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ABSTRACT

The Rossi-↵ method determines the prompt neutron decay constant in a nuclear fissioning

system at or near delayed critical. Knowledge of the prompt neutron decay constant is

important for a critical system as it is a major contributor to the dynamic system behavior.

The classical method for the Rossi experiment used gated circuitry to track the time when a

neutron was incident upon the detector. The downside of this method is that the circuitry

was complex and only one single fission chain could be measured at a time. The modern

method allows many chains to be measured simultaneously by a pulse time tagging system

such as the LANL custom designed List-mode module.

This thesis examines the implementation of the modern Rossi-↵ method on the all highly

enriched uranium, HEU, Zeus experiment. Measurements are taken at several subcritical

configurations, at critical in the presence of a source, and at one supercritical point. During

the experiment, the List-mode module generates time tags of incoming neutron pulses. After

the experiment, this list of neutron pulses is complied using custom software into a histogram.

This histogram is fit using o↵ the shelf graphing software to determine the value of ↵.

The subcritical measurements of ↵ are used to extrapolate ↵ at delayed critical. The

extrapolation determined the value of ↵ at delayed critical to be ↵ = �89910 s

�1. This

value is compared to the measured value of ↵ at delayed critical which is determined to

be ↵ = �90408.4 s

�1. These values di↵er by 0.55% which is remarkably good agreement.

This thesis also examines the expected value of ↵ using a Monte Carlo transport code,

MCNP. MCNP determined the value of ↵ at delayed critical to be �100048 ± 0.584 s

�1.

This result di↵ers by 11.3% from the extrapolated value of ↵ determined experimentally.

When compared to systems with similar neutron spectra, the measured value of ↵ fits well

in comparison to historical measurements.
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CHAPTER 1

REACTOR PHYSICS BACKGROUND

The Rossi-↵ method was developed by Bruno Rossi in the 1940s to establish the mass control

increment between delayed and prompt critical [1]. This methodology uses the statistical

fluctuation of the measured neutron population to determine the nuclear kinetic parameters

associated with the physics of neutron chain reacting systems. Rossi’s work is known as

the Rossi experiment, and determined the fluctuations in neutron emission rates for single

neutron chains [2].

1.1 Reactivity

Valuable insight into the dynamic system behavior of a critical system can be attained

through measurement of the prompt neutron decay constant. Before understanding the the-

ory related to the determination of the prompt neutron decay constant, some understanding

of the related reactor physics quantities is necessary. The best place to start when discussing

reactor physics is the concept of k
eff

which is the multiplication factor. The multiplication

factor is the ratio between the previous neutron generation and the current one. This factor

is not a directly measurable quantity but may be the single most important piece of infor-

mation about a fissioning system. The multiplication factor determines how close or far a

neutron multiplying system is from being critical. When a system is critical, the value of k
eff

is exactly one. Subcritical configurations have values of k
eff

less than one, and supercritical

configurations have values of k
eff

greater than one as shown by Eq. 1.1.
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k

eff

8
>>>>><

>>>>>:

< 1 subcrtical

= 1 critical

> 1 supercritical

(1.1)

In every nuclear reactor, a control system is used to maintain and adjust criticality. In

commercial power reactors, neutron absorbing rods are used to control the neutron popula-

tion in the core and therefore regulate the criticality. The critical assemblies at the National

Criticality Experiments Research Center, NCERC, have a di↵erent method of controlling

reactivity. The control rods are actually fissile material or reflectors themselves and the crit-

icality of a system is increased as more special nuclear material, SNM, or reflector is added.

In either case, a measure of the criticality or a related quantity of a system is necessary. A

direct measurement of the k

eff

of a system is quite di�cult, so instead a measure of the

reactor power is performed using neutron detectors. The power level is proportional to the

change in the count rate shown by the detectors. Although an exact value of k
eff

cannot

be determined, the time behavior of the system is used to determine whether a system is

subcritical, critical or supercritical.

Figure 1.1: Criticality Range using k

eff

as a guide [3].

Figure 1.1 is used by the NEN-2 group, Los Alamos National Laboratory’s own Advanced

Nuclear Technology Group, as a training tool when teaching about criticality. Nuclear

fission is a statistically driven process. In Fig. 1.1, two critical values are shown. A system
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is delayed critical when on average one neutron from each fission or its decay chain survives

to produce another fission. The neutrons from the decay of fission products are imperative

to sustaining a system at delayed critical. Similarly, a reactor is prompt critical when one

neutron generated by the fission process survives to produce one fission. The region of

criticality between delayed and prompt critical is ideal for operating power reactors because

the reaction rate changes on timescales of seconds to hours. Without these long timescales,

nuclear power would not be a reality.

Similar to k

eff

, the prompt multiplication factor, k
p

, is a measure of the state of a chain

reacting system with respect to prompt critical. Just as a k

eff

equal to one corresponded

to delayed critical, a value of k
p

equal to one corresponds to prompt critical. The relation

between k

eff

and k

p

is shown in Eq. 1.2.

k

p

⇡ k

eff

� �

eff

(1.2)

This approximation uses the quantity �

eff

which is the delayed neutron fraction. The de-

layed neutron fraction is in itself an approximation based upon the probability for each

fission daughter to produce a neutron as part of its decay process as well as the probability

for that fission daughter to be produced during a fission event. Figure 1.1 shows an approx-

imation where prompt critical is given as 1 + �

eff

. In reality, �
eff

is the reactivity change

between delayed critical and prompt critical and the value of k
eff

at prompt critical is only

approximated by k

eff

⇡ 1 + �

eff

. The full derivation begins with the definition of ⇢ which

is given by Eq. 1.3.

⇢ =
k

eff

� 1

k

eff

(1.3)

Using a reactivity of �
eff

and some algebraic manipulation the true value of k
eff

at prompt

critical is given by Eq. 1.4. The first two terms of the Taylor series of Eq. 1.4 make for an

extremely good approximation of the value of k
eff

at prompt critical.

k

eff, prompt

=
1

1� �

eff

⇡ 1 + �

eff

(1.4)

The prompt neutron decay constant, ↵, depends on both the prompt multiplication factor,
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p

, and the neutron lifetime, l. Specifically, the prompt neutron lifetime is the average length

of time a prompt neutron exists in a system before a terminating event. Termination can

be caused by leakage from the system, non-fission capture, or fission capture.

The experiments for the Rossi-↵ method are all performed in the subcritical and delayed

critical windows. Measurement of ↵ between delayed and prompt critical is often di�cult

becasue the power level of the reactor is increasing which eventually saturates the detectors.

Although the described Rossi experiment is not valid, measuring ↵ above prompt critical is

possible by measuring the prompt period of the reactor. Above prompt critical, ↵ is defined

as the inverse of the prompt period.

1.2 Prompt and Delayed Neutrons

Nuclear fission is an extremely useful but volatile process. When an atom fissions: daughter

nuclei form, neutrons are liberated, photons are released, and massive amounts of energy are

transferred to the surrounding media. Prompt neutrons are those released as a direct result

of fission, and can be measured approximately 10�9 seconds after the start of the fission

process. The daughter nuclides born in fission are highly unstable and will often produce

more photons or even release neutrons themselves. Delayed neutrons are released on the

order of milliseconds to seconds after the beginning of the fission process. Delayed neutrons

are the main reason critical systems are safely controllable, but they provide little insight into

the time-dependent behavior of the fission process. For this reason, the delayed neutrons in

such systems are often ignored during Rossi-↵ measurements because they have little e↵ect

on the dynamic system behavior on such a short timescale. Insight into the time-dependent

behavior of the fission process is attainable though measurement of prompt neutrons in a

system during the implementation of the Rossi experiment. The Rossi experiment is able to

determine the prompt neutron decay constant, ↵, of a system.
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1.3 Inhour Relation and Prompt Neutron Decay Constant

The prompt neutron decay constant, often referred to as the Rossi-↵, is a dynamic variable

of a chain-reacting nuclear fission system. The Rossi-↵ models the time behavior of the

prompt neutron population. This behavior is modeled well by an equation developed by

Richard Feynman congruently with Rossi’s development of the experiment. The prompt

neutron decay constant can be used to create a dynamic model of a fissioning system for a

single state of the system. The main uses for measurements of this type are in the operation

and performance of reactors. Like the Inhour relation shown by Eq. 1.5, the Rossi-↵ method

is another useful method of calibrating reactivity[1].

!

"
l

�

+
GX

i=1

↵

i

�

i

+ !

