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ABSTRACT

In the applications of wireless sensor networks, sensors are built to measure

the state of the system of interest and send their measurements to a remote

decision unit via wireless communication. Based on the messages received

from the sensors, the decision unit estimates the state of the system and

makes decisions. In this scenario, the quality of decision making strongly

depends on the quality of state estimation. On the other hand, the sensors

are constrained by limited power and cannot always communicate with the

decision unit. As a consequence, a communication scheduling strategy and

an estimation strategy should be designed for the sensors and the decision

unit, respectively, such that the state estimation error is minimized under the

communication constraints. In this thesis, we consider a sensor scheduling

and remote estimation problem with one sensor and one estimator. The sen-

sor makes a series of observations on the state of a source and then decides

whether to transmit each one in the sequence to the estimator. The sen-

sor is charged a cost for each transmission. The remote estimator generates

real-time estimates on the state of the source based on the messages received

from the sensor. The estimator is charged for estimation error. In contrast

to prior work in the literature, we further assume that there is additive com-

munication channel noise, which makes the problem more challenging. As

a consequence of the presence of channel noise, the sensor needs to encode

the message before transmitting it to the estimator. For some specific dis-

tributions of the underlying random variables, we obtain a person-by-person

optimal solution to the problem of minimizing the expected value of the sum

of communication cost and estimation cost over the time horizon, which is

globally optimal in the asymptotic case. In a modified problem we show that

our solution is locally optimal and a globally optimal solution exists.
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CHAPTER 1

INTRODUCTION

The sensor scheduling and remote state estimation problem arises in the

applications of wireless sensor networks, such as environmental monitoring

and networked control systems. As an example of environmental monitoring,

people in the National Aeronautics and Space Administration (NASA) Earth

Science group want to monitor the evolution of the soil moisture, which

is used in weather forecasting, ecosystem process simulation and so on [1].

In order to achieve that goal, the sensor networks are built over an area

of interest. The sensors collect data on the soil moisture and send them

to the decision unit at NASA via wireless communication. The decision

unit at NASA forms estimates of the evolution of the soil moisture based

on the messages received from the sensors. Similarly, in networked control

systems, the objective is to control some remote plants. Sensor networks

are built to measure the states of the remote plants and then transmit their

measurements to the controller via a wireless communication network. The

controller estimates the state of the remote plant and generates the control

signal based on that estimate [2]. In both scenarios, the quality of the remote

state estimation strongly affects the quality of decision making at the remote

site, that is, weather prediction or control signal generation. The networked

sensors are usually constrained by limits on power [3, 4]. They are not

able to communicate with the estimator at every time step and thus, the

estimator has to produce its best estimate based on the partial information

received from the sensors. Therefore, the communication between the sensors

and the estimator should be scheduled wisely, and the estimator should be

designed properly, so that the state estimation error is minimized subject to

the communication constraints.

1



1.1 Literature Review

Research on the general sensor scheduling problem dates back to the 1970s.

In one of the earliest works [5], the problem formulation was such that only

one out of several sensors could be selected at each instant of time to observe

the output of a linear stochastic system. After taking the observations over

a finite time interval, one needs to predict some future state of the system.

Furthermore, each sensor was associated with a certain measurement cost.

The author proposed an off-line deterministic sensor scheduling strategy that

minimizes the sum of the measurement cost over the time interval and the

prediction error. Gupta et al. [6] studied the sensor scheduling problem over

infinite time horizon. Similar to the problem in [5], only one sensor could be

selected at each instant of time. However, in their formulation there is no

measurement cost associated with each sensor. The authors of [6] proposed

an off-line stochastic sensor scheduling strategy such that the expected steady

state estimation error is minimized. Yang and Shi [7] studied the off-line

sensor scheduling problem where there is only one sensor observing the state

of a linear stochastic system. The sensor was able to communicate with the

remote estimator for only a limited number of times. The objective was to

minimize the cumulative estimation error over a finite time horizon. It was

shown that the optimal sensor scheduling strategy is to distribute the limited

communication opportunities uniformly over the time horizon.

The authors of the papers discussed above considered off-line sensor schedul-

ing problems. “Off-line sensor scheduling” means the sensor is scheduled to

take an observation or conduct communication based on some priori informa-

tion about the system (e.g. statistics of random variables, system matrices).

The on-line information (e.g. sensor’s observation, battery’s energy level) is

not taken into account when making schedules. More work on off-line sensor

scheduling problems can be found in [8, 9, 10].

Hardware development has endowed sensors with stronger computational

capability. As a consequence, the sensors are able to make schedules based on

all the information they have (a priori information and on-line information),

which motivates people to study on-line sensor scheduling problems. Åström

and Bernhardsson [11] considered a state estimation problem with a first-

order stochastic system. They compared the estimation error over infinite-

time horizon obtained by periodic sampling and threshold event-triggered
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sampling. The periodic sampling is one of the off-line sensor scheduling stra-

tegies while the threshold event-triggered sampling is one of the on-line sensor

scheduling strategies. They showed that the threshold event-triggered sam-

pling, which is also called “threshold-based communication strategy,” gives

better performance in state estimation. The global optimality of a threshold-

based communication strategy has been proved later by Nar and Başar [12].

Imer and Başar [13, 14] considered the on-line sensor scheduling and remote

state estimation problem over a finite-time horizon. The sensor is allowed to

communicate only a limited number of times. By restricting the communica-

tion strategies to the class of threshold-based ones, the authors showed that

there exists a unique threshold-based communication strategy that achieves

the best performance in remote state estimation. Furthermore, the optimal

threshold can be computed by solving a dynamic programming equation,

which is discussed in [15]. Bommannavar and Başar [16] later extended the

result of [13] to a multi-dimensional systems. The continuous-time version

of the problem in [13] has been studied by Rabi et al. [17, 18]. Xu and

Hespanha [19] considered the networked control problem involving state es-

timation and communication scheduling, which can be viewed as a sensor

scheduling and remote estimation problem. They fixed the estimator to be a

Kalman-like estimator and designed an event-triggered sensor that minimizes

the time average of the sum of the communication cost and estimation error

over infinite horizon. They showed that the optimal communication strategy

is deterministic and stationary, and is a function of the estimation error. Wu

et al. [20] considered the sensor scheduling and estimation problem subject

to constraints on the average communication rate over the infinite horizon.

The authors assumed that the sensor has noisy observations on the system

state. By restricting the sensor scheduling strategies to the threshold event-

triggered class, they derived the exact minimum mean square error (MMSE)

estimator. However, the exact MMSE estimator is nonlinear and thus com-

putationally intractable. By making the Gaussian assumption on the a priori

distribution, the authors derived an approximate MMSE estimator, which is

a Kalman-like estimator. Based on the approximated MMSE estimator, the

authors derived the conditions on the thresholds so that the average sensor

communication rate will not exceed its upper bound. Note that making a

Gaussian assumption to derive an approximate MMSE estimator is a widely

used technique when studying nonlinear filtering problems [21, 22, 23]. You
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and Xie [24] extended the work in [20] by deriving the conditions on the

thresholds so that the estimator is stable. A recent work by Han et al. [25]

showed that if the sensor is fixed to apply some stochastic event-triggered

strategy, then the exact MMSE estimator is a Kalman-like estimator. The

work in [20, 24, 25] can also be viewed as Kalman-filtering with scheduled

observations, which is related to Kalman-filtering with intermittent observa-

tions studied in [26, 27].

The approaches of [19, 20] were to fix the communication strategies or

estimation strategies to be of a certain type and to derive the correspond-

ing optimal estimation strategies and communication strategies, respectively.

