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Abstract

Some of the most interesting of Ramanujan’s continued fraction identities are those involving
ratios of Gamma functions in Chapter 12 of his second notebook. This thesis develops
a method for deriving such identities, using hypergeometric functions as the main tool.
We begin by deriving a continued fraction identity, use it to prove Ramanujan’s Entry 34,
and then use the method to obtain new identities and relate them to two of Ramanujan’s
identities. We next prove Ramanujan’s Entries 36 and 39. Finally, we rework the method
for use with basic hypergeometric functions and use it to find g-analogues of the earlier new

results.
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Chapter 1

Introduction

Several entries in Chapter 12 of S. Ramanujan’s second notebook [4] express a quotient of
Gamma functions as a continued fraction. These continued fractions range from reasonably
simple to quite complicated. The entries have been proven by a variety of means, some
elementary, some hypergeometric, some complex-analytic. This thesis explores a method
of deriving these identities and others using hypergeometric methods. We derive several of
Ramanujan’s entries and some new identities and g-analogues.

The goal when developing this method was to find a technique that did not require full
complex analytic methods to derive new continued fraction identities. Instead, many of the
identities found so far using this method have already been found by Ramanujan. This fact,
coupled with the ordering of entries in Chapter 12 of his second notebook, makes it seem
reasonable that he used a method very similar to this one to obtain identities when he was
working on Chapter 12. This insight into a possible method of Ramanujan may further
our understanding of how he obtained his results and what mathematical tools were used

“behind the scenes” in the writing of his notebooks.

1.1 Background

Throughout this thesis, entries from Ramanujan’s notebooks without a chapter number given
are from Chapter 12. All other entries are given as Entry A.B, where A is the chapter number

and B is the entry number. The simplest of Ramanujan’s continued fractions that can be



written as a quotient of Gamma functions is Entry 25 [4].

Theorem 1.1.1 (Entry 25). Suppose that either n is an odd integer and x is a complex

number or that R(x) > 0 and n is an arbitrary complex number. Then

I(
I'(

(x+n+1)I(
(x +n+3))I(

(x—n+1) 4 1*-n* F-n*> 5-n (1.1)
(t—n+3) =+ 22 + 22 + 2o +--- '

N
= =

In order to fully understand these identities, some notation and definitions are needed.

The Gamma functions on the left side of Entry 25 are defined in the usual way by
I'(2) ::/ e 71 dt, R(z) > 0. (1.2)
0

The fundamental property of the Gamma function is that I'(z + 1) = 2I'(z). This property
will be used repeatedly throughout this thesis, usually without comment.

A continued fraction is an expression of the form

a1

)
Ky
n=1 bn

a2

b1 +
as
by +

Q4
bs +

b4 + .
We will use the space-saving notation

oo
(7% ap Gz az a4

IN by bit byt by b+

where the “4” sign in the denominator indicates a continued fraction rather than a sum of

ordinary fractions.



The hidden link between Gamma functions and continued fractions in these identities is

the hypergeometric function. We define

JF (a, b; z) :: Z (a)n(b)nzn7 |zl <1lor|z] =1and R(c—a—10) >0, (1.3)

3Fy ( de ) ;? (bn nn |zl <lor|zl=1land R(d+e—a—b—c) >0,

(1.4)

and in general

ay, dg, ..., a a1)n(@2)p -+ (ap)n
(0 e) = ) e 9
where (a), = a(a+ 1)(a +2)---(a +n — 1) is the so-called Pochhammer symbol. These
series converge absolutely if |z| < 1 orif [z] =1 and R(>_b; — > a;) > 0.

There are now hypergeometric proofs of many of Ramanujan’s entries and other similar
continued fractions that can be written as quotients of Gamma functions. The proofs cur-
rently known, along with the type of hypergeometric function used in each proof, are listed
below in Table 1.1. The proofs in this thesis are given by theorem number, while those
proved elsewhere refer to the author of the proof and the relevant journal article. There are
multiple hypergeometric proofs known for Entries 25 and 39. The two proofs of Entry 25, by
K.G. Ramanathan in [15] and R.L. Lamphere in [11], are comparable in complexity, as they
both use 5 F} hypergeometric series. It should be noted, however, that the proof of Entry 39
given in this thesis is simpler than the earlier proof of Entry 39 by D.R. Masson in [14] and

this new proof also shows that Entry 39 is a companion to Entry 36.



Identity Proof Hypergeometric Type

Entry 25 Ramanathan, 1988 [15] 2F)

Entry 25 Lamphere, 2000 [11] o Fy

companion to Entry 25 Theorem 3.2.1 o Fy

Entry 26 none

Entry 33 none

Entry 34 Theorem 2.2.1 3FY

variation on Entry 34  Theorem 3.1.1 3Fy

Entry 35 Masson, 1991 [14] Wilson polynomials (4F3)
Entry 36 Theorem 4.1.1 3F

Entry 39 Theorem 4.2.1 3k

Entry 39 Masson, 1991 [14] Wilson polynomials (4F3)
Entry 40 Masson, 1991 [13] oFy

companion to Entry 40 Masson, 1991 [13] oF%

Entry 16.10 none

Table 1.1: Known hypergeometric proofs of Ramanujan’s entries and similar identities

In his paper [15], Ramanathan used a three-term relation for o7 hypergeometric func-
tions to prove Entry 25. He used iterated division of the recurrence to generate the continued
fraction side of the equality, and then used Kummer’s Identity (stated by Ramanujan [4] as
Corollary 13 to Entry 10.7) to evaluate the ratio of o F} hypergeometric functions and obtain
a ratio of Gamma functions. In general, the contiguous relations between 3F, hypergeomet-
ric functions have four terms, but they reduce to three terms in the case z = 1, and we
use some of these to extend Ramanathan’s method to 3F5 hypergeometric functions and to
obtain several other continued fraction identities.

Iterated division of a three-term recurrence is a common method used to generate con-



tinued fractions. As an example of its use, we now find what is known as Euler’s continued

fraction. The recurrence used is

b —b+1 1.6 Hc—b+1 2. b
JF, (a, ;x>:c—|—(a + )x2F1 <a—|— , ;x)_(a-l— )(c + )x2F1 (a—i— , ;x).

c c+1 c(c+1) c+2
(1.6)

This relation is also due to Euler and is given as Equation (2.5.3) on page 94 of [2]. Dividing

both sides of the recurrence by (1/¢)2F} (“:Srlib; x) yields

oo Fy (%0 D(c—b+ V2P (55«
Rt A WRRD 1a(+fb 7) 4 (a—b4 1) @FDezbr e l(a‘ffb ), (1.7)
2F1(c+1a37) ct+l 2F1(c+i5$)
which can be written as
oFy (%' x —b
; 1a(+f,b ) —c+(a—bt D)z — (a+ )(Cp(aﬂt x))x (18)
2B (5 7) e+ 1) g
c+2
Replacing a by a + 1 and ¢ by ¢+ 1 in (1.8) yields
c+ 1)oF (“Thb: ¢ 2)(c—b+2
et 1) aing“ S S R [ (aj,, ))x, (1.9)
1 (' ) (c+2) 2
( c+3 ,x)
which is then substituted into (1.8) to obtain
oFy (%' x D(c—b+1
%:c%—(a—b—i—l)x— (a+1)(c +( )+32:)( -
2F1(c+i;x) c+1l+(a—b+2)z— a2F1c(a+2bx)
c+2 z
(c+2)42F1(a+f3b m)
D(c—b+1 2)(c—b+2
=c+(a—b+1)x — lathe—b+lz (at+2(c—b+2)e (1.10)

C+1+(a—b+2)flf— ( +2)2 12:{{227§§
c+3



This process is iterated, at the k' step using the recurrence

(c-+»k)2fﬂ,(a+kih x)

etk (a+k+1)(c=b+k+1)x

=c+k+(a—b+k+1)zx— (1.11)

+k+1,0, a+k+1,b . )
2P ("0 ) (c+k+ 1)%
ctk+2

which is (1.8) with a replaced by a + k and ¢ replaced by ¢ + k. The end product is Euler’s

continued fraction,

B D(c—b+1 Ne— bt 2
Ca l(fbx) et (a—b+ 1)z — (a+D(c—b+1Dz (a+2)(c—b+2)z
2F1(aj+1’,9€) ctl+(a—b+2x—c+2+ (a—b+3)x

(a+3)(c—=b+3)z (a+4)(c—b+4)x
—c+3+(a—b+4)r—c+4+(a—b+d)z—--

(1.12)

Ramanujan lists Euler’s continued fraction in a slightly different form as Entry 22 in his

second Notebook [4], and we use it in the proof of Theorem 3.2.1.

1.2 Convergence of continued fractions

It is important when dealing with continued fractions to prove convergence carefully, as
the convergence of continued fractions has rather different properties than that of infinite
series or products. L. Lorentzen and H. Waadeland’s book [12] provides much insight on
continued fractions in general, and L. Jacobsen’s paper [10] was invaluable in understanding
the requirements for convergence and domains of validity of Ramanujan’s continued fraction
identities.

In proving the convergence of the new continued fractions obtained in Chapter 3, we use

Theorem 2.3 in [10].



Theorem 1.2.1 (Jacobsen). Let

agr—1(z) = Z a;(x)k agy () = Z%‘(x)kj,

q r
bar—1(z) = Zﬁj(fﬁ)k’ja bar () = ZCSj(ﬂ?)kj’ (1.13)
§=0 5=0
fork =1,2,3,..., be polynomials in k, where all o, vy;, B;, and 6; are entire functions of x,

and o, ()7, (x)By(x)6,(z) # 0. Further let D= {z € C: B,(x)6.(z) # 0 and all ay(x) # 0},
and let D be defined in the following way:

(i) if g+7>p, thenD:f);

(ii) if ¢+ 1 =p, then

p={red oo mner ¢ 1))

(iii) if g+ 1 =p—1 and a,(z) = v,(x), then

D:{xeﬁ:w¢(—oo,0]};

()

(w) if g+r=p—2 and op(x) = y,(2), then

D= {x eD: 40, (2)0r () + <r+ 1+ Ap-1(7) _%_l(x)y & (—00,0]};

0 @) o (@)

(v) ifg+r=p—2, a,(x) =,(x), and ap_1(z) = vp-1(x), then

Then (under such additional conditions) K (ax(x)/bi(x)) converges in D to a function f,

7



meromorphic or identically oo in each component of D. The convergence is uniform on

compact subsets C' C D for which oo & f(C). Here a_1(x) = vy_1(z) =0.

The g-continued fractions obtained in Chapter 5 require a somewhat different approach.
We use the Parabola Theorem in their proofs, as well as two remarks from Jacobsen’s paper

10].

Theorem 1.2.2 (Parabola Theorem). Let 6 be a fized number, —m/2 < 6 < /2, and
let K (an/1) be a continued fraction with all elements a,, contained in the parabolic region
Py={z€C:|z| = R(ze72*) < 1 cos?}. Then the following hold.

A. The approximants f, are all finite and contained in the half plane V4 = {z € C :

R(ze ) > —4 cos b}
B. {fon+1} and { fon} both converge to finite values.

C. If all a,, # 0, then KK (a,/1) converges (to a finite value) if and only if

o0 n &

— _ (—1)rrkt
g |d,,| = oo, where d,, = | | a, :
n=1 k=1

Remark 1.2.3 (Jacobsen). If axy = 0 and a,, # 0 for n < N, then both f5,,1 and fa, converge
to fy_1, the value of the continued fraction. This follows since the approximants f,S,N) of the

Nth tail of K(a,/1),

aN+1  GN42  AN4+3
I + 1 + 1 4

are bounded away from —1 by part A of the Parabola Theorem.

Remark 1.2.4 (Jacobsen). If KK (a,/1) has holomorphic elements a, : D — C such that
lim a,,(z) = a(z) locally uniformly in D, then KK (a, /1) converges to a meromorphic function
fin Dy ={x e D: all a,(2) # 0 and |arg(a(z) + 1/4)| < 7}, or to f(z) = oo in Dy. The

convergence is uniform on compact subsets C' C Dg such that co & f(C).



Chapter 2

Derivation of the main continued
fraction and proof of Entry 34

2.1 Preliminaries

Before proving Entry 34, we begin with some preliminary identities and recurrences which
will be used throughout this thesis. The first of these is best known as Dixon’s Identity and

is also found as Entry 10.7 in Ramanujan’s notebooks [4].

Theorem 2.1.1 (Dixon’s Identity). If R(3a —b—c+1) >0, then

7 a, b, c "\ Tla-bv+1)Ila—c+ 1) (Ga+ 1) (3a—b—c+1)
P a-b+la—ct+1 ) Tla—b+DI(la—c+ Dl(a+)l(a—b—c+1)
(2.1)

Two recurrences of hypergeometric functions will also be needed and are proved here.
The second of these recurrences is used immediately in the proof of Lemma 2.1.4, which
is the main continued fraction used to obtain the continued fraction identities with three

variables.

Proposition 2.1.2. If R(d+e—a—b—c) >0, then

b(e — 1,b+1 b
ab(e c)gFZ(a—i- , b+ 7C;1)z(d—a)(d—b)3F2(a’ , C 1)

e d+1,e+1 d+1,e;

b
+d(a+b—d)sF (a;l ¢ 1). (2.2)
, €

Proof. We begin with Equation (2.5.10) on page 97 of Andrews—Askey—Roy [2], which states



that

a+1,b+1 a,b
ab(l—x)gFl( d41 ;x):(d—a)(d—b)gFl <d+1;x)

+dm+b—@ﬂq(2ﬂx). (2.3)

Assume that R(c) > 0 and R(e — ¢) > 0, multiply both sides by z¢7!(1 — z)¢=¢~! and

integrate with respect to = from 0 to 1. We obtain

! a+1,0+1
/o abz (1 — ) % F) ( P x) dx

1
_ . o c—1 o e—c—1 a, b .
__A(d a)(d — bz (1 — z) gﬂ(d+rx>dx

1
+/ dla+b—d)z“ 1 —2)"HEH (a;lb; x) dx. (2.4)
0

We integrate each of these term-by-term. Thus

! 1,b+1
/o abz (1 — ) % F (a+d —’I-b1+ ; m) dx

! = Da(b+1),
_ / abxcfl<1 . x)efcz (a+ ) ( + ) 2" dx
0 .

= (d+1)nn!
_ bz b + 1) /0 xn—l—c—l(l _ x)e—c dr
. (a + )n<b + 1
_ab§ (d—|— Dol B(n+ce—c+1)
_ bz b—|—1) Fn+c)l'(e—c+1)

Fn+c+e—c+1)

B abF(e —c+ I)F(c) Z (a+1),(b+1),T(n+c) T(e+1)
B [(e+1) = (d+1)un! I'(c) T(n+e+1)

_ abl'(e — c+ 1)I'(c) i (a+1)p(b+ 1)u(c)y
I'(e+1) — (d+ 1)unl(e+ 1),

10



abl'(e — c+ 1)I'(c) (a+1,b+1,c 1)
= 3 ;

I'(e+1) d+1l,e+1
_able —c)I'(e — ¢)['(c) 7 a+1,b+1,¢c |
B el'(e) ’ d+1,e+1"

where we make use of the fact that the Beta function is given by

B(a, 8) = /01 2211 = 2)% g — ?(a S RG> 0.R()
Similaly,
/0 (d— a)(d— B (1 — o) R, < da’fl; x> da
_ i nm / gt — gyt g
s
el e
0BT (b )
and

! c—1 e—c—1 a, b
dla+b—d)z (1 —x) oy PR dx
0

a+ b . Z d nn' /0 n+c 1(1 x)e—c—l dI
= IF'(n+c)l'(e—c
TS SRR
d(a+b—d)T'(e—)l(¢) = (@)n(D)n(c)n
a I'(e) ; (d)anl(e)n
_d(a+b—d)'(e —c)'(c) a, b, c
I'(e) 3t ( d, e’ 1) ’

11



so (2.4) becomes

ab(e — c)l'(e — ¢)I'(¢) a+1,b+1,c
el'(e) 3F2(d+1,e+1’ )
(d—a)(d—b)'(e —c)(c) a,b,c
B ['(e) a2 <d+ 1, e’ 1)
dla+b—d)'(e —c)[(c) a, b, c
+ B o F, ( e 1) . (2.9)

Dividing both sides of (2.9) by I'(e — ¢)I'(¢)/T'(e) yields (2.2). We use analytic continuation

to remove the restrictions R(c) > 0 and R(e — ¢) > 0 and obtain Proposition 2.1.2. O

Proposition 2.1.3. If R(d+e—a—b—c) >0, then

a, b, c d—b a+1,b,c ble — c) a+1,b+1,c
F 1) = E ;1 E ;1. 2.1
32<d,e’) d“(d+1,e’)+ de 32(d+1,e+1’) (2.10)

Proof. Begin with Equation (9) in Ramanathan’s paper [15],

a, b d—>b a+1,b b(l —x a+1,b+1
QFl(d;x):—d 2F1<d+1;-73)+( >2F1( )

2.11
d d+1 » & ( )

As in the proof of the previous proposition, we assume R(c) > 0 and R(e — ¢) > 0, multiply
both sides by x¢71(1 —z)¢"!, and then integrate with respect to x from 0 to 1. This yields

1
/ 21— 2) Ry (a, b; x) dx
0 d

bd - 1
/ d g bxc_l(l — )L Ry (a+ ’b; x) dx
0

d+1

1

b ., a+1,b+1

Ve (1 — ) e, F 2 da.
+/0 g7 (=) 1( d+1 x) v

(2.12)

We evaluate each of these integrals term-by-term, again making use of the Beta function in

12



the calculations. We find that

1
/ 271 —2) Ry (a, b; x) dx
0 d

(@n(®)n [ n+e—1 e—c—1
@) /Ox (1—2) dx

(@)n(0)n T(n+c)'(e —¢)
(d)pn! [(n+e)

M8

0

3
Il

W

Il
o

n
[e o]

¢ = L) §~ (@)n(0)n(O)n
I'(e ZO (d)nnl(€)n

)
_T(e I:(Z))r(c)gpz (a;if),ec; 1) |

—~

Yd—b a+1,b
/0 21— ), Fl( Q41 ;x) dx

d
_d- bz a—l—l nn' /0 (1 = ) dy
_d—b=(a+1),(b), T(n+c)l(e—c)
B Zo d+1nn' I'(n+e)
_(d=b)T(e—)T(c) o= (a+ 1), (b)n(c)n
B dTl'(e nz; (d+1),n!(e),
_(d=Db)'(e —)'(c) a+1,b,c
B dr'(e 3F2(d+1,e 1)’

and

b S (a + 1)Tb<b + 1)71 ! n+c—1 e—c
b
d

“(a+1),b+ 1), T(n+c)l(e—c+1)
Zo (d+1),n! I'n+e+1)

13
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(2.14)



_bl(e—c+1)I'(c) i (a+1),(b+ 1)n(c)n
dl'(e+1) (d+ 1),nl(e+ 1),

b(e—c)T(e—c)F(Z):O a+1,b+1,c
- del'(e) s < d+1l,e+1" 1) ‘ (2.15)
Hence
(e —c)'(c) a,b,c ~(d=b)'(e—)'(c) a+1,bc
I'(e) 32 ( dye’ 1) B dl'(e) 3 ( d+1,e’ 1)
ble —c)I'(e — ¢)T'(¢) a+1,b+1,¢c
deT’(e) ’ ( d+1l,e+1" 1) » (216)

and Proposition 2.1.3 is obtained by dividing both sides of this equation by I'(e —¢)I'(c)/T'(e)

and using analytic continuation to remove the conditions $(c) > 0 and R(e — ¢) > 0. O
Lemma 2.1.4.

3F2 (a bec, 1)
d d

a,b+1,c.
3F2(d+16 ) 1)

cle—a) (b+1)(d+1—a) (c+1)(e+1—a)
e—b—1+ d—c + e—b—-1

=(d—-c)+

b+2)(d+2—a) (c+2)(e+2—a)
+ d—c + e—b—-1 +--

= (d—¢) + e_eb__aHka (2.17)

where

pok—1 = (b+ k)(d+ k —a),
Qor—1 = d — ¢,
por = (c+ k)le+k —a),

Gor =€ —b—1.

The proof given here is a formal proof. We will discuss convergence of the identities

14



resulting from this lemma later.

Proof. Simultaneously replace a by b, b by ¢, and ¢ by a in Proposition 2.1.3 to obtain

b, c,a d—c b+1,¢a cle —a) b+1,c+1,a
F 1| = ——3F i1 F 1 ). (218
32(¢e’) d32(d+Le’>+ de 32(muﬁ+1’) (2.18)

We rearrange (2.18) into the form

oF: (1) cte — )2 (R 1)
d abqulc :(d—C)—{— ( e ) ab;lc ’ (219)
By (e 1) By (05 1)
and iterate this to generate
3P (51) ole—a) :
d ’ =(d—-c)+
a,b+1,c, 1 3F2(aéb-»il,ec;1)
7 3F2( A1, e+1 §1)
cle —a) 1
=(d—c)+
e T Y GiFD)
sFa (")
cle —a) 1
(- (o 1)) 4 et nUR i )
+ 3k aéj—l,é-u i1
~ @+_de—a) (b+1)(d+1—a)
embmlt gy qyenlanan
RN
_(d_c)+c(e—a) b+1)(d+1—a) (c+1)(e+1—a)
L S S POOE )
3l aéiQ,[i+2 i1
_(d_c)+c(e—a) (b+1)d+1-a) (c+1)(e+1—a)
B e—b—1+ d—c T e—b—1 4.

We finally obtain the continued fraction

3F2 (a,b;c; 1>
d -

a,b+1,c,
3F2 < d+1l,e’ 1)

cle —a) = D
—(d— Al = 2.2
( @+6_b_1+£$qy (220

15



where

pok—1 = (b+ k)(d+ k —a),
Qor—1 = d —c,
por = (c+ k)e+k—a),

Gor =€ —b—1.

We are now ready to state and prove Entry 34 of Ramanujan’s second notebook.

2.2 Proof of Entry 34

Theorem 2.2.1 (Entry 34). Suppose that n is an odd integer or m is an even integer, or

that R(x) > 0 with m and n arbitrary complex numbers. Define

I(
I'(

(x+m+n+1))I(
(x —m+n+1))I(

(x +m —n+1))I(
(x —m—n+1))[(

(x —m+n+3))I(
(x +m+n+3))I(

(x —m —n+3))
(x+m—n+3))

P =

NN
NI N
NI AN
N N

Then
1—P m 12—n? 22—m? 32—-_n? 42_m?

1+P z+ = + « + =z + « 4.

