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ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a technique that allows one

to probe the vibrational modes of molecules with great precision. However,

current methods involve the enhancement of local fields from spontaneous

Raman scattering near a metallic substrate. By utilizing stimulated Raman

scattering over spontaneous Raman scattering, the effect of the enhancement

of the local fields will be increased due to nonlinear excitations. An electro-

magnetic derivation for the enhancement of local fields near the surface of

a small metallic sphere due to stimulated Raman scattering is performed.

In addition, the non-trivial relationship between the enhancement and ex-

tinction of the Raman signal is considered. Using the effective medium ap-

proach, an expression for the scattered Raman field of a collection of metallic

nanoparticles that includes both these effects is formulated. Optimal pa-

rameters for surface-enhanced stimulated Raman spectroscopy (SESRS) are

proposed based on the study of enhancement and extinction phenomena in

the collection of nanoparticles.
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CHAPTER 1

INTRODUCTION

The field of surface-enhanced Raman spectroscopy (SERS) has been an active

area of research since its inception three decades ago. It was first demon-

strated by Fleischmann et al. in 1974 [1] to obtain the Raman spectra of

pyridine molecules that are adsorbed on a silver electrode. Since then, the

methodology for SERS experiments has extended beyond the bulk substrate

geometry of the early demonstrations [2, 3, 4]. Indeed, there is a myriad of

applications for SERS based on novel substrate topologies such as in ultra-

sensitive detection and multiplexed analyses [5, 6, 7, 8, 9, 10].

However, much of the research and application in SERS is focused on the

exploitation of spontaneous Raman scattering on the surface of the structure

that provides the local field enhancement. In the presence of an additional

seed field, it can been shown that the scattering process is significantly more

efficient. Furthermore, the effect of the local field enhancement of the stim-

ulated process is larger than the local field enhancement of the spontaneous

process because both the pump and seed field are amplified in the stimulated

process. As such, there is growing interest in employing the surface-enhanced

stimulated Raman spectroscopy (SESRS) setup instead of the conventional

SERS setup to take advantage of the larger enhancements obtained in stim-

ulated Raman scattering (SRS).

The substrate topology to be considered in this thesis consists of a suspen-

sion filled with metallic nano-particles. This topology is widely used because

these nano-particles could serve as markers to amplify the scattered fields

from Raman active molecules in its vicinity. In general, these nano-particles

are engineered to have a plasmon resonance that is close to the excitation

wavelength so as to increase the potential enhancement factors of these par-

ticles. Since the plasmon resonance is strongly dependent on the geometry

of the particle, it is necessary to analyze the latter to construct particles

with the appropriate resonance wavelength for the experiment. Hence, it is
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common to have particle geometries, such as nano-rods or nano-spheres, of

different spatial dimensions for various SERS and SESRS setups.

As in spontaneous Raman scattering, the presence of these enhancement

particles also attenuates the signal from SRS through absorption and scat-

tering. Despite the local field enhancements, these absorption and scattering

phenomena ultimately lead to the extinction of the Raman signal near the

plasmon resonance of the nano-particles. In particular, it has been shown

in the work of van Dijk et al. [11] that there is competition between the

enhancement and extinction effects on the Raman signal. Thus, increasing

the enhancement effect by increasing the nano-particle concentration would

cause the extinction effect to be rapidly dominant.

In this thesis, the effects of enhancement and extinction in SESRS for a

suspension of metallic nano-particles will be discussed. By utilizing the ef-

fective medium approximation, an analytic expression for the total Raman

signal in the far-field can be derived. It will be demonstrated through this

analysis that the local field enhancement in SESRS is in general larger than

the local field enhancement in SERS. Furthermore, emphasis is made on the

competition between the enhancement and extinction effects in SESRS such

that the peak Raman signals are obtained off the plasmon resonance of the

nano-particles. The non-linear relationship of the enhancement and extinc-

tion on the Raman signal will then be used to show that for any wavelength,

an optimum concentration of nano-particles can be found which maximizes

the signal.
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CHAPTER 2

EXTINCTION PROCESSES

In this chapter, the notion of extinction as a reduction in the detected electro-

magnetic radiation is introduced. The extinction of electromagnetic radiation

due to the presence of a small sphere will be derived and further extrapo-

lated to describe the extinction of radiation propagating through a slab of

particles.

2.1 Absorption and Scattering

The extinction process due to the presence of an object can be modeled

through the absorption and scattering phenomena that occur as a result of

the object’s interaction with the electromagnetic field [12]. The absorption

phenomena typically refer to energy that has been lost from the field to the

object. On the other hand, the scattering phenomena refer to energy that

has been lost from detection due to deviations of the propagation of the field

from its original trajectory. Thus, the rate at which the energy of the incident

field is extinguished Wext is simply the sum of the energy that is absorbed

Wa and the energy that is scattered Wsc:

Wext = Wa +Wsc. (2.1)

Since the absorption, scattering and extinction processes are closely related

to each other through Equation (2.1), it suffices to study the behavior of

the scattered field that results from the interaction of the incident electro-

magnetic field on an object. For simplicity, the object of interest will be

a sphere such that the magnetic permeability of the sphere and the sur-

rounding medium are equivalent. The scattering of an incident plane wave

on the sphere can then be solved by considering the expansion of the plane

wave in terms of the spherical wave functions. By doing so, the scattered

3



field in spherical coordinates (r,θ,φ) can be expressed in the following form

[13, 14, 15]

Esc
r = E0

icos(φ)

(kr)2

∞∑
n=0

ann(n+ 1)Ĥ(1)
n (kr)P 1

n(cosθ), (2.2)

Esc
θ =

E0cosφ

kr

∞∑
n=1

[
aniĤ

(1)′
n (kr)

dP 1
n(cosθ)

dθ
− bnĤ(1)

n (kr)
P 1
n(cosθ)

sinθ

]
, (2.3)

Esc
φ = −E0sinφ

kr

∞∑
n=1

[
aniĤ

(1)′
n (kr)

P 1
n(cosθ)

sinθ
− bnĤ(1)

n (kr)
dP 1

n(cosθ)

dθ

]
, (2.4)

where P 1
n(x) is the associated Legendre function of the first kind of degree

one, Ĥ
(1)
n (x) is the Riccati-Hankel function of the first kind with degree n

and with the prime symbol denoting a derivative over the argument x and an

and bn are the scattering coefficients that characterizes the scattered electric

field.