#
= k

o

(1.5)

The Inhour relation uses a measured reactor period to determine a systems reactivity which

becomes di�cult to measure as the reactor period decreases in length as the reactor ap-

proaches prompt critical. The Inhour relation determines the value of ! which is related to

the asymptotic period, T
as

= 1/!. The value of ! is determined for a particular reactivity,

k

o

. The neutron lifetime l, and the delayed neutron fraction � are properties of a given

system and are static in the calculation. The remaining constants ↵
i

and �

i

are properties

of each delayed neutron group. The constant ↵
i

is not related to the Rossi-↵, but rather is a

constant ↵
i

= �

i

/�. Where �
i

is the fraction of delayed neutrons in group i and � is the total

delayed neutron fraction. The Rossi-↵ method measures the correlation in neutron counts

to determine the prompt neutron decay coe�cient. If the value of ↵ at delayed critical is

well defined, further values of alpha can be related to their reactivity.

Rossi proposed that active fission systems are self-modulated; meaning that the emission

rate of delayed neutrons is su�ciently slow that neutrons produced directly from two sepa-

rated fission events are discernible. Measurements of this type are applicable near critical.

Measurements below delayed critical are simple to perform as there is no positive period.

Measurements above delayed critical are possible, but low power levels are necessary [4].

Measurements performed more than a few percent above delayed critical become di�cult
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because of the short reactor period [5]. The Rossi experiment is technically simple which

is why it is widely used to find the prompt neutron decay constant of nuclear assemblies.

This thesis will determine the prompt neutron decay constant of fissioning systems through

application of the Rossi-↵ method.

6



CHAPTER 2

ROSSI-↵ METHOD

2.1 Accidental and Correlated Neutron Pairs

An understanding of the distinction between accidental and correlated neutron pairs is crucial

to the comprehension of how the Rossi-↵ method was developed. Much like the distinction

between prompt and delayed neutrons, dividing the detected neutrons into two groups is

necessary to complete the analysis required when performing the Rossi-↵method. Accidental

and correlated pairs are the two groups. In a single fission chain, the accidental and correlated

pairs relate to the prompt and delayed neutron groups. Correlated pairs refer to the prompt

neutrons generated from a common fission ancestor. Accidental pairs are defined to be

neutrons originating from a random source such as the background or delayed emission, but

when multiple fission chains are being analyzed neutrons originating in a di↵erent fission

chain are considered as accidental pairs. One of the assumptions made when using the

Rossi-↵ method is that the measurement is being performed at zero power so there is no

significant overlapping in fission chains.

Figure 2.1 provides a visual representation of accidental and correlated neutron pairs. In

Fig. 2.1, X is the common fission ancestor to correlated pairs of neutrons like C, D, and G.

Correlated counts are also seen in the other chains at A and E or B and F. Any combination

of neutrons from separate chains denotes accidental pairs, such as A and B.

2.2 Development of Rossi-↵ Equation

The prompt neutron decay constant is found by fitting an equation heuristically developed

by Richard Feynman to experimental data. The data is taken using an experiment proposed
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Figure 2.1: Visual representation of accidental and correlated neutron counts [6].

by Bruno Rossi. This experiment models the behavior of a single neutron chain in the

experiment. Rossi’s experiment works on the concept that subcritical fissile material is self-

modulated [2]. This observation only holds for zero power systems. Systems operating above

zero power have overlapping neutron chains making correlated counts much more di�cult to

distinguish. The zero power constraint is the limiting factor to the experiment above delayed

critical. A few percent above delayed critical, the power level would be rapidly increasing

and the system would have many overlapping fission chains [7].

In development of the Rossi-↵ fitting equation, first consider a fission occurring at some

time t0. The Rossi-↵ analysis considers the subsequent neutron counts incident on the

detection system. The first neutron encountering the detector occurs at time t1, this neutron

will further be referred to as the initiating event. Then, consider the probability that another

neutron will be incident on the detector in a given �t after the initiating event. Assuming

the first neutron is correlated to the fission at time t0, the second count must either be a

random neutron or a correlated neutron. A�t quantifies the probability that the second

count is random, where A is the average count rate of a system and �t is the time interval

of the measurement [5].

The prompt neutron population must decay exponentially on average, so the probability

of detecting a correlated event also decays exponentially with time. The prompt neutron

decay constant measures the speed of this exponential decline; the behavior is modeled by
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e

↵t. The exponential including ↵ has been shown here with a positive sign. The prompt

neutron decay constant has been modeled using many di↵erent sign conventions. The sign

conventions used in this paper follow the sign conventions used by Orndo↵ [5]. Orndo↵’s

convention defines ↵ to be negative when below prompt critical. The probability of the

count detected being a prompt neutron can then be written as Be

↵t�t [5].

The probability that a neutron is counted at time t0 = 0 can be generalized by Eq. 2.1 to

be equal to the average fission rate, F .

p0(t0)�0 = F�0 (2.1)

Where in general p
x

is the probability of detecting a neutron count number x at a time

t

x

. The time t

x

exists within the time window �
x

.

Now, the probability of another neutron due to fission being counted at some t1 after the

initial count, which occurred at t0, is of interest. The probability of this second count being

detected can be quantified by Eq. 2.2.

p1(t1)�1 = ✏⌫

p

�⌃
f

e

↵(t1�t0)�1 (2.2)

Where ✏ is the e�ciency of the detector in counts per fission, ⌫
p

is the number of prompt

neutrons emitted at time t1, � is the velocity of thermal neutrons, ⌃
f

is the macroscopic

fission cross section, and when � and ⌃
f

are combined they become the average fission rate

per unit neutron density �⌃
f

[4].

Next, the probability of a neutron count occurring at time t2 after counts occurred at both

t0 and at t1 and from the same fission chain is of interest. The probability is quantified in

Eq. 2.3.

p2(t2)�2 = ✏(⌫
p

� 1)�⌃
f

e

↵(t2�t0)�2 (2.3)

Notice that the ⌫ term has been modified to (⌫ � 1) to account for the neutron lost at t1 to

the fission chain [4].

All three of the probabilities calculated in Eq. 2.1, Eq. 2.2, and Eq. 2.3 are indepen-

dent and can be combined to give the probability of occurrence of two chain-related counts

9



initiated by a fission at time t0; the first subsequent count occurring at time t1 in �1 and

the second happening at some time t2 in �2 [4]. The probability of the above-mentioned

sequence coming to fruition can be found by integrating the product of the probabilities for

events at t1 and t2 over all time up until t1. This integration is shown in Eq. 2.4.

p

c

(t1, t2)�1�2 =

Z
t1

�1
p(t1)�1p(t2)�2F dt0 (2.4)

This integration is performed becasue there is no way to know that a detected count is

caused directly from the fission. Instead, it is assumed that detected counts relate to the

counts at time t1 and t2.

With a little simplification, Eq. 2.4 can be simplified into Eq. 2.5 which portrays the

probability of two chain related events occurring as a result of a fission at time t0.

p

c

(t1, t2)�1�2 = F ✏

2 D

⌫

k

2
p

2(1� k

p

)l
e

↵(t2�t1)�1�2 (2.5)

Equation 2.5 is simplified from Eq. 2.4 using ⌫

p

(⌫
p

� 1) as an average of the number of

prompt neutrons emitted and the identities shown in Eq. 2.6 and Eq. 2.7.

⌫

p

=
k

p

⌃
a

⌃
f

=
k

p

⌃
f

�l

(2.6)

D

⌫

=
⌫

p

(⌫
p

� 1)

⌫

2
p

(2.7)

These identities refer to the definitions of the average emission of prompt neutrons and

Diven’s parameter respectively [4].

The probability that the counts seen at time t1 and t2 are an accidental pair is the same

as the product of the average fission rate and the e�ciency of the detector in the time bin.

This probability can be seen in Eq. 2.8 [4].

p

r

(t1, t2)�1�2 = F

2
✏

2�1�2 (2.8)

The total probability for observing a pair of counts in �1 and �2 is the aggregate of the

10



probabilities found above as shown in Eq. 2.9 [4].

p(t1, t2)�1�2 = F

2
✏

2�1�2 + F ✏

2 D

⌫

k

2
p

2(1� k

p

)l
e

↵(t2�t1)�1�2 (2.9)

The Rossi experiment guarantees an interaction in the time interval �1 because this is

the initiating event. With some manipulation, the probability of the first count occurring in

the time interval �1, F ✏�1, can be separated and set to 1 as shown by Eq. 2.10 [4].

p(t1, t2)�1�2 = F ✏�1


F ✏�2 + ✏

D

⌫

k

2
p

2(1� k

p

)l
e

↵(t2�t1)�2

�
(2.10)

The result of the generalization of this process to any time after t1 = 0 can be seen in Eq.

2.11 [4].

p(t)� = F ✏�+ ✏

D

⌫

k

2
p

2(1� k

p

)l
e

↵t� (2.11)

In Orndo↵’s paper [8], a correction is made to Eq. 2.11 by the consideration of the e↵ect of

detection of the fission producing the count at t = 0. Consider � to be the e↵ective number

of neutrons resulting from this fission and detection process, at t = 0. Since detection

may involve capture, scattering, or fission, � will depend on the type and placement of the

detector and must be evaluated for a particular experimental setup [8]. The correction to

Eq. 2.11 modifies the ⌫
p

(⌫
p

� 1) term hidden as a part of Diven’s parameter. The correction

term is shown in Eq. 2.12.