Proof. First, we solve (2.2) for 3F (“L’ibéc; 1). This yields

— 1 1
By (a, b,c; 1) _ ab(e — ¢) 7 (a—i— b+ ,c; 1)
e

d, de(a+b—d)> ?\ d+1,e+1
(d—a)(d—Db) a, b, c
— ———3F ;1 2.21

16



which can be combined with (2.10) to find that

d—b a+1,bc b(e — c) a+1,b+1,c
= E 01 F 01
d32<d+1,e’)+ de “<d+1,e+1’>

ab(e — ¢) F(a+1,b+1,c‘ 1) (d—a)(d—b)F(a,b,c
— sk

T delatb—-d) P\ d+le+1’ dla+b—d) d+1,e

1> . (2.22)

Hence

d—b a+1,b,c¢ (d—a)(d—Db) a, b, c
F 1) ¢ e od o) g 1
4 ° 2( d+1, ¢ )+ datv—a) *2\d+1,e

_ [d ab(e — ¢) _b(e—c)}3F2(a+1,b+1,c; 1)

(a+b—d) de d+1,e+1
b(le —c)(d —b) a+1,b+1, c
= F: ;1. 2.2
de(a+b—d) > *\ d+1,e+1" (223)

Divide (2.23) by (d — b)/d, exchange a and b, and isolate 3F» (aélfll’ec; 1> to see that

3F2(a’b+1’c; 1>: ale —c) F(a—l—l,b—l—l,c; 1>

d+1, e cla+b—d) *\ d+1,e+1
d—10 a, b, c
— —— 3k 1), 2.24
a+b—d’ 2(d—|—1,e’ ) (224)
We now let d =a —band e =a — c+ 1 in (2.24) to obtain
a,b+1,c ala —2c+1) a+1,b+1,c
3Fy 1) = 3Fy ;1
a—b+1,a—c+1 (a —c+1)(2b) a—b+1,a—c+2

a—2b a, b, c
— F o 1. 2.2
20 32(a—b+l,a—c+1’ ) (2.25)
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When we replace a by a + 1 and b by b+ 1 in Dixon’s Identity (2.1), we find that

a+1.b+1, c
F ) bl . 1
32(a—b+La—c+2’)

Tla—b+1l(a—c+2)T(5a+ 1)+ DI(5(a+1) —b—c) (2.26)
CTE@@+1)-blE(a+1) —c+ Dl (a+2)(a—b—c+1)’ '
so (2.25) becomes
a,b+1,c

3F2<a—b+1,a—c+1;1>

ala—2c+ 1)Ma—b+ 1 (a—c+2)T(5(a+ 1)+ )5+ 1) —b—c)

S (a—c+ D)2 (3(a+1) =0T (3(a+1) —c+ )(a+2)T(a—b—c+1)

(a—20)T(a—b+1)(a—c+ I (Ga+ 1) (3a—b—c+1)
 2l(ta—b+1)P(la—c+1)l(a+1)T(a—b—c+1)

Cala—=2c+ )l a—b+1)(a—c+ 1)l (a—c+1)z(a+ 1 (5(a+1)T(5(a+1) —b—c)
(a—c+1)(20)(53(a+1) —=b)(5(a+1) — )T (3(a+1) —c)(a+ 1)al(a)T(a —b—c+1)
_(a—Qb)F(a—b+ Dl(a—c+1)5al(5a)0(3a—b—c+1)

2b(3a —b)I'(3a —b)I(5a —c+ 1)al'(a)T(a —b—c+ 1)

(a—2c+1)T(a—b+1(a—c+1I(5(a+1))T(5(a+1) —b—c)

20(5(a+1) = b)(a+1—2)T(3(a+1) —c)l(a)(a—b—c+1)
(a—20)T(a—b+1)l(a—c+ 1) (Ea)(3a—b—c+1)
2b(a —2b)I'(3a —b)T (30 —c+ 1)I(a)(a —b—c+1)

Dla—b+ Dl(a—c+ DM+ )G+ = b=

200(3(a+1) = b)(A(a+1)—)T(a)l(a—b—c+1)
Fa—b+1)l(a—c+1)PEa)l(3a—b—c+1)

(e —b0)T(ta—c+ D(@)T(a—b—c+1)

Ta—b+ DI (a—c+1) [PE(a+1)T(3(a+1)—b—c) T(Ga)l(ia—b—c+1)

2l (a)l(a—b—c+1) [TE(a+1)—0T(E@@+1)—¢) T(Ea-bl(la—c+1)

~Tla—-b+1)I'(a—c+1)
2T (a)l(a—b—c+1)

1S — 17, (2.27)
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where

o FGla+1)T(5(a+1)—b—c)
I'(Gla+1) =l (3(a+1)—c)
S TGarGa—b—c+1)
T(la —WT(a—ct1)

Similarly, under d = a — b and e = a — ¢ + 1, (2.21) becomes

a, b, c
F ) ) .1
32(a—b,a—c—|—1’ )

_ ab(a —2c+1) ( a+1,b+1, ¢ _1>
(a—b)(a—c+1)20)* *\a—b+1,a—c+2’
(—b)(a — 2b) a, b, c
_<a—m@m3@<a—b+La—c+1”>
ala—2c+ 1) (a—b+ 1) (a—c+2)T(5(a+1)+ ) (5(a+1) —b—¢)
C2a-b(a—c+ DI Ea+1) =T (E(a+1)—c+Dl(a+2)T(a—b—c+1)
(a—20)T(a—b+1)(a—c+)I(Ea+ DI (3a—b—c+1)
20T (3a—b+ 1) (a—c+1)(a+1)(a—b—c+1)
B 20(3(a+1)—c)T(a—b+1)(a—c+ 1)I'(a—c+1) y
C2a—b)(a—c+ DI (E(a+1)=b)(i(a+1)—)L(i(a+1)—c)
Ha+ DG (a+1)T(3(a+1) —b—c)
(a+ Dal'(a)T'(a—b—c+1)
26a—b)l(a—b+1)(a—c+1)3al(3a)T(3a —b—c+1)
2(a—b)(3a - b)I(ta—b)'(3a—c+1al'(a)l(a—b—c+1)
 Tla—-b+1)l(a—c+DI(5a+1)T(5a+1) —b—c)
C2(a—bl(E(a+1) = bI(3(a+1) —c)l(a)l(a—b—c+1)
Fa—b+1)l(a—c+1)I(Ea)l(3a—b—c+1)
20—l (a—b)(3a—c+ (@) (a—b—c+1)
Fla—b+1)I'(a—c+1)
T 2a— (@ (a—b—ct1)
F(3(a+1))I(3(a+1)—b—c) N F'ta)T(3a—b—c+1)
F(3(a+1)—bl(i(a+1)—¢) T(la—bIl(3a—c+1)
~ Tla-b+1)l'(a—c+1)
" 2(a—-b)I'(a)(a—b—c+1)

[S+1]. (2.28)
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Finally, using (2.27) and (2.28), we find that

3B (00 i 1) (= b)gilesbiiieci) g 7

(a—1b) — = 2(a—b)T'(a)T'(a—b—c+1)
a c a—b+1)T(a—c+1
3F2 (a*bjrblfachJrl; 1) 2§)F(a)—;(31 (b C——:l) [S T]
s+ 1)
CS-T
1+ R
:bltR’ (2.29)
where
R:ZZF(%G)F(la—b—c—i—l)F(%( 1) = b)(L(a+1) —c)
S Tha-0)r(la—c+)IE(a+1)I(E(a+1) —b—c)

Note that if a = 32 +b+¢, b= im, and ¢ = 3(n+ 1),

R F(}l(m +m4+n+ 1))F(i(x+m —n+ 1))F(}l(x —-m —I—n—|—3))F(}l(x —m —n+3))
CTl@-m4an+ )G -—m—n+1))LE(@+m+n+3) Lt (z+m—n+3))
=P

Substituting d = a — b and e = a — ¢+ 1 into (2.17), we find that

a,b,c .
3F2 <a—b,a—c+1’ 1) .
F ( a,b+1,c . 1> o (a
3472

c(l1—c) S Tk

—b
(a=0) a—b—c+klsk

b+ , (2.30)

a—b+1,a—c+1?

where

Tok—1 — (k -+ b)(l{ — b),
Sop—1=a—b—c,
ror = (k+c¢)(k+1—c¢),

Sop=a—b—c.
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Again letting a = %x +b+c, b= %m, c= %(n + 1), we see that

Sok—1 = Sk =

Tk —

<
(&)
e

I

1

I
== R P N
—
~~
)

S
SN—

[N}
|
3l\?

k+

el
+

N | —
S
N—
=Nl
|

DN | —
3
N———

so the continued fraction in (2.30) can be written as

Multiplying both sides of (2.32) by 2 yields

1+ P
m—

1-P

=x+

12 —n?

22 —m?

32 —n?

42 —m?

T

_|_

T

+

T

+ X

4+

Taking reciprocals of both sides and then multiplying by m, we obtain

12 — n?

22 —m

2

32 —n?

42 —m?

T

+

T

21

+

T

+

T

)

(2.31)

(2.32)

(2.33)

(2.34)



which is Entry 34. The convergence of the continued fraction to (1— P)/(1+ P) is discussed
by Jacobsen in [10]. O
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Chapter 3

Identities related to Entries 34 and 25

In obtaining Entry 34, we used an initial substitution of d = a — b, e = a — c+ 1 in the
main continued fraction (2.17). Starting with the substitution d = a —b—1, ¢ = a — ¢
yields a similar identity, given here as Theorem 3.1.1. Theorem 3.1.1 has a corollary that is
interesting in that it appears to be a companion to Entry 25. This corollary, Theorem 3.2.1,

is discussed and proved in the second section of this chapter.

3.1 An identity related to Entry 34

Theorem 3.1.1. Suppose that m = 0(mod 4) or n = 2(mod 4), or that R(z) > 0 with m

and n arbitrary complex numbers. Define

I(
I(

(x —m+n+6))I(
(x+m+n+6))I(

(x —m —n+6))
(x+m—n+6))

P (x+m+n+2)L(3(x+m—n+2))I(

(x—m+n+2)'(z(x —m—n+2))I(

00 |—|00 =
Co|—|Co|—

00 |—|00 |~

Then
1—P m 22—n? 42—m? 6%>—n? 8> —m?

1+P z+ =z + = + x + x Ao

We first prove this identity without regard for its region of convergence, and then prove

convergence later.

Proof. As in the proof of Entry 34, we use the relations (2.2) and (2.10) and the continued

fraction (2.17). In (2.2), we exchange b and ¢ and then d and e, and then replace b by b+ 1
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and d by d + 1 and rearrange to obtain

1 — 1 1 1
I (a,b+ ,c; 1):( ac(d —b) )3F2 (a—l— b+ 1, ¢+ ;1)

d+1, e d+1e(a+c—e d+2,e+1
(e —a)(e—c) a,b+1,c
- —F—— 3k ;1. 3.1
clatc—e) 2 \d+1,e+1 (3:1)

In (2.10), we exchange a and b to obtain

a, b, c d—a a,b+1,c ale — c) a+1,b+1,c
F. 1) = F ;1 E ;1. 3.2
32(d,e’) d32<d+1,e’)+ de 32(d+1,e+1’) (3:2)

Also in (2.10), we exchange b and ¢ and then d and e, and then replace b by b+ 1 and d by

d + 1 and rearrange to see that

a+1,0+1,c e a,b+1,c
F ? 7_1 — F ? 7_1
32<d+1,e+1’> 6—032(d+1,6’>
c(d—10) a+1,b+1,¢c+1
- ;1. 3.3
(d+1)(e—c)“( d+2,e+1 ) (3:3)

We substitute (3.3) into (3.2) to obtain

a, b, c d—a a,b+1, ¢
F 77_1 — F ) 7_1
32(d,e’) d32(d+1,e’>

+a(e—c){ e By (a,b—l—l,c; 1)

de e—c d+1,e
_c(d=b) a—i—l,b—kl,c—i—l'1
d+1)(e—c)”?\ d+2e+1

d— b+1 b+1
— a3F2 (a, + 7C; 1>+93F2 (a, + ,c; 1)

d d+1,e d d+1,e
_ac(d D) 7 a+1,b+1,c+1
de(d+1)*" 2\ d+2,e+1
a,b+1,c ac(d — b) a+1,b+1,¢c+1
=3k ; - ;1 3.4
’ 2(d+1,e’ ) de(d+1)° 2( d+2,e+1 ) (34)
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and then substitute (3.1) into (3.4) to eliminate 3F (“C’ll_’:gl’ec; 1). This yields

a, b, c ac(d — b) a+1,b+1,c+1
F 1] = F ;1
’ 2< ) (d+1e(a+c—e)’ 2( d+2,e+1 )

_Je—@@—@ﬂ%(mb+Lc.Q

e(a+c—e) d+1,e+1

ac(d —b) a+1,b+1,c+1
— — b3 ;1

de(d+1) d+2,e+1

B ac(d —b) _ac(d —b) a+1,b—|—1,c+1.1
T ld+Delatc—e) de(d+1)]7P\ d+2e+1
(e —a)(e —c) a,b+1,c
— 3% ;1
e(a+c—e) d+1,e+1
_ac(d—D) 1 1 a—l—l,b—i—l,c—i—l'1
T e(d+1) [(atc—e) d|PP\ d+2,e+1
(e —a)(e—c) a,b+1,c
— 3l ;1
e(a+c—e) d+1,e+1
_ac(d—0) [d+e—a—c a+1,b+1,c+1‘1
T e(d+1) |dlatc—e) PP d+2,e+1
(e —a)(e—c) a,b+1,c
-3k ;1
e(a+c—e) d+1,e+1
~ac(d—Db)(d+e—a—c) a—{—l,b—l—l,c—i—l.l
T de(d+D(atc—e) TP\ d+2e+1
— — 1
_(e—a)(e C)gFg(a’b+ ’C-l). (3.5)

e(a+c—e) d+1,e+1

Weletd=a—b—1and e =a— ¢, so (2.17) becomes

a/7b7c .
3F2 (a—b—l,a—c’ 1) 02 > Tk

(a—b—1) =(a—-b—c—1) - ——— -, (3.6)
3fy (f’_l;,;l’_cg 1)

a—b—c—1+ ot Sk

where

rop—1 = (k+0)(k—1-=10),

Sop—1=a—b—c—1,
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ror = (k+¢)(k —¢),

Sop=a—b—c—1.

With this substitution, (3.5) becomes

a, b, c
F J ? .1
32(0L—b—1,ot—c7 )

_ala—2b—1)(a—b—2c—1) a+1,b+1,c+1_1
T 2a-b—1Da-c)a—b) **\a-b+1l,a—c+1

+(a—2c§3F2( a,b+1,c 1)’ (3.7)

2(a—c a—b,a—c—l—l;

and (3.1) becomes

7 a,b—f-l,c‘1 _ala—2b—1) » a—i—l,b—l—l,c%—l.1
P a—ba—c¢ ) 2a-ba-0c*\a-b+1l,a—c+1’

+MF( a,b+1,c ~1>. (3.8)

2@—c)* *\a—ba—c+1’

Note that both /5 <;jb1+’li+;fc:115 1) and 35 (afl’)b;il’cil; 1) can be evaluated using Dixon’s

Identity (2.1). Thus

(a — 2¢) a,b+1,c
31 ;1
2(a—c) a—ba—c+1

_(a—=20)T(a—b)T(a—c+ 1)l (za+1)(5a —b—c)

2(@—-ol(la—b)l(Ea—c+ DI (a+1)(a—b—c)

I(a—b)I(a—c)l(3a)(3a—b—c)

2

e -0 CGa— ol (@l(a—b—c)’

(3.9)
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2(a—b—1)(a—c)(a—0b) a—b+1l,a—c+1
ala—2b—1)(a—b—2c—1)
20a—b—1)(a—c)(a—10)
Fa—b+1)'(a—c+1)I(3(a+1)+
F(3(a+1) =l (3(a+1) — )T
(a—b—2c—1)T'(a—bI(a—c)T(5(a+
2@—b—1)I(3(a+1) —b—1I(i(a+

ala—2b—1)(a—b—2c—1) <a—|—1,b+1,c+1'1>
2

(3(a+1)—b—c—1)

+2)Ia—b—c)

(3la+1)—b—c—1)
ol(a)l(a—b-c)

nr
(a
1)r
. (3.10)

and

2a—b)(a—c)® *\a—b+1, a—c+1
ala—2b—1Dl(a—b+1)T(a—c+1)I(3(a+ 1)+ ) (i(a+1)—b—c—1)
2(a—b)(a—c)l(3(a+1) =b)I(3(a+1) = )l(a+2)T(a—b—c)
_ I(a—b)(a—c)(3(a+1))(3(a 1)—b—c—1). (3.11)
I (3a+ 1)~ b~ DI (3a+ 1) ~ AP (@) a6 —c)

ala—2b—1) (a—i—l b+1,c+1 )
(i
1
2

Hence we have, after combining the last five equations,

(a—b—1) -~
3F2 (;Lbjrzz—cc’ 1>
a(a—2b—1)(a—b—2c—1) a+1,b4+1,c+1 . (a—2c) a,b+1,c
. (a e 1) 2(a—b—1)(a—c)(a—b) 3F <a—b+1,a—c+1’ 1) + 2(a—c)3F2 (a—b,a—c+1’ 1)
o a(a—2b—1) a+1,b+1,c+1 (a—2c¢) a,b+1,c
2(a7b)(afc)3F2 (a7b+1,afc+1’ 1) + 2((170)3F2 <a b,a—c+1’ 1)
(a—b—?c—l)F(a—b)F(a—c)F(%(a-{—l))f‘(%(a-‘rl)—b—c—l) I'(a—b)I'(a— c)F(Qa)F( a—b—c)

_ (a—b— 1) 2(a—b—1)T'(4 (a+1)—b—1)[' (3 (a+1)—c)['(a)T(a—b—c) 2I'(2a—b)I(3a—c)I(a)l(a—b—c)
F(a—b)F(a—c)F(%(a-i—l))F(%(a+1)—b—c—1) F(a b)(a—c)T (% a)F(Qa b—c)
2F(%(a+1)—b—1)F(%(a+1)—c)F(a)F(a—b—c) ( a—b)T ( a—c)I'(a)I'(a—b—c)

(a—b—2c—1)F(%(a—&-l))F(%(a—‘rl)—b—c—l) + i a)F(Qa b—c)

_ (a—b— 1) (a—b—l)l"(%(a—i—l)—b—l)l"(%(a—l—l) c) F( a— b)F( a—c)
I'(%(a+1)0(2(a+1)—b—c—1) I I'(2a)(3a—b—c)
F(%(a—&-l)—b—l)f‘(%(a—kl)—c) (% -yr ( a—c)

a—b-2c=1 4 I'(3a)l'(a—b—c)l'(§(a+1)=b—1)I'(§ (a+1)—c)

—(a—b—1) a—b-1 I'(3a=b)T(5a—c)T'(5(a+1))1(5 (a+1)—b—c—1)
B 14 I(2a)T($a—b—c)T (4 (a+1)—b—1)I'(3(a+1)—c)
I(3a—b)(3a—c)I(3(a+1))I (3 (a+1)—b—c—1)
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a—b—2c—1
==+ R
=(a—b—1)—2=1

1+ R
2c
—(a—b—1) |-tz 1
(a "Tivw"
2c
= - —b—1
rglembl
1 —
:(a—b—c—l)—cH—g, (3.12)
where
R F(%a)l“(%a —b— c)F(%(a +1)—-b— 1)1“(%(@ +1)—¢)
CT(Ga-bl(za—oT(G(a+1D))Ga+1)—b—c—1)
Thus (3.6) becomes
(a—b—c—l)—cl_R—(a—b—c—l)—c—2 P
1+ R a—b—c—1+4 43 Si
or
1-R c S T
= — 3.13
1+ R a—b—c—1+k:13k’ (3.13)
where
Tgkflz(k—f-b)(k—l—b),
Sop_1=a—b—c—1,
rop = (k+c¢)(k —¢),
Sop=a—b—c—1.
Now let a =3z +b+c+1,b=1(n—2), and ¢ = ym. We find that
R FE+m+n+2)0(E@—m—n+6)(5(z+m—n+2)(3(x —m+n+6))
T +m—n+6)TEz—m+n+2)LE(@+m+n+6)l(i(z—m—n+2))
=P
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Also,

1
3%_1:8%2(Z$+b+c—|—1)—b—c—1

_1

_4x7

—(k+ =2 (k—1-tm—2

Trop—1 =— 471, 471

1

:1—6(4k+n—2)(4k—4—(n—2))
1

= (k27— ),

1 1
Tgk:<k+zlm> <k:—é—1m)

:i((4k)2—m2)

16
SO
1—P:}lm =(22—n?) E(@—-m?) (62 —n?) (8 —m?)
1+P z/4+ z/4 + x/4 + z/4  + x/4 +
m 22—n? £-m? 62-n? &-—m’
x4+ oz + oz + oz + oz -
as desired. O

The domain of validity claimed for Theorem 3.1.1 is that m = 0(mod 4) or n = 2(mod 4),

or that $(z) > 0 with m and n arbitrary complex numbers.

Proof of convergence. If either m = 0(mod 4) or n = 2(mod 4), the continued fraction
terminates, so it converges. In this case, there are only finitely many iterations in the
repeated division process of Lemma 2.1.4, so the above proof shows that the continued
fraction converges to the function given on the left side of the identity.

Now suppose that m and n are arbitrary complex numbers. We apply Theorem 1.2.1 to
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the continued fraction

“ra;  22—n? 42-—m? 6*—n? 8 —m?

b r + x + oz + x4

We have agy,_1 = 16k?>—16k+4—n?, ag, = 16k>—m?, and byy_1 = bop, =z, 50p =2, =1 =0,
ay =, a1 £y, and D = {z € C: 22 # 0 and m # 0(mod 4) and n # 2(mod 4)}. Thus

q+r=p—2,so Case (iv) of Theorem 1.2.1 applies. This means that

D= {x€5:4(x)(x) + (0+1+ﬂ)2 91(—00,0]}

16 16

:{xEIN):x;—FO%(—oo,O]}

={z € C:R(x) # 0 and m # 0(mod 4) and n # 2(mod 4)} .

By Theorem 1.2.1, F'(xz,m,n) converges in D to a function that is meromorphic or identically
oo in each component of D. Hence the continued fraction of Theorem 3.1.1 also converges
to a function f, meromorphic or identically oo in each component of D. This function f
coincides with (1 — P)/(1+ P) for > 0, so by analytic continuation the continued fraction
of this theorem converges to (1 — P)/(1+ P) for R(z) > 0. Note that the continued fraction
is an odd function of x, since

m 22 —n? 42-m? 62-n? & -m?

-r+ -r + —=r»r + - + —x +--

—m  —(22—-n?) 42-m? 6°-—n® 8 -—m?

r + —x + - + - + —x +---

m 22—n? 42—m? 62—n? 8 —m?

r+  + x + x + T A+

Since (1 — P)/(1 + P) is not an odd function of z, the continued fraction does not converge
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to (1 —P)/(1+ P) when = < 0, so the identity is not valid for R(z) < 0. O

Theorem 3.1.1 can actually be shown to be equivalent to Entry 34 by replacing n by
2n, m by 2m, and x by 2z in Theorem 3.1.1 and then simplifying. However, the format
given in Theorem 3.1.1 makes the corollary, Theorem 3.2.1, more obvious. The substitutions
d=a—-b+1l,e=a—c+2andd=a—b—2, e =a—c—1 in the main continued
fraction (2.17), followed by an appropriate second substitution, also give identities that are

equivalent to Entry 34. This suggests the following conjecture.

Conjecture 3.1.2. An initial substitution of the formd =a—b+1, e = a—c+1+1, wherel
is an integer, followed by the substitution a = S(x+m+n+1), b= 1(m+1), c = 2 (n+1+1),

always qives an identity equivalent to Entry 34.

