sidelength 1 has Neumann eigenvalues forming a doubly-

indexed sequence:

σm,n = (m2 +mn+ n2) · 16π2

9
, m, n ≥ 0.

For example,

µ1 = 0 = σ0,0, µ2 = µ3 = 1 · 16π2

9
= σ1,0 = σ0,1,

µ4 = 3 · 16π2

9
= σ1,1, µ5 = µ6 = 4 · 16π2

9
= σ2,0 = σ0,2.

Now consider a line of symmetry of E1. Indices with m > n correspond to eigenfunctions

that are antisymmetric across that line (see McCartin [32]). Indices with m ≤ n correspond

to symmetric eigenfunctions. Denote the corresponding “symmetric eigenvalues” by 0 =

µs1 < µs2 ≤ µs3 ≤ . . ..

Lemma 2.6.1. For j = 3, 6, and for 10 ≤ j ≤ 200, we have

(µs2 + · · ·+ µsj) >
11

6
(µ2 + · · ·+ µj). (2.6.1)

For j = 4, 5, 7, 8, 9, we have a weaker inequality,

(µs2 + · · ·+ µsj) ≥
8

5
(µ2 + · · ·+ µj), (2.6.2)

with equality for j = 4 and strict inequality for j = 5, 7, 8, 9.

Proof of Lemma 2.6.1. Begin by computing the first 200 eigenvalues µj and symmetric eigen-

values µsj , using the indices m and n listed in Table 2.2. Estimates (2.6.1) and (2.6.2) can

then easily be checked. As a shortcut for (2.6.1), one can verify that µsj >
11
6
µj whenever

28 ≤ j ≤ 200, so that (2.6.1) holds for 28 ≤ j ≤ 200 as soon as the case j = 27 has been

checked.
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(7,1)

[4,8]
(4,5)

[3,9]
(5,4)

[0,11]
(3,6)

[2,10]
(6,3)

[6,7]
(0,8)

[5,8]
(8,0)

[1,11]
(2,7)

[4,9]
(7,2)

[3,10]
(1,8)

[0,12]
(8,1)

[2,11]
(5,5)

[7,7]
(4,6)

[6,8]
(6,4)

[5,9]
(3,7)

[4,10]
(7,3)

[1,12]
(0,9)

[3,11]
(9,0)

[0,13]
(2,8)

[7,8]
(8,2)

[6,9]
(1,9)

[2,12]
(5,6)

[5,10]
(6,5)

[4,11]
(9,1)

[1,13]
(4,7)

[3,12]
(7,4)

[8,8]
(3,8)

[7,9]
(8,3)

[0,14]
(0,10)

[6,10]
(10,0)

[2,13]
(2,9)

[5,11]
(9,2)

[4,12]
(6,6)

[1,14]
(5,7)

[3,13]
(7,5)

[8,9]
(1,10)

[7,10]
(10,1)

[6,11]
(4,8)

[0,15]
(8,4)

[2,14]
(3,9)

[5,12]
(9,3)

[4,13]
(0,11)

[1,15]
(11,0)

[9,9]
(2,10)

[8,10]
(10,2)

[3,14]
(6,7)

[7,11]
(7,6)

[6,12]
(5,8)

[0,16]
(8,5)

[2,15]
(1,11)

[5,13]
(4,9)

[4,14]
(9,4)

[9,10]
(11,1)

[1,16]
(3,10)

[8,11]
(10,3)

[7,12]
(0,12)

[3,15]
(12,0)

[6,13]
(2,11)

[0,17]
(7,7)

[5,14]
(11,2)

[2,16]
(6,8)

[10,10]
(8,6)

[4,15]
(5,9)

[9,11]
(9,5)

[8,12]
(4,10)

[1,17]
(10,4)

[7,13]
(1,12)

[3,16]
(12,1)

[6,14]
(3,11)

[0,18]
(11,3)

[5,15]
(0,13)

[2,17]
(7,8)

[10,11]
(8,7)

[9,12]
(13,0)

[4,16]
(6,9)

[8,13]
(9,6)

[1,18]
(2,12)

[7,14]
(12,2)

[3,17]
(5,10)

[6,15]
(10,5)

[0,19]
(4,11)

[5,16]
(11,4)

[11,11]
(1,13)

[2,18]
(13,1)

[10,12]
(3,12)

[9,13]
(12,3)

[8,14]
(8,8)

[4,17]
(7,9)

[7,15]
(9,7)

[1,19]
(0,14)

[3,18]
(6,10)

[6,16]
(10,6)

[11,12]
(14,0)

[5,17]
(2,13)

[10,13]
(13,2)

[0,20]
(5,11)

[2,19]
(11,5)

[9,14]
(4,12)

[8,15]
(12,4)

[4,18]
(1,14)

[7,16]
(14,1)

[1,20]
(3,13)

[3,19]
(8,9)

[6,17]
(9,8)

[12,12]
(13,3)

[11,13]
(7,10)

[10,14]
(10,7)

[5,18]
(6,11)

[0,21]
(11,6)

[9,15]
(0,15)

[2,20]
(15,0)

[8,16]
(2,14)

[4,19]
(14,2)

[7,17]
(5,12)

[1,21]
(12,5)

[6,18]
(4,13)

[3,20]
(13,4)

[12,13]
(1,15)

[11,14]
(15,1)

[10,15]
(9,9)

[5,19]
(8,10)

[9,16]
(10,8)

[0,22]
(3,14)

[2,21]
(7,11)

[8,17]
(11,7)

[4,20]
(14,3)

[7,18]
(6,12)

[1,22]
(12,6)

[13,13]
(0,16)

[12,14]
(16,0)

[6,19]
(2,15)

[11,15]
(5,13)

[3,21]
(13,5)

[10,16]
(15,2)

[9,17]
(4,14)

[5,20]
(14,4)

[0,23]
(9,10)

[2,22]
(10,9)

[8,18]
(1,16)

[4,21]
(8,11)

[7,19]
(11,8)

[13,14]
(16,1)

[12,15]
(7,12)

[1,23]
(12,7)

[11,16]
(3,15)

[6,20]
(15,3)

[3,22]
(6,13)

[10,17]
(13,16)

[9,18]
(0,17)

[5,21]
(17,0)

[0,24]
(5,14)

[8,19]
(14,5)

[2,23]
(2,16)

[4,22]
(16,2)

[14,14]
(10,10)

[7,20]
(4,15)

[13,15]
(9,11)

[12,16]
(11,9)

Table 2.2: Pairs of integers (m,n) giving the first 200 eigenvalues µj along with pairs [m,n]
giving the first 200 symmetric eigenvalues µsj , for an equilateral triangle. The index j in-
creases from 1 to 10 across the first row, and so on.

20



2.7 Inverting counting function bounds

Lemma 2.7.1 (Inverting counting function: upper bound). Counting function satisfies

N(µ) < aµ− b√µ+ c, where a > 0, b > 0.

Hence for all j ≥ c,

µj ≥
j − c
a

+
b

a

√
(j − c)
a

+
b2

4a2
+

b2

2a2
.

Proof. Let j ≥ 1, µ = µj + ε, ε > 0. Then

µj < µ

j ≤ N(µ) < aµ− b√µ+ c

j ≤ aµj − b
√
µj + c (by letting ε→ 0)

0 ≤ aµ− b√µ+ (c− j) (2.7.1)

√
µj ≥

b+
√
b2 + 4a(j − c)

2a
if j ≥ c (by quadratic formula)

µj ≥
b
√
µj − (c− j)

a
(by (2.7.1))

µj ≥
j − c
a

+
b

a

√
(j − c)
a

+
b2

4a2
+

b2

2a2
if j ≥ c

Lemma 2.7.2 (Inverting the counting function: lower bound). Counting function satisfies

N(µ) ≥ aµ− b√µ+ c, where a > 0, b > 0.

Hence for all j ≥ c+ 1,

µj ≤
j − c
a

+
b

a

√
(j − c)
a

+
b2

4a2
+

b2

2a2
.
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Proof. Let j ≥ 1, µ = µj. Then

j − 1 ≥ N(µj) ≥ aµ− b√µ+ c

0 ≥ aµ− b√µ+ (c− j + 1) (2.7.2)

√
µj ≤

b+
√
b2 + 4a(j − c− 1)

2a
if j ≥ c+ 1 (by quadratic formula)

µj ≤
b
√
µj + (j − c− 1)

a
(by (2.7.2))

µj ≤
j − c− 1

a
+
b

a

√
(j − c− 1)

a
+

b2

4a2
+

b2

2a2
if j ≥ c+ 1
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CHAPTER 3 : Harmonic Oscillator
and Magnetic Eigenvalues on the
Disk, with Dirichlet Boundary
Condition

3.1 Introduction

Eigenvalues of the Laplacian represent frequencies of wave motion, rates of decay in diffusion

and energy levels in quantum mechanics. While the eigenvalues of the Laplacian have been

studied intensively, much less is known about properties of eigenvalues when a transverse

magnetic field is introduced. It is known that eigenvalues of the harmonic oscillator and

eigenvalues of the magnetic Laplacian are related. By using properties of eigenvalues of

the harmonic oscillator we will investigate the properties of eigenvalues for the magnetic

Laplacian.
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(a) Magnetic eigenvalue branches for k = 1
and n = 0,±1, . . . ,±4; for k = 2 and n =
0,±1, . . . ,±3; and for k = 3 and n = 0,±1,±2
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(b) Magnetic eigenvalue branches for k = 1
and n = 0, . . . , 4; for k = 2 and n = 0, . . . , 3;
and for k = 3 and n = 0, 1, 2

Figure 3.1: Structure of energy levels of the magnetic Laplacian. Here nis angular momentum
and k counts oscillations in the radial direction. (See Figure 3.3 and 3.4 later.)

Figure 3.1 shows that there is fairly intricate structure of energy levels. Even in this

simple case of the unit disk the way that the energy levels are related to each other is quite

complicated. However we can see some patterns and structure. Here are our main results.
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First, we find the ONB of eigenfunctions for the magnetic Dirichlet Laplacian, explicitly

identify the ground state and the symmetry of eigenfunctions and eigenvalues with respect

to angular momentum (denoted by the parameter n) and magnetic field strength (denoted

by the parameter β). Secondly, we prove the positive angular momentum n-values give lower

energy than −n. Lastly, we prove the properties of eigenvalues for the magnetic Laplacian.

As angular momentum increases the energy level goes up, the ground state is radial and

positive, and asymptotic behavior of the magnetic eigenvalues is such that for large magnetic

field strength, each eigenvalue branch has the same slope, 2(2k − 1).

The ONB of eigenfunctions for the harmonic oscillator on the disk found by separation

of variables are eigenfunctions for the magnetic Laplacian also. Hence we will begin to

investigate the properties of eigenvalues for harmonic oscillator.

3.2 Harmonic oscillator eigenvalue problem on disk

First, we need to know what the eigenvalues of 2-dimensional harmonic oscillator are.

Definition 3.2.1 (Eigenvalues of 2-dimensional harmonic oscillator).