The approach of [13], on the other hand, is to derive the optimal communica-

tion strategies and estimation strategies simultaneously. Similarly, Lipsa and

Martins [28] considered the sensor scheduling and remote estimation problem

where the sensor is not constrained by communication times but is charged a

communication cost. They proposed a threshold event-triggered sensor and a

Kalman-like estimator and proved that the proposed sensor and estimator are

jointly optimal, minimizing the sum of communication cost and estimation

error over a finite-time horizon. Nayyar et al. [29] considered a similar prob-

lem where the sensor is equipped with an energy harvesting sensor. In the

work of [29], the problem formulation is such that the sensor is constrained

by the energy level of the battery and is also charged a communication cost.

It is shown in [29] that an energy dependent threshold event-triggered sensor

and a Kalman-like estimator are jointly optimal. Hence, the result of [29] can

be viewed as a generalization of the results of [13, 28]. In both works of [28]

and [29], the authors applied majorization theory to prove the optimality of

their results, which is closely related to the work in [30].

Note that the problem setups in [13] and [28] are quite similar except for

the communication constraint. In the problem of [13], the sensor can only

communicate for a pre-specified number of times. Such a communication

constraint is called hard constraint. In the work of [28], however, the sensor

is charged a communication cost. This kind of communication constraint is

called soft constraint. In the problem with hard constraint, the communi-

cation strategy must take the remaining communication opportunities as a

variable and schedule no communication if there is no remaining opportunity.

Such communication strategies guarantee that the number of transmissions

made over the time horizon will not exceed the given constraint. In the
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problem with soft constraint, however, the sensor is not constrained by the

number of transmissions. Therefore, the communication strategy need not

take the remaining communication opportunities (which are always equal to

the remaining time steps) as a variable. Therefore, the results obtained in

one problem cannot be applied directly to the other. For example, if we ap-

ply the communication strategy obtained in [28] to the problem of [13], then

there exists a positive probability that the sensor decides to communicate at

every instant of time, which certainly violates the hard constraint on commu-

nication times. A detailed discussion of the difference between optimization

problems with soft constraints and those with hard constraints can be found

in [31, 32].

1.2 Contributions

In prior work, communication between the sensor and the estimator has been

assumed to be perfect (no additive channel noise), which may not be the case

in reality. Hence we are motivated to investigate the effect of communica-

tion channel noise on the design of optimal sensor scheduling and remote

estimation strategies. Accordingly, we consider in this thesis a discrete-time

sensor scheduling and remote estimation problem over a finite-time horizon,

where there is one sensor and one remote estimator. We assume that at

each time step, the sensor makes a perfect observation of the state of an

independent identically distributed (i.i.d.) source. Then the sensor decides

whether to transmit its observation to the remote estimator or not. The

sensor is charged a cost for each transmission (communication cost). Since

the communication channel is noisy, the sensor encodes the message before

transmitting it to the estimator. The remote estimator generates a real-time

estimate of the state of the source based on the noise-corrupted messages

received from the sensor. The estimator is charged for estimation error (es-

timation cost). Our goal is to design the communication scheduling strategy

and encoding strategy for the sensor, and the estimation strategy (decoding

strategy) for the estimator, to minimize the expected value of the sum of

communication cost and estimation cost over the time horizon. We propose

a solution to this problem, which consists of a threshold-based communica-

tion scheduling strategy, and a pair of piecewise linear encoding/decoding
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strategies. We show that the proposed solution is person-by-person optimal

when the random variables have some specific distributions. We also show

that our solution is globally optimal in the asymptotic case. In a modified

problem we show the local optimality of our solution and the existence of

a globally optimal solution. Note that the optimization problem without

sensor scheduling and communication cost has been discussed in [33, 34, 35].

1.3 Organizations

The rest of the thesis is organized as follows: In chapter 2 we describe the

system model, formulate the optimization problem and state the assumptions

on parameters. In chapter 3 we review and extend some results from [35],

which establish the necessary and sufficient conditions on the distributions

of source and channel noise such that the optimal encoder and decoder are

linear. The necessary and sufficient conditions are used in the proof of the

main results. In chapter 4 we present and prove the main results. Finally in

chapter 5 we make conclusions and discuss future directions.
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CHAPTER 2

PROBLEM FORMULATION

2.1 System Model

Figure 2.1: System model

Consider a discrete time sensor scheduling and remote estimation problem

over a finite time horizon, that is, t = 1, 2, . . . , T . In the problem, there

is one sensor, one encoder and one remote estimator (which is also called

“decoder”), as illustrated in Fig. 2.1. The sensor observes an independent

identically distributed (i.i.d.) stochastic process, {Xt}, Xt ∈ R, which has

Laplace distribution with parameters (0, λ−1). Hence,

fX(x) =


1
2
λe−λx, if x ≥ 0

1
2
λeλx, if x < 0

Assume that at time t the sensor has perfect observation on Xt. Then the

sensor decides whether to transmit the measurement to the encoder or not.

Let Ut ∈ {0, 1} be the sensor’s decision at time t, where Ut = 0 stands

for no communication and Ut = 1 stands for communication. If the sensor

communicates at time t, it will be charged a cost c. “No communication”

results in zero communication cost. Assume that the communication between

the sensor and the encoder is perfect. Denote by X̃t the message received by
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the encoder. Then,

X̃t =


Xt, if Ut = 1

ε, if Ut = 0

where ε is a free symbol standing for no message is transmitted. Once the

encoder receives the message from the sensor, it sends an encoded message

to the decoder, denoted by Yt. The encoder will not send any message to

the decoder if it does not receive any message from the sensor, which is

denoted by Yt = ε. Assume that the encoded message is corrupted by an

additive channel noise Vt, Vt ∈ R. {Vt} is an i.i.d. random process, which

is independent of {Xt}. We take Vt to have gamma distribution Γ(k, θ).

Denoting the message received by the decoder by Ỹt, we have

Ỹt =


Yt + Vt, if Yt 6= ε

ε, if Yt = ε

When sending the encoded message to the decoder, the encoder will transmit

the sign of X̃t to the decoder via a side channel, denoted by St. Again, the

encoder will not send any message to the decoder via the side channel if it

does not receive any message from the sensor. Assume that the side channel

is noise-free. Then,

St =


sgn(X̃t), if X̃t 6= ε

ε, if X̃t = ε

After receiving Ỹt and St, the decoder produces an estimate on Xt, denoted

by X̂t. The estimator will be charged for distortion in estimation. Assume

that the distortion function ρ(Xt, X̂t) is the squared error (Xt − X̂t)
2.

Assume that the encoder has average power constraint, that is

E
[
Y 2
t

∣∣ Ut = 1
]
≤ PT

where PT is known. The cost incurred by the system at time t is

cUt + (Xt − X̂t)
2
, c > 0

where cUt is the communication cost and (Xt − X̂t)
2 is the estimation cost.
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2.2 Decision Strategies

Assume that at time t, the sensor has memory on all its observations up to

t, denoted by X1:t, and all the decisions it has made up to t − 1, denoted

by U1:t−1. The sensor determines whether to communicate or not at time t

based on its current information (X1:t, U1:t−1), namely

Ut = ft(X1:t, U1:t−1)

where ft is the scheduling policy of the sensor at time t and f = {f1, f2, . . . , fT}
is the scheduling strategy of the sensor.

Similarly, at time t, the encoder has memory on all the messages received

from the sensor up to t, denoted by X̃1:t, and all the encoded messages it has

sent to the decoder up to t − 1, denoted by Y1:t−1. The encoder generates

the encoded message at time t based on its current information (X̃1:t, Y1:t−1),

namely

Yt = gt(X̃1:t, Y1:t−1)

where gt is the encoding policy of the encoder at time t and g = {g1, g2, . . . , gT}
is the encoding strategy.

Finally, assume that at time t, the decoder has memory of all the messages

received from the encoder up to t, denoted by Ỹ1:t, S1:t. The decoder generates

the estimate at time t based on its current information (Ỹ1:t, S1:t), namely

X̂t = ht(Ỹ1:t, S1:t)

where ht is the decoding policy of the decoder at time t and h = {h1, h2, . . . , hT}
is the decoding strategy.