3.2 A Corollary of Theorem 3.1.1

Theorem 3.2.1. Suppose that N is an even integer, or that R(x) > 0 with N an arbitrary

complex number. Define

B I'(3(z+N+1)T(5(x—N+3))
ST+ N+3) (i —N+1)
Then
1—R_N 22 _N?2 42 _N?2 62— N2 82_ NZ2
1+R 22+ 22 + 22 + 2 + 22 4.

This theorem is a nice companion to Ramanujan’s Entry 25. It contains the same Gamma
functions in a different configuration, and the numerators of the continued fraction are of a
similar form: (2k)* — N? instead of (2k — 1) — N2. Two proofs are provided; one shows this
theorem to be an easy corollary of Theorem 3.1.1, while the other proves it directly using

the method Ramanathan used in [15] to prove Entry 25.
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Proof 1. In Theorem 3.1.1, replace z by 2z and let m = n = N. Theorem 3.2.1 follows

immediately as a corollary. O]

Proof 2. The continued fraction used in this proof is Entry 22 from Ramanujan’s second

Notebook [4],

prefi (505 )
0l 2F1<*c;,5;_$>
fa B+D(a+y+z  (B+2)(a+y+2)z

= . 3.14
y—(a+B+lz+y+1—-(a+B8+2)x+y+2—-(a+B+3)x+--- (3:14)
Welet o = —a, f=0b,7y=a—b+2,and z = 1 in (3.14). This yields
2P (2 1) a—b+2  (b+1)B-b) (b+2)(4-b) (b+3)(5-D)
oFy (%0, —1) 20—2b+1+ 2a-20+1 + 2a—2b+1 + 2a—2b+1 +--
(3.15)
Note that
1
(b+k)(k+2—0b) = Z((2k+2)2—(2b—2)2),
so (3.15) can be written as
a,b+1
2P (7 s5 1)
a,b
2F1 (a—b+2’ _1)
a—b+2  L# - (20-27) L@ - (-2 Ls*—(26-2))
- . (3.16)
20-2b+14+ 2a—-204+1 + 2a—-204+1 + 2a—-2b+1 +---
b+1 b
We will evaluate o F} (a&’_ b+—|— 5 —1> and o F} <a —a’b Lo —1) by rewriting them in a

form that allows the use of Kummer’s Identity, which is stated as Corollary 3.1.2 in [2]:

(3.17)

32



To do this, we use the relations

atlp+l N __ 7 afB \_ -8 a+1,5,
2F1< o ,:E)—B(l_$)2F1( y ,ZE) 5(1—33)2Fl< v 1 ,:L“), (3.18)

and

JF, <a+1,6+1;x) _ v(y+1) JF, <a,,6’;x)
(v ) ol

7+ —a)(y - P
Yy + 1)1 —2) a+1’ﬁ+1~x
('V_CY)('V B)x F1< vy+1 J )7 (3.20)

where (3.19), due to C.F. Gauss, is equation (17) on page 133 in [7] and (3.18) and (3.20)
were obtained by Ramanathan in [15] from other results of Gauss in [7].

In (3.18),leta=a—-1,8=b—1,y=a—b+ 1, and x = —1 to obtain

a,b a—b+1 a—1,b—1
F U ) =— L F ’ L —1
2 1(a—b+2’ ) 2b—1)° 1( a—b+1" )

a—2b+2 a, b—1
——F ’ i —1). 3.21
20b—1) ° 1(a—b—|—2’ ) (3:21)

Both of the hypergeometric series on the right side of (3.21) can be evaluated by (3.17), so

a,b
F ’ :—1
21(a—b—|—27 )

(a—b+1)lla—b+1)(E(a—1)+1) (a—2b+2)(a—b+2)I'(3a+1)

20— 1)(ta—1)—b+2)T(a) 20— 1DT(la—b+2)l(a+1)
T(a—b+2)T((a+1)) (a —2b+2)T(a — b+ 2)Lal(La)
2b—1I(3(a+1) —b+1)[(a ) 2b—1)(3a—b+1)I(ta—b+1)al'(a)
M(a—b+2)(3(a+1)) (a—2b+2)l(a—b+2)I(La)
20— 1)T(E(@+1)—b+1)l(a) 2(b—1)(a—2b+2)T(1a—b+1)[(a)

I'(a—b+2) I'(i(a+1)) I'(3a)

T2 —Dh(a) [T+ 1) bt 1) Tla—biD)] (3:22)
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a,b+1
a—b+3’
and z = —1 to obtain

a,b+1 (a—b+1)(a—b+2) a—1,0
F 1) = F -1
2 1(a—b+3’ ) b—2)a—2b+1) “"\a—b+1

2@—b+1)(a—b+2) a,b+1
 (b—-2)(a—2b+1) ° 1<a—b+2’_1)'

To evaluate o F} ( 1) , we begin with (3.20). Let « = a—1, 8 = b, v = a—b+1,

(3.23)

—-1,0 b+1
We now need to evaluate oF e b :—1) and o F} a0+ : —1). For the first of
a—b+1 a—b+2

these, welet a =b, f=a—1,y=a—b+1, and x = —1 in (3.19). This yields

b,a—1 b, a b b+1,a
F ’ ;=1 | =oF ’ ; —1 —F; =1, 24
2 1(cz—b—l—l’ ) ? 1((JL—ZH—17 )%_a—b—l—l2 1<a—b+2’ ) (3:24)

a,b+1

T luate o F ) —
o evaluate l(a—b—l—Q

1), we apply (3.20) with o =a—1, 8 =0b, v =a—0b, and

z = —1 to obtain

a,b+1
F; —1
21(a_b+27 >

_a=ba—bt1) o (a—l,b' 1)

(b—1)(a — 2b) a—b
Hesoobod (001 )
S () () e

Next, (3.19) with « =a, 8 =b, vy =a — b, and z = —1 yields

a, b a, b+1 a a+1,b+1
F T 1) =4F ’ s —1 F! ’ - —1 2
21<a—b7 ) 21(@—6’ >+a—b21(a—b+1’ ) (3.26)
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and (3.18) with a =b, B =a, vy =a—b, and x = —1 yields

1 1 — 1
JF (b—% ,a+ ;__1) _a ab2F1 ( b, a .__1) +»£12}q ( b+1,a 1) (3.27)

a—b+1 2a a—b+1

a,b+1
a—b+17

a,b+1 2a a+1,b+1 a—b a,b

F; ’ =1 ) = —9oF] ’ —1) — F; o1

21(a—b+1’ ) b21<a—b+1’ ) b 21(@—F )
2a a+1,b+1 a—b a,b+1

= —F ’ c—1) — F; ’ c—1
b21<a—b+1’ ) l){21<a—b’ )
a a+1,b+1
F; ’ :—1

+a—b21(a—b+1’ )]

2a a+1,b+1 a—>b a,b+1
:?2FI( ;—1) — 2F1( ; 1)

or, isolating o F} ( —1), we have

a—b+1 b a—b
a a+1,b+1
__F ._1
b21(a—b+1’ )
a a+1,b+1 a—2b a, b+1
:—F ’ —]. - F ’ _]- 2
b2 l(a—b+17 ) b 21<a_b7 )7 (3 8)

where in the second equality we use (3.26). Substituting (3.28) into (3.25), we find that

2F3(;tiil;?—1)
_ (a(l)—_b)l()cz; _b ;;)1) [2 P (aa—j})b; B 1) R (aa,_b;_+ 11; _1”
et D (1) afpn ()
- a;bQFl (a;b_%—bl; _1) H
_(a—bla=b+1) [2F1 (a—l,b; _1> _2afa-b) o <a—1,b; _1>

(b—1)(a — 2b) a—>b

2(a —b) a,b+1
A 2E<(y—b’ Q}
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_(a=b)a—b+1) [2b—a2Fl (a—l,b. _1) L2Amb) (a,b+1; _1)}’

(b—1)(a — 2b) b a—>b "’ b a—>
(3.29)
where in the third equality we use
a+1,b+1 7F(a—b+1)1ﬂ(l(a+1)—|—1)
2F1( @bt ’_1> BT EDNCES)
_ (a=bI(a—b)z(a+ DI(3(a+1))
[(3(a+1) = b)(a+ 1)al'(a)
- a2_ab2pl ( a__lzb; —1) , (3.30)

which is obtained by applying Kummer’s Identity (3.17) twice. Substituting (3.24) into
(3.23), we find that

a,b+1
F; ;o —1
21<a_b+3a )

_(a=b+1)(a—b+2) a,b b a,b+1
T (b—2)(a—2b+1) {QFl(a—ble’_1)+a—b+12F1(a—b+2’_1)]
_2(a—b+1)(a—b+2)2 1<a,b+1._1)
(b—2)(a—2b+1) a—b+2
_(a=b+1)(a—b+2) a, b
= T2 a2+ 2F1(a—b+1’_1>
bla—b+2) a,b+1
(b—2)(a—2b+1)2pl(a—b—|—2’_1>
2(a—b—|—1)(a—b—|—2)2 1<a,b+1._1)
(b—2)(a—2b+1) a—b+2’
(a—b+1)(a—b+2) a,b
T -2 (a—2b+1) 2Fl(a—b+1’_1>
bla—b+2) 20a—-b+1)(a—b+2) a,b+1
b—2)a—2b+1)  (b—2)(a—2b+1) }2F1<a—b+2’_1)
_(a—b+1)(a—b+2) a,b
T (b—2)(a—2b+1) 2F1(a—b+1’_1)
(a—b+2)(3b—2a—2) (a,b—i—l'_l)
b—2)a—2b+1) ' \a—b+2 '

_|_

(3.31)
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Next, substituting (3.29) into the last result, we obtain

a,b—i—l‘_
2F1<a—b~|—3’ 1)
_(a=b+1)(a—b+2) a,b
T (b—2)(a—2b+1) 2F1(a—b+1’_1)
(a—b+2)3b—2a—2)[(a—0b)(a—b+1)[20—a a—1,b
b—D(a—2+1) [(b—l)(a—%) [ b QFl(a—b’_1>

) 2(ab— O (a;b_+b1; _1> ”

sz o (o)

PSS [ g (7 ) 20 (0 )
a5 )
e (1)

2(a — b)*(3b — 2a — 2) a,b+1
T —1a—2) 2F1<a—b ’_1”' (3:32)

Note that, by Kummer’s Identity (3.17),

a, b Fa—b+1)(3a+1)
21 ( ) I(ta—b+1)I(a+1)
_ (a—=D(a—bI'(3a+1)
C (3a-bI(a—bI(a+1)
_ 2C(La_—22)2 P (a;bj—bl; _1> | (3.33)

so (3.32) becomes

a, b+1
F ’ =1
2 1<a—b+3’ )

_(a=b+1)(a—b+2)[2(a—1D) a,b+1
T (b—2)(a—2b+1) {a—Qb 2F1( a—b ’_1)
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_ (a_b>((?;b__1§a_ 2,k (a_ Lo, —1)

2(a — b)*(3b — 2a — 2) a,b+1
e ‘1”
:2(a—b)(a—b+1)(a—b—|—2) [1 (a—b)(
(b—2)(a—2b)(a—2b+1)
(@a—=b)(a—b+1)(a—b+2)(3b—2a— 2)2F1<a—1,b._1>

b(b—1)(b—2)(a—2b+1) a—>b
_2(a—b)(a—b+1)(a—b+2)(b—2a)(a—26~|—1)F a,b—l—l._l
(b—2)(a —2b)(a — 2b+ 1) b(b—1) 2 1( a—b" )

(a—b)(a—b+1)(a—b+2)(3b—2a —2) a—1,b
- bb—1)(b—2)(a—2b+1) 2F1< a—b ’_1>
~ 2(a—b)(a—b+1)(a—b+2)(b— 2a) a,b+1
= b(b— 1)(b — 2)(a — 2b) 2F1< a—b ’_1)
(a=b)(a—b+1)(a—b+2)(3b—2a —2) a—1,0
- b= 1)(b—2)(a—2b+1) 2F1< a—b ’_1)' (3:34)

Applying (3.17) to (3.34) yields

a, b+1
I ’ :—1
21(@—1)—1—37 >

_2(a—b)a—b+1)(a—b+2)(b— 2a) I(a—b)(5a+1)

b(b—1)(b—2)(a — 2b) I(3a—b)(a+1)
C(a=b)la=b+1)(a—b+2)(3b—2a—2)I(a—bI'(5(a+1))
b(b—1)(b—2)(a—2b+1) I'(3(a+1) —b)(a)

- 2(b—2a)T'(a — b+ 3)3al'(3a)
b(b—1)(b—2)2(a — b)T(1a — b)al (a)
(3b—2a—2)'(a—b+3)'(5(a+1))
b0 1) —2)2(3(a+1) =) (L(a+1) —b)(a)
(b—2a)T(a—b+3)(3a)
~ (b —1)(b—2)T(Ea— b+ 1)I(a)
(3b—2a—2)[(a—b+3)'(3(a+1))
~26(b—1)(b—2)L(L(a+ 1) — b+ 1)T(a)
 T(a—b+3) (b—2a)l(La) . (2a — 3b + 2)T(3(a + 1))
2b(b—1)(b—2)T'(a) |T(3a —b+1) F(i(a+1)—b+1) |’

(3.35)
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Then, if we set

I'(3(a+1))

F= Tla+1)—b+1)
__ TG
M ETE R

we finally find that

“ T(a—b+3) (b—2a)l(3a) | (2a—3b+2)T'(5(a+1))
2 I (aiﬁlg? _1) _26(0—1)(b=2)I'(a) [F(%a—bfl) F(%(a+1)—2b+1)

N3 ( a,b _1) I'(a—b+2) |: F(%(‘H‘l)) F(%a) ]

a=bt2’ 2—1)T(a) |T(L(at+1)=b+1)  T(Za—b+1)

% [(b—2a)Q + (2a — 3b + 2) P]

T(a—b+2)[P—Q]
_(a—b+2)[(2a—b) [P~ Q]+ (2 20)P]

b(b — 2) P-Q
S Ch L P
" b(b—-2) {2 "o } )
so (3.15) becomes
(a—b+2) (2—-2b)P
m 2a—b+TQ}
a—b+2 (b+1EB-b) (b+2)(4-b) (b+3)(5-0) (3.37)

T2 —2+14 20—2b+1 + 2a—20+1 + 20—20+1 +---

Multiplying both sides of (3.37) by —b(b—2)/(a — b+ 2) and adding 2a — b to both sides of

the result yields

2(b—1)P
P—qQ
gy py M2=D) DB (A8 (b+3)(5-b)

20 —2b+1+ 20 —2b+1 + 20 —2b+1 + 2a—2b+1 +---

(3.38)
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We now let a = $(z + N + 1) and b = ;N + 1 to obtain

NT(3(z+ N +3))I'(3(z — N + 1))

F(3(z+N+3)G@—N+1)-T(@+N+1)0(5(x - N +3))
B N 22— N?% 1(42-N?) 1(6*-N?)
et g T T + x + T 4o

If we define

we see that

N(1+1) T+ x + x + x +e
2 22 - N?2 42 - N? 62— N?
S 2+ 20 + 22 4+ 22 4.

Multiplying both sides of (3.41) by 1N and setting R = T'/S yields Theorem 3.2.1.

(3.39)

(3.40)

(3.41)

]

Proof of convergence. The domain of validity for Theorem 3.2.1 follows directly from that

of Theorem 3.1.1. We let m = n = N and replace x by 2z in Theorem 3.1.1. If N =m =
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O(mod 4), N is even, and if N =n = 2(mod 4), N is even. In both cases the identity holds.
If N is an arbitrary complex number, we must have (2z) > 0, so R(z) > 0 is the necessary

condition. n
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Chapter 4

Other entries of Ramanujan

Entry 34 and Theorem 3.1.1 both result from an initial substitution in the main continued
fraction (2.17) satisfying d —e = ¢ —b— 1, so they could be considered to be relatives of each
other even before they were discovered to be equivalent. Entries 36 and 39 in Ramanujan’s
second Notebook [4] are related in a similar way, but are not equivalent to each other. For
Entries 36 and 39, the initial substitutions satisfy d — e = ¢ — b. This chapter contains their
proofs. It should be noted that Entries 36 and 39 appear to be the only identities that come

about from initial substitutions of the form d = a—b+1, e = a —c+ 1, where [ is an integer.

4.1 Entry 36

Theorem 4.1.1 (Entry 36). Suppose that n or m is an even integer, or that R(x) > 0 with

m and n arbitrary complex numbers. Define

I(
I

(x —m+n+1))I(
(x —m+n+3))I(

(x+m—n+1))
(x+m—n+3))

R:

= s =

(z+m+n+3)(3(x —m—n+3))I(
(z+m+n+1)D(3(z —m—n+ 1))

NN
NN

Then

1—-R mn 22 —m? 22—n? 42—m? 42-—n? 6%2—m?

1+R 22—1-n2+ 1 4221+ 1 +22—1+ 1 4

Proof. In the continued fraction (2.17), we let d = a — b and e = a — ¢. This produces the
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continued fraction

- . o = Pk
(a—1) a,b+1,c_1>_(a b C)+a—b—c—1+K

HOP- 208 ¥ e

—(a—b— a7 9 )
(a c>+a—b—c—1—|—k:1 a

where

pok—1 = (kK +0)(k —b)
= (02— @),
Gok1=a—b—c
por = (k+¢)(k —¢)
= 1 (207~ 207),

Qr=a—b—c—1.

We evaluate 3F5 (a_al;bc’f_c; 1) and 3F5 <a_al’)itlf_c; 1) by first rewriting them in a form

that allows the use of Dixon’s Identity (2.1). In this process, we again use the recurrences

(2.10) and (2.24), as well as the relations

a+1,0,c _a—d+1 a,b, c d—1 a,b,c
3F2< d e ,1) —T:;FQ( d e ,1)—1—73]72 (d—l,e’ 1> (4.2)

and

a,b,c d—1 a, b, c e—d a, b, c
E: 1) = E: | E 1) 4.
32<¢e—1’) 132(d—1 )+e—132(d&’ ) (4:3)
Equations (4.2) and (4.3) are both due to J.A. Wilson, and are given as Equations (17) and

(24) respectively in [16].
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In (2.10), exchange a with b and d with e to obtain

a, b, c e—a a,b+1,c a(d — c) a+1,b+1,c
F 1] = F ;1 E ;1. 4.4
32(0[,6’) e 32(6[,64—1’)+ de 32(d—|—1,e+1’) (4.4)

Now let d =a — b and e = a — ¢. This yields

a, b, c (a—c)—a a,b+1,c
32(a—b,a—c’ ) a—c 32<a—b,a—c+1’ )
ala—b—c) a+1,b+1, ¢
sl ;1
(a—b)(a—c) a—b+1l,a—c+1

c a,b+1,c
= — F ) ) 1
a—ch(a—b,a—c—i-l’ >

_|_

ala—b—c) a+1,b+1, ¢
—_— 1. 4.5
(a—b)(a—c)’ 2<a—b+1,a—c+1’ > (4:5)
In (4.2), replace b by b+ 1, d by d+ 1, and e by e + 1 to obtain
a+1,b+1,¢c a—(d+1)+1 a,b+1, ¢
F 1] = F i1
32(d+1,e+1’ ) a 32<d+1,e—i-17 )
(d+1)—1 a,b+1,c
ero—- 1
* a 2\ d e+
a—d a,b+1,c d a,b+1,c
= F ’ R | —3F: ’ 1 4.6
a32<d—1—1,e+1’)+a32<d,e+1’)’ (4.6)

then let d = a — b and e = a — ¢. This yields

1 1 — (a — 1
3F2( a+1,b+1, c _1>:a (a b)SFQ( a,b+1, ¢ 1)

a—b+1,a—c+1’ a a—b—l—l,a—c—l—l;

a—>b a,b+1, ¢
F b ) ‘1
L 32(a—b,a—c+1’ )

b a,b+1,c
— 2. F ) ) 1
a3z(a—b—i-l,a—c—l—l7 )

a—>b a,b+1,c
F: ’ ’ ;1. 4.
T 32<a—b,a—c+1’ ) (4.7)
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In (2.24), replace e by e + 1 to obtain

" a,b—i—l,c'l ~ale+1—¢ 7 a+1,b+1,c.1
P\d+1e4+1 ) e+ Da+b—d) P\ d+1,e+2
d—> a, b, c
——F o 1. 4.8
a+b—d’ 2(d+1,e+1’ ) (4.8)

Again let d = a — b and e = a — ¢. We find that

a,b+1,c
F ) ) .1
32(a—b—|—1,a—c—|—1’ )

_ala—2c+1) a+1,b+1 ¢ .
T a—c+ 1) \a—b+1,a—c+2

a—2b a, b, c
_ F [ -1
20 32(@—?)—1—1,@—0—1—17 )

ala —2c+ 1) a+1,b+1,c
=58l ;1
2b(a —c+1) a—b+1,a—c+2
(a—2b)(a—b)(a—2b—20)F a,b+1,c 1
2(a—2b)(a—b—c) “*\a—ba—c+1
ala —2c+1) a+1,b+1,¢c
Wa—c+1) " *\a—b+1l,a—c+2

(a —b)(a —2b— 2c) a,b+1,c
— E: ;1 4.9
Wa—b—c) P \a—-ba—c+1 )’ (4.9)

where in the second equality we use Dixon’s Identity (2.1) twice to obtain

a, b, c
F ) ) ‘1
32(a—b—|—1,a—c+1’ )

 Tla—b+1)(a—c+1)(za+ 1)l (5a—b—c+1)
CIla—-b+1D)IGa—c+ D@+ DI (a—b—c+1)
_(a=bT(a—bl(a—c+1)T (3a+1)(3a—b—c)'(3a—b—c)
 (Ga-dIGa-bI(Ga—c+Dl(a+1)(a—b—c)(a—b—c)
(

a—b)(a—2b—2c) a,b+1,c
= E: ;1. 4.10
(a—2b)(a—b—c)32(a—b,a—c—i—1’ ) (4.10)
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Substituting (4.9) into (4.7) yields

a+1.b+1, ¢
F ) ) .1
32(a—b+1,a—c—|—1’ )

_blala—2c+1) a+1,b+1, ¢ -
Tal2a@—c+1) P \a—b+1,a—c+?2

_(a—b)(a—Qb—20)3F2< a,b+1,c ‘1)}4—@;1)3}72( a,b+1,c '1)

2b(a — b — ) a—ba—c+1’ a—ba—c+1
_(a—2c+1) a+1,b+1, ¢ -
T 2a—c+1)"*\a—b+1la—c+2
(a —b)(a—2b—2c) a,b+1,c a—>b a,b+1,c
— E: ;1 F: ;1
2a(a—b—c) T *\a—-ba—c+1 T a—ba—c+1

_(@a—2c+1) a+1,b+1, ¢ 1
T 2a—c+1)*\a—b+1l,a—c+?2
a—b|a—2b—2c a,b+1,c
— — 1] 3F: ’ ’ ;1
a {Q(a—b—c) ]32(a—b,a—c+1’ )

_(a—2c+1) a+1,b+1, ¢ .
T 2a—c+1)" P \a—b+1l,a—c+?2

a—b —a a,b+1,c
_ F ) Y .1
a {2(@—6—0)}32<a—b,a—c+1’ )