The eigenvalue problem for the harmonic oscillator is−∆u+ V u = Eu in D,

u = 0 on ∂D,
(3.2.1)

where the eigenfunction u(x) is complex-valued, the quadratic potential is V (x) = β2(x1
2 +

x2
2), and the eigenvalue E positive.

By using the definition of harmonic oscillator eigenvalue problem we find an ONB of

eigenfunctions for harmonic oscillator and we have the following symmetry properties of

eigenfunctions and eigenvalues with respect to n and β.

Theorem 3.2.2 (ONB of eigenfunctions for harmonic oscillator).

1. Let β ∈ R. There exists an ONB of smooth eigenfunctions for L2(D;C) of the form

Rn,k,β(r)einθ for n ∈ Z, k ∈ N, with corresponding eigenvalues denoted E(n, k, β).

2. Symmetry with respect to n, β:

R−n,k,β = Rn,k,β and Rn,k,−β = Rn,k,β,

E(−n, k, β) = E(n, k, β) and E(n, k,−β) = E(n, k, β).
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3. Fix β > 0. The eigenvalue E(n, k, β) is the k-th positive root of E 7→M
(

1
2
(n+ 1− E

2β
), n+ 1, β

)
,

for E > 0, where M is the Kummer function.

Because of this symmetry of the eigenfunctions and eigenvalues for the harmonic oscillator,

we will consider only n ≥ 0 from now on, and β ∈ R. Note that the Kummer function,

M(a, b, x), is a solution to Kummer’s differential equation. We will define it in Section 3.5

(see Definition 3.5.1 below).

Then, we have the properties of eigenvalues for the harmonic oscillator. See Figure 3.2.

Theorem 3.2.3 (Properties of E(n, k, β)). Assume n ≥ 0, k ≥ 1, β ≥ 0.

1. E(n, k, β) is increasing with respect to n ∈ N ∪ {0}, for fixed k, β.

2. E(n, k, β) is increasing with respect to β ≥ 0, for fixed n, k.

3. The lowest eigenvalue comes from n = 0 and k = 1. That is, the ground state is radial

and positive with form u = R0,1,β(r) > 0 for r ∈ [0, 1), where R0,1,β(1) = 0.

4. Asymptotic behavior of E(n, k, β):

E(n, k, β) = 2(2k + n− 1)β + o(β) as β →∞. (3.2.2)

5. The asymptotic is a lower bound for all n ∈ Z, meaning

E(n, 1, β) > 2(n+ 1)β, for all β ≥ 0.

The last theorem gives the leading order asymptotic behavior of the energy for large

coupling parameter β. By graphical evidence the error term should be o(1) since it is much

bigger than o(β), but the error term is not very precise, which leads to the following questions.

Questions. How fast is the error in (3.2.2) decaying as β →∞?

Now we connect the harmonic oscillator to the magnetic eigenvalue problem on the disk.

3.3 Magnetic eigenvalue problem on disk, with

Dirichlet BC

Let us define the eigenfunctions and eigenvalues of the magnetic Laplacian on the disk.
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n=0, k=1

n=1, k=1

n=2, k=1

n=3, k=1

n=4, k=1

n=0, k=2

n=1, k=2

n=0, k=3
n=2, k=2
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Figure 3.2: Harmonic oscillator eigenvalue branches for k = 1, 2, 3 and various small values
of n ∈ Z. The slope as β →∞ is 2(2k + n− 1), by Theorem 3.2.3.

Definition 3.3.1 (Eigenvalues of magnetic Laplacian).

We denote eigenfunctions and eigenvalues of the magnetic Dirichlet Laplacian on the

unit disk D by: (i∇+ F )2 u = λu in D,

u = 0 on ∂D,
(3.3.1)

where u(x) is complex-valued and the vector potential is F (x) = β(−x2, x1). The magnetic

field is ∇× F = (0, 0, 2β), where β ∈ R is constant.

We will find the ONB of eigenfunctions for the magnetic Dirichlet Laplacian, and sym-

metry properties of eigenfunctions and eigenvalues of the magnetic Laplacian. The eigen-

functions still have separated form in polar coordinates, as one expects since the magnetic

Laplacian (when written in polar coordinates) commutes with the angular derivative i∂/∂θ.

Theorem 3.3.2 (ONB of eigenfunctions for the magnetic Dirichlet Laplacian).

1. Let β ∈ R. There exists an ONB of eigenfunctions for L2(D;C) of the form Rn,k,β(r)einθ

for n ∈ Z, k ∈ N, with corresponding eigenvalues denoted λ(n, k, β).

2. Symmetry with respect to n, β:

λ(−n, k, β) = λ(n, k,−β),

R−n,k,β = Rn,k,−β.
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In fact, R−n,k,β = Rn,k,β and Rn,k,−β = Rn,k,β.

3. Fix β > 0. The eigenvalue λ(n, k, β) is the k-th root of λ 7→ M
(

1
2
(1− λ

2β
), n+ 1, β

)
,

where M is the Kummer function.

4. Changing the sign of n changes the energy by 4nβ:

λ(−n, k, β)− λ(n, k, β) = 4nβ for all β ∈ R.

Due to this symmetry of the Dirichlet eigenfunctions and eigenvalues we will consider only

n ≥ 0 from now on, and β ∈ R. Then we have the following corollary.

Corollary 3.3.3 (Positive n-values give lower energy). Positive n-values give lower energy

than negative n-values, when β > 0:

λ(n, k, β) < λ(−n, k, β) for n ≥ 1 and β > 0.

Proof of Corollary 3.3.3. To prove this Corollary we will use Theorem 3.3.2 part (4). If we

change the sign of n-values form n to −n the energy changes by 4nβ, so obviously, positive n-

values give smaller energy than the negative n. Hence we can conclude that positive n-values

give lower energy.
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Figure 3.3: Magnetic eigenvalue branches for k = 1, 2, 3 and various small values of n ∈ Z.

Figures 3.3 and Figure 3.4 show how eigenvalue branches depend upon β. Figure 3.3 is

complicated. Fortunately by symmetry, we can get Figure 3.3 by reflecting all of the plots

from Figure 3.4 across the λ-axis. Hence, we only need to look at n ≥ 0 (see Figure 3.4).
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Figure 3.4: Magnetic eigenvalue branches for k = 1 and n = 0, . . . , 4; for k = 2 and
n = 0, . . . , 3; and for k = 3 and n = 0, 1, 2.
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Figure 3.5: Magnetic eigenvalue branches for k = 1 and n = 0, . . . , 4.

Moreover, from Figure 3.5 we can observe that n = 0 gives the lowest eigenvalue, but every

eigenvalue with k = 1 and n ∈ Z is collapsing onto the same curve as β → ∞. So the fact

that the lowest eigenvalue comes from n = 0 and k = 1 is subtle, when β is large.

We will explicitly identify the ground state in the following theorem.

Theorem 3.3.4 (Properties of λ(n, k, β)). Assume n ≥ 0.

1. λ(n, k, β) is increasing with respect to n ∈ N ∪ {0}, for fixed k ∈ N and β ≥ 0.

2. The lowest eigenvalue comes from n = 0 and k = 1. That is the ground state is radial
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and positive with form u = R0,1,β(r) > 0 for r ∈ [0, 1), where R0,1,β(1) = 0.

3. Monotonicity of the ground state energy with respect to field strength:

λ(0, 1, β) is an increasing function of β ≥ 0.

4. Asymptotic behavior of λ(n, k, β):

λ(n, k, β) =

2(2k − 1)β + o(β) as β →∞,

−2(2k + 2n− 1)β + o(β) as β → −∞.

5. The asymptotic is a lower bound for all n ∈ Z;

λ(n, 1, β) > 2β, for all β ≥ 0.

The question of monotonicity of the ground state energy arises in superconductivity,

except using Neumann (natural) boundary conditions rather than Dirichlet boundary con-

ditions. For example in the paper of Fournais and Helffer the authors prove that strong

diamagnetism holds for sufficiently large magnetic field strength as we now describe.

Remark 3.3.5 (Strong diamagnetism for general domains Theorem 1.1 [15]). Let β be the

strength of the magnetic field, and let λ1(β) be the first eigenvalue of the magnetic Neumann

Laplacian on a general domain. Then:0 ≤ β ⇒ λ1(0) ≤ λ1(β) (diamagnetic),

0� β1 < β2 ⇒ λ1(β1) ≤ λ1(β2) (strong diamagnetic).

So monotonicity holds for large β, in the Neumann case, on general domains (see [11],

[13]). Does it hold for all β > 0?

3.4 Rescaling and comparing to work of Erdös, and

Landau levels

We will compare the asymptotic estimates in Theorem 3.3.4 with the eigenvalue bounds

given by Erdös for the disk in his 1995 paper. Consider disk of radius R and the magnetic

Laplacian with parameter β. Let λ(n, k, β, R) be the eigenvalues. By using rescaling we can
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find a formula for λ(n, k, β, R) in terms of the eigenvalues of a disk of radius 1:

λ(n, k, β, R) =
1

R2
λ(n, k, βR2). (3.4.1)

Then we can compare our result with the eigenvalue bounds given by Erdös for the disk.

Here are the asymptotic estimates by Erdös.

Theorem 3.4.1 (Asymptotic estimates by Erdös [12, Proposition A.1]).

Consider λ(0, 1, β), the lowest eigenvalue on unit disk with magnetic vector potential

β(−x2, x1) and field strength 2β. Then the following bounds hold for the rescaled eigenvalue:

2β + C1e
−2β ≤ λ(0, 1, β) ≤ 2β + C2(1 + 4β2)e−β/4.

Hence in particular, λ(0, 1, β) = 2β + o(1) as β → ∞. This has the same form as the

asymptotic estimate in Theorem 3.3.4 for n = 0, k = 1, except Erdös has a better error term

than the term o(β) in that theorem.. Then here comes the question about the error term.

Questions. What is the “correct” error term for λ(n, k, 2β)? Also, can one find a formula

for the next term in the asymptotic estimate?

Now evaluate the limit of Equation (3.4.1) as the radius of the disk tends to infinity, with

β fixed:

lim
R→∞

λ(n, k, β, R) = lim
R→∞

1

R2
λ(n, k, βR2)

= lim
R→∞

1

R2
[2(2k − 1)βR2 + o(βR2)] by Theorem 3.3.4

= 2(2k − 1)β.

The values that we found by letting R → ∞ for the disk match the Landau levels for the

magnetic Laplacian on the whole plane (see [19, Chapter 3]). We have infinite multiplicity

because we get the same limit for each value of n. Therefore infinitely many energy levels

are collapsing onto one in the limit as the disk expands to the whole plane.

In the next section we will prove the theorems for the harmonic oscillator case.

3.5 Harmonic oscillator in disk: proof of Theorem

3.2.2

The properties of eigenfunctions and eigenvalues for the harmonic oscillator are easier to

compute and prove than for the magnetic Laplacian case. Thus, we will prove the theorems
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of the harmonic oscillator first.