Remark 1. Although we do not assume that the encoder has memory on

U1:t, S1:t, yet it can deduce them from X̃1:t. Similarly, the decoder can obtain

U1:t from Ỹ1:t.
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2.3 Assumptions on Parameters

Denote by σ2
V the variance of Vt, and recall that Vt has gamma distribution

Γ(k, θ). Then, σ2
V = kθ2. Define α =: λ

√
PT , and γ := PT

σ2
V

. Assume that

θ =
√
PT

Then we have
α = λθ

γ =
1

k

(2.1)

2.4 Optimization Problem

Consider the system described above, given the time horizon T , the statistics

of {Xt} and {Vt}, the communication cost c, and the power constraint PT .

Determine the scheduling strategy, encoding strategy and decoding strategy

(f,g,h) for the sensor, the encoder and the decoder, respectively, that min-

imize the expected value of the sum of communication cost and estimation

cost over the time horizon, namely,

J(f,g,h) = E

{
T∑
t=1

cUt + (Xt − X̂t)
2

}

subject to the power constraint of the encoder.
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CHAPTER 3

PRIOR WORK

3.1 Existing Results on Zero Delay Source-Channel

Coding

We first review some results of a communication problem studied by Akyol

et al [35]. Consider the communication system described in Fig. 3.1. The

Figure 3.1: Communication system considered in prior work

encoder wants to transmit an input signal X to the decoder via a communi-

cation channel. X is a random variable, X ∈ R. The communication channel

has an additive channel noise V . V is also a random variable taking values

in R. Assume that X and V are independent, whose characteristic functions

are FX(ω) and FV (ω), respectively. Denote by σ2
X and σ2

V the variances of X

and V , respectively. Since the communication channel is noisy, the encoder

needs to encode the message before sending it to the decoder. Assume that

the encoder generates the encoded message Y according to some encoding

policy g, namely

Y = g(X)

The encoder is constrained by average power PT such that

E[Y 2] ≤ PT

The decoder receives the noise corrupted message Y + V , denoted by Ỹ .

Then the decoder generates an estimate of X, denoted by X̂, according to
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some decoding policy h, and hence

X̂ = h(Ỹ )

Communication problem: Given the distributions of X and V , and the

power constraint of the encoder PT , design the encoding and decoding policies

g and h, respectively, that minimize the mean squared estimation error,

J(g, h) = E
[
(X − X̂)2

]
subject to the power constraint of the encoder.

According to Akyol et al. [35], the communication problem above has the

following solution.

Theorem 1. Consider the communication problem described above, and as-

sume that X and V are zero mean random variables.

1. The optimal encoder and decoder are either both linear or both nonlin-

ear.

2. The optimal encoder and decoder are both linear if and only if the char-

acteristic functions of X and V satisfy

FX(αω) = F γ
V (ω)

where α =
√

PT

σ2
X

and γ = PT

σ2
V

. Moreover, the linear encoding/decoding

policies (g∗, h∗) are as follows:

Y = g∗(X) = αX

X̂ = h∗(Ỹ ) =
1

α

γ

γ + 1
Ỹ

(3.1)

3.2 Extended Results on Zero Delay Source-Channel

Coding

We apply Theorem 1 to a special case relevant to the problem of this thesis,

and arrive at the following lemma.
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Lemma 1. Consider the communication problem described above, assume

that X and V can be written as

X = Xe − λ−1

V = Vg − kθ

where Xe has exponential distribution with parameter λ, and Vg has gamma

distribution with parameters (k, θ). Furthermore, let θ and PT satisfy θ =
√
PT . Then the optimal encoding/decoding policies (g∗, h∗) are as described

in (3.1) with α = λ
√
PT and γ = PT

kθ2
.

Proof. From the definitions of X and V , we have

E[X] = E[Xe]− λ−1 = 0

E[V ] = E[Vg]− kθ = 0

σ2
X = Var(Xe) = λ−2

σ2
V = Var(Vg) = kθ2

Then
α =

√
PT

σ2
X

= λ
√
PT

γ = PT

σ2
V

= PT

kθ2

By the assumption on the parameters (2.1), we have

FX(αω) = E
[
ejαωX

]
= E

[
ejαω(Xe−λ−1)

]
= E

[
ejαωXe

]
e−jαωλ

−1

= (1− jαωλ−1)−1e−jαωλ−1

= (1− jωθ)−1e−jωθ
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Similarly,

FV (ω) = E
[
ejωV

]
= E

[
ejω(Vg−kθ)

]
= E

[
ejωVg

]
e−jωkθ

= (1− jωθ)−ke−jωkθ

=
[
(1− jωθ)−1e−jωθ

]k
Hence,

F γ
V (ω) = [FV (ω)]

1
k

= (1− jωθ)−1e−jωθ

= FX(αω)

Applying Theorem 1, the optimal encoding/decoding policies g∗, h∗ are lin-

ear, and are described by (3.1).

We now prove a lemma such that the result of Theorem 1 can be extended

to the case where X and V are not zero mean random variables but a linear

transform of zero mean random variables.

Lemma 2. Consider the communication problem described above with zero

mean random variables X and V ; let us call it Problem 1 . Suppose that

given the distributions of X and V , and the power constraint of the encoder

PT , the optimal encoding/decoding policies to Problem 1 are (g∗, h∗). Then

consider the communication problem described above with the same power

constraint but non-zero mean random variables X ′ and V ′; call it Problem 2.

Assume that X ′ and V ′ are linear transforms of X and V , namely

X ′ = aX + b1

V ′ = V + b2

where a, b1, b2 are known constants, a ∈ {−1,+1}, b1, b2 ∈ R. Then the

optimal encoding/decoding policies to Problem 2, denoted by (g′∗, h′∗), can be

obtained by

g′∗(X ′) = g∗
(
X′−b1
a

)
h′∗(Ỹ ′) = a · h∗(Ỹ ′ − b2) + b1

Moreover, the optimal costs of the two problems are equivalent.
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Proof. For any encoding/decoding policies (g, h) satisfying the power con-

straint in Problem 1, we have

Y = g(X)

E[Y 2] ≤ PT

X̂ = h(Ỹ ) = h(Y + V )

Define the encoding/decoding policies (g′, h′) in Problem 2 as follows:

Y ′ = g′(X ′) = g
(
X′−b1
a

)
X̂ ′ = h′(Ỹ ′) = a · h(Ỹ ′ − b2) + b1

where Y ′ is the output of the encoder, Ỹ ′ is the noise corrupted message

received by the decoder, and X̂ ′ is the output of the decoder in Problem 2.

Furthermore,

Ỹ ′ = Y ′ + V ′

Then we have
Y ′ = g′(X ′)

= g
(
X′−b1
a

)
= g(X)

= Y

Hence,

E[Y ′
2
] = E[Y 2] ≤ PT

which implies that the pair (g′, h′) satisfies the power constraint of the en-

coder in Problem 2. Moreover,

X̂ ′ = h′(Ỹ ′)

= a · h(Ỹ ′ − b2) + b1

= a · h(Y ′ + V ′ − b2) + b1

= a · h(Y + V ) + b1

= aX̂ + b1

Let J1(g, h) be the cost corresponding to (g, h) in Problem 1 , and J2(g
′, h′)
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be the cost corresponding to (g′, h′) in Problem 2. Then,

J2(g
′, h′) = E

[
(X ′ − X̂ ′)2

]
= E

[
(aX + b1 − aX̂ − b1)2

]
= a2 · E

[
(X − X̂)2

]
= E

[
(X − X̂)2

]
= J1(g, h)

Conversely, for any pair of encoding/decoding policies (g′, h′) satisfying the

power constraint in Problem 2, define the encoding/decoding policies (g, h)

in Problem 1 as follows:

Y = g(X) = g′ (aX + b1)

X̂ = h(Ỹ ) =
1

a

[
h′(Ỹ + b2)− b1

]
Then we have

Y = g(X)

= g′ (aX + b1)

= g′(X ′)

= Y ′

Hence,

E[Y 2] = E[Y ′
2
] ≤ PT

which implies that the pair (g, h) satisfies the power constraint of the encoder

in Problem 1. Moreover,

X̂ = h(Ỹ )

=
1

a

[
h′(Ỹ + b2)− b1

]
=

1

a

[
h′(Y + V + b2)− b1

]
=

1

a

[
h′(Y ′ + V ′)− b1

]
=

1

a

(
X̂ ′ − b1

)
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Then,

J1(g, h) = E
[(
X − X̂

)2]
= E

[(
1

a
(X ′ − b1)−

1

a
(X̂ ′ − b1)

)2
]

=
1

a2
· E
[(
X ′ − X̂ ′

)2]
= E

[(
X ′ − X̂ ′)2

]
= J2(g

′, h′)

Therefore, the optimal costs of Problem 1 and Problem 2 are equivalent.