_(a—20+1)F a+1,b+1,c 1) 4 a—2>b 7 a,b+1,c .
T 2a—c+ 1) P \a—b+1l,a—c+2 2@—b—0c)" *\a—ba—c+1 )"

(4.11)

We next substitute (4.11) into (4.5) to see that

b
3F2( nee ;1)
a—b,a—c

c a,b+1,c
= — F. ;1
a—c’ 2<a—b,a—c—i-17 )
ala—b—c) [(a—2c+1) a+1,b+1,c 1
(a—b)a—c)|2(a—c+ 1) *\a—b+1,a—c+2’

. a—2b 2 a,b+1,c 4
2a—b—c) *\a—ba—c+1

c a,b+1,c
= — F ) ’ 1
a—032<a—b,a—c+1’ )
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ala—b—c)la—2c+1) a+1,b+1 ¢
3F2 ;1
2(a—b)(a—c)(a—c+1) a—b+1l,a—c+2

a a,b+1,c
—F Y 7 '1
+2(a—c)32(a—b,a—c+l’ )

B c n a e a,b+1,c 1
Tl a—c 2a-0o] *\a=ba—c+1’

ala —b—c)(a—2c+1) a+1,b+1,c¢ 1
20a—ba—c)a—c+ 1) *\a—b+1,a—c+2

_ a—203F2 a,b+1,c -
2(a —c) a—b,a—c+1

ala —b—c)(a—2c+1) a+1,b+1,¢c
* 2(&—6)(@—0)(a—c+1)3F2 (a—b—i— La—c+2 1) (412)
Now, by Dixon’s Identity (2.1),
a—2c a,b+1,¢
20a—c)* *\a—ba—c+1 )
B (a—QC)F(a—b) (a—c+1I(3a+ 1) (Ga—b—c)
20a—c)T(3a—b)(3a —c+ 1)T(a+1)(a—b—c)
_ (a—QC)F(a—b)(a—c)F(a—C) ( )F(§ a—b—c)
2(a—c)l'(a—b)(ia—c)'(3a — c)al'(a)[(a — b—c)
I'(a —b)'(a —c)l'(5a)I'(5a —b—c) (4.13)

2F( —b)I'(3a — )T(a)T(a—b—c)

and

ala—b—c)la—2c+1) ( a+1,b+1, ¢ .1)
20a—ba—c)a—c+ 1) *\a—b+1,a—c+2
ala—b—c)la—2c+1) Tla—b+1l(a—c+2)T(5(a+ 1)+ DI(5(a+1) —b—c)
C2@—-b)(a—c)la—c+D)T(E(a+1) —b)(E(a+1) —c+ DI (a+2)(a—b—c+1)
2a(a—b—c)(3(a+1) —c)(a—b(a—b)(a—c+1)(a—c)(a—c) y
2@—b)(a—c)a—c+ 1) (3(a+1)=b)(3(a+1) —c)T(3(a+1) —¢)
Sa+DIGla+1)T(5(@+1)—b—c)
(a+ Dal'(a)(a—b—c)'(a—b—c)
_ I(a—bl(a—c)T(3(a+1)I(5(a+1)—b—c)
2((a+1)—b0)(53(a+1) — )T (a)T(a—b—c)’

(4.14)
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0 (4.12) can be written as

b
3Fg< “ o ;1)
a—b,a—c

I'(a—b)(a—c)(3a)T(3a —b—c)
QT( la —b)I'(ta—c)T(a)'(a—b—c)

2

I'(a—0)T(a—c)T(5(a+ 1)) (;(a—i—l)—b—c)

T+ 1) =BG+ 1) — (@) (a—b—c)
_ I'(a—0)T(a—c) [F(% a)l’ ( a—b—2c) +F(%(a+1)) (%( +1)—b—c)
2l'(a)T(a—b—¢) (% —br ( a—c) F(%( 1) — b)F( (a+1)—c)
~ Tla—bl(a—c)

= @ia—b—o T (4.15)
where
B F(%a)F(%a —b—2c)
P I'(3a—bl(3a—c)
0 F(%(a + 1))F(%(a +1)—b—c)
F(3(a+1) =l (3(a+1)—¢)

Next, replace b by b+ 1, d by d + 1, and e by e + 1 in (4.3) to obtain

a,b+1,c
2 i1
32(d+1,€7 )

d+1-1 (a,b—l—l,c ) e+1—(d+1) (a,b—i—l,c )
3L ; + 3 ;

T etrl-1 det1’ etrl—1 d4+1,e+1’
d a,b+1, c e—d a,b+1c

= —3F: ’ 1 F: ’ U1 4.16
egZ(d,e—l—l’ >+ e 32(d+1,e+1’ > (4.16)

Let d =a — b and e = a — c¢. This yields
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a,b+1, c
F Y Y '1
32<a—b+1,a—c’ )
a—>b a,b+1,c
— F Y ) _1
a—cgz(a—b,a—c—i-l7 )
(a—c)—(a—b)3F2< a,b+1,c _1>

a—c a—b+1l,a—c+1’

s b1 b— b1
_ 3F2( &o+ L e ;1)+ CgFQ( &0+ 1 ¢ ;1>, (4.17)
a &

a—c a—ba—c+1 a—b+1,a—c+1

_|_

and now substitute (4.9) into this to see that

a,b+1,c
F Y ) '1
32(@—1)—1—1,@—07 )

a—2>b a,b+1,c
:a—cF(a—ba—c—i—l‘l)
b ala —2c+1) a+1,0+1,¢c
a—c[?ba—cqL 32(a—b+1,a—c+2’1>
~ (a=0)(a—2b—2c) a,b+1,c -
2b(a—b—c) 2(a—b,@—C4—1’ )]
a—2>b a,b+1,c
a—cSFQ(a—b,a—c—i-l;l)
a(b—c)(a—2c+1) a+1,b+1,¢c
2b(a —c)(a—c+1)° 2(a—b+1,a—c—|—2’1)
_(a—b)(b—c)(a—2b—2c)F( a,b+1,c¢ '1>
2(a—c)la—b—c) > *\a—ba—c+1
_a_—bll_(b—c)(a—Qb—Qc)}F< a,b+1,c ‘1>
a—c 2b(a — b —c) Pla—ba—c+1
a(b—c)(a—2c+1) ( a+1,b+1,¢ .1)

2b(a — c)(a —c+1)° —b+1l,a—c+2
~ (a—0b)(a—2¢)(b+c) a,b+1,c .1
B Qb(a—c)(a—b—c a—ba—c+1
— -2 1, 1,
a(b—c)(a—2c+1 a+1,b+1,c 1) (4.18)
2b(a—c)(a—c+1 a—b+1l,a—c+2
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By Dixon’s Identity (2.1),

a—0b)(a—2c)(b+c) a,b+1,c
(2b(a )—(c)(a —)l() —c) 3 (a —b,a—c+ 1 1)
(a=b)(a—2c)(b+c)T(a—b)(a—c+1)I'(5a+ 1)I(3a —b—c)
- 2(a—c)la—b—c) T(a—b)I'(3a—c+ 1) (a+1)I(a—b—c)
_ (a—2c)(b+c)T(a—b+1)(a—c)(a—c)ial'(3a)[(3a —b—c)
2b(a —c)(a —b—c)T(3a —b)(3a — )T (3a — c)al(a)I'(a — b —¢)
_ (a—2c)(b+c)T(a—b+1)(a— )T (30)T(3a —b—c)
2bI'(3a — b)(a — 2¢)T(3a — )T (a)T(a —b—c+1)
_(b+ol(a—b+1)I'(a—c)
20T (a)[(a—b—c+1)

(4.19)

and

2b(a — c)(a — c+1)° a—b+1,a—c+?2
a(b—c)a—2c+1)T(a—b+1)'(a—c+2)(3(a+ 1)+ 1)I(
2b(a—c)(a—c+1 F(3(a+1)=bl(E(a+1)—c+ 1) (a+2
 2a(b-o)(5a+1)—)T(a—b+1)(a—c+1)(a—c)T(a—c)
C2(a—c)(a—c+)I((a+1) —b)(3(@a+1) — )T (3(a+1)—c)
Sa+ DG+ 1) (5(a+1)—b—c¢)
(a+ Dal'(a)'(a—b—c+1)

fla+1)—b—c)
)T

a(b—c)(a—2c+1) a+1,b+1, ¢
o )
)
) (a—b—c+1)
) —

_(b=oT(a—b+1)(a— AOl(3(a+1)T(5(a+1) —b—c)

~ 200(3(a+1) = b)L(3(a+1) —)T(@)(a—b—c+1)
_(b=ol(a—=b+1)'(a—c)

T 2l(a)(a—b—c+1) @ (4.20)

so (4.18) becomes

a,b+1,¢
3F2<a—b—|—1,a—c’1)
b+ ol(a=b+1)(a—c) b—cl(a—b+1)I'(a—rc)
T NT(@Ta—b—c+1) 1 W (@T(a—b—ct1)

- Tla=b+1)'(a—c)
2l (a)T(a—b—c+1) [(b+ )P + (b= c)¢]

Q
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~ Tla—-b+1)'(a—c)
- 2 (a)T(a—b—c+1)

b(P + Q)+ c(P = Q)] (4.21)

Multiplying (4.15) by (a — b) and dividing by (4.21), we obtain

a,b,c T'(a—b)T'(a—c
(CL o b)3F2 (a—b,a—c’ 1> o (a - b) QIS(Q)I‘)(a(_b_C)) [P + Q]
a c  T(a—b+1)T(a—c)
3F (a_g,iﬁ;_c; 1) 20T (a)T (a—b—c+1) (P + Q) + (P = Q)]
T'(a—b
Fgafbirg [P + Q]

b(afll:gzcglfalf)b—c) [b(P + Q) + (P — Q)]
bla—b—c)[P+ Q)]

TP QTP Q) (4.22)
Thus (4.1) becomes
ba—b— )P+ Q)
[P + Q] + [P = )]
Cla—bog - iZ @) @99 G - @)
N a—b—c—1+ a—-b—-—c +a—-b—-—c—1+ a—-b—c
i(42 . (26)2) %1(62 o (2b)2) ;11(62 . (20)2)
+a—-b—c—1+ a—-b—c +a—-b—c—1+---
—(a—1b 2 22— (20 22— (22 42— (2
= (a— —C)_2(a—b—c—1)+2(a—b—c)—|—2(a—b—c—1)+2(a—b—c)
42 — (2c)° 6 — (2b)? 62 — (2c)?
+2(a—-b—c—1)+2(a—b—c)+2(a—b—c—1)+--- (4.23)
Now,
bla—b—9P+@Q . B[P + Q] B
[P + Q]+ c[P - Q) (@-b-cj=(a=? ){b[P+Q]+c[P—Q] 1}
o dr-q
=(a—0 ){b[PJrQ]Jrc[P—QJ’ (4.24)
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so subtracting (a — b — ¢) from both sides of (4.23) and applying (4.24) to the result yields

—(a—b—c) C[P_Q]
b[P + Q] + [P - Q]
B 2¢2 92 _ (2h)? 22 _ (2c)? 42 — (2b)?
T 2a—-b—c—1)+2a—-b—c)+2a—b—c—1)+2(a—b—c)
4% — (2¢)? 62 — (20)? 62 — (2c)?

+2(a—-b—c—1)+2(a—b—c)+2(a—b—c—1)+---

and upon dividing by —2¢? we obtain

(a—b—c) P—-Q
2c b[P + Q] + [P — Q]
B 1 22 — (2b)? 22 — (2¢)? 4% — (2b)*
2@—b—c—1)+2(a—b—c)+2(a—b—c—1)+2(a—b—c)
4% — (2¢)* 62 — (20)? 62 — (2¢)?

+2(a—b—c—1)+2(a—b—c)+2(a—b—c—1)+---
Taking reciprocals of both sides, we see that

2¢ b[P + Q] + c[P — Q]
(a—b—c) P—-Q
22 — (2b)? 22 — (2¢)? 42 — (2b)?
(a—b—c)+2(a—b—c—1)+2(a—b—2c)
4% — (2¢)* 6% — (2b)* 62 — (2¢)?
+2(a—b—c—1)+2(a—b—c)+2(a—b—c—1)+ -

—2a—b—c—1
(a—b—c )+2

Since

o |:b[P+QPji—22[P— Q]]
L [Pa
tlra ]

= % 492
P_q O
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(4.25)

(4.26)

(4.27)

(4.28)



we can multiply (4.27) by (a — b — ¢) and apply (4.28) to the resulting equation to find that

20c[P + Q)
P-Q

=2a—b—c—1)a—b—c)+

+ 262

(a—b—c)(2% — (20)?) 22 — (2¢)?
2(a—b—c) +2(a—b—c—1)
—(20)? 4% — (2c¢)? 62 — (2b)? 6% — (2¢)?

+2(a—b—c)+2(a—b—c—1)+2(a—b—c)+2(a—b—c—1)+---

(4.29)

or

2bc[P + Q]
o
=2((a-b—c—1)(a—b—c)—c*)+ (a = l;(—aC_)(b?_—c)(?b) )+ 2(a2_;£22)_ .

— (20)? 22— (20)? 62 — (2b)? 62 — (2c)?

. 4.30
+2(a—b—c)+2(a—-b—c—1)+2(a—b—c)+2(a—b—c—1)+--- (4.30)
Taking reciprocals again and multiplying both sides by 2bc, we obtain
P-Q
P+Q
- 2bc (a—b—c)(22 — (2b)?) 22 — (2¢)?
" 2((a—b—c—1)(a—b—c)—c2) + 2(a—b—rc) +2(a—b—c—1)
2 _ 2 2 _ 2 2 _ 2 2 _ 2
4% — (2b) 4% — (2¢) 6% — (20) 6% — (2¢) (4.31)

+2(a—b—c)+2a—b—c—1)+2(a—b—c)+2(a—b—c—1)+---

Finally, let a = 3(x +m+n+1), b= 3m, and ¢ = 3n. We now have

p_ FGG@+m+n+1)L(G(x—m—n+1))
F(%(:p—qun—I—1))F(i(m—l—m—n+1))’
L(3(z+m+n+3)L(5(x—m—n+3))

@= L3z —m+n+3)T(5(x+m—n+3))
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Thus /P = R, and our continued fraction becomes

1= R 2(3m)(3n) Mo+ D)@ -m?) 2on? £
M +1)— (3n)?2) + z+1 + x—1 4+ z+1
42 —n? 62—m? 6°>—n?
+ -1+ z2+1 + -1 +---
mn (x+1)(22—=m?) 22—n? 42—m? 42 —n?
(x—1)(x+1)—n2+ x+1 +z—1+4+ z+1 + -1
62 —m? 6> —n?
+ z+1 + -1 +---
B mn 22 —m? 22-n? 42-m? 42-—n? 62 —m? 6°—n?
2?-1-n2+ 1 +22-14+ 1 +22-14+4 1 +22-1+4--"
(4.32)

which is Entry 36. The convergence of the continued fraction to (1 — R)/(1+ R) is discussed

by Jacobsen in [10]. O

If instead of beginning with the substitution d = a — b, e = a — ¢ in (2.17), we begin with
d=a—b+2l,e =a—c+2l, where [ is an integer, we can obtain Entry 36, as shown in the

next theorem.

Theorem 4.1.2. The substitution d =a—b+2l, e =a —c+ 2l in Lemma 2.1.4, where l is
an integer, followed by the substitution a = %(:U +m+n+1), b= %m +1l,c= %n + 1, results

i a continued fraction that is equivalent to Entry 36 after manipulation.

Proof. We proceed by induction on [.
Case | = 0: The proof of Entry 36 given above is the case where [ = 0. Note that if all
the substitutions into Lemma 2.1.4 (d = a — b, e = a — ¢ followed by a = 3(z + m +n + 1),

b= %m, c= %n) are performed immediately, the first identity obtained is
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z4+m4n+1), 2m, in
%(I—F?’L—F 1) F2 <IE +n+1), 4 ()J:im-fl ) 1)

s (o TRRE
=x+1+02 (3n)* 12—(3
2 fxz—1) + %(1:—1—1) + iz —1) +
(4.33)

before various manipulations and Dixon’s Identity are used to obtain the statement of Entry

36. We will show that other values of [ produce equations identical to (4.33) after manipu-

lation.
Case [ > 0: Suppose that the theorem is true for [ — 1; that is, that the equality

1 l(:g—&-m—l—n-l—l) sm—+l—1, n+l 1
3@+ n+20=1)5F <%( )T, 1(-T+m+1)+l v 1)
L(@+mant1), im+l, nti-1
s <§( +n+1)+, é(x+m+1)+l 1 1)
(=12 -Gt BoGm? Po(m? (+D2-Gm? o
+ 2@z+1) + 3(z-1) + Lta=+1) 4.7

oz
2 H(x—1)

which is produced by the substitutions d = a —b+2(l — 1), e = a — ¢+ 2(l — 1) followed by
a=3(x+m+n+1),b=im+1—1,c=3in+l—1in Lemma 2.1.4, is equivalent to (4.33).

We will show that (4.34) can be converted to the equality
(z+mA4n+1), 5 Lm, n+l 1)

L 1
§(LU +n+ 2[ + 1) F2 (;(x+n+l)+l é(x+m+l)+l,
(@tmtn+1), Lmt+1, I+l | 1)

1
s <§(z+n+1)+z+1 ;(x+m+1)+l’
rl P—(Gn)? (+1*=(Gm? (+1°-Gn)?* (+2)?—(3m)
2 fz-1) +  3(@+1) + ifez-1) + =+l -
(4.35)

by algebraic manipulations, and thus that the identity produced by the substitutions d =

a—b+2l,e=a—c+2lfollowed by a = 3(x+m+n+1),b=3m+1, ¢ = sn+1 in Lemma
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2.1.4 is also equivalent to (4.33).
For ease of notation, let A = L (z+m+n+1), B=im+l,C = sn+l, D = (z+n+1)+1,

and E = £(z 4+ m+ 1) +{. Then (4.34) becomes

D—1,E-1 "
A,B,C—1,

3F2( D,E—1 1)

o+l (- 1)% — (%n)2 1?2 — (%m)2 ? — (%n)2 (I+1)—(
2 H(z—=1) + iaz+1) +i=-1)+ (@=+1

Subtract 3(z 4 1) from both sides of (4.36) to obtain

A,B-1,0—1, z+1 A,B,C—1,
(D - 1)3F2 ( D-1,B—1 1) - %3F2 < D,E—1 1)

3F5 (Ab?’Ec_El; 1)
(-1 (n)? P—(Em? 2—(n)? (+1
S(z—=1) 4+ F@+1) + 3(-1) + L=+

(4.37)

Now consider Proposition 2.1.3, witha=B—-1,b=C—-1,¢c=A,d=D—1,ande = F— 1.

We obtain the relation

AB-1,0-1
(D—l)st( D-1.E—1 ,1)
- A B C-1 (C-1)(E-1-A4) (A B.C
_(D—C)gFQ( D Fo1 ,1>+ o B (T 1) sy

Since

1 1
D—Czé(x+n+1)+l— (§n+l)

= @+1)

o6



and

(C—1)(E—1—A) = (%n+z—1) (%(x+m+1)+l—1—%(m+m+n+1))
_ (%n+l—1) (1—1—%77,)
:(1—1)2—(%71)2,

we can rewrite (4.38) as

A B-1,0-1 z+1 A B,C—1
(D_1)3F2< D—17E—]. 71) 9 3 2( D,E—]. 7]->
1—1)2— (in)? A B, C
(e ) 3F2( O ;1), (4.39)

and (4.37) becomes

(=12 = (3n)") s (73 1)
(B —1)3F% (Aﬁ,f_}l; 1)
(=12 P-(Gm)® P-(Gn)? (+1?-(Gm)? (+1)?-(3n)
- te-1) o+ i@+ + ie-D)+ e+l + te-1) o+

(4.40)

Divide both sides of (4.40) by (I — 1)> — (3n)? and take reciprocals of both sides of the

resulting equality to obtain

D,E—1 7
3l <Ab]i’EC; 1)
_e=1 P(m? P-(Gn? (4D -Gm)? (47— (5n)?
B e+l + Ye-1) + L@+l + L@-1) 4+

(E — 1)3F2 <A’B’Cil' ].)

(4.41)

We repeat the above process for one more term of the continued fraction. Subtract %(x —1)
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from both sides of (4.41) to obtain

(B =1k (45575 1) = 55 (40001)
3B (47001)
?—(3m)? PP—(in)? (I+1
Hx+1) + f(z—1) + T+

+ f=-1) 4+ =+ + -
(4.42)
Lettinga=C —1,b=B,c=A,d=FE — 1, and e = D in Proposition 2.1.3 yields
(E —1)3F, (Al’f}f__l L 1)

— (E—1- B)sF, (Abl,? ’EC; 1) + wgg (AbBﬂ,l;EC; 1> L (443)

Since
E—l—B:%(:c—l—mle)—l—l—l— <%m+l)
)

and

B(D — A) = (lm%—l) <%(x+n+1)+l—%(a:+m+n+1)>

we can rewrite (4.43) as
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A, B C—-1 x—1 _ (A BC
(E_1)3F2( D,E—1 ’1)_T3F2( D, E ’1)

Y

2 (1,2
1> — (3m) 3F2<A,B+1,C;1>’

) D+1,E (4.44)
and (4.42) becomes
2 A,B+1,C.
(2= (3m)*) sP2 (523551)
D4F) (ADBEC, 1)
CP—(m? PGP (12— Gm)? (41— () )
Sx+1) + 3(z—1) +  fz+1) +  ifx-1) + '

Divide both sides of (4.45) by I — (3m)? and take reciprocals of both sides of the resulting

equality to obtain

DsF, (ADBEC” 1

JF) (A B+1,C. 1)

D+1,E )

AL s

This is just (4.35) in our simplified notation.