⌫

p

(⌫
p

� 1) +
2⌫

p

(1� k

p

)

k

p

� (2.12)

With the correction, the probability Eq. 2.11 becomes Eq. 2.13 [4].

p(t)� = F ✏�+ ✏

✏[⌫
p

(⌫
p

� 1) + 2⌫
p

(1� k

p

)�/k
p

]k2
p

2⌫p2(1� k

p

)l
e

↵t� (2.13)

The correction added by � is at most a few percent, and Orndo↵ suggests � need not be

evaluated precisely [8]. Uhrig suggests in Random Noise Techniques [4] that the correction

itself is often neglected because of its small magnitude. Often for simplicity the total prob-
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ability to detect a neutron event in some �2 after detecting an event at �1 is written in the

general form shown in Eq. 2.14.

P (t) = A+Be

↵t (2.14)

Equation 2.14 is fit to experimental data during analysis.

Using Uhrig’s suggestion to neglect the � correction, the parameters A and B are repre-

sented by Eq. 2.15 and 2.16 [4].

A = F ✏ (2.15)

B =
✏D

⌫

k

2
p

2↵l2
(2.16)

2.3 Measurement

The Rossi experiment is a technically simple measurement used to constitute a reactivity

calibration without the use of the Inhour equation [1]. The measurement is especially im-

portant in reactors where the neutron lifetime is extremely short. The Rossi experiment

is performed by placing a su�ciently sensitive neutron detector near a neutron multiply-

ing, chain reacting system [2]. Although not always possible, the ideal placement of the

detector is near the center of the system. The central placement alleviates any issue with

room return or neutron back scatter from the floor, ceiling, or walls into the neutron detec-

tors. Further enhancement of this experimental set-up can be realized by adding multiple

detectors running on independent channels to minimize dead time.

The prompt neutron decay constant can then be calculated from a fit of the data measured

by the detector system. The system collects neutron detection events and records the time

that each event occurs. The measurement of the time in which a count occurred is the main

improvement between the classical and modern techniques for the Rossi experiment. These

di↵erences will be discussed later in this thesis.

The prompt neutron decay constant best measures the dynamic behavior of a system near

criticality through a measurement of neutron pulse correlation. The value of the prompt
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neutron decay constant, as previously stated, relies on the prompt multiplication factor, k
p

,

and the prompt neutron lifetime, l, as shown by Eq. 2.17.

↵ =
k

p

� 1

l

(2.17)

By definition, the prompt neutron decay constant is zero when the system is prompt critical,

negative below prompt critical, and positive above prompt critical [5]. The value of ↵ at

delayed critical can be estimated by plotting the subcritical values of ↵ vs. the inverse of the

count rate and generating a linear fit. The y-intercept is the value of ↵ at delayed critical

because at delayed critical the count rate approaches infinity, so the inverse of the count rate

approaches zero. This allows interpolation in the region where power is increasing too rapidly

to perform the Rossi experiment. This analysis allows for interpolation between the data

taken and the defined value of ↵ at prompt critical. The data could then be extrapolated

beyond prompt critical in a similar fashion. The prompt neutron decay constant is defined

by Eq. 2.17, but can also be defined to be the inverse of the prompt period. For systems

that can be measured in a prompt critical state, the value of ↵ can be measured in this way.

Another notable point is that at delayed critical ↵ can be approximated by Eq. 2.18.

↵

DC

=
��

eff

l

(2.18)

The result comes from Eq. 1.2 that k
p

= 1� �

eff

when k

eff

= 1. Using this approximation

and Eq. 2.17 the result shown in 2.18 is attained. In this analysis, �
eff

denotes the e↵ective

delayed neutron fraction of the system.

2.4 Data Analysis

Binning Data

The first step in data analysis is binning. The data will eventually be binned into a histogram

based on the time di↵erence, �t, between an initiating event and a subsequent count. In the
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Figure 2.2: The binning process used to generate the histogram used in Rossi-↵ analysis.

classical approach to the Rossi experiment, bin size was predetermined, and all of the binning

was done by the analog circuitry. The modern approach allows binning to be performed post-

measurement removing the need for re-measurement to modify the bin size. The modern

approach allows for more sophisticated analysis of the data because di↵erent size time binning

can be performed on a single set of data to find the ideal bin size.

The binning process is performed using the first computer program included in Appendix

A. The program inputs are the time window which is the total time for all bins, and the

length of each bin. First, the program sets the initiating event to the first count chronologi-

cally. Then, it finds the final time in the file. The program uses the final time to make sure

the time window for binning is smaller than the length of measurement. Next, the current

event is set to be the count occurring directly after the initiating event. In relation to the

theoretical derivation of the Rossi-↵ equation, the initiating event is the event occurring

at t1, and the current event is the event occurring at t2. The time di↵erence between the

initiating event and the current event is calculated. So long as the calculated time di↵erence

is less than previously set time window, the count is binned. The current event moves to the

next chronological count, and the time di↵erence is measured again. If the time di↵erence is

greater than the time window, the initiating event is moved to the next chronological event,

and the current event is set to the event directly after the initiating event. The binning

process is well described by Fig. 2.2 and the flowchart shown in Fig. 2.3. In the figure, T

is the time window and t1 is the initiating event. Next, the algorithm moves the initiating

event to the second event or t2 in Fig. 2.2.

Testing of this algorithm was performed using specially modified data inputs, and an
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Figure 2.3: Flow chart of the binning code.
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independently written Mathematica code for comparison.

Fitting Data

Once the data has been recorded and compiled appropriately into a histogram, equation

2.14 is fit to the histogram using a nonlinear least squares fit [9] to find the constants A, B,

and ↵. The fit was performed using a plotting software from Origin Labs. The histogram

created has inherent dead time related to the detector and counting circuit. As shown in

Fig. 2.4, the first few channels under-report the number of counts. If unmodified, the value

of Rossi-↵ would be incorrectly determined by the fit. To correct the dead time issue, the

first few channels are removed by the user. At most, the first five channels are removed.

The number of channels removed varies based on the width of the bins, and the hardness of

the neutron spectra (average speed of the neutron population). An example of the behavior

that is removed is shown in Fig. 2.4; for this example the first five channels are removed.

The constants resolved from fitting, A, B, and ↵, can be further manipulated to generate

additional information about the system. The fit will give values for A, B and ↵. A and B

represent a collection of five independent system parameters as demonstrated in Eq. 2.15

and 2.16. The five independent system parameters include: F , ✏, D
⌫

, k
p

, and l. So, A and

B can be used to find one parameter if the other three parameters are already known or

independently measured [4]. Although finding these additional parameters is beyond the

scope of this thesis, determination of these reactor physics parameters may be beneficial

extension of this work.

Interpretation of Results

Each fit produces one value of Ross-↵. A typical Rossi-↵ experiment measures data at

many di↵erent configurations (subcritical, critical, and supercritical). For this thesis, the

di↵erent configurations of the Zeus experiment are measured. The Zeus experiment uses mass

separation of the fuel to produce di↵erent configurations. Using the values of ↵ determined

from multiple subcritical measurements, the data points are plotted on a linear scale. The
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Figure 2.4: An example of the dead time behavior by showing the first ten channels in the
histogram.

data forms a straight line and can be used to predict the locations of delayed and prompt

critical. Plots of ↵ vs. inverse count rate and ↵ vs. reactivity, ⇢, are created. These plots

predict the value of ↵ at delayed critical. When the reactivity is zero or the inverse of the

count rate approaches zero, the system is approaching delayed critical. A line is fit to the

data for ↵ vs. inverse count rate. This y-intercept of this line is the value of ↵ at delayed

critical. Similarly, a line is fit the graph of ↵ vs. ⇢. this line is used to calibrate the reactivity

of the system based on the value of ↵. are linearly fit the value of ↵ at delayed critical is

the y-intercept of that fit.

The reactivity of a system can be calibrated based on the value of ↵ at prompt critical,

and the value of ↵ at delayed critical. Using similar triangles such as the one shown in Fig.

2.5 the reactivity of each measurement can be determined using Eq. 2.19; where X is the

reactivity of the measured point in dollars.

↵

DC

1$
=

↵

measured

1$ +X

(2.19)
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Equation 2.20 is an algebraically manipulated form of Eq. 2.19 to make analysis easier.

X =
↵

measured

� ↵

DC

↵

DC

(2.20)

Figure 2.5: Similar triangle used to calibrate the reactivity of a system using the value of ↵
determined at delayed critical [10].

2.5 Classical Measurements

The Rossi-↵ method has been used many times to determine the prompt neutron decay

constant of a nuclear fissioning system. The most notable implementation of the Rossi ex-

periment was a system designed by John Orndo↵. Orndo↵’s system consisted of a ten channel

time analyzer which used gating hardware to bin counts during experimentation. The bin

size on the system were determined prior to experimentation, and bins were restricted to be

either 0.25 or 0.5 µs wide [1].