Moreover, if the optimal cost of Problem 1 is achieved by (g∗, h∗), then the

optimal cost of Problem 2 can be achieved by

g′∗(X ′) = g∗
(
X′−b1
a

)
h′∗(Ỹ ′) = a · h∗(Ỹ ′ − b2) + b1

Applying Lemma 2 to Lemma 1, we have the following result.

Lemma 3. Consider the communication problem described above, assume

that the input signal X has exponential distribution with parameter λ, and

communication channel noise V has gamma distribution with parameters

(k, θ). Furthermore, let θ, PT satisfy θ =
√
PT . Then the optimal encod-

ing/decoding policies (g∗, h∗) are as follows:

Y = g∗(X) = αX − αλ−1

X̂ = h∗(Ỹ ) =
1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1

where α = λ
√
PT and γ = PT

kθ2
. Moreover, the optimal cost is

J(g∗, h∗) =
1

γ + 1

1

λ2
:= m

Proof. By Lemma 1, if the input signal X ′ and the communication channel

noise V ′ are as follows:
X ′ = X − λ−1

V ′ = V − kθ

17



Then the optimal encoding/decoding policies are

Y ′ = g′∗(X ′) = αX ′

X̂ ′ = h′∗(Ỹ ′) =
1

α

γ

γ + 1
Ỹ ′

From the definitions of X ′ and V ′, we have

X = X ′ + λ−1

V = V ′ + kθ

Applying Lemma 2 by letting a = 1, b1 = λ−1, b2 = kθ, we have the optimal

encoding/decoding policies corresponding to X and V are as follows:

Y = g∗(X)

= g′∗
(
X−b1
a

)
= α(X − λ−1)

= αX − αλ−1

X̂ = h∗(Ỹ )

= a · h′∗(Ỹ − b2) + b1

=
1

α

γ

γ + 1
(Ỹ − kθ) + λ−1

=
1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1

Moreover,

X̂ =
1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1

=
1

α

γ

γ + 1
(Y + V ) +

γ

γ + 1
λ−1

=
1

α

γ

γ + 1
(αX − αλ−1 + V ) +

γ

γ + 1
λ−1

=
γ

γ + 1
X +

1

α

γ

γ + 1
V

By the assumptions on the parameters (2.1), the cost of (g∗, h∗) is computed

18



as follows:

J(g∗, h∗)

= E
[
(X − X̂)2

]
= E

[(
X − γ

γ + 1
X − 1

α

γ

γ + 1
V

)2
]

= E

[(
1

γ + 1
X − 1

α

γ

γ + 1
V

)2
]

=
1

(γ + 1)2
E
[
(X − α−1γV )

2
]

=
1

(γ + 1)2

(
E[X2] + α−2γ2E[V 2]− 2α−1γE[XV ]

)
=

1

(γ + 1)2

(
E[X]2 + Var(X) + α−2γ2E[V ]2 + α−2γ2Var(V )

−2α−1γE[X]E[V ]
)

=
1

(γ + 1)2

(
λ−2 + λ−2 + α−2γ2k2θ2 + α−2γ2kθ2 − 2α−1γλ−1kθ

)
=

1

(γ + 1)2

(
2λ−2 + λ−2 + λ−2γ − 2λ−2

)
=

1

γ + 1

1

λ2

:= m
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CHAPTER 4

MAIN RESULTS

4.1 Stationary Property of the Optimal Solution

Theorem 2. Consider the sensor scheduling and remote estimation problem

described in chapter 2,

1. Without loss of optimality, one can restrict the sensor scheduling, en-

coding and decoding strategies to the form

Ut = ft(Xt)

Yt = gt(X̃t)

X̂t = ht(Ỹt, St)

2. There exist stationary strategies (f∗, g∗,h∗) minimizing

J(f, g,h) = E

{
T∑
t=1

cUt + (Xt − X̂t)
2

}

where
f∗ = {f ∗1 , f ∗2 , . . . , f ∗T}, f ∗1 = · · · = f ∗T := f ∗

g∗ = {g∗1, g∗2, . . . , g∗T}, g∗1 = · · · = g∗T := g∗

h∗ = {h∗1, h∗2, . . . , h∗T}, h∗1 = · · · = h∗T := h∗

Moreover, (f ∗, g∗, h∗) can be obtained by solving the “one-stage” prob-

lem, that is the problem with T = 1.

Proof. At time t = T , we want to design (fT , gT , hT ) to minimize

JT1(fT , gT , hT ) = E
{
cUT + (XT − X̂T )

2
}

subject to the power constraint of the encoder, called Problem T1. Let
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IsT , IeT , IdT be the information about the past system states available to the

sensor, the encoder and the decoder, respectively, at time T . Namely

IsT = {X1:T−1, U1:T−1}

IeT = {X̃1:T−1, Y1:T−1}

IdT = {Ỹ1:T−1, S1:T−1}

Recall that the decisions of the sensor, the encoder and the decoder at time

T are generated by

UT = fT (XT , IsT )

YT = gT (X̃T , IeT )

X̂T = hT (ỸT , ST , IdT )

We will show that using information about the past (IsT , IeT , IdT ) when mak-

ing decisions cannot help improve the performance (reducing the expected

cost).

Let IT be the information set about the past system states at time T ,

namely

IT = {X1:T−1, U1:T−1, X̃1:T−1, Y1:T−1, Ỹ1:T−1, S1:T−1}

Then IsT , IeT , IdT ∈ IT . Consider another problem, called Problem T2, where

IT is available to the sensor, the encoder and the decoder and we want to

design (f ′T , g
′
T , h

′
T ) to minimize

JT2(f
′
T , g

′
T , h

′
T ) = E

{
cUT + (XT − X̂T )

2
}

subject to the power constraint of the encoder, where

UT = f ′T (XT , IT )

YT = g′T (X̃T , IT )

X̂T = h′T (ỸT , ST , IT )

Since the sensor, the encoder and the decoder can always ignore the redun-

dant information and behave as if they only know IsT , IeT , IdT , respectively,

the performance of system in Problem T2 is no worse than the performance
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of the system in Problem T1, namely

min
(f ′T ,g

′
T ,h
′
T )
JT2(f

′
T , g

′
T , h

′
T ) ≤ min

(fT ,gT ,hT )
JT1(fT , gT , hT )

Similarly, consider a third problem, call it Problem T3, where IsT , IeT , IdT

are not available to the sensor, the encoder and the decoder, respectively.