Case [ < 0: Suppose that the theorem is true for [ 4 1; that is, that the equality

1 1 z+mAn+1), 5 Lm+i41, n+l+1
2@ +n 20+ 3)5 0% (i( +n+1)+l+1 ;(x+m+1)+l+1’ 1>

F L(@+m4n+1), tm+i42, Inti+1
342 %(x+n+1)+l+2,%(m+m+1)+l+l’

Lot (1P —GaP (20— (w422 ()
I o)+ l@+)  + le=1) 4. 447

produced by the substitutions d = a — b+ 2(l + 1), e = a — ¢+ 2(l + 1) followed by
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(x+m+n+1),b=2im+1+1, c=1in+1+11is equivalent to (4.33). We again let

a = 2

1
)
A=3(@+m+n+1), B=sm+l,C=1in+l, D =3(x+n+1)+l, and E = $(z+m+1)+1,

so our starting point is

(D + 1)3F2 (A,B'i‘l,C"rl. 1>

D+1,E+1
A, B42,C+1,
3f% < D+—i2_,E+J’1_ d 1)
_otl (4D (42— Gm)? (1+2) - (5n)’ (4.48)
2 -1 4+ 3@+1)  + (-1 + '
We will manipulate (4.48) to obtain (4.46).
Take reciprocals of both sides of (4.48). This yields
3B (73550 0)
(D+ 1By (M50 1)
1 (1+1)—=(En)? (1+22%—-(GEm)? (1+2)—(53n)
se+1)+  S@-1) + s+l +  Fx-1) +

Rearrange Proposition 2.1.3 into the form

1 1 _ 1
BFZ(H bile 1): de_ p (a’bvc; 1)_6“ ). F (“* b e, 1) (4.50)

d+1,e+1 ble—c)* ?\ d, e ble—c)> *\ d+1,e

andleta=C,b=B+1,c=A,d=FE,and e = D + 1 in (4.50) to obtain

A B+2 C+1 E(D+1) A, B+1,C
3Fh D ; = 3472 ;
+2,E+1 (B+1)(D+1—-A) D+1,E
(D+1)(EF—-B-1) A B+1,C+1
- 3172 ;1) . (4.51)
(B+1)(D+1-A) D+1,E+1
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Then

B (A,B+2,C+1, 1)

D+2,E+1
A, B+1,C+1,
(D + 1)3F2< D+1,E+1 1)
E(D+1) £, (AB+L.C. 1 _ (D+)(E-B-1) n (AB+,CH1. 4
BrnD-A)32\ py1,E (B¥1)(D+1—-A)3" 2 \ D+1,E+1
o A, B+1,C+1 .
(D +1)3F» ( B0+, 1)
A,B+1,C
B 1 E3F2<D+1E71) (E—B-1)
S (B+1)(D+1-A) | g (AB+LCH,
352\ D+1,E+1
A,B+1,C
B 1 E3F2(D+1E’1> rz—1 (4.52)
= —3 — , .
U+ 102 = Gm)” bR () 2

since

(B+1)(D—|—1—A):(m~|—l ( $~|—n~|—1)+l+1—1(as+m—|—n+1))

) ;
(l+1+ m> (l2+1——m)
:(L+D2—<%m)

DN | —

and

1 1
E—B—lzé(anm—l—l)—l—l— (§m+l> —

= %(x —1).
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Hence (4.49) becomes

A,B+1,C .
1 E3F2(D+J;,E’1) r—1
. _
(O Y G B
1 (+1)7°—(3n)?* (+2)—(m)* (+2)*—(3n)
=71 1 1 1 (4-53)

Multiply both sides of (4.53) by (I+1)* — (3m)? and then add 3(z — 1) to both sides of the

resulting equality to obtain

E3F2 (A,B—i—l,C_ 1)

D+1,E
A,B+1,C+41,
3F2< D-S,E-:l_ ) 1)
_x—1+(l+1)2—(%m)2 (+1)% = (In)2  (1+2)2— (Im)? (454
2 z+1) + 1@=z-1) +  i@=+1)  +- '
Taking reciprocals of both sides of (4.54) yields
B ()
238 (40550)
L = (m) (1 (n)? (427~ (gm)’
- 1 . . - (4.55)
s —1)+ s(x+1) + -1 + @+l +-
In (4.50), let a =B, b=C,c=A,d= D, and e = E to obtain
o A,B+1,C+1;1 __DE o A,B,C’;l
D+1,E+1 C(E - A) D, E
E(D—-C) A, B+1,C
- =L (1. 4.56
C(E - A)° 2( D+1,E ) (4.56)
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Then

A,B+1,C+1,
31 < D+1,E+1 1)

B3l (ADTIIECv 1)

A,B,C E(D=C) A,B+1,C
C(EfA)3F2<DE’1) C(B- )3F2(D+1E’1)

EF, (A B+1,C. 1)

D+1,E >
A,B,C.
o DyF, (47 1)
- C(E-A A
CUE=A) | yp, (4, 1)
A,B,C
B 1 3F2(DE71) r+1 (4.57)
= 5 , ,
B () 5B (Bh01) 2
since
1 1 1
C’(E—A):(§n+l) (§(m~|—m+1)+l—§(x+m+n+1))
1 1
- (l+§n> (l—§n>
2
(i)
2
and

1 1
D—Czé(x—i-n—kl)—i—l— (én—I—l)

1
= - 1).
@)

Thus (4.55) can be rewritten as
A,B,C
1 D3F2<DE’1> r+1
1,2 B
2= (3n)" | sF (ADTIIEC; 1> 2
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B 1 (I+1)

T Ie 1)+ ll( (4.58)

2
P (m)’ (- G (42
r+1) +  3@=-1) 4+ i+l
Multiply both sides of (4.58) by I* — (%n)2 and add (z + 1) to both sides of the result to

obtain (4.46).
Note that for all [, the tail of the continued fraction created by the algorithm of Theorem

4.1.2 matches the tail of (4.33),

B (Gm? =G (e 12=Gm)? (1)’ - (e (B +2)° - (m)?
fz+1) + 2z-1) + @=+1) 4+  f@=z-1) 4+ i@+l +--

Y

from k = N onward, where NV is some positive integer. Thus the convergence of the continued

fraction in Entry 36 implies the convergence of all the continued fractions in this proof. [J

4.2 Entry 39

Theorem 4.2.1 (Entry 39). Suppose that n or m is an odd integer, or that R(zx) > 0 with

m and n arbitrary complex numbers. Define

I'(
I'(

(x+m+n+1))I(
(x+m+n+3))I(

(x —m—n+1))I(
(x —m —n+3))I(

(x —m+n+1))I(
(x —m+n+3))I(

(x+m—n+1))

= (z+m—n+3)

NN
NN
S = s =
N

Then

8 12—m? 12—n? 32—m? 32—-n? 52—m?
s@+m2—n2-1)+ 1 +22-1+ 1 422-14 1 +---

R:

Proof. We again use the continued fraction (2.17), now letting d = a—b+1 and e = a—c+1.
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The resulting continued fraction is

a,b,c .
3F2 (a—b—i—l,a—c—H’ 1)

(a—b+1) (a—b—c+1)+—"L -k
3F% (a—l?j;rcj’—ccﬂ; 1) a=boet g
112 - (2¢-1)? >
P | Call ) Pk (4.59)
a—b—c + o G
where
poe—1 = (k+b)(k+1-0)
1
:Z((2k+1)2—(2b—1)2),

Gor-1=a—b—c+1,
pu=(k+c)(k+1-c)
1

=3 ((2k +1)* = (2c —1)%),

G =a—b—c.

a,b,c . a,b+1,c . :
We next evaluate 3 F5 <a_b+17a_c+1, 1> and 3 F5 (a_b+2’a_c+1, 1) . The first of these can im-

mediately be evaluated by Dixon’s Identity (2.1). In order to evaluate 3F; (afgl’gf’fc 1 1),

we employ the relation (2.24) and the relation

a, b, c
F YA ‘1
32<d+1’ea>

_ [abc+d(d—1)(d+e—a—b—c—1)+1] Py <a, b,c; 1)
b

(d—a)(d—b)(d—c) d e
_dd-1){dte—a—b—c—1) a,b,c
(d—a)(d—"b)(d—rc) 3l (d_ 1e 1) ; (4.60)

e

which is Equation (21) in [16].
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In (4.60), replace b by b+ 1 to obtain

a,b+1,¢c
3F2(d+1,e’1)
alb+1)c+dd—1)(d+e—a—b—c—2) a,b+1,c
g o ("))
dd—1)(d+e—a—b—c—2) a,b+1,¢c

A= a)d—b—1)(d—0) Jé(d—Le’Q

(4.61)

Now let d =a—b+ 1 and e = a — c+ 1. This yields

a,b+1,c
F ) ) ‘1
32(a—b—|—2,a—c+1’ )

:{a(b—i—1)c+(a—b+1)(a—b)(a—2b—20)+1} F( a,b+1,c _1)

(1=b)(a—2b)(a—b—c+1) P\a—b+la—c+ 1
(a—b+1)(a—>b)(a—2b—2c) a,b+1,¢c

1 -b@—-2b)(a—b—c+1)° 2(a—b,a—c—|—1’1>

_(a—b+1)(a—2b—20+1)F< a,b+1,c ‘1>

T (A=bla—-b—c+1) *\a—-b+la—c+1

(a—b+1)(a—0b)(a—2b—2c) a,b+1,c
- 3172 ;1) (4.62)
(1=5)(a—2b)(a—b—c+1) a—ba—c+1
In (2.24), replace d by d — 1 to obtain
a,b+1,c ale —c) a+1,b+1,c
E ;1) = E 01
’ 2( de ' ) ela+b—d+1)° 2( de+1 )
d—b—-1 a, b, c
— —3F ). 4.63
a+b—d+132(d,e’ ) (4.63)

Again let d =a—b+1 and e = a — ¢+ 1. This yields

a,b+1,c
F ) ) '1
:)’Q(a—b—l—l,a—c—l—l7 )

_afa—2c+1) a+1,b+1,c 1
T a—c+ 1) \a—b+1,a—c+2

a—2b a, b, c
o F ) ) ‘1
20 32(a—b—|—1,a—c—|—1’ )
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ala —2c+1) a+1,b+1 ¢
=30 ;1

2b(a —c+1) a—b+1,a—c+2

~ (a—2b)(a—Dd)(a—2b—2c) a,b+1,c -

2(a—2b)(a—b—c) T *\a—-ba—c+1

ala —2c+ 1) a+1,b+1, ¢
= 3lb ;

2b(a —c+1) a—b+1,a—c+2

(a —b)(a—2b—2c) a,b+1,¢c
2b(a — b — c) sb a—b,a—c—l—l’l ’ (4.64)
where in the second equality we use Dixon’s Identity (2.1) to obtain
a, b, c
E: P ;1
’ 2(a—b+1,a—c+1’ )
Tla—b+Dl(a—c+ 1) (Ga+ DI(za—b—c+1)
S T@la—-b+1IEa—c+ DI (a+ 1)l (a—b—c+1)
_(a—b)F(a—b)F(a—c—i—l) (3a+1)(3a—b—c)['(3a—b—c)
- (Ga-bIGa-bl(Ga—c+Dl(a+1)(a—b—c)T(a—b—c)
(a —b)(a —2b— 2c) a,b+1,c
= E: ; 4.65
(a—2b)(a—b—c) > *\a—ba—c+1 (4.65)

Substituting (4.64) into (4.62), we see that

a,b+1, ¢
F ) ) _1
32<a—b—|—2,a—c—|—1’ )

(a—b+1)(a—2b—20+1)[a(a—20+1) ( a+1,b+1, ¢ 1)
= 31472 )

(1-b)(a—b—c+1) 2b(a—c+1) a—b+1l,a—c+2

_(a—@@—ﬂ%ﬂdﬂ%( a,b+1,c 'Ql

2b(a —b—¢) a—ba—c+1
_(a=b+1)(a—b)(a—2b—2c) a,b+1,c -
(1—=b)a—20)a—b—c+1) " *\Na—ba—c+1
(a—b+1)(a—2b—2c+1)ala —2c+1) a+1,b+1,¢c
1=b0(a—b—c+1)2a—c+1) “*\a-b+1,a—c+2
(a—b+1)(a—2b—2c+1)(a—b)(a—2b—2c) a,b+1,c
3Fo ;
(I1-0(a—b—c+1)2b(a—b—c) a—b,a—c+1
(a—b+1)(a—0b)(a—2b—2c) a,b+1,c
- 3F i1
(1=b)(a—2b)(a—b—c+1) a—ba—c+1

67



a—b+1)(a—2b—2c+1)ala—2c+1 a+1,b+1,c
T (I=bla—b—c+1)2a—c+1) “*\a—b+l,a—c+2
(a—b+1)(a—"0b)(a—2b—2c)
X
(I1-ba—b—c+1)
(a—2b—2c+1) 1 a,b+1,¢c
2b(a — b — ) +(OL—Qb) s a—b,a—c+1’1
(a—b+1)(a—2b—2c+ 1)a(a —2c+ 1) a+1,b+1, ¢
= 3F3 ;1
(I1-b)(a—b—c+1)2b(a—c+1) a—b+1l,a—c+2
(a—b+1)(a—0b)(a—2b—2c)
X
(I1-=b)(a—b—c+1)
(@ —2b—2c+1)(a—2b) + 2b(a —b—c) a,b+1,c
3F3 ;1)
2b(a — b —c)(a — 2b) a—ba—c+1

(4.66)

Now, by Dixon’s Identity (2.1),

(a—b+1)(a—2b—2c+ 1)ala —2c+1) ( a+1,b+1,c .1)
A=b)(a—b—c+1)20(a—c+1) “*\a—b+1,a—c+2

(a=b+1)(a—2b—2c+ 1)ala —2c+1)

(1 =bla=b—c+1)2b(a—c+1)
Fa—b+1)'(a—c+2)(3(a+ 1)+ 1)I(
P(E(a+1)=bl(G(a+1) —c+ DI (a+2

Cdala—b+1)(5(a+1)=b-0o)(5a+1)—c)

201 -b)(a—b—c+1)(a—c+1)
Fa—b+1)(a—c+1)T(a—c+1)5(a+ )T (5(a+1)I(5(a+1) —b—c)
F(3(a+1)=b)(5(a+1) —)l(i(a+1) —c)ala+ 1)I'(a)T(a —b—c+1)

Fa—b+2)T(a—c+ DI (Ga+1)T(5(a+1) —b—c+1)

b(1 -0 (53(a+1) —d)T(5(a+1) —)T(a)T(a—b—c+2)

_ TI'la—b+2)I'(a—c+1)

b1 =0 (a)l(a—b—c+2)

(a+1)—b—c)
(a—b—c+1)

+2)0

Q, (4.67)

where
FGla+1)T(5a+1)—b—c+1)

@= FCa+1)—0rEa+1)—c)
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and

(a—b+1)(a—0b)(a—2b—2c) a,b+1,c 4
(1—b)(a—b—c+1)2b(a—b—c)(a—2b)° 2<a—b,a—c+1’ )
(a—b+1)(a—b)2(3a—b—c) Fla—bl(a—c+1)I(Ea+ DI (3a—b—c)

S (1-b(a—b—c+1)2ba—b—c)2(3a—b)T(3a—b)'(ta—c+ 1)I(a+ 1)I(a—b—c)
Fa—b+2)T(a—c+ Dl (Ea+ 1) (ta—b—c+1)
(1—b)QbF( a—b+1)I'(3a—c+1Dl(a+1)l(a—b—c+2)
Fa—b+2)l(a—c+1)ial'(3a)I(3a —b—c+1)
(1 —b)2bI(3a — b+ 1)I'(2a—c+ 1)al(a)l(a —b—c+2)
 Tla-b+2)l'(a—c+1)
C4b(1—-b)T(a)(a—b—c+2)"’

(4.68)

where

FEa)l(3a—b—c+1)

P:F( a—b+ Dl (a—c+1)

Inserting (4.67) and (4.68) into (4.66), we find that

a,b+1,c
F ) Y .1
32<a—b—|—2,a—c+1’ >

~ Tla—-b+2)l'(a—c+1)
(1 —b)I(a)(a—b—c+2)

Q

Fa—b+2)I'(a—c+1)

—[(@a—=2b—2c+ 1)(a — 2b) + 2b(a — b — ¢)] (1 — b (@T(a—b—c+2)

_ TI'la=b+2)I(a—c+1)
b1 -b)(a)(a—b—c+2)

[Q—i[(a—2b—26+1)(a—2b)—|—2b(a—b—c)]P .

(4.69)

Using Dixon’s Identity (2.1) again, we obtain

(a—b+1)3F2< @ b,C ,1>

a—b+1,a—c+1
C(a=b4+ 1) a—b+1)l(a—c+DI(za+ 1) (za —b—c+1)
B Fla—b+1)I(Ga—c+D)l(a+ 1)l (a—b—c+1)
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~Tla=b+2)(a—c+ Dial'(3a)l(3a—b—c+1)(a—b—c+1)
- TGa-b+D)I((a—c+Dal'(@)(@a—b—c+1)(a—b—c+1)
Ma—b+2)T(a—c+1)ia—b—c+1)I'(3a)I(3a—b—c+1)
 T(a)T(a—b—c+2) F(3a—b+1)I(3a—c+1)
Tla-b+2)l(a—c+1)1

T'(a)T(a—b—c+2) gla=b—ct+1)P, (4.70)

and upon dividing (4.70) by (4.69), we find that

a,b,c .
(a —b+ 1)3F2 (a—b+1,a—c+1’ 1)
a,b+1,c .
3F2 (a—b+2,a—c+1’ 1)

I'(a—b+2)'(a—c+1
%(a)F(a)fb(chrQ) Ha—b—c+1)P

b({g;;g;gg:ggm [Q — L{(a—2b—2¢+1)(a—2b) +2b(a — b — )] P]

(1 —b)a—b—c+1)P

T Q-1{a—20—2c+1)(a—2b)+2b(a—b—c)] P’ (4.71)
Thus (4.59) can be written as
b(1—b)la—b—c+1)P
Q—3lla—2b—2c+1)(a—2b)+2b(a—b—c)] P
) M= (e—1?)  3- (217
=l e ) e T e bt D)
32— (20— 12 52— (2b—1)2 52— (2 — 1)? )

+ 2(a—b—c) +2(a—b—c+1)+ 2(a—b—c) +---

Taking reciprocals of both sides of (4.72) and multiplying by $b(1 —b)(a —b—c+ 1), we

obtain

[(a—2b—2c+1)(a—2b) +2b(a—b—c)]

b1-b)a—b—c+1) 3(12—=(2c—1)?) 32— (20—1)?
(a—b—c+1) + 2a—-b—c) +2@—-b—c+1)
32— (2c—1)2 52— (2b—1)2 52— (2 — 1)?

+ 2(a—b—c) +2(a—-b—c+1)+ 2(a—b—c) +---

IO

1
4
1
2
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b(I1—ba—b—c+1) 12— (2c—1)* 3*—(2b—1)?
2@—b—c+1) + 2(a—b—c) +2(a—b—c+1)
32 (2c—1)2 52— (2b—1)2 52— (2c— 1)?
+ 2(a—b—c¢) +2(a—b—c+1)+ 2(a—b—c) +---
i@ —@-1))(a—b—c+1) 12— (2c—1)2 32— (2b— 1)
B 20a—b—c+1) + 2(a—b—c) +2(a—b—c+1)
32 (2c—1)2 52— (2b—1)2 52— (2c— 1)?
+ 2(a—b—c) +2(a—b—c+1)+ 2(a—b—c) +---

(4.73)

Moving % [(a — 2b — 2c+ 1)(a — 2b) 4+ 2b(a — b — ¢)] to the right side of the equation and

taking reciprocals of both sides again yields

P 1 Ha=b—c+1)(12 = (2b—1)?)

Q il(a—2b—2c+1)(a—2b)+2b(a—b—c)| + 2(a—b—c+1)
12— (2c—-12% 3P2—-(20-1)> 32— (2c—1)> 52— (2—1)?

+ 2(a—b—c¢) +2(a—b—c+1)+ 2(a—b—c) +2(a—b—c+1)+---

8 2a—b—c+1)(12 — (2b — 1)2)
2[(a—2b—2c+1)(a—2b) +2bla—b—c)] + 20a—b—c+1)
12— (2c—-1)2 32—(26—1)2 32—(2c—12 5 —(20—1)?

+ 2(a—b—c) +2(a—b—c+1)+ 2(a—b—c) +2(a—b—c+1)+---

(4.74)

Finally, let a = J(z +m+n+1), b= 1(m+ 1), and ¢ = $(n + 1). We now see that

R FGe+m+n+1)Gr—m—n+1)LE(@—m+n+1)T(5(x+m—n+1))
F(3(z+m+n+3)l(G(x—m—n+3)(i(z—m+n+3)T(5(x+m—n+3))
P
Q
B 8 (x +1)(12 —m?)
C2[i@-m-n—-Di@-m+n—-1)+2i(m+Di@x-1)]+ r+1
12—n? 3F-m? 3%-—n* 5°-m? 52-—n?
+z2-14+ 241 4+ 2—-1 + 241 + 2—-1 +---
_ 8 (x+1)(12=m?) 12—n? 3*2-—m? 32-—n?
i@ m?—n2—1)+ z+ 1 + -1+ 2+1 + 2—-1 +---
B 8 (r+1)(12—m?) TH*-n?) 32 _m? 32_p?
i@+ m?—n2—1)+ r+1 + -1 + z+1 +2—-1 +--
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B 8 12—m? (1P -n?) 32-m? 32-pn?

(@2+m—n?-1)+ 1 4+ z-1 4+ z+1 + -1 +--

B 8 12—m? 12—n? (z+1)(3*-—m?) 32-—n?
S i@+m2-n2-1)+ 1 +a2?-1+ r+1 + -1 +---
8 12_ 2 12_ 2 32_ 2 32_ 2
- i Lot somt Fow (.75
s@?24+m?—n?-1)+ 1 +22-1+ 1 +22-1+--

and we have proven Entry 39. The convergence of the continued fraction to R is discussed

by Jacobsen in [10]. O

Theorem 4.2.2. The substitution d = a—b+2l+1, e = a—c+2l+1 in Lemma 2.1.4, wherel
is an integer, followed by the substitution a = 5(zx+m-+n+1), b= 3(m+1)+l, ¢ = 3(n+1)+,

results in a continued fraction that is equivalent to Entry 39 after manipulation.

Proof. We proceed by induction on [.
Case [ = 0: The proof of Entry 39 given above is the case where [ = 0. Note that if all the
substitutions into Lemma 2.1.4 (d = a—b+1, e = a—c+1 followed by a = L (z +m+n+1),

b=1(m+1), c=1i(n+1)) are performed immediately, the first identity obtained is

) L@+mAn+1), L (m41), L (n+1)
(5(3? +n)+ 1) 3l <2 %(x+n)+1,2%(1+m)‘2"1 ' 1>

L@tmant1), L (m+1)+1, 2 (n+1) | )
3 (2 %(m—i—n)-‘r;,%(x—i-m)-‘ri 1

e+l BP-Gr)? GP-Gm)® B2-Gn)* ()7 - Gm)?

)
2 (z-1) + i(@@+1) + fz-1) + 3@=+1) +--7

before various manipulations and Dixon’s Identity are used to obtain the statement of Entry
39. We will show that other values of [ produce equations identical to (4.76) after manipu-

lation.
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Case [ > 0: Suppose that the theorem is true for [ — 1; that is, that the equality

1 L@tmtnt1), L (m+1)+-1, L (n+1)+-1
(5(:6 + n) + l) 3l (2 %(m—l—it)-i—l,%(z-i—m)j—l ’ 1)

JF) L(@+m4n+1), 3 (m+1)+, 5 (n+1)+H—1 1
L(@+n)+141, S (z+m)+ )

x4l (=3P Gn)? ()= Gm)? U+ - (Gn)?
2 z=1) + i@+ + te-1) 4+

(4.77)

which is produced by the substitutions d = a —b+2(l—-1)+1,e=a—c+2(l—-1)+1
followed by a = $(z+m+n+1),b=3(m+1)+1—1,¢=3(n+1)+1—1in Lemma 2.1.4,

is equivalent to (4.76). We will show that (4.77) can be converted to the equality

1 l(z-i—m—l—n—&—l),l(m+1)+l,l(n+1)+l.
(5(1' + n) +1+ 1) 3F2 <2 %(x+n)+l—il,%(m+m)—2i-l+1 ’ 1)

2 L(@+mAn+1), L (m+1)++1, 3 (n+1)+
352 L(@4n) 142, L (z4m)+i+1 ’

Cebl DR (P (D - (Gm? (43— (P
2 (z—-1) + Tz +1) +  f@-1) +--

(4.78)

by algebraic manipulations and thus that the identity produced by the substitutions d =
a—b+2l+1,e=a—c+2+1followed by a = Lz +m+n+1),b=21i(m+1)+1,
¢=3(n+1)+1in Lemma 2.1.4 is also equivalent to (4.76).