Using the orthogonality of the functions sinφ and cosφ and the boundary

conditions on the sphere-medium interface relating the incident and scattered

field with the internal field of the sphere, we obtain a set of linear equations

in the expansion coefficients for the scattered and internal electric fields. As

such, by solving for these linear equations, the scattering coefficients an and

bn can be obtained and are given by

an =
mĴn(mx)Ĵ ′n(x)− Ĵn(x)Ĵ ′n(mx)

mĴn(mx)Ĥ
(1)′
n (x)− Ĥ(1)

n (x)Ĵ ′n(mx)
, (2.5)

bn =
Ĵn(mx)Ĵ ′n(x)−mĴn(x)Ĵ ′n(mx)

Ĵn(mx)Ĥ
(1)′
n (x)−mĤ(1)

n (x)Ĵ ′n(x)
, (2.6)

where Ĵn(x) is the Riccati-Bessel function of the first kind with degree n

(with the prime symbol denoting the derivative over the argument) and m is

the relative refractive index between the sphere and its surrounding medium.

It is often useful to describe the extinction process in terms of the extinc-

tion cross-section Cext. As the name suggests, the extinction cross-section

has units of area and is a measure of the scattering interaction of the object.
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In spherical coordinates, Cext is given by the following integral

Cext =
1

2Ii
Re

∫ 2π

0

∫ π

0

(
Einc
φ Hsc∗

θ − Einc
θ Hsc∗

φ − Esc
θ H

inc∗
φ + Esc

φ H
inc∗
θ

)
r2sinθdθdφ,

(2.7)

where Ii represents the incident irradiance, the superscript inc denotes the

incident field and H represents the magnetic field which can be obtained

from the electric field using Maxwell’s equations. Since the cross-section is

independent of the polarization of the incident field, it is computationally

simpler to consider the case where the incident field is linearly polarized in

one of the Cartesian axes. By substituting this incident electric field into

Equation (2.7) and performing some algebraic manipulation, the extinction

cross-section due to the sphere is given by

Cext =
2π

k2

∞∑
n=1

(2n+ 1) Re {an + bn} , (2.8)

where k represents the wavenumber of the field. If we consider a sphere

such that its radius a is small compared to the wavelengths of interest, the

expression for the extinction cross-section simplifies considerably. This can

be achieved by expressing the Riccati-Bessel function and Riccati-Hankel

function (together with their derivatives) in terms of power series and only

keeping the first few terms. As such, the first three scattering coefficients of

interests to terms of order x6 are

a1 = −i2x
3

3

(
m2 − 1

m2 + 2

)
− i2x5

5

(m2 − 2) (m2 − 1)

(m2 + 2)2 +
4x6

9

(
m2 − 1

m2 + 2

)2

, (2.9)

b1 = −ix
5

45

(
m2 − 1

)
, (2.10)

a2 = −ix
5

15

(
m2 − 1

2m2 + 3

)
. (2.11)

By inserting Equations (2.9) to (2.11) into Equation (2.8), we obtain the

following closed-form expression for the extinction cross-section of a sphere
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whose radius a is small compared to the wavelength

Cext = 4kπa3Im

{
p2 − 1

p2 + 2

[
1 +

(ka)2

15

p2 − 1

p2 + 2

×p
4 + 27p2 + 38

2p2 + 3

]}
+

8

3
(ka)4πa2Re

[(
p2 − 1

p2 + 2

)2
]
. (2.12)

2.2 Beer’s Law in a Slab of Particles

In this section, the extinction of a set of particles embedded within a semi-

infinite region is considered with the aim of deriving an equation relating

the transmitted intensity to the incident intensity that is analogous to Beer’s

law. The geometry of interest is depicted in Figure 2.1. For particles with

dimensions small compared to the wavelength, it is reasonable to approximate

these particles as spheres regardless of the actual shape of the particles.

Figure 2.1: Illustration of the geometry of interest. A slab with refractive
index m is filled with particulate objects that are well approximated by
spheres. The resultant intensity in the far-zone (measured by the detector)
is of interest in determining the degree of extinction by propagating the
field through the particulate-filled slab.
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The transmitted electric field Et through the slab of particles is given by

Et = Ei +
∑
j

Esj, (2.13)

where Ei is the incident field and Esj is the contribution of the scattered

field from each particle indexed by the label j. Equation (2.13) can be

evaluated explicitly if we assume that the particles are identical and that the

number of particles per unit volume ρ is large such that the summation can

be well-approximated by an integral [12]. By evaluating this summation as

an integral and evaluating it in the far zone, the resultant transmitted field

is related to the incident field by the following equation:

Et = Ei exp

[
−2πmρh

k2
S(0)

]
, (2.14)

where h is the thickness of the slab and S(0) is the scattering amplitude in

the forward direction.

On the other hand, the transmission coefficient of a homogeneous slab of

thickness h and refractive index m̃ is well-known and is given by

t̃slab =
Et

Ei

= ei
2π
λ

(m̃−m)h. (2.15)

Hence, it is clear from Equations (2.14) and (2.15) that the field in the far

zone for a homogeneous slab is equivalent to the slab of particles if m̃ is

related to m by the following relation

m̃ = m

[
1 + i

2πρ

k3
S(0)

]
. (2.16)

Due to this equivalence, m̃ is often referred to as the effective refractive

index of the slab of particles. With the effective refractive index of the slab

of particles, the intensity of the transmitted field can be derived using Beer’s

law which is well-understood in the context of a homogeneous medium [16].

The attenuation coefficient α that appears in Beer’s law is given by

α = 2kImm̃. (2.17)

Thus, by inserting Equation (2.16) into Equation (2.17) and using the optical
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theorem [17]:

Cext =
4π

k2
Re [S(0)] , (2.18)

we can express the attenuation coefficient αext due to extinction as

αext = mρCext. (2.19)

Therefore, the transmitted intensity It is related to the incident intensity Ii

as follows:

It = Iie
−ρmhCext . (2.20)

Since the particles are well-approximated by a sphere, the extinction cross-

section Cext is (to a good approximation) given by Equation (2.12). As such,

the extinction of an incident field propagating through the slab of particles

can now be explicitly calculated (in the far zone) using Equation (2.20) in

conjunction with Equation (2.12).
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CHAPTER 3

SURFACE ENHANCEMENT OF LOCAL
FIELDS

In this chapter, the free-space, dyadic Green function is introduced as a

method to solve the wave equation in electromagnetic theory. The method

of dyadic Green functions will then be utilized to derive the enhancement

factor that results from the Raman scattering interaction on the surface of a

spherical particle.