A block diagram of Orndo↵’s apparatus is shown in Fig. 2.6. The system was attached to

a U235 fission chamber placed inside the assembly of interest. The detector was attached to

two separate circuits. The first of these circuits collected a long, square gating pulse which

fed through a series of 0.25 µs delay lines successively opening all ten channels [1]. The

second circuit collected very narrow pulses which are counted in one of the ten channels.
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The gating worked such that after the gating pulse each counter would be opened for a preset

length of time, either 0.25 or 0.5 µs, to collect counts and then trigger the next counter [1].

Figure 2.6: Block diagram of Orndo↵’s coincidence counting circuit [5].

Orndo↵’s time analyzer circuit did all the binning, but made customized measurements

more complicated. Becasue the data was binned during experimentation, each measurement

was only useful for those system parameters. Any changes would require repetition of data

acquisition. This method is discussed in detail in a Los Alamos report written by Orndo↵

[5].

2.6 Modern Measurements

The modern measurement of the prompt neutron constant using the Rossi-↵ method no

longer utilizes complex multi-circuit designs. Instead neutrons are time tagged by a custom

designed piece hardware called a List-mode. For this experiment, a custom LANL designed

List-mode module is used. The measurement using the List-mode is incredibly simple; all

that is needed is a basic pulse shaping circuit.

A block diagram of the circuit used during these measurements is provided in Fig. 2.7.
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The pulse shaping circuit includes: a preamplifier, amplifier, high voltage source, and single

channel analyzer. In the modern method, the detector counts incident neutron pulses. These

pulses undergo pulse shaping and are sent to the List-mode module which time tags the pulse.

The List-mode is controlled by a computer, and the software is extremely user friendly.

Figure 2.7: List-mode data acquisition circuit.

Unlike the classical method, the modern experiment requires extra analytical steps to

bin the data, but the modern method’s digitization of part of the data acquisition system,

through use of the List-mode, excels in its simplicity and ability to analyze a single data set

in many di↵erent ways.
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CHAPTER 3

ROSSI-↵ EXPERIMENT

3.1 Equipment

Critical Assemblies

Rossi-↵ measurements are performed on the NCERC critical experiments at the Device As-

sembly Facility, DAF, in the Nevada National Security Site, NNSS. Details of each assembly

are outlined in this section.

Comet

Comet is a general purpose, vertical lift critical assembly. The Comet assembly is a large

platform capable of hosting ten tons. The assembly also includes a hydraulic lift capable

of finely adjusting one ton of material to one mil (one thousandth of an inch). The comet

assembly controls criticality through mass separation between the top and bottom fuel which

is why the accuracy of the hydraulic lift is important. The assembly itself is very versatile

because any combination of fuel and reflectors can be combined to fit the needs of the

experiment. The particular configuration used in this thesis is the Zeus experiment reflector

and the Jemima plates.

The Zeus experiment refers to the massive copper reflector placed on the top of the

machine. The fuel used is comprised of about 100 kg of HEU in a short fat cylinder. The

fuel consists of 93% enriched uranium in thin 0.125” thick plates nicknamed the Jemima

plates because of their similarity to pancakes. The fuel has an outer diameter of about 21”

and has an inner annulus of about 2.5” in the bottom half of the fuel as shown by the green
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Figure 3.1: Cut away of the Zeus configuration to show interior details.
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Figure 3.2: The detector positioning when measuring ↵ in the Zeus configuration on
Comet.

in Fig. 3.1 or in the hands of the scientists in Fig. 3.5. The inner annulus provides space

for an aluminum cylinder which provides structural support to the fuel and keeps it from

moving. For the Rossi experiment this inner cylinder also provides the ideal place to put

the detectors as shown in Fig. 3.2. The upper half of the fuel has a 21” outer diameter and

has no inner annulus. An extremely thin stainless steel diaphragm holds the upper half of

the fuel inside the copper reflector. The diaphragm is shown in Fig. 3.3 and is located at

the bottom of the top half of the core in Fig. 3.1. While the bottom half of the fuel sits

on top of a large hydraulic cylinder made of copper. Although Fig. 3.1 shows the bottom

of the core floating inside the reflector, in reality this fuel sits directly on top of the bottom

reflector. This hydraulic cylinder controls the mass separation of the fuel helping produce

di↵erent configurations.

The Zeus experiment also includes an enormous copper reflector weighing about 1 ton

visualized in Fig. 3.3, 3.4, and 3.5. Figure 3.3 is a picture looking down at the diaphragm

from above. Figure 3.4 is a picture of the top of the reflector if the diaphragm were removed

and figure 3.5 is a picture of the whole assembly. The copper reflector moderates the fast

neutrons produced in fission into an intermediate neutron energy spectrum. More infor-

mation on the Zeus experiment can be found in HEU-MET-FAST-073 in the International
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Figure 3.3: Zeus experiment fuel cavity looking down at the diaphragm from the top.

Figure 3.4: The top of the interior of the Zeus experiment reflector looking up if there was
no diaphragm.
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Figure 3.5: The Zeus experiment.

Handbook of Evaluated Criticality Safety Benchmark Experiments [11].

He3 Detectors

Much like Geiger counters, He3 neutron detectors are excellent proportional counters for

neutrons. Like Geiger counters, He3 detectors can not detect the energy of an incident

neutron pulse. The Rossi experiment is mainly interested in the time a neutron count

occurred, not the amount of energy deposited by the neutron into the detector. The detectors

used in this experiment are 40 atm Reuter Stokes detectors from GE. These detectors are

5” long with an active length of 3”, and have a diameter of 0.25” shown in Fig. 3.6. The

detector is good at time of flight measurements and has short dead time. The quick recovery

speed is ideal for the Rossi experiment on fast critical assemblies where correlated counts

can be extremely collocated in time. The small dimensions of the detector are also beneficial

because the best results are generated when the detector is placed near the center of the

assembly, and space inside these assemblies is extremely limited. To further reduce the dead

time during measurements, multiple detectors on independent channels are used during data

collection.
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Figure 3.6: The He3 detectors used to measure Rossi-↵.

List-mode Module

The combined advances in computer processor miniaturization, data processing speeds, data

recording speeds, and data storage capacity have created new ways of data acquisition [12].

For instance, the LANL List-mode module is capable of recording the incident time of a

transistor-transistor logic pulse, TTL. The List-mode is able to distinguish between pulses

that are more than 100 nanoseconds apart. When recording data, the List-mode records the

time a pulse was encountered in seconds as well as the channel a count occurred in. The

current List-mode design is able to accommodate 32 channels. This type of data acquisition

is extremely versatile because the same set of output data can be analyzed using multiple

techniques [12].

3.2 Procedure

The results presented below are acquired from the Comet assembly configured with the Zeus

experiment. Each channel of the experimental set-up includes a 40 atm Reuter Stokes He3

detector placed inside the spindle (center of fuel) of the assembly. Each detector is connected

to an Ortec preamplifier. The preamplifier is coupled to an amplifier and high voltage source

set to +2100 V and the amplifier is adjusted such that the neutron peak is centered around

6 V. The amplifier is connected to a single channel analyzer, SCA. The SCA’s lower level
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discriminator, LLD, is adjusted to 4 V so that the gamma noise is removed without disturbing

the neutron peak. The output of the SCA is routed to the data acquisition lines which are

approximately one quarter mile long. The data acquisition lines are composed of large gage

coaxial cables. The other end of these data acquisition cables is in the control room where

the remote operations are performed. The data feed from these wires is connected to a 50 ⌦

terminator as well as to the List-mode module. (The 50 ⌦ terminators were added after the

series of experiments discussed in this thesis to reduce the e↵ect of noise.) The List-mode

module records the data in conjunction with a data acquisition computer.

The detectors are then placed in or near the experiment to optimize the neutron flux

detected. For the Zeus experiment, all four He3 detectors are placed inside the spindle as

depicted in Fig. 3.2. It is important to note that the neutron source helping sustain the

subcritical measurements is also placed inside the spindle as far away from the detectors as

possible.

Once in active remote operations, delayed critical in the presence of a source is found.

Finding delayed critical is beneficial becasue the worth of the detectors in the spindle can be

calculated. At this point, Comet is auto run-out. An auto run-out is similar to a SCRAM

in which the experiment is returned to an extremely subcritical state. The auto run-out is

performed to allow the neutron population to decay away. Once enough time has passed,

the neutron population will return to our background level. Now, the neutron population

has decayed su�ciently to perform the measurement, the experiment is reassembled to the

configuration necessary to perform the measurement. In the Zeus experiment, mass separa-

tion controls the reactivity. For this thesis, measurements are taken at separations of 100,

65, 57, 51, and 48 mils. The first three measurements are all subcritical. The measurement

at 51 mils being is delayed critical with the source inside the assembly, and the measurement

at 48 mils is supercritical. Due to time restrictions, only one measurement is completed at

each separation, so there is no experimental determination of the error in the measurement.