For ease of notation, let A = S(x+m+n+1), B=3m+1)+1,C=i(n+1)+1,

D=1(xz+n)+1+1, and E = $(z+m)+ 1+ 1. Then (4.77) becomes

A,B—1,C—1,
(D - 1)3F2< D-1,E-1 1>

3% <A’D]73]EC:_11; 1)
_edl (=3P Gn? () Gm)? (5= ()
2 z=1) + 3 1)
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Subtract £(z 4 1) from both sides of (4.79) to obtain

A,B—1,C—1, z+1 A,B,C—1,
(D — 1)k ( D-1,E—1 1) - %3}72 ( D,E—1 1>

A,B,C—1,
3F2< D,E-1 1)

(=92 =Gn)? ()P -GEm)? L+ - Gn)? (+3)* - (Gm)°
o te-) o+ i@+ + J@-1 o+ e+l 4

(4.80)

Now consider Proposition 2.1.3, witha=B—-1,b=C—-1,c=A,d=D—1,ande = E—1.

We obtain the relation

(D — 1.5, <AbB_—1,1,E(J_—1 3 1)
= (D —C)3Fy (Abi’gc__l 1; > €~ %E__l Lo A)3F2 (Aifjgo? 1) . (4.81)
Since
D—C:%@+nyu+1—(;n+n+o
= %(l‘ +1)
and
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we can rewrite (4.81) as

AB-1,C-1 z+1 A B, C—1
D—1sF (" ! 1) - R (T .1
( )32(D—1,E—1’) 2 32(D,E—1’)
[— 12 (ip)? A B, C
_ | 2];_1<2 ) 3F2( g ;1), (4.82)

and (4.80) becomes

(=32 = (n)")or2 (57 1)
(E —1)3F) (A’Bvc—l- 1)

(1=32=(Gn? (+3P-GmP (+32- (02 (+3 - (
Lr+1

(4.83)

Divide both sides of (4.83) by (I — %)? — (in)? and take reciprocals of both sides of the

) 2
resulting equality to obtain

(E — 1)3F2 <A’B’C_1' 1)

D,E—1

3B (47001)

-1 (I+3)?2—(
2 (x+1

m)?
4

P+ 32— () @+ -
- ; ) (4.84)

+  i(z-1) + (z+

N

We repeat the above process for one more term of the continued fraction. Subtract 3(z — 1)

from both sides of (4.84) to obtain

A,B,C—-1, — A,B,C,
(E - 1)3F2 ( DéEC;ll’ 1) - 713F2 ( D?EC’ 1)

3B (705)
3 —(Gm)?® (+3)°-Gn? (+3)°-Gm? (+35)°-Gn)?
Tz +1) +  i(z-1) + : 1)

N
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Lettinga=C —1,b=B,c=A,d=F — 1, and e = D in Proposition 2.1.3 yields

A B, C—1
E—1)3F (. o1
( )32<D,E—1’)

=(E—-1-B)3k (Abli’gc; 1) w:a > (AbB_i_—E’l’EO; 1) : (4.86)
Since
E—l—B:%(aszm)—l—l—irl—l— <%(m+1)~|—l)
=z -1)
and

B(D — A) (%(m+1)+l> (%(z+n)+l+1—%(x+m+n+l)>

L N .
2" 2 2 "
1\? 1 \?

= (1+3) - (om)-

we can rewrite (4.86) as

(E— 1.5, (A, B,C -1, 1) Lol (A, B.C, 1)

D,E—-1" 2 D,E’
2
(1+3)?—(3m) A B+1,C
= E ;1 4.
D 342 D_'_l’EJ ) (87)
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and (4.85) becomes

m)? (I+3)°-Gn?* (+3)°-Gm)?* (+3)°—(Gn)?
+ Lte@-1 + 1 1)
(4.88)

Divide both sides of (4.88) by (I + 1)* — (3m)? and take reciprocals of both sides of the

resulting equality to obtain

D3F2 (A’B’C' 1)

D,E >
A,B+1,C,
3F2< D+1,E 1)
Cx41l (457 -(Gn)? (I+3)2-(Gm)? (I+3)?—(5n) (4.89)
2 sz-1) + 3@+ + i=-1) 4+ '
This is just (4.78) in our simplified notation.
Case [ < 0: Suppose that the theorem is true for [ 4 1; that is, that the equality
1 L(@+mtn+1), L (m+1)+1+1, 2 (n+1)+1+1
(3(e +n) +1+2) s (2 Lotm)b42, L @am)pie2 1)
L(a+mant1), S (m+1)+142, 2 (n+1)+1+1
3l <2 %(m+n)—2|-l+3,%(x+m)—2l-l+2 ! 1)
el (DG (3P0 (437 (0 w90,

2 f(z—-1) + Tz +1) + i@=z-1) +--

produced by the substitutions d =a —b+2(l+1)+1,e=a—c+ 2(l+ 1) + 1 followed by
a=3(@+m+n+1),b=1(m+1)+1+1,c=21(n+1)+1+1is equivalent to (4.76). We

againlet A=1(z+m+n+1),B=1(m+1)+,C=%i(n+1)+1,D=3%(z+n)+1+1,
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and E = (x4 m) + 1 + 1, so our starting point is

A,B+1,C+1,
(D + 1)sF ( D+1,E+1 1)
JF) (A,B+2,C+1‘ 1)

B O etV €20 R () el 110 A et et €20
9 %(]3 _ 1) + % 1) . (491)

We will manipulate (4.91) to obtain (4.89).

Take reciprocals of both sides of (4.91). This yields

JF) (A,B+2,C+1, 1)

D+2,E+1

(D -+ aFe (555000)
1 (3P Ge? (P -Gm? (PG .
o 1( 1 1 1 . ( 9 )

Let a=C,b=B+1,¢c=A,d=F,and e = D+ 1 in (4.50) (the rearranged form of

Proposition 2.1.3) to obtain

7 A B+2,C+1 B E(D+1) A, B+1,C
’ 2( D+2 E+1" )_(B+1)(D+1—A)3 2( D+1,E )
(D+1)(EF—-—B-1) A B+1,C+1
C B+1)(D+1-4)° 2( D+1,E+1 "

1) . (4.93)

Then

D+2,E+1
A,B+1,C+1,
(D + 1)3F2< D+1,E+1 1)
E(D+1) B (AB+LO. 1 _ (DA)(E-B-1) n (A B+1,0+1. ¢
(B+1)(D+1-4)3"2 \ D+1,E > (B¥1)(D+1-A4)3"2 \ D+1,E+1

A,B+1,C+1,
(D +1)3F, ( D+1,E+1 1)

B <A,B+2,C+1_ 1)

A,B+1,C.
o mmCmen)
C(B+1)(D+1—-A ABYLO+L, 1)
(B+1)(D+ ) 3F2< D+1,E+1 > 1)
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E F (A,B-‘FLC. 1)
1 3472 ) —1
_ D+1,E _ T <494)

2
U+92=Gm)" oB (45n5h) 2

since

(B+1xD+1—Ay=(;m+¢yu+4)(gx+m+w+1+y—gx+m+n+10
G+;+%m>c+g—%m)
(+3) - ()

and

1 1
E—B—l:i(:c+m)+l+1—(E(m+1)+l>—1

1
Hence (4.92) becomes
A,B+1,C.
1 E3F2(D+WI,E’1> r—1
: —
e G s ()
B W el ) S (il €0 N U el ) Lo
1 1 1 I (4.95)
se+1)+  S@-1) +  s@+1) + S@-1) +

Multiply both sides of (4.95) by (I + £)? — (2m)? and then add }(z — 1) to both sides of the

resulting equality to obtain

A,B+1,C,
E3F2( D+1,E 1)

A,B+1,C+1.
31 ( D+1,E+1 1)

x—1+a+gf—@mf (+22— () (+2)?—(
2 (z+1) : 1

(4.96)



Taking reciprocals of both sides of (4.96) yields

B (A,B+1,C+1, 1)

D+1,E+1
23, (45500)
R T R D € L) I S L0 R ) R € (497
S i@-D+ @+l 4+ i@-1) o+ @+ '
In (4.50), let a =B, b=C,c=A,d= D, and e = E to obtain
A B+1 1 DE A, B, C
3Fy 7 +’C+;1 = 7= s AR |
D+1,E+1 C(E — A) D, E
E(D - C) A B+1,C
— —3F i 4.98
C(E—A)32<D+1,E ’ ) (4.98)
Then
A,B+1,C+1,
3t ( D+1,E+1 1)
Bay ()
A,B,C. E(D-C) A,B+1,C,
B C(g]fA)i%F? ( D,E > 1) - C(E—A)3F2 ( D+1,E 1)
Bay (5001)
L [DeR () T
CE=A |om (551)
D3F (AvaC- 1)
1 342 , ) 1
- bEr) _rE (4.99)

2 9
(1+3)2—(3n) |3k <Abﬁ71]’f; 1> 2
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since

C@Fﬁﬂ:(gn+n+o(%@+m%H+l—%@+m+n+D)
(134 20) (13- 1)
() -G)

and

D—C—%@+n%H+1—(;n+U+o

1
Thus (4.97) can be rewritten as
A,B,C
1 D3F2(D,E’1> r+1
. _
(32 = () 3B (000051) 2
L 043P (m) (43P -Gn)® (43— Gm)’
=1 ; : : (4.100)
5(.%—1)"‘ 5(.1'4’1) + 5(33’—1) + 5(1’4‘1)

Multiply both sides of (4.100) by (I + $)? — (%n)2 and add 1(z + 1) to both sides of the
result to obtain (4.89).
Note that for all [, the tail of the continued fraction created by the algorithm of Theorem

4.2.2 matches the tail of (4.76),

(k+3)?=Gm)?® (+3)?-Gn)?® (k+3)?-Gm? (k+3)*-(Gn)’
fz+1) +  f=z-1) +  i=+1) + i@-1) 4+

)

from k = N onward, where IV is some positive integer. Thus the convergence of the continued

fraction in Entry 39 implies the convergence of all the continued fractions in this proof. [
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4.3 Other entries

All of the related continued fractions in Chapters 12 and 16 of Ramanujan’s notebooks can
be derived from Entries 34, 39, and 40. Thus it is desirable to have a proof of Entry 40 that
is similar in style to the proofs of Entries 34 and 30 given here. Entry 40, however, has five

variables instead of the two in Entry 25 and three in Entries 34, 36, and 39.

Theorem 4.3.1 (Entry 40). Let P = [[T(5(c+ 8 £~ £ 6 £ e+ 1)), where the product
contains eight distinct Gamma functions and where the argument of each Gamma function
contains an even number of minus signs. Let Q =[] F(%(a +8+y+d+e+ 1)), where the
product contains eight distinct Gamma functions and where the argument of each Gamma
function contains an odd number of minus signs. Suppose that at least one of the parameters

B, 7, d, € is equal to a nonzero integer. Then

P-Q 8afyde
P+Q {20+ B+ 41+ 01+ et +1) — (2 + 2+ 72+ 02+ €2 —1)2 — 22}
64(a” — 17)(8% — 17)(y* — 12)(0% — 1?)(¢* — 1?)
+3{2(at + B+t + 0t et 1) = (@ + f2+ 97+ 02+ €2 = 5)? — 67}
64(0” — 22)(8* — 2%) (7 — 2%) (0% — 2°)(¢* — 2%)
+5{2(t + P+t + 0t et + 1) — (@ + 52 +92+ 02+ €2 —13)2 — 142} + -+
(4.101)

If Entry 40 can be proven in a similar way, the proof would require a three-term recurrence
of 5Fy hypergeometric functions. As the contiguous relations involving 5F, hypergeometric
functions in general have six terms, it is unknown whether an appropriate three-term recur-
rence of this type exists. There is a hypergeometric proof of Entry 40 that exists. Masson [13]
used a three-term recurrence of very well-poised balanced ¢Fy hypergeometric functions to
generate a continued fraction and he then applied a limiting process on this continued frac-
tion to obtain Entry 40 and a companion to it. It may be that this is the necessary method

for obtaining Entry 40 and other identities with more than three variables.
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Chapter 5

g-Analogues

5.1 Introduction

There is a theory of basic hypergeometric functions that parallels the theory of hypergeomet-
ric functions. The base commonly used is ¢, where |¢| < 1, and the function corresponding

O[, 13 Oé; q n ls;q n n

where (a;q), = (1—a)(1—aq)(1—aq?) - -- (1—aqg™'). In this chapter, we use the shorthand
201 (a0, B;v; ) for oy (O‘f; q; x) It should be noted that many hypergeometric identities
and relations have what are called g-analogues. The original identity can be recovered by
taking the limit as ¢ approaches 1 from below, though the evaluation of this limit requires
care when continued fractions are involved.

The g-analogue of the recurrence

— 1 1 1)(c— 1 2
JF a,b;x :c+(a b+ )xQFl a+ ’b;x (a+1)(e=b+ )x2F1 a+ ,b;m
c c+1 c(c+1) c+2

(5.1)
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18

q(1—7)+ (8 —aq)x
q(1 =) 2a
(1—aq)(B—q)x

T ) (ag®, ;g% ) . (5.2)

201 (v, B5v52) = aq, 3;vq; v)

Just as Ramanujan’s Entry 22 (3.14) can be derived from the three-term recurrence (5.1) by
iteration (as in the proof of Lemma 2.1.4), (5.2) can be used to produce a continued fraction.

In this case, the result is Equation (42) in [15],

201 (g, B5yg5 ) (1 =) (1 — aq)(vq — B)zg
201 (a, Bsvs) g1 =)+ (B —aq)r+q(1 —vq) + (B — ag?)x
(1 —aq®)(vq* — B)xg (1 —aqg®)(vq® — B)ag
+q(1 =7¢*) + (B —ag®)r +q(1 —v¢*) + (B —agt)r +-- -

(5.3)

Ramanathan indicates in [15] that Ramanujan knew this continued fraction, which is the
g-analogue of Entry 22, but it does not appear in any of his notebooks. Ramanathan uses
(5.3) in [15] to prove Entry 16.12 of Ramanujan’s second notebook, which can also be found

in [5] and is stated here.

Theorem 5.1.1 (Entry 16.12). Suppose that o, 3, and q are complex numbers with |af] < 1

and |q| < 1 or that a = B¢®™T for some integer m. Then

(@’ ¢")x(F°0%d") _ 1 (a—Bag)(B—aq) (a—pe)(B—aq’)
(0%¢;: 0 (P01 ¢")oe 1—af+ (1-af)(1+¢*) + (1-af)d+q") +---

(5.4)

This continued fraction identity is a g-analogue of Entry 25 (1.1). In this chapter, two
g-analogues of Theorem 3.2.1 are given, and their proofs also rely on (5.3). We begin by
stating and proving several recurrences which will be used in these proofs. These recurrences

can all be derived from the following three recurrences of E. Heine [9].
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Theorem 5.1.2 (Heine). Suppose that |q| < 1 and |x| < 1. Then

—a)(1-1b
201 (a, b5 ¢/q; ) — 261 (a, by ;) = cx%m (aq, bq; cq; ) , (5.5)
201 (ag, b; ¢;x) — 201 (a,b;¢; ) = a:ci : lc)2<l51 (aq,bg; cq; ), (5.6)

and

291 (aq, b; cq; x) — 21 (a,b; ;1) = ax ((11—_66))((11—_cc/qc;)2¢1 (aq, bq; cq’; 95) - (5.7)

Proposition 5.1.3. If |¢| <1 and |z| < 1, then

ey A== (= a)(B-
2¢1(O‘76Qa7% ) (1—&)(0[—7)%251( 7ﬁ’7’ )+(1_5)(a_

") v
7)2% (aq, Bivg;x) . (5.8)

Proof. We first rearrange (5.7) as

1—o- cq)2¢1 (aq, bq; cq ,I) = m [201 (aq, b; cq; x) — 201 (a,b;¢c; )] (5.9)

and then substitute into this equation twice. The substitution a = a, b = 8, ¢ = y yields

201 (g, Bg;vq*; ) = = B)l(a — 201 (g, B;7q; ) — 261 (o, B5v; )]

(5.10)

(1 =71 =19

while the substitution a = 3, b = o, ¢ = « yields

(1 =71 =79

Lo (o, Bg;vq; ) — 261 (v, B ;)]
(5.11)

201 (g, Bg;vq*s ) = = a)l(ﬁ -

when the symmetry of the numerator arguments of 2¢; (a, b; ¢; z) is exploited. Since the left
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sides of (5.10) and (5.11) are equal, we may set the right sides equal to each other to obtain

201 (aq, By vq; ) — 201 (a, B57v; )]

(1—=p)(a=7)

1
- (1 _ Oé)(ﬂ _ 7) [2¢1 (OZ”BC],’)/Q, I‘) - 2@51 (Oé,ﬂ,’}/,l')] . (512)

Upon multiplying both sides by (1 — «)(8 — 7) and adding 2¢4 («v, 5;7;x) to both sides of

the equation, we find that

=B
201 (o, Bg; vq; 2) = 201 (o, B; 73 )"‘(1_5)(@_7) 201 (g, B;7q; ) — 201 (o, B; 73 )]

= |1- 8 — gigﬁ — ::i 261 (v, ;7 7) + 8 — g;gg — ziﬂbl (ag, 8;7¢; @)
= 8 — ?)Ez — 5;2% (v, B; 75 ) + 8 — g;gi — z;zﬁbl (ag, B;7q; ).
(5.13)
O
Proposition 5.1.4. If |¢| < 1 and |z| < 1, then
201 (@, B;7; %) = 261 (@, B 7g; @) + 7561(1_9)0(?%;(5)2% (aq, Ba;va*; ) - (5.14)
Proof. Tn (5.5), let a = &, b= 3, and ¢ = q. The resulting equation is
201 (0, B33 ) — 201 (o, By @) = ’Yq:v(él__gig - fg)m (aq, Bq; v’ x)
((11__;)((11__51)> 201 (g, B¢ @) (5.15)
s0 adding 21 (v, 3;7¢; ) to both sides yields the desired recurrence. O
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Proposition 5.1.5. If |¢| <1 and |z| < 1, then

201 (o, B5 g3 ) = 52—_3)2% (a, B3 ) — 7(5%_5)2% (a, Bg;vg; ) - (5.16)

Proof. We begin by making the substitutions a = 3, b = «a, and ¢ = v in (5.7). This yields

the relation

(1—a)d—~/p)

201 (2 84576 %) — 261 (@ B73.) = B — 5

201 (aq, By x) . (5.17)

We rearrange (5.17) into the form

z(1— «)
I

1
-

yq)2¢1 (aq, Ba;vg?; x) = 3 201 (a, Bgivg; ) — 201 (o, B57;2)] (5.18)

and also rearrange Proposition 5.1.4 into the form

z(l — )
(I=7)(1 =g

)2<b1 (aq, Bg;va*;x) = ﬁ 201 (o, B; 75 ) — 21 (v, B;vg; )] . (5.19)

Note that the left sides of these rearrangements are the same, so we may combine them to

obtain

3 i > 201 (@, Bq; vqs ) — 2601 (@, 8573 2)] = ﬁ 201 (o, B35 @) — 261 (e, B; ya; )] -
(5.20)
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Multiplying both sides of (5.20) by —y(1 — /) and adding 2¢1 (<, 5;7; z) to both sides yields

v(1 = B)

201 (0, B yq; @) = 21 (o, By 3 ) — B——_v 201 (o, Ba;vg; ) — 201 (e, B5 73 )]
= {1 + 7(51__5)} 201 (o, B 75 @) — 7(51__5)29251 (a, Bg;vq; )
= 6(61__77)2% (a, Bsyi@) — 7(61__5)2% (., Bg;vq; @) (5.21)
O
Proposition 5.1.6. If |¢| <1 and |z| < 1, then
ey — B =7) ) B—nv e
2¢1 (OZQHB(L’YQ’ l‘) - (1 N 5)(7 — aﬁm)qul (O[, 5777 Jf) (1 N ﬁ)('y _ aﬁm)qul (OZ(,], ﬁa 4; l') .
(5.22)
Proof. Replace a by aq in Proposition 5.1.5 to obtain
201 (aq, B;7¢; 7) = 6(51:77)29251 (ag, By ) — 7(51__5)2% (aq, Bg;vq; @) (5.23)
In (5.6), let a = o, b=, and ¢ = . This yields
201 (g, ;75 2) = 26 (@, B ;) = Qg — fzcbl (aq, Bg;vq; ) - (5.24)
Rewrite this as
201 (g, 575 %) = 291 (@, B 75 @) + Qg — 52% (agq, Bg;vg; ) (5.25)
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and substitute it into (5.23) to find that

201 (aq, B;vq; x)

- —5(;__77) {2@ (o B 73 7) + Qg — §2¢1 (aq,ﬁqwq;x)} - 7(5%_5)2@251 (aq, Bg; vq; )

- —5(;__77)2@ (a, B;7v; ) + %;5)2% (agq, Ba;vg; ) — V(ﬁ%_f)wﬁl (agq, Bq;vq; )

= —6(61__77)2% (0, B5 3 2) + [aﬁg(i;ﬁ) - 7(51__ ﬁ)} 201 (aq, 54 74: 2)

- 6(5%_77)2% (0, Bsyiw) — L Bﬁ)(j ; PL) 4, (aq, Basva; ) (5.26)
Solving this equation for s¢, (aq, 5¢; vq; x) yields the desired relation. [

5.2 A ¢-analogue of Theorem 3.2.1

Theorem 5.2.1. Suppose that o, B, and q are complex numbers with |af/q] < 1 and 0 <
lq| < 1 orthat q # 0 and o = B¢*™, where m is an integer. Define P = (a?¢%; ¢*)oo(8°¢; ¢*) oo

and Q = (&*q; ¢ oo (8%¢% ¢*)oo. Then

aP - BQ _ q(o = B) 4(8 — ag?) (o — B¢?)
P+Q  q(1+¢°) —aB(l+¢)+q(l+¢*) —ab(l+q")
q(B —aq')(a=Bq")  q(B = aq®)(a = Bq°)
+q(14+¢*) —aB(l+¢5) +q(1 +¢°) —aB(l +¢*) +---

We again prove the result first and discuss convergence later.