3.1 Dyadic Green Function

In electromagnetic theory, the wave equation for the electric field E is given

by

∇×∇× E− k2
0E = 4πS, (3.1)

where S represents the source and k0 is the free-space wavenumber. To solve

for E, we consider a particular function G(r, r′) that satisfies the following

equation

∇×∇×G(r, r′)− k2
0G(r, r′) = 4πδ(r− r′)I, (3.2)

where δ is the Dirac delta function, r and r′ are the position vectors to the

observation points and the source points respectively and I =
∑

j x̂jx̂j is

the identity dyad with {x̂j} being an orthonormal basis in R3. The function

G(r, r′) can be viewed as a fundamental solution to the wave equation and

is often called the electric dyadic Green function.

The derivation of the explicit form for the dyadic Green function follows

closely from Levine and Schwinger [18, 19]. By taking the divergence of

Equation (3.1), the relation

∇ · E = −4π

k2
0

∇ · S, (3.3)
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is obtained. Substituting Equation (3.3) back into Equation (3.1) yields the

vector Helmholtz equation

∇2E + k2
0E = −4π

(
I +

1

k2
0

∇∇
)
· S. (3.4)

Each component of the electric field E can then be solved individually using

the method of the scalar Green function:

Ei(r) =

∫
V

d3r′G0(r− r′)

(
δij +

1

k2
0

∂i∂j

)
Sj(r

′), (3.5)

where the Einstein summation convention is used, δij is the Kronecker delta

and the free-space scalar Green function G0 is given by

G0(r− r′) =
eik0|r−r

′|

|r− r′|
. (3.6)

Equation (3.5) can be rearranged (through integration by parts) such that

the derivatives act on the scalar Green function instead of the source S.

Thus, we obtain:

Ei(r) =

∫
V

d3r′Sj(r
′)

(
δij +

1

k2
0

∂i∂j

)
G0(r− r′). (3.7)

We can identify Equation (3.7) as the solution to Equation (3.1) given a

source function S. With this formalism, the dyadic Green function can be

identified from Equation (3.7) as

G(r, r′) =

(
I +

1

k2
0

∇∇
)
·G0(r− r′). (3.8)

The solution to the vector Helmholtz equation in Equation (3.1) can now be

written compactly as

E(r) =

∫
V

d3r′S(r′) ·G(r, r′). (3.9)

The dyadic Green function can be decomposed into two components: one

that contributes only to the near-field and one that contributes only to the

10



far-field [20]. These contributions are denoted as

Gfar(r, r
′) =

eikr

r
k2 (I− r̂r̂) , (3.10)

Gnear(r, r
′) =

1

r3
(3r̂r̂ − I) , (3.11)

where r̂ is the unit vector in the radial direction. Such a decomposition of

the dyadic Green function will be frequently used in the derivation of the

enhancement (due to the presence of the particle) of the scattered Raman

field.

3.2 Enhancement of Local Fields by Small Particles

In this section, the enhancement of the Stokes’ field due to the presence

of the particle is derived. The problem will be modeled as a single dipole

(representing the Raman-active molecule) near a PEC surface (representing

the particle) with polarizability

α = 6ε0χ
(3)
m |Ep|2, (3.12)

where χ
(3)
m is the hyper-polarizability of the dipole, Ep is the electric field

amplitude of the pump beam and ε0 is the permittivity of free space.

Given the context of the problem, we assume that the dipole, with position

r0 is located on the surface of a particle that is approximated as a PEC sphere

with radius a. Furthermore, we neglect any lower-order interactions between

the pump beam, Stokes’ beam and the dipole. If the dipole is excited by

both the pump field Eexc,p and the Stokes’ field Eexc,s, the total scattered

electric field ER at position r is

ER(r, ω) = αG0(r, r0) · Eexc,s(r0) + αga3G0(r, rr) · [G0(rr, r0) · Eexc,s(r0)],

(3.13)

where G0(r, r0) is the free-space dyadic Green function, ω is the angular

frequency of the Stokes’ field, rr is the position of the image dipole, g =

(p2 − 1)/(p2 + 2) with p = ms/m being the ratio of the refractive index of

the sphere to the refractive index of the medium at the Stokes’ frequency

and it is implied that the pump field Eexc,p goes into the expression for

11



Figure 3.1: Illustrating the position of the dipole, its image and the point of
observation in Equation (3.13). The total Stokes field ER(ω) at position r
is the sum of the field from the dipole (depicted by the double-arrow line)
at position r0 and the scattered field from the image dipole at position rr.

the polarizability. The geometry for Equation (3.13) is depicted in Figure

3.1. The first term on the right-hand side of Equation (3.13) represents the

contribution to ER(ω) from the dipole at r0 and the second term represents

the contribution to ER(ω) from the image dipole at rr.

By expanding the dot product of the dyadic Green function with the ex-

cited field in the far-field regime using Equation (3.10), one obtains

G0(r, r0) · Eexc,s(r0) =
eikr

r
k2{Eexc,s(r0)− r̂[r̂ · Eexc,s(r0)]}, (3.14)

and

G0(r,−r0) · [G0(−r0, r0) · Eexc,s(r0)] =
eikr

rr3
0

k2{3(r̂0 · Eexc,s(r0))[r̂0 − r̂(r̂ · r̂0)]

− [Eexc,s(r0))− r̂(r̂ · Eexc,s(r0)]}.
(3.15)
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Inserting Equations (3.14) and (3.15) into Equation (3.13), we have

ER(r, ω) =
αeikr

r
k2{Eexc,s(r0)− r̂[r̂ · Eexc,s(r0)]}

+
gαeikr

r
k2{3(r̂0 · Eexc,s(r0))[r̂0 − r̂(r̂ · r̂0)]

− [Eexc,s(r0))− r̂(r̂ · Eexc,s(r0)]}. (3.16)

It can be seen from Equation (3.16) that the explicit expression for the

total electric field is quite complicated. However, for illustrative purposes,

an expression for the total electric field when the dipole is situated along

a coordinate axis is given [21]. In particular, the case when the dipole is

located at the surface of the sphere on the positive y-axis will be considered.