Ideally, a further measurement would be taken of the system at critical without the source

present.
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CHAPTER 4

RESULTS

4.1 Experimental Analysis

Subcritical, critical, and supercritical measurements were performed on the Zeus experiment

on the Comet assembly using the Rossi-↵ method. The subcritical measurements were

performed at separations of 100, 65, and 57 mils. These measurements relate to a reactivity

of �38.24, �10.24, and �3.84 cents respectively. The critical measurement was performed

at the critical separation of 51 mils which was measured to be approximately 0.25 cents.

This measurement was the closest to critical the encoders on the Comet assembly were able

to get to a critical configuration. In reality 51 mils, was slightly supercritical and 52 mils

was slightly subcritical. It is also important to note that this measurement was performed

in the presence of a source. One supercritical measurement was performed at a separation

of 48 mils which corresponds to 3.36 cents.

The measurements for the supercritical and critical separations are compared to the results

obtained from the linear fit of the subcritical data points. The graphical results of binning

and fitting the data taken at separations of 100, 65, 57, 51 and 48 mils are visualized in Fig.

4.1, 4.2, 4.3, 4.4, and 4.5 respectively.

The fit for the supercritical value, shown in Fig. 4.5, has a single channel spikes which do

not follow the rest of the trend. This channel records many more than the expected or even

the maximum number of counts. Becasue these outliers are from a single channel it does

not have a significant impact on the results, but should be corrected for future experiments.

These outliers are most likely the result of signal reflections on the extremely long BNC

cables used to transmit the data from the point of measurement to the control room leading

to double pulsing. These refections are eliminated in later experiments by adding a 50⌦
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terminator to the end of the BNC cables.

The values for A, B, and ↵ found through implementation of these fits using Origin Pro

can be found in Table 4.1. Table 4.1 also shows the information that is used to further

analyze these values and obtain the value of ↵ at delayed critical. The values of ↵ recorded

in table 4.1 come from the non-linear least squares fits performed using Origin Pro graphing

software. The histograms built by the binning program in Appendix A as well as the fits

produced by Origin Pro are shown in Fig. 4.1, 4.2, 4.3, 4.4, and 4.5. These figures show

the histogram in blue and the fit line in red. Further analysis includes plotting the value of

↵ vs. the inverse of the count rate measured during that measurement, and then fitting a

line through these points. Figure 4.6 provides a visualization of this linear fitting used to

determine the value of ↵ at delayed critical. The y-intercept of the linear fit is the value of

↵ at delayed critical which as shown in Fig. 4.6 is �89910 s

�1.

The value of ↵ at delayed critical is both experimentally measured and extrapolated from

the subcritical data points. The measured value of ↵ is found to be ↵

measured

= �90408.4

s

�1, and the value of ↵ extrapolated from subcritical data is found to be ↵
fit

= �89910 s

�1.

Percent di↵erence between the measured and extrapolated values of ↵ is about 0.55%.

%
difference

=
↵

fit

� ↵

measured

↵

fit

⇤ 100 = 0.55% (4.1)

Without knowledge of the uncertainty in the value of ↵ it is hard to determine if there is any

significant di↵erence between these values, but the origin of this di↵erence potentially stems

from the slight super-criticality of the delayed critical measurement (approximately 0.25¢),
or the fact that the measurements at are performed using a source. Another potential source

of this di↵erence is the way the data is fit including disregarding channels that contained

dead time.

The neutron lifetime of the system is calculated using the value of ↵ determined by the

linear fit of the subcritical data points and the known value of �
eff

for all-HEU systems,

0.0065 pcm. The neutron lifetime for the all-HEU Zeus experiment is calculated using Eq.

2.18 to be 7.23 ⇤ 10�8 s.

Using the reactivity calibration developed using similar triangles, Eq. 2.20 gives the value
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Figure 4.1: Data taken on the all-HEU Zeus experiment at a separation of 100 mils.
During experimentation the software’s best guess for the reactivity of this configuration is
38.24¢ below critical.

Figure 4.2: Data taken on the all-HEU Zeus experiment at a separation of 65 mils. During
experimentation the software’s best guess for the reactivity of this configuration is 10.24¢
below critical.
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Figure 4.3: Data taken on the all-HEU Zeus experiment at a separation of 57 mils. During
experimentation the software’s best guess for the reactivity of this configuration is 3.84¢
below critical.

Figure 4.4: Data taken on the all-HEU Zeus experiment at the critical separation of 51
mils.
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Figure 4.5: Data taken on the all-HEU Zeus assembly at a separation of 48 mils. During
experimentation the software’s best guess on the reactivity of this configuration is 3.36¢
above critical.

Table 4.1: The values of A, B, and ↵ found in the fitting of the data taken on Comet at
separations of 100, 65, 57, and 51 mils. For these data points, an all-HEU core was used
with the Zeus experiment reflector. The reactivities in this chart refer to those obtained
from the machine software during execution.

Fitting Information
Separation (in.) ⇢ (¢) inverse ċ ↵ s

�1
A B

0.100 -38.24 1.233*10�3 -130207 334.2319 5102.356
0.065 -10.24 3.876*10�4 -101846 3344.9132 22703.75
0.057 -3.84 1.496*10�4 -95310.6 22389.441 63762.12
0.051 0.25 2.026*10�5 -90408.4 1.22*106 404413.3
0.048 3.36 -83926.4 3.99*106 540737.6
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Figure 4.6: Values of ↵ graphed against the inverse countrate, ċ. Including the linear fit
used to extrapolate the value of ↵ at delayed critical.

Table 4.2: Reactivity of measurements made on the all-HEU Zeus assembly calculated
using the linear fit value of ↵ at delayed critical and the method of similar triangles
developed in Eq. 2.20.

Reactivity Determined by ↵

Separation (in.) ⇢ (¢) ↵ s

�1

0.100 -44.8195 -130207.2
0.065 -13.2758 -101846.2
0.057 -6.0067 -95310.6
0.048 6.6551 -83926.4

of the reactivity of the system at each subcritical data point. The calculated values of these

reactivity levels are shown in Table 4.2. These calculated values of reactivity are also plotted

against the value of ↵ as shown in Fig. 4.7.

4.2 Computational Analysis

The all-HEU Zeus experiment is part of the International Handbook of Evaluated Criticality

Safety Benchmark Experiments book listed as HEU-MET-FAST-073 [11]. Using the MCNP

deck from the benchmark, the value of ↵ is calculated. This deck tracks 10, 000 particles for

650 histories of which the last 600 are used to determine quantities of interest. The model
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Figure 4.7: ↵ values versus the reactivity level of each measurement.

returns k

eff

= 1.0082 ± 0.0003 which is the stated k

eff

in the benchmark. The value of

Rossi-↵ determined by MCNP during this run is �107586 ± 0.608 s

�1. In comparison to

the value determined experimentally for Rossi-↵, the value calculated by MCNP di↵ers by

19.6%. This di↵erence is found using Eq. 4.1 and the experimentally calculated value of

↵ = �89910 s�1. The large discrepancy can be attributed to the cross section set used in

the calculation or imperfections in the physics of the Rossi-↵ package. In either case, it is

beneficial to modify the input deck in such a way that the k

eff

is nearly one. Although the

value of k
eff

may not seem that far from one, the system is prompt critical assuming the

value of �
eff

= 0.0065. It seems imperative that the input deck be modified in such a way

that k
eff

is closer to one.

Modification of k
eff

can be accomplished either by changing the density or the geometry.

In this case, modification of the density is preferred becasue the geometry is already the same

as the experimental geometry. Although the density has also been measured and correctly

input into the code, some quantity must give be modified or the code cannot properly

calculate the value of ↵. The density change is achieved by systematically decreasing the

density of the fuel until the k

eff

is near one. This process is shown by Table 4.3.

Table 4.3 shows how the value of k
eff

responds to a change in the density. Particularly,

this table shows the density modification of the fuel. The Zeus fuel is comprised of an
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Table 4.3: Density modification of the fuel in the Zeus experiment benchmark. All
densities are given in atoms

barn�cm

.

Reactor Parameters for Various Assemblies
Inner Plate Density Outer Plate Density k

eff

0.048622 0.047810 1.00820± 0.00027
0.047000 0.046000 0.98918± 0.00028
0.047500 0.047500 0.99907± 0.00026
0.047600 0.047600 0.99945± 0.00028
0.047620 0.047620 1.00005± 0.00027

outer ring and either an inner disk or ring as discussed previously [11]. For the density

modification, first all fuel is assumed to be the same density and then the density of the fuel

is systematically decreased until a more reasonable value of k
eff

is achieved.

After the density modification, the value of k
eff

is very close to one k
eff

= 1.00005±0.0003.