3.5.1 ONB of eigenfunctions for the harmonic oscillator equation

Start from the harmonic oscillator eigenvalue equation (3.2.1)

−∆u+ β2(x1
2 + x2

2)u = Eu.

This is the Schrödinger equation with quadratic potential V (x) = β2(x1
2+x2

2) that is smooth

and bounded on the disk. Standard spectral theory and elliptic regularity guarantees the

existence of an L2-ONB of smooth eigenfunctions. We will find an explicit ONB by separation

of variables. First, let us use polar coordinates (r, θ):

−(urr +
1

r
ur +

1

r2
uθθ) + β2r2u = Eu. (3.5.1)

For separation of variables, assume u = R(r)T (θ):

−(R′′T +
1

r
R′T +

1

r2
RT ′′) + β2r2RT = ERT.

Next, multiplying by
r2

RT
gives us:

−(r2R
′′

R
+ r

R′

R
) + β2r4 − Er2 =

T ′′

T
.

The left side depends only on r and the right side only on t. Hence both sides are constant,

and by periodicity in θ we deduce T (θ) = einθ with n ∈ Z. Therefore (3.5.1) becomes

−(R′′ +
1

r
R′) + (

n2

r2
+ β2r2)R = ER. (3.5.2)

We want to show that there exists ONB of eigenfunctions with respect to the radial

weight, r dr, for each n. This follows from Weyl’s criterion in Appendix B and Appendix C.

The eigenfunctions will be classical solutions by the regularity theory of ODEs. That is the

general theory and now we will look at the special function theory. In next section we will

evaluate the solution of R(r) in terms of Kummer function.

3.5.2 Finding solutions of harmonic oscillator on the disk

First we need to know the definition of Kummer function.
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Definition 3.5.1 (Kummer function). Kummer’s equation is

x
d2w

dx2
+ (b− x)

dw

dx
− aw = 0 (3.5.3)

with a regular singular point at 0 and an irregular singular point at ∞. It has two linearly

independent solutions M(a, b, x) called the Kummer function and U(a, b, x) called the Tricomi

function (see [33, Chapter 13])).

In Step 1 we find the eigenfunctions in terms of Kummer function. Fix n ≥ 0.

Step 1 — Finding eigenfunctions in terms of Kummer function

In order to use this definition, we need to transform the Equation (3.5.2) into the form of

Kummer’s equation (see [39, Chapter 5]). Assume n ≥ 0, β > 0 and define R−n,k,β = Rn,k,β

when n ≥ 0. Let us make the general transformation

R(r) = rne−βr
2/2w(r). (3.5.4)

We find that w(r) now satisfies the equation

d2w

dr2
+ (

2n+ 1

r
− 2βr)

dw

dr
− (2(n+ 1)β − E)w = 0. (3.5.5)

Let us put x = βr2 and use the chain rule:

dw

dr
=
dw

dx

dx

dr
= 2βr

dw

dx
,

d2w

dr2
=

d

dr
(
dw

dr
) =

d

dr
(2βr

dw

dx
) = 4β2r2d

2w

dx2
+ 2β

dw

dx
.

So we have from (3.5.5) that

x
d2w

dx2
+ (n+ 1− x)

dw

dx
− 1

2
(n+ 1− E

2β
)w = 0. (3.5.6)

A solution of Equation (3.5.6) is w(x) = M
(

1
2
(n+ 1− E

2β
), n+ 1, x

)
.

In fact, there is another solution which is a form of Tricomi’s function, U
(

1
2
(n+ 1− E

2β
), n+ 1, x

)
.

However this cannot give an eigenfunction becauseR(r) = rne−βr
2/2U

(
1
2
(n+ 1− E

2β
), n+ 1, βr2

)
is not in L2((0, 1); r dr) as we show now. To verify this we need to know how Tricomi’s func-

tion behaves at the origin. From Claim 5.3.1 in Chapter 5, the leading order term as a power
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of r, for small r, is:

U

(
1

2
(n+ 1− E

2β
), n+ 1, βr2

)
= − Γ(n)

Γ(1
2
(n+ 1− E

2β
))
β−nr−2n + o(r−2n), if n > 0

and U

(
1

2
(1− E

2β
), 1, βr2

)
= − 2

Γ(a)
ln r +O(1), if n = 0.

Then we can find the behavior of R(r) at the origin.

R(r) = − Γ(n)

Γ(1
2
(n+ 1− E

2β
))
β−ne−βr

2/2r−n + o(r−n), if n > 0

and R(r) = − 2

Γ(a)
e−βr

2/2 ln r +O(1), if n = 0.

Lastly, we need to check whether R(r) is in L2((0, 1); r dr) or not. Start from finding the

leading order term for the integrand of the integral,
∫ 1

0
R(r)2r dr. For n ≥ 1, the last formula

gives

R(r)2r = (const.)r−2n+1 + o(r−2n+1).

Notice that r−2n+1 is not integrable near r = 0 since −2n + 1 ≤ −1. So, R(r) is not in

L2((0, 1); r dr) and hence is not an eigenfunction. The remaining case is when n = 0. For

n = 0,

R(r)2r =

(
2

Γ(a)

)2

r(ln r)2 +O(r).

R(r)2r is integrable because r(ln r)2 is integrable near r = 0. However for an eigenfunction

we also need to have the condition,
∫
D |∇u|

2 dx <∞. We can check this condition from the

leading order term for the integrand of the integral,
∫ 1

0
R′(r)2r dr, which for n = 0 we obtain

from:

R′(r) = − 2

Γ(a)
e−βr

2/2(−βr ln r +
1

r
) +O(1) = (const.)r−1 +O(1),

R′(r)2r = (const.)r−1 +O(r),

which is not integrable near r = 0. So the function R′(r) is not in L2((0, 1); r dr).

The same arguments will work if we take a linear combination of M and U . Hence we

choose M(a, b, x) for the solution of (3.5.6).

Then, we can find a solution, R(r), of the differential equation (3.5.2) which is a form of
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Kummer function:

R(r) = rne−βr
2/2M

(
1

2
(n+ 1− E

2β
), n+ 1, βr2

)
. (3.5.7)

Since we consider Dirichlet boundary condition, set R(1) = 0, which determines the eigen-

value E:

R(1) = e−β/2M

(
1

2
(n+ 1− E

2β
), n+ 1, β

)
= 0. (3.5.8)

The eigenfunctions to the harmonic oscillator are therefore

Rn,k,β(r)einθ = rne−βr
2/2M

(
1

2
(n+ 1− E

2β
), n+ 1, βr2

)
einθ. (3.5.9)

The corresponding eigenvalues are the numbers E = E(n, k, β) satisfying (3.5.8). The infinite

increasing sequence, E(n, k, β), k = 1, 2, 3, . . . , is real and positive by the following lemma.

Lemma 3.5.2. If a ≥ 0, b ≥ 0, x ≥ 0, then M(a, b, x) 6= 0.

Proof. The number of positive zeros of M(a, b, x) is zero for a ≥ 0 and b ≥ 0 by NIST

formula 13.9.2 (see [33, Chapter 13]).

The lemma implies that the energy levels E that satisfy (3.5.8) all have a < 0, that is

n+ 1− E

2β
< 0 (i.e., E > 2(n+ 1)β.)

We let a = γ. So to find the eigenvalues, we need to find all γ-zeros of M(−γ, n+ 1, β), with

γ > 0, and then relate γ to E by

γ = −1

2
(n+ 1− E

2β
)

Still we need to explain why there exists an infinite increasing sequence of γ-zeros, for each

fixed β > 0. We will explain this in our later analysis (see Section 4.3.1).

Then the eigenfunctions u(x, y) are perfectly nice function at the origin by the proof of

smoothness below.

Claim 3.5.3 (Smoothness of eigenfunctions). The eigenfunctions u = R(r)einθ are smooth.
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Proof of Claim 3.5.3.

u(r, θ) = R(r)einθ

= M

(
1

2
(n+ 1− E

2β
), n+ 1, βr2

)
e−βr

2/2(reiθ)n

u(x, y) = M

(
1

2
(n+ 1− E

2β
), n+ 1, β(x2 + y2)

)
e−β(x2+y2)/2(x+ iy)n,

which is clearly a smooth function of (x, y) ∈ R2.

In Step 2 let us show the orthogonality of eigenfunctions.

Step 2 — Eigenfunctions are orthogonal in L2(D;C).

Consider the eigenfunctions for L2(D;C) of the form Rn,k,β(r)einθ for n ∈ Z, k ∈ N. Next,

we will justify that these eigenfunctions are orthogonal in L2(D;C). This space is endowed

with the inner product

〈u, v〉 =

∫
D
uv̄ dA(x)

Let u = Rn,k,β(r)einθ and v = Rm,l,β(r)eimθ for n,m ∈ Z, k, l ∈ N.

〈u, v〉 =

∫ 2π

0

∫ 1

0

(Rn,k,β(r)einθ)(Rm,l,β(r)eimθ) rdrdθ

=

∫ 1

0

Rn,k,β(r)Rm,l,β(r) rdr

∫ 2π

0

ei(n−m)θ dθ

Hence if n 6= m then 〈u, v〉 = 0. Also, for n = m and k 6= l

〈u, v〉 = 2π

∫ 1

0

Rn,k,β(r)Rn,l,β(r) rdr = 0, (3.5.10)

since the eigenfunctions are orthogonal with respect to the weight function r by the self-

adjointness of the Sturm-Liouville operator from Appendix B. Therefore we have proved

that the functions Rn,k,β(r)einθ form an orthogonal collection in the space L2(D;C).

In Step 3 we will prove the completeness of this family, so that it forms a basis. This is a

standard part of the separation of variable argument, but we will give a short proof for the

sake of completeness.
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Step 3 — Justify the collection of eigenfunctions is complete in L2(D;C).

Write un,k,β(r, θ) = Rn,k,βe
inθ for the eigenfunctions that we have found for the harmonic

oscillator on the disk. We want to show this orthogonal collection of functions is complete

in L2(D;C). Suppose some function f ∈ L2(D;C) is orthogonal to each eigenfunction in our

collection, meaning

〈f, un,k,β〉 = 0 for all n ∈ Z, k ≥ 1.

We will show f must be the zero function (f(x) = 0 a.e. in D), which shows that the

eigenfunctions span L2(D;C).

To show f = 0, define

fn(r) =

∫ 2π

0

f(r, θ)e−inθ dθ for n ∈ Z.

Then fn is orthogonal to each of the Rn,k,β functions with respect to the measure rdr, because∫ 1

0

fn(r)Rn,k,β(r) rdr = 〈f, un,k,β〉 = 0.

Since the {Rn,k,β} form an ONB with respect to rdr, we conclude that fn(r) = 0, say for

r ∈ (0, 1) \ En for some exceptional set En of zero measure. Then E =
⋃
nEn also has zero

measure. So far each r ∈ (0, 1) \ E we have fn(r) = 0 for all n ∈ Z. That is all the Fourier

coefficients of the function θ 7→ f(r, θ) are zero, and hence f(r, θ) = 0 for almost every θ,

and so f = 0 a.e. on D. This completes the proof of completeness

Lastly, we will prove the symmetry condition and complete the proof of the Theorem

3.2.2.