It is assumed that the incident field is propagating along the positive z-axis

and the scattering plane is located on the x-z plane. By decomposing the

vector r̂0 = r0/‖r0‖ in Equation (3.15) into the vector r̂ = r/‖r‖ and the

vector r̂⊥ = r̂0 − r̂(r̂ · r̂0), one obtains after some simplification

ER(r, ω) = α(1 + 2g)G0(r, r0) · Eexc,s(r0). (3.17)

With a field Ei is incident on the sphere, the total excited field Eexc is a

superposition of the incident field and the field that is elastically scattered

from the sphere. Thus, Eexc can be further expressed as

Eexc,far(r) = Ei(r) +
eikr

r
k2ga3[Ei(r0)− r̂(r̂ · Ei(r0))], (3.18)

Eexc,near(r) = Ei(r) + g[3r̂(r̂ · Ei(r))− Ei(r)]. (3.19)

Since the electric field in the vicinity of the dipole influences the resultant

radiation, only the contributions to the near field Eexc,near are considered.

Hence, by inserting Equation (3.19) into Equation (3.17), the expression

ER(r, ω) = 6ε0χ
(3)
m |Ep(r) + g0[3r̂(r̂ · Ep(r))− Ep(r)]|2(1 + 2g){G0(r, r0) · Es(r0)

+ g0G0(r, r0) · [3r̂0(r̂0 · Es(r0))− Es(r0)]}, (3.20)

is obtained, where Ep and Es are the incident pump and Stokes’ field respec-

tively and g0 is the ratio of the refractive index of the sphere to the refractive

index of the medium at the pump frequency. The dot product between the
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dyadic Green function and the incident pump and Stokes’ electric field can

be expanded in the same manner as Equations (3.14) and (3.15) to get

G0(r, r0) · Ei(r0) =
eikr

r
k2{Ei(r0))− r̂[r̂ · Ei(r0)]}, (3.21)

and

G0(r, r0) · [3r̂0(r̂0 · Ei(r0))− Ei(r0)] =
eikr

r
k2{3(r̂0 · Ei(r0))[r̂0 − r̂(r̂ · r̂0)]

− [Ei(r0)− r̂(r̂ · Ei(r0))]}. (3.22)

Equation (3.22) can be further simplified by the same method that is used

to derive Equation (3.17) to obtain

G0(r, r0) · [3r̂0(r̂0 ·Ei(r0))−Ei(r0)] =
2eikr

r
k2{Ei(r0)− r̂[r̂ ·Ei(r0)]}. (3.23)

Substituting Equations (3.21) and (3.23) into Equation (3.20), the expression

for the total electric field simplifies to

ER(r, ω) = 6ε0χ
(3)
m |Ep|2|1 + 2g0|2(1 + 2g)2G0(r, r0) · Es(r0), (3.24)

which can be expressed as

ER(r, ω) = α|1 + 2g0|2(1 + 2g)2G0(r, r0) · Es(r0). (3.25)

Therefore, it can be seen that the scattered field in the far-zone of a dipole

located at the surface of the particle on the positive y-axis is equivalent to the

scattered field of the dipole in the absence of the particle multiplied by the

enhancement factor |1+2g0|2(1+2g)2. We define the enhancement factors on

the pump and Stokes fields as fp = (1 + 2g0) and fs = (1 + 2g) respectively.

Next, we consider a monolayer of Raman-active molecules on the particle.

To determine the enhancement factor for such a geometry, we consider the

far-field amplitude F(θ, φ) of the scattered field observed at angles (θ, φ).

This is defined from the scattered Raman field ER as

F(θ, φ) =
rER(r, ω)

exp(ikr)

∣∣∣∣
kr→∞

. (3.26)
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For a dipole that is randomly oriented, the far-field amplitude F′(θ, φ) is

obtained by averaging over all orientations of the dipole. The far-field am-

plitude of such a dipole, decomposed into its vertical V and horizontal H

components, is given by

|F′Hh(θ, φ)|2 =
k4

15

(
2cos2θ + 1

)
, (3.27)

|F′Vh(θ, φ)|2 =
k4

15
, (3.28)

|F′Vv(θ, φ)|2 =
k4

5
, (3.29)

|F′Hv(θ, φ)|2 =
k4

15
, (3.30)

where the subscripts h and v denote that the polarization of the incident field

is horizontal and vertical respectively. Given the far-field amplitude F(θ, φ)

of a radiating source, we may now define the enhancement factor as

GHh =
|FHh(θ, φ)|2

|F′Hh(θ, φ)|2
, (3.31)

GVh =
|FVh(θ, φ)|2

|F′Vh(θ, φ)|2
, (3.32)

GVv =
|FVv(θ, φ)|2

|F′Vv(θ, φ)|2
, (3.33)

GHv =
|FHv(θ, φ)|2

|F′Hv(θ, φ)|2
. (3.34)

Let us assume that we have an incident field propagating along the z-axis

and that the scattering plane is the x-z plane. The dipoles are also assumed

to be oriented perpendicular to the surface of the particle. Then, the far-field

amplitude of the field scattered from the layer of Raman-active molecules on

the surface of the particle is given by averaging over all positions on the

sphere. This is given by:

|FHh(θ, 0)|2 =
k4

15
||1 + 2g0|2(1 + 2g)2|2

(
2cos2θ + 1

)
, (3.35)

|FVh(θ, 0)|2 =
k4

15
||1 + 2g0|2(1 + 2g)2|2, (3.36)
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for incident fields with horizontal polarization (polarization in the x̂ direc-

tion) and

|FVv(θ, 0)|2 =
k4

5
||1 + 2g0|2(1 + 2g)2|2, (3.37)

|FHv(θ, 0)|2 =
k4

15
||1 + 2g0|2(1 + 2g)2|2, (3.38)

for incident fields with vertical polarization (polarization in the ŷ direction).