We want to design (f ′′T , g
′′
T , h

′′
T ) to minimize

JT3(f
′′
T , g

′′
T , h

′′
T ) = E

{
cUT + (XT − X̂T )

2
}

subject to the power constraint of the encoder, where

UT = f ′′T (XT )

YT = g′′T (X̃T )

X̂T = h′′T (ỸT , ST )

By a similar argument as above, the system in Problem T1 cannot perform

worse than the system in Problem T3, namely,

min
(fT ,gT ,hT )

JT1(fT , gT , hT ) ≤ min
(f ′′T ,g

′′
T ,h
′′
T )
JT3(f

′′
T , g

′′
T , h

′′
T )

Let us come back to Problem T2. Since the communication cost c, the

distortion function ρ(·, ·), and the power constraint of the encoder do not

depend on IT , the problem can be reformulated as a one-stage problem where

the source and the communication channel noise are conditional random

variables X ′T , V ′T , respectively, such that

X ′T = XT |IT

V ′T = VT |IT

Since {Xt} and {Vt} are i.i.d. random processes, XT and VT are independent

of IT . Then

X ′T = XT

V ′T = VT
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Therefore, there is no loss of optimality by restricting

UT = f ′T (XT )

YT = g′T (X̃T )

X̂T = h′T (ỸT , ST )

and

min
(f ′T ,g

′
T ,h
′
T )
JT2(f

′
T , g

′
T , h

′
T ) = min

(f ′′T ,g
′′
T ,h
′′
T )
JT3(f

′′
T , g

′′
T , h

′′
T )

The equality above indicates that knowing all the information about the

past cannot work better than not knowing any information about the past.

Hence, in Problem T1 the sensor, the encoder and the decoder can ignore

their information about the past, namely IsT , IeT , and IdT , respectively, and

there is no loss of optimality by restricting

UT = fT (XT )

YT = gT (X̃T )

X̂T = hT (ỸT , ST )

which proves the first part of the theorem.

Since (fT , gT , hT ) does not take IT as a parameter, the design of (fT , gT , hT )

is independent of the design of (f1:T−1, g1:T−1, h1:T−1). Hence the problem can

be viewed as a T − 1 stages problem and a one stage problem.

By induction, we can show that the design of (f1, g1, h1), (f2, g2, h2), . . . ,

(fT , gT , hT ) are mutually independent, where (ft, gt, ht) is designed to mini-

mize

J(ft, gt, ht) = E
{
cUt + (Xt − X̂t)

2
}

subject to the power constraint of the encoder. Furthermore, since {Xt} and

{Vt} are i.i.d. random processes, the optimal (ft, gt, ht) should be the same

for all t = 1, 2, . . . , T , which proves the second part of the theorem.

By Theorem 2, the problem can be reduced to the “one-stage” problem and

the objective is to determine (f ∗, g∗, h∗). Therefore for simplicity we suppress

the subscript for time in all the expressions for the rest of the thesis.
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4.2 Person-by-Person Optimality of the Proposed

Solution

Theorem 3. Consider the sensor scheduling and remote estimation problem

formulated in chapter 2. If the sensor applies symmetric threshold-based

scheduling policy f as follows:

U = f(X) =


1, if |X| > β

0, if |X| ≤ β

where β is called the threshold, then the encoding/decoding policies (g, h)

described below are jointly optimal corresponding to f :

g(X̃) =


α|X̃| − αβ − αλ−1, if X̃ 6= ε

ε, if X̃ = ε

h(Ỹ , S) =


S ·
(

1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1 + β

)
, if Ỹ , S 6= ε

0, if Ỹ , S = ε

where α = λ
√
PT , γ = PT

kθ2

Proof. Case I. U = 0, X̃, Ỹ , S = ε. The minimum mean squared error

(MMSE) estimator should be the conditional mean, that is,

X̂ = E
[
X
∣∣ U = 0

]
= E

[
X
∣∣ |X| ≤ β

]
= 0

where the third inequality is due to the fact that X is symmetrically dis-

tributed.

Case II. U = 1, S = +. The problem collapses to the communication

problem discussed in chapter 3 with the input signal X̃, the communication

channel noise V , and the power constraint of the encoder PT . U = 1, S = +

is equivalent to X̃ = X > β. Conditioned on that, X̃ has distribution as
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follows:

fX̃(x) =


λe−λ(x−β), if x ≥ β

0, if x < β

Hence X̃ can be written as

X̃ = Xe + β

where Xe has exponential distribution with parameter λ. Since X and V are

independent, X > β does not affect the distribution of V . Therefore V has

gamma distribution with parameters (k, θ). Moreover, the power constraint

PT satisfies θ =
√
PT . Hence by applying Lemmas 2 and 3, the optimal

encoding/decoding policies in Case II should be

Y = g(X̃)

= α(X̃ − β)− αλ−1

= αX̃ − αβ − αλ−1

= α|X̃| − αβ − αλ−1

X̂ = h(Ỹ , S)

=
1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1 + β

= S ·
(

1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1 + β

)
Furthermore, the optimal cost is

E[(X − X̂)2
∣∣ X > β] =

1

γ + 1

1

λ2
= m (4.1)

Case III. U = 1, S = −. Similar to Case II, the problem collapses to

the communication problem discussed in chapter 3 with the input signal X̃

and the communication channel noise V . U = 1, S = − is equivalent to

X̃ = X < −β. Conditioned on that, X̃ can be written as

X̃ = −Xe − β

where Xe has exponential distribution with parameter λ. V still has gamma

distribution with parameters (k, θ). Applying Lemmas 2 and 3 again, the
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optimal encoding/decoding policies in Case III should be

Y = g(X̃)

= −αX̃ − αβ − αλ−1

= α|X̃| − αβ − αλ−1

X̂ = h(Ỹ )

= − 1

α

γ

γ + 1
Ỹ − γ

γ + 1
λ−1 − β

= S ·
(

1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1 + β

)

Moreover, the optimal cost is

E[(X − X̂)2
∣∣ X < −β] =

1

γ + 1

1

λ2
= m (4.2)

Theorem 4. Consider the sensor scheduling and remote estimation problem

formulated in chapter 2. Suppose that the sensor is restricted to apply the

symmetric threshold-based scheduling policy f with threshold β, β ∈ (0,∞),

and the encoder/decoder apply the corresponding optimal encoding/decoding

policies (g, h) described in Theorem 3. Then there exists a unique threshold

β∗ minimizing the cost function among all the thresholds. Furthermore, β∗ =
√
c+m, m = 1

γ+1
1
λ2

.

Proof. The cost function subject to f with threshold β, g, and h can be

written as

J(f, g, h) = E
[
cU + (X − X̂)

2
]

= E
[
cU + (X − X̂)

2 ∣∣ |X| ≤ β
]
· P(|X| ≤ β)

+ E
[
cU + (X − X̂)

2 ∣∣ X > β
]
· P(X > β)

+ E
[
cU + (X − X̂)

2 ∣∣ X < −β
]
· P(X < −β)
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Consider the expectation in the first term:

E
[
cU + (X − X̂)

2 ∣∣ |X| ≤ β
]

= E
[
0 + (X − 0)2

∣∣ |X| ≤ β
]

= E
[
X2
∣∣ |X| ≤ β

]
=

∫ β

−β
x2fX(x)

1

P(|Xt| < β)
dx

Now consider the expectation in the second term:

E
[
cU + (X − X̂)

2 ∣∣ X > β
]

= E
[
c+ (X − X̂)

2 ∣∣ X > β
]

= c+ E
[
(X − X̂)

2 ∣∣ X > β
]

= c+m

where the last equality is due to (4.1). Similarly, by equation (4.2), the

expectation in the third term is

E
[
cU + (X − X̂)

2 ∣∣ X < −β
]

= c+m

Hence,

J(f, g, h) =

∫ β

−β
x2fX(x)dx+ (c+m)

∫ ∞
β

fX(x)dx+ (c+m)

∫ −β
−∞

fX(x)dx

= 2

∫ β

0

x2fX(x)dx+ 2(c+m)

∫ ∞
β

fX(x)dx

Taking derivative of J(f, g, h) with respect to β,

d

dβ
J(f, g, h) = 2β2fX(β)− 2(c+m)fX(β)
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Since fX(β) > 0, we have

d

dβ
J(f, g, h) =


0, if β =

√
c+m := β∗

< 0, if β ∈ (0, β∗)

> 0, if β ∈ (β∗,∞)

Hence β∗ is the unique global minimizer.