3.5.3 Symmetry with respect to n, β

Recall the ODE Equation (4.2.5)

−(R′′ +
1

r
R′) + (

n2

r2
+ β2r2)R = ER.

Since the operator on the left side is the same whether the sign of n and β is positive or

negative we define R−n,k,β = Rn,k,β when n > 0 and Rn,k,−β = Rn,k,β when β > 0. So

the eigenvalues are unchanged also. Hence E(−n, k, β) = E(n, k, β) and E(n, k,−β) =

E(n, k, β)

36



CHAPTER 4 : Proofs of Spectral
Properties of Harmonic Oscillator and
Magnetic Laplacian

4.1 Properties of harmonic oscillator in disk: proof of

Theorem 3.2.3

In this section we will show two monotonicity properties: the energy level goes up as angular

momentum increases and as field strength increases.

4.1.1 Monotonicity of E(n, k, β) with respect to n ≥ 0

We know that the eigenfunction is the form of R(r)einθ by separation of variables. Then we

will apply the method of Poincaré’s minimax characterization of the eigenvalues. Define the

Rayleigh quotient of u to be∫
D (|∇u(x)|2 + β2|x|2|u(x)|2) dA(x)∫

D |u(x)|2dA(x)
(4.1.1)

The following remark is the results of the Rayleigh quotient of u when u(x) = R(r)einθ.

Remark 4.1.1. Let u(x) = R(r)einθ. Then we have

1. |u(x)|2 = |R(r)|2

2. |∇u|2 = |ur|2 + 1
r2
|uθ|2 = |R′(r)|2 + n2

r2
|R(r)|2

3. β2|x|2|u|2 = β2r2|R(r)|2

Hence for fixed n and β, we can find the k-th eigenvalue E(n, k, β):

E(n, k, β) = min
S

max
R∈S

∫ 1

0

[
|R′(r)|2 + (n

2

r2
+ β2r2)|R(r)|2

]
rdr∫ 1

0
|R(r)|2rdr

, (4.1.2)

37



where a space of functions, S is an arbitrary k-dimensional subspace of K. Here we consider

two infinite dimensional spaces H and K (see Appendix B).

H = L2
(
(0, 1); r dr

)
,

K =
{
R ∈ W 1,2

loc (0, 1) : R′ ∈ L2
(
(0, 1); r dr

)
, R ∈ L2

(
(0, 1); (

n2

r2
+ β2r2 + 1)r dr

)
, R(1) = 0

}
,

Notice that the Rayleigh quotient satisfied the requirements for the Spectral theorem (see

Appendix C). By Lemma B.2 we can justify the proof of the monotonicity of E(n, k, β) with

respect to n. The point is that the coefficient functions in formula (4.1.2) go up when n

goes up, and so the hypotheses of Lemma B.2 are satisfied. Therefore we conclude that k-th

eigenvalue E(n, k, β) is increasing with respect to n ≥ 0.

4.1.2 Monotonicity of E(n, k, β) with respect to β ≥ 0

By the similar argument like the previous Section 4.1.1, for fixed n, the k-th eigenvalue for

the R-function is increasing with respect to β.

4.1.3 Lowest eigenvalue comes from n = 0 and k = 1

This is immediate result from monotonicity with respect to n.

To finish the proof of Theorem 3.2.3 we need to show the asymptotic behavior of harmonic

oscillator eigenvalues, as β →∞. We will do that in Section 4.3.6.

We have just finished proving all theorems for harmonic oscillator. In next section we

will prove theorems for magnetic Laplacian.

4.2 Magnetic Laplacian in disk: proof of Theorem

3.3.2

4.2.1 ONB of eigenfunctions for the magnetic Dirichlet Laplacian

Consider the Dirichlet conditions for the magnetic eigenfunction equation.

(i∇+ F )2u = λu, (4.2.1)
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where the vector potential F (x) = β(−x2, x1) creates the magnetic field ∇× F = (0, 0, 2β).

Start from the Equation (4.2.1) and we get:

−∆u+ 2i∇u · F + |F |2u = λu.

Notice that ∇u · F = βuθ and |F |2 = β2(x1
2 + x2

2) = β2r2, then

−∆u+ 2iβuθ + β2r2u = λu.

When we use polar coordinates (r, θ) we can get:

−(urr +
1

r
ur +

1

r2
uθθ) + 2iβuθ + β2r2u = λu. (4.2.2)

Here separation of variables does not work for the following reason. Assume u = R(r)T (θ):

−(R′′T +
1

r
R′T +

1

r2
RT ′′) + 2iβRT ′ + β2r2RT = λRT.

Next, multiplying by
r2

RT
gives us:

−(r2R
′′

R
+ r

R′

R
+
T ′′

T
) + 2iβr2T

′

T
+ β2r4 = λr2.

−(r2R
′′

R
+ r

R′

R
) + β2r4 − λr2 =

T ′′

T
− 2iβr2T

′

T
. (4.2.3)

Then we can see that the factor of r2 in the Equation (4.2.3) prevents us from separating

the r and θ variables. Instead, to solve Equation (4.2.2) we simply assume trigonometric

dependence on θ, that is, we assume the form u = R(r)einθ. So we can get the ODE:

−(R′′ +
1

r
R′ − n2

r2
R) + β2r2R = (λ+ 2nβ)R. (4.2.4)

This equation relates energies of the magnetic Laplacian to harmonic oscillator energies. By

letting E = λ+ 2nβ where E is the energy level for the harmonic oscillator, we get:

−(R′′ +
1

r
R′) + (

n2

r2
+ β2r2)R = ER. (4.2.5)

Notice that the LHS of the ODE in Equation (4.2.4) is the same as the ODE for eigenfunctions

of 2-dimensional harmonic oscillator in polar coordinates. Since separation of variables for

the harmonic oscillator on the disk does provide an L2-ONB of eigenfunctions of the form
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R(r)einθ, we conclude that these same eigenfunctions work for the magnetic Laplacian on

the disk, except with the energy shifted by 2nβ, as in Equation (4.2.4). Note that n can be

either positive or negative, so we can shift energy up or down. Moreover, since λ = E−2nβ,

for n > 0 and β > 0 the energy shifts down and for n < 0 and β > 0 the energy shifts up.

4.2.2 Symmetry with respect to n, β

By using Theorem 3.2.2, for the formulas for R, we have

R−n,k,β = Rn,k,β = Rn,k,−β.

So R−n,kβ = Rn,k,−β.

For the formulas for λ, we have

λ(n, k, β) = E(n, k, β)− 2nβ, (4.2.6)

and E is even with respect to the n and β variables by Theorem 3.2.2. So λ(−n, k, β) =

λ(n, k,−β).

4.2.3 Changing the sign of n changes the energy by 4nβ

By (4.2.6) and evenness of E, we see λ(−n, k, β)− λ(n, k, β) = 4nβ.

4.3 Properties of magnetic Laplacian in disk: proof of

Theorem 3.3.4

Our goal is to show that the monotonicity of eigenvalues with respect to the n value (i.e., as

angular momentum, n, increases the energy level goes up.) This is hard to prove directly, so

we will start from the monotonicity of β-zeros of M(−γ, n+ 1, β) with respect to n ∈ Z be-

cause this follows from a known interlacing property. Then we will deduce the monotonicity

of γ-zeros of M(−γ, n+1, β) with respect to n by using the properties of β-zeros and γ-zeros.

Lastly, we will get the monotonicity of eigenvalues with respect to n from the monotonicity

of γ-zeros.
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4.3.1 Monotonicity of β-zeros of M(−γ, n+ 1, β) with respect to

n ∈ Z

In this section we are going to find that if we fix n and γ there are finitely many β-zeros and

those zeros are interlaced; if we increase the n-value then the zeros interlace with the zeros

of the previous n-value. Let us consider the Kummer function M(−γ, n + 1, β) and denote

β(n, k, γ) for β-zeros of M(−γ, n+ 1, β), with γ > 0 and n ≥ 0 fixed. Figure 4.1 shows a few

of these functions, for n = 0. Notice that the numbers of β-zeros increases as γ-increases.

Γ=1

Γ=3

Γ=4Γ=2

2 4 6 8 10 12
Β

-5

-3

-1

1

3

5
MH-Γ, n + 1, ΒL

Figure 4.1: Kummer function M(−γ, n+ 1, β) for n = 0 and γ = 1, 2, 3, 4

Remark 4.3.1 (Number of β-zeros of M(−γ, n+ 1, β) [33, Chapter 13]).

When γ, n ∈ R the number of real zeros is finite. Let p(−γ, n + 1) be the number of

positive β-zeros of M(−γ, n+ 1, β). Then for γ > 0, n+ 1 ≥ 0,

p(−γ, n+ 1) = dγe ,

p− 1 < γ ≤ p.

First, here is the definition of interlacing we are going to use.

Definition 4.3.2 (Interlacing of the zeros of functions).

Consider a family of functions Xn all with same number p of positive zeros. Let xn,k

where l = 1, 2, · · · , p denote the positive zeros of Xn, arranged in increasing order. Then

interlacing of the zeros of functions Xn and Xn+1 means that:

0 < xn,1 < xn+1,1 < xn,2 < xn+1,2 < · · · < xn,p < xn+1,p.
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By using Segura’s on global interlacing properties for Laguerre functions (see [37, p. 397]),

we can deduce the interlacing properties for Kummer functions.

Theorem 4.3.3 (Global interlacing properties for Kummer functions).

Let γ, γ′ > 0 and n, n′ ≥ 0. The β-zeros of the Kummer functions M(−γ, n + 1, β) and

M(−γ′, n′ + 1, β) interlace in (0,∞) when the differences δγ
def.
= γ′ − γ ∈ Z and δn

def.
=

n′ − n ∈ Z satisfy:

1. |δγ| ≤ 1

2. |δγ + δn| ≤ 1

Proof of Theorem 4.3.3. To prove this theorem we relate to the known properties of the

Laguerre functions.

Remark 4.3.4 (Relation between Kummer functions and Laguerre functions [37, p. 397]).

Lnγ(β) =
(γ + 1)n

n!
M(−γ, n+ 1, β) =

(γ + 1) · · · (γ + n)

n!
M(−γ, n+ 1, β).

Now the theorem follows from the Global interlacing properties for Laguerre functions (see

[37, p. 397]).

The Monotonicity result follows.

Corollary 4.3.5 (Monotonicity of β(n, k, γ) with respect to n).

Fix γ > 0, n ≥ 0. Let p = dγe. Let {β(n, k, γ)}pk=1 and {β(n + 1, k, γ)}pk=1 be the

positive β-zeros of M(−γ, n + 1, β) and M(−γ, n + 2, β), respectively. Then β(n, k, γ) and

β(n+ 1, k, γ) interlace in (0,∞), with

β(n, 1, γ) < β(n+ 1, 1, γ) < β(n, 2, γ) < β(n+ 1, 2, γ) < · · ·

Therefore β(n, k, γ) increases as n increases, with k and γ fixed.