The azimuthal angle φ is identically zero since the scattering plane is the

x-z plane. Hence, by inserting Equations (3.35)-(3.38) into Equations (3.31)-

(3.34), we see that the enhancement is

G = ||1 + 2g0|2(1 + 2g)2|2. (3.39)

Thus, we see from Equation (3.39) that the scattered field from a monolayer

of Raman-active molecules is enhanced by the factor ||1 + 2g0|2(1 + 2g)2|2

due to the presence of the small particle.

16



CHAPTER 4

EFFECTIVE MEDIUM THEORY AND
HOMOGENIZATION

In this chapter, the concept of the effective medium theory is applied to

the geometry depicted in Figure 4.1. It will be shown through successive

applications of the effective medium theory that the scattered field from the

configuration in Figure 4.1 is equivalent to some homogeneous medium with

an effective Raman susceptibility that will be derived. The equivalence of the

configuration with a homogeneous medium is called homogenization and this

process simplifies the calculations for the total Raman signal that is obtained

from the propagation of some incident field through the slab.

4.1 Effective Medium Theory: Molecules on Small

Particle

The effective medium theory will be utilized so that the scattered Raman

signal due to Raman-active molecules on a small particle in the far-zone is

formally equivalent to the scattering Raman signal on a small sphere with

susceptibility χ. This will allow us to simplify the geometry in Figure 4.1 to

the geometry in Figure 2.1 where we have a collection of spheres with some

Raman susceptibility.

We assume for simplicity that the Raman-active molecules on the particles

are identical. Since the molecules on the particle might be densely packed

and close to one another, effects from multiple scattering could dominate

in the analysis. However, it has been shown that when the position of the

molecules are uncorrelated [22, 23], the following effective medium analysis

that is analogous to the Maxwell-Garnett model is valid. We further sim-

plify the analysis by making the first Born approximation so that the main

contributions to the scattered field comes from the interaction between the

incident field and the Raman-active molecules. Since we know that for a
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Figure 4.1: Illustration of the geometry of interest. A slab with refractive
index m and negligible third-order susceptibility is filled with particles that
are well approximated by spheres. The slab is also filled with Raman-active
molecules depicted by the double-arrow lines. Only the molecules near the
particle will see a profound enhancement induced by the presence of the
particle.

single Raman-active molecule that the scattered field is given by Equation

(3.24), the total Raman signal for a monolayer on the particle is the sum of

the scattered field from each molecule. This is given by

ER(r, ω) =
∑
j

|fp|2f 2
sE

(0)
j (r), (4.1)

where E
(0)
j (r) is the scattered field resulting from the interaction between

the incident field and the jth molecule. If we further assume that the parti-

cle and the Raman-active molecules have spatial dimensions that are much

smaller than the wavelength of interest, it is then possible to ignore any phase

differences between the fields scattered from the molecules. Since the field

scattered from each molecule is the same, Equation (4.1) simplifies to

ER(r, ω) = N |fp|2f 2
sE

(0)(r), (4.2)

where N is the number of Raman-active molecules attached to the particle.
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We can expand the expression for the scattered field resulting from a single

molecule to obtain

ER(r, ω) = 6k2Nχ
(3)

m |fp|2f 2
s ε0|Ep|2 (G0(r, r0) · Es(r0)) , (4.3)

where χ
(3)

m is the molecular susceptibility of the Raman-active molecule and

the molecule is assumed to be a dipole. From Equation (4.3), we see that

the field scattered from a monolayer on a particle is formally equivalent to

the field scattered from a molecule with susceptibility χ
(3)
sph defined as

χ
(3)
sph = Nf 2

s fpf
∗
pχ

(3)

m . (4.4)

As such, the effective medium theory implies that if we restrict our analysis

to the far-zone, the particle with a monolayer of Raman-active molecules

with molecular susceptibility χ
(3)

m can be replaced with a single Raman-active

molecule with susceptibility χ
(3)
sph.

4.2 Homogenization of a Slab of Particles with

Third-Order Susceptibility

In this section, we derive the effective Raman susceptibility χ
(3)
eff of a slab

with negligible Raman susceptibility and embedded with particles that have

a susceptibility of χ
(3)
sph. This configuration is a reduction of the geometry

depicted in Figure 4.1 to a geometry analogous to the one depicted in Figure

2.1. As will be seen shortly, the procedure to derive χ
(3)
eff is similar to the

derivation of the effective extinction cross-section Cext in Chapter 2.

Let us consider a slab filled with a distribution of identical dipoles with

hyper-polarizability χ
(3)
sph such that the separation between these dipoles is

much smaller than the wavelength of light at frequencies of interest. This

assumption implies that the number of Raman-active molecules N on each

sphere is the same. Instead of making this assumption, we could find the

average number of Raman-active molecules 〈N〉 on each sphere and use this

value in our calculations with the understanding that summing over all of

the Raman-active molecules is effectively the same as taking the product of

〈N〉 and the total number of spheres.
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Figure 4.2: Construction of a fictitious sphere inside the slab that
encompasses some of the particles. The scattered field from the collection
of particles within the sphere will be considered during the homogenization
process.

The total scattered electric field ER(r, ω) from such a geometry is

ER(r, ω) = k2
∑
j

6χ
(3)
sph|Ep|2

∫
d3r′δ

(3)
(r′ − rj)G0(r, r′) · Es(r

′), (4.5)

where we summed over all the contributions from each particle in the slab.

The pump intensity is also assumed to be spatially invariant so that it can be

pulled out of the integral. This is essentially the strong pump approximation

and the validity of this approximation is justified in Chapter 5.

Next, let us consider a sphere with some radius R that is much smaller than

the wavelengths of interest within the slab. This sphere (which is a fictitious

construct) encompasses some of the particles and is depicted in Figure 4.2

by the dotted circle. The contributions of the particles within the sphere in

the far-field regime can be further simplified to

ER(r, ω) = 6k2ρV χ
(3)
sph|Ep|2Es(r̄j)e

−ikr̂·r̄j e
ikr

r
, (4.6)
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where ρ is the number density of particles within the slab, V = 4
3
πR3 is the

volume of the sphere and r̄j is the average position vector of the particles

within the sphere.