Remark 2. Theorem 4 implies that by restricting the sensor scheduling poli-

cies to the symmetric threshold-based class, the threshold-based scheduling

policy with threshold β∗ and the corresponding optimal encoding/decoding

policies described in Theorem 3 are globally optimal. Hence, (f, g, h) de-

scribed in Theorem 3 with threshold β∗ is a sub-optimal solution to the prob-

lem formulated in chapter 2.

Theorem 5. Consider the sensor scheduling and remote estimation prob-

lem formulated in chapter 2. The sensor scheduling policy and the encod-

ing/decoding policies (f ∗, g∗, h∗) described in Theorem 3 with threshold β∗ =
√
c+m are person-by-person optimal.

Proof. The fact that (g∗, h∗) are jointly optimal encoding/decoding policies

corresponding to f ∗ has been proved in Theorem 3. So we only need to prove

the other direction.

When X = x ≥ 0, the cost of no communication is

Jnc(x) = x2
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while the cost of communication is

Jc(x)

= c+ E

[(
x−

( 1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1 + β∗

))2
]

= c+ E

[(
x−

( 1

α

γ

γ + 1
(Y + V ) +

γ

γ + 1
λ−1 + β∗

))2
]

= c+ E

[(
x−

( 1

α

γ

γ + 1
(αx− αβ∗ − αλ−1 + V ) +

γ

γ + 1
λ−1 + β∗

))2
]

= c+ E

[(
x−

( γ

γ + 1
x+

1

γ + 1
β∗ +

1

α

γ

γ + 1
V
))2

]

= c+ E

[(
1

γ + 1

(
x− β∗

)
− 1

α

γ

γ + 1
V

)2
]

= c+
1

(γ + 1)2
(
x− β∗

)2 − 2γ

α(γ + 1)2
(
x− β∗

)
E[V ] +

1

α2

γ2

(γ + 1)2
E[V 2]

= c+
1

(γ + 1)2
(
x− β∗

)2 − 2γ

α(γ + 1)2
(
x− β∗

)
E[V ] +

1

α2

γ2

(γ + 1)2
E[V ]2

+
1

α2

γ2

(γ + 1)2
Var(V )

= c+

(
1

γ + 1

(
x− β∗

)
− 1

α

γ

γ + 1
E[V ]

)2

+
1

α2

γ2

(γ + 1)2
Var(V )

= c+

(
1

γ + 1

(
x− β∗

)
− 1

α

γ

γ + 1
kθ

)2

+
1

α2

γ2

(γ + 1)2
kθ2

= c+
1

(γ + 1)2
(
x− β∗ − α−1γkθ

)2
+

1

α2

γ2

(γ + 1)2
kθ2

The expression above can be simplified by applying the assumptions on pa-

rameters (2.1). Hence,

Jc(x) = c+
1

(γ + 1)2
(
x− β∗ − λ−1

)2
+

γ

(γ + 1)2
λ−2
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First one should see that

Jc(β
∗) = c+

1

(γ + 1)2
λ−2 +

γ

(γ + 1)2
λ−2

= c+
1

γ + 1

1

λ2

= c+m

= (β∗)2

= Jnc(β
∗)

When x ∈ [0, β∗),

d

dx
Jnc(x) = 2x > 0

d

dx
Jc(x) =

2

(γ + 1)2
(x− β∗ − λ−1) < 0

which implies

Jnc(x) < Jnc(β
∗) = Jc(β

∗) < Jc(x) ∀ x ∈ [0, β∗)

When x ∈ (β∗,∞),

d

dx

(
Jnc(x)− Jc(x)

)
=

d

dx
Jnc(x)− d

dx
Jc(x)

= 2x− 2

(γ + 1)2
(x− β∗ − λ−1)

=
2(γ2 + 2γ)

(γ + 1)2
x+

2

(γ + 1)2
(β∗ + λ−1)

> 0

which implies

Jnc(x)− Jc(x) > 0, ∀ x ∈ (β∗,∞)

Therefore
U = f ∗(X) = 0, if X ∈ [0, β∗]

U = f ∗(X) = 1, if X ∈ (β∗,∞)
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By symmetry one can also obtain that

U = f ∗(X) = 0, if X ∈ [−β∗, 0]

U = f ∗(X) = 1, if X ∈ (−∞,−β∗)

Remark 3. Consider the asymptotic case where PT → ∞ and kθ, kθ2 → 0

(which means E[V ],E[V 2]→ 0). Although θ =
√
PT →∞, k can be P−2T such

that kθ, kθ2 → 0. Then γ = k−1 → ∞, which implies that m = 1
γ+1

1
λ2
→ 0.

Hence the optimal sensor scheduling policy becomes

U =


1, if |X| > β∗

0, if |X| ≤ β∗

where β∗ =
√
c. Furthermore, since α = λ

√
PT → ∞ and E[V ],E[V 2] → 0,

we have 1
α
Ỹ = 1

α
(Y + V )→ 1

α
Y , and the output of the decoder becomes

X̂ =


X, if U = 1

0, if U = 0

Note that this result matches the results by Nayyar et al [29], which have been

shown to be globally optimal. In that paper the source was assumed to have a

Gaussian distribution, while the results and the proof also work for a source

with Laplace distribution, which is symmetric and unimodal.

4.3 Results on a Modified Problem

4.3.1 Reformulation of the Problem

We first allow the sensor to directly map X to X̃, namely

X̃ = f(X)

where f can be an arbitrary function mapping R to R. X̃ = 0 means the

sensor decides not to transmit. Define the quantizing function Q(X̃) as
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follows:

Q(X̃) =


+1 , if X̃ > 0

−1 , if X̃ < 0

0 , if X̃ = 0

Then the communication cost is c · (Q(X̃))2. Once the encoder receives

the message X̃ from the sensor, it sends the encoded message Y to the

communication channel. Hence,

Y = g(X̃)

In particular, the encoder sends Y = 0 if the received message X̃ = 0.

Meanwhile, the encoder sends Q(X̃) to the decoder via the side channel.

The encoder has power constraint, namely

E
[
Y 2
]
≤ P ′T

The decoder generates an estimate of X, denoted by X̂, based on the mes-

sages Ỹ and Q(X̃), namely

X̂ = h(Ỹ , Q(X̃))

where Ỹ = Y + V . The estimation cost is the squared error (X − X̂)2.

We still assume that X has exponential distribution with parameter λ,

and V has gamma distribution with parameters (k, θ). Furthermore, assume

that
θ =

√
PT

P ′T = e−λβ
∗
PT

where β∗ =
√
c+m,m = 1

γ+1
1
λ2

. Then

α = λ
√
PT = λθ

γ =
PT
kθ2

=
1

k

The objective is to design (f, g, h) to minimize the cost function

J(f, g, h) = E
[
c · (Q(X̃))2 + (X − X̂)2

]
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subject to the power constraint of the encoder.

4.3.2 Local Optimality of the Proposed Solution

Lemma 4. Consider the reformulated problem described in section 4.3.1. If

the sensor applies scheduling policy f ∗ as follows:

X̃ = f ∗(X) =


X, if |X| > β∗

0, if |X| ≤ β∗

where β∗ =
√
c+m,m = 1

γ+1
1
λ2

, then the encoding/decoding policies (g∗, h∗)

described below are jointly optimal among all the policies satisfying the power

constraint:

g∗(X̃) =


α|X̃| − αβ∗ − αλ−1, if X̃ 6= 0

0, if X̃ = 0

h∗(Ỹ , Q(X̃)) =


Q(X̃) ·

(
1

α

γ

γ + 1
Ỹ +

γ

γ + 1
λ−1 + β∗

)
, if Q(X̃) 6= 0

0, if Q(X̃) = 0

where α = λ
√
PT , γ = PT

kθ2

Proof. First observe that

E [Y 2] = E
[
Y 2
∣∣ X̃ 6= 0

]
· P(X̃ 6= 0) + E

[
Y 2
∣∣ X̃ = 0

]
· P(X̃ = 0)

= E
[
Y 2
∣∣ X̃ 6= 0

]
· P(X̃ 6= 0) + 0 · P(X̃ = 0)

= E
[
Y 2
∣∣ X̃ 6= 0

]
· P(X̃ 6= 0)

≤ P ′T

= e−λβ
∗
PT

If the sensor applies the scheduling policy f ∗, then

P(X̃ 6= 0) = P(|X| ≤ β∗) = e−λβ
∗
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Hence the problem becomes an encoding/decoding problem with power con-

straint

E
[
Y 2
∣∣ X̃ 6= 0

]
≤ PT

which has been solved in Theorem 3. Hence the optimal encoding/decoding

policies corresponding to f ∗ are (g∗, h∗) as described above.