Proof of Corollary 4.3.5. Let γ′ = γ and n′ = n + 1. The differences δγ = 0 ∈ Z and

δn = n′ − n = 1 ∈ Z satisfy:

1. |δγ| = 0 ≤ 1

2. |δγ + δn| = 1 ≤ 1

So Theorem 4.3.3 applies, which gives interlacing of the β-zeros. We still have to show

that the “n”-zeros come before the “n + 1”-zeros. That is, we have to show β(n, 1, γ) <
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β(n + 1, 1, γ). Let βn = β(n, 1, γ), βn+1 = β(n + 1, 1, γ) > 0. We know that these β-zeros

exist by Remark 4.3.1. First note that M has initial conditions M(−γ, n + 1, 0) = 1 and

M ′(−γ, n+ 1, 0) < 0. Note u(β)
def.
= M(−γ, n+ 1, β) satisfies the Kummer equation, which

can be rewritten as

0 =
d

dβ
[βn+1e−βu′] + γβne−βu =

d

dβ
[Pu′] +Qu,

say. Notice that P,Q > 0 for β > 0, with P (0) = 0. So,

d

dβ
[Pu′] = −Qu < 0 for β ∈ (0, βn).

That means that Pu′ decreases from β = 0 until β = βn. Also, Pu′ = 0 at β = 0. So

Pu′ < 0 on (0, βn). Hence u′ < 0 on (0, βn), meaning u decreases for as long as it stays

positive. Therefore

M ′(−γ, n+ 1, β) < 0 for 0 < β < βn. (4.3.1)

Suppose βn+1 < βn. By the recurrence relations and definition of βn+1,

(n+ 1 + γ)M(−γ, n+ 2, βn+1) = (n+ 1)
(
M(−γ, n+ 1, βn+1)−M ′(−γ, n+ 1, βn+1)

)
0 = M(−γ, n+ 1, βn+1)−M ′(−γ, n+ 1, βn+1)

Then we have

M(−γ, n+ 1, βn+1) = M ′(−γ, n+ 1, βn+1), (4.3.2)

which is a contradiction since for 0 < β < βn, M(−γ, n+ 1, β) > 0 and M ′(−γ, n+ 1, β) < 0

by (4.3.1). Thus, we conclude βn ≤ βn+1 so that the“n”-zeros come before the “n+1”-zeros.

Also βn cannot equal βn+1, since if βn = βn+1 then M and M ′ both equal zero at βn+1, by

(??), which is impossible by the uniqueness theorem for ODEs.

Hence β(n, k, γ) increase as n increases, with k and γ fixed.

4.3.2 Properties of β-zeros of M(−γ, n+ 1, β)

Notice that the graph of β(n, k, γ) in Figure 4.2 is decreasing as a function of γ. Now we

prove that fact.
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Figure 4.2: Behavior of β(n, k, γ) as a function of γ, for fixed n.
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Figure 4.3: Behavior of γ(n, k, β) as function of β, for fixed n.

Property I — β(n, k, γ) is strictly decreasing as γ increases, for γ > k − 1 and

fixed n ≥ 0

This is a well known result of Tricomi (see [41, Chapter 3.5]). Start from the Kummer

differential equation with parameter a = −γ, b = n+ 1:

βy′′(β) + (n+ 1− β)y′(β) + γy(β) = 0, y(0) = 1.

To use Sturm’s comparison theorem method we need to change the ODE. By substitution

y(β) = β−(n+1)/2eβ/2u(β),
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the ODE can be transformed into the normal form

u′′(β) +

[
γ

β
+

(n+ 1)(2β − n+ 1)− β2

4β2

]
u(β) = 0, u(0) = 0.

For fixed n, we have that the positive β-zeros of M(γ, n + 1, β) is decreasing function of γ

by Sturm’s comparison Theorem 4.3.6: fix γ1 < γ2 and let’s compare two zeros of solutions

of u1
′′(β) + q1(β)u1(β) = 0

u2
′′(β) + q2(β)u2(β) = 0

where[
q1 =

γ1

β
+

(n+ 1)(2β − n+ 1)− β2

4β2

]
<

[
q2 =

γ2

β
+

(n+ 1)(2β − n+ 1)− β2

4β2

]
because γ1 < γ2 and β > 0. Therefore Sturm’s comparison theorem shows that the zeros

β(n, k, γ2) occur before the zeros of β(n, k, γ1):

β(n, k, γ1) > β(n, k, γ2) for γ1 < γ2 and fixed n ≥ 0, k = 1, · · · , dγ2e .

Hence β(n, k, γ) is strictly decreasing function of γ > k − 1, for fixed n and k.

Theorem 4.3.6 (Sturm’s comparison theorem [9, p. 33]).

Let f(x) and g(x) be nontrivial solutions of the differential equations

u′′ + p(x)u = 0 and v′′ + q(x)v = 0,

respectively, where p(x) ≥ q(x). Then f(x) vanishes at least once between any two zeros of

g(x), unless p(x) ≡ q(x) and f is a constant multiple of g.

Property II — β(n, k, γ) is smooth function of γ > 0

Seek a proof using implicit function theorem applied to the equation M(−γ, n+ 1, β) = 0.

Theorem 4.3.7 (Implicit function theorem [10, Chapter 9]).

Let f : R2 → R be continuously differentiable, let f(x0, yo) = 0, and suppose that
∂f
∂y

(x0, y0) 6= 0. Then there is an open interval U about x0 with the following property:

there exists a continuously differentiable function g : U → R such that

g(x0) = y0 and f(x, g(x)) = 0.
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These properties determine g uniquely.

In order to apply the Implicit Function Theorem we need the condition ∂f
∂y

(x0, y0) 6≡ 0. In

our case we should prove the condition ∂M
∂β

(−γ0, n0 +1, β0) 6≡ 0 where M(−γ0, n0 +1, β0) = 0.

We can verify the condition by the existence and uniqueness theorem for second order ODE.

Theorem 4.3.8 (Existence and Uniqueness [40, Section 3.1]). Consider the linear ordinary

differential equation of order m

a0(x)
dmf

dxm
+ a1(x)

dm−1f

dxm−1
+ · · ·+ am−1(x)

df

dx
+ am(x)f = F (x) (4.3.3)

where a0, a1, · · · , am and F are continuous real functions on a real interval a ≤ x ≤ b and

a0(x) 6= 0 for all x on a ≤ x ≤ b. If x0 is any point of the interval a ≤ x ≤ b and

c0, c1, · · · , cm−1 are m arbitrary constants, then there exists a unique solution f of Equation

(4.3.3) such that

f(x0) = c0, f ′(x0) = c1, · · · , f (m−1)(x0) = cm−1,

and this solution is defined over the entire interval a ≤ x ≤ b.

Corollary 4.3.9 (Uniqueness of solutions [40, Section 3.1]). Let f be the solution of the

m-th order homogeneous linear differential equation

a0(x)
dmf

dxm
+ a1(x)

dm−1f

dxm−1
+ · · ·+ am−1(x)

df

dx
+ am(x)f = 0

such that

f(x0) = 0, f ′(x0) = 0, · · · , f (m−1)(x0) = 0

where x0 is a point of the interval a ≤ x ≤ b in which the coefficient a0, a1, · · · , am are all

continuous and a0(x) 6= 0. Then f(x) = 0 for all x on a ≤ x ≤ b.

Thus, we get the result ∂M
∂β

(−γ0, n0 + 1, β0) 6≡ 0 where M(−γ0, n0 + 1, β0) = 0.

Claim 4.3.10. If M(−γ0, n0 + 1, β0) = 0 then ∂M
∂β

(−γ0, n0 + 1, β0) 6= 0.

Proof of Claim 4.3.10. By the definition of Kummer function (see Definition 3.5.1), M(−γ0, n0+

1, β) satisfies: the homogeneous linear ODE

β
d2M

dβ2
+ (n0 + 1− β)

dM

dβ
+ γ0M = 0.
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Assume M and ∂M
∂β

both equal 0 at β = β0. Then the zero function also satisfies the

ODE with the same initial conditions at β0. Then by the Uniqueness theorem, M should be

the zero function. This contradicts the fact that the Kummer function is not a zero function

since M = 1 when β = 0. Hence either M(−γ0, n0 + 1, β0) 6= 0 or the first derivative,
∂M
∂β

(−γ0, n0 + 1, β0) 6= 0.

Finally, β(n, k, γ) is continuous function of γ > 0 by Implicit function Theorem 4.3.7.

4.3.3 Monotonicity of γ-zeros of M(−γ, n+ 1, β) with respect to

n ∈ Z

We denote the γ-zeros of M(−γ, n+ 1, β) by γ(n, k, β), for n ≥ 0, k ≥ 0. Justify this we will

use the relation between β(n, k, γ) and γ(n, k, β). For fixed n and k there will be an inverse

function γ(n, k, β) as a function of β that is strictly decreasing and continuously differen-

tiable, since β(n, k, γ) as a function of γ is strictly monotonic and continuous differentiable

function (see Property I and Property II in Section 4.3.2). This inverse function γ(n, k, β)

is defined for all β > 0 because β(n, k, γ) has range (0,∞) by Claim 4.3.13 below.

Getting monotonicity of γ-zeros with respect to n, by Inverse Function

Theorem

Lemma 4.3.11 ([14, Section 14]). Let f be a continuous, strictly increasing or decreasing

function on [a, b] with x = f(a) and y = f(b). Then f has a continuous, strictly increasing

or decreasing inverse function defined on [x, y].

Now let us construct the proof of Section 4.3.3 in several steps. From the previous

sections, we know the following.

Proposition 4.3.12 (Properties of β(n, k, γ) and γ(n, k, β)).

1. β(n, k, γ) is strictly increasing with respect to n, when k and γ are fixed.

2. β(n, k, γ) is strictly decreasing with respect to γ, when n and k are fixed.

3. β(n, k, γ) is a continuous function of γ, when n and k are fixed.

4. γ(n, k, β) is the inverse function of β(n, k, γ), for fixed n and k.

5. γ(n, k, β) is strictly decreasing with respect to β, when n and k are fixed.
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Proof. Part (1) follows from the Section 4.3.1. For part (2) and part (3), see Section 4.3.2.

Part (4) and part (5) are the result from the previous Lemma 4.3.11.

Next we show that the range of γ 7→ β(n, k, γ) contains all positive numbers.

Claim 4.3.13. Given β̃ > 0, there exists γ̃ > 0 such that β̃(n, k, γ̃) = β̃.