We then consider a slab that is occupied by a homogeneous medium with

some Raman susceptibility χ
(3)
eff . The total field scattered from the medium

encompassed by the fictitious sphere is given by

E
NL

(r, ω) = k2

∫
d3r′[6χ

(3)
eff |Ep|2]G0(r, r′) · Es(r

′), (4.7)

where it is understood that the support of the integral in Equation (4.7) is

taken over the volume of the sphere. By making use of the far-field approxi-

mation for the Green function, the expression for the total field scattered in

the far-zone simplifies to

ER(r, ω) = 6k2V χeff |Ep|2Es(r̄j)e
−ikr̂·r̄j e

ikr

r
. (4.8)

Since the radius of the fictitious sphere and the spatial dimensions of the

dipoles are much smaller than the wavelengths of interest, we are justified in

assuming that the fictitious sphere is representative of the total sample vol-

ume. Thus, we see that the field scattered from a homogeneous medium with

susceptibility χ
(3)
eff is equivalent to the scattered field from a slab embedded

with particles that have susceptibility χ
(3)
sph if the following relation holds

χ
(3)
eff = ρχ

(3)
sph. (4.9)

If we then substitute Equation (4.4) into Equation (4.10), we obtain the

effective Raman susceptibility in terms of the molecular susceptibility of the

Raman-active molecules as

χ
(3)
eff = ρ 〈N〉 f 2

s fpf
∗
pχ

(3)

m . (4.10)

Therefore, by the homogenization procedure, we have approximated the

slab of particles with a homogeneous slab since they both produced the same

field scattered in the far-zone. This procedure, in conjunction with the pre-

vious approximation derived in Section 4.1, has allowed us to approximate

a slab embedded with Raman-active molecules and particles with a homoge-

neous slab.
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CHAPTER 5

PUMP-STOKES COUPLING IN
STIMULATED RAMAN SCATTERING

5.1 Coupled Wave Equations

We begin our analysis of the interaction between the pump field and the

Stokes’ field in stimulated Raman scattering by considering the non-linear

wave equation. Starting from Maxwell’s equations, the non-linear wave equa-

tion for the electric field E can be derived by separating the polarization in

the constitutive relation of the displacement field into its linear and non-

linear components. By assuming that the term ∇(∇ ·E) in the expansion of

∇×∇× E is small compared to ∇2E, the non-linear wave equation can be

written as [24]

∇2E− ε(1)

c2

∂2E

∂t2
=

1

ε0c2

∂2PNL

∂t2
, (5.1)

where PNL is the non-linear component of the polarization, c is the speed of

light in vacuum, ε0 is the permittivity of free space and ε(1) is the relative

permittivity of the medium in which the field is propagating. This assump-

tion is valid for several cases of interests in non-linear optics. It can be seen

from Equation (5.1) that the non-linear wave equation is an inhomogeneous

PDE. The source term that drives this equation is characterized by the non-

linear component of the polarization. This implies that the energy of the

electric field will be coupled between several frequencies and is often called

a “wave-mixing” process.

Assuming that the pump field and Stokes’ field are propagating in the

positive z direction, let us consider an Ansatz for the solutions of Equation

(5.1)

E(z, t) = Ap(z)ei(kLz−ωLt) + As(z)ei(ksz−ωst) + c.c, (5.2)

where Ai, ki and ωi are the complex amplitude, wavenumber and angular fre-

quency of the pump and Stokes’ field indexed by p and s respectively and the

22



symbol c.c represents the complex conjugate of the terms that are explicitly

written in Equation (5.2). This Ansatz is intuitive from the perspective of

electromagnetic physics since we would expect a sinusoid function with some

amplitude modulation to be a propagating solution of the wave equation.

Similarly, one would expect the non-linear component of the polarization at

the pump and Stokes’ frequency to take the form

PNL
p (z, t) = P (ωp)e

−iωpt + c.c, (5.3)

PNL
s (z, t) = P (ωs)e

−iωst + c.c, (5.4)

with P (ωp) and P (ωs) defined by

P (ωp) = 6ε0χR(ωp)|As|2Apeikpz, (5.5)

P (ωs) = 6ε0χR(ωs)|Ap|2Aseiksz, (5.6)

where χR(ωp) and χR(ωs) are the Raman susceptibilities at frequency ωp and

ωs respectively.

By inserting Equations (5.2) and (5.4) into Equation (5.1), the non-linear

wave equation can be written in terms of the amplitude As as follows[
d2As
dz2

+ 2iks
dAs
dz
− k2

sAs +
ε(1)ω2

s

c2
As

]
ei(ksz−ωst) + c.c

= −6ω2
sχR(ωs)|Ap|2As

c2
ei(ksz−ωst) + c.c, (5.7)

where the symbol c.c represents the complex conjugate of the respective terms

that are written explicitly on each side of the equation. For Equation (5.7)

to be valid, the equality of the terms that are written out explicitly must be

enforced. This is evident if we rewrite Equation (5.7) as

2Re

{[
d2As
dz2

+ 2iks
dAs
dz
− k2

sAs +
ε(1)ω2

s

c2
As

]
ei(ksz−ωst)

}
= 2Re

{
−6ω2

sχR(ωs)|Ap|2As
c2

ei(ksz−ωst)
}
, (5.8)

so that Equation (5.8) is valid if and only if the terms written explicitly are

equivalent.

Equation (5.7) can be further simplified if we use the slowly varying ampli-
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tude approximation. This approximation states that d2As
dz2

is small compared

to the term ks
dAs
dz

if the envelope of the wave varies slowly with respect to

z and t. Assuming that this is true, the first term on the left-hand side

of Equation (5.7) can be neglected and the resultant expression is further

simplified to
dAs
dz

= αsAs, (5.9)

where αs is defined by

αs = i
3ωs
nsc

χR(ωs)|Ap|2. (5.10)

Similarly, the ODE describing the evolution of the pump field amplitude is

dAp
dz

= αpAp, (5.11)

where αp is defined by

αp = i
3ωp
npc

χR(ωp)|As|2. (5.12)

Equations (5.9) and (5.11) can be written in terms of the intensities of the

pump and Stokes’ field. This can be derived by utilizing the irradiance for-

mula I = 1
2
nε0c|E|2 such that after some algebraic manipulation, we obtain

the following set of ODEs
dIp
dz

= gpIpIs, (5.13)

dIs
dz

= gsIpIs, (5.14)

where Ip and Is are the intensities of the pump field and the Stokes’ field

respectively and gp and gs are given by

gi = −4Re(αi)

niε0c
. (5.15)

Equations (5.13) and (5.14) are generally referred to as the coupled-wave

equations and the solutions to these equations describe the behavior of the

pump and Stokes’ field in SRS as they propagate through some medium.
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Figure 5.1: Normalized pump intensity and Stokes’ intensity (with respect
to their own maximum) as a function of the sample thickness for arbitrary
gp.