The value of Rossi-↵ determined from the MCNP calculation becomes �100048±0.584 s

�1.

When compared to the experimental value determined for Rossi-↵, the value calculated for

the Rossi-↵ di↵ers by 11.3%. The di↵erence between the experimental and MCNP calculated

value of Rossi-↵ is similar to the results presented in the Rossi Alpha MCNP Validation Suite

[13].

35



CHAPTER 5

CONCLUSIONS

This thesis completed the experimental determination of Rossi-↵ measurements at several

di↵erent configurations of the Zeus experiment including the subcritical, delayed critical, and

supercritical regimes. The values taken at subcritical configurations of Zeus were successfully

used to calculate the value of ↵ while at delayed critical. Using the delayed critical value

of ↵ along with the definition of ↵ at prompt critical (↵=0), a reactivity calibration was

determined for the all HEU Zeus experiment.

The values determined for ↵ at delayed critical fit well when compared to historical data

from assemblies with varying hardness of neutron spectrum. The measured values of ↵
DC

=

�89910 and l = 7.23x10�8 agree well with historical data from other fast systems. The

comparison in Table 5.1 provides the values of ↵ at delayed critical and the neutron lifetime

for five di↵erent critical assemblies. Each assembly has a slightly di↵erent neutron spectrum

and they are listed from the hardest to the softest. Lady Godiva has the hardest neutron

spectrum because it was bare HEU 94% enriched. Godiva IV has a slightly softer spectrum

because it consists of bare HEU enriched to 93% and alloyed with 1.5 wt%Mo. Topsy had an

HEU core enriched to 94% reflected by thick natural uranium. Zeus as previously described

is an HEU assembly enriched to 93% reflected by copper. SHEBA stands for solution high

energy burst assembly which consists of 4.9% enriched uranyl fluoride. The value of ↵ at

delayed critical and therefore the neutron lifetime of the Zeus assembly fit into Table 5.1

where expected based on the materials and spectrum involved [10].

Another way to determine the validity of the results obtained through the Rossi-↵ mea-

surement is through the comparison to the value of ↵ calculated using neutron transport

codes like MCNP. When comparing the experimentally determined value of ↵ to the calcu-

lated one found in MCNP, the values di↵er by 11.3%. The di↵erence of 11.3% is similar to
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Table 5.1: The neutron lifetime and ↵ at delayed critical for the measurements completed
and historical data [10].

Reactor Parameters for Various Assemblies
Assembly ↵ s

�1 Neutron Lifetime (l)
Lady Godiva �1.1x106 5.9x10�9

Godiva IV �8.4x105 7.7x10�9

Topsy �3.7x105 1.75x10�8

Zeus �8.9x104 7.23x10�8

SHEBA �200 4.0x10�5

Table 5.2: Comparison of the experimental value of ↵ at delayed critical to the value of ↵
measured by MCNP using the ENDF/B-VI cross section set [13].

Experimental vs. Calculated Values of the Rossi-↵
Assembly Moderator ↵

ex

s

�1
↵

calc

s

�1 Di↵erence
Lady Godiva None �1.11⇥ 106 �1.14⇥ 106 2.70%

Flattop U

238 �3.82⇥ 105 �4.09⇥ 105 7.06%
Zeus Graphite �3.38⇥ 103 �3.73⇥ 103 10.36%
Zeus Iron �3.73⇥ 104 �4.12⇥ 104 10.46%
Zeus None �8.99⇥ 104 �10.0⇥ 104 11.27%

the di↵erences seen in the Rossi Alpha Validation Suite for MCNP as shown on Table 5.2

[13].
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CHAPTER 6

FUTURE WORK

Overall, the experiment and subsequent calculations were successful. To improve the ex-

periment in the future a few changes should be made. The easiest improvement is to add

terminators on the long data lines to reduce double pulsing. Another hardware change that

can be made to reduce dead time and improve measurements on fast systems would be to in-

clude additional channels. Other observations made to improve the data acquisition include

taking multiple measurements at each data point to determine uncertainty in each value.

Also, measurements should not be made when the count rate is too close to the saturation

rate for the detection system. The final addition should be to take one measurement with

no source of the Rossi-↵ at delayed critical.
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APPENDIX A

C++ CODE

The following C++ code bins the data taken using a 32 channel listmode. This code uses

methodology from the book Numerical Recipes in C [14] and the website cplusplus.com was

used as a general C++ reference [15].

1 /⇤

2 ⇤ main . cpp

3 ⇤

4 ⇤ Created on : Jun 18 , 2014

5 ⇤ Author : George McKenzie

6 ⇤

7 ⇤ Program b ins and f i t s l i s t �mode data f o r the Rossi Alpha Method

8 ⇤/

9

10 # include <iostream>

11 # include <f stream>

12 # include <s t r i ng>

13 # include <sstream>

14 # include <s t d l i b . h>

15 # include <s t d i o . h>

16 # include <math . h>

17 # include <cmath>

18

19 using namespace std ;

20

21 int l i n e s ( s t r i n g f i l e ) {

22 // t h i s f unc t i on counts the number o f l i n e s in the f i l e

23 // open data f i l e
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24 i f s t r e am inpu tF i l e ;

25 i npu tF i l e . open ( f i l e . c s t r ( ) , i o s : : in ) ;

26 //moves through rows o f f i l e u n t i l end i s reached keep ing t rack wi th count

27 int count=0;

28 i f ( i npu tF i l e . i s open ( ) ) {

29 s t r i n g data ;

30

31 while ( ! i npu tF i l e . e o f ( ) ) {

32

33 g e t l i n e ( inputF i l e , data ) ;

34 count++;

35 }

36 i npu tF i l e . c l o s e ( ) ;

37 }

38 else

39 cout << ” l i n e s f a i l e d ” ;

40

41 // l a s t l i n e i s a zero so s u b t r a c t 1

42 count=count�1;

43

44 return count ;

45 }

46

47 void bui ldArray ( i f s t r e am& f i l e , double data [ ] , int matrixLength , int stopPoint

, int count ) {

48

49 // t h i s loop only occurs i f bu i ldArray i s c a l l e d mu l t i p l e t imes

50 double dummyArray [ matrixLength ] ;

51

52 for ( int q=0; q<matrixLength ; q++)

53 dummyArray [ q ]=0 . 0 ;

54

55 i f ( count>100000 && stopPoint<matrixLength ) {

56

57 // save data t ha t has not ye t been used in the array

58 for ( int p=stopPoint ; p<matrixLength ; p++){

40



59 dummyArray [ p�stopPoint ]=data [ p ] ;

60 }

61 }

62

63 // zero the data array

64 for ( int j =0; j<matrixLength ; j++){

65 data [ j ]=0 . 0 ;

66 }

67 s t r i n g l i n e ;

68 for ( int i =0; i<matrixLength ; i++){

69 i f ( i<(matrixLength�stopPoint ) )

70 data [ i ]=dummyArray [ i ] ;

71 else {

72 g e t l i n e ( f i l e , l i n e ) ;

73 data [ i ]= s t r t od ( l i n e . c s t r ( ) , NULL) ;

74 }

75

76 }

77

78 }

79

80 void t i m e I n i t i a l i z e (double t imearr [ ] , double bin , int numBins ) {

81

82 // time o f the beg inn ing o f the b in

83 double t imeStar t =0.0 ;

84 // f i l l f i r s t column with the time the b in beg in s and f i l l t he second column

with ze ros

85 for ( int i =0; i<=(numBins+1) ; i++){

86 t imearr [ i ]= t imeStar t ;

87 t imeStar t=t imeStar t+bin ;

88 }

89 }

90

91 void b i n I n i t i a l i z e ( int b inar r [ ] , int numBins ) {

92

93 // f i l l f i r s t column with the time the b in beg in s and f i l l t he second column
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with ze ros

94 for ( int i =0; i<=numBins ; i++){

95 b ina r r [ i ]=0;

96 }

97 }

98

99 int binning1 (double data [ ] , double t imearr [ ] , int b inar r [ ] , double window , int

numBins , int matrixLength , int stopPoint ) {

100

101 // t h i s method b ins the counts assuming t ha t every count s t a r t s a new time

window

102

103 // s e t the f i n a l time

104 double tEnd=data [ 0 ] ;

105 for ( int q=1; q<matrixLength ; q++){

106 i f ( tEnd<data [ q ] )

107 tEnd=data [ q ] ;

108 }

109

110 cout<<tEnd<<endl ;

111

112 // counts through each po in t in the data

113 for ( int i =0; i<matrixLength ; i++){

114

115 double t s t a r t=data [ i ] ;

116

117 // makes sure the window does not go pas t the end o f the data s e t

118 i f ( ( t s t a r t+window)<tEnd ) {

119

120 // moves through the time window u n t i l the end i s reached

121 for ( int j=i +1; j<matrixLength ; j++){

122 double t cu r r en t=data [ j ] ;