Proof. By Proposition 4.3.12 we already know that β(n, k, γ) is strictly decreasing and con-

tinuous function of γ. So it is enough to prove that for small γ, β(n, k, γ) blows up and for

large γ, β(n, k, γ) approaches to zero. More precisely:

1. lim
γ→k−1

β(n, k, γ) =∞

2. lim
γ→∞

β(n, k, γ) = 0

First part follows from the proof of the asymptotic behavior in Section 4.3.8 below. For the

second part we need the asymptotic formula of zeros of Kummer function M(a, b, x) (see,

[33, Section 13.9.8]):

φr =
(jb−1,r)

2

2b− 4a

[
1 +

2b(b− 2) + (jb−1,r)
2

3(2b− 4a)2

]
+O(

1

a5
), as a→ −∞,

when a < 0, b > 0 and φr, r = 1, 2, 3, . . . , are the positive zeros of M(a, b, x) arranged

in increasing order of magnitude, and jb−1,r is the r-th positive zero of the Bessel function

Jb−1(x). Now apply this formula to our case, then we get:

β(n, k, γ) =
(jn,k)

2

2(n+ 1) + 4γ

[
1 +

2(n+ 1)(n− 1) + (jn,k)
2

3(2(n+ 1) + 4γ)2

]
+O(

1

γ5
), as γ →∞.

Hence for fixed n, k:

lim
γ→∞

β(n, k, γ) = 0.

In order to get the monotonicity of γ(n, k, β) with respect to n, fix β̃ > 0 and let γ1 =

γ(n1, k, β̃), γ2 = γ(n2, k, β̃). We have the inequality (by Proposition 4.3.12) that

β(n1, k, γ2) < β(n2, k, γ2) = β̃ = β(n1, k, γ1).

Since β is a strictly decreasing function of γ, we conclude γ2 > γ1. Hence for fixed β̃,

γ(n2, k, β̃) > γ(n1, k, β̃)
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We have the monotonicity of γ(n, k, β) with respect to n.

4.3.4 Monotonicity of λ(n, k, β) with respect to n ∈ Z

Recall that we let γ = −1
2
(n+1− E

2β
) = −1

2
(1− λ

2β
). We proved the monotonicity of γ(n, k, β)

in Section 4.3.3. Thus the monotonicity of λ(n, k, β) with respect to n ∈ Z follows from the

relation between γ(n, k, β) and λ(n, k, β).

4.3.5 Monotonicity of λ(0, 1, β) with respect to β ≥ 0

Notice that when n = 0, λ(n, k, β) = E(n, k, β). Hence we have the result (see section 4.1.2).

4.3.6 Asymptotic behavior of E(n, k, β)

Recall that we set

γ = −1

2
(n+ 1− E

2β
). (4.3.4)

Then let us consider the Kummer function M(−γ, n + 1, β) and denote β(n, k, γ), k =

1, 2, 3, · · · , dγe, for the sequence of positive β-zeros of M(−γ, n+1, β) from now on. In Figure

4.2 we can see the asymptotic behavior of the numerical values of the zeros of M(−γ, n+1, β).

By understanding the numerical plot in order to prove the asymptotic behavior of E(n, k, β)

we need to show

lim
γ→(k−1)+

β(n, k, γ) = +∞.

This can be proved directly from the result of Tricomi (see [41, Chapter 3.5]). When γ

approaches from the right to a nonnegative integer there is always a β-zero of M(−γ, n+1, β)

that tends to infinity. Moreover Tricomi found that k-th positive zero of M(−γ, n+ 1, β) is

a decreasing function of κ = n+1
2

+ γ and appears at infinity for γ = k− 1 (see [42, p. 270]).

By (4.3.4) we have that

γ = −1

2
(n+ 1− E

2β
)→ k − 1

is equivalent to
E

2β
→ 2k + n− 1 as β →∞.

4.3.7 The asymptotic is a lower bound for all n ∈ Z

Let us prove this inequality

E(n, 1, β) > 2(n+ 1)β, for all β ≥ 0. (4.3.5)
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Rewrite (4.3.5) like below:

E(n, 1, β)

β
> 2(n+ 1), for all β ≥ 0.

By (4.3.4) in the previous section,

E(n, 1, β)

β
= 2(n+ 1) + 4γ.

Then the right side is always greater than 2 since the property of the Kummer function,

γ > 0 (see Remark 3.5.2).

4.3.8 Asymptotic behavior of λ(n, k, β) with respect to n ∈ Z

This follows from Theorem 3.2.3, as follows. We know that

E(n, k, β) = 2(2k + n− 1)β + o(β) as β →∞. (4.3.6)

Then we use the relationship E(n, k, β) = λ(n, k, β) + 2nβ.

λ(n, k, β) = E(n, k, β)− 2nβ

= 2(2k + n− 1)β + o(β)− 2nβ as β →∞.

Hence

λ(n, k, β) = 2(2k − 1)β + o(β) as β →∞,

λ(n, k, β) = −2(2k + 2n− 1)β + o(β) as β → −∞. (4.3.7)

We get the Equation (4.3.7) by Equation (4.3.6).

λ(n, k,−β) = E(n, k,−β) + 2nβ

= E(n, k, β) + 2nβ by symmetry of the eigenvalues for the harmonic oscillator

= 2(2k + 2n− 1)β + o(β), for β > 0.

Therefore

λ(n, k, β) = −2(2k + 2n− 1)β + o(β) as β → −∞,

since the asymptotic behavior of E(n, k, β) works for both positive and negative β.
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4.3.9 The asymptotic is a lower bound for all n ∈ Z

Let us prove this inequality

λ(n, 1, β) > 2β, for all β ≥ 0.

We get the result by Section 4.3.7.

λ(n, 1, β) = E(n, 1, β)− 2nβ > 2(n+ 1)β − 2nβ > 2β.

All theorems for the magnetic Laplacian are completed.
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CHAPTER 5 : Parametric derivatives
of the Kummer function

5.1 Motivation

The derivatives of Kummer function, M(a, b, z), with respect to the parameter z are well-

known in the literature. However there is a situation where one needs to know information on

the parametric derivatives of the Kummer function with respect to the first two parameters,

a and b, and useful formulas are hard to find in literature. One example is in work of

Laugesen and Siudeja (see [29]) where it is necessary to show that ∂M
∂a

is non-zero at certain

values of a, b, and z. They use our Corollary 5.2.2 below. Also another example is in paper

of Ancarani and Gasaneo, where the authors investigate the derivatives of any order of the

Kummer function with respect to a and b (see [2]). But the formulas they give do not seem

to be useful for what we need to do. Therefore we will develop new formulas for ∂M
∂a

and
∂M
∂b

. The next section gives the integral formulas for ∂M
∂a

and ∂M
∂b

in terms of M(a, b, z) and

U(a, b, z).

5.2 Parametric derivative formula

Theorem 5.2.1. The integral formulas for ∂M
∂a

and ∂M
∂b

are following:

∂M

∂a
=M(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M(a, b, ζ) dζ (5.2.1)

− U(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M(a, b, ζ) dζ,

∂M

∂b
=−M(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M ′(a, b, ζ) dζ (5.2.2)

+ U(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M ′(a, b, ζ) dζ,

for all a ∈ R, b ≥ 1, z > 0 (assuming a is not a nonpositive integer).
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Recall that M(a, b, z) does not exist when b is a nonpositive integer. We will prove this

theorem in next section.

Corollary 5.2.2. If M(a, b, z) = 0 then ∂M
∂a

(a, b, z) 6= 0, assuming that a ∈ R, b ≥ 1, z > 0

and a is not a nonpositive integer.

Proof. The proof follows from Theorem 5.2.1 above. Consider the integral formula (5.2.1):

∂M

∂a
=M(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M(a, b, ζ) dζ

− U(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M(a, b, ζ) dζ.

If M(a, b, z) = 0 then the first term vanishes. Next we want to show that the second

term is not zero. Notice that the integral
∫ z

0
e−ζζb−1M(a, b, ζ)M(a, b, ζ) dζ is clearly positive

because that is integral of a real-valued square, M(a, b, z)2. Hence we need to show that

if M(a, b, z) = 0 then U(a, b, z) 6= 0. Recall that M and U are two standard solutions of

Kummer’s equation,

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0.

Since M and U solve the same second order differential equation, if they are both zero at

some point then they are multiples of each other. This contradicts the fact that M and U

are the independent solutions of Kummer’s equation.

5.3 Proof of Theorem 5.2.1

5.3.1 Method of variation of parameters

First recall that a confluent hypergeometric function, M(a, b, z), is a solution to confluent

hypergeometric differential equation,

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0. (5.3.1)

Now start from the Equation:

z
∂2M

∂z2
+ (b− z)

∂M

∂z
− aM = 0. (5.3.2)

Differentiate with respect to a:

z(
∂M

∂a
)′′ + (b− z)(

∂M

∂a
)′ − a(

∂M

∂a
) = M,
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where ′ = ∂
∂z

. Then divide by z to get the non homogeneous equation:

(
∂M

∂a
)′′ +

b− z
z

(
∂M

∂a
)′ − a

z
(
∂M

∂a
) =

M

z
= f (5.3.3)

The method of variation of parameters gives the general solution of the non homogeneous

Equation (5.3.3):

∂M

∂a
=M(a, b, z)

∫
−U(a, b, z)

W{M,U}
M(a, b, z)

z
dz

+ U(a, b, z)

∫
M(a, b, z)

W{M,U}
M(a, b, z)

z
dz,

where M(a, b, z) and U(a, b, z) are linearly independent solutions of the homogeneous Equa-

tion (5.3.1) and W{M,U} denotes the Wronskian of M and U (see [33, Chapter 13]). The

Wronskian can be evaluated as

W{M,U} = −Γ(b)ez

Γ(a)zb

by [13.2.34] NIST (just multiply that formula by Γ(b)). Hence we get the general solution

of the non homogeneous Equation (5.3.3):

∂M

∂a
=M(a, b, z)

∫
Γ(a)

Γ(b)
e−zzb−1U(a, b, z)M(a, b, z) dz

− U(a, b, z)

∫
Γ(a)

Γ(b)
e−zzb−1M(a, b, z)M(a, b, z) dz,

Similarly, we can find ∂M
∂b

. Start from the Equation (5.3.2) then differentiate with respect

to b:

z(
∂M

∂b
)′′ + (b− z)(

∂M

∂b
)′ − a(

∂M

∂b
) = −M ′. (5.3.4)

Hence we get:

∂M

∂b
= −M(a, b, z)

∫
Γ(a)

Γ(b)
e−zzb−1U(a, b, z)M ′(a, b, z) dz

+ U(a, b, z)

∫
Γ(a)

Γ(b)
e−zzb−1M(a, b, z)M ′(a, b, z) dz.

Each of these indefinite integrals has the constants of integration implicitly in it. To fix the

constants of integration we will fix the lower limit of integration to be z = 0. Then we have

to justify that this is the correct choice to get ∂M
∂a

and ∂M
∂b

. Especially, we will show that the

integrands as a function of z are integrable near z = 0 and that this gives the correct choice
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for ∂M
∂a

and ∂M
∂b

at z = 0 by checking the conditions for ∂M
∂a

and ∂M
∂b

.