5.2 Strong Pump Approximation

In the following analysis for the SESRS setup, we would like to make use

of the strong pump approximation, i.e Ip is constant, so that the resultant

calculations for the total Raman signal can be simplified. However, it was

shown in Section 5.1 that there is some coupling between the pump field and

the Stokes’ field as they propagate through the medium. Hence, the strong

pump approximation is not valid in general and the effect of depletion from

pump field to Stokes’ field has to be considered. To further understand how

this coupling mechanism affect our calculations, the coupled-wave equations

for SRS is solved to acquire a quantitative understanding of depletion in the

SESRS setup.

Equations (5.13) and (5.14), which represent the coupled wave equation,

can be recast as a second-order ordinary differential equation (ODE). By

isolating and removing the Is term, the second-order ODE, written in terms

of Ip is
d2Ip
dz2
− gpIs

(
dIp
dz

+ gsI
2
p

)
= 0. (5.16)

It can be seen from Equation (5.16) that the ODE is non-linear and thus,
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Figure 5.2: Predicted signal for SRS of pump field against the propagation
distance z. The signal is plotted for G = 1012 and concentration of ρ = 1
nM. The pump field is normalized with respect to its maximum value taken
over the range of z from z = 0 mm to 2 mm.

the first approach to analyzing the differential equation is to have it solved

numerically. The numerical solutions to Equation (5.16) and the correspond-

ing differential equation for the Stokes’ intensity Is are depicted in Figure

5.1 for arbitrary gp. Note that the intensity of the Stokes’ field increases

exponentially at first where the strong pump approximation is still valid but

tapers off with increasing distance as the pump field is depleted.

As discussed in Chapter 4, the effective medium approach allows us to ap-

proximate the suspension of nano-particles as a homogeneous medium with

an effective susceptibility. Thus, the effective susceptibility defined in Equa-

tion (4.1) will be used in evaluating the gp and gs coefficients. Let us assume

that we have a cuvette containing a suspension of metallic nano-particles.

The behavior of the pump and Stokes’ intensities for varying cuvette thick-

ness will be of interest for physically reasonable nano-particle concentrations

and enhancement factors to determine the overall impact of depletion on the

SESRS setup.

The solutions to these equations for G = 1012 and ρ = 1 nM are depicted

in Figure 5.2. These values are chosen since they represent realistic values

of the enhancement factors and concentration of nanoparticles used in an
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experiment. It can be seen from this figure that the intensity of the pump

field for the selected parameters decreases slowly over a short range of sample

thickness for the value of the enhancement factor and nanoparticle concen-

tration ascribed. As such, the strong pump approximation for SESRS is only

valid when the thickness of the sample has an order of magnitude of around

10−3. This is typically encountered when the sample of interest is contained

in a cuvette with 2 mm path length.
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CHAPTER 6

COMPETITION BETWEEN
ENHANCEMENT AND EXTINCTION

PHENOMENA

In this chapter, the combined enhancement and extinction phenomena on the

Raman signal due to the presence of the particles will be derived. Due to the

competitive effects of these two phenomena, the resultant Raman signal does

not increase monotonously with particle concentration. Hence, an optimum

concentration of particles for maximal Raman signal will be determined.

6.1 Cumulative Effects of Enhancement and

Extinction on Raman Signal

The scattered electric field E that results from the interaction of the incident

pump and Stokes’ electric field with a slab that is embedded with Raman-

active molecules is given by

ER(r, ω) = k26χ
(3)
eff |Ep|2

∫
d3r′G0(r, r′) · Es(r

′), (6.1)

where G0(r, r′) is the dyadic Green function in free space, χ
(3)
eff is the effective

Raman susceptibility of the slab and Es and Ep are the Stokes’ electric field

and pump electric field respectively. The geometry for such an interaction

is given in Figure 4.1 where the figure is used to illustrate the derivation of

χ
(3)
eff . As can be seen from Equation (6.1), the strong pump approximation is

utilized so that Ep is spatially independent and the resultant integral becomes

simpler. The Raman signal R can then be derived from the expression for the

total electric field through the irradiance formula I = 1
2
nε0c|ER|2 to obtain

R = ρ2h2 〈N〉2GR(0), (6.2)
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Figure 6.1: Model for including the effects of enhancement and extinction
together. The incident pump and Stokes’ field will experience extinction as
they propagate through the sample until it interacts with a Raman active
molecule on a particle. The scattered Stokes’ field will be enhanced by this
interaction and experiences further extinction as it propagates out of the
sample.

where ρ is the number density of particles, h is the thickness of the slab of

particles, 〈N〉 is the average number of Raman-active molecules attached to

the particle, G = |f 2
s fpf

∗
p |2 is the Raman enhancement factor and R(0) is the

Raman signal due to a single Raman-active molecule without the presence

of the particle.

To include the effects of extinction, we incorporate Beer’s law into Equation

(6.1) by considering the propagation of the pump and Stokes’ field through a

suspension of thickness z = h [11]. This is depicted schematically in Figure

6.1. The pump and Stokes’ beam incident on the dilute suspension will

be attenuated upon propagation until they interact with the Raman-active

molecules. The interaction with the molecules will produce the scattered

field that is enhanced by the factor G due to the presence of the particle.