Proof. In (5.3), let « = b, 8 = a, v = a¢*/b and x = —¢/b. This results in the continued

89



fraction

on (bt 4 —a/b)
201 <aq2/b, q; Q/b>
q(1 — aq®/b) (1 —bq)(aq’®/b—a)(—q/b)q
q(1 —ag?/b) + (a — bq)(—q/b) + q(1 — ag?/b) + (a — bg®)(—q/b)
(1 —bg*)(agq* /b —a)(—q/b)q (1 —b¢°)(ag’/b —a)(—q/b)q
+q(1 —ag*/b) + (a — bg*)(—q/b) + q¢(1 — ag®/b) + (a — bg*)(—q/b) + - - -
_ (a/b)(b — ag?) (ag®/b?)(1 — bg) (b — ¢*)
(¢/b)(b—ag® — (a —bq)) + (q/b)(b — ag® — (a — bg?))
(ag®/0*)(1 = bg*)(b—¢q*)  (ag®/0*)(1 —bg*)(b—¢°)
+(g/b)(b — ag* — (a — bg?)) + (¢/b)(b — ag® — (a — bg*)) +
B b— aq® a(l =bq)(b —¢°)
b(1+q) —a(l+q¢*) +b(1+q%) —a(l+q¢?)
a(l —bg®)(b — q*) a(l —bg®) (b — ¢°)
+0(1+¢*) —a(l+¢")+b(1+q¢*) —a(l+¢°) +---

(5.27)

We evaluate 504 (aqg/b, q; q/b> and 90 (a;‘f}b; q; —q/b), rewriting them in terms of

201 (i a5 —a/b), 201 (240 @ —a/b), and 201 (254 a; —a/b), which allows a closed-

form evaluation by applying

apf _ (04 6*) (=0 ) (24° /% %)
01 <aQ/5’ & q/ﬁ) (@9/8;Q)oo(—=0/B; D)oo (5:28)

the g-analogue of Kummer’s Identity [1]. We will use Propositions 5.1.3 and 5.1.5 to rewrite
the g-hypergeometric functions.

In Proposition 5.1.5, let « = a, f = b, and v = aq/b to obtain

201 (a,b;aq” /by x) = %2% (a,b;aq/b;x) — M/b)ml (a,bg; ag® /b; )
= bl()g : Z;])ngl (a,b;aq/b;x) — %2% (a bq; ag? /b; x) (5.29)
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In Proposition 5.1.3, let & = a, 8 = b, and 7 = aq/b to obtain

261 (a,bq; ag®/b; x)

_(—ag/b)la=0b)
- (1—b)(a—aq/b)2¢1( 7b7 q/b7 )+

-t o
—a(l_b)(b_q)2¢1( ab7 Q/b7 )+

(1 —a)(b— ag/b)
(1 —b)(a —ag/b)

(1—a)(®® — aq) L
a1 b)b—q) 2! (ag, bag®/byz),  (5.30)

201 (aq, by ag® /b; x)

and substitute (5.30) into (5.29). This yields

201 (a,b; aq® /b; x)

b(b — aq) - - aq(1 —b) [ (b — aq)(a — b) | |
:m2¢l(a,b,QQ/b,I)_ b2—aq [a(l_b)(b_q)%bl(a,b,aq/b’x)
(1 —a)(b* — aq) cad® /b
(= =g 0 et /b )}
b(b —

_ aq) abaalbx _q(b—ag)(a—0) a b ao b x
= g 2 @b a2 ( Braalbi)
_q(1—a)

b 201 (aq, b; ag® /b; x)

= bbz__ozzj {b — Q(ba__qb)} 201 (a,b; aq/b; ) — q(bl_—qa)2¢1 (aq, b; ag?/b; )

_b—aq {b(b—Q)—Q(@—b)} q(1 —a)
b? — aq b—q b—q

(b — aq)(¥* — aq)

201 (a, b;aq/b; x) —

201 (agq, by aq® /b; z)

201 (a,b;aq/b;z) — a(1 = a>2¢1 (aq, b; aq’ /b; x)

(0 —ag)(b—q) b—q
— 501 (0, baa o) - q%_‘q“)ml (ag.b;aq? /b z). (5.31)

Let © = —q/b. We now have written y¢, (agél}b; q; —q/b) in terms of 50, <a‘;’/l’b; q; —q/b> and
201 (a‘;‘é’/”b; g; —Q/b)-
Next, replace a by aq in (5.31) to obtain

b— ag? 1—a
201 (aq,b; aqg/b§ 37) = b _Z 201 (&qa b; GQZ/bS 3?) - Hﬂbl (quyb; aqS/b; 117) . (5.32)
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and in (5.8), let & = a, 8 = b, and v = aq?®/b to obtain

201 (a, bg; ag® /b; x)
(= a1
(1 —"b)(a—aq®/b)

_(b—an)(a—b) a. b ad® /b x
= (i b ) /)

ad b (1 —a)(b—aq®/b)
201 (000 /bi) + (T g )

(1—a)(t” — 201 (ag,b;aqg®/b;x) . (5.33)

201 (ag, b; ag’ /b; x)

aq?)
a(1—b)(b—¢?)

Substituting (5.31) and (5.32) into (5.33) yields

201 (a,bq; ag’ /b; x)
~ (b—ag*)(a—D) {b -

aqqggzﬁl (a,b;aq/b;x) — a(l — a)ggbl (aq, b; aq®/b; x)}

Dol e =
(1—a)(d* —aq®) [b— aq® o q(1 — aq) .
a1 =0)(b—¢?) [ b 201 (ag, b; aqg®/b; x) — — 261 (ag’, b; ag /b,x)}

_(—ag)a=b)b—ag) . .
D) el
(I —a)(b—ag®) 2 2 C 27
+a(1—b)(b—q2)(b—q) [—q(a —b) + (b — ag®)] 2¢1 (aq,b; aq®/b; x)
a1l —a) (A —aq)* —ag®) o
= B— @ b—q) e /be)
1

" al=b)(b—)(b—q)
+ (1 —a)(b—aq®) [b(b+ q) — aq(1 + q)] 2¢1 (aq, b; ag® /b; x)

—q(1 = a)(1 — aq)(t* — ag®)21 (aq®,b; ag’ /b; x) ] : (5.34)

{(b —aq®)(a — b)(b — aq)2¢1 (a, b; aq/b; x)

Let © = —q/b. We now have 5¢; ( a’Sb;]b; q; —q/b> written in terms of 2¢ (;j/bb; q; —Q/b>a

aq
2

201 (20 a5 —a/b), and 501 (250 0 —a/b).
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Define

A= (b—ag*)(a—Db)(b— )2¢1( a/b 5 4 —Q/b)
B= (1= )b~ o) b0+ )~ aal+ o 2 -a).
€ = a1 a)(1 = ) — o 10 ~a).

/b, ¢ —q/b> ,
E=—q(1—a)y ( 2/ 7 —Q/b>

D = (b— aq)201 (

SO

a,bg q
201 <aq3/b i b> _ a(l—b)(blq Ggd+tB+0)

201 (an/b, q; T) (D +E)

- A+B+C
a(l=b)(b—¢®)(D+E)

(5.35)

Applying (5.28), we find that

0 BV(b—a _a2(ww5mbm®mwfw%f%a
A= (a0 =aq)b = o) ) (/b D
(a = 0)b(1 = ag/b)b(1 — ag®/b)(aq; ¢*)oo(—¢; Q) so(aq®/V?; ¢ )
(1 —ag/b)(1 — ag?/b)(aq?/b; @)oo(—q/b; @)oo

_ (=% Do 200 — D ag: ) (ad? /b2 o
= @I Dool—afb e @ NG )T/ oo (5:36)
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B= (1= 00— ) b0+ 0) - aal1 + ) UL CE Ol B )

(1 —a)b(1 —ag?/b) [b(b+ q) — aq(1 + q)] (a6*; ¢*)se(—G; @)oo (aq® /0% ¢ )
(1 —aq?/b)(ag®/b; @)oo(—a/b; @)oo

b[b(b+ q) — ag(1 + q)] (a; ¢*)se(aq’ /0% ¢°) oo, (5.37)

_ (=% 9)
(ag®/b; @)oo (—q/b; @)oo

and
] D — a1 — gy 84 0o (=4 D)oo (aq" /6% %)
O=—al~a(l —ag)t" ~aq) (aq®/b; @)oo (—a/b; @) s
_ —a(1 —a)(1 — aq)b*(1 — aq®/b*)(aq*; ¢*) o (— @ @) (aq" /V%; ¢ )
(aq®/b; @)oo (— /b5 @) o
= CeCpan o) ag @) lad /B ) (5.38)
(aq®/b; @)oo (—4/b; @)oo T T '
Hence
- b(_Q§Q)oo .2 2 /72, 2
A+B+C = [b(a = D)(aq; ¢*) oo (aq? /0% 4*) oo

(ag®/b; 4) oo (—q/b; @)oo
+ [b(b+ q) — aq(1 + )] (a5 ) (g’ /0%; ¢%) o
—bg(1 — a)(ag; ¢*)so(aq’ /0% ¢ ) oo

_ b(—¢; @)oo a—b) — — o (aq: a®) - (ad? /b2: ¢
- (aq®/b; Q) oo (—q/D; @)oo Hb( b) — bq(1 )] (ag; ¢7) o (aq” /b7 7)o

+ b0+ q) — ag(1 + q)] (a5 ¢*)o(aq’ /%5 ¢%)oc

_ b(—¢; @)oo _ aa- o) (ad® /b2 ¢
= 0PI (=)0 D) [bla(1+q) — (b+ )] (ag; ¢*)oc(aq® /0% ¢*)oc
+ [b(b + ) — ag(1 + 9)] (a5 ¢°) oo (ag® /0% ¢*)cc) (5.39)
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Next, again applying (5.28), we find that

(a4; 4*) oo (=@ @)oo (aq? /75 %)
(aq/b; @)oo (—q/b; @) oo
b(1 = aq/b)(aq; ¢*)oo (=@ Qoo (aq® /% %) o
(1 —aq/b)(aq®/b; @)oo(—q/; @)oo
. (_Q§Q>oo L2 2 /72, 2
= @b o b q)e TV (5.40)

D = (b— aq)

and
— oll—u (00”5 %) oo (— @3 D)oo (aq® /5 ) oo
B = el = B T Qe (a5 D
_ (=% Doo — o a a®) - (aad /b2 a2
- (an/b; q)oo(_q/b7 q)oo( Q)( 14 )oo( q /b 1 q )ooa (541)
D+ FE= (_QQ Q)oo [b(aq; qz)oo(aqz/bQ; q2)oo B q(a; q2)oo(aq3/b2; q2)oo} . (542)

(aq?/b; ) oo (— /b5 @)oo

Thus, if we define

R = R(a,b;q) = (aq; ¢*) oo (aq* /0%; ¢*) o,

S = S(a,b;q) = (a;q2)oo(@q3/bzé qz)ooa

we see that

A+B+C
D+ E
b(=4:9) 0 [bla(l+q) — (b+q)] R+ [b(b+ q) — ag(1 + q)] 5]

_ (ag3/b;9) 00 (—q/b;0) 0
a (=9:9) .
e /B foig) (e (PR — 5]

ab(l1+q)R—b(b+q)R+b(b+q)S —aq(l+q)S
bR — ¢S

= b(1 — ag®/b)
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an)a(l + q@)[bR — ¢S] — b(b + q)[R — 5]
bR — gqS
R—S

= (b—aq®) |a(l+q) —b(b+ Q)m}

:(b—aq2) _a(l—'—Q)_Qb"‘Qb—b(b—l—q) R—-S ]

bR — qS
2(bR —¢5) — (b+q)(R—S5)
bR — ¢S }
bR —qS +bS —qR
bR —qS }
(b—Q)(R‘*‘S)]
bR — ¢S ’

= (b—aq?) -a(l +q) = b(1+4¢°) +b

= (b—aq?) -a(l—i-q) —b(1+¢")+b

(5.43)

= (b—aq?) -a(l +q) —b(1+¢°) +b

SO

201 <a(33b7b; 4; _q/b> b— aqg
a - — — 2
21 (aqé’}b; g; —Q/b> a1 =b)(b—¢*)

b(b —q)(R+5)
bR — gqS

[a(l +q) —b(1+¢% + } . (5.44)

and (5.27) becomes

b — aqg? b(b—qu—l—S)}
a(l —10b)(b—¢?) bR — ¢S
b—aq’® a(l —bq)(b - ¢°)
b(1+¢q) —a(l+q¢?)+b(1+¢?) —a(l+q?)
a(l—b¢*)(b—¢")  a(l—bg’)(b—¢q°)
+0(1+¢*) —a(l+¢*)+b(1+¢*) —a(l+¢®) +---

[a(l +q) —b(1+¢°) +

(5.45)

By multiplying both sides of (5.45) by a(1 —b)(b — ¢*)/(b — aq?) and adding b(1 + ¢°) —

a(1 4+ ¢) to both sides of the resulting equality, we obtain

b(b—q)(R+Y95)
bR — ¢S

a(l —b)(b—¢?)
b(1+q) —a(l+ ¢?)
a(l —bg)(b - ¢°) a(l —bg*)(b—¢")
+0(1+¢*) —a(l+¢)+b(1+¢%) —a(l+q*)+---

=b(1+¢°) —a(l+q) +

(5.46)

Upon taking reciprocals of both sides and then multiplying both sides by b(b — ¢), we find
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that

bR —qS b(b— q) a(l - b)(b—¢*)
R+S  b(1+4+¢°) —a(l+q) +b(1+q)—a(l+¢)
a(l —bg)(b - ¢*) a(l —bg*)(b - q")

: 5.47
+0(14+¢*) —a(l+¢3)+b(1+¢3) —a(l +q¢*) +--- (5:47)
Now replace g by ¢? to obtain
bR(a,b;q°) — ¢*S(a,b;¢*) b(b—¢%) a(l —=b)(b—g¢")
R(a,b;¢%) + S(a,b;¢%)  b(14¢°) —a(l+¢%) +b(1+¢) — a(l + ¢
1 — b2\ (b — b 1 — ba*) (b — o8
a(l —bg*)(b— ¢°) a(l —bg")(b - ¢°) (5.48)

+0(1+¢*) —a(l+¢%) +b(1+¢f) —a(l+¢8)+---

Let a = o’q, b= aq®/B, P = R(a’q,aq®/B;¢%), and Q = S(a’q, aq®/f3; ¢%) to see that

P = (0’q¢% ¢")o(0?qq* [ (aq’ [ B)?; 4*) oo
= (?¢*;¢") oo (B°¢ ¢ oo
Q = (’¢; ") (0®q0°/ (ad®/ B)*; ¢") o

= (0?¢; 0" (B*¢*; ¢*) oo,

and

(aq®/B)P — ¢*Q
P+Q
(aq®/B) (g /B = ¢°) a?q(1 — aq®/B)(aq?/B — q*)
(aq?/B)(1 + ¢°) — a?q(1 + ¢°) + (aq?/B)(1 + ¢*) — a?q(1 + ¢*)
a’q(1 = (aq®/B)¢*)(aq® /B — ¢°)  o?q(1 = (g /B)q*)(aq® /B — ¢°)
+ (ag?/B)(1+¢*) —a*q(14+¢°) + (ag?/B)(1+¢°) —a?q(1+¢%) +---

_ (aq*/B)(a — B) ¢’ (B — ag*)(a — B¢?)
aq(q(1+¢°) —aB(l +¢*)) + aq(q(l + ¢*) — aB(l +¢*))
2B — aq")(a — Bq*) ?¢*(B — aq®)(a — Bq°)

+aq(q(l+¢*) —apf(l+¢°) + aqlq(l + ¢°) —af(l +¢*)) + -
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_ (@/B)a—p) q(8 — ag®)(a — Bq®)
q(1+¢°) —aB(l+¢*) +q(1 +¢*) —aB(l+q?)
q(6 —ag')(a—Bq")  q(B—aq®)(a— Bq°)

+q(14+q¢Y) —aBl+¢%) +q(1+¢°) —af(l+¢*)+--- (549)
Upon dividing both sides by ¢?/3, we arrive at
aP — BQ _ q(a—P) (8 — aq®)(a — Bq?)
P+Q  q(1+¢°) —aB(l+¢*)+q(1+¢*) —aB(l+q)
(8 —aq')(a—BqY)  a(B—aqg®)(a - fq’) (5.50)
+q(1+¢") —aB(l+¢°) +q(l +¢°) —aB(l+¢*) +-- '
which is Theorem 5.2.1. ]

The domain of validity claimed for Theorem 5.2.1is |[af/q] <1 and 0 < |¢q| < 1,0r g #0
and o = 3¢*™, where m is an integer. The proof of its convergence in this domain runs very

similarly to the proof of Entry 16.12 in [10].

Proof of convergence. Let D = {a € C}, and suppose that b and ¢ are fixed, arbitrary
complex numbers with |¢| < 1. If ¢ = 0, the right side of the identity is zero while the left
side equals %(oc — f3), so the identity is not true when g = 0.

Let T be the set of values of « for which the continued fraction terminates. In this case,
T = {B¢*™ : m € Z}. Then the closure of T is CI(T) = TU{0}. We next prove the identity
for a in CI(T'). Assume that 8 # 0 and g # 0.

If o = 0, the identity reduces to

B(B%¢; q") . —fBq RN RS 3%q"

(824 4" + (B¢ ¢Yoe a1+ ¢°) —q(1+¢*) —q(1 +¢*) —q(1 +¢f) — -
_ B Bq B¢ B
I+ —14¢—14+¢*"—1+¢—---

(5.51)

This is simply a rearrangement of Entry 16.12 in [5] with o = 0, so the identity is true in

this case.
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If @ = 8¢*™, the continued fraction terminates, so the identity is true by the above proof
and the fact that (5.3) was derived by iterated division.

If 5 =0, then a = 0 also, and the identity holds trivially.

Let N = N(p) be the smallest index n for which a,(p) = 0. We next show that by+ fN) #
0 for all p € T, where f(V) is the value of the Nth tail. We look at the equivalent continued
fraction K (¢,/1) and show that for k > N, 1 + g™) 5 0, where g™ is the Nth tail of this

equivalent continued fraction. Thus

o0

= ,!Nél Z_: - ZZE + Zﬁiﬁ + Zﬁj T (5.52)
and
9 = ko;l T (559
where
¢ = % and ¢, = ka:1 for k > 1.

When o = 3¢*™, N = m + 1, and we have

Q(B _ Bq2m+2k72)(ﬁq2m _ 5q2k72)
[a(1+¢*72) = B2 (1 + ¢)][q(1 + ¢**) — B2¢> (1 + ¢*2)]
62q2m71(1 o q2m+2k72)(1 _ q2k72m72)

= .54
[1 + q2k—2 _ 52q2m—1(1 + q2k)][1 + q2k—4 _ B2q2m—1(1 + q2k—2>] (5 5 )

C =

for k > m + 2. Then for |q| < 1, there exists an M € R such that for k > m +1 > M,
cx € Py ={z € C:|z| —R(2) < 1}. This is the parabolic region Py of the Parabola Theorem
(Theorem 1.2.2) with # = 0. By Remark 1.2.3, the approximants 97(11\1) of the Nth tail are

bounded away from —1, so 1+ ¢™) # 0. Thus the approximants

_ai(p)  a(p) ak(p) _
frlp) = ) ) L2
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are a sequence of meromorphic functions in D with

klgrolo fe(®) = fnep)-1(p) = F(p)

for all p € CU(T).
Let Dy = D, m >0, and 0 < |¢| < 1. Then

lim ¢, — lim (B — ag®?)(a — Bg*?)
koo koo [q(1+¢%7%) —af(1 4+ ¢?%)][q(1 + ¢**) — af(1 4 ¢72)]
qfa
(¢ — apB)?
af/q

= T aB/aP (5.55)

and the convergence is locally uniform with respect to a, b, and ¢q. The identity follows
by Remark 1.2.4 if (a8/q)/(1 — af8/q)* &€ (—oo,—1/4]. Since f(z) = z/(1 — 2)? is the
Koebe function that maps the unit disk onto C\ (—oo, —1/4], this condition is equivalent to
laB/q| < 1.

Note that f(z) also maps {z € C: |z| > 1} onto C\ (—o0, —1/4]. In this case, |a5/q| > 1.
Let a = 1/a and b = 1/8. Then |abg| < 1, and an equivalence transformation converts the

continued fraction of Theorem 5.2.1 into

q(a —b) q(a —bg®)(b — aq?) q(a — bg*)(b — aq")
(1+¢?) —abg(1 +¢°) + (1 4 ¢*) — abg(1 + ¢?) + (1 + ¢°) — abg(1 +¢*) +-- -

(5.56)

By Theorem 5.3.1, this continued fraction converges to (P’ — Q')/(aP’ + 5Q’), where P’ =

(6% /0% ¢")oe(0/ 5% 0')oe and Q' = (4/0% ¢")oc (/8% 4")oc- Since this is not in general equal

to (P — BQ)/(P + @), Theorem 5.2.1 is not true for |af/q| > 1. O
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5.3 A second ¢-analogue

The next theorem is another g-analogue of Theorem 3.2.1. It corresponds to the corollary
of Entry 34 found by letting m = n. Ramanathan mentions this g-analogue in [15] but does
not derive it. Its similarity to Theorem 5.2.1 led to the discovery that Theorem 3.2.1 can
be found as a corollary of Entry 34 and that Theorem 3.1.1 and Entry 34 are equivalent to

each other.

Theorem 5.3.1. Suppose that o, B, and q are complex numbers with |afq| <1 and |q] < 1
or that o = B¢*™, where m is an integer. Define P = (a2¢%;¢*)o(8%¢; ¢Y) e and Q =

(02q; ") oo (52¢% ¢ oo Then

P-Q _ G q(8 — aq®)(a — Bq?)
aP +pQ  (1+4?) —aBq(l+ ) (1+q*) —aBq(l1+¢%)
q(B —ag")(e—Bq")  q(B —ag®)(a - Bq°)
+(1+¢% — 5Q(1+q)+(1+q8)—aBQ(1+q6)+---'

Proof. In (5.3), we let « = b, 8 = a, v = a/b and v = —¢/b. This results in the continued

fraction

261 (Zj}?,; g; —Q/b)
261 (;”/’;; g; —Q/b>
_ q(1 —a/b) (1 —bq)(aq/b— a)(—q/b)g
q(1 —a/b) + (a — bq)(—q/b) + q(1 — aq/b) + (a — bg?)(—q/b)
(1 —bg*)(ag®/b —a)(—q/b)q (1 —bg°)(ag’/b — a)(—q/b)q
+q(1 —ag?/b) + (a — bg*)(—q/b) + q(1 — ag®/b) + (a — bg*)(—q/b) +
_ (4/b)(b—a) (—ag?/v*)(1 — bg) (¢ — b)
(¢/b)(b—a—(a—1bq))+ (q/b)(b — ag — (a — bg?))
(—ag®/0*)(1 = bg*)(¢* —b)  (—ag?/V*)(1 —bg®)(¢* — )
+ (q/b)(b—ag® — (a — bg*)) + (g¢/b)(b— ag® — (a —bg*)) +
_ b—a a(l —bq)(b—q)
b(14+¢q) —a(l4+¢°)+b(1+¢%) —a(l+q)
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a(l —bg*)(b - ¢*) a(l —bg*)(b - ¢*)
+b0(1+¢*) —a(l+¢?)+b(1+4q*) —a(l+¢3)+---

(5.57)

We next evaluate ¢, (Zc}%; q; —q/b) and ¢ <Z’/Z; q; —q/b) by rewriting them in terms
of 204 (a‘z’;’b; q; —q/ b) and 20 (a‘fl‘é’/bb; q; —q/b), which allows a closed-form evaluation by
applying (5.28). We use Propositions 5.1.4, 5.1.5, and 5.1.6 to rewrite the ¢-hypergeometric

functions.