5.3.2 Finding a limit of integration

First we have to show that the integral makes sense. Then we need to figure out what would

be the leading order of z. That follows from the Claim 5.3.1 and Claim 5.3.2.

Claim 5.3.1. The leading order terms as a power of z, for small z are following:

1. M(a, b, z) = 1 +O(z)

2. M ′(a, b, z) =
a

b
+O(z)

3. U(a, b, z) = − Γ(b)

(1− b)Γ(a)
z1−b + o(z1−b), if b > 1

and U(a, 1, z) = − 1

Γ(a)
ln z +O(1), if b = 1

4. U ′(a, b, z) = −Γ(b)

Γ(a)
z−b + o(z−b)

Proof of Claim 5.3.1. By the series definition of M , we can easily check (1) and (2) (see [33,

Chapter 13]). Also by NIST formulas 13.2.16 ∼ 13.2.19 [33, Chapter 13], we get the result

(3):

U(a, b, z) = − Γ(b)

(1− b)Γ(a)
z1−b + o(z1−b), if b > 1

and U(a, 1, z) = − 1

Γ(a)
ln z +O(1), if b = 1

Next, verify (4).

U ′(a, b, z) = −aU(a+ 1, b+ 1, z), by NIST formula 13.3.22

= −a
(
− Γ(b+ 1)

(−b)Γ(a+ 1)
z−b + o(z−b)

)
, by part (3)

= −Γ(b)

Γ(a)
z−b + o(z−b).

Then we have the next claim, where we show that the integral makes sense when the

lower limit of integration is zero.

Claim 5.3.2. The leading order terms as a power of z, for small z > 0 are following:
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1.

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M(a, b, ζ) dζ =

1

b− 1
z + o(z), if b > 1

and

∫ z

0

Γ(a)e−ζU(a, 1, ζ)M(a, 1, ζ) dζ = −z ln z +O(z), if b = 1

2.

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M(a, b, ζ) dζ =

Γ(a)

bΓ(b)
zb +O(zb+1)

3.

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M ′(a, b, ζ) dζ =

a

b(b− 1)
z + o(z), if b > 1

and

∫ z

0

Γ(a)e−ζU(a, 1, ζ)M ′(a, 1, ζ) dζ = −az ln z +O(z), if b = 1

4.

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M ′(a, b, ζ) dζ =

aΓ(a)

b2Γ(b)
zb +O(zb+1)

Proof of Claim 5.3.2. To compute the integrals in Claim 5.3.2 we need to start from finding

the leading order term for the integrand of integral. For b > 1,

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M(a, b, ζ) =

(
Γ(a)

Γ(b)

)
ζb−1

(
− Γ(b)

(1− b)Γ(a)
ζ1−b

)
+O(ζ)

=
1

b− 1
+ o(1).

Hence, ∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M(a, b, ζ) dζ =

1

b− 1
z + o(z).

For b = 1,

Γ(a)e−ζU(a, 1, ζ)M(a, 1, ζ) = Γ(a)(− 1

Γ(a)
ln ζ) +O(1) = − ln ζ +O(1).

Then, ∫ z

0

Γ(a)e−ζU(a, 1, ζ)M(a, 1, ζ) dζ = −z ln z +O(z).

Similarly, we can check (2).

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M(a, b, ζ) =

Γ(a)

Γ(b)
ζb−1 +O(ζb).

Therefore, ∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M(a, b, ζ) dζ =

Γ(a)

bΓ(b)
zb +O(zb+1).

The proof of (3) and (4) are similar.
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We have showed that the integral makes sense, so lastly we will verify the conditions on
∂M
∂a

and ∂M
∂b

.

Remark 5.3.3. Conditions on ∂M
∂a

and ∂M
∂b

are following:

1.
∂M

∂a
(a, b, 0) = 0

2.

(
∂M

∂a

)′∣∣∣∣
z→0

=
1

b

3.
∂M

∂b
(a, b, 0) = 0

4.

(
∂M

∂b

)′∣∣∣∣
z→0

= − a
b2

The results in Remark 5.3.3 are derived directly from the series definition of the Kummer

function, M(a, b, z) (see, [1, Chapter 13]). The conditions will enable us to evaluate the

constants of integration in ∂M
∂a

and ∂M
∂b

. Next, we need to show that our formulas in Theorem

5.2.1 satisfy those conditions. Since we have got two constants of integration in each of the

derivative function we should prove that the formulas satisfy the correct initial conditions

when we choose zero for the lower limit of integration. We will use the leading order terms

in Claim 5.3.1 and Claim 5.3.2 to verify the conditions in Remark 5.3.3.

Claim 5.3.4. The integral formulas for ∂M
∂a

and ∂M
∂b

in Theorem 5.2.1 satisfy the four con-

ditions in Remark 5.3.3.

Proof of Claim 5.3.4 . By Claims 5.3.1 and 5.3.2 we have:

∂M

∂a
|z→0 = lim

z→0
1(

1

b− 1
z)− Γ(b)

(b− 1)Γ(a)
z1−b Γ(a)

bΓ(b)
zb = 0.(

∂M

∂a

)′∣∣∣∣
z→0

= lim
z→0

M ′(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M(a, b, ζ) dζ

− U ′(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M(a, b, ζ) dζ.

(Notice that two more terms of
(
∂M
∂a

)′
by product rule are canceled:

M(a, b, z)
Γ(a)

Γ(b)
e−zzb−1U(a, b, z)M(a, b, z)− U(a, b, z)

Γ(a)

Γ(b)
e−zzb−1M(a, b, z)M(a, b, z) = 0.)
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Thus, (
∂M

∂a

)′∣∣∣∣
z→0

= lim
z→0

(
a

b
)

1

b− 1
z +

Γ(b)

Γ(a)
z−b

Γ(a)

bΓ(b)
zb =

1

b
.

∂M

∂b
|z→0 = lim

z→0
(−1)

a

b(b− 1)
z +

Γ(b)

(b− 1)Γ(a)
z1−b aΓ(a)

b2Γ(b)
zb = 0.(

∂M

∂b

)′∣∣∣∣
z→0

= lim
z→0
−M ′(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1U(a, b, ζ)M ′(a, b, ζ) dζ

+ U ′(a, b, z)

∫ z

0

Γ(a)

Γ(b)
e−ζζb−1M(a, b, ζ)M ′(a, b, ζ) dζ.

(Notice that two more terms of
(
∂M
∂b

)′
by product rule are canceled:

−M(a, b, z)
Γ(a)

Γ(b)
e−zzb−1U(a, b, z)M ′(a, b, z)+U(a, b, z)

Γ(a)

Γ(b)
e−zzb−1M(a, b, z)M ′(a, b, z) = 0.)

Thus, (
∂M

∂b

)′∣∣∣∣
z→0

= lim
z→0

(−a
b

)
a

b(b− 1)
z − Γ(b)

Γ(a)
z−b

aΓ(a)

b2Γ(b)
zb = − a

b2

The case b=1 is similar, using the formulas for the case b=1 from Claim 5.3.2.

Lastly, we can prove the main result Theorem 5.2.1.

Proof of Theorem 5.2.1. From Claim 5.3.1, Claim 5.3.2, and Claim 5.3.4, we verify that the

integral formulas for ∂M
∂a

and ∂M
∂b

make sense where the lower limit of integration is zero and

they give the correct initial conditions at z = 0. That proves the integral formulas for ∂M
∂a

and ∂M
∂b

are correct, by the Uniqueness Theorem for linear ODEs.
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CHAPTER 6 : Open problems

1 Generalize the Pólya-Szegö problem to the case of

magnetic field

Extending the work of Pólya-Szegö mentioned in the Introduction, one can look for a sharp

upper bound for the first eigenvalue for the magnetic Laplacian. Is the first eigenvalue for

the magnetic Laplacian under conformal mapping normalization maximal for the disk? Then

one might be interested in proving the following inequality,

λ1(Ω; β̃) ≤ λ1(D; β),

where f : D 7→ Ω is a conformal map with f ′(0) = 1. We need to try to prove this inequality

for some choice of β̃ depending on Ω (probably, β̃ < β, since otherwise the flux gets bigger

on Ω than on D, because Ω has bigger area than D). Part of the problem is to figure out

what normalization should be imposed on the magnetic field on Ω.

2 Magnetic ground state of annulus under the

Dirichlet boundary condition

We have determined the ground state of disk on the Dirichlet boundary condition. What is

the ground state for the annulus? Is the ground state ever radial? Or is the ground state

always non radial?
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3 Generalize the Pólya-Szegö problem to the domain

of the annuli

If the disk case is successful, then we can try to tackle the first eigenvalue for the magnetic

Laplacian under conformal mapping normalization maximal for the annulus.

Then we can look at questions for the Neumann boundary condition.

4 Understand the ground state energy for the

Neumann boundary condition

We denote eigenfunctions and eigenvalues of the magnetic Neumann Laplacian on the unit

disk D by: (i∇+ F )2 u = µu in D,

~n · (∇− iF )u = 0 on ∂D,

where u(x) is complex-valued and the vector potential is F (x) = β(−x2, x1). The magnetic

field is ∇× F = (0, 0, 2β), where β ∈ R is constant.

For the Neumann case it is not known rigorously what the ground state is. We know

that it depends on magnetic field, β and angular momentum, n. We try to at least get some

estimate. For example, if we given the β-value can we roughly estimate the n-value that

gives the ground state?

We have a picture from D. Saint-James [20] below. What can we really prove about this

20 40 60 80
Β

20

40

60

80

Μ

Figure 6.1: Neumann eigenvalue branches on the disk, for various n-values, as a function of
magnetic field strength β.
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picture? Especially, can we prove what n-value should be for the ground state? Can we prove

the rate of asymptotic growth that is minimum? From the Figure 6.1, the minimum value is

lower than where any particular curve ends up, as β →∞. At least we can investigate that

asymptotic growth rate numerically.
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Appendix A

A Discrete Spectral theorem

Hypotheses. Consider two infinite dimensional Hilbert spaces H and K over R .

1. H is separable.

2. K is continuously and densely imbedded in H, meaning there exists a continuous linear

injection ι : K → H with ι(K) dense in H.

3. The imbedding K ↪→ H is compact, meaning if B is a bounded subset of K then B is

precompact when considered as a subset of H.

4. We have a quadratic form a : K × K → R that is linear in each variable, continuous,

and symmetric.

5. a is elliptic on K, meaning

a(f, f) ≥ c‖f‖2
K ∀f ∈ K,

for some c > 0.

Note that because of the ellipticity condition a, defines an inner product on K that is

equivalent to the original inner product in Hilbert space K. Ellipticity gives a lower bound

and the continuity gives an upper bound.

Theorem A.1 ([8, Chapter 6]). Under the hypotheses above, there exist vectors u1, u2, u3, . . . ∈
K and numbers

0 < γ1 ≤ γ2 ≤ γ3 ≤ · · · → ∞

such that:

1. uj is an eigenvector of a(·, ·) with eigenvalue γj, meaning
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a(uj, v) = γj〈uj, v〉H for all v ∈ K, (A.1)

2. {uj} is an ONB for H,

3. {uj/
√
γj} is an ONB for K with respect to the a-inner product.