Before discussing the local optimality of the proposed solution, we need to

define the neighborhood of the policies (f ∗, g∗, h∗). Define the norm on f as

follows:

‖f‖ = sup
x∈R
|f(x)|+ sup

x∈R
|f ′(x)|+ sup

x∈R
|Q(f(x))|

Then the difference of two functions f ∗ and f is

‖f ∗−f‖ = sup
x∈R
|f ∗(x)−f(x)|+sup

x∈R
|f ∗′(x)−f ′(x)|+sup

x∈R
|Q(f ∗(x))−Q(f(x))|

Hence we define the neighborhood of f ∗, denoted by N (f ∗), as

N (f ∗) =
{
f
∣∣ ‖f ∗ − f‖ ≤ δ

}
where δ > 0, δ << 1. Then the functions in N (f ∗) can also be expressed

in the form of f ∗ + εδ1, where |ε| is sufficiently small and the admissible

perturbation function δ1 satisfies

δ1(x) is differentiable almost everywhere

sup
x∈R
|δ1(x)| <∞, sup

x∈R
|δ′1(x)| <∞

δ1(x) = 0 almost everywhere whenf(x) = 0

Similarly, define the norm on g and h as

‖g‖ = sup
x∈R
|g(x)|+ sup

x∈R
|g′(x)|

‖h‖ = max
q∈{±1,0}

sup
x∈R
|h(x, q)|+ max

q∈{±1,0}
sup
x∈R

∣∣∣∣∂h(x, q)

∂x

∣∣∣∣
Then the neighborhoods of g∗ and h∗, denoted by N (g∗) and N (h∗), respec-
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tively, are defined as

N (g∗) =
{
g
∣∣ ‖g∗ − g‖ ≤ δ

}
N (h∗) =

{
h
∣∣ ‖h∗ − h‖ ≤ δ

}
where δ > 0, δ << 1. Therefore, the functions in N (g∗) and N (h∗) can

be expressed in the form of g∗ + εδ2 and h∗ + εδ3, respectively, where |ε| is

sufficiently small and the admissible perturbation functions δ2 and δ3 satisfy

δ2(x), δ3(x, q) are differentiable almost everywhere, ∀ q ∈ {0,±1}

sup
x∈R
|δ2(x)| <∞, sup

x∈R
|δ′2(x)| <∞

sup
x∈R
|δ3(x, q)| <∞, sup

x∈R

∣∣∣∣∂δ3(x, q)∂x

∣∣∣∣ <∞, ∀ q ∈ {0,±1}

Based on the neighborhoods defined above, we have the following results:

Theorem 6. Consider the reformulated problem described in section 4.3.1.

The sensor scheduling policy, and the encoding/decoding policies (f ∗, g∗, h∗)

described in Lemma 4 are locally optimal within the neighborhoods N (f ∗),

N (g∗), N (h∗) described above.

Proof. Since the power constraint P ′T is fixed, it is equivalent to solve the

unconstrained problem with an additional power cost λL · E[Y 2] in the cost

function with some Lagrange multiplier λL. That is, to minimize the follow-

ing cost function:

J(f, g, h)

= E
[
c · (Q(X̃))2 + λL · Y 2 + (X − X̂)2

]
= c · E

[
(Q(X̃))2

]
+ λL · E [Y 2] + E

[
(X − X̂)2

]
= c ·

∫ +∞

−∞
Q2
(
f(x)

)
fX(x)dx+ λL ·

∫ +∞

−∞
g2
(
f(x)

)
fX(x)dx

+

∫ +∞

−∞

∫ +∞

0

(
h
(
g(f(x)) + v,Q(f(x))

)
− x
)2
fX(x)fV (v)dvdx

By Lemma 4, if f ∗ is fixed, then g∗ and h∗ are globally optimal among

all the encoding/decoding policies. Then for any admissible perturbation

functions δ2, δ3, the first and the second order Gateaux differentials of J
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at (f ∗, g∗, h∗) with increments δ2, δ3, denoted by δJ(f ∗, g∗, h∗; δ2,δ3) and

δ2J(f ∗, g∗, h∗; δ2,δ3), respectively, should satisfy

δJ(f ∗, g∗, h∗; δ2, δ3) = 0

δ2J(f ∗, g∗, h∗; δ2,δ3) ≥ 0

First let us compute δJ(f ∗, g∗, h∗; δ2,δ3):

δJ(f ∗, g∗, h∗; δ2, δ3)

=
d

dε
J(f ∗, g∗ + εδ2, h

∗ + εδ3)

∣∣∣∣
ε=0

= c ·
∫ +∞

−∞

d

dε
Q2
(
f ∗(x)

)∣∣∣∣
ε=0

fX(x)dx

+λL ·
∫ +∞

−∞

d

dε

(
g∗
(
f ∗(x)

)
+ εδ2

(
f ∗(x)

))2∣∣∣∣
ε=0

fX(x)dx

+

∫ +∞

−∞

∫ +∞

0

d

dε

(
h∗
(
g∗
(
f ∗(x)

)
+ εδ2

(
f ∗(x)

)
+ v,Q

(
f ∗(x)

))
+εδ3

(
g∗
(
f ∗(x)

)
+ εδ2

(
f ∗(x)

)
+ v,Q

(
f ∗(x)

))
− x
)2∣∣∣∣

ε=0

fX(x)fV (v)dvdx

Consider the first term,

d

dε
Q2
(
f ∗(x)

)∣∣∣∣
ε=0

= 0

Consider the second term,

d

dε

(
g∗
(
f ∗(x)

)
+ εδ2

(
f ∗(x)

))2∣∣∣∣
ε=0

= g∗
(
f ∗(x)

)
· δ2
(
f ∗(x)

)
=


0, if |x| ≤ β∗

g∗(x) · δ2
(
x
)
, if |x| > β∗
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Consider the third term,

d

dε

(
h∗
(
g∗
(
f ∗(x)

)
+ εδ2

(
f ∗(x)

)
+ v,Q

(
f ∗(x)

))
+εδ3

(
g∗
(
f ∗(x)

)
+ εδ2

(
f ∗(x)

)
+ v,Q

(
f ∗(x)

))
− x
)2∣∣∣∣

ε=0

=

(
h∗
(
g∗
(
f ∗(x)

)
+ v,Q

(
f ∗(x)

))
− x
)
·
(
∂h∗

∂ỹ
· δ2
(
f ∗(x)

)
+ δ3

(
g∗
(
f ∗(x)

)
+ v,Q

(
f ∗(x)

)))

=



−x · δ3(v, 0), if |x| ≤ β∗(
h∗
(
g∗(x) + v, 1

)
− x
)
·
(

1

α

γ

γ + 1
· δ2
(
x
)

+δ3

(
g∗
(
x
)

+ v, 1
))

, if x > β∗(
h∗
(
g∗(x) + v,−1

)
− x
)
·
(
− 1

α

γ

γ + 1
· δ2
(
x
)

+δ3

(
g∗
(
x
)

+ v,−1
))

, if x < −β∗

Hence,

δJ(f ∗, g∗, h∗; δ2,δ3)

= λL ·
∫ −β∗
−∞

g∗(x) · δ2
(
x
)
fX(x)dx+ λL ·

∫ ∞
β∗
g∗(x) · δ2

(
x
)
fX(x)dx

+

∫ ∞
0

∫ ∞
β∗

(
h∗
(
g∗(x) + v, 1

)
− x
)