123 double t imeD i f f e r enc e=tcurrent�t s t a r t ;

124

125 // ensures the po in t i s i n s i d e the window

126 i f ( t cur rent<=(t s t a r t+window) && data [ j ] !=0 . 0 ) {
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127

128 // perform the b inning

129 for ( int z=0; z<numBins ; z++){

130 i f ( t imearr [ z]<=t imeD i f f e r enc e && timearr [ z+1]>

t imeD i f f e r enc e )

131 b ina r r [ z ]= b ina r r [ z ]+1;

132 }

133 }

134 else

135 j=matrixLength+10;

136

137 }

138 }

139 else {

140 stopPoint=i ;

141 i=matrixLength+10;

142 }

143

144 }

145

146 return stopPoint ;

147 }

148

149 /⇤

150 vo id b inning2 ( doub l e data [ ] , doub l e t imearr [ ] , i n t b inar r [ ] , doub l e window ,

i n t numBins , i n t count ){

151

152 // t h i s method b ins the counts assuming t ha t a new bin s t a r t s immediate ly

a f t e r the prev ious b in

153

154 // s e t the f i n a l time

155 doub le tEnd= data [ count �1];

156

157 // counts through each po in t in the data

158 f o r ( i n t i =0; i<count ; i++){

159
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160 doub le t s t a r t=data [ i ] ;

161

162 // makes sure the window does not go pas t the end o f the data s e t

163 i f ( ( t s t a r t+window )<tEnd ){

164

165 // moves through the time window u n t i l the end i s reached

166 f o r ( i n t j=i +1; j<count ; j++){

167 doub le t cu r r en t=data [ j ] ;

168 doub le t imeDi f f e r ence=tcurren t�t s t a r t ;

169

170 // ensures the po in t i s i n s i d e the window

171 i f ( t curren t<=( t s t a r t+window ) ){

172

173 // perform the b inning

174 f o r ( i n t z=0; z<numBins ; z++){

175 i f ( t imearr [ z]<=t imeDi f f e r ence && timearr [ z+1]>

t imeDi f f e r ence )

176 b inar r [ z ]= b inarr [ z ]+1;

177 }

178 }

179 e l s e {

180 i=j +1;

181 j=count+10;

182 }

183 }

184 }

185 e l s e

186 i=count+10;

187

188 }

189

190 }

191

192 vo id b inning3 ( doub l e data [ ] , doub l e t imearr [ ] , i n t b inar r [ ] , doub l e window ,

i n t numBins , i n t count ){

193
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194 // t h i s method b ins the counts wi th random i n i t i a t i n g even t s

195 i n t r ;

196 i n t totalWindows=count ⇤0 . 9 ;

197

198 // s e t the f i n a l time

199 doub le tEnd= data [ count �1];

200

201 // counts through each po in t in the data

202 f o r ( i n t i =0; i<totalWindows ; i++){

203

204 // ge t random number

205 r=rand () %(count�1) ;

206 doub le t s t a r t=data [ r ] ;

207

208 // makes sure the window does not go pas t the end o f the data s e t

209 i f ( ( t s t a r t+window )<tEnd ){

210

211 // moves through the time window u n t i l the end i s reached

212 f o r ( i n t j=r+1; j<count ; j++){

213 doub le t cu r r en t=data [ j ] ;

214 doub le t imeDi f f e r ence=tcurren t�t s t a r t ;

215

216 // ensures the po in t i s i n s i d e the window

217 i f ( t curren t<=( t s t a r t+window ) ){

218

219 // perform the b inning

220 f o r ( i n t z=0; z<numBins ; z++){

221 i f ( t imearr [ z]<=t imeDi f f e r ence && timearr [ z+1]>

t imeDi f f e r ence )

222 b inar r [ z ]= b inarr [ z ]+1;

223 }

224 }

225 e l s e

226 j=count+10;

227

228 }
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229 }

230 e l s e

231 i=count+10;

232

233 }

234

235 }

236 ⇤/

237

238 double f indA ( int b in s a r r [ ] , int numBins ) {

239

240 // the cons tant term fo r the Rossi a lpha f i t

241 double A;

242 // use the l a s t h a l f o f the b in s but not the l a s t 10%

243 int unusedBins1=numBins ⇤ 0 . 5 ;

244 int unusedBins2=numBins ⇤ 0 . 9 ;

245 int sum=0;

246 // sums up a l l the b in s

247 for ( int i=unusedBins1 ; i<=unusedBins2 ; i++){

248 sum=sum+b in sa r r [ i ] ;

249 }

250 // c r ea t e the average B

251 A=sum/( unusedBins2�unusedBins1 ) ;

252

253 return A;

254 }

255

256 void f i t L i n e ( int b in s a r r [ ] , double time [ ] , int numBins , double A) {

257

258 // the func t i on l i n e a r i z e s the data and f i t s a l i n e to i t

259

260 // f i nd the max va lue o f the data so t ha t we do not f i t the dead time

261 int max=0;

262 int dataStar t =0;

263 for ( int i =0; i<numBins ; i++){

264 i f ( b i n s a r r [ i ]>=max) {
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265 max=b in sa r r [ i ] ;

266 dataStar t=i ;

267 }

268 }

269 // c r ea t e dummy array to manipulate data

270 double dataBins [ numBins ] ;

271 for ( int j =0; j<numBins ; j++){

272 dataBins [ j ]= b in s a r r [ j ]�A;

273

274 i f ( dataBins [ j ]>0)

275 dataBins [ j ]= log ( dataBins [ j ] ) ;

276 else

277 dataBins [ j ]=0;

278 }

279

280 // i t e r a t e s through the data po in t s so the user can choose the b e s t f i t

281 for ( int g=5; g<26; g++){

282

283 // i n i t i a l i z e the s t a r t and end o f the data to be f i t

284 int dataLength=g ;

285 int dataEnd= dataStar t+dataLength ;

286

287 // c r ea t e the sums f o r the f i t t i n g

288 double sumN=0.0;

289 double sumX=0.0;

290 double sumY=0.0;

291 double sumXX=0.0;

292 double sumXY=0.0;

293 double ch i square =0.0 ;

294 double r e s i d u a l s =0.0 ;

295 double t o t a l =0.0 ;

296 double yBar=0.0 ;

297 double rSquared =0.0;

298

299 for ( int z=dataStar t ; z<=dataEnd ; z++){

300 sumN+=1;
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301 sumX+=time [ z ] ;

302 sumY+=dataBins [ z ] ;

303 sumXX+=(time [ z ]⇤ time [ z ] ) ;

304 sumXY+=(time [ z ]⇤ dataBins [ z ] ) ;

305 yBar+=dataBins [ z ] ;

306 }

307

308 // c a l c u l a t e the va l u e s

309 double denom=sumN⇤sumXX�(sumX⇤sumX) ;

310 double i n t e r c e p t=sumXX⇤sumY�sumX⇤sumXY;

311 double s l ope=sumN⇤sumXY�sumX⇤sumY;

312 i n t e r c e p t=i n t e r c e p t /denom ;

313 s l ope=s l ope /denom ;

314 yBar=yBar/dataLength ;

315

316 // c a l c u l a t e s ch i squared

317 for ( int i=dataStar t ; i <= dataEnd ; i++){

318 ch i square+=(dataBins [ i ]� i n t e r c ep t�s l ope ⇤ time [ i ] ) ⇤( dataBins [ i ]�

i n t e r c ep t�s l ope ⇤ time [ i ] ) ;

319 r e s i d u a l s+=(dataBins [ i ]� i n t e r c ep t�s l ope ⇤ time [ i ] ) ⇤( dataBins [ i ]�

i n t e r c ep t�s l ope ⇤ time [ i ] ) ;

320 t o t a l+=(dataBins [ i ]�yBar ) ⇤( dataBins [ i ]�yBar ) ;

321 }

322

323 // s e t ou tpu t s

324 rSquared=1�( r e s i d u a l s / t o t a l ) ;

325 i n t e r c e p t=exp ( i n t e r c e p t ) ;

326 // cout << ”B= ” << i n t e r c e p t << end l ;

327 cout << g << ” ” << A << ” ” << i n t e r c e p t << ” ” << s l ope << ” ” <<

rSquared << ” ” << ch i square << endl ;

328

329

330 }

331

332 }

333
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334 int main ( ) {

335

336 // reminds user to remove header and f o o t e r

337 cout << ”Warning only f o r 32 Channel Listmode . ”<< endl << endl ;

338

339 // i n i t i a l i z e b inning v a r i a b l e s

340 cout<< ”What i s the time window we want to look at ? ( seconds ) ”<< endl ;

341 s t r i n g Window ;

342 g e t l i n e ( cin ,Window) ;

343 double window=ato f (Window . c s t r ( ) ) ;

344

345 cout<< ”What i s the bin width we want to look at ? ( seconds ) ”<< endl ;