The decomposition

f =
∑
j

〈f, uj〉H uj (A.2)

converges in H for each f ∈ H, and converges in K for each f ∈ K.
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Appendix B

B Proof of Weyl’s criterion

In this Appendix, we will prove some Weyl type criteria for discreteness of the spectrum, by

using Appendix A. Alternatively, one could use the general criteria of Friedrichs [16]. We

consider the Sturm-Liouville eigenvalue problem

−(p(x)ux)x + q(x)u = λr(x)u, 0 < x < L, (B.1)

under the assumptions: L > 0 and

1. p, r > 0 on (0, L],

2. p, px, q, and r are real-valued and continuous on (0, L],

3. Either

(i)
q(x)

r(x)
→∞ as x→ 0

or

(ii) q(x)/r(x) is bounded below on (0, L), and r, Pr ∈ L1((0, L); dx)) where P (x) is

an antiderivative of 1/p(x).

Also, consider two infinite dimensional Hilbert spacesH andK over R. Letm = inf
0<x≤L

q(x)

r(x)
>

−∞.

H = L2
(
(0, L); r dx

)
,

K =
{
f ∈ W 1,2

loc (0, L) : f ′ ∈ L2
(
(0, L); p dx

)
, f ∈ L2

(
(0, L); (|q|+ r) dx

)
, f(L) = 0

}
,
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with inner products

〈f, g〉H =

∫ L

0

fg r dx,

〈f, g〉K =

∫ L

0

(
f ′g′p+ fg(|q|+ r)

)
dx.

Theorem B.1. There exists an ONB {uj} for L2(D,C) and corresponding eigenvalues which

we denote Ej > 0 satisfying Equation (B.1) weakly in the sense that∫ L

0

(u′jv
′p+ ujvq) dx = Ej

∫ L

0

ujvr dx, for all v ∈ K.

The eigenfunction uj satisfies the eigenfunction equation weakly, so that uj is a weak eigen-

function of the Laplacian with eigenvalue Ej. Elliptic regularity theory gives that uj is

smooth (assuming p, q, r are smooth) and hence satisfies the eigenfunction equation classi-

cally. The boundary condition uj(L) = 0 is satisfied classically also.

Let us check the following assumptions of the Discrete Spectral Theorem (Appendix A)

in order to prove Theorem B.1.

1. H is separable.

2. K is continuously and densely imbedded in H, meaning there exists a continuous linear

injection ι : K → H with ι(K) dense in H.

Proof.

‖f‖2
H =

∫ L

0

f 2r dx

=

∫ L

0

f 2(q − (m− 1)r) dx, since q −mr ≥ 0

≤ (const.)‖f‖2
K, since q − (m− 1)r ≤ |q|+ (|m|+ 1).

So if f ∈ K then f ∈ H. And K is dense in H since C∞c (0, L) ⊆ K and C∞c is dense in

L2((0, L), rdx).

3. The imbedding K ↪→ H is compact, meaning if B is a bounded subset of K then B is

precompact when considered as a subset of H. (Equivalently, every bounded sequence

in K has a subsequence that converges in H.)
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Proof. (i) Assume q(x)/r(x)→∞ as x→ 0. Suppose {fk} is a bounded sequence in

K, say with ‖fk‖K ≤ M for all k. We must prove the existence of a subsequence

converging in H. For each δ > 0, note that p and |q|+ r are bounded below away

from 0 on [δ, L]. Hence the sequence is bounded in W 1,2(δ, L), for each δ ∈ (0, L).

Take δ2 = L
2
. The Rellich–Kondrachov theorem provides a subsequence that

converges in L2(δ2, L) and hence in L2((δ2, L), rdx) (using here that r is bounded

below away from 0 on [δ, L]). Repeating with δ3 = L
3

provides a sub-subsequence

converging in L2(δ3, L). Continue in this fashion and then consider the diagonal

subsequence that converges in L2((δ, L), rdx) for each δ ∈ (0, L). We will show

this subsequence converges in L2((0, L), rdx). Denote it by {fk`}. Let ε > 0 with

ε < 1
2(|m|+1)

. Since q(x)
r(x)

grows to infinity as x→ 0, we may choose δ small enough

that
q(x)

r(x)
>

1

ε
, when x ∈ (0, δ).

Then ∫ δ

0

f 2
k`
r dx ≤ ε

∫ δ

0

f 2
k`
q(x) dx

≤ ε

∫ δ

0

f 2
k`

(q + r) dx

≤ ε‖fk`‖2
K

≤ εM2

for all `. Since also {fk`} converges on L(δ, L), we have

lim sup
`,n→∞

‖fk` − fkn‖L2((0,L),rdx) = lim sup
`,n→∞

‖fk` − fkn‖L2((0,δ),rdx) ≤ 2
√
εM.

Since ε was arbitrary, we conclude that lim sup`,n→∞‖fk` − fkn‖L2((0,L),rdx) = 0.

Therefore {fk`} is Cauchy in L2((0, δ), rdx), and hence converges.

(ii) Assume q(x)/r(x) is bounded below on (0, L) (so that m > −∞) and that r(x)

and P (x)r(x) are integrable, where P ′ = 1/p. The proof goes like in part (i),

except we need a different argument to show∫ δ

0

f 2
kl r dx ≤ εM2.
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Let ε > 0 and choose δ > 0 such that∫ δ

0

|P (x)|r(x) dx ≤ ε,

which is possible since Pr is integrable. Write f = fkl and P (x) = −
∫ L
x
p(y)−1 dy,

so that P is antiderivative of 1/p. Then

f(x) = −
∫ L

x

f ′(y) dy since f(L) = 0

≤
(∫ L

x

f ′(y)2p(y) dy

)1/2(∫ L

x

p(y)−1 dy

)1/2

by Cauchy-Schwarz

≤ ‖f‖K|P (x)|1/2.

So ∫ δ

0

f 2 r dx ≤ ‖f‖2
K

∫ δ

0

|P (x)|r(x) dx

≤M2ε

by our choice of δ. That gives the inequality we needed.

4. We have a quadratic form

a : K ×K → R

a(f, g) =

∫ L

0

f ′g′p dx+

∫ L

0

fg[q − (m− 1)r] dx

that is linear, continuous, and symmetric, meaning

f 7→ a(f, g) is linear, for each fixed g,

g 7→ a(f, g) is linear, for each fixed f ,

|a(f, g)| ≤ (const.)‖f‖K‖g‖K
a(f, g) = a(g, f)

Proof. a(f, g) is clearly linear in f and g.

We have |a(f, g)| ≤ C‖f‖K‖g‖K by Cauchy-Schwarz inequality:
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the key point is that

0 < q − (m− 1)r ≤ (const.)(|q|+ r).

a(f, g) = a(g, f) is obvious.

5. a is elliptic on K, meaning

a(f, f) ≥ c‖f‖2
K ∀f ∈ K,

for some c > 0.

Proof. We will show
q − (m− 1)r

|q|+ r
≥ (const.) > 0. (B.2)

Then

a(f, f) =

∫ L

0

f ′
2
p dx+

∫ L

0

f 2[q − (m− 1)r] dx

≥
∫ L

0

f ′
2
p dx+ (const.)

∫ L

0

f 2(|q|+ r) dx

≥ c‖f‖2
K,

which is ellipticity.

We prove (B.2) with constant 1/(|m|+ 1), by dividing into cases.

Case 1. Suppose m ≥ 0. Then q ≥ mr ≥ 0 and so

q − (m− 1)r

|q|+ r
= 1−m r

q + r

≥ 1−m 1

m+ 1
since q ≥ mr

=
1

m+ 1
.

Case 2. Suppose m < 0 and q(x) ≥ 0. Then

q − (m− 1)r

|q|+ r
= 1 + |m| r

q + r
≥ 1.
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Case 3. Suppose m < 0 and q(x) < 0. Then

q − (m− 1)r

|q|+ r
=

(|m|+ 2)r

|q|+ r
− 1

≥ |m|+ 2

|m|+ 1
− 1 since |q| ≤ |m|r

=
1

|m|+ 1
.

Finishing the proof of Theorem B.1. We checked the assumptions of the Discrete Spectral

Theorem, and so by Appendix A we get an ONB of weak eigenfunctions satisfying

a(uj, v) = γj〈uj, v〉H

for all v ∈ K. To finish proving Theorem B.1, just add (m− 1)〈uj, v〉H to both sides and let

Ej = γj +m− 1.

Lemma B.2 (Monotonicity with respect to the weight). Assume (p, q, r) and (p̃, q̃, r) are

two collections of weight functions satisfying the assumptions at the beginning of Appendix

B.

If p ≤ p̃ and q ≤ q̃, then the corresponding eigenvalues of the two problems are related by

Ek ≤ Ẽk, ∀k ≥ 1.

Proof. Write K and K̃ for the spaces corresponding to the two problems. The assumption

that p ≤ p̃ and q ≤ q̃ implies that

K ⊃ K̃.

By Poincaré’s minimax characterization of the higher eigenvalues,

Ẽk = min
S̃

max
f∈S̃

∫ L
0

(
|f ′|2p̃+ f 2q̃

)
dx∫ L

0
f 2r dx

,

where S̃ ranges over all k-dimensional subspaces of K̃. Hence

Ẽk ≥ min
S̃

max
f∈S̃

∫ L
0

(
|f ′|2p+ f 2q

)
dx∫ L

0
f 2r dx

.
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Every subspace of K̃ is also a subspace of K, and so

Ẽk ≥ min
S

max
f∈S

∫ L
0

(
|f ′|2p+ f 2q

)
dx∫ L

0
f 2r dx

= Ek

where S ranges over all k-dimensional subspaces of K.
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Appendix C

C Application for f (x) in harmonic oscillator equation

Now let us check the Weyl’s criterion for our eigenfunction f(x):

−(f ′′ +
1

x
f ′ − n2

x2
f) + β2x2f = Ef.

Then rewrite this equation in form of Equation (B.1) in Appendix B.

−(xf ′)′ + (
n2

x2
+ β2x2)xf = Exf

In other words,

−(xfx)x + (
n2

x
+ β2x3)f = Exf, 0 < x < 1.

Now check the assumptions in Appendix B:

1. x > 0 on (0, 1].

2. x, x′ and n2

x
+ β2x3 are real-valued and continuous on (0, 1].

3. (i) When n 6= 0, we see n2

x2
+ β2x2 →∞ as x→ 0.

(ii) When n = 0, we check that β2x2 is bounded from below, and x, xP (x) are inte-

grable on (0, 1), where P (x) =
∫

1/p(x) dx =
∫

1/x dx = lnx.

Note: part (ii) actually works for all n, not just for n = 0.

One can find a lot more information about Sturm-Liouville problem in Zettl [43].
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[11] László Erdös. Dia- and paramagnetism for nonhomogeneous magnetic fields. J.
Math. Phys. 38 (1997), no. 3, 12891317.

72
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