·
(

1

α

γ

γ + 1
· δ2
(
x
)

+ δ3

(
g∗
(
x
)

+ v, 1
))

fX(x)fV (v)dxdv

+

∫ ∞
0

∫ −β∗
−∞

(
h∗
(
g∗(x) + v,−1

)
− x
)

·
(
− 1

α

γ

γ + 1
· δ2
(
x
)

+ δ3

(
g∗
(
x
)

+ v,−1
))

fX(x)fV (v)dxdv

= 0 for all admissible δ2, δ3
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Similarly, we can calculate δJ2(f ∗, g∗, h∗; δ2,δ3) as follows:

δJ2(f ∗, g∗, h∗; δ2,δ3)

= λL ·
∫ −β∗
−∞

(
δ2
(
x
))2

fX(x)dx+ λL ·
∫ ∞
β∗

(
δ2
(
x
))2

fX(x)dx

+

∫ ∞
0

∫ ∞
β∗

(
1

α

γ

γ + 1
· δ2
(
x
)

+ δ3

(
g∗
(
x
)

+ v, 1
))2

fX(x)fV (v)dxdv

+

∫ ∞
0

∫ −β∗
−∞

(
− 1

α

γ

γ + 1
· δ2
(
x
)

+ δ3

(
g∗
(
x
)

+ v,−1
))2

fX(x)fV (v)dxdv

+

∫ ∞
0

∫ ∞
β∗

(
h∗
(
g∗(x) + v, 1

)
− x
)
· ∂δ3(ỹ, 1)

∂ỹ
· δ2
(
x
)
· fX(x)fV (v)dxdv

+

∫ ∞
0

∫ −β∗
−∞

(
h∗
(
g∗(x) + v,−1

)
− x
)
· ∂δ3(ỹ,−1)

∂ỹ

· δ2
(
x
)
· fX(x)fV (v)dxdv

≥ 0 for all admissible δ2, δ3

Now we can compute the first and the second order Gateaux differentials of

J at (f ∗, g∗, h∗) with increments δ1, δ2, δ3, denoted by δJ(f ∗, g∗, h∗; δ1, δ2,δ3)

and δ2J(f ∗, g∗, h∗; δ1, δ2,δ3), respectively. According to the properties of the

admissible perturbation function δ1, when |ε| is small enough,

Q
(
f ∗(x) + εδ1(x)

)
= Q

(
f ∗(x)

)
almost everywhere

Following the same process when computing δJ(f ∗, g∗, h∗; δ2,δ3), one can get

δJ(f ∗, g∗, h∗; δ1, δ2, δ3)

=
d

dε
J(f ∗ + εδ1, g

∗ + εδ2, h
∗ + εδ3)

∣∣∣∣
ε=0

= δJ(f ∗, g∗, h∗; δ̃2, δ3)

where

δ̃2(x) =


δ2(x), if |x| ≤ β∗

δ2(x) + αδ1(x) if x > β∗

δ2(x)− αδ1(x) if x < −β∗
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By the properties of δ1(x) and δ2(x), we have

δ̃2(x) is differentiable almost everywhere

sup
x∈R
|δ̃2(x)| <∞, sup

x∈R
|δ̃′2(x)| <∞

which means δ̃2(x) is an admissible perturbation function for g∗. Hence

δJ(f ∗, g∗, h∗; δ1, δ2, δ3) = 0 for all admissible δ1, δ2, δ3

Similarly,

δJ2(f ∗, g∗, h∗; δ1, δ2, δ3)

= δJ2(f ∗, g∗, h∗; δ̃2, δ3)

≥ 0 for all admissible δ1, δ2, δ3

Hence (f ∗, g∗, h∗) is a local optimal solution.

4.3.3 Existence of Globally Optimal Solution

Theorem 7. The reformulated problem described in section 4.3.1 has a glob-

ally optimal solution.

Proof. We first relax the decision policies of the sensor, the encoder, and the

decoder from deterministic functions

X̃ = f(X)

Y = g(X̃)

X̂ = h(Ỹ , Q(X̃))

to probabilistic transformations, expressed as fX̃|X , fY |X̃ and fX̂|Ỹ ,Q(X̃). We

define the generalized problem as: minimize the cost function over the condi-

tional densities fX̃|X , fY |X̃ and fX̂|Ỹ ,Q(X̃). Since the cost function is continu-

ous on fX̃|X , fY |X̃ and fX̂|Ỹ ,Q(X̃), and the sets of probabilistic transformations

are compact, the optimal solution of the generalized problem exists.

We now show that the minimum of the cost function in the generalized

problem can be achieved by deterministic policies. First, we observe that
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optimal fX̂|Ỹ ,Q(X̃) is deterministic since the deterministic function

h(Ỹ , Q(X̃)) = E
[
X
∣∣ Ỹ , Q(X̃)

]
minimizes the first term E

[
(X − X̂)2

]
and other terms are not affected by

this choice of h(·, ·). Next, for any deterministic h(·, ·), the cost function can

be written as∫
fX(x)

(∫
GV (x, y, x̃)fY |X̃(y|x̃)fX̃|X(x̃|x)dydx̃

)
dx (4.3)

where

GV (x, y, x̃)

=

∫ ((
x− h(y + v,Q(x))

)2
+ c ·Q2(f(x)) + λL · y2

)
fV (v)dv

The minimization in (4.3) can be carried out by choosing the X̃ = x̃, Y = y

pair that minimizes GV (x, y, x̃) for each X = x. Using the optimal h(·, ·)
as the fixed h(·, ·) in (4.3), it follows that the optimal X̃ is a deterministic

function of X and optimal Y is a deterministic function of X̃. Therefore, the

optimal solutions of the generalized problem and the original problem are the

same. Then the optimal solution of the original problem also exists.
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CHAPTER 5

CONCLUSIONS

In this thesis, we considered a sensor scheduling and remote estimation prob-

lem with a noisy communication channel between the sensor and the estima-

tor. Our goal was to design the communication strategy and the encoding

strategy for the sensor, and the decoding strategy for the estimator, that

minimize the expected value of the sum of communication cost and estima-

tion cost over a finite time horizon. By making i.i.d. assumptions on the

source and the noise processes, we showed that one should be able to find

the optimal solution among stationary strategies by solving the “one-stage”

problem. Furthermore, by assuming that the source and the noise have

Laplace and gamma distributions, respectively, with specific parameters, we

obtained a person-by-person optimal solution, which consists of a symmetric

threshold-based sensor scheduling strategy and a pair of piecewise linear en-

coding/decoding strategies. The person-by-person optimal solution is shown

to be globally optimal in the asymptotic case. Furthermore, in a modified

problem it is shown that our solution is locally optimal and a globally optimal

solution exists.

Future directions for research include:

(1) Extending the results to other types of distributions for the source

and the noise. To conduct this extension one may need to assume that

the channel noise is generated by an adversary or jammer, who wants to

maximize the estimation error. Then the optimization problem becomes a

zero-sum game and we are interested in finding the communication scheduling

and encoding strategies, the decoding strategy, and the jamming strategy

for the sensor, the estimator, and the jammer, respectively, that achieve a

saddle-point equilibrium. Some related works can be found in [36, 37, 38].

(2) Extending the results to Markov source. To conduct this extension

one may need to assume that there is a noise-free feedback channel from

the estimator to the sensor. By the end of each time step, the estimator
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transmits its current estimate to the sensor.

(3) Extending the results to multiple communication channels. Each chan-

nel is associated with a power constraint and a communication cost. There-

fore, when the sensor decides to communicate with the estimator, it also

needs to decide which channel to use. Assume that the estimator knows the

channel chosen by the sensor. Then the estimator should also apply different

decoding strategies for messages transmitted via different channels.

(4) Extending the results to multi-dimensional systems.
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