In Proposition 5.1.4, let « = a, f = b, and v = a/b to obtain

cafbia) = oy (a/b)a(l—a)(1—b) o
201 (a,b;a/b;x) = 291 (a, b;aq/b; x) + (1 — a/b)(1 — aq/b) o1 (ag, bg; ag®/b; z)
abz(l —a)(1—10) o
(b —_ CL)(b — aq) 2¢1 (aq, bq, aq /b, LE) . (558)

=21 (a,b;aq/b; x) +

In Proposition 5.1.6, let &« = a, § = b, and v = aq/b to obtain

b(1 —aq/b
= ZE) @ /Z/_ )abx)%bl (a,b;aq/b; z)
b—aq/b 9
g b)(aq/qb/— abx)zcbl (ag, b; aq®/b; x)
_ b(b — aq)
a(l —b)(q — b*z)
b? — aq
~a(1—b)(q — b2x)

201 (aq, bq; aq® /b; x) =

201 (a, b; aq/b; x)

201 (ag, b; aq’ /b; z) (5.59)

and substitute (5.59) into (5.58). This yields

albe ) = o b aolbex abz(l —a)(1—10) b(b — aq) o b aalbea
2¢1 (CL, ba /b7 ) 2¢1( 7b7 Q/b) >+ (b—a)(b—aq) |:CL(1 —b)(q—b2l’)2¢1( 7b7 Q/bv )
b? — aq

B a(l —b)(q — b%)ml (aq,b; aq” /b; x)}
= a. b a . bQZB(l—CL)
DR A Ty ey

br(1 — a)(b? — aq) i e
" = a) b= ag)(g — 2 (0 o0 /5)

2¢1 (a,b; aq/b; x)
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=] (0 baasiin)

2wl g (o 09

_bg—aq —( zsf ;-) (aqb"’_:c ;;xb;a: - ab2x2 o0 (b ag b 2)

G Ex;)l (b__a 152;; fqg%) 201 (ag, b; ag’ /b x)

= Q(b(b_ _a)a;z qbQ_z(bix_) ) 201 (a,b; aq/b; x)

0 Ex;)l (b__a )a(s;(; ﬁqu 29 (ag, by aq® /b; x) . (5.60)

= |1+

When we let z = —¢/b in (5.60), we find that
a,b :q(b—a)+b2(—q/b)(1—b) ab
st (o —0) = G ey Loy 97)
~ b(=q/b)(1 — a)(¥? — aq) ag,b
= o= gl Lo 1)
~q(b—a) —bg(1 - b) a, b
T G—a+b) (aQ/b’ v Q/b>

q(1 —a)(b* — aq) ag, b
" (b—a)(b—aq)(q+ 1)(1)2¢1 (an/b’ & qﬂ))
~ q(*—a) a,b
Cqb—a)(1+ b)Z(b1 (GQ/b’ & _q/b>

(1 — a)(b* — aq) ag,b
T - a)b—ag)(1+ b)%b1 (an/b’ * q/b>

b —a a, b
CE TR (aq/b’ % 4/ ”)

(1—‘1)(52—0“]) ag,b B
G- a)b—ag)(1 + )" <aq2/b’q’ ‘-’/b)' (5.61)

Next, rearrange Proposition 5.1.5 into the form

el wgcbl (a, B;v;2) —

201 (o, Bq;vg; @) = S1=3) G _%2@251 (. B;vq; ) (5.62)
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and let « = a, § = b, and v = a/b to obtain

o fbe gy — 2L —a/b) o b—a/b o
201 (a,bg; aq/b; x) = mﬂh (a,b;a/b;z) — mzqﬁl (a,b: aq/b; )
. b(b — a) ) ‘ b2 —a ' '
= —a(l — b)2¢1 (a,b;a/b;x) — m2¢1 (a,b;aq/b;x) . (5.63)

Substitute (5.60) into this to see that

201 (a,bg; ag/b;x) =

o[t e e
b -a)t*-ag)
(Z;_ai(b —aq)(q — b*z)
T aa o (a,b; aq/b; x)
St
O e o 52
- %zaﬁl (a,b; aq/b; x)
- s a2 el
- a<1b2_x$@f)$ 0 fqu?x) 201 (ag. biag’/bi)
_ bglb—a) + bjé(l_—b)lz)q—_(bi)— DG=b2) o (a b ag/b o)
- a(1bixé;(;f)c§2§ @ iqg%) 201 (ag, biag’/bi)
bq — abq + b%; - li‘az)quiqbn;xc)bq R
- a(1b2_x$(;f>($§ 0 iqg%) 21 (ag, biaq’/b; )
e
_ a(lbz_xg(;f)g - f‘-’[z%) 2n (ag, b ag?/b; z) (5.64)

o1 (ag, b; ag®/b; x)
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Let © = —¢/b in (5.64) to obtain

a, bq aq(1 —b) + b*(—q/b)(b — a) a,b
¢( b T Y ) o= 0)(q— P(—g/p)) 2" (aq/b’q’ q”’)

_ P(=g/0)(1 — a)(b* — ag) ag,b
(1 D)(b— ag)(q - P(—q/B)""" (an/b’ % -4/ b)

aq—abq—52q+abq¢ (a,b.q_ —q/b)
ag(1=b)(1+b) *"" \ag/b’ "

bq(1 — a)(b® — aq) aq, b
iR ST

a—b? a,b
_a(l—b)(1+b)2¢1< g/’ qﬂ’)

b(1 — a)(b?® — aq) ag,b
a(l —b)(b—ag)(1 + b)”é1 <aqz/b, g; q/b) : (5.65)

Now define

A= (a=on (s =a/p)

b(1 —a)(b* — aq) aq, b
B= bmag 20 ( Q/bq—Q/b>,

C = (b~ a)h (a/bb a —Q/b>

(- —aq)  (agb.
D= b—ag 201 (aq2/b’ q; —Q/b> ;

SO

2¢1 <aq/b q; _Q/ > B W(A—FB)

2¢1 (a/b’ q; _Q/b> W(C+D>
_ (b=a)(A+ B)
~a(l -b)(C+ D)’

(5.66)
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Applying (5.28), we find that

and

A=(a—

B =

D =

) (aq; ¢*)oo(—1;

(aq® /% ¢*) s

_ (1 — a/b*)(ag;

7)o
(aq/b; 4)oo(—q/b; ¢) o
oo(_

0*) oo (=43 @)oo (aq? /V?; ¢*) o

(aq/b;
(=4 @)

@)oo(—a/;q) 0

(aq/b; @)oo (—q/b; @)oo

b(1 — a)(b* — aq) (ag?

b3 (aq; ¢*)oo(a/0%; ¢%) oo,

3 0 )oo(— 43 @)oo (aG® /175 ¢7) oo

b—aq

b(1 — a)b*(1 — aq/b?)(aq?; ¢%)oo(— G @)oo (aq® /6% )

(aq?/b; @)oo (—4/b; @) o

b(1 —aq/b)(aq?/b; ¢)oe(—a/b; @)oo
(4 @)ee b*(a; ¢%) o (aq/V%; ¢ ) oo,

(aq/b; ¢)oo(—q/b; ) o

_ gt (9 ) oo (=65 D)oo (a0? /6% 4%
C=-a) (aq/b; @)oo (—a/b; @)
b*(1 — a/b?)(ag; ¢*) oo (—4; @)oo (aq? /b7 4%) oo

(aq/b;
(=4 @)

@)oo(—q/; q) 0

b2 (aq; ¢*) oo (a/V%; ¢*) oo,

~ (aq/b; q)oo(—q/;

(1 —a)(b* — aq) (ag?;

7)o

0*)oo(=0; @)oo (aq” /0% %)

b—aq

(1 —a)b*(1 — ag/b*)(aq?; ) oo (—4; @)oo (aq® /V?; 4%) o

(aq®/b; @)oo (—4/b; @)oo

b(1 — aq/b)(aq?/b; ) (—q/b; ) o

(=4 @)oo

~ (a/b; 9)oo(—a/b; @)

b(a; %) oo (aq/b%; ¢*) oo
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Hence

_ (=% @)oo 2(aa- a2 (a/b%: o2
B b g )

(=€ @)oo
(aq/b; @)oo (—q/b; @)oo

_ 0 (=43 @)oo (ag ) (/b2 ) (a1 o
~ (aq/b: @)oo (—q/b; @) [—(ag; ¢*)oo(a/V%; ¢ ) oo + (4; 4o (aq /0% ¢P)os] (571

b* (a5 ¢%) oo (aq/b%; %) o

and

_ (=4 @) 2y (o

4 D = e a8 C)oel(a/07 0 )
(=4 @) B (o g2

(@b Qo= b o 4 o910 0 )

_ (=4 @) e ) (b2 o N
 (aa/b; @)oo (—a/b; 0)oo [0(ag; ¢*)oo(a/0%; ¢%)oe + (a: ) o(aq /b1 ¢%)oc] . (5.72)

Thus, if we define

R = R(a,b;q) = (aq; ¢*)oo(a/b%; ¢°)oo,

S = S(a,b; q) = (a;¢%)os(aq/V%; ¢ ) oo,

we see that

A+B _ i s [ (005 ¢%)oo(@/1% 6o + (03 ¢7)oc (49/ D% ¢7) o)
C+ D 8l [b(ag; g2)oo(a/0% 62)oo + (05 67)oc (00 /0% %) )
b(S - R)

"~ WR+ S (5.73)
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Substituting this into (5.66), we find that

201 <;’j}?,; a —Q/b) (b—a)b(S — R)

21 (Z/I;’ a0 —q/b) a(l1—=b)(bR+ S)’

so (5.57) can be written as

(b—a)b(S — R) b—a a(l —bg)(b—q)

a(1—=0)(OR+S) b(1+¢q)—a(l+q)+b(1+¢)—a(l+gq)
a(l —bg*)(b— ¢?) a(l —bg*)(b— ¢°)
+b(1+¢*) —a(l+¢?) +b(1+q¢*) —a(l+¢*)+---

Multiplying both sides of (5.75) by —a(1 —b)/(b — a), we obtain

b(R—S) —a(l—b) a(l —bq)(b—q)
bR+S  b(1+q)—a(l+¢)+b(1+q?) —a(l+q)
a(l —bg*)(b - ¢*) a(l —bg*)(b - ¢°)

+b0(1+¢*) —a(l4+¢*)+b(1+¢") —a(l+¢%) +---

We replace ¢ by ¢? to see that

b(R(a,b;q%) — S(a,b3¢%)) _ a(b—1) a(l —bg*)(b—¢%)

bR(a,b;q?) + S(a,b;q?) b(1+4+¢?) —a(l+¢°) +b(1+q*) —a(l +¢?)
a(l —bg*)(b—q*) a(l —bg°)(b—¢°)

+b(1+¢5) —a(l+g*)+b(1+¢%) —a(l+q8)+---

Let a = a?q, b= /B, P = R(a*q,a/B;¢*), and Q = S(a*q,/B;¢*). Then

P = (a®q¢% q") o (0?q/ () 8)%; ¢") o
= (0’¢* 0" (B¢ ¢") o,
Q = (0’¢; ") (0®qq? /() B)%: ") oo

= (®¢; ") (B*¢*; ") o
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and

(@/B)(P = Q) _

a’q(a/B —1) o?q(1 — ag®/B) (/B — ¢*)

(a/P)P +Q

Therefore

a(P-Q) _

~(a/B)(1+ ¢?) — a?q(1+¢°) + (o/B)(1 + ¢*) — a®q(1 + ¢?)

a’q(1 —aq*/B)(a/B —q*)  o’q(1 —aq®/B)(a/B - ¢°)
+ (a/B) (1 +¢%) — a?q(1 + ¢*) + (a/B) (1 + ¢®) — a?q(1 + ¢®) + - -
a*q(a — f3) o?q(f — ag®)(a = Bq)
a((1+¢?) —aBq(l+¢° )) a((1+¢*) — aBq(l+¢?))
a*q(8 — ag")(a — Bq*) a?q(f — aq®)(a = Bq°)
+a((1+¢°%) —OzBQ(Hq ) +al((l+¢®) —aBqg(l+4¢%) +---
agq(a — B) q(6 — ag®)(a — Bq)

T (1t ¢®) —aBa(1+¢°) + (1 + ¢ — abq(l + ¢)

q(B—ag")(a—pBq")  q(B—aq¢®)(a—Bq°)
+(1+¢%) —aBq(l+q¢*) + (1 +¢®) —aBq(l +¢5) +---

(5.78)

ag(a — j) q(6 — ag®)(a = Bg)

aP +BQ

and

P-Q

(1+¢*) —aBq(1+¢°) + (14 q*) — aBq(l + ¢?)
q(B—ag")(a—B¢")  q(B—ag®)(a— Bq°)
+(1+¢%) —abg(l+¢*) + (1 +¢*) —abq(l+¢°) + -

(5.79)

qla—f q(6 — aq®)(a — B¢°)

aP +5Q

)
(1+¢*) —aBq(l+¢°) + (1+q*) —aBq(l +¢?)
q(B —aq')(a=Bq")  q(B - aq®)(a = Bq%)
+(1+¢°%) —aBq(l+¢") + (1 +¢*) —afq(l +¢°) + -

(5.80)

which is Theorem 5.3.1 as desired. O

The domain of validity claimed for Theorem 5.3.1 is |af8q| < 1 and |q| < 1, or a = B¢*™

where m is an integer.

Proof of convergence. Let D = {a € C}, and suppose that b and ¢ are fixed, arbitrary

complex numbers with |g| < 1. If ¢ = 0, the identity holds trivially.
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Let T be the set of values of o for which the continued fraction terminates. In this case,
T = {B¢*™ : m € Z}. Then the closure of T is CI(T) = T U {0}. We next prove the identity
for ain CI(T'). Assume that 5 # 0 and ¢ # 0.

If a = 0, the identity reduces to

Ba0) — (Be*d)~ . Ba B¢ B¢ BT
BB q")oe I+@—1+q' —1+¢"—1+¢—--

(5.81)

This is a rearrangement of Entry 16.12 in [5] with o = 0, so the identity is true in this case
for a = 0.

If o = B¢g*™, the continued fraction terminates, so the identity is true by the above proof
and the fact that (5.3) was derived by iterated division.

If 5 =0, then a = 0 also, and the identity holds trivially.

Let N = N(p) be the smallest index n for which a,,(p) = 0. We next show that by + fN) #
0 for all p € T, where f) is the value of the Nth tail. We look at the equivalent continued
fraction K (¢,/1) and show that for & > N, 14 g™ £ 0, where gV is the Nth tail of this

equivalent continued fraction. Thus

(N) — ¥ Ak _ AN+1 ON42 AN43 - %
f k::[]\f<+1 bk bN+1‘|“bN+2+bN+3+... ( )
and
(N) — 7 Gk _ CN+41 CN42  CN+43 - s
! kIN<+11 1 + 1 + 1 +-.- (5.83)
where

a1
g = — and ¢, =

Qg
by brbr—1
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When o = 8¢°™, N = m + 1, and we have

(B — B 2)(Bg*™ — Bg*?)
[1 + q2k _ B2q2m+l(1 + q2k72)][1 + q2k72 _ 52q2m+1(1 + q2k74)]
62q2m+1(1 _ q2m+2k—2)(1 _ q2ks—2m—2)

= 5.84
(14 2% — B2+ (1 + ¢252)][1 + ¢2+—2 — 22+ (1 + ¢2F—1)] ( )

C =

for K > m + 2. Then for |g| < 1, there exists an M € R such that for kK > m+1 > M,

¢k € Py={z € C:|z]-R(z) < 3}. This is the parabolic region Py of the Parabola Theorem

(N

(Theorem 1.2.2) with # = 0. By Remark 1.2.3, the approximants g ) of the Nth tail are

bounded away from —1, so 1 + ¢™) # 0. Thus the approximants

felp) = N . k=1,2,3,...

are a sequence of meromorphic functions in D with

lim fi(p) = frg)-1(p) = F(p)

for all p € CU(T).
Let Dy =D, m >0, and 0 < |¢| < 1. Then

lim e — lim (8 — ag®* %) (a — Bg*?)
Sm ¢ = i 1+ ¢ — aBq(l + ¢ 2)][1 + ¢ 2 — aBq(l + ¢4
afiq

= T b (5.85)

and the convergence is locally uniform with respect to a, b, and ¢q. The identity follows by

Remark 1.2.4 if aBq/(1—aBq)* € (—oo, —1/4]. Since f(z) = z/(1—2)? is the Koebe function

that maps the unit disk onto C \ (—oo, —1/4], this condition is equivalent to |afq| < 1.
Note that f(z) also maps {z € C: |z| > 1} onto C\ (—oo, —1/4]. In this case, |afq| > 1.

Let a =1/a and b= 1/5. Then |ab/q| < 1, and an equivalence transformation converts the
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continued fraction of Theorem 5.3.1 into

g(a —1b) gla—bg*)(b—ag®)  gqla—bg")(b— aq*) (5.56)
q(1+¢°) —ab(1+¢*) +q(1+ ¢*) — ab(1 + ¢*) + q(1 + ¢*) — ab(1 4 ¢%) +-- - '

By Theorem 5.2.1, this continued fraction converges to (P’ — Q") /(P + Q'), where P’ =
(¢*/0%q")oo(4/B% ¢*) oo and Q" = (¢/0%; ¢*) oo (¢ /8% ¢*) - Since this is not in general equal

to (P —Q)/(aP + 5Q), Theorem 5.3.1 is not true for |afq| > 1. O

5.4 Remarks regarding higher order ¢g-analogues

There are two main difficulties that arise when attempting to use the methods of this thesis to
obtain g-analogues of identities with three variables, such as Entries 34, 36, 39, and Theorem
3.1.1. The first difficulty is that, while the three-term recurrences of the 3F, hypergeometric
functions use x = 1 for all three terms, many of the recurrences of 3¢, basic hypergeometric
functions have two terms containing the same value for x while the third term has a different

value. As an example, the hypergeometric recurrence

a, b, c (b+c—d+1)(1—a) a—1,bc
E ;1) = E 01
“( > b—d+)(c—d+1)>*\ d-1,¢e’

be(d+e—a—b—c—1) a,b+1,c+1‘1
elb—d+1)(c—d+1) 2 dye+1

(5.87)

has the g-analogue

a,b,c~de (1 —beq/d)(1 — q/d) a/q,b,c de
32 ( d,e’ ¢ abc) (1—0bq/d)(1— cq/d)3¢2 ( d/q, e’ ¢ abc)
q(1 =b)(1 —¢)(1 — de/(abcq)) a,bq,cq ~ de
ittt e (a5 ) O
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This feature makes such recurrences ill-suited to the iterative division process used to produce
a continued fraction like the one found in Lemma 2.1.4. There are some contiguous relations
of 3¢5 basic hypergeometric functions with x = de/(abc) for all three terms, so it may be
that this difficulty can be overcome.

The second difficulty has to do with the evaluation of the basic hypergeometric func-
tions. There is not a general g-analogue of Dixon’s Identity for use in evaluating a 3¢9 basic
hypergeometric function. There is a partial g-analogue due to F.H. Jackson and restated by

W.N. Bailey in [3] as

aboeg’vVa\ _ (¢392 0 q)n(c; @)n(be; g)2n
i (aq/b, ag/c’ * be ) B (@ Qn(b; @)2n(c; @)an(be; @) (5.89)

—2n

when a = ¢~ and |¢®y/a/(bc)| < 1, and there is a general g-analogue, given as Equation

(2.7.2) in [6], that uses a 4¢3 basic hypergeometric function. This second g-analogue,

4¢3< @ —qvabe q\/5> _ (94 9)oc, (a9/(60); @)oo, (4v/0/b; @)oo, (4V/0/ € @)oo
—va, aq/b, aq/c’ " be (aq/b; @)sos (a0/¢; @)oo, 4V @) oos (/@] (bC): @)oo’
(5.90)

requires that |¢y/a/(bc)| < 1. It is not apparent that either of these g-analogues would be
useful in finding the desired continued fraction identities. However, given that Masson’s
proof of Entry 40 in [13] uses ¢Fy hypergeometric functions and his proof with D.P. Gupta
of Watson’s g-analogue of Entry 40 in [8] uses 19¢9 basic hypergeometric functions, it may

be that (5.90) could be used in finding g-analogues of Entries 34, 36, and 39.

113



References

1]

2]

[10]

[11]

[12]

G.E. Andrews. On the g-analog of Kummer’s theorem and applications. Duke Math.
J., 40:525-528, 1973.

G.E. Andrews, R. Askey, and R. Roy. Special functions, volume 71 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.

W.N. Bailey. On the analogue of Dixon’s theorem for bilateral basic hypergeometric
series. Quart. J. Math., Ozford Ser. (2), 1:318-320, 1950.

B.C. Berndt. Ramanujan’s notebooks. Part II. Springer-Verlag, New York, 1989.
B.C. Berndt. Ramanujan’s notebooks. Part III. Springer-Verlag, New York, 1991.

G. Gasper and M. Rahman. Basic hypergeometric series, volume 96 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, second
edition, 2004. With a foreword by Richard Askey.

C.F. Gauss. Disquisitiones generales circa seriem infinitam 1 + o‘ﬂ T+ %xz +
alatl)(at2)8 (6+1)(’8+2)$ + - -+, Pars prior, Comm. soc. regiae sci. Gottmgensw rec. 2:1—

1-2-3-y(y+1)(y+2
46, 1812. In C.F. Gauss, Werke, volume 3, pages 123—-162. Koniglichen Gesellschaft der

Wissenschaften, Géttingen, 1876.

D.P. Gupta and D.R. Masson. Watson’s basic analogue of Ramanujan’s entry 40 and
its generalization. SIAM J. Math. Anal., 25(2):429-440, 1994.

— B — N (1—a® 1Y (1—aB)(1—gB+1
E. Heine. Untersuchungen iiber die reihe 1+ % T+ (1(1(173)((11:1(12)(i(jqwg(l)(jqﬂl) ).

22 +---. J. Reine Angew. Math., 34:285-328, 1847.

L. Jacobsen. Domains of validity for some of Ramanujan’s continued fraction formulas.
J. Math. Anal. Appl., 143(2):412-437, 1989.

R.L. Lamphere. Note on a continued fraction of Ramanujan. Ramanujan J., 4(1):11-12,
2000.

L. Lorentzen and H. Waadeland. Continued fractions with applications, volume 3 of
Studies in Computational Mathematics. North-Holland Publishing Co., Amsterdam,
1992.

114



[13] D.R. Masson. A generalization of Ramanujan’s best theorem on continued fractions. C.
R. Math. Rep. Acad. Sci. Canada, 13(4):167-172, 1991.

[14] D.R. Masson. Wilson polynomials and some continued fractions of Ramanujan. Rocky
Mountain J. Math., 21(1):489-499, 1991.

[15] K.G. Ramanathan. Hypergeometric series and continued fractions. Proc. Indian Acad.
Sci. Math. Sci., 97(1-3):277-296 (1988), 1987.

[16] J.A. Wilson. Three-term contiguous relations and some new orthogonal polynomials.
In Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida,
Tampa, Fla., 1976), pages 227-232. Academic Press, New York, 1977.

115