346 s t r i n g Bin ;

347 g e t l i n e ( cin , Bin ) ;

348 double bin=ato f ( Bin . c s t r ( ) ) ;

349

350 // k i l l s program i f b in s i z e i s g r ea t e r than the time window

351 i f ( bin>window)

352 return 0 ;

353 // beg in s c a l c u l a t i o n s necessary f o r b inning

354 int numBins=window/bin ;

355 cout<< numBins << ” b ins c r ea ted . ”<<endl ;

356 double t imeForbins [ numBins+1] ;

357 int bins1 [ numBins ] ;

358

359 // i n i t i a l i z e the b in array wi th ze ro s

360 b i n I n i t i a l i z e ( bins1 , numBins ) ;

361

362 // i n i t i a l i z e f i t t i n g parameters

363 double A=0.0;

364

365

366 // i n i t i a l i z e the time array

367 t im e I n i t i a l i z e ( t imeForbins , bin , numBins ) ;

368

369 // c r ea t e f i l ename to open
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370 s t r i n g f i l ename=”output . txt ” ;

371

372 // b u i l d data matrix

373 int count = l i n e s ( f i l ename ) ;

374 int matrixLength ;

375

376 i f ( count>100000)

377 matrixLength=100000;

378 else

379 matrixLength=count ;

380

381 double data [ matrixLength ] ;

382 int stopPoint=matrixLength ;

383

384 // open f i l e wi th data in i t

385 i f s t r e am f i l e ;

386 f i l e . open ( f i l ename . c s t r ( ) , i o s : : in ) ;

387

388 i f ( f i l e . i s op en ( ) ) {

389

390 // l oops through the output f i l e u n t i l end i s reached

391 while ( ! f i l e . e o f ( ) ) {

392

393 // make a matrix wi th the f i r s t 100 ,000 counts or l e s s

394 bui ldArray ( f i l e , data , matrixLength , stopPoint , count ) ;

395

396 // bin the data both ways

397 stopPoint=binning1 ( data , t imeForbins , bins1 , window , numBins ,

matrixLength , stopPoint ) ;

398 }

399

400 f i l e . c l o s e ( ) ;

401 }

402

403 // f i nd the cons tant A

404 A=findA ( bins1 , numBins ) ;
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405

406 // f i t the l i n e and f i nd B and alpha

407 f i t L i n e ( bins1 , t imeForbins , numBins , A) ;

408

409 // bin output to r e s u l t s f i l e

410 ofstream r e s u l t s F i l e ;

411 r e s u l t s F i l e . open ( ” r e s u l t s . tx t ” , i o s : : out | i o s : : t runc ) ;

412

413 i f ( r e s u l t s F i l e . i s open ( ) ) {

414 for ( int i =0; i<numBins ; i++){

415 r e s u l t s F i l e << t imeForbins [ i ] << ” ” << bins1 [ i ] << endl ;

416 }

417 r e s u l t s F i l e . c l o s e ( ) ;

418 }

419

420 cout << ”Done” << endl ;

421

422 return 0 ;

423 }
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This code cuts down the size of the original data file so that the computer is not over-

whelmed during execution of the previous code.

1 /⇤ main . cpp

2 ⇤

3 ⇤ Created on : Jun 26 , 2014

4 ⇤ Author : George McKenzie

5 ⇤

6 ⇤/

7

8 # include <iostream>

9 # include <f stream>

10 # include <s t r i ng>

11 # include <sstream>

12 # include <s t d l i b . h>

13 # include <s t d i o . h>

14 # include <math . h>

15

16 using namespace std ;

17

18 void arrayChannels ( int Channels [ ] ) {

19

20 // opens f i l e where the used channel numbers i s

21 i f s t r e am inpu tF i l e ;

22 i npu tF i l e . open ( ” channe l s . tx t ” , i o s : : in ) ;

23

24 // t h i s f unc t i on b u i l d s an array t ha t has ones in every channel spo t t ha t

the user cares about

25 for ( int i =0; i <=32; i++){

26 Channels [ i ]=0;

27 }

28

29

30

31 // ensures t h i s por t i on o f code only runs when the f i l e i s open
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32 i f ( i npu tF i l e . i s open ( ) ) {

33

34 s t r i n g l i n e ;

35

36 while ( ! i npu tF i l e . e o f ( ) ) {

37 g e t l i n e ( inputF i l e , l i n e ) ;

38 int channel= a t o i ( l i n e . c s t r ( ) ) ;

39

40 for ( int i =1; i <=32; i++){

41 i f ( channel==i )

42 Channels [ i ]=1;

43 }

44

45 }

46 i npu tF i l e . c l o s e ( ) ;

47 }

48 else

49 cout << ” channe l s . txt did not open . ” << endl ;

50 }

51

52 int g e t l i n e s ( s t r i n g f i l ename ) {

53 // t h i s f unc t i on counts the number o f l i n e s in the f i l e

54 // open data f i l e

55 i f s t r e am inpu tF i l e ;

56 i npu tF i l e . open ( f i l ename . c s t r ( ) , i o s : : in ) ;

57 //moves through rows o f f i l e u n t i l end i s reached keep ing t rack wi th count

58 int count=0;

59 i f ( i npu tF i l e . i s open ( ) ) {

60 s t r i n g data ;

61

62 while ( ! i npu tF i l e . e o f ( ) ) {

63

64 g e t l i n e ( inputF i l e , data ) ;

65 count++;

66 }

67 i npu tF i l e . c l o s e ( ) ;
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68 }

69 else

70 cout << ” l i n e s f a i l e d ” ;

71

72 // l a s t l i n e i s a zero so s u b t r a c t 1

73 count=count�1;

74

75 return count ;

76 }

77

78 int main ( ) {

79 // matrix o f the channe l s used in the output f i l e

80 int Channels [ 3 2 ] ;

81

82 // g e t s the name o f the data f i l e from the user

83 s t r i n g f i l ename ;

84 cout << ”What i s the f i l ename ? ( Inc lude . txt ) ”<<endl ;

85 g e t l i n e ( cin , f i l ename ) ;

86

87 // c a l l s channe l s . t x t and b u i l d s an array t ha t ho l d s the importance o f

i n d i v i d u a l channe l s

88 arrayChannels ( Channels ) ;

89

90 // c r ea t e s an output f i l e t h a t w i l l on ly in c l ude t imes

91 i f s t r e am inpu tF i l e ;

92 i npu tF i l e . open ( f i l ename . c s t r ( ) , i o s : : in ) ;

93 s t r i n g cur rentL ine ;

94 // c r ea t e cons tan t s used to genera te output f i l e

95 s t r i n g currentTime ;

96 int currentValue ;

97 int t o t a l L i n e s=g e t l i n e s ( f i l ename ) ;

98 s t r i n g output f i l ename ;

99 int po s i t i o n =0;

100 int l i n e sWr i t t en =0;

101

102 i f ( i npu tF i l e . i s open ( ) ) {

54



103

104 // c r ea t e s a f i l e to output the in format ion to

105 output f i l ename=”output . txt ” ;

106 ofstream wr i t eF i l e ;

107 w r i t eF i l e . open ( output f i l ename . c s t r ( ) , i o s : : out | i o s : : t runc ) ;

108

109 // ensures f i l e i s open

110 i f ( w r i t eF i l e . i s open ( ) ) {

111

112 // s k i p s the header l i n e s

113 for ( int i =0; i <5; i++){

114 g e t l i n e ( inputF i l e , cur rentL ine ) ;

115 po s i t i o n++;

116 }

117 // l oops u n t i l i t h i t s the t e x t a t the bottom

118 for ( int i =0; i<t o t a l L i n e s ; i++){

119 for ( int j =0; j <32; j++){

120

121 // ge t the l i n e from the f i l e

122 g e t l i n e ( inputF i l e , currentLine , ’ , ’ ) ;

123

124 // records the time f o r t h i s l i n e

125 i f ( j==0){

126 currentTime= currentL ine ;

127 po s i t i o n++;

128 }

129 else

130 currentValue= s t r t od ( cur rentL ine . c s t r ( ) , NULL) ;

131 // records the time i f the va lue i s 1

132 i f ( currentValue==1 && Channels [ j ]==1){

133 w r i t eF i l e << currentTime << endl ;

134 l i n e sWr i t t en++;

135 }

136 }

137 g e t l i n e ( inputF i l e , cur rentL ine ) ;

138 i f ( currentValue==1 && Channels [32]==1){
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139 w r i t eF i l e << currentTime << endl ;

140 l i n e sWr i t t en++;

141 }

142 }

143

144 w r i t eF i l e . c l o s e ( ) ;

145 }

146

147 }

148

149 i npu tF i l e . c l o s e ( ) ;

150

151

152 cout<< l i n e sWr i t t en <<endl ;

153 cout << ”Done” << endl ;

154

155 return 0 ;

156 }
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