The scattered field is then further attenuated as it propagates through the

medium to z = h. By incorporating these effects into Equation (6.1) and
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using the intensity formula, the total Raman signal becomes

R = 〈N〉2AR(0)G

(∫ h

0

dz ρ(z)

×exp[−
∫ z

0

dz′ρ(z′)mCext(ω)/2]

×exp[−
∫ z

0

dz′ρ(z′)mCext(ω0)]

×exp[−
∫ h

z

dz′ρ(z′)mCext(ω)/2]

)2

, (6.3)

where A is the effective transverse area of the beam and ω0 is the angular

frequency of the pump field. If the number density of particles ρ does not

depend on its spatial coordinates, the integrals in Equation (6.3) can be

evaluated in close form to give

R = 〈N〉2AR(0)Ge−ρmCext(ω)h

(
1− e−ρmCext(ω0)h

mCext(ω0)

)2

. (6.4)

From this expression, we see that the Raman signal is determined by two

competing processes: the enhancement process which manifests itself through

G and the extinction process that manifests itself through the exponential

factors. In particular, the process that increases the effects of enhancement

of the fields also increases the overall effects of extinction on the fields itself.

In contrast, the Raman signal obtained for SERS RSERS using the same

geometry is [11]

RSERS = 〈N〉AR(0)GSERS
e−mCext(ω0)hρ − e−mCext(ω)hρ

mCext(ω)−mCext(ω0)
, (6.5)

where the enhancement factor for SERS GSERS is given by

GSERS = | (1 + 2g0) (1 + 2g) |2 = |fsfp|2. (6.6)

Compared to the enhancement factor G derived in SERS, we see that the

enhancement factor for SESRS is, in general, larger than the enhancement

factor for SERS because of the additional fsfp∗ factor.

Using Equation (6.4), we can plot the detected Raman signal as a function

of wavelength and concentration to analyze the competing effects of enhance-
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Figure 6.2: Predicted signals for SESRS in transmission mode against: (a)
the wavelength of incident light. The signals are plotted at three different
concentrations of gold nanospheres with a radius of 15 nm. The thickness
of the suspension h is 1 mm. Predicted signals for SESRS in transmission
mode against (b) the concentration of gold nanospheres. The signals are
plotted at two incident wavelength (532 nm and 633 nm). The radius of the
gold nanospheres is 20 nm.

ment and extinction in SESRS. These plots were generated using the optical

constants of gold with a plasmon resonance of about 520 nm that were ob-

tained by Johnson and Christy [25] and are shown in Figure 6.2. In Figure

6.2a, it is clearly seen that the peak signal gets shifted further away from the

plasmon resonance as the concentration of the particles is increased. Hence,

the significant enhancement effect at the plasmon resonance is negated by the

strong extinction effects near the plasmon resonance such that no appreciable

signal is obtained.

Figure 6.2b depicts the relationship between the Raman signal and the

concentration for λ = 532 nm and λ = 633 nm evaluated at the Raman band

of 1076 cm−1. For λ = 532 nm, the signal is very small because the incident

wavelength is very close to the plasmon resonance of the nanoparticle. How-

ever, the signal for λ = 633 nm is much stronger as it is further away from

the plasmon resonance frequency and it can be clearly seen from this incident

wavelength that there is a non-linear relationship between the intensity of

the Raman signal and the concentration of enhancement particles.
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Figure 6.3: Predicted signals for SESRS and SERS in transmission mode
against: (a) the wavelength of incident light. The signals are plotted for a
concentration of 8 nM and the radius of the gold nanosphere is 15 nm.
Predicted signals for SESRS and SERS in transmission mode against (b)
the concentration of gold nanospheres. The signals are plotted for an
incident wavelength of 633 nm and the radius of the gold nanosphere is 20
nm. Both the SESRS and SERS signals are normalized with respect to
their own maximum value.

6.2 Optimizing the Raman Signal

Due to the competition between the enhancement and extinction effects,

there is an optimal concentration ρopt where the extinction effects are bal-

anced by the strong enhancement effect from the metallic spheres [11]. This

optimal concentration can be found by taking the derivative of Equation

(6.4) with respect to ρ and setting the resultant expression to zero. In doing

so, we find that ρopt takes the form

ρopt =
ln[1 + 2Cext(ω0)

Cext(ω)
]

mhCext(ω0)
. (6.7)

Hence, the non-linear relation between the Raman signal and the concentra-

tion of nanoparticles is a crucial factor in the experimental design for SESRS.

In particular, this relation dictates that one cannot continuously increase the

concentration of nanoparticles in an effort to strengthen the Raman signal.
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6.3 Comparison between SERS and SESRS

Due to the large enhancement factor in SESRS, the competition between

enhancement and extinction effects in SESRS is less profound than the com-

petition between enhancement and extinction effects in SERS. Thus, the

optimal parameters in SERS and SESRS can be quite different and this is

depicted in Figure 6.3. The plots in Figure 6.3 are obtained by juxtaposing

the results from SESRS together with the results from SERS on the same

axes as Figure 6.2 using the same geometry and nanoparticle parameters.

As can be seen from Figure 6.3a, the peak signal in SERS is further shifted

away from the plasmon resonance than the peak signal in SESRS. We see

that this observation is consistent with the fact that the competition between

enhancement and extinction is more profound in SERS than in SESRS. This

is further indicated in Figure 6.3b where the peak signal in SERS is obtained

at an appreciably lower concentration than the peak signal in SESRS. Thus, a

higher concentration of nanoparticles could be used in a SESRS setup before

the extinction effects dominate over the enhancement effects.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Through the effective medium theory, the scattered field due to the inter-

action of the incident field on Raman-active molecules located on particles

embedded within a substrate can be modeled as the propagation of the inci-

dent field on a homogeneous slab with a complex index of refraction. Hence,

the calculations for the enhancement and extinction of the resultant scattered

field simplify considerably. The Raman signal due to the collective effects of

enhancement and extinction is then calculated and it is shown that the signal

does not increase monotonously as a function of particle concentration. Due

to this relationship, there exists an optimum concentration of particles that

maximizes the Raman signal and this quantity can be readily calculated from

the explicit expression for the Raman signal. Furthermore, we find that the

optimal parameters between SERS and SESRS can be quite different due to

the different extent of competition between enhancement and extinction in

the two processes.

Since it is shown through the effective medium theory that the susceptibil-

ity of a set of Raman-active molecules located on particles embedded within

a substrate approximated as a homogeneous medium is proportional to the

enhancement factor G, the Raman scattering interaction can be significant on

short distance scales. Thus, future work on SESRS would involve incorporat-

ing calculations of the Raman signal where the strong pump approximation

is invalid. Other effects that would occur when the scattering interaction

is strong such as the invalidation of the slowly-varying wave approximation

could also be considered in future works